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Temporal‑topological properties 
of higher‑order evolving networks
Alberto Ceria * & Huijuan Wang 

Human social interactions are typically recorded as time‑specific dyadic interactions, and 
represented as evolving (temporal) networks, where links are activated/deactivated over time. 
However, individuals can interact in groups of more than two people. Such group interactions can be 
represented as higher‑order events of an evolving network. Here, we propose methods to characterize 
the temporal‑topological properties of higher‑order events to compare networks and identify their 
(dis)similarities. We analyzed 8 real‑world physical contact networks, finding the following: (a) 
Events of different orders close in time tend to be also close in topology; (b) Nodes participating in 
many different groups (events) of a given order tend to involve in many different groups (events) of 
another order; Thus, individuals tend to be consistently active or inactive in events across orders; (c) 
Local events that are close in topology are correlated in time, supporting observation (a). Differently, 
in 5 collaboration networks, observation (a) is almost absent; Consistently, no evident temporal 
correlation of local events has been observed in collaboration networks. Such differences between the 
two classes of networks may be explained by the fact that physical contacts are proximity based, in 
contrast to collaboration networks. Our methods may facilitate the investigation of how properties of 
higher‑order events affect dynamic processes unfolding on them and possibly inspire the development 
of more refined models of higher‑order time‑varying networks.

Interactions among individuals are usually experimentally measured as time-resolved records of face-to-face 
contacts between couples of people in controlled social setting such as workplaces, hospitals, schools and confer-
ences. These time specific records are thus collected in the form of dyadic interactions, and have been effectively 
studied in the framework of evolving (temporal) networks, where each link between two nodes is activated only 
when the node pair  interacts1–3. The temporal patterns of link activations (or contacts) in real-world networks are 
far from being fully random nor  deterministic4. Contacts between a pair of nodes usually occur in bursts of many 
contacts close in time followed by a long period of  inactivity5 and the time between two consecutive interactions 
is usually fat-tailed  distributed6–8. Such temporal properties of contacts influence the dynamic processes unfold-
ing on the  network9–17. Despite these tremendous advances in the last decade, studies on temporal networks have 
traditionally focused on pairwise interactions only. However pairwise interactions can only partially capture 
interactions among constituents of a  system18,19. For example, a neuron may receive the output from or send a 
signal to many different neighbouring  neurons20, individuals may gather in  groups21, and scientific collaborations 
are not limited to couples of  authors22. Such interactions are named higher-order, to emphasize that they involve 
more than just a couple of nodes. Benson et al.23 showed that a generalization of triadic closure seems to lead the 
first activation of a given hyperlink. On the other hand, Cencetti et al.24 focused on temporal inhomogeneities 
of activations of the same hyperlink. The focus so far is on the prediction of hyperlink  activations23 or on pure 
temporal properties of higher-order  events24. However, the interplay between temporal and topological proper-
ties of higher-order events, e.g. if higher-order events close in time tend to occur also close in topology, remains 
far from well understood. Hence, this work aims to systematically characterize the relation between temporal 
and topological properties of higher-order events to compare higher-order temporal networks. Inspired by our 
recent work that characterizes temporal and topological properties of dyadic interactions in temporal  networks25, 
we redesign the characterization method for higher-order events. In particular, we are going to explore such 
properties from three perspectives: (1) The interrelation between the distance in topology and the temporal delay 
of events, (2) Their correlation or overlap in topological location. (3) The temporal correlation of local events 
that overlap in component nodes. In order to compare real-world networks with different sizes, we design null 
models where temporal and topological properties of events of an arbitrary order are systematically destroyed or 
preserved. We applied our methods to 8 real-world physical contact networks and 5 collaboration networks. We 
show that, in physical contacts, events of different orders with short temporal delay tend to be close in topology 
too. We then investigate the correlation of events in topology and discover that events of different orders are likely 
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to overlap in component nodes. In particular, nodes who participate in many different groups (events) of a given 
order are likely to be involved in many different groups (events) of another order. Individuals do not reduce their 
number of interactions of one order due to frequent interactions of another order. Finally, we show that those 
local events that overlap in component nodes are correlated in time, which supports the finding that events close 
in time are also close in topology. In collaboration networks, we observe that events also overlap in component 
nodes. However, the correlation between topological distance and temporal delay of events are usually either 
weak or absent. Coherently, in collaboration networks, the temporal correlation of local events that overlap in 
component nodes is almost absent. Such differences between physical contacts and collaboration networks may 
be due to the fact that physical interactions are partly driven by proximity, so that a set of individuals close to 
each other tend to interact close in time among (subsets of) them.

Our methods can be applied to compare real-world higher-order networks and to investigate how the prop-
erties of their events affects the dynamic processes unfolding on them. More realistic models of higher-order 
evolving networks can be further developed to reproduce specific properties of the higher-order interactions 
observed in this paper.

