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And so it turned out that only a life similar to the life of those around us, merging with it
without a ripple, is genuine life, and that an unshared happiness is not happiness. . .

Boris Pasternak , Dr. Zhivago
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SUMMARY

W E experience the effects of being connected parts of a whole every day. We receive
news, messages or information by friends via virtual contacts on online social plat-

forms, we can get infected by some friend while we meet them in person, we can reach
far destinations by flights or experiencing the traffic congestion while driving by car in our
city. In particular, epidemic and information spread through social interactions among in-
dividuals. These interactions are usually time-varying, and are represented accordingly by
temporal networks. The understanding of the generating mechanism of temporal networks
is thus crucial for predicting and controlling of spreading of epidemics and fake news. A first
important step in addressing this challenge is the development of characterization meth-
ods able to compare different temporal networks in order to recognize common patterns
or differences. The detected properties can indeed inspire the development of more real-
istic temporal network models able to reproduce these properties. This thesis will focus
on proposing characterization methods for temporal networks. Besides this, we propose
a methodology to identify the underlying spreading process of activity of nodes (or links),
when the experimental record of activity is given and the process unfolds on a static net-
work.

In Chapter 2, we analyze temporal networks to understand if contacts that occur close
in time also tend to be close in topology. We explore the relationship between topological
distance and temporal delay of contacts, and the temporal correlation within local neigh-
borhood of a link. Our findings show that contacts close in time are generally close in topol-
ogy, with virtual contacts exhibiting a stronger correlation. This is supported by higher lo-
cal temporal correlation of contacts belonging to the neighborhood of different links. We
observe this local temporal correlation in the form of long trains of consecutive contacts
occurring at the neighborhood of a link. These trains are composed by the activity of many
neighboring links. This is particularly evident in virtual contacts and in those social set-
tings, such as primary school or museum, where individuals are less constrained in space.
Such results may suggest that virtual communications, due to their low cost and easy ac-
cess, may facilitate social contagion, i.e., the influence of a node activity on the activity of
its neighbors. However, a limitation of our methodologies is that they assume interactions
occur only between pairs of nodes.

In Chapter 3, we develop methods to characterize temporal higher order networks, where
interactions involve groups of nodes larger than pairs. We apply these methods to collab-
oration and face-to-face (physical) interaction networks. Our findings show that nodes in-
volved in many events (groups) composed of the same number of nodes, i.e., with the same
order, tend to be involved in many events (groups) of different orders as well. However, sig-
nificant differences emerge in the relation between topological and temporal properties of
events in these two classes of networks. In physical contacts, events with different numbers
of nodes occurring closely in time also tend to be close in topology. This is supported by
the observation that locally close events are temporally correlated. In contrast, collabora-
tion networks exhibit weak or absent correlation relation between topological distance and

ix
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temporal delay, and no local temporal correlation is observed. These differences likely arise
from the fact that in physical contacts, differently from collaboration networks, interactions
are partly driven by proximity, so that a set of individuals are close to each other, they are
more likely to interact close in time among (subsets of) them.

A temporal network can be represented as a static network together with an unknown
dynamical process that determines the activity of its connections. The observation that in
face-to-face and virtual communication networks, contacts (and events) close in time tend
to occur close in topology, seems to suggest that the occurrence of a contact/event may trig-
ger the activity of neighboring contact events. This leads to the idea of modelling a temporal
network as a spreading process of the activity, which should at least approximate the fact
that the occurrence of a contact/event could trigger the activity of other contacts/events
in its neighborhood. However, the assumption that the activity in temporal networks can
spread among nodes/links is still not strongly supported, we apply our methodologies to a
simpler case, where the spreading process is well supported by domain knowledge, i.e. the
congestion contagion of airports, mediated by the air transportation network.

