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A B S T R A C T   

Acoustic emission (AE) is widely used for identifying source mechanisms and the deformation 
stage of steel material. The effectiveness of this non-destructive monitoring technique heavily 
depends on the quality of the measured AE signals. However, the AE signals from deformation are 
easily contaminated by the signals from noise in a noisy environment. This paper presents a 
hybrid model for deformation stage identification, which combines a self-adaptive denoising 
technique and an Artificial neural network (ANN). In pursuit of model generality, AE signals were 
collected from tensile coupon tests with various steel materials and loading speeds. First, a 
decomposition-based denoising method is applied based on the singular spectral analysis (SSA) 
and variational mode decomposition (VMD), which is defined as SSA-VMD. Its effectiveness is 
demonstrated by simulated signals and experimental results. Following the use of the denoising 
technique, an ANN is constructed to identify the deformation stage of steel materials with the 
input of features extracted from the filtered AE signals. The results indicate that the ANN achieves 
a high prediction accuracy of 0.93 in the test set and 0.87 in unseen data. By applying this 
denoising method, the ANN-based approach enables accurate correlation of the collected AE 
signals to deformation stages. The finding can be used as the basis for the creation of new 
methodologies for monitoring structural health status of in-service steel structures.   

1. Introduction 

The macroscopic mechanical properties of steel structures degrades while in service, originating from void nucleation together with 
inelastic deformation [1]. Steel structures then collapse when significant deformation has accumulated. A substantial amount of study 
into the mechanical behaviour description and damage propagation of steel material over many years has contributed to their safe 
application [2–7]. In addition to applying destructive testing methods, it is also essential to identify and monitor the deformation status 
and fracture behaviour of steel materials utilizing non-destructive testing techniques [8,9]. 

A passive NDT technique, Acoustic emission (AE), has been extensively used in early damage detection and real-time assessment of 
steel structures [10–13]. AE signals are generated by suddenly released energy from deformation within a metal [14]. Dunegan et al. 
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[15] first correlated the characteristics of collected AE signals to the fracture mechanisms of precipitated alloys, such as beryllium and 
aluminium. This research showed the potential of the AE technique for fracture analysis of metal materials. After that, systematic 
studies of AE signals generated during the tensile deformation of metal materials were conducted [16–20]. With the development of 
microstructural examination [21–23], the generation of AE signals during the deformation process have been explained using the 
underlying mechanisms in metals and alloys. It was concluded that AE signals are dominantly produced by dislocation activity in the 
micro- and macro-yielding zones of metals, as well as the final fracture. 

The association between AE features and the deformation stage in metals has been established further. A range of AE features, such 
as amplitude, energy, counts, hits, and root-mean-square (RMS), have been successfully confirmed to interpret the rupture process of 
material [20,24–30]. Various novel indicators, including combined partial energy ratio (PER) and the weighted peak frequency (WPF) 
[31], and the ratio of signal energy across two frequency ranges [32], have been proposed to improve AE monitoring systems and data 
processing techniques. [31–34]. Although individual pattern of AE signals for metal material deformation can be obtained, the related 
quantitative description is not transferable among studies. This is mainly because the AE characteristics are influenced by several 
factors, such as types of material, plasticity level, presence of any inclusions, and the employed AE acquisition system [32]. In addition, 
it was also found that signals generated during plastic deformation have overlapped distribution of AE features to final fracture [35]. If 
monitoring is not initiated at the beginning, it is challenging to distinguish the signals from plastic deformation and fracture based just 
on certain or synthetic analyses of AE features. Hence, it is necessary to propose a generalized method to correlate the collected AE 
signals to deformation stages. 

Machine learning (ML) methods have gained significant attention for material characterization [36–38], including k-nearest 
neighbours (KNNs), Support Vector Machines (SVM), Artificial Neural Networks (ANNs), classification tree. Among these methods, 
ANNs have been successfully employed to help to enhance the understanding of materials and their properties. Applications include 
the characterization of corrosion, fatigue, creep rupture, flow behaviour and work hardening, and tensile behaviour [38]. Comparative 
analyses of various ML approaches in several studies [39–41] have demonstrated that ANNs outperform other classifiers in classifying 
tensile properties. Consequently, researchers have widely utilized ANNs to detect deformation stages in steel materials subjected to 
static tensile loading [37,42]. 

