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Abstract: In this paper, laser powder-bed fusion (L-PBF) additive manufacturing (AM) with a
high-temperature inductive platform preheating was used to fabricate intermetallic TiAl-alloy
samples. The gas atomized (GA) and mechanically alloyed plasma spheroidized (MAPS) powders
of the Ti-48Al-2Cr-2Nb (at. %) alloy were used as the feedstock material. The effects of L-PBF
process parameters—platform preheating temperature—on the relative density, microstructure,
phase composition, and mechanical properties of printed material were evaluated. Crack-free intermetallic
samples with a high relative density of 99.9% were fabricated using 900 ◦C preheating temperature.
Scanning electron microscopy and X-Ray diffraction analyses revealed a very fine microstructure
consisting of lamellar α2/γ colonies, equiaxed γ grains, and retained β phase. Compressive tests showed
superior properties of AM material as compared to the conventional TiAl-alloy. However, increased
oxygen content was detected in MAPS powder compared to GA powder (~1.1 wt. % and ~0.1 wt. %,
respectively), which resulted in lower compressive strength and strain, but higher microhardness
compared to the samples produced from GA powder.

Keywords: selective laser melting; additive manufacturing; titanium alloy; microstructure;
mechanical alloying

1. Introduction

Gamma TiAl-based intermetallic alloys are attractive materials for structural high-temperature
applications due to their high specific strength at room and elevated temperatures, good creep,
and oxidation resistance [1]. These properties make them promising candidates for replacing
nickel-based superalloys in gas turbine engines [2]. One of the most widely known γ-TiAl alloys
is the Ti-48Al-2Cr-2Nb (at. %) alloy, which is currently used by General Electric for low-pressure
turbine blades [3,4]. While TiAl alloys possess high strength, their poor ductility and brittleness at
room temperatures severely complicate their processability by conventional manufacturing techniques
and limit their application [5]. Casting followed by hot isostatic pressing (HIP) has been used to
conventionally fabricate TiAl alloy parts [6]; however, this approach has its limitations in terms of high
cost and design flexibility.

In recent years, additive manufacturing (AM) has been applied to manufacture various titanium
alloys [7–9] as well as titanium aluminide alloys [10–12]. AM is a promising way to manufacture
intermetallic alloy parts since it offers significant advantages in terms of design freedom and cost
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reduction compared to conventional methods. However, high cooling rates typical for laser-based
powder bed fusion and directed energy deposition AM techniques lead to high residual stresses,
which makes it difficult to produce crack-free intermetallic parts. Shi X. et al. [13] showed that it is
not possible to produce crack-free Ti-47Al-2Cr-2Nb alloy samples by the laser powder bed fusion
(L-PBF) using 200 ◦C preheating. The L-PBF of Ti-48Al-2Cr-2Nb alloy with 450 ◦C preheating resulted
in severe cracking formation, indicating that higher preheating temperatures must be utilized [14].
Selective electron beam melting (SEBM) has been proved feasible in fabrication of TiAl alloys [15–17].
Utilizing an electron beam to preheat the powder bed to temperatures around 1000 ◦C allows one
to drastically reduce residual stresses and suppress crack formation during the fabrication of TiAl
alloys. One disadvantage of SEBM process is its much lower geometrical precision compared to L-PBF
process. High-temperature powder bed preheating is required to produce crack-free TiAl alloys using
the L-PBF process. Platform preheating temperatures of 800–1000 ◦C with inductive heating have
been successfully used to obtain crack-free samples during the L-PBF of titanium aluminides [18,19].
However, microstructure and mechanical properties are still underexplored and require extensive
characterized to evaluate the feasibility of L-PBF for manufacturing of TiAl alloys.

Another concern for further development of AM TiAl is the commercial availability of intermetallic
alloys powders with properties suitable for their application in AM. Gas and plasma atomization
are currently the most common processes used for the fabrication of spherical powders for L-PBF or
SEBM technologies [20,21]. While atomization techniques allow manufacturing of spherical powders,
these technologies are rather costly, especially considering the complex compositions of intermetallic
alloys. Mechanical alloying (MA), followed by the plasma spheroidization (PS) process, is an alternative
approach to obtain spherical powders with reduced costs for application in AM [22,23]. Irregular MA
powders are treated in a high-temperature plasma jet, resulting in rapid melting and solidification
and leading to spherical powders [24]. Application of MA plasma spheroidized (MAPS) powders in
L-PBF or SEBM processes can lead to lower cost of these techniques. However, the microstructure and
properties of alloys fabricated by AM from MAPS powders are yet to be evaluated and compared to
gas atomized (GA) powders to assess the feasibility of such an approach.