In Chapter 4 we proposed a methodology to identify the underlying spreading process
among nodes, given the static topology on which the process occur and the experimental
record of node activations. In particular, we tested the possibility of using a heterogeneous
Susceptible- Infected-Susceptible (SIS) spreading process to model the congestion conta-
gion of airports in the U.S. air transportation network to reproduce airport vulnerability,
defined as their probability of being congested. We derive congestion probabilities from
the U.S. Airport Network data and construct three types of airline networks to capture dif-
ferent flight characteristics. In our model, the infection rate of each link is proportional
to its weight in the airline network, and the recovery rate of each airport depends on its
node strength. Our heterogeneous model effectively reproduces nodal vulnerability and
ranks airports better than a homogeneous model. We find that airports with intermediate
strengths are the most vulnerable; the fact that the heterogeneous model can better capture
this feature could partially explain its better performances.

The final chapter reflects on the insights of this thesis and suggests possible future di-
rections related to our research.
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INTRODUCTION

He who is unable to live in society, or who has no need because he is sufficient for himself,
must be either a beast or a god.

Politics, Aristotle
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2 1. INTRODUCTION

1.1. BACKGROUND

W E live in a world that is increasingly interconnected. A flight can connect inhabi-
tants of two cities that are thousands-kilometer far, the power grid allow to effec-

tively transport electricity around different cities and online social media platforms allow
communications among people living in different parts of the world. Besides this positive
aspects, in our everyday life we also experience the negative effects of this increasing inter-
connectedness. The spread of diseases is inevitably facilitated by airline connection among
cities, blackout can propagate across different cities and the spread of misinformation is
facilitated by online communication. In each of these examples, we can recognize funda-
mental constituents such as airports (or cities), power stations and individuals that are con-
nected in pair. Another crucial aspect of such examples is that the disease/blackout/fake
news can only propagate from a constituent to another one which is connected to it. Note
that these connections are not fully determined by the relative geographical location of the
constituents. It seems natural then to study these systems as networks composed by nodes
(representing the fundamental constituents) and links (representing the connections be-
tween the constituents).

Fueled by the increasing amount of available data, in the last 30 years, the field of net-
work science [1–4] has shown itself as an effective way of representing and studying many
different social, biological and communication systems. Initially, network science studied
systems assuming that the connections among their nodes cannot change over time, i.e.
static networks. The most important finding related to static network studies was the dis-
covery that the number of links attached to a random node of a real network, i.e., its de-
gree, is usually approximately distributed as a power-law. This fat-tailed distribution of
the degree in the number of connections of a node seems ubiquitous in nature and it is
shared by many real-world networks [1–4] and seems to explain many properties of real
world systems, such as resilience to random failures and vulnerability to target attack [5–
7] or epidemic spreading [8]. Collections of time-resolved interaction data are becoming
increasingly available. For example, records of virtual messages exchange , face-to-face in-
teractions among individuals collected in different social settings, or scientific papers (to-
gether with their corresponding author names and time of publication) are freely available
on the web. In these cases, representing links that are active at a given timestamp as static
links is an oversimplification. The dynamics of activation and deactivation of links affect
spreading process, and other dynamical processes unfolding on the network [9–20]. Were
link activations uncorrelated and uniformly spread in time, they could be included in the
static description by assigning weights to the edges of the static network, so that the weights
would represent the frequencies of events between nodes [21] and regulate the rate of in-
teractions. However, human communications between pairs of individuals (or of a single
individual towards their friends) usually evolves in bursts of consecutive communications
followed by long period of inactivity [22–28].

As a result, in the last two decades a growing interest has been thus devoted to so called
temporal networks [29–31], i.e., networks where links can be activated and deactivated over
time. A link active at a given timestamp is also called contact. Large efforts were devoted to
modeling temporal networks, e.g., via activity-driven models and extensions [32–36]. Such
models are effective to capture certain network properties qualitatively, such as the distri-
bution of nodes’ degrees or the number of activations at each link in the time aggregated
topology. Despite these benefits, however they are still far from being realistic models of
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temporal networks. The underlying generating mechanism of temporal networks is still
unknown. This usually results in limitations in forecasting or controlling the performance
of a spreading process unfolding upon the network, such as the prevalence of an epidemic
spreading.