The performance of the ANN method is highly dependent on the quality of the AE signals. Meanwhile, the collected AE signals are 
always accompanied by complex noise in practical cases (e.g. friction noise between components and equipment, background noise 
from the environment). AE signals resulting from metal deformation are typically nonlinear and non-stationary [43]. Signal decom-
position methods were presented to decompose the nonstationary signals into several regular clear sub-signals, which can be effec-
tively used to remove the noises of nonstationary signals. Representative methods include wavelet transform (WT) [44], empirical 
mode decomposition (EMD) [45], ensemble empirical mode decomposition (EEMD) [46], and variational mode decomposition (VMD) 
[47]. VMD outperforms EMD and WT in terms of theoretical foundation, anti-noise performance and alleviating the mode mixing 
problem [48]. Whereas, the user-defined decomposition mode numbers severely affect its reliability. Furthermore, Zhou [49] found 
that VMD cannot effectively isolate low-frequency random noise. To solve the abovementioned drawbacks, some studies [49–51] have 
introduced an enhanced VMD method combined with the singular spectral analysis (SSA) [52], called the VMD-SSA method [49–51]. 
This approach employs VMD to remove highly oscillatory parts, followed by the SSA to filter out residual low-frequency random 
wavenumbers. Natarajan [53] and Xiang [54] proposed the use of the SSA-VMD method to reduce high-frequency interference for 
wind speed forecasting. This two-stage decomposition model has been validated for its effectiveness in addressing non-stationary data. 
Given the non-stationary nature of AE signals, a hybrid model based on SSA-VMD method is proposed in this research to denoise AE 
signals to improve the performance of the signal processing step. 

In this paper, we aimed to improve and explore the application of ANN-based deformation stage identification for steel material 
with less contaminated AE signals. This study stands as one of the initial attempts to utilize SSA-VMD as the denoising technique for AE 
signals. After verifying the performance of the proposed denoising method, measured AE signals were obtained via a series of coupon 
steel tensile tests. Moreover, to improve the generalization of the ANN model, the tests were conducted with various steel grades, 
different geometries of coupons, and different loading rates. An improved ANN is finally designed and employed for signal identifi-
cation during tensile deformation. 

This paper is organized as follows: Section 2 presents the applied SSA-VMD model. Section 3 demonstrates the performance of the 
two-stage denoising method using a simulated AE signal. The experimental program and results are described in Section 4. Finally, 
section 5 describes the employed ANN for signal identification with hyperparameter tuning. The conclusion is given in Section 6. 

2. Denoising methodology 

2.1. SSA-VMD 

The SSA-VMD denoising approach is utilized to overcome common issues in selecting the proper parameters for SSA and VMD 
(number of rows of the Hankel matrix for SSA and decomposition level for VMD) [55,56]. Two basic assumptions are made: (1) signals 
are composed of several narrow-bandwidth signals; (2) the frequency of the noise is overlapping with that of the real AE signals, but the 
corresponding frequency peak is different. These two assumptions are theoretically accurate considering the nature of the signals. The 
idea behind this approach is that SSA can efficiently eliminate strong broadband noise, and VMD can accurately remove the 
narrowband noise. The full procedure is as follows: 

Step 1: SSA. 
SSA is a principal component analysis for time series and is widely used to extract qualitative dynamics from noise-contaminated 
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signals [52]. 
Step 1.1- Embedding: The one-dimensional AE signal X = (x1, …, xN) is converted to a 2D matrix Y, namely the Hankel matrix. 

Y =

⎛

⎜
⎜
⎜
⎜
⎝

x1 x2 … … xK
x2 x3 … … xK+1
. . … … .

. . … … .

xL xL+1 … … xN

⎞

⎟
⎟
⎟
⎟
⎠

(1)  

where L is the number of rows (1 < L<N) and K is defined as N-L+1. Xu et al. [55] concluded that L should be close to or higher than the 
number of samples in one period of the lowest frequency component. 

Step 1.2 – Singular value decomposition (SVD): Matrix Y is decomposed into the product of three matrices: an orthogonal matrix U, a 
diagonal matrix S and the transpose of an orthogonal matrix V: 

Y = USVT ( S = [diag(σ1, σ2, ..., σp), 0]) (2)  

where S is an L×K diagonal matrix. σp are the nonnegative values in decreasing order of magnitude and p = min{L, K}. The diagonal 
entries of S are called the singular values of X. 

Step 1.3 – Regroup the signals: The singular values are grouped by calculating the energy differential spectrum Di [57] with a certain 
threshold ησ: 

Di =
σ2

i − σ2
i+1

(σi − σi+1)
2, i = 1,2,…, (p − 1) (3)  

ησ = D1/300 (4)  

where σi is the singular value, σmax and σmin denote the maximum and minimum of the singular values, respectively. Di is the sequence 
of energy differential spectra, and p is the number of singular values. Singular value components m with Di higher than ησ are marked as 
signal-related components. The remaining singular values (p-m) are grouped as noise. 