The objective of this paper is to evaluate the feasibility of L-PBF process to fabricate crack-free
Ti-48Al-2Cr-2Nb alloy from different feedstock powders and using an inductive high-temperature
platform preheating. Two types of powders are used: a commercially available GA powder and an
in-house produced MAPS TiAl-alloy powder. The effects of L-PBF process parameters and preheating
temperature on fabricated TiAl-alloy microstructure and mechanical properties are investigated.

2. Materials and Methods

2.1. Materials

Two types of powders were used in the study to fabricate the samples by L-PBF process. The GA
powder of Ti-48Al-2Cr-2Nb alloy supplied by AMC Powders (Beijing, China) and produced by
electrode induction gas atomization (EIGA) had the following particle size distribution: d10 = 17.4 µm,
d50 = 33.8 µm, d90 = 60.5 µm. Further description of the powder’s composition and morphology is
presented in Section 3.1. The second powder of TiAl-alloy was produced in-house by MA and PS
processes. Preliminary experiments of the MA process were carried out using a Fritsch Pulverisette 4
planetary mill by milling the elemental powders of Ti, Al, Cr, and Nb (with 99.9% purity) blended
with the proportion of Ti-48Al-2Cr-2Nb (at. %) alloy. A more detailed description of the MA process
and characterization of the powders can be found in [25]. A dry grinding SD5 laboratory attritor
produced by Union Process (Akron, OH, USA) was used for MA. The elemental powder blend was
milled for 12 h in an argon atmosphere with the rotation speed of 270 rpm and 20:1 ball to powder mass
ratio using stainless steel balls with 10 mm diameter. After the MA process, the powder was sieved
to 0–71 µm fraction and subjected to PS using the TEK-15 system (Tekna, Sherbrooke, QC, Canada).
The Ar-He gas was used as the plasma forming gas. The powder feeding rate was set to 15 g/min and
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the plasma torch power was 15 kW. The final particle size distribution of the MAPS powder was the
following: d10 = 9.7 µm, d50 = 33.3 µm, d90 = 67.7 µm.

2.2. Laser Powder-Bed Fusion

The L-PBF process was carried out using AconityMIDI (Aconity3D GmbH, Herzogenrath,
Germany) system. The system is equipped with a 1070 nm wavelength fiber laser with a maximum
power of 1000 W. Cylindrical samples with a 10 mm diameter and 10 mm height were fabricated
for further investigation. The samples were fabricated on a Ti-6Al-4V substrate, which was put on a
molybdenum platform. The molybdenum substrate was inductively preheated to a set temperature,
which was continuously controlled by a thermocouple under the molybdenum platform. The titanium
substrate was then conductively heated by the molybdenum substrate before starting the L-PBF process.
The process chamber was continuously flooded with high purity argon gas to achieve oxygen content
in the chamber below 20 ppm. After the build process was finished, the platform and the samples
were cooled to room temperature with a cooling rate of approximately 5 ◦C/min.

The platform preheating temperature was varied from 600 to 900 ◦C and the scanning speed
(S) was varied from 650 to 1250 mm/s, while the laser power (P), hatching distance (HD), and layer
thickness (L) were set to a fixed value for most of the samples. The laser spot diameter was set to
~80 µm for most of the samples. A chessboard scanning pattern with 5 × 5 mm2 squares and a rotation
angle of 67 ◦C was used for the L-PBF process. The L-PBF processing parameters used to produce the
samples from the MAPS and the GA powders are shown in Table 1. The values were chosen based on
the preliminary results and the published data on L-PBF of TNBV4 alloy [26].

Table 1. The L-PBF process parameters used for to produce the samples.