Definitions
Higher‑order evolving networks. Time-varying social interactions or contacts have been mostly meas-
ured pairwise and studied with the formalism of (pairwise) temporal networks. A temporal network observed 
at discrete time within [0, T) can be described by G = (N,C ) , where N is the set of nodes or individuals, C 
is the set of pairwise interactions. If node u and v have a contact at time step 0 ≤ t ≤ T − 1 , (ℓ, t) ∈ C , where 
ℓ = ℓ(u, v) is the link connecting the pair of nodes between which the contact occurs. The contact (ℓ(u, v), t) 
can be regarded as the activation of the link ℓ(u, v) at time t. This traditional temporal network representation 
records social contacts as a set of pair-wise interactions. However, individuals may gather in larger groups, so 
that more than two people interact with each other at the same time. For example, an interaction (h(i, j, k), t) 
among three nodes at time t is usually measured and recorded as three pair-wise interactions (ℓ(i, j), t) , 
(ℓ(j, k), t) and (ℓ(i, k), t) . Social interactions can be more precisely represented as a higher-order evolving net-
work H = (N,E ) (or temporal hypergraph, following the definition of Cencetti et al.24), where E is the set 
of events of arbitrary orders. Such group interaction or higher-order event (h(u1, . . . ud), t) can be regarded as 
the activation of the corresponding hyperlink h(u1, . . . ud) at t. The size or order of the interaction is d, where 
d is the size of the group. The pairwise time aggregated network of a traditional pairwise temporal network 
is G = (N,�) , where any couple of nodes (i,  j) is connected by a link ℓ(i, j) ∈ � if ℓ(i, j) has been active at 
least once during the entire observation time [0, T). Consistently, the higher-order time aggregated network is 
H = (N,L ) , where any set {u1, . . . ud} of d nodes are connected by a hyperlink h(u1, . . . ud) ∈ L with size d if 
h(u1, . . . ud) has been activated at least once. The activity of each hyperlink h can be represented by a time series 
Xh = {xh(t), 0 ≤ t < T} where xh(t) = 1 only if the hyperlink h is active at time t, i.e., e = (h, t) ∈ E.

Temporal and topological distance of events. The temporal distance or delay between two events 
e1 = (h1, t) and e2 = (h2, s) is T (e1, e2) = |t − s|.

The topological distance, also called hop-count, between two nodes on a pair-wise static network is the 
number of links contained in the shortest path between these two nodes. We define the topological distance 
η(e1, e2) between two events e1 = (h1, t) and e2 = (h2, s) as the topological distance between the corresponding 
two hyperlinks h1 and h2 , which is further defined as follows. The distance between the same hyperlink is zero, 
e.g., η((h1, t), (h1, s)) = 0 . The distance between two different hyperlinks h(u1, . . . , ud) and h(v1, . . . , vd′) with 
size d and d′ , respectively, follows

where δ(u, v) is the distance or hop-count between node u and v on the unweighted pairwise time aggregated 
network G. The distance between two events is thus one plus the minimal distance between two compo-
nent nodes from the two events respectively. For example, the distance between events e1 = (h(i, j, k), t) and 
e2 = (h(i,m, n), s) is η(e1, e2) = 1.

Network randomization‑control methods. To detect non-trivial temporal and topological patterns of 
events, we compare properties obtained from real-world higher-order temporal networks with those of designed 
null models. We generalize the randomized reference models of pairwise evolving networks which gradually 
preserve and destroy temporal and topological properties of pairwise  interactions25–27 for higher-order temporal 
networks. Given a higher-order evolving network H and any given order d of events, we introduce 3 randomized 
null models H1

d , H2
d and H3

d which systematically randomize order d events only, without changing events of 
any other order d′ �= d . We denote as Ed the set of events with the same size d. Randomized network H1

d is 
obtained by randomly re-shuffling the time stamps of the events in Ed , without changing the topological loca-
tions of these events. This randomization does not change the total number of activations of each hyperlink, nor 
the probability distribution of the topological distance of two randomly selected events. Null model H1

d rand-
omizes the time stamps of order d events. As a consequence, the distribution of the inter-event time of order d 
events, i.e., the time between two consecutive activations of a random order d hyperlink, in H1

d tends to be less 
heterogeneous than that in H . As mentioned above, the activations of a given hyperlink h can be represented 
by a time series Xh . The randomized network H2

d is obtained by iteratively swapping the time series of two ran-
domly selected order d hyperlinks . In H2

d , the inter-event time distribution of order d events is preserved as in 
the original network H , while the time series of activations of a given order d hyperlink are independent from 

(1)η((h(u1, . . . , ud), t), (h(v1, . . . , vd′), s)) = minu∈{u1,...,ud},v∈{v1,...,vd′ }(δ(u, v)+ 1)
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its topological location. The third randomized network H3
d is obtained by swapping the activity time series of 

two randomly selected order d hyperlinks with the same total number of activations. This randomization does 
not change the number of activations of any hyperlink, the distribution of the topological distance of two ran-
dom events, nor the inter-event (order d events) time distribution. The pairs of order d hyperlinks with the same 
number of events can be few in number in real-world temporal networks, such that the difference between a real-
world network and its randomized network H3

d is small. This is especially the case when the order d is large, thus 
the number of hyperlinks is small. These three randomized models preserve the unweighted higher-order time 
aggregated network H and the probability distribution of the temporal distance of two random events of size d.