In this thesis we contribute to the grand goal of identifying the underlying mechanism
of temporal networks in two main directions. First, we propose characterization methods
to compare temporal networks with different number of nodes (or links) and observation
time window, in order to find shared properties that can inspire the development of real-
istic temporal network models. Then, we propose a methodology to identify the spreading
process of node/link activity, given an underlying network topology and the experimental
record of node/link activity.

1.2. THESIS SCOPE AND CONTRIBUTIONS
Nowadays, we have a large availability of temporal network data. It is natural to ask what are
the similarities or differences among these networks. To detect their common patterns or
differences, early work have proposed characterization methods mainly focused on either
temporal [22, 24, 25, 27, 28] or topological [3, 4, 21, 37–39] dimension separately. Recent
studies have started to characterize both the topological and temporal properties together.
For example, events of link addition and removal in online social network and communica-
tion platforms occur not randomly, but in bursts [40, 41]. Moreover, the ordered sequence
of link activations among a small number of nodes conforming in a specified temporal in-
terval have been grouped in different classes called temporal motifs, used to classify and
characterize different temporal networks [42, 43]. Finally, Karsai et al. grouped the bursty
train of consecutive activations of directed edges from a node to its neighbors counting
the total number of activations in each train [44]. It has been shown that in the analyzed
datasets (SMS exchange and phone calls) bursty trains of the total activity of links attached
to a node are usually formed by the contacts of this node with a single other node. However,
systematic methods to characterize simultaneously the temporal and topological relations
of contacts for analyzing and better understanding real-world networks are still missing.

The first main research question that we address in this thesis is the following: Can we
propose systematic methods that can characterize simultaneously the temporal and topolog-
ical relations of active connections?

In Chapter 2, we addressed this question by proposing a method to characterize jointly
topological and temporal properties of contacts, to investigate if contacts occurring within
short temporal intervals tend to occur also close in their topological locations. The key pos-
itive aspects of this method are that (1) it characterizes the networks by considering both
temporal and topological properties of contacts, (2) it can find similarities and differences
between temporal networks with different size or observation times. We firstly examine
the correlation of the time series of global activity, i.e. the time series recording the total
number of contacts per each timestamp. Then we investigated the relation between the
distance in topological locations of contacts and their temporal delay. Finally, we study the
temporal correlation of contacts within each link egonetwork link. This is the local neigh-
borhood centered around each link. By applying our method to several empirical networks
of physical and virtual contacts, we discover that, in general, contacts close in time are close
in topology. This phenomenon is particularly evident in virtual contacts, supporting the
idea that virtual communications, by virtue of their low cost and easy access, permit so-
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cial contagion, i.e. interactions of one individual can trigger the activity of its neighbors. A
fundamental limitation of this method is that it can be applied only to traditional temporal
networks, i.e., networks where nodes can only connect in pairs. However pairwise connec-
tions can only partially capture interactions among constituents of a system [45, 46].For
example, a neuron may exchange signals from and to many different neighbouring neu-
rons [47], individuals interacts in gatherings composed by many people [48], and scientific
publications can be the result of the joint work of many co-authors [49]. Such interactions
are named higher-order, to emphasize that they involve more than just a couple of nodes.

In Chapter 3, we generalize the characterization method of Chapter 2 to higher-order
temporal networks, i.e., networks in which nodes can interact in groups composed of more
than a couple. Group interactions among d nodes are then called events or hyperlink acti-
vations of size d . We focus on the interplay between topological and temporal properties of
these higher order events. We applied our method to collaboration and face-to-face (phys-
ical) interaction networks. We found that in both classes of networks, nodes involved in
many different groups (events) of a given order are likely involved in several different groups
(events) of another order. However, substantial differences regarding the relation between
topological and temporal properties of events were also found. In physical contacts, indeed,
events involving different number of nodes (or equivalently with different order) occurring
within short temporal delay tend to be also close in their topological location. This is also
supported by the observation that, in these networks, local events that are close in topology
are correlated in time. Differently in collaboration networks, the relation between topo-
logical distance and temporal delay is almost absent, and no local temporal correlation is
observed. The detected differences between these two types of networks are likely due to
the proximity nature of physical contact networks, which is substantially different from col-
laboration networks.