Step 1.4 – Reconstruction: The grouped sub-signals are reconstructed from a 2D matrix to a time series using the anti-diagonal 
averaging method [58]: 

yrc,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k
∑k

m=1
y*

m,k− m+1 1⩽k < L*

1
L*

∑L*

m=1
y*

m,k− m+1 L*⩽k⩽K*

1
N − k + 1

∑N− K*+1

m=k− K*+1

y*
m,k− m+1 K*⩽k⩽K*

(5)  

where L* = min (L, K), K* = max (L, K), and when L<K, yij* = yij otherwise yij* = yji, and yij* = yij is the element in Y. After SSA, the 
strong broadband noise signals are filtered efficiently. 

Step 2: VMD. 
VMD decomposes signal X into an ensemble of band-limited intrinsic mode functions (IMFs) uk(t) [47], where k is the number of 

modes. 
Step 2.1 – The construction variational problems: After applying the Hilbert transform, frequency mixing, and the heterodyne 

demodulation, this problem is described as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
{uk},{ωk}

{
∑K

k=1

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

uk(t)
]

e− jωkt
⃦
⃦
⃦
⃦

2

2

}

subject to
∑K

k=1
uk = X

(6)  

where (δ (t) + j /πt) uk(t) is the unilateral frequency spectrum pf sub-signals uk, and δ (t) is the Dirac distribution, {uk} = {u1, …, uk} and 
{ωk} = {ω1, …, ωk} are shorthand notations for set of all modes and their center frequencies, respectively. ∂t refers to the gradient with 
respect to t. ||⋅||2 is the L2 norm. 

Step 2.2 – Solving the variational problem: The constrained variational problem is converted to an unconstrained variational problem 
by introducing augmented Lagrange [47]. The Alternate Direction Method of Multipliers (ADMM) is introduced to solve the uncon-

strained variational problem [59]. All the modes in the frequency domain Û
n+1
k and corresponding centre frequency ωn+1

k are expressed 
as: 
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Fig.1. Framework of SSA-VMD.  
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Û
n+1
k (ω) =

f̂ (ω) −
∑

i∕=k Ûi(ω) + λ(ω)/2
1 + 2α(ω − ωk)

2 (7)  

ωn+1
k (ω) =

∫∞
0 ω|Ûk(ω) |

2dω
∫∞

0 |Ûk(ω) |2dω
(8) 

Eq. (7) represents the Fourier representation of a Wiener filter with power spectrum prior 1/(ω- ωk)2 to ensure robust noise 
resilience for the algorithm. The Fourier transform of u is denoted as Û. α is the quadratic penalty term and λ (w) is the Lagrangian 
multipliers. Sud [60] discussed the possibility to determine the number of modes K a priori. The results show K=6 to 10 is suitable for 
wideband interferers. Considering the AE signals are distributed in a wide-band frequency range, K=8 is selected in this case, which 
means 8 IMFs are obtained after this step. 

Step 2.3 – Minimize the fake modes: The correlation coefficients between the decomposed IMFs and the original signal is calculated, 
and a threshold is then to be defined as: 

ηr = ρ ⋅ Rmax (9)  

where Rmax is the calculated maximum correlation coefficient, ρ is the ratio between the threshold and Rmax, and ρ is equal to 0.025 in 
the following analysis after trials in certain cases. The modes with a correlation coefficient lower than ηr will be regarded as fake modes 
and removed. This step is significant because fake modes are common in real applications. 

Step 2.4 – Use marginal spectrum to filter IMFs: Marginal spectrum (MS) based on the Hilbert-Huang spectrum (HHT) is an innovative 
approach for analyzing non-stationary and nonlinear signals [45]. The peak frequency and magnitude of the decomposed IMFs (via 
VMD) of the noise database can be identified using MS. 

To improve the accuracy and avoid the error modes generated by spectral leakage, the density-magnitude index (DMI) is proposed 
to find the noise-related IMFs with the greatest possibility: 

DMI(fi) = num(fi)/Nnoise + ρM × normalization(M(fi) ) (10)  

where DMI(fi) is the value of DMI under peak frequency fi; num (fi) is the number of IMFs with peak frequency fi in the noise dataset; 
Nnoise is the total number of IMFs in the noise dataset; ρM is determined as 0.3 as the weight factor; M

(
fi
)

is mean magnitude for IMFs 
with frequency fi. The first term describes the density of IMFs in the noise dataset with a specific peak frequency fi. The second term is 
the magnitude according to which the noise principal components are of dominant energy. The likelihood of noise-related IMFs in-
creases with a higher density and magnitude. In this study, fi with DMI larger than 0.03 is regarded as the main frequency feature of 
noise-related IMFs. 