Datasets
We will apply our method to 13 real-world datasets of human physical interactions and scientific collaborations. 
The first 8 datasets are collections of face-to-face interactions at a distance smaller than 2 m in several social 
contexts such as conferences (HT2009, SFHH), hospital, primary school (PS), high schools (HS2012,HS2013), 
workplace (WP2) and museum (Infectious). Face-to-face interactions are recorded as a set of pair-wise interac-

tions. Based on them, we deduce group interactions, by promoting each set of 
(

d
2

)

 dyadic interactions occurring 

at the same time and forming a fully connected clique of d nodes to an event of size d. Since a clique of order d 
contains all its sub-cliques of order d′ < d , only the maximal clique is promoted to a higher-order event, whereas 
sub-cliques are ignored. For example, 3 pairwise contacts (ℓ(i, j), t), (ℓ(j, k), t) and (ℓ(i, k), t) occurring at the 
same time t are regarded as a single event of order 3 i.e., (h(i, j, k), t) without any order 2 event. This method has 
been already used by Cencetti et al.24. to deduce higher-order interactions from datasets of human face-to-face 
interactions. We further preprocess these datasets by removing nodes which are not connected to the largest 
connected component in the pairwise time-aggregated network. We also remove long periods of inactivity, when 
no event occurs in the network. Such periods usually correspond, e.g., to night and weekends, and are recognized 
as outliers in the inter-event time distribution of the time series which records the total number of events per 
timestamp. Such data pre-processing method has also been used in our recent  work25. The other 5 higher-order 
collaborations networks are obtained based on scientific papers recorded in the arxiv in various fields: lattice 
high energy physics (hep-lat), theoretical nuclear physics (nucl-th), quantitative biology (q-bio), quantitative 
finance (q-fin) and quantum physics (quant-ph). In a collaboration network, each node represents an author, 
and an event of order d occurrs at time t if a paper co-authored by d authors is published at t. Assigning papers 
to the correct authors is not easy. The same author can be named differently, e.g., using the full or initial of the 
first name and typographic errors may be present. Thus, we applied standard text preprocessing methods to 
authors’ name, and we identify each author by the initials of their first names, together with their surname 
according to the method of Newman et al.28. The total number of events of each order in each real-world temporal 
network is shown in Figs. S1 and S2 in Supplementary Material. In each dataset, the number of events with order 
2 ≤ d ≤ 4 is not negligible; however events with an order larger than 4 are rare (if not absent) in most of the 
physical contact datasets. Details of the datasets after preprocessing are given in Table 1.

Characterizing temporal‑topological properties of networks
In this section we introduce a systematic characterization method of higher-order temporal networks. We char-
acterize the temporal and topological properties of events from three different perspectives. First, we analyze 
the interrelation between the temporal and topological distance of two arbitrary events of different orders. Then, 

Table 1.  Basic features of the empirical higher-order time-evolving networks after data processing. The 
number of nodes ( |N| ), the number of hyperlinks ( |L | ), the total number of events ( |E | ), the length of the 
observation time window in time steps (T), the time resolution or duration of each time step (dt) in seconds or 
days and the contact type are shown.

Network |N| |L| |E| T dt Contact type

Primary school (PS) 242 12,704 106,877 3099 20 s Physical

High school 2013 (HS2013) 327 7818 172,031 7371 20 s Physical

Hypertext 2009 (HT2009) 113 2434 19,037 7227 20 s Physical

Infectious (infectious) 410 3350 14,275 1422 20 s Physical

Workplace 2015 (WP2) 217 4909 73,820 20,947 20 s Physical

SFHH conference (SFHH) 403 10,541 54,306 3800 20 s Physical

Hospital (hospital) 75 1825 27,835 16,027 20 s Physical

High school 2012 (HS2012) 180 2645 42,105 14,115 20 s Physical

High energy physics, lattice (hep-lat) 10,598 11,588 18,267 10,809 1 d Collaboration

Nuclear physics, theory (nucl-th) 25,246 27,094 39,511 10,620 1 d Collaboration

Quantitative biology (q-bio) 45,645 22,978 25,973 10,704 1 d Collaboration

Quantitative finance (q-fin) 7509 6192 7577 9027 1 d Collaboration

Quantum physics (quant-ph) 56,036 70,119 88,769 10,600 1 d Collaboration
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we study the topological correlation of events, i.e., how events of different orders overlap in component nodes. 
Finally, we introduce a method to characterize the temporal correlation of events occurring close in topology.