A fundamental grand challenge in temporal network studies is identifying the underly-
ing generating mechanism of temporal networks. A temporal network can be considered
as a static network with an unknown dynamic process unfolding on it that determines the
active connections. The problem of identifying the generating mechanism of a temporal
network is thus the problem of identifying the unknown dynamic process generating the
activity of its connections. A key result of Chapters 2 and 3, is that, when we apply our
methods to real-world physical and virtual contact networks, we observe that links (or hy-
perlinks) activating in short time delay tend to occur also close in topology. This seems to
support the idea that the unknown dynamic process of links’ activity can be (approximated
as) a spreading process, where the activation of a link can trigger the activation of its neigh-
boring links. However, in order to model the temporal network mechanism as a spreading
process, we need two main ingredients: first, domain knowledge to support the assump-
tion that the activation of a link will trigger the activation of its neighboring links; second, a
methodology to identify the correct spreading process. The problem of identifying the un-
derlying spreading process generating the activity of link of a network is equivalent to the
problem of identifying the process that generates the activity of nodes in the line graph 1 of
the network.

The second main question addressed in this question is thus the following: How can
we identify the underlying spreading process of node/link activity, given an underlying static

1The line graph of a static network G is indeed the static network L(G) in which each link in G is a node in L(G) and
two nodes in L(G) are connected if the corresponding links in G share an ending node.
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network and the the empirical records of node (or link) activity?
In Chapter 4, we address this question in the case of the process of airport congestion

contagion in air transportation network, where each node is an airport and the activity of
the node is the congestion of the corresponding airport. Note that this setting represents
a simplified version of modeling temporal networks. In the case of airline transportation
network, indeed, domain knowledge supports the assumption that the congestion state of
an airport can trigger the congestion of other airports it is connected to, e.g., via delayed
flights [50]. In particular, we examine if a heterogeneous Susceptible-Infected-Susceptible
(SIS) spreading process on an airline network can model airport congestion contagion, and
can successfully reproduce the airport vulnerability, i.e. the airport probability of being
congested. We determine the vulnerability of each airport from U.S. Airport Network data.
To capture the diversity of flight features, such as frequency and duration, we construct
three types of weighted static airline networks. In our model, an infected node can infect
a susceptible neighbor with a rate proportional to the weight of the link connecting the
two nodes in the airline network. The recovery rate of each airport, which modulates the
chances of the congested (infected) airport to recover to the susceptible (non-congested)
state, is also heterogeneous. For each node, the recovery rate is dependent on the node
strength in the network, which represents the total weight of the links connected to the
node. This heterogeneity of recovery rates reflects the fact that larger airports with better
infrastructure can recover faster from congestion [51]. The nodal infection probability in
the meta-stable state is used as a prediction for airport vulnerability. Our model success-
fully reproduces the distribution of nodal vulnerability and the rank of nodes in vulnerabil-
ity significantly outperforming the homogeneous SIS model with a uniform recovery rate.
Interestingly, we find that the highest vulnerability is observed at airports with moderate
strength in the airline network. This pattern is captured by our heterogeneous model but
not by the homogeneous model, where airports with higher strength have a higher infection
probability. This discrepancy partially explains the superior performance of the heteroge-
neous model.

1.3. PUBLICATIONS RELATED TO THIS THESIS
The following articles are produced by the author of this thesis while pursuing the doctoral
degree at Delft University of Technology.

1. Ceria, A., Havlin, S., Hanjalic, A., & Wang, H. (2022). Topological–temporal properties
of evolving networks. Journal of Complex Networks, 10(5), cnac041 [Chapter 2].

2. Ceria, A., & Wang, H. (2023). Temporal-topological properties of higher-order evolving
networks. Scientific Reports, 13(1), 5885. [Chapter 3].