After recognizing the dominant frequency characteristics of the noise database, the IMFs of AE signals after step 2.3 with the same 
frequency features as that of noise database can be filtered. Then, the denoised AE signals can be reconstructed using the remaining 

Fig.2. Illustration of a contaminated continuous signal with SNR=-5 dB.  
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IMFs. 

3. Evaluation of SSA-VMD method 

3.1. Framework of SSA-VMD for denoising 

A framework of SSA-VMD to denoise the AE signals is shown in Fig. 1. First, a numerical simulation is performed to test the 
performance of the denoising method. Two types of noise exist in the laboratory environment of steel tensile deformation tests: 
wideband background noise, and narrowband mechanical noise (including friction noise and engine noise). Consequently, as shown in 
Fig. 2, background noise (XB) and mechanical noise (XM) are mixed with the original AE signal (XAE,C) to obtain a contaminated signal 
(XC). 

AE signals can be generally classified into two basic types: (1) A burst AE signal with a clear pick and the following ringdown. (2) A 
continuous AE signal which is a convolution of small burst signals. Continuous signals are more likely to be obscured by noise than 
burst-shape AE signals. Besides, continuous signals are compatible with the dislocation movement or plastic deformation of material 
generated during steel deformation [35,61]. Hence, in this simulation, a continuous signal is selected as the original signal. The 
original AE signal XAE,C is a continuous signal from the pencil lead break test on a steel specimen. XB is white noise simulated by Matlab 
with wideband frequency and XM is a detected AE signal at the beginning of a steel tensile test under a low load level. This signal can be 
regarded as the detected mechanical noise without any damage or dislocation movement in the material. The AE acquisition system 
and sensor used to record XAE,C and XM are identical. Fig. 3 shows the frequency spectrum of the original AE signal and noise. Signal to 
noise ratio (SNR) is introduced to quantify the influence of the noise as: 

SNR = 10 × log10

(
∑N

i=1
x(i)2/∑

N

i=1
y(i)2

)

(11)  

where x(i) is the original signal and y(i) is the noise signal; N is the length of the signal. The SNR of the contaminated signal in this 
simulation is calculated as − 5 dB. The negative SNR represents practical cases with strong noise conditions (SNR<0), which means that 
the original signal is submerged into the noise signals. 

3.2. Denoising results by SSA-VMD 

Fig. 4 shows the overview of the denoising process for the contaminated continuous AE signal (XC). The anticipated results after 
each step are correspondingly illustrated on the right side of the dashed line. In this simulation, XM is the noise dataset to provide the 
features of narrow-band noise. The number of rows L of the Hankel matrix in step 1.1 is determined as follows. AE signals are measured 
by the AE acquisition system in the operating frequency range of 100 kHz − 1000 kHz. The sampling frequency Fs is 10 MHz with a 
time resolution Δt of 1 × 10-7 s. The corresponding maximum number of samples in the period is calculated as: 

nmax = Tmax/Δt = (1/100 kHz)
/(

1 × 10− 7) = 100 (12) 

Hence, SSA can obtain good performance with L>100. To achieve a trade-off between the accuracy and calculation speed, L is 
defined as N/64 = 160, where N is the total number of samples in one signal. The comparison of XAE,C vs XC

2 and XM vs XM
2 in the time 

domain and frequency domain is shown in Fig. 5. It implies that the original signal XAE,C and mechanical noise can be regrouped 
effectively. 

Fig.3. Frequency spectrum of AE signals and noise signals.  
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3.3. Comparison with other methods 

Various signal-denoising methods are introduced for comparison, including WT, SSA, and VMD, SSA-VMD proposed by Xiang [54], 
and our proposed SSA-VMD method. The configurations of these comparison methods are detailed in Table 1. For WT denoising, the 
decomposition level LWT is selected as 5 to achieve high-frequency resolution, considering the sampling frequency. It is recommended 
to use high-order wavelet functions to mitigate energy leakage issues [62]. Therefore, a high-order Mother wavelet ‘sym30′ is 
employed as the wavelet function for analysis. SSA is not suitable for denoising the narrow-band mechanical noise. The optimal 
number of Hankel matrix rows L is determined with numerical analysis to improve the denoising quality. L is equal to 500 after 
checking the distribution of the DR index [55] with the various number of rows. For the VMD method, the resulting IMFs are filtered 
according to the similarity of their peak frequencies with those of the IMFs obtained from a noise dataset. 