Correlation of temporal and topological distance of events. In this subsection we investigate how 
temporal and topological distance of events are related to each other. Specifically, we aim to understand to what 
extent events close in time are also close in topology. In our previous  work25, we considered all interactions in a 
temporal network as pairwise interactions alone and found in real-world physical and virtual contact networks 
that pairwise interactions that are close in time tend to be close in topology (in the pairwise time aggregated 
network). Here, we generalize the method of characterizing the relation between topological and temporal dis-
tance of two dyadic interactions to that of two higher-order events with different orders. In this analysis, nor-
malizations in topological distance and randomizations in networks have been applied so that we can compare 
real-world temporal networks with different properties in e.g., the number of nodes and contacts. We take order 
d = 3 as an example to illustrate our method and observations. In Figs. 1 and 2 we investigate the average topo-
logical distance E[η[(e, e′)|T (e, e′) < �t, e ∈ Ed , e

′ ∈ E \ Ed] between two events (e, e′) with different orders 
d  = d′ , given that their temporal distance is smaller than �t in physical contact and collaboration networks, 
respectively. In physical contact networks (Fig. 1), we observe in general an increasing trend of the normalized 

Figure 1.  The normalized average topological distance µd(�t) =
E[η(e,e′)|T (e,e′)<�t, e∈Ed , e

′∈E \Ed ]

E[η(e,e′)| e∈Ed , e′∈E \Ed ]
 , between an 

order d = 3 event and an event of a different order, in each physical contact network and its corresponding three 
randomized null models H1

d (yellow), H2
d (green) and H3

d (red), which preserve or destroy specific properties of 
order d = 3 events. lim�t→∞ E[η(e, e′)|T (e, e′) < �t, e ∈ Ed , e

′ ∈ E \Ed] = E[η(e, e′)| e ∈ Ed , e
′ ∈ E \Ed] 

for any d. The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds 
to the linear fit (with slope m) of µd(�t) as a function of log10(�t) in H , for the part that the curve has an 
increasing trend. For each dataset, the results of the three corresponding randomized models are obtained from 
10 independent realizations.
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average topological distance µd(�t) =
E[η(e,e′)|T (e,e′)<�t, e∈Ed , e

′∈E \Ed ]

E[η(e,e′)| e∈Ed , e′∈E \Ed ]
 between between events of different 

orders with their conditional temporal distance �t , except that the topological distance decreases with �t when 
�t is small, approximately when �t ≤ 100s . Usually, events of different orders that occur relatively close in 
time tend to be also close in topology. The decrease of the average distance µd(�t) with �t when �t is small is 
introduced by the way how higher-order physical contact networks are constructed. In these networks higher-
order events are inferred from their contact records, so that if a higher-order event that involves a set of d nodes 
occur at a given timestamp, no event of an order d′ smaller than d involving only a subset of these d nodes can 
occur at the same timestamp. This explains why as �t decreases further when it is small, the topological distance 
µd(�t) does not decrease anymore. This is not the case in collaboration networks, where when a group of sci-
entists collaborate in a paper, a sub-group could co-author another paper at the same time. Accordingly, we do 
not observe the decreasing trend of the µd(�t) with �t when �t is small in collaboration networks. Besides this 
initial decreasing trend, we observe an increasing trend of µd(�t) between events with their conditional tempo-
ral distance in every physical contact networks, but this is generally much less evident in collaboration networks. 
The slope of the increase of µd(�t) with the conditional temporal distance �t indicates the relative strength of 
temporal-topological correlation of events. In Figs. 1 and 2 we show the slope of the linear fit of µd(�t) as a func-
tion of log10(�t) for the part of the curve that has an increasing trend. In physical contacts, the highest slopes 
are observed in Infectious and Workplace (WP2) networks. Moreover, in each dataset we observe an increasing 
trend with slope larger than 0. In contrast, this slope is small around zero in the corresponding randomized 
network H1

d , H2
d and H3

d . This means the set of activity time series of each order 3 hyperlink of a higher-order 
network H , which is preserved in the corresponding randomized network H2

d and H3
d does not contribute to 

the correlation between topological and temporal distance of events of different orders.
Differently, in collaboration networks, the increasing trend is usually either very weak (nucl-th, quant-ph) 

or absent (q-bio and q-fin), with the only exception of hep-lat dataset. The temporal-topological correlation of 
events tends to disappear in collaboration networks.

Figure 2.  The normalized average topological distance µd(�t) =
E[η(e,e′)|T (e,e′)<�t, e∈Ed , e

′∈E \Ed ]

E[η(e,e′)| e∈Ed , e′∈E \Ed ]
 , between an 

order d = 3 event and an event of a different order, in each collaboration network and its corresponding three 
randomized null models H1

d (yellow), H2
d (green) and H3

d (red), which preserve or destroy specific properties of 
order d = 3 events. lim�t→∞ E[η(e, e′)|T (e, e′) < �t, e ∈ Ed , e

′ ∈ E \Ed] = E[η(e, e′)| e ∈ Ed , e
′ ∈ E \Ed] 

for any d. The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds 
to the linear fit (with slope m) of µd(�t) as a function of log10(�t) in H , for the part that the curve has an 
increasing trend. For each dataset, the results of the three corresponding randomized models are obtained from 
10 independent realizations.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5885  | https://doi.org/10.1038/s41598-023-32253-9

www.nature.com/scientificreports/

Conclusions drawn from the discussion of Figs. 1 and 2 hold for the other orders d = 2 (see Figs. S5 and S6 
in Supplementary Material) and d = 4 (see Figs. S7 and S8 in Supplementary Material). The only exceptions are 
observed in datasets HT2009 and WP2 when d = 4 : in this case indeed the trend of µd(�t) in three randomized 
reference models seems to partially re produce the increasing trend observed in H . This is likely due to the low 
number of hyperlinks of order 4 in these two networks.

