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A B S T R A C T

Due to the increasing integration of solar power into the electrical grid, forecasting short-term solar irradiance
has become key for many applications, e.g. operational planning, power purchases, reserve activation, etc. In
this context, as solar generators are geographically dispersed and ground measurements are not always easy to
obtain, it is very important to have general models that can predict solar irradiance without the need of local
data. In this paper, a model that can perform short-term forecasting of solar irradiance in any general location
without the need of ground measurements is proposed. To do so, the model considers satellite-based mea-
surements and weather-based forecasts, and employs a deep neural network structure that is able to generalize
across locations; particularly, the network is trained only using a small subset of sites where ground data is
available, and the model is able to generalize to a much larger number of locations where ground data does not
exist. As a case study, 25 locations in The Netherlands are considered and the proposed model is compared
against four local models that are individually trained for each location using ground measurements. Despite the
general nature of the model, it is shown show that the proposed model is equal or better than the local models:
when comparing the average performance across all the locations and prediction horizons, the proposed model
obtains a 31.31% rRMSE (relative root mean square error) while the best local model achieves a 32.01% rRMSE.

1. Introduction

With the increasing integration of renewable sources into the elec-
trical grid, accurate forecasting of renewable source generation has
become one of the most important challenges across several applica-
tions. Among them, balancing the electrical grid via activation of re-
serves is arguably one of the most critical ones to ensure a stable
system. In particular, due to their intermittent and unpredictable
nature, the more renewables are integrated, the more complex the grid
management becomes (Lara-Fanego et al., 2012; Voyant et al., 2017).

In this context, as solar energy is one of the most unpredictable
renewable sources, the increasing use of solar power in recent years has
led to an increasing interest in forecasting irradiance over short time
horizons. In particular, in addition to activation of reserves to manage
the grid stability, short-term forecasts of solar irradiance are paramount
for operational planning, switching sources, programming backup,
short-term power trading, peak load matching, scheduling of power
systems, congestion management, and cost reduction (Hammer et al.,
1999; Reikard, 2009; Voyant et al., 2017).

1.1. Solar irradiance forecasting

The forecasting of solar irradiance can be typically divided between
methods for global horizontal irradiance (GHI) and methods for direct
normal irradiance (DNI) (Law et al., 2014), with the latter being a
component of the GHI (together with the diffuse solar irradiance). As in
this work GHI is forecasted, Law et al. (2014) should be used for a
complete review on methods for DNI. For the case of GHI, forecasting
techniques are further categorized into two subfields according to the
input data and the forecast horizon (Diagne et al., 2013; Voyant et al.,
2017):

1. Time series models based on satellite images, measurements on the
ground level, or sky images. These methods are usually suitable for
short-term forecasts up to 4–6 h. Within this field, the literature can
be further divided into three groups.
(a) Classical statistical models like ARMA models (Ahmad et al.,

2015), ARIMA models (Reikard, 2009), the CARDS model
(Huang et al., 2013), or the Lasso model (Yang et al., 2015).
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(b) Artificial intelligence models such as neural networks models
(Mellit and Pavan, 2010; Lauret et al., 2015), support vector
machines (Lauret et al., 2015), decision trees-based models
(McCandless et al., 2015), or Gaussian models (Lauret et al.,
2015).

(c) Cloud-moving vector models that use satellite images (Lorenz
and Heinemann, 2012).

2. Numerical weather prediction (NWP) models that simulate weather
conditions. These methods are suitable for longer forecast horizons,
4-6 h onward, time scales where they outperform the statistical
models (Perez et al., 2010). As the goal of this work are short-term
forecasts, Diagne et al. (2013) should be used for more complete
review of NWP methods.

While the division in accuracy between NWP and time series models
is given by the predictive horizon, establishing comparisons between
time series models is more complex. In particular, while some authors
have reported the superiority of statistical models over artificial in-
telligence methods (Reikard, 2009), others have obtained opposite re-
sults (Sfetsos and Coonick, 2000).

The input features typically used in the literature to predict solar
irradiance vary widely, e.g. past irradiance values, satellite data,
weather information, etc. In many cases, the inputs considered depend
on the type of model used, e.g. cloud moving vector models require
satellite images. While a detailed review on the different methods and
input features is outside the scope of this paper, Diagne et al. (2013) is a
good source for a more thorough analysis.

1.2. Motivation

To the best of our knowledge, due to the time series nature of the
solar irradiance, the statistical and artificial intelligence methods pro-
posed so far have considered past ground measurements of the solar
irradiance as input regressors (Diagne et al., 2013). While this choice of
inputs might be the most sensible selection to build time series models,
it poses an important problem: local data is required at every site where
a forecast is needed.

In particular, if the geographical dispersion of solar generators is
considered, it becomes clear that forecasting solar irradiance is a pro-
blem that has to be resolved across multiple locations. If ground mea-
surements of all these sites are required, the cost of forecasting irra-
diance can become very expensive. In addition to the cost, a second
associated problem is the fact that obtaining local data is not always
easy.

As a result, in order to obtain scalable solutions for solar irradiance
forecasting, it is important to develop global models that can forecast
without the need of local data. In this context, while current cloud-
moving vectors might accomplish that, they are not always easy to
deploy as they are complex forecasting techniques that involve several
steps (Diagne et al., 2013).

1.3. Contributions and organization of the paper

In this paper, a novel forecasting technique is proposed that ad-
dresses the mentioned problem by providing a prediction model that,
while being accurate and easy to deploy, forecasts solar irradiance

without the need of local data. The prediction model is based on a deep
neural network (DNN) that, using SEVIRI1 satellite images and NWP
forecasts, is as accurate as local time series models that consider ground
measurements. Although the model uses satellite images just as cloud-
moving vector models do, it is easier to deploy as it requires less
complex computations. In addition, while obtaining satellite data might
not be always easier or cheaper than installing local ground sensors,
there are several locations where satellite data are available and the
proposed model avoids going to the ground to install local measure-
ments. An example of this is The Netherlands, where satellite data is
provided by the national meteorological institute.

It is important to note that, to the best of our knowledge, the pro-
posed method is the first of its class that tries to remove the dependence
of local telemetry even for training. Particularly, while other methods
from the literature successfully remove the local data dependence
during forecasting, e.g. Larson and Coimbra (2018), they still require
local telemetry at all sites of interest during training. While using local
data in a small subsets of sites during training, the proposed model
successfully predicts the irradiance in a much larger subset of locations
without needing local telemetry from these sites at any stage of the
estimation or the forecasting.