Parameter
Set P, W S, mm/s HD, mm L, mm VED,

J/mm3

Laser Spot
Diameter,

µm

Preheating
Temperature,

◦C

Feedstock
Powder

1_600 150 800 0.11 0.03 57

80

600

GA, MAPS

2_600 150 650 0.11 0.03 70
3_600 150 1000 0.11 0.03 45
4_600 150 1250 0.11 0.03 36
5_600 150 950 0.11 0.03 48
6_600 150 750 0.11 0.03 61
1_800 150 800 0.11 0.03 57

800

2_800 150 650 0.11 0.03 70
3_800 150 1000 0.11 0.03 45
4_800 150 1250 0.11 0.03 36
5_800 150 950 0.11 0.03 48
6_800 150 750 0.11 0.03 61
1_900 150 800 0.11 0.03 57

900

2_900 150 650 0.11 0.03 70
3_900 150 1000 0.11 0.03 45
4_900 150 1250 0.11 0.03 36
5_900 150 950 0.11 0.03 48
6_900 150 750 0.11 0.03 61
Large
spot 850 330 0.45 0.09 64 500 800 GA

One sample was fabricated using GA powder and a large laser spot diameter of 500 µm (further
denoted as “Large spot”) and increased laser power and layer thickness values, while the volume
energy density (VED) was at a similar value as for the samples produced with 80 µm spot diameter (see
Table 1). The larger spot was used in order to investigate how the microstructure of a TiAl-alloy can be
varied by using an increased laser spot diameter coupled with high laser power and increased layer
thickness. As demonstrated in the previous study, L-PBF processing with increased power energy can
result in a strongly textured coarse microstructure, as shown in the case of Inconel 718 alloy [27,28].
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2.3. Characterization

The as-fabricated samples were cut and polished along the build direction (BD) for the
microstructural characterization. Mira 3 LMU (TESCAN, Brno, Czech Republic) scanning electron
microscope (SEM) in the backscattered electrons (BSE) mode was utilized to evaluate the microstructures
of non-etched samples. Energy Dispersive Spectroscopy (EDS) was used for the chemical analysis of
the samples and powders on the polished cross-sections.

The phase composition of the powders and the fabricated samples was analyzed with a Bruker
D8 Advance X-ray diffraction (XRD) (Bruker, Germany) using Cu-Kα (λ = 1.5418 Å) irradiation.

The relative density was measured by a standard metallographic technique, which includes taking
a minimum of five different locations of the polished samples with an optical microscope (OM) Leica
DMI5000 () at 50×magnification. The OM images were then used to isolate the pores from the bulk
material (Leica, Wetzlar, Germany) using ImageJ software. The calculated fraction of the image defined
as bulk materials was used as the relative density value. General Electric (Boston, MA, USA) Phoenix
Vtomex Computed Tomography (CT) System was used for X-ray microtomography analyses (CT) of
the samples with a voxel size of 10 µm. Avizo software was used to visualize the CT-data and evaluate
the porosity of the samples.

The oxygen content in the powder and the fabricated samples was measured using the inert-gas
fusion-infrared (IGF) method with a LECO TC-500 analyzer (LECO, St Joseph, MI, USA).

The microhardness of the samples was measured using a Buehler VH1150 testing machine with
300 g load and 10 s dwell time.

L-PBF process parameter sets that produced the sample with the highest relative density were then
used to fabricate cylindrical samples with 4 mm diameter and 20 mm height for the compression tests.
The samples were cut by electrical discharge machining to achieve 5 mm height. Room temperature
compression tests were performed using a universal testing machine (Zwick/Roell Z100, Ulm, Germany)
with a strain rate of 0.1 mm/min. A minimum of three samples per point were tested.

3. Results and Discussion

3.1. Powder Characterization

The particle size distribution of gas atomized (GA) powder was found to be d10 = 17.4 µm,
d50 = 33.8 µm, d90 = 60.5 µm. As can be seen in Figure 1, the GA particles have a spherical shape and
dendritic surface morphology, while the cross-section shows a typical for the GA process dendritic
microstructure [29,30]. The chemical composition of the powder is shown in Table 2.
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Table 2. The chemical composition of mechanically alloyed plasma spheroidized (MAPS) and
GA powders.