We focus on the analysis of events of different orders. We have also analyzed events of the same order and 
obtain similar observations. As an example, Figs. 3 and 4, show the normalized average topological distance 

νd(�t) =
E[η(e,e′)|T (e,e′)<�t, e, e′∈Ed ]

E[η(e,e′)| e, e′∈Ed ]
 of events of the same order d = 3 with a temporal delay smaller than �t . 

The temporal-topological correlation is observed in physical contact networks but not collaboration networks. 
In contrast to events of different orders, in physical contacts, events of the same order demonstrate similar 
temporal-topological correlation in randomized networks H2

d and H3
d as in the corresponding real-world net-

work H , reflected the similar slope of the increase of the topological distance with �t in these three networks. 
Randomized network H2

d and H3 preserve the same set of activity time series of each single order d hyper 
link. The burstiness property, i.e. the frequent activation of the same hyperlink within a short time followed by 
a long resting period of an activity time series contributes to the temporal-topological correlation observed in 
real-world physical networks. These conclusions hold also for the analysis for orders d = 2 (Figs. S9 and S10 in 

Figure 3.  The normalized average topological distance νd(�t) =
E[η(e,e′)|T (e,e′)<�t, e, e′∈Ed ]

E[η(e,e′)| e, e′∈Ed ]
 , between two 

order d = 3 events, in each physical contact network and its corresponding three randomized null models 
H

1
d (yellow), H2

d (green) and H3
d (red), which preserve or destroy specific properties of order d = 3 events. 

lim�t→∞ E[η(e, e′)|T (e, e′) < �t, e, e′ ∈ Ed] = E[η(e, e′)| e, e′ ∈ Ed] for any d. The horizontal axes are 
presented in logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of 
νd(�t) as a function of log10(�t) in H , for the part that the curve has an increasing trend. For each dataset, the 
results of the three corresponding randomized models are obtained from 10 independent realizations.
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Supplementary Material) and 4 (Figs. S11 and S12 in Supplementary Material). The only exception is that no 
evident increase of νd(�t) with �t is observed when d = 4 in Workplace and Hypertext 09, likely due to the 
low number of order d = 4 events observed in these two networks. In this work, we focus on the analysis of 
events of different orders, whose temporal-topological correlation cannot be explained by the burstiness of the 
activations of each hyperlink.

Topological correlation of events with different orders. To better understand the observed corre-
lation between temporal and topological distance of events, we explore further whether higher-order events 
overlap in component nodes (correlation in topology) in this subsection and whether events that overlap in 
topology are correlated in time in the next subsection. Higher-order events that overlap in component nodes 
and occur close in time may partially explain the observed temporal and topological correlation between events. 
Would a node that belongs to many hyperlinks of order d, also be connected to many hyperlinks of order d′ �= d ? 
To investigate this question, we examine the number of hyperlinks of each order that a node belongs to in the 
unweighted higher-order time aggregated network. The total number of order d hyperlinks that the node v is 
connected to, denoted as kd(v) , is also called the d-degree of node v. In Figs. 5, 6, we compare the d-degree and 
the d′-degree of a node when (d′, d) is equal to (3,2), (4,2) and (4,3) respectively in each physical contact (collabo-
ration) network. All three randomized networks H1

d , H2
d and H3

d have the same higher-order time-aggregated 
unweighted network as the corresponding real-world network H . Hence, the d-degree and d′-degree of each 
node remain the same in the randomized networks as in the real-world network. We focus on the case when 
(d′, d) is equal to (3,2), as an example. We observe that the d′-degree of a node is an increasing function of the 
d-degree of the node in every considered collaboration and physical contact networks. Hence, a node that par-
ticipates in many groups of order 3, tends to involve in many groups of order 2. When (d′, d) equals to (4,2) and 
(4,3), such trend is less evident in physical networks (especially in WP2, HS2012, Infectious and HT2009) and 
remains evident in collaboration networks. This is likely because the number of order 4 hyperlinks is generally 
low (see Fig. S3 in Supplementary Material) in physical contact networks, but not in collaboration networks (see 
Fig. S4 in Supplementary Material).