As a case study, 30 location in The Netherlands are considered and
the model is estimated using 5 of these locations. Then, for the re-
maining 25 locations, the performance of the proposed estimated model
is compared against individual time series models specifically trained
for each site using ground data.

The remaining of the paper is organized as follows: Section 2 in-
troduces the preliminary concepts considered in this work. Next, Sec-
tion 3 presents the proposed general model for forecasting solar irra-
diance. Then, Section 4 introduces the case study and discusses the
performance of the proposed model when compared with local models.
Finally, Section 5 summarizes the main results and concludes the paper.

2. Preliminaries

In this section the concepts and algorithms that are used and/or
modified in the paper are introduced.

2.1. Deep learning and DNNs

In the last decade, the field of neural networks has experienced
several innovations that have lead to what is known as deep learning
(DL) (Goodfellow et al., 2016). In particular, one of the traditional is-
sues of neural networks had always been the large computational cost
of training large models. However, that changed completely when
(Hinton et al., 2006) showed that a deep belief network could be
trained efficiently using an algorithm called greedy layer-wise pre-
training. As related developments followed, researchers started to be
able to efficiently train complex neural networks whose depth was not
just limited to a single hidden layer (as in the traditional multilayer
perceptron). As these new structures systemically showed better results
and generalization capabilities, the field was renamed as deep learning
to stress the importance of the depth in the achieved improvements

Acronyms

ARX Autoregressive with Exogenous Inputs
DL Deep Learning
DNN Deep Neural Network
ECMWF European Center for Medium-Range Weather Forecasts
GBT Gradient Boosting Trees

GHI Global Horizontal Irradiance
KNMI Royal Netherlands Meteorological Institute
NWP Numerical Weather Prediction
rRMSE Relative Root Mean Square Error
SICSS Surface Insolation under Clear and Cloudy Skies
TPE Tree-Structured Parzen Estimator

1 The SEVIRI (Spinning Enhanced Visible and InfraRed Imager) is a mea-
surement instrument of the METEOSAT satellite.
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(Goodfellow et al., 2016, Section 1.2.1).
While this success of DL models initiated in computer science ap-

plications, e.g. image recognition (Krizhevsky et al., 2012), speech re-
cognition (Hinton et al., 2012), or machine translation (Bahdanau et al.,
2014), the benefits of DL have also spread in the last years to several
energy-related applications (Wang et al., 2016; Feng et al., 2017;
Suryanarayana et al., 2018; Coelho et al., 2017; Fan et al., 2017; Lago
et al., 2018a,b). Among these areas, wind power forecasting (Wang
et al., 2016; Feng et al., 2017) and electricity price forecasting (Lago
et al., 2018a,b) are arguably the fields that have benefited the most.

While there are different DL architectures, e.g. convolutional net-
works or recurrent networks, in this paper a DNN is considered, i.e. a
multilayer perceptron with more than a single hidden layer, in order to
build the solar forecasting model. The reason for this selection is two-
fold: (1) DNNs are less computationally intensive than the other DL
architectures (Goodfellow et al., 2016); (2) DNNs have empirically
outperformed the other DL architectures in a similar energy-based
forecasts (Lago et al., 2018b), i.e. the forecast of day-ahead electricity
prices.

2.1.1. Representation
Defining by �= … ∈⊤x xX [ , , ]n

n
1 the input of the network, by

�= … ∈⊤y y yY [ , , , ]m
m

1 2 the output of the network, by nk the number of
neurons of the kth hidden layer, and by = … ⊤[ ]z zz , ,k k kn1 k the state
vector in the kth hidden layer, a general DNN with two hidden layers
can be represented as in Fig. 1.

In this representation, the parameters of the model are represented
by the set of parameters W that establish the mapping connections
between the different neurons of the network (Goodfellow et al., 2016).

2.1.2. Training
The process of estimating the model weights W is usually called

training. In particular, given a training set ST = =X Y{( , )}k k k
N

1 with N
data points, the network training is done by solving a general optimi-
zation problem with the following structure:

∑
=

g FW Y X W( , ( , )),
k

N

k k k
1 (1)

where � �→F: n m is the neural network map, and gk is the problem-
specific cost function, e.g. the Euclidean norm or the average cross-
entropy. Traditional methods to solve (1) include the gradient descent
or the LevenbergMarquardt algorithm (Weron, 2014). However, while
these methods work well for small sized-networks, they display com-
putational and scalability issues for DNNs. In particular, for DNNs
better alternatives are the stochastic gradient descent algorithm and all
its variants (Ruder, 2016).

It is important to note that (1) is an approximation of the real
problem one wish to solve. Particularly, in an ideal situation, the cost
function w.r.t. to the underlying data distribution would be minimized;
however, as the distribution is unknown, the problem has to be ap-
proximated by minimizing the cost function over the finite training set.
This is especially relevant for neural networks, where a model could be
overfitted and have a good performance in the training set, but perform
badly in the test set, i.e. a set with a different data distribution. To avoid
this situation, the network is usually trained in combination with reg-
ularization techniques, e.g. early stopping, and using out-of-sample
data to evaluate the performance (Goodfellow et al., 2016).

2.1.3. Network hyperparameters
In addition to the weights, the network has several parameters that

need to be selected before the training process. Typical parameters
include the number of neurons of the hidden layers, the number of
hidden layers, or the learning rate of the stochastic gradient descent
method. To distinguish them from the main parameters, i.e. the net-
work weights, they are referred to as the network hyperparameters.

2.2. Hyperparameter optimization and feature selection

In this paper, to perform the hyperparameter selection, a Bayesian
optimization algorithm that has been widely used for hyperparameter
selection is considered: the tree-structured Parzen estimator (TPE)
(Bergstra et al., 2011), an optimization algorithm within the family of
sequential model-based optimization methods (Hutter et al., 2011). The
basic principle of a sequential model-based optimization algorithm is to
optimize a black-box function, e.g. the performance of a neural network
as a function of the hyperparameters, by iteratively estimating an ap-
proximation of the function and exploring the function space using the
local minimum of the approximation. At any given iteration i, the al-
gorithm evaluates the black-box function at a new point θi. Next, it
estimates an approximation Mi of the black-box function by fitting the
previously sampled points to the obtained function evaluations. Then, it
selects the next sample point +θi 1 by numerically optimizing Mi and
starts the next iteration. Finally, after a maximum number of iterations
T have been performed, the algorithm selects the best configuration.
Algorithm 1 represents an example of a sequential model-based opti-
mization algorithm for hyperparameter selection.