Powder
Measured by EDS Measured by IGF

Ti, at. % Al, at. % Nb, at. % Cr, at. % O, wt. %

MAPS 51.6 ± 0.3 43.7 ± 0.3 2.0 ± 0.1 2.2 ± 0.1 1.1 ± 0.1
GA 50.2 ± 0.2 45.7 ± 0.3 2.1 ± 0.1 2.1 ± 0.1 0.07 ± 0.01

The particle size distribution of mechanical alloyed plasma spheroidized (MAPS) powder was
found to be d10 = 9.7 µm, d50 = 33.3 µm, d90 = 67.7 µm. The particles also have a spherical shape
and dendritic surface morphology (Figure 2a). A significant difference from the GA powder is the
presence of small oxides inside the particles, which can be seen as black precipitates in the cross-section
image (Figure 2b). The presence of oxides can be attributed to an increased oxygen content as shown
in Table 2. The oxygen pickup most likely occurred during the MA process. Al was partially lost
during the PS process. Thus, further optimization of the process may be carried out to obtain a proper
chemical composition.
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Figure 2. SEM images of the mechanically alloyed plasma spheroidized (MAPS) powder showing
(a) surface morphology and (b) cross-section of a particle.

The XRD pattern of the GA powder shows peaks corresponding to α/α2-phase with a hexagonal
lattice and a small peak corresponding to β-phase with a body-centered cubic (BCC) lattice (Figure 3).
The GA process is characterized by high cooling rates during the solidification of powders preserving
the α/α2-phase. The phase composition of MAPS powder is characterized by the presence of α2

(Ti3Al-based) and γ (TiAl-based) phases. The presence of the ordered α2-phase instead of α-phase can
be confirmed by identifying the most intense superlattice α2 peak [31], which is seen in the case of the
MAPS powder. The difference in the phase composition between GA and MAPS powders might be the
result of Al and O content differences. As shown in [32], an increase of oxygen content can decrease
the volume fraction of γ-phase and increase the volume fraction of hexagonal α/α2-phase.
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Figure 3. X-ray diffraction (XRD) patterns of MAPS and GA powders.

3.2. Densification via Laser Powder-Bed Fusion

Figure 4 shows the effect of platform preheating temperature on the formation of cracks in samples
fabricated from the MAPS powder. As can be seen in Figure 4a, severe cracking is observed when a
relatively low preheating temperature of 600 ◦C was used during the L-PBF process. Increasing the
preheating temperature to 800 ◦C significantly reduced the number of cracks; however, occasional
horizontal cracks perpendicular to the BD were still present. Further increase in the preheating
temperature up to 900 ◦C resulted in elimination of cracks. This is in agreement with the brittle-ductile
transition temperature (BDTT) of the TiAl-alloy, which is around 750–780 ◦C [33]. Increased ductility
above the BDDT allows the material to accommodate high stresses during L-PBF and avoid cracking.
Similar results were obtained in [18] when the Ti-44.8Al–6Nb–1.0Mo–0.1B (at. %) powder was processed
by L-PBF at 800 ◦C platform preheating. It should be noted that occasional horizontal cracks were still
present on the edges of the specimen, likely due to a high thermal gradient (Figure 4b). Similar results
in terms of cracks formation were obtained for the GA powder. Further investigation of the relative
density was carried out only on the samples fabricated at 800 and 900 ◦C preheating temperatures.
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Figure 4. Optical images of the cross-sections of the samples fabricated from MAPS powder. The images
show representative cross-sections of the samples obtained using different preheating temperatures:
(a) 600 ◦C (sample 1_600), (b) 800 ◦C (sample 1–800), (c) 900 ◦C (sample 1_900).

Figures 5 and 6 show the effect of scanning speed on the relative density of the samples fabricated
using the MAPS and the GA powders, respectively. In the case of the MAPS powder, the highest
relative density (99.75 ± 0.05%) was achieved at 650 mm/s scanning speed (which corresponds to
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70 J/mm3 VED) for both 800 and 900 ◦C preheating temperatures. Using the GA powder resulted in an
overall higher relative density values (all values were higher than 99.6%). The highest relative density
of 99.94 ± 0.05% was obtained at 800 ◦C preheating temperature and 950 mm/s scanning speed which
corresponds to 48 J/mm3 VED. In general, a higher preheating temperature resulted in a slightly higher
porosity, which suggests that some overheating might have taken place during the L-PBF and led to
formation of keyhole pores. At the same time, applying high scanning speed of 1250 mm/s resulted in
an increased porosity for both powders, which might be the result of insufficient melting or melt pool
instability [34,35].
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The samples fabricated from the MAPS and the GA powders having the highest relative densities
were taken further for the CT-investigation. The results (Figure 7) showed that the median size of the
pores was around 40 µm for the MAPS sample and around 15 µm for the GA sample. The porosity
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volume was visibly lower in the case of the GA sample compared to the MAPS sample, which is
compliant with the metallographic measurements. The pores were found to be mostly spherical,
suggesting that these are gas pores formed due to entrapped gas originating from the argon gas or melt
pool vaporization [36]. A few lack-of-fusion defects were also found for both samples, indicating poor
bonding defects or incomplete melting of some powders [37]. According to the CT-results, the GA
sample had porosity volume less than 0.1%, while the MAPS sample had porosity volume of around
0.3%. Higher porosity in MAPS samples might be attributed to an increased oxygen in the feedstock
powder, as well as the initial porosity from the powder. This correlates with the results obtained by Li
et al. [38], where they showed that a powder with lower oxygen content resulted in better densification
during L-PBF of 316L alloy.
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3.3. Microstructural Characterization