Figure 4.  The normalized average topological distance νd(�t) =
E[η(e,e′)|T (e,e′)<�t, e, e′∈Ed ]

E[η(e,e′)| e, e′∈Ed ]
 , between two 

order d = 3 events, in each collaboration network and its corresponding three randomized null models H1
d 

(yellow), H2
d (green) and H3

d (red), which preserve or destroy specific properties of order d = 3 events. 
lim�t→∞ E[η(e, e′)|T (e, e′) < �t, e, e′ ∈ Ed] = E[η(e, e′)| e, e′ ∈ Ed] for any d. The horizontal axes are 
presented in logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of 
νd(�t) as a function of log10(�t) in H , for the part that the curve has an increasing trend. For each dataset, the 
results of the three corresponding randomized models are obtained from 10 independent realizations.
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Figure 5.  The d′-degree kd′(v) versus the the d-degree kd(v) of a node v when (d′, d) is equal to (3,2) (blue line), 
(4,2) (yellow line) and (4,3) (green line) respectively in each physical contact network. Each axis (e.g., kd(v) ) has 
been normalized by its maximum (e.g., maxv(kd(v)) ). Only nodes whose d-degree and d′-degree are both 
non-zero are considered. The dashed line represent the reference case kd′ (v)

maxv(kd′ (v))
=

kd(v)
maxv(kd(v))

 . Note that both 
axes are presented in logarithmic scales. In total 30 logarithmic bins are split for horizontal axis.

Figure 6.  The d′-degree kd′(v) versus the the d-degree kd(v) of a node v when (d′, d) is equal to (3,2) (blue line), 
(4,2) (yellow line) and (4,3) (green line) respectively in each collaboration network. Each axis (e.g., kd(v) ) has 
been normalized by its maximum (e.g., maxv(kd(v)) ). Only nodes whose d-degree and d′-degree are both 
non-zero are considered. The dashed line represent the reference case kd′ (v)

maxv(kd′ (v))
=

kd(v)
maxv(kd(v))

 . Note that both 
axes are presented in logarithmic scales. In total 30 logarithmic bins are split for horizontal axis.
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Furthermore, we investigate whether a node that involves in many order d events tends to join many order 
d′ interactions. The number of order d events that a node v is involved in, denoted by sd(v) , is also called the 
d-strength of node v. The d-strength of a node is actually the sum of the weights of order d hyperlinks that a node 
belong to in the weighted higher-order time aggregated network. The weight of each hyperlink represents the 
number of events/activations of the hyperlink. Similar to our analysis of the d-degree and d′-degree of node, we 
find the d-strength and d′-strength of a node are also positively correlated when (d′, d) equal to (3,2) in each tem-
poral network, as shown in Figs. 7 and 8. This trend is less evident only in physical contacts that have few order 
4 events, when (d′, d) is equal to (4,3) and (4,2). This suggests that an individual’s large number of interactions 
of one order would not reduce his or her number of events of another order. Individuals tend to be consistently 
active or inactive in events across orders.

To explain the positive correlation observed both in the degree of a node between two different orders and 
in the strength of a node between two different orders, we investigated the correlation between the d-strength 
and d-degree of a node, in every dataset as shown in Figs. 9 and 10. We find that the d-strength of a node is 
approximately a linear function of the d-degree of the node at each order. In particular, we found that, given a 
node v, sd(v) ≈ ωd ∗ kd(v) , where ωd is the average number of activations of a hyperlink of order d.

The degree and strength of each node for any order remain the same in a real-world network and its three 
randomized networks except that the strength of nodes in H2

d differs from that in the other networks. In H2
d , 

sd(v) = ωd ∗ kd(v) is expected for each order d and confirmed in Figs. S13 and S14 (in Supplementary Material), 
since the time series of order d hyperlinks are swapped in H2

d . This linear function sd(v) = ωd ∗ kd(v) observed 
in each real-world network approximately, means that the average number of times a node interacts with an 
order d group (the ratio of the d-strength to the d-degree of the node) is a constant, independent of the number 
of distinct order d groups the node interacts with. Thus, engaging in more groups of a given order d will not 
affect an individual’s average number of interactions per group. The positive correlation in the degree of a node 
between two different orders, together with the linear relation found between the d-strength and d-degree of a 
node, explains the positive correlation found in the strength of a node between two different orders.

Temporal correlation of events at a local egonetwork. Since higher-order events overlap in topol-
ogy, e.g., the component nodes of a higher-order event tend to participate in events of a lower order, we explore 
further the temporal correlation of events that occur locally in topology. The topological neighborhood of a 

Figure 7.  The d′-strength sd′(v) versus the the d-strength sd(v) of a node v when (d′, d) is equal to (3,2) (blue 
line), (4,2) (yellow line) and (4,3) (green line) respectively in each physical contact network. Each axis (e.g., 
sd(v) ) has been normalized by its maximum (e.g., maxv(sd(v)) ). Only nodes whose d-strength and d′-strength 
are both non-zero are considered. The dashed line represent the reference case sd′ (v)

maxv(sd′ (v))
=

sd(v)
maxv(sd(v))

 , where d′

-strength is a linear function of the d-strength of nodes. Note that both axes are presented in logarithmic scales. 
In total 30 logarithmic bins are split for horizontal axis.
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Figure 8.  The d′-strength sd′(v) versus the the d-strength sd(v) of a node v when (d′, d) is equal to (3,2) (blue 
line), (4,2) (yellow line) and (4,3) (green line) respectively in each collaboration network. Each axis (e.g., sd(v) ) 
has been normalized by its maximum (e.g., maxv(sd(v)) ). Only nodes whose d-strength and d′-strength are both 
non-zero are considered. The dashed line represent the reference case sd′ (v)

maxv(sd′ (v))
=

sd(v)
maxv(sd(v))

 , where d′

-strength is a linear function of the d-strength of nodes. Note that both axes are presented in logarithmic scales. 
In total 30 logarithmic bins are split for horizontal axis.