3. Ceria, A., Köstler, K., Gobardhan, R., & Wang, H. (2021). Modeling airport conges-
tion contagion by heterogeneous SIS epidemic spreading on airline networks. Plos One,
16(1), e0245043 [Chapter 4].

1.4. HOW TO READ THIS THESIS
The three main chapters of this thesis, i.e., Chapters 2, 3 and 4 adopt original publications.
We provide the reference of each corresponding publication in the footnote of the heading
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page of each chapter. Each chapter correspond to an independent piece of work and can be
read without reading the previous chapters. The notations may differ across the different
chapters.
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M Any real-world complex systems including human interactions can be represented by
temporal (or evolving) networks, where links activate or deactivate over time. Charac-

terizing temporal networks is crucial to compare different real-world networks and to detect
their common patterns or differences. A systematic method that can characterize simultane-
ously the temporal and topological relations of the time specific interactions (also called con-
tacts or events) of a temporal network, is still missing. In this chapter, we propose a method
to characterize to what extent contacts that happen close in time occur also close in topol-
ogy. Specifically, we study the interrelation between temporal and topological properties of
the contacts from three perspectives: (1) the correlation (among the elements) of the activity
time series which records the total number of contacts in a network that happen at each time
step; (2) the interplay between the topological distance and time difference of two arbitrary
contacts; (3) the temporal correlation of contacts within the local neighborhood centered at
each link (so called ego network) to explore whether such contacts that happen close in topol-
ogy are also close in time. By applying our method to 13 real-world temporal networks, we
found that temporal-topological correlation of contacts is more evident in virtual contact net-
works than in physical contact networks. This could be due to the lower cost and easier access
of online communications than physical interactions, allowing and possibly facilitating so-
cial contagion, i.e., interactions of one individual may influence the activity of its neighbors.
We also identify different patterns between virtual and physical networks and among phys-
ical contact networks at, e.g., school and workplace, in the formation of correlation in local
neighborhoods. Patterns and differences detected via our method may further inspire the de-
velopment of more realistic temporal network models, that could reproduce jointly temporal
and topological properties of contacts.

2.1. INTRODUCTION
Complex systems can be represented as networks, where nodes and links represent the
components of a system and their interactions respectively. In a temporal or evolving net-
work [1, 2], the network topology changes over time, or equivalently, pairs of nodes interact
at specific time stamps. Such time-stamped interactions between nodes are called contacts
or events. Early work on evolving networks and their characterization methods have mostly
focused on either temporal [3–7] or topological [8–13] dimension separately but rarely on
combining both [14–19]. Regarding the topological aspect, the aggregated networks, where
two nodes are connected if they have at least one contact or interaction, have been charac-
terized using classical static network analysis methods. Scaling properties such as a scale-
free degree distribution have been observed in many real networks [8–11]. From the per-
spective of time dimension, it has been found that individuals tend to execute actions like
contacts in bursts within a short time duration and such high activity periods are separated
by relatively long inactive ones. The approximate scale-free distribution of the inter-event
times of contacts of a node or of a system, the so-called burstiness, seems to be common in
real-world temporal networks [3–7, 20, 21]. The temporal correlation of the events of a net-
work has been measured by e.g. auto-correlation [22] and the distribution of the number of
contacts in a bursty period, the so-called event train. [23].

Recent studies have started to characterize both the topological and temporal proper-
ties together. It has been observed that events of addition and removal of links by users
do not occur sporadically at random nodes but rather occur in brief bursts in time and lo-
cally in topology, on both an online blogging platform and Skype [14, 15]. Temporal motifs
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are sets of contacts among a small number of nodes conforming to a specific pattern in
topology and time ordering as well as a specific duration of time. The occurrence of di-
verse temporal motifs has been used to characterize and to classify evolving networks [16,
17]. Karsai et al. [18] characterized the sequence of contacts between each node and its
neighbours using the distribution of the number of contacts in a bursty period, which is
also called the event train size. However, it has been shown that bursty trains are usually
formed by contacts between pair of nodes instead of in the aforementioned neighborhood
of a node.