Figure 8 shows microstructure of the TiAl-alloy fabricated from MAPS powder at 800 ◦C (Figure 8a)
and 900 ◦C (Figure 8b) preheating temperatures. According to the Ti-Al phase diagram [39], these
temperatures correspond to the α2+γ phase field. In both cases, the alloy has a very fine duplex
microstructure consisting of lamellar α2/γ colonies (gray), equiaxed γ grains (dark gray), and residual
β phase (white) as confirmed by the XRD results (Figure 9). Retained β-phase was also found
in the microstructure of the SEBM-processed Ti-48Al-2Cr-2Nb alloy in the paper [10]. While the
Ti-48Al-2Cr-2Nb is an α-solidifying alloy, high cooling rates during the L-PBF process can induce
solidification of a metastable β-phase. As shown in Table 3, there is Al loss of about 2–3 at. % in the
samples fabricated from MAPS powder compared to the initial powder. Reducing the Al concentration
to about 40–41 at. % leads to the solidification through the Ti-rich side of the peritectic reaction and
formation of the β-phase. The retained β-phase in the TiAl-alloy can increase its ductility, however the
strength at room and elevated temperatures can be worsened due to refractory elements segregation
and reduced solid solution strengthening in the lamellar regions [40]. Thus, a subsequent heat treatment
should be considered to transform the metastable β-phase in the TiAl alloy.

According to the XRD results (Figure 10), the alloy has some oxides corresponding to the TiO
phase. The oxides mostly likely originated from the initial powder; however, some oxygen pickup
during the L-PBF process could take place as well. The oxygen measured by LECO analysis showed
that samples fabricated from MAPS powder had oxygen content around 1.3 wt. %, while samples
fabricated from GA powder had 10 times lower oxygen content (~0.14 wt. %).
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Figure 9 shows microstructures of the samples fabricated from GA powder at 800 ◦C and 900 ◦C
preheating temperatures. The obtained microstructure is similar to MAPS samples and mainly consists
of lamellar α2/γ colonies, equiaxed γ grains, and the retained β phase. Crescent-shaped melt pool
boundaries with a width of about 80–90 µm can be found in the microstructure as shown in Figure 9a.
There were no oxide precipitates found in the case of GA powder due to relatively low oxygen content in
the initial powder. Compared to the MAPS samples, the amount of retained β phase is visibly lower in
GA samples since their Al content is higher (as can be seen from Tables 3 and 4) and the solidification is
expected to take place mainly through the α phase region. However, when the preheating temperature
was increased to 900 ◦C from 800 ◦C the amount of β phase visibly increased.