Figure 9.  The d-strength sd(v) versus the the d-degree kd(v) of a node v when d is equal to 2 (blue line), 3 
(yellow line) and 4 (green line) respectively in each physical contact network. The vertical axis is normalized 
by the average number ωd of activations of a hyperlink of order d. The dashed line represent the reference case 
sd(v) = ωd ∗ kd(v) . In total 30 linear bins are split for horizontal axis.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5885  | https://doi.org/10.1038/s41598-023-32253-9

www.nature.com/scientificreports/

hyperlink hd of order d, so called the egonetwork ego(hd) centered at hd , is defined as the union of the hyperlink 
hd and all hyperlinks with an order lower than d that share at least one node with hd in the higher-order aggre-
gated network. We construct the time series of the aggregated activity of an egonetwork ego(hd) , as the sum of 
the time series of hyperlinks belonging to ego(hd) , as shown in Fig. 11.We then evaluate the temporal correlation 
of the time series of an egonetwork ego(hd) , to understand whether the activation of the center hyperlink hd tend 
to cluster in time with the activation of the other low order hyperlinks in the egonetwork ego(hd).

Our analysis method is based on the concept of event trains, proposed by Karsai et al.5. A train of events is a 
sequence of consecutive events whose inter-event times are shorter than or equal to a reference temporal inter-
val �t and separated from the other contacts by an inter-event times larger than �t . Given a �t and an activity 
time series of an egonetwork ego(hd) , trains can be identified, as exemplified in Fig. 11. Given �t and an order 
d, we identify all the trains for each activity series of the egonetwork centered at each order d hyperlink. The size 
of a train is the number of events the train contains. Then, we examine the size distribution Pr[S ∗

d = s] of the 
identified trains in which a center hyperlink has been activated at least once. The timescales of physical contacts 
and collaboration networks are different. The two classes are measured per step of seconds and day respectively. 
To illustrate our method and findings we consider �t = 60s (60d) in physical contact (collaboration) networks 
to identify the trains in each ego network. The choice �t = 60s is also motivated by the observation in Fig. 1 that 
we start to observe the positive temporal and topological correlation of higher-order events since �t is about 
100s in physical contact networks. Moreover, we observe the same when �t = 120s (120d) in physical contact 
(collaboration) networks in the coming analysis.

Figures 12 and 13 show the train size distribution Pr[S ∗
3 = s] of the egonetworks centered at each order 3 

hyperlink in each physical and collaboration network H and its three null models H1
3 , H

2
3 , H

3
3 . Only order 3 

events have been randomized in the three randomized reference models H1
3 , H

2
3 , and H3

3 while the set of events 
of any other order d′ �= 3 remain unchanged in each real-world network and its corresponding randomized 
network H1

3 , H
2
3 , H3

3 . In physical contact networks, the train size is evidently larger on average than that in 
their corresponding randomized networks. This indicates that an order 3 event tend to occur close in time with 
many local order 2 events, forming large trains. The trains in collaboration networks are, however, not evidently 
longer than those in randomized reference models on average. We found similar when considering �t = 120s for 
physical contacts and �t = 120d for collaboration networks (see Figs. S15 and S16 in Supplementary Material).

The temporal correlation analysis of local events helps explain the interrelation of topological and tempo-
ral distance of higher-order events discovered in “Correlation of temporal and topological distance of events” 
subsection. In physical contact (collaboration) networks, we observe evident (no evident) correlation between 
topological and temporal distance of events with different orders. Consistently, whereas events overlap in com-
ponent nodes in both types of networks, local events, thus events close in topology are strongly (weakly or not) 
correlated in time, in forming long trains, in physical contact (collaboration) networks. In networks where the 
interrelation between topological and temporal distance of events is more evident (e.g., Infectious and WP2), the 
correlation of local events in time also tends to be stronger (average train size observed in real-work network is 
evidently larger than that of randomized reference models). We observe similar results also for the distribution 
Pr[S ∗

4 = s] of the size S ∗
4  of trains obtained from the activity series of ego networks centered at each order 4 

hyperlink, as shown in Figs. S17, S18, S19 and S20 in Supplementary Material.
The detected differences between physical contact and collaboration networks may be explained by the fact 

that physical interactions are driven by physical proximity. For example, individuals that have a group interaction 

Figure 10.  The d-strength sd(v) versus the the d-degree kd(v) of a node v when d is equal to 2 (blue line), 3 
(yellow line) and 4 (green line) respectively in each collaboration network. The vertical axis is normalized by 
the average number ωd of activations of a hyperlink of order d. The dashed line represent the reference case 
sd(v) = ωd ∗ kd(v) . In total 30 linear bins are split for horizontal axis.
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are close in physical distance, which may facility the interaction of a subgroup, resulting in events close in time 
and topology.