Xiang’s method involves two key steps: (1) using SSA to decompose the original time series data into various independent com-
ponents, including the main signals and residual signal; (2) further decomposing the residual parts into several sub-layers using the 
adopted VMD technique. Notably, this hybrid method does not take the noise dataset into consideration. For comparative purposes, 
identical parameter settings are applied to both hybrid methods. To evaluate the denoising effectiveness, Root-mean-square (RMS) 
values between the filtered signals XC

2 and the original signal XAE,C are calculated as the indicator: 

Fig.4. Overview of the evaluation of the SSA-VMD method.  

Fig.5. Comparison between: (a) and (b) XAE,C vs XC
2, (c) and (d) XM vs XM

2.  
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RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

[
X2

C(i) −
(
XAE,C

) ]2

√
√
√
√ (13)  

where N is the signal length. Table 1 shows the denoising results using three methods. 
Fig. 6 shows the time–frequency plot of the original signal, noisy signal, and filtered signals using different methods. It is found that: 

(1) WT, SSA, and VMD are non-adaptive methods which need simulations to find appropriate setting parameters. (2) The proposed 
SSA-VMD outperforms other methods in terms of denoising accuracy with the lowest RMS; while the WT method failed to filter the 
noise around 200 kHz and part of the primary component was lost. (3) By incorporating information from the noise dataset, the VMD 
method effectively filtered out noise around 200 kHz. However, this process also resulted in a loss of signal power in the frequency of 
interest. With optimized parameter settings, it may be possible to avoid this loss of signal. (4) The hybrid method proposed by Xiang is 

Table 1 
Comparison of various denoising methods.  

Method Adaptivity Options Value Calculation time (s) RMS 

WT No Mother wavelet 
Decomposition level 

sym30 
5  

2.53  0.0362 

SSA No Hankel matrix size 
Window length 

500 × 500 
160  

102.3  0.0228 

VMD No Decomposition modes 8  3.17  0.0246 
Xiang et al. [54] Yes Hankel matrix size 

Window length 
Decomposition modes 

500 × 500 
160 
8  

6.74  0.0441 
Proposed SSA-VMD Yes  9.22  0.0191  

Fig.6. Time-frequency plot of (a) original signal XAE,C, (b) noisy signal XC, and filtered signals by (c) WT, (d) SSA, (e) VMD, (f) SSA-VMD proposed 
by Xiang [54], and (g) proposed SSA-VMD. 
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not able to effectively filter the noise, as its original design aims to reduce the instability of the data rather than for de-noising purposes. 
(5) As for the computation time, WT is the fastest method. However, the time for prior selection of wavelet function and decomposition 
level is not included. These above observations demonstrate that SSA-VMD can eliminate the background noise and mechanical noise 
effectively while generally preserving the characteristics of the original signal. 

4. Experimental studies 

4.1. Experimental set-up 

The SSA-VMD method is applied for the AE measurement of steel tensile deformation. Tensile coupon tests were performed to 
collect the AE signals during tensile steel deformation. As shown in Table 2, ten coupons were cut from cold-formed square steel tubes 
with three steel grades (S355, S500, and S700) and an identical cross-section area (80 mm2). Fig. 7 describes the profiles of the coupon 
specimens. The overview of the experimental set-up is shown in Fig. 8. Tensile tests were performed in an Instron testing machine with 
a maximum loading of 100 kN with displacement control. The deformation is measured by a 50 mm extensometer. The AE acquisition 
system used for the tensile tests consists of a physical AEwin system software with two piezoelectric sensors VS600-Z2 and pre- 
amplifiers with a uniform gain of 40 dB. The sensors were attached to the specimen symmetrically using a hot-melt adhesive. 
Before each test, pencil leads breaking tests were carried out to calibrate the response of the AE sensors. As shown in Fig. 8 (b), the 
frequency range of VS600-Z2 is 200 kHz-1000 kHz with a resonant frequency of around 600 kHz. It is reported that the predominant 
AE frequency range for metallic structures is 100 kHz-900 kHz [63]. Although the VS600-Z2 sensor is less sensitive in the range from 
50 kHz to 200 kHz, it does also measure in this range. This sensor is chosen due to the limited space for the sensor. The operational 
frequency range of the AE acquisition system is set as 100 kHz – 1000 kHz. It has been demonstrated that the amplitude of AE signals 
from plastic deformation ranges from 30 to 60 dB [64]. The threshold was set to 30 dB to capture signals generated during deformation. 