However, systematic methods to characterize simultaneously the temporal and topo-
logical properties of contacts/events to better understand real-world networks’ differences
and similarities are still missing. In this work, we aim to develop methods to character-
ize to what extent contacts that happen close in time (topology) are also close in topol-
ogy (time). Specifically, we characterize the relationship between temporal and topological
properties of the contacts in real evolving networks from the following three perspectives:
(a) The auto-correlation of the activity time series which records the total number of con-
tacts in a network that happen at each time step; (b) The interplay between the topologi-
cal distance and temporal delay of two contacts; (c) The temporal correlation of contacts
within local neighborhoods beyond a node pair. These perspectives characterize simulta-
neously both the temporal and topological interrelations of contacts from a global level to
a more granular level. In order to be able to characterize and compare real-world networks,
normalization and three control network randomizations have been designed in our char-
acterization methods. We apply our method to 13 real-world physical and virtual contact
networks. We find that the temporal and topological correlation tends to be more evident in
virtual contact networks compared to physical contact networks. This is likely because the
online communications, which are of lower cost and easier to perform than physical con-
tacts, allows and possibly facilitates social contagion, i.e. the interaction of one individual
to influence the activity of its neighbors. At the local neighborhood centered at each link,
we observe long trains of events, i.e., consecutive activations of links in the neighborhood.
In physical contact networks, the number of distinct links whose activations contribute to
a train seems to reflect the spatial constrains of interactions. For example, the number of
distinct links activated in a train is larger (smaller) in a primary school (workplace) where
contacts are less (more) constrained in space.

The detected patterns and differences could further guide the development of evolving
network models, pushing the boundary of temporal network models towards reproducing
jointly realistic temporal and topological properties. Moreover, temporal network proper-
ties influence the dynamic process which unfolds on the network [19, 24–34]. The tempo-
ral and topological correlation in an evolving network discovered using our methods could
possibly better explain the dynamic process than topological property or temporal property
alone.

2.2. DEFINITIONS

2.2.1. REPRESENTATION OF A TEMPORAL NETWORK

A network whose topology vary over time is called a temporal or evolving network. It can
be represented by G = (N ,L ), where N is the set of nodes (with size |N | = N ), L =
{ℓ(i , j , t ), t ∈ [0,T ), i , j ∈ N } is the set of contacts, and each element ℓ(i , j , t ) indicates that
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a contact or an interaction between node i and j occurs at time t . A temporal network
can also be represented by a 3 dimensional adjacency matrix AN×N×T whose elements
A (i , j , t ) = 1 or A (i , j , t ) = 0 represent, respectively, the presence or the absence of a contact
between node i and j at time t .

We consider undirected temporal networks, where ℓ(i , j , t ) = ℓ( j , i , t ) and A (i , j , t ) =
A ( j , i , t ). By aggregating the contacts between each node pair over the whole observation
time [0,T − 1] one obtains the time aggregated network GW = (N ,LW ). The aggregated
network is static: two nodes i and j are connected, i.e., e(i , j ) ∈ LW , if there is at least one
contact between i and j over the observation time [0,T −1]. The adjacency matrix of the
unweighted aggregated network is denoted by AN×N whose element A(i , j ) = 1 or A(i , j ) = 0
depending whether i and j are connected or not. Each link e(i , j ) in LW can be further
associated with a weight W (i , j ), which represents the total number of contacts between i
and j over the time window [0,T −1]. The corresponding weighted adjacency matrix WN×N

has elements W (i , j ) =∑t=T−1
t=0 A (i , j , t ).