Finally, we discuss briefly whether our finding of the temporal-topological correlation in higher-order tem-
poral networks is still valid taking into account that the higher-order temporal networks we constructed is likely 
imprecise. The physical contact networks measured are possibly incomplete, influencing the resultant higher-

order temporal networks. If the 
(

d
2

)

 pair-wise contacts of an order d event are not observed completely but with 

one contact missing, the observed higher-order network would be composed of two order d − 1 events. Hence, 
we will add such potential missing contacts back to our pair-wise physical contact networks, re-construct the 
corresponding higher-order networks and explore whether similar temporal-topological correlation could be 
still be observed. We examine each pair-wise physical contact network at each time step, identify all subgraphs 
that are composed of a clique of size d > 3 with one missing link, add such missing links to original pair-wise 
physical contact networks and construct the corresponding higher-order networks Hmiss as described in “Data-
sets” section. Figure S21 (in Supplementary Material) shows the slight change in the number of events of each 
order in Hmiss symbol where the missing links have been added. The general observation of the temporal-top-
ological correlation and Infectious and WP2 being among the networks with the strongest correlation holds also 
for Hmiss , as shown in Figs. S22 and S23 (Supplementary Material) for order d = 3 and d = 4 , respectively.

Conclusion
In this paper, we have proposed a method to systematically characterize temporal and topological properties of 
events of arbitrary orders. We applied our methods to 8 physical contact and 5 collaboration higher-order evolv-
ing networks and observe their difference. In physical contacts, events relatively close in time tend to occur also 
close in topology. Moreover, events usually overlap in component nodes and these local events overlapping in 
component nodes are also usually correlated in time. Such temporal correlation of local events supports again 

Figure 11.  Schematic representation of (a) the egonetwork of the hyperlink h(i, j, k) , i.e. ego(h(i, j, k)), (b) 
the time series associated to links belonging to ego(h(i, j, k)) , (c) the time series of the activity of ego(h(i, j, k)) 
, which is the sum of the time series of hyperlinks belonging to the egonetwork, and its event trains identified 
when �t = 2s.
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the correlation between temporal and topological distances of events observed in our first analysis. Differently, in 
collaboration networks, the temporal and topological correlation of events is either weak or absent. Despite events 
also overlap in component nodes, their temporal correlation almost disappears in collaboration networks. The 
detected dissimilarities between physical contacts and collaboration networks could be related to a fundamental 
difference between the two kind of networks. In physical contacts individuals participate in events driven by 
physical proximity. The physical proximity of individuals that participate in a higher-order event may facilitate 
interaction of them or a subgroup in the near future. The time of scientific collaborations are likely driven more 
by their content and creation process.

Via our analysis of the topological overlap of events with different orders in component nodes, we also observe 
similarities between the two kinds of networks. Nodes that participate in many events (groups) of a given order 
tend to interact in many events (groups) of a different order. Hence, nodes are consistent in interactions with 
respect to frequency and diversity across different orders.

Our method explores the temporal and topological relation of the basic building block of events, the activa-
tions of fully connected cliques. A promising direction could be generalizing this method to the activations 
of relevant motifs, and to investigate the interplay between topological location and temporal delay of such 
structures. Beyond, our method can be applied to compare different classes of networks (e.g. biological, brain or 
collaboration networks) and to explore how detected properties/patterns of a network can influence the dynamic 
processes unfolding on the network. Finally, the topological and temporal properties of events detected in this 
paper could foster higher-order evolving network models that better reproduce patterns observed so far.

Figure 12.  Probability distribution Pr[S ∗
3 = s] of the size S ∗

3  of trains (obtained from the activity series of 
egonetworks centered at each order 3 hyperlink), where a center link is activated at least once, in each physical 
contact network H (blue) and its three randomized reference models H1

3 (yellow), H2
3 (green) and H3

3 (red). 
To identify the trains, we consider �t = 60s . For each network, the average size of the trains is reported. The 
maximum average size among network H , H1

3 , H
2
3 and H3

3 is in bold. The horizontal and vertical axes are 
presented in logarithmic scale.
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Data availability
We are pleased to make available the source-code and datasets accompanying this research. The SocioPatterns 
data are available at http:// www. socio patte rns. org the analyzed arxiv dataset (updated until 29-10-2021) at https:// 
surfd rive. surf. nl/ files/ index. php/s/ L0Ulu Ljtf7 iHkGp. Last update of arxiv dataset is publicly available at https:// 
www. kaggle. com/ datas ets/ Corne ll- Unive rsity/ arxiv.
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