Considering constant loading is not applicable in many practical cases, varying loading rates were applied for the tensile tests (see 
Fig. 9). The selected loading rate meet the requirement of the Eurocode (0.01 m/s to 0.10 m/s). The loading rate of 0 mm/s means the 
holding stage and − 0.01 mm/s represents the unloading stage. Fig. 9 shows the amplitude distribution of detected signals along the 
tensile process. It is found that numerous signals appeared at the beginning and unloading–reloading stages. The following factors 
contributes to this phenomenon: (1) The friction noise is generated due to the contact between the grip and specimen at the beginning 
and during the unloading–reloading stage; (2) the engine noise is from the vibration of the fluid pump in the loading frame. Hence, 
these signals can be classified in the noise database. The amplitude of these signals is up to 50 dB which can overlap the useful signals 
from plastic deformation. This produces a justification for applying an appropriate denoising method. 

4.2. Experimental validation 

The effectiveness of the utilized SSA-VMD in denoising the measured AE signals is illustrated in this section. Denoising of the 
recorded AE signals from specimen S700-1 is taken as an example. In the previous simulation evaluation, only one mechanical noise 
signal constitutes the noise database. The noise dataset during the tensile test consists of a large number of signals. The marginal 
spectrum of decomposed IMFs of detected AE signals in step 2.4 is calculated and shown in Fig. 10. The X-axis is the sequence of IMFs. 
The y-axis and Z-axis are the extracted peak frequency and magnitude of each IMF. It is observed that four specific frequency ranges 
(red dash boxes) exist along all deformation procedures. There is a possibility that the IMFs located in these frequency ranges could be 
related to noise. Then, 18 peak frequencies are extracted as the main frequency components of noise-related IMFs with DMI>0.03. The 
IMFs of the detected AE signals are filtered if they have the same frequency features as the extracted 18 peak frequencies from the noise 
dataset. 

The amplitude distribution of the filtered signals of S355-1 and S700-1 is shown in Fig. 11. Compared to Fig. 9, AE signals recorded 
at the beginning and during loading–unloading stages under low load levels disappear. It is noted that the amplitude of remaining AE 
signals is decreased which is attributed to that part of the power of the initially detected AE signals is generated by noise. 

Table 2 
Properties of coupon specimens.  

Sample Geometry features Unloading Loading rate 

Nominal thickness t 
(mm) 

Width b0 

(mm) 

S355-1 10 8 No Varying 
S355-2 10 8 Varying 
S355-3 6 13.3 Varying 
S355-4 6 13.3 Constant 
S500-1 8 10 Yes Constant 
S500-2 10 8 Varying 
S500-3 10 8 Constant 
S700-1 10 8 Yes Constant 
S700-2 8 10 Varying 
S700-3 8 10 Constant  
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5. Application of ANN for classification 

5.1. Introduction to the methodology 

To identify the deformation stages of steel material, ANN is employed to establish the relationship between AE parameters and 
deformation stages. The algorithm of a fully connected neural network (FCNN), one typical type of ANN, is commonly used in material 

Fig.7. Profiles of the coupon tensile specimens in mm [6].  

Fig.8. Diagram of (a) Experimental set-up and (b) AE schematic.  

Fig.9. Amplitude distribution of detected signals for (a) S355-1 and (b)S700-1.  
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Fig.10. Features of decomposed IMFs of detected AE signals of S700-1: (a) 3D plot and (b) top view.  

Fig.11. Amplitude distribution of filtered signals for (a) S355-1, and (b) S700-1.  

Fig.12. Schematic of the applied ANN.  
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and structural damage identification [13]. Typically, a FCNN consists of an input layer, hidden layers, and an output layer, as shown in 
Fig. 12. Neurons in hidden layers combine values from the input layers transformed by communication links. A similar denoising 
procedure as described in section 4.2 is applied to all specimens. After that, the AE parameters, including amplitude, duration, signal 
strength, peak frequency, energy, and fuzzy cross-entropy, are extracted from the filtered AE signals as the input. Except for these 
conventional AE features, fuzzy cross-entropy has been proposed to interpret time-series signals recently [65,66]. This feature is useful 
to describe the complexity of AE signals with high sensitivity. 