Algorithm 1. Hyperparameter optimization

1: procedure SMBO θT, 1

2: H ← ∅

3: for = …i T1, , do
4: ←pi TrainNetwork(θi)
5: H H← ∪ θp{( , )}i i

6: if <i T then
7: M H←θ( ) EstimateModel( )i

8: M←+θ θargmax ( )θi i1

9: end if
10: end for
11: H←∗θ BestHyperparameters( )
12: return ∗θ
13: end procedure

In addition to optimizing the hyperparameters, the TPE algorithm is
also employed for optimizing the selection of input features. In parti-
cular, the feature selection method proposed in Lago et al. (2018a) is
considered, which selects the input features by first defining the input
features as model hyperparameters and then using the TPE algorithm to
optimally choose among them. More specifically, the method considers
that each possible input feature can be either modeled as a binary hy-
perparameter representing its inclusion/exclusion or as an integer hy-
perparameter representing how many historical values of the specific
input are used. In solar forecasting, an example of the former could be
whether to consider the hour of the day as an input feature and an
example of the latter could be the optimal number of past irradiance
values.

Fig. 1. Example of a DNN.
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2.3. Performance metrics

In order to evaluate the accuracy of the proposed model, a perfor-
mance metric is needed. In this paper, following the standards of the
literature of solar irradiance forecasting, three different metrics are
considered: the relative root mean square error (rRMSE), the mean bias
error (MBE), and the forecasting skill s as defined by Marquez and
Coimbra (2012).

One of the most commonly used metrics for evaluating solar irra-
diance forecasting is the RMSE or rRMSE, which provide an assessment
of the average spread of the forecasting errors. In particular, given a
vector = … ⊤y yY [ , , ]N1 of real outputs and a vector  ̂ ̂= … ⊤y yY [ , , ]N1 of
predicted outputs, the rRMSE metric can be computed as:

̂
=

∑ −

∑

=

=

y y

y
rRMSE

( )
·100 %.N k

N
k k

N k
N

k

1
1

2

1
1 (2)

A second metric that is widely used is the MBE, a measure of the
overall bias of the model. Using the same definitions as before, the MBE
metric can be computed as:

̂∑ −
=

N
y y1 .

k

N

k k
1 (3)

While both metrics can properly assess and compare models using
the same dataset, they are hard to interpret when it comes to make
comparisons across multiple locations, climate, and time of the year
(Marquez and Coimbra, 2012). A metric that tries to solve this issue is
the forecasting skill s; particularly, S defines first a metric V that ac-
counts for the variability of the solar irradiance, i.e. accounts for the
specific variability due to location, climate, and time. Next, it defines a
second metric U that accounts for the uncertainty, i.e. errors, of the
forecasting model. Finally, the forecasting skill S is defined as:

= −s U
V

1 . (4)

For the details on computing U and V as well as a detailed explanation
on s, the reader is referred to Marquez and Coimbra (2012). The im-
portant aspect to consider for this study is that s is a normalized metric
w.r.t. to a simple persistence model (see Section 4.2.1) that permits the
comparison of models across different conditions. A normal forecaster
should be characterized by ∈s [0, 1] with higher values indicating
better forecasting; particularly, =s 1 indicates that the solar irradiance
is perfectly forecasted, and =s 0 that the model is not better than a
simple persistence model (by definition of U and V a persistence model
will always have =s 0). Negative values would then imply the fore-
caster is worse than the simple persistence model.

3. Prediction model

In this section, the proposed prediction model for solar irradiance
forecasting is presented.

3.1. Model structure

A key element to build a prediction model that can be used without
the need of ground data is to employ a model whose structure is flexible
enough to generalize across multiple geographical locations. As DNNs
are powerful models that can generalize across tasks (Goodfellow et al.,
2016; Lago et al., 2018a), they are selected as the base model for the
proposed forecaster. This concept of generalization is further explained
in Section 3.6.1.

While the model is a DNN as the one illustrated in Fig. 1, the
number of layers, the size of the output, and the type of inputs are
specifically selected according to the application. In particular, con-
sidering that 6 h is the limit predictive horizon before NWP forecast
outperform time series models (Diagne et al., 2013), the model consists

of 6 output neurons representing the forecasted hourly irradiance over
the next 6 h; this horizon is the standard choice for short-term irra-
diance forecasting (Diagne et al., 2013).

In terms of hidden layers, the model is not subject to any specific
depth; instead, depending on the case study, i.e. the geographical area
where the forecasts are made, the number of hidden layers are opti-
mized using hyperparameter optimization as explained in Sections 2.2.
For the case study in this paper, i.e. forecasting irradiance in the
Netherlands, the optimal network depth is 2 hidden layers. To select the
number of neurons per layer, the same methodology applies, i.e. they
need to be optimized for each geographical location.

3.2. Model inputs

As indicated in the introduction, the aim of the model is to forecast
solar irradiance without the need of ground data. As a result, to perform
the selection of model inputs, it is paramount to consider the subset of
inputs that, while correlating with solar irradiance, are general enough
so that they can be easily obtained for any given location. Given that
restriction, the proposed model considers three types of inputs: NWP
forecasts of the solar irradiance, the clear-sky irradiance, and satellite
images representing maps of past solar irradiance.

3.2.1. Numerical weather prediction forecast
The first type of input are NWP forecasts of the solar irradiance

obtained from the European center for medium-range weather forecasts
(ECMWF). As indicated in the introduction, NWP forecasts of the solar
irradiance are less accurate than time series models for short-term
horizons. However, as they strongly correlate with the real irradiance,
they are very useful regressors to build time series models.

For the proposed model, the input data consists of the 6 forecasted
values for the next 6 h given by the latest available ECMWF forecast
(typically available every day around 08:00–09:00 CET).

3.2.2. Clear-sky irradiance
As second input, the model considers the clear-sky irradianceIc, i.e.

the GHI under clear-sky conditions, at every hour over the next 6 h. The
clear-sky irradiance is a deterministic input that is obtained using the
clear-sky model defined in Ineichen and Perez (2002), which computes
Ic using the location and time of interest.

3.2.3. Satellite images
The third input are satellite data representing the past irradiance

values of a geographical area. In particular, the input data consists of
images from the SEVIRI instrument of the METEOSAT satellite that are
transformed to irradiance values using two different methods:

1. For data corresponding to solar elevation angles above 12°, the
SEVIRI-based images are mapped to irradiance values using the
Surface insolation under clear and cloudy skies (SICSS) algorithm
(Greuell et al., 2013).

2. For data corresponding to solar elevation angles below 12°, i.e. very
early in the morning and late in the evening, the irradiance values
are extracted by considering the interpolation method described in
Deneke et al. (2008) applied to the clear sky index.

This distinction depending on the solar elevation angle is required
because: (1) the SICSS method considers cloud properties; (2) at low
solar elevation angles the uncertainty in the cloud properties increases
strongly (Deneke et al., 2008).

Once the satellite images are mapped to irradiance values, the input
data simply consists of the past irradiance values in the individual pixel
where the forecasting site is located. Then, to select which past irra-
diance values, i.e. which past images, are relevant for building the
general model, the feature selection method defined in Section 2.2 is
employed.
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As a final remark, it is important to note that these irradiance values
have a resolution that is limited by the resolution of the satellite images,
which in the case of the SEVIRI instrument are pixels of ×3 3km. As a
result, to represent the solar irradiance in a specific location, the ac-
curacy of satellite-based measurements cannot be better than that of
ground measurements.

3.2.4. Input selection
The three input features that the proposed model considers were

selected from a larger set of input features. In particular, in order to
ensure that the proposed model included the most relevant input fea-
tures, a feature selection process was performed. During this feature
selection process, the three considered inputs, i.e. the NWP forecasts,
the clear-sky irradiance, and the satellite images were selected as the
most important features. However, in addition to these three, four other
features were also considered:

• Historical values of the temperature.

• Historical values of the humidity.

• Forecast of the temperature.

• Forecast of the humidity.

To perform the feature selection between these 7 input features, the
feature selection method described in Lago et al. (2018a) was em-
ployed; i.e. the 7 input features were modeled as binary hyperpara-
meters and the selection was performed together with the hyperpara-
meter optimization described in Section 3.3. This optimization resulted
in the 3 selected inputs.

3.3. Hyperparameter optimization and feature selection

As briefly introduced in Section 3.1, the proposed model needs to be
tuned for the specific geographical area where it is applied. In order to
tune the model structure, the following four DNN hyperparameter are
optimized:

1. Number of hidden layers: the neural network depth is a parameter
that needs to be tuned in order to obtain a model that can correctly
generalize across multiple geographical locations.

2. Number of neurons per layer: besides the number of hidden
layers, the size of each layer also plays an important role in the
generalization capabilities of the DNN.

3. General learning rate: the initial learning rate used in the sto-
chastic gradient descent method. In particular, while the stochastic
gradient descent method automatically adapts the learning rate at
every iteration of the optimization process, the learning rate at the
first iteration has to be selected.

4. Dropout: Dropout (Srivastava et al., 2014) is included as a possible
regularization technique to reduce overfitting and to improve the
training performance. To do so, at each iteration, dropout selects a
fraction of the neurons and prevents them from training. This frac-
tion of neurons is defined as a real hyperparameter between 0 and 1.

As explained in Sections 2.2 and 3.2.4, in combination with the
hyperparameter optimization, the proposed model also performs a
feature selection. In particular, the feature selection method selects the
most relevant inputs among a subset of 7 features and it also selects
which past historical irradiance values are required.

3.4. Model parameters

The parameters of the DNN are represented by the set of weights
that establish the mapping connections between the several neurons of
the network:

• W ii, : the vector of weights between the input X and the neuron i of

the first hidden layer.

• Wk i, : the vector of weights between the kth hidden layer and the
neuron i of the +k( 1)th hidden layer.

• W io, : the vector of weights between the last hidden layer and the
irradiance price vector I .̂

• = … ⊤[ ]b bb , ,k k kn1 k : the vector of bias weights in the kth hidden layer,
with =k 1, 2.

• = … ⊤b bb [ , ]o o,1 o,6 : the vector of bias weights in the output layer.

3.5. Model equations

Using the above definitions, the equations of the DNN assuming two
hidden layers can be defined as:

= + = …⊤z f b i nW X( · ), for 1, ,i i i i1 1 i, 1 1 (5a)

= + = …⊤z f b i nW z( · ), for 1, ,i i i i2 2 2 1 2 2 (5b)

I ̂ = + = …+
⊤ b iW z· , for 1, 6,h i i io, 2 o, (5c)

where fki represents the activation function of neuron i in the kth hidden
layer. In particular, for the proposed model, the rectified linear unit
(ReLU) (Nair and Hinton, 2010) is selected as the activation function of
the two hidden layers. This choice is made because this activation
function has become a standard for hidden layers of DNNs (Goodfellow
et al., 2016). It is important to note that, as the irradiance is a real
number, no activation function is used for the output layer.

3.6. Training

The DNN is trained by minimizing the mean square error.2 In par-
ticular, given the training set ST = =X I{( , ^ )}k k k

N
1, the optimization

problem that is solved to train the neural network is:

̂∑ −
=

FI X Wminimize ‖ ( , )‖ ,
k

N

k k
W 1

2
2

(6)

where � �→F: n 6 is the neural network map and W is the set com-
prising all the n weights and bias weights of the network.

3.6.1. Generalizing across geographical sites
A key element for the model to forecast without the need of ground

data is to be able to generalize across locations. To do so, the proposed
model is trained across a small subset of sites so that the model learns to
generalize across geographical sites. It is important to note that, while
ground data is required for this small subset of locations, the model
generalizes across all other geographical locations where ground data is
not needed. In particular, as it is shown in the case study for The
Netherlands, the number of locations where ground data is required is
relatively small, e.g. 3–5 sites.

3.6.2. Generalizing across predictive horizons
Enforcing generalization is not only good for obtaining a model that

does not require ground data, but in general, it is also beneficial to
obtain a DNN that does not overfit and that obtains more accurate
predictions (Goodfellow et al., 2016). In particular, as it has been em-
pirically shown in several studies (Lago et al., 2018a,b), by forcing the
network to solve multiple related task, e.g. forecasting multiple sites,
the network might learn to solve individual tasks better.

Therefore, to further strengthen the generalization capabilities of
the network, the DNN is trained to forecast over the next 6 h but
starting at any hour of the day. As with the geographical site general-
ization, the goal is to build a DNN that, by performing several related
tasks, it is able to learn more accurate predictions.

2 Note that minimizing the mean square error is equivalent to minimizing the
rRMSE metric used throughout the paper to evaluate and compare the model.

J. Lago et al. Solar Energy 173 (2018) 566–577

570



3.6.3. Implementation details
The optimization problem is solved using multi-start optimization

and Adam (Kingma and Ba (2014)), a version of stochastic gradient
descent that computes adaptive learning rates for each model para-
meter. The use of adaptive learning rates is selected for a clear reason:
as the learning rate is automatically computed, the time needed to tune
the learning rate is smaller in comparison with other optimization
methods. Together with Adam, the forecaster also considers early
stopping (Yao et al., 2007) to avoid overfitting.

3.7. Issues

Note that the proposed model depends on another type of forecasts
provided by NWP models. As a consequence, if the NWP models are
performing bad, they might impact the final performance of the pre-
diction model. For the proposed model, one of the most accurate and
well-known NWP forecast models is considered: the ECMWF forecast
(European Centre for Medium-Range Weather Forecasts). If other NWP
models are employed instead, the performance of the model might vary
w.r.t. the results shown in this study.

3.8. Representation

Defining by h the current hour, by I ̂E the values of the ECMWF
forecast, by IS the irradiance values obtained from the satellite image,
by Ic the clear-sky irradiance, and by I ̂ the forecasted values of the
proposed model, the forecasting model can be represented as in Fig. 2.
In this representation, it was assumed that the optimal depth was 2
hidden layers, and that the optimal past irradiance values are lags 0, 1,
and 2 w.r.t. the current hour h; i.e.I I I− −, ,h h hS, S, 1 S, 2; and lag 24 w.r.t.
the 6 prediction hours + … +h h1, , 6; i.e. I I…− −, ,h hS, 23 S, 18.

4. Case study

In order to evaluate the proposed model, 30 sites in the Netherlands
are considered and the accuracy of the proposed model is compared
with that of specific models individually trained using local data.

4.1. Data description

The dataset spans four years, i.e. from 01/01/2014 until 31/12/
2017, and comprises, for each of the 30 sites, the following four types of
input data:

1. The historical ground data measured on site.
2. The satellite-based irradiance values.
3. The daily ECMWF forecasts.
4. The deterministic clear-sky irradiance.

In all four cases, these data represent hourly average values between
two consecutive hours. In particular, a variable given at a time step h
represents the average variable between hours h and +h 1, e.g. the
irradianceIS,12 is the average irradiance obtained from satellite images
between hours 12 and 13.

4.1.1. Data sources
For the irradiance values obtained from SEVIRI satellite images, the

processed irradiance values are directly obtained from the Royal
Netherlands Meteorological Institute (KNMI) via their Cloud Physical
Properties model (Royal Netherlands Meteorological Institute).

For the ground measurements, 30 of the meteorological stations in
The Netherlands that are maintained by the KNMI (Royal Netherlands
Meteorological Institute) and that measure irradiance values using
pyranometers are considered. In particular, the following 30 stations
are employed: Arcen, Berkhout, Cabauw, De Kooy, De Bilt, Deelen,

Eelde, Eindhoven, Ell, Gilze-Rijen, Heino, Herwijnen, Hoek van Hol-
land, Hoogeveen, Hoorn (Terschelling), Hupsel, Lauwersoog, Leeu-
warden, Lelystad, Maastricht, Marknesse, Nieuw Beerta, Rotterdam,
Schiphol, Stavoren, Twenthe, Vlissingen, Volkel, Westdorpe, and Wijk
aan Zee. The geographical location of these 30 stations is illustrated in
Fig. 3.

The ECMWF forecasts are directly obtained through the ECMWF
website (European Centre for Medium-Range Weather Forecasts). Fi-
nally, for the clear-sky irradiance, the python PVLIB library (Andrews
et al., 2014) that implements the clear-sky model (Ineichen and Perez,
2002) defined in Section 3.2 is used.

4.1.2. Data division
In order to perform the study, the data is divided into three subsets:

1. Training set (01/01/2014 to 31/12/2015): these 2 years of data are
used for training and estimating the various models.

2. Validation set (01/01/2016 to 31/12/2016): a year of data is used
to select the optimal hyperparameters and features, and to perform
early-stopping when training the network.

3. Test set (01/01/2017 to 31/12/2017): a year of data that is not used
at any step during the model estimation process, is employed as the
out-of-sample data to compare the proposed model against local
models.

In addition to the time separation, the data is further divided ac-
cording to the location:

1. Of the 30 sites, 5 are used to train the proposed models. In parti-
cular, the following 5 were randomly selected: Herwijnen, Wijk aan
Zee, Schiphol, Twenthe, and Lelystad.

2. The remaining 25 act as out-of-sample data to show that the model
can predict irradiance at any site without the need of local data.

This separation is depicted in Fig. 3, which represents the geo-
graphical distribution of the 30 sites distinguishing between training
and test sites. In short, the proposed model is trained using data from 5
sites spanning three years and it is evaluated in 25 additional locations
and using an additional year of data.

It is important to note that the above separation in 5+25 locations
only applies for the proposed model. In particular, for the local models
used as benchmark, the data division is only performed as a function of
time as, by definition, each local model considers only local data.

Fig. 2. DNN to forecast day-ahead prices.
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4.1.3. Data preprocessing
To evaluate the proposed models, the hours of the day for which the

irradiance is very small are disregarded. In particular, those hours that
correspond with solar elevation angles below °3 are disregarded. This
limitation on the solar elevation angles implies that the number of
forecasts per day available to evaluate the model changes throughout
the year; e.g. while in June the model makes 11–12 forecasts per day, in
January that number is reduced to 3–4.

In addition to the above preprocessing step, the hourly time slots
that have missing values are also disregarded.

4.2. Local models

To compare the proposed forecaster, four types of local models are
considered: a persistence model (Diagne et al., 2013), an autoregressive
model with exogenous inputs (ARX) (Lauret et al., 2015), a gradient
boosting tree (GBT) algorithm (Chen and Guestrin, 2016), and a local
neural network (Lauret et al., 2015).

Moreover, in addition to the local models, it is also included in the
benchmark the ECMWF forecast. By doing so, the accuracy between the
time series models and the NWP forecast can be compared as a function
of the prediction horizon,.

4.2.1. Persistence model
When evaluating a new model, a standard approach in the literature

of irradiance forecasting is to check whether the new model provides
better predictions than a trivial model (Diagne et al., 2013). Moreover,
the trivial model normally used is a persistence model, which assumes
that the clear sky index kc does not change from one time interval to the
other (Diagne et al., 2013).

In particular, given the irradianceIh at the current hour h, the clear
sky index at h is defined as the ratio of Ih to the clear sky irradiance
I hc, , i.e.:

I

I
=k .h

h

h
c,

c, (7)

Then, defining by I +h pc, the clear sky irradiance at the prediction time
+h p, the persistence model forecasts the irradiance I +h p at the pre-

diction time +h p as follows:

I I
I

I
I = =+ + +k .h p h h p

h

h
h pc, c,

c,
c,

(8)

4.2.2. Linear model
Another standard benchmark choice in the literature of irradiance

forecasting are autoregressive linear models (Lauret et al., 2015; Diagne
et al., 2013); hence, the second model considered in the comparison is a
linear autoregressive model that can optimally select its exogenous
inputs. As the model is local, a different model per location, per hour of
the day h, and for prediction time +h p is considered. Therefore, as the
proposed model is evaluated in 25 locations, 6 forecasts per day are
made, and each forecast is made for 6 prediction times, a total of

× × =25 6 6 900 models are estimated.
The exogenous inputs of these models are similar to the DNN, but

instead of using the satellite irradiance maps IS, the models consider
the historical irradiance ground measurements IG. In particular, the
model for the prediction time +h p considers the clear-sky irradiance
I +h pc, and the ECMWF forecast I ̂

+h pE, at the prediction time. For the
historical irradiance values IG, as with the global model and the sa-
tellite-based irradiance IS, the specific lagged values are optimally
selected using the feature selection method described in Section 2.2. In
addition, to ensure that the differences between models are not due to
differences in input data, the model is allowed to choose satellite data
through the feature selection method.

4.2.3. Gradient boosting tree
As a third model, the XGBoost algorithm (Chen and Guestrin, 2016)

is considered, a GBT model that predicts data by combining several
regression trees. In particular, the model is based on the principle of
boosting Hastie et al., 2001, Chapter 10, i.e. combining models with
high bias and low variance in order to reduce the bias while keeping a
low variance. It is important to note that, while several models based on
regression trees have been proposed in the literature for forecasting
solar irradiance (Voyant et al., 2017), the XGBoost algorithm has, to the
best of our knowledge, not yet been used. Nevertheless, including this
model in the benchmark was decided for two reasons: (1) it has been
shown to outperform other regression tree methods and has recently
become the winner of several challenges in Kaggle, a site that hosts
machine learning competitions (Chen and Guestrin, 2016); (2) it has
been successfully used in other energy-based forecasting applications,
e.g. forecasting electricity prices (Lago et al., 2018b).

As with the linear model, a different GBT per location, hour, and
prediction time is estimated; i.e. 900 different models are estimated.
Similarly, the model inputs are the same as the linear models, i.e. the
clear-sky irradiance I +h pc, and the ECMWF forecast I ̂

+h pE, at the pre-
diction time, and the historical irradiance values IG optimally selected
using the feature selection method. In addition, to ensure that the dif-
ferences between models are not due to differences in input data, the
model is allowed to choose satellite data through the feature selection
method.

It is important to note that, as done with the proposed DNN, all the
GBT hyperparameters (see Chen and Guestrin, 2016) are optimally
selected using the hyperparameter optimization algorithm define in
Section 2.2.

4.2.4. Neural network
As a fourth model, a local DNN that considers very similar inputs,

outputs, structure, and training algorithm as the proposed global DNN
is considered. The main difference w.r.t. to the proposed DNN is that it
considers the local measurements of the irradianceIG in addition to the
satellite irradiance maps IS. However, the type and number of

Fig. 3. Geographical distribution of the 30 sites in the case study. The orange
stars are the 5 sites used for estimating the model. The purple pins represent the
25 out-of-sample sites to evaluate the model. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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hyperparameters that the model optimizes are the same as for the
global DNN and they are also optimized using the hyperparameter
optimization algorithm defined in Section 2.2.

The reason for including this model in the case study is that, similar
to the linear and the persistence models, neural networks are a standard
choice in the literature of solar irradiance forecasting (Deneke et al.,
2008; Voyant et al., 2017).

As the proposed DNN is evaluated in 25 sites and the model is
local, 25 different local DNNs are estimated. Unlike the linear
and GBT models, the same DNN is used for the different hours of the
day; this was done because it was empirically observed that the dis-
tinction of a different DNN per hour of the day led to worse predictive
accuracy.

4.3. Hyperparameter optimization and feature selection

As defined in Section 3, the hyperparameters and input features of
the global DNN are optimally selected according to the geographical
location. In this case study, the range of the hyperparameters con-
sidered in the optimization search and their obtained optimal values are
listed in Table 1.

In terms of the lagged satellite-based irradiance values, the optimal
input features are defined by the irradiance values at lags 0, 1, 2, and 3
w.r.t. the current hour h; i.e. I I… −, ,h hS, S, 3; and at lag 24 w.r.t the 6
prediction hours + … +h h1, , 6; i.e. I I…− −, ,h hS, 23 S, 18.

For the local models, the hyperparameters and input features are
also optimized. However, considering that 900 linear models, 900 GBT
models, and 25 local DNNs are used, displaying all their optimal hy-
perparameters and input features is out of the scope of this paper.
However, the main results can be summarized as follows:

1. In terms of input features, all the local models (except for the per-
sistence model) performed two types of selection:
(a) Use satellite data in addition to local data.
(b) Choose the relevant historical irradiance values.

The addition of satellite data did not improve the performance
w.r.t. using ground data only; therefore, none of the local
models considered this information. In addition, in terms of
ground irradiance values IG, all the local models consider the
irradiance values at lags 0 and 1 w.r.t. the current hour h and at
lag 24 w.r.t. the prediction hour +h p. In addition, most of them
also consider the irradiance values at lags 2 and 3 w.r.t. the
current hour h; the exception are models that predict the solar
irradiance at early hours of the day when lags of 2-3 h represent
irradiance values of 0.

2. In the case of the local DNNs, the number of hidden layers is 2 for all
25 sites. Moreover, the number of neurons in the first (second)
hidden layer varies from 95 to 242 (51 to 199) neurons depending
on the site. Similarly, the dropout and the learning rate respectively
oscillate between 0 and 0.45, and between × −5.825 10 4 and

× −5.800 10 2.
3. In the case of the GBT models, the range of the hyperparameters

values varies in a larger range, e.g. the number of trees per model
fluctuates between 10 and 1000 and the depth of each tree varies
between 1 and 20.

4.4. Overall results

After defining the setup of the case study and describing the selec-
tion of hyperparameters and features, in this section the average per-
formance of the global DNN is compared against that of the local
models. Particularly, the first metrics to take into account to compare
the models are the average metrics; i.e. rRMSE, forecasting skill s, and
MBE; across the 25 sites and the 6 prediction times. These average
metrics are listed in Table 2, where the forecasting skill was computed
using the same window length employed in Marquez and Coimbra

(2012), i.e. 200 samples.3

From Table 2, several observations can be drawn:

1. In terms of square errors, i.e. rRMSE, the predictive accuracy of the
proposed global model is slightly better than all the local models
and significantly better than some of them, in particular the GBT
model or the persistence model. Among the local models, both the
linear and local DNN perform the best and the persistence model the
worst.