2.2.2. TEMPORAL DISTANCE AND TOPOLOGICAL DISTANCE BETWEEN TWO CON-
TACTS

The contacts between two arbitrary nodes i and j can be regarded as the activation of the
link e(i , j ) ∈ LW at the corresponding time stamps. The activity between i and j can be
represented by a time series Xi j = {xi j (t ) = A (i , j , t ), t ∈ [0,T −1]}. The link e(i , j ) is active
at time t if there is a contact between i and j at time t , i.e. xi j (t ) = A (i , j , t ) = 1. The total
number of contacts in a network at each time stamp Y = {y(t ) =∑

i , j∈N ,i< j xi j (t ), t ∈ [0,T −
1]} reflects the global activity of the temporal network over time. The temporal distance
between two contacts ℓ(i , j , t ) and ℓ(k, l , s) is T (ℓ(i , j , t ),ℓ(k, l , s)) = |t − s|.

The topological distance, also called hopcount, between two nodes on a static network
is the number of links contained in the shortest path between these two nodes. We define
the topological distance η(ℓ(i , j , t ),ℓ(k, l , s)) between two contacts ℓ(i , j , t ) and ℓ(k, l , s) as
the distance η(e(i , j ),e(k, l )) between the corresponding two links e(i , j ) and e(k, l ) on the
unweighted aggregated network, GW . It can be derived as follows. The distance between the
same link is zero, e.g. η(e(i , j ),e(i , j )) = 0. The distance between two different links follows

η(e(i , j ),e(k, l )) = min
u∈{i , j }, v∈{k,l }}

(h(u, v)+1) (2.1)

where h(u, v) is the distance or hopcount between node u and v on the unweighted aggre-
gated network GW . The distance between two links is thus one plus the minimal distance
between two end nodes of the two links. For example η(e(i , j ),e(i ,k)) = 1. Moreover, the
line graph, e.g, GL

W of a network GW can be constructed by considering each link in GW as
a node, and two nodes are connected in GL

W if the two corresponding links in GW share a
same end node. The distance (2.1) between two links in GW equals the hopcount between
their corresponding nodes in the line graph GL

W .

2.2.3. NETWORK RANDOMIZATION -CONTROL METHODS
In Section 2.4, we will explore diverse temporal-topological properties to understand the
temporal and topological interrelations between contacts. However, real-world evolving
networks may differ in, e.g., the number of nodes and the number contacts. In order to de-
tect the non-trivial temporal-topological features and their interrelations in real-world net-
works, we compare each real-world network with its three controlled randomized networks
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which systematically preserve or remove specific topological and temporal correlation of
contacts.

For a given temporal network G , we introduce three randomized temporal networks
G 1, G 2 and G 3 respectively. Consider the set of contacts {ℓ(i , j , t )} in a temporal network
G , where each contact is described by its topological location, i.e., between pair of nodes
(i , j ) and its time stamp, t . Randomized network G 1 is obtained by reshuffling the time
stamps among the contacts, without changing the topological locations of the contacts.
This randomization does not change the number of contacts between each node pair, only
the timing is randomly changed, thus preserving the probability distribution of the topo-
logical distance of two randomly selected contacts. A temporal network can be also consid-
ered as an unweighted aggregated network and each link e(i , j ) ∈LW is associated with its
activity time series {A (i , j , t ), t ∈ [0,T −1]}. Randomized network G 2 is obtained by iterat-
ing the step where two links are randomly selected from the aggregated network and their
time series are swapped. This randomization does not change the distribution of the inter-
event time of the activity of a random link, shown in Figures S3.4 (virtual contacts) and S3.5
(physical contacts). The third randomized network G 3 is obtained by swapping the activ-
ity time series of two randomly selected links but with the same total number of contacts.
This randomization preserves the number of contacts per node pair, the distribution of the
inter-event time of contacts between a node pair and the distribution of the topological dis-
tance of two randomly selected contacts. The three randomized networks lead to the same
unweighted aggregated network as the original network G .