The microstructure of the samples fabricated from GA powder shows fewer lamellar α2/γ colonies
compared to the MAPS samples. This could due to lower oxygen content in the GA samples since a
decreased oxygen content leads to an increased γ-phase volume fraction in TiAl-alloys [32]. XRD results
(Figure 10) confirmed that samples fabricated from GA powder consist mainly of γ phase (TiAl) and
α2 (Ti3Al) phase.
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Figure 11 shows the microstructure of the “Large spot” sample fabricated from the GA powder
using a laser spot diameter of about 500 µm. In this case, the melt pool width was roughly about
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500–600 µm as can be seen in Figure 11a. Larger melt pool during the L-PBF process is expected to result
in lower cooling rates and, subsequently, a coarser microstructure [41]. The obtained microstructure is
highly inhomogeneous and consists of various layered regions. There are coarse columnar γ grains
inside the melt pool growing towards the middle of the melt pool, as can be seen in Figure 11b.
A fine-grained zone can be seen underneath the melt pool boundary, which likely formed during
recrystallization in a heat-affected zone (HAZ). The L-PBF involves repetitive heating and cooling
resulting in a complex thermal history. This leads to intrinsic non-uniform heat treatment during the
L-PBF process. A similar alternative-band microstructure of the Ti-47Al-2Cr-2Nb alloy was observed
after direct laser deposition in [42] and the authors attributed it to the effect of cyclic heat treatment
derived from multiple laser exposure. The deposition and laser exposure of the next layers leads to
heating the underlying solidified material. In this HAZ the material reaches α-transus temperature,
then cools down into α+γ region resulting in a refined microstructure [10].

Al-rich and Al-poor regions can be distinguished from the BSE-SEM images of the “Large spot”
sample. Al-rich zone is seen at the bottom of a melt pool as a dark band while the Al depletion
is observed at the top of the melt pool, as can be seen in Figure 11d. It suggests that the Al loss
occurred mostly closer to the surface of a melt pool. The overall Al loss in “Large spot” sample was
around 3 at. % compared to the initial powder (Table 4). Al segregation in the L-PBF-processed
Ti-6Al-4V alloy samples was observed in [43] resulting in dark bands at the bottom of a melt pool.
Similarly, SEBM resulted in a banded, inhomogeneous microstructure of a γ-TiAl based alloy due
to the vaporization of Al [44]. Al-rich regions consist of lamellar α2/γ colonies as can be seen in
Figure 11c, while Al-poor regions have lamellar colonies surrounded by the retained β phase as shown
in Figure 11e. The differences in microstructures between Al-rich and Al-poor areas are in a good
agreement with the Ti-Al phase diagram [45].
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Figure 11. BSE-SEM images showing the microstructure variation in the “Large spot” sample produced
from GA powder: (a) a general view, (b) a magnified area showing a melt pool section, (c) Al-rich area,
(d) a melt pool boundary, (e) Al-poor area
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Table 3. The chemical composition (in at. %) of the samples fabricated from MAPS powder at different
preheating temperatures.

Preheating Temperature, ◦C Ti Al Nb Cr O

600 55.2 ± 0.1 40.4 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 –
800 53.8 ± 0.2 41.6 ± 0.2 2.3 ± 0.1 2.0 ± 0.2 0.14 ± 0.02
900 54.3 ± 0.1 40.9 ± 0.1 2.1 ± 0.2 2.2 ± 0.1 0.13 ± 0.02

Table 4. The chemical composition (in at. %) of the samples fabricated from GA powder using different
laser spot diameters.

Sample Ti Al Nb Cr

Small spot, 80 µm (Sample 5_800) 50.5 ± 0.1 45.3 ± 0.2 2.1 ± 0.1 2.1 ± 0.1
Large spot, 500 µm 52.9 ± 0.2 42.3 ± 0.3 2.0 ± 0.1 2.2 ± 0.1

3.4. Mechanical Properties

Table 5 presents the results of room temperature compressive tests of the samples fabricated using
GA and MAPS powders. High ultimate compressive strength values were obtained for both GA and
MAPS samples, which were 2277 ± 71 MPa and 1910 ± 37 MPa, respectively. The compressive strain
values were around 32%–35% for the GA samples and 15%–17% for the MAPS. Using the GA powder
resulted in both higher compressive strength and strain. This can be explained by an increased oxygen
content in MAPS powder, which is known to embrittle TiAl-alloys [46], as well as a higher β-phase
content in MAPS samples, which is softer than intermetallic γ and α2 phases [47] and can reduce the
strength of the alloy. The overall room temperature compressive performance of the samples fabricated
by L-PBF with a high-temperature preheating showed promising results and exceeded the compressive
strength of SEBM samples and showed significantly better results than the samples fabricated by L-PBF
with a non-preheated platform [48]. The GA samples also showed superior compressive performance
compared to the conventional TiAl-alloy [49] and SEBM Ti-48Al-2Cr-2Nb alloy [50].

Table 5. Comparison of room temperature mechanical properties of TiAl alloy manufactured by
different processes.