2. This same observation can be inferred from looking at the fore-
casting skill: the proposed global model performs similar to the
linear model, slightly better than the local DNN, and much better
than the other models. In addition, when compared across all sites
and predictive horizons, all models perform better than the persis-
tence model.

3. In terms of model bias, i.e. MBE, all models show a very small bias
that indicates that the models are not biased. Particularly, con-
sidering that the average irradiance of the dataset is approximate
350W/m2, the bias of all the models is around 0.3–0.8% of the
average irradiance, which represents a negligible bias. The excep-
tion to this is the persistence model, whose bias of 3% of the average
irradiance is a bit larger, but still quite small.

4.5. Comparison with previously validated forecast models

While the proposed global model seems to be a good replacement of
the local models considered in this paper, it is also very important to
establish its quality w.r.t. previously validated forecast models from the
literature. As explained in Section 2.3, while this comparison cannot
fairly be done using a metric like rRMSE, it can be roughly assessed
using the forecasting skill s. In particular, using the results of Marquez
and Coimbra (2012), we can establish a comparison between the pro-
posed global model, the local NARX model proposed in Marquez and
Coimbra (2012), and the cloud motion forecast of Perez et al. (2010).
As both models from the literature were originally only evaluated for 1-
h step ahead forecasts, we also limit the comparison of the global model
to that interval. The comparison is listed in Table 3.

What can be observed from these results is that the overall quality of
the proposed global model for 1-h ahead forecasts is very similar to
those from the literature. Therefore, as initially observed when com-
paring the average performance of the global model w.r.t. to the local
model considered in this paper, the proposed global model seems to be
an excellent candidate to save the operational costs of installing local
sensors and collecting ground measurements.

4.6. Comparison across prediction horizons

A third step required to analyze the performance of the proposed
global model is to verify that its average performance is satisfied across
all prediction times. In particular, it is important to check whether the
global models can build accurate predictions at all short-term horizons.

Table 1
Optimal hyperparameters for the global DNN.

Hyperparameter Value Search range

Number of hidden layers 2 {1, 2, 3, 4}
Neurons in 1st layer 208 [100, 400]
Neurons in 2nd layer 63 [50, 150]
Initial Learning Rate × −1.16 10 3 − −[10 , 10 ]4 2

Dropout 0.14 [0, 1]

3 As in Marquez and Coimbra (2012), the window length for which s was
stable was analyzed. Similar to Marquez and Coimbra (2012), 200 samples
were found to be a reasonable value.
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To perform this comparison, the two metrics used for comparing pre-
dictive accuracy, i.e. rRMSE and the forecasting skill s, are evaluated for
each benchmark model and predictive horizon. This comparison is
listed in Table 4 and illustrated in Fig. 4.

As can be seen from Table 4 and Fig. 4, the global model seems to be
the best model for the first 5 prediction horizons (both in terms of
rRMSE and forecasting skill s), and the second best (very close to the
best one) for the last prediction horizon. Based on these results it can be
observed that not only the global model is overall equal or better than
the local models, but it also performs equally well or better than them
across all prediction horizons. As a result, the proposed model is a very
promising candidate to replace the local models and to save operational
costs without compromising the forecasting quality.

In addition to this analysis of the global model performance, three
additionally interesting observations can be made:

1. The persistence model is the worst across all prediction horizons
except the first one. This result agrees with previous results from the
literature (Diagne et al., 2013) that stated that the persistence model
only provides reasonable results for prediction horizons shorter than
1 h.

2. Among the local models, the linear and DNN models show the best
performance across all 6 prediction horizons.

3. The ECMWF forecast improves its accuracy relatively to the other
models as the prediction time increases. In particular, in the case of
the last prediction time, the ECMWF forecast has almost the same
performance as the global DNN and the linear models. Considering
previous results from the literature (Diagne et al., 2013), this is
highly expected as NWP models start to perform better than time
series models for prediction horizons larger than 4-6 h.

4. For 1 h ahead predictions, the ECMWF model is the worst; specially,
considering its s value for the first prediction horizon, the weather-
based model is much worse than a simple persistence model.

4.7. Comparison across geographical site

The final step to analyze the better or equal performance of the
global model is to validate whether the quality of the performance is
kept across the 25 different sites. In particular, it is important to check
whether the global model can generalize and build accurate predictions
across all geographical locations. For the same of simplicity, this
comparison is only done in terms of the rRMSE metric; in particular, as
it was the case with all previous results, the values of the forecasting
skill s fully agree with the rRMSE across all locations, and they are a bit
redundant. The comparison across the geographical locations is listed in
Table 5 and illustrated in Fig. 5.

As it can be seen from Table 5 and Fig. 5, the global model seems to
validate and maintain its performance across all geographical locations.
In particular, analyzing this results, it is clear that the global model
performs equal or better than the local models across all 25 sites. In
particular, as listed in Table 5, the global DNN is the best model for 20
of the 25 locations, and shows an rRMSE performance that is very si-
milar to the best model in the remaining 5 locations. Therefore, it can

Table 2
Comparison of the average predictive accuracy across sites and prediction times
by means of rRMSE, forecasting skill s, and MBE.

Model rRMSE [%] s [%] MBE [W/m2]

Global DNN 31.31 22.42 −1.04
Linear 32.01 21.22 −1.07
Local DNN 32.10 19.29 −1.43
ECMWF 34.94 9.75 −2.52
GBT 35.85 9.92 1.50
Persistence 41.98 0 11.60

Table 3
Comparison of the average predictive accuracy between the global
model, a NARX model from the literature, and a cloud moving
forecast from the literature. The comparison is done for 1-h ahead
forecasts and by means of forecasting skill.

Model s [%]

Global DNN 10
NARX (Marquez and Coimbra, 2012) 12
Cloud moving (Perez et al., 2010) 8

Table 4
Comparison of the predictive accuracy of the various forecasters across the 6
prediction times by means of rRMSE and forecasting skill s. The best model is
marked with bold font.

Horizon [h] 1 2 3 4 5 6

Model rRMSE [%]

Global DNN 25.07 30.18 32.36 34.19 36.10 38.71
Linear 26.67 31.36 33.11 34.63 36.44 38.35
Local DNN 26.82 30.90 32.91 34.67 36.68 39.88
GBT 30.05 34.78 36.95 39.04 40.67 43.59
Persistence 28.74 36.89 42.29 47.28 52.05 56.69
ECMWF 35.91 35.01 35.12 35.91 37.45 39.28

Model s [%]

Global DNN 9.98 18.38 23.40 27.04 28.30 27.38
Linear 7.67 15.71 21.73 26.03 27.76 28.42
Local DNN 6.34 16.98 22.13 22.64 25.13 22.51
GBT −5.18 6.06 12.23 15.29 16.00 15.11
Persistence 0 0 0 0 0 0
ECMWF −29.07 4.68 16.77 22.74 23.23 20.19

Fig. 4. Comparison of the predictive accuracy of the various forecasters across
the 6 prediction times.
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again be conclude that the global model is a good replacement for the
local models as the performance of the former is, at least, equal to the
performance of the latter.

4.7.1. Geographical dependences
An interesting study to analyze is whether the rRMSE has any

geographical dependence, i.e. it might be possible that geography or
climate might have an effect on the rRMSE. To study this effect, a color
map with the geographical distribution of the rRMSE can be used. Such
a plot is represented in Fig. 6, which depicts the geographical dis-
tribution of the rRMSE for the 6 different models. As can be observed,
there is a clear difference between coastal and island sites with the
latter displaying rRMSEs that are consistently higher. While this dif-
ference is not notorious, it does seem to indicate that forecasting solar
irradiance at inland locations is slightly harder than at coastal sites.
While analyzing the causality behind this difference is out of the scope
of this paper, it is worth noting possible reasons that might cause it;
particularly, differences in climate, altitude, or simple differences in
irradiance ranges might explain this effect.

4.7.2. rRMSE distribution
A second interesting study is to analyze the rRMSE distribution

across sites. In particular, while the variability of the rRMSE can be
visually observed in Fig. 5, it is interesting to analyze its empirical
distribution. To perform this analysis, the histogram of the rRMSE
across the 25 sites is built for each of the 6 models. This is depicted in
Fig. 7, where each histogram bin represents a width of 0.5% rRMSE. As
it can be observed, the rRMSE distribution across the 6 locations is very
similar with an interval spanning a width of 3%-4% rRMSE where the

distribution is quite homogeneous and uniform, and an outlier on the
right side representing a location with a much worse rRMSE. As can be
seen from Figs. 5 and 6, this site representing the worst case-scenario is
the same for all models: Deelen. Based on this result it can be concluded
that, while the rRMSE is site-dependent, the range of variability of the
rRMSE is small.

4.8. Discussion

In the previous sections, the performance of the global model has
been compared to that of the local models and that of validated models
from the literature. Based on the obtained results one can conclude that:
(1) the global model is slightly better than the best of the local models;
(2) it performs similar to other models from the literature; (3) it pro-
vides unbiased forecasts.

While based on these results it cannot be stated that the proposed
model is significantly better than all other models, it is important to
keep in mind that its main purpose is not to be the best, but to perform
equally well as local models so that the operational costs of installing
and maintaining a wide sensor network are avoided. In that respect, it
can be concluded that the proposed global model is an excellent re-
placement for the local models: the model is overall slightly better and
performs better or equally well across all individual geographical lo-
cations and prediction times.

5. Conclusion

In this paper, a general model for short-term forecasting of the
global horizontal irradiance has been proposed. The main features of

Table 5
Comparison of the predictive accuracy of the various forecasters by means of rRMSE. The best model is marked with bold font.

Site

Model Arcen Berkhout Cabauw De Kooy Lauwers. Deelen Maastric. Eindhov. Westdorpe Gilze-R. Heino Hoek v. H. Ell

Global 32.39 30.24 30.75 29.49 30.32 34.55 30.82 32.11 32.07 32.37 32.80 29.24 32.42
Linear 33.03 31.05 31.01 29.87 31.16 35.47 31.73 32.28 33.11 32.89 32.75 30.53 32.50
DNN 33.43 32.77 31.27 31.14 30.95 35.75 31.48 32.03 31.93 33.04 32.89 29.66 32.77
GBT 35.80 35.41 35.20 33.45 35.79 39.62 35.68 37.22 36.33 36.30 36.88 33.61 37.35
Persistence 43.63 41.04 41.51 41.18 41.14 45.47 41.20 43.20 40.28 42.86 43.80 40.59 42.65
ECMWF 35.21 34.09 33.95 32.94 33.83 38.61 34.93 34.95 36.63 35.73 35.32 33.39 36.12

Model Hoorn Hoogev. Hupsel De Bilt Leeuward. Eelde Marknes. Rotterd. Stavoren Vlissing. Volkel Nieuw B.

Global 29.63 31.44 32.88 31.68 30.16 31.58 31.19 30.21 29.38 30.81 32.46 32.37
Linear 30.63 32.05 32.82 32.11 30.51 32.20 31.30 31.54 30.51 32.23 33.04 33.52
DNN 30.24 33.05 32.83 32.02 31.97 31.62 31.72 31.25 29.85 31.92 34.68 32.34
GBT 34.46 36.44 36.99 35.94 35.20 36.19 35.30 34.53 34.14 35.50 36.50 36.98
Persistence 40.35 42.51 42.42 43.61 40.80 42.04 41.24 40.92 40.01 41.11 42.71 43.58
ECMWF 33.62 35.19 35.11 34.69 34.17 35.34 34.85 34.92 33.35 35.05 35.33 36.27

Fig. 5. Comparison of the predictive accuracy of the various forecasters across the 25 locations.
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the model are that it replaces ground measurements by satellite-based
irradiance values and that, unlike local models previously proposed in
the literature, it does not need local measurements in each location

where a forecast is needed.
The proposed model was shown to be equal or better than local

models typically used in the literature, and in turn, to be an excellent

Fig. 6. Geographical distribution of the rRMSE based on the 25 out-of-sample sites. Across the 6 models, it can be observed a clear difference between inland
locations and coastal locations, with the latter having lower rRMSEs.

Fig. 7. Distribution of the predictive accuracy of the global model across the 25 locations.
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replacement of these local models in order to save the operational costs
of installing local sensors and gathering ground data.

In future research, the current work will be expanded with two
further investigations. First, the model will be extended to larger re-
gions to analyze whether it generalizes to larger geographical areas
than The Netherlands. Second, the model accuracy will be improved by
adding other relevant sources of input data, e.g. weather-based input
data like humidity levels or ambient temperature.
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