2.3. DATASETS

All datasets of temporal networks are obtained from open access websites 123. For each
dataset, we consider nodes that belong to the largest connected component of the static
aggregated network. The corresponding temporal network captures only the contacts be-
tween those nodes. Furthermore, we remove the long periods without any contact in the
network, corresponding to e.g. night or weekend: we recognized these periods as outliers
in the inter-event time 4 distribution of the global activity series Y that are far from the bulk.
(see Figure 2.1). Finally, multiple contacts between the same pair of nodes at the same time
step are accounted as a single contact. Details of the datasets are given in Table 3.1. In the
original DNC Mail dataset 5, more than 96% of the total contacts forming the largest con-
nected component occur in the last 33 days out of the 982 days. Hence, we include only the
contacts of the last 33 days in our DNC Mail data.

1http://www.sociopatterns.org/
2http://konect.uni-koblenz.de/
3https://snap.stanford.edu/data/index.html
4The inter-event time ti e is the time interval between the occurrence of two consecutive events. A global activity

time series Y with total number of events k =∑T
t=0 y(t ) has k −1 inter-event times. If two events are contempo-

rary, their corresponding inter-event time is 0.
5http://konect.uni-koblenz.de/
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Network N |LW | |S | |L | T d t contact type

DNC Mail Part 2 (DNC_ 2 *) [35] 1598 4085 17300 30091 2861358 1 virtual
Manufacturing Email (ME*)[36] 167 3250 57791 82281 23430482 1 virtual
College Messages (CM*)[37] 1892 13833 58905 59789 16362751 1 virtual
Email EU (EEU*)[16, 38] 986 16025 206311 324933 44719809 1 virtual
Infectious (Infectious)[39] 410 2765 1392 17298 1421 20 physical
Primary School (PS)[40] 242 8317 3099 125771 3098 20 physical
High School 2012 (HS2012)[41] 180 2220 11267 45047 14114 20 physical
High School 2013 (HS2013)[42] 327 5818 7371 188504 7370 20 physical
Hypertext 2009 (HT2009)[39] 113 2196 5243 20818 7226 20 physical
SFHH Conference (SFHH)[43, 44] 403 9565 3508 70261 3799 20 physical
Workplace 2013 (WP)[45] 92 755 7095 9827 17844 20 physical
Workplace 2015 (WP2)[46] 217 4274 18479 78246 20946 20 physical
Hospital (Hospital)[47] 75 1139 9452 32424 16026 20 physical

Table 2.1: Basic features of the empirical networks after data processing. The number of nodes (N = |N |), the
number of links in LW (|LW |), the number of snapshots (|S |), the total number of contacts (|L |), the length of
the observation time window in time steps (T ), the time resolution or duration of each time step (d t) in seconds
and contact type are shown.
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Figure 2.1: Global activity (left) and its inter-event time distribution (right) in (a-b) virtual contact network CM and
(c-d) physical contact network WP. The dashed line indicates the slope δ of the power-law fit and the scaling region,
obtained via Clauset’s method [48]. If the goodness of the power-law fit is significantly better than the exponential
fit, the value of δ is reported in bold characters 6. Time is expressed in seconds. Values of global activity are the
total number of contacts occurred in each step of d t seconds. Insets in left figures show global activity for one
hour. In WP, long time periods of null global activity correspond to night and weekend periods. These periods
correspond to isolated outliers in the global inter-event time distribution with m > 104s and are removed in the
data processing.
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2.4. CHARACTERIZING TOPOLOGICAL-TEMPORAL PROPERTIES OF

EVOLVING NETWORKS
In this section, we propose a systematic method to characterize topological-temporal prop-
erties of the contacts in an evolving network. In Subsection 2.4.1 we focus on the charac-
terization of temporal properties, while in Section 2.4.2 and 2.4.3 we characterize the joint
topological and temporal features of contacts.

2.4.1. TEMPORAL ANALYSIS OF GLOBAL ACTIVITY

The time series of global activity Y = {y(t ), t ∈ [0,T − 1]} records the total number of con-
tacts at each time step t ∈ [0,T −1]. In this section, we analyze the correlation among the
elements of the global activity time series.

Figure 2.2: Construction of the aggregated activity series y∆t (t ′) from the global activity time series y(t ), where
∆