Material Condition Ultimate Compressive
Strength, MPa

Compressive
Strain, %

Ti-48Al-2Cr-2Nb (GA
powder, this study)

As-fabricated, 900 ◦C
preheating 2277 ± 71 32–35

Ti-48Al-2Cr-2Nb (MAPS
powder, this study)

As-fabricated, 900 ◦C
preheating 1910 ± 37 MPa 15–17

Ti-48Al-2Cr-2Nb (SEBM)
[48] As-fabricated 1800 40

Ti-48Al-2Cr-2Nb (L-PBF)
[48]

As-fabricated, no
preheating 612 ± 56 1,98 ± 0.55

Ti-48Al-2Cr-2Nb (SEBM)
[50] Heat-treated 2068 25

Ti-48Al-2Cr-2Nb (casted)
[50] As-fabricated 1153 ~6

The microhardness variation over a range of 1.5 mm along the BD was measured for different
samples, as shown in Figure 12. All samples demonstrated a fluctuating microhardness profile, which
is associated with the microstructural inhomogeneity. A similar microhardness variation along the
BD was obtained in [42] for the direct laser deposited Ti-47Al-2Cr-2Nb alloy, with an average value
of 400 HV. The highest mean microhardness values were obtained for the samples fabricated from
MAPS powder: 584 HV and 552 HV for 800 ◦C and 900 ◦C preheating temperatures, respectively.
This correlates well with the oxygen content in the samples: higher microhardness was obtained for
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the samples with higher oxygen content. As shown in [51] for the Ti-48Al-2Cr-2Nb alloy, an increase in
oxygen content increases α2 phase volume fraction that has higher hardness compared to γ phase.
At the same time, decreased Al content in MAPS samples could prevent the formation of γ-phase,
resulting in a higher α2-phase volume fraction and higher microhardness.

The samples fabricated from GA powder showed mean microhardness around 440 HV,
which is higher than as-fabricated SEBM (253 HV) and conventional (371 HV) TiAl-alloy [50].
Higher microhardness might be attributed to a very fine microstructure in the case of the L-PBF.
High microhardness can be beneficial for wear performance [52]; however, it also suggests increased
brittleness and reduced ductility [51]. Thus, a more complex mechanical properties characterization
is recommended.
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Figure 12. Microhardness variation along the build direction of the samples manufactured from MAPS
powder and GA powder. The dashed lines correspond to the mean values: red—for the samples
fabricated at 800 ◦C, black—at 900 ◦C, blue—using the large laser spot size.

4. Conclusions

In this work it was demonstrated that pre-alloyed spherical GA and MAPS powders of TiAl-based
alloy can be used to fabricate crack-free samples using the L-PBF process with high-temperature
platform preheating. The following main conclusions were drawn:

1. Crack-free samples were fabricated with 900 ◦C platform preheating temperature. The highest
relative density of 99.9% was obtained with GA powder at 48 J/mm3 VED and 99.7% with MAPS
powder at 70 J/mm3.

2. Very fine microstructures consisting of lamellar α2/γ colonies, equiaxed γ grains, and retained β

phase were obtained in all samples. Al loss during the L-PBF process led to the shift in the solidification
route and resulted in the formation of the retained β phase. Increased oxygen content in the initial
powder led to the formation of small oxides and an increased α2 volume fraction.

3. Using an increased energy input during the L-PBF with a large laser spot size resulted in an
inhomogeneous microstructure consisting of Al-rich and Al-poor regions. Regions with lamellar α2/y
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colonies and equiaxed α2 grains surrounded with retained β phase depending on the Al concentration
were found in the microstructure. There were coarse columnar and refined γ grains as a result of
repetitive heating and cooling during the L-PBF.

4. The fabricated samples showed high ultimate compressive strength and strain values.
The samples fabricated from GA powder demonstrated superior compressive performance compared
to the samples from the MAPS powder. Both alloys showed superior compressive properties compared
to the conventional TiAl-alloy.

5. The samples fabricated from the MAPS powder had higher microhardness due to the increased
oxygen content and α2 volume fraction.

6. Further investigation will be focused on a more detailed characterization of mechanical
properties at room and elevated temperatures including tensile behavior, as well as the effects of heat
treatment on microstructure and properties of the TiAl-alloy.
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