Generally, according to the appearance of a distinct plateau, steel materials can be classified as discontinuous yielding and 
continuous yielding materials (see Fig. 13). Various deformation stages are included in these two materials. It is well recognized that 
the AE signals depend on the AE source mechanisms. Before the 1970 s, it was traditionally believed that AE signals could not be 
recorded prior to macro-yielding, as there was no dislocation activity or elastic wave release [67]. However, subsequent studies 
[68–70] have demonstrated that AE signals can be generated due to partial dislocation multiplication and harmonic motion before the 
material reaching its elastic limit. During the yielding and strengthening stage, the AE source mechanism is the dislocation multi-
plication inside the material. When the specimen enters the necking stage, the specimen exhibited significant deformation. The 
freedom for further dislocation shrank significantly with considerable dislocation congestion. Meanwhile, the formation of micro- 
cracks also reduces the transmission of AE activity. Finally, the abrupt decrease in stress is followed by a sudden increase in the AE 
activity and amplitude of AE signals. The specimen starts to develop microscopic cracks and keeps growing until the final fracture. 
Hence, stage AB and BC in discontinuous yielding material is summed into one stage. In total, no matter for discontinuous or 
continuous yielding material, four deformations stages are identified. Correspondingly, the output layer is a 4 × 1 vector [P1, P2, P3, 
P4] to represent the different deformation stages (see Fig. 13): [1, 0, 0, 0] represents the elastic stage; [0, 1, 0, 0] represents the 
strengthening stage; [0, 0, 1, 0] represents the necking stage; [0, 0, 0, 1] represents the final fracture stage. For S500 and S700 steel, an 
offset yield of 0.2 % (Rp0.2) is used to determine the yield point A for these materials [71]. 

5.2. Architecture of the network 

Table 3 summarizes the number of collected signals during the tensile tests. The samples are in unbalanced distribution for different 
stages which will decrease the prediction accuracy or generalization of the network. Focal loss is selected as the loss function to address 
the class imbalance problem. A modulating factor (1-pt)γ and a weight factor αt can adjust the weight of samples from each class for the 
multi-classification problem. The focal loss is designed as: 

FL(pt) = − αt(1 − pt)
γlog(pt) (14) 

In practice, optimal values for αt and γ are determined through empirical studies [72]. In this study, weight factors αt are set as 1.5, 
0.25, 2, and 1 for identifying elastic, strengthening, necking, and fracture stages, respectively. Higher weight factors are used in the 
elastic and necking stages due to their smaller datasets. Despite fewer AE signals collected during the fracture stage, a smaller weight 
factor is applied. This is attributed to the distinct features of the fracture stage, making it easily distinguishable from the other three 
stages. 

The K-fold cross-validation technique is utilized to train the network for classification with robustness to the overfitting problem. 
This method is one of the most widespread validation techniques in machine learning [73–77]. In this method, the training data are 
randomly partitioned into K folds. For each fold, a classifier is trained on the remaining folds. The average of these K recorded accuracy 
serves as the performance measure. This approach is particularly beneficial when the sample dataset is limited due to experimental 
constraints or the impossibility of repeating the experiment to obtain more training data. Hence, all examples are used at least once for 
both training and testing [78]. 

A cross-validation with K=5 was applied in this study. As illustrated in Fig. 14, the data set is randomly split into a test set (20 %) 
and a training set (80 %) with a training fold (64 %) and 5 disjoint validation folds (16 %). Hyperparameter tuning is conducted to find 
the optimal solution. Hyperparameters include the learning rate η and the number of hidden layers is fine-tuned using grid search. 
Quantitative evaluation is provided by 5 indexes: Accuracy (ACC) and four areas under receiver operating characteristics (ROC) curves 
(AUCi, i = 1:4). Accuracy (ACC) is defined as the correct number of predictions divided by the number of total data. This represents the 
total effectiveness of the classification. AUCi measures the performance for each deformation stage classification. The average of these 
5 indexes is employed as the indicator for the prediction accuracy. Based on the results of hyperparameters tuning, the optimal ar-
chitecture is illustrated in Fig. 12 and the main hypeparameters are summarized in Table 4. In the input layer, 6 input neurons 
represent duration, amplitude, signal strength, peak frequency, energy and fuzzy cross-entropy respectively. 3 hidden layers are set 
with 12, 8 and 6 artificial neuron units, respectively. The neuron units have 2 functions: a linear combination of input with regulated 
weightage and nonlinear complex functional mapping by ReLU activation functions. The output layer contains 4 neuron units which 
represent the possibility of 4 different deformation stages. The activation function is Softmax, which is appropriate for the multi- 
classification problem. 

5.3. Training results and discussion 

To increase the converging speed, the training set is normalized before it is input into the networks. Fig. 15 illustrates the training 
history of loss and learning curves for the training and test dataset. The loss and accuracy values are shown in every 1 epoch and the 
maximum number of epochs employed in this study is 200. The loss begins with 0.45 and then a dramatic decrease tendency is 
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Fig.13. Strain-stress curve for steel material: (a) discontinuous yielding material, and (b) continuous material.  

Table 3 
Collected signals for machine learning-based analysis.  

Name Number of data 

Elastic stage Strengthening stage Necking stage Fracture stage Total 

S355-1 7 12 4 4 27 
S355-2 2 155 1 101 259 
S355-3 13 532 1 11 557 
S355-4 15 386 1 52 454 
S500-1 1 5 7 3 16 
S500-2 18 5 3 7 33 
S5003 35 41 43 7 126 
S700-1 173 62 42 147 424 
S700-2 75 1112 0 99 1286 
S700-3 96 88 10 27 221 
Total 435 2398 112 458 3403  

Fig.14. Process of k-fold cross validation.  

Table 4 
The main hyperparameters of the proposed ANN.  

Learning rate Number of hidden layers Epoch Batch size Optimizer Loss function  

0.04 3 200 1000 Nadam focal loss  
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observed until 100 iterations. Then the curve is flat indicating convergence. As indicated in Fig. 15 (b), the training curve starts with an 
accuracy of 0.6 which can be contributed to the good initial parameter setting. From 1 to 20 epochs, the accuracy rises rapidly and 
reaches 0.9 after 20 epochs for training and test dataset. Finally, the accuracy curve converges to an expected value of 0.93. The 
visualization of part classification results is shown in Fig. 16 and the corresponding accuracy index is summarized in Table 5. By 

Fig.15. (a) Loss and (b) learning curves of the optimized FCNN.  

Fig.16. Classification results visualization (a) S355-1, (b) S500-1, and (c) S700-1.  
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omitting the unloading–reloading phase, discontinuous material specimens yield superior data quality, resulting in higher accuracy 
compared to continuous materials. 

Network generalization describes how well a trained network performs with new data [79]. Unseen data is collected from a 
continuous material specimen S700-4, with 8 mm thickness and constant loading rate. The specimen was tested under the same test 
setup and AE acquisition system. The collected AE signals are denoised by SSA-VMD with identical parameters as previously described. 
Fig. 17 shows the classification results for S700-4. The prediction accuracy is 0.87 which is smaller than 0.93 for the test dataset. 
Despite the decrease in accuracy, the results still demonstrate the efficiency of the trained ANN. It demonstrates the potential of 
applying ANN-based deformation stage identification for various steel materials. 

6. Conclusion 

The deformation of the steel member is vitally important to the safety of infrastructure. Identification of the deformation stage is 
possible to be achieved using an Artificial neural network (ANN) combined with Acoustic emission (AE) monitoring. However, the 
efficiency is hindered by the existence of noise in practical applications. The main objective of this study is to improve the application 
of ANN-based deformation stage identification with a hybrid denoising model combing SSA-VMD method. The key finding can be 
concluded as follows:  

1. The two-stage decomposition method SSA-VMD is an adaptive algorithm for filtering both wide-band ground noise and narrow- 
band mechanical noise effectively. This method provides the solution to select the proper parameters without the time- 
consuming numerical simulation.  

2. Compared to conventional methods, the proposed SSA-VMD method can reduce noise while keeping relevant elements of the 
original signals under strong noise conditions (SNR<0). The denoising performance of the employed method has been validated 
and demonstrated by using the simulation signals and real signals during tensile tests. 

3. The combination of SSA-VMD with ANN achieves the deformation stage identification successfully under a seriously noisy envi-
ronment. Taking the features of filtered AE signals as the input, the designed ANN achieves a prediction accuracy of 0.93 for the test 
dataset and 0.87 for the unseen dataset. AE signals were collected from steel coupon tensile tests with various steel grades and 
loading conditions. The outcomes show the potential of ANN-based deformation stage identification in a broader application. 

It should be noted that the collected AE signals are dependent on the applied sensors. The receiving and transmission sensitivity of 

Table 5 
Classification accuracy for each specimen.  

Material Name Accuracy 

Discontinuous material S355-1  0.963 
S355-2  0.950 
S355-3  0.922 
S355-4  0.958 

Continuous material S500-1  1.000 
S500-2  0.848 
S500-3  0.941 
S700-1  0.939 
S700-2  0.906 
S700-3  0.824  

Fig.17. Classification results of S700-4.  
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the sensor will influence the extracted features. Although the effectiveness of the SSA-VMD method has been confirmed by the 
denoising results of simulation and measured signals, its universality demands investigating further with more experimental results. 
Meanwhile, it is suggested to provide support information from the microstructural examination to access the performance of the ANN- 
based deformation stage identification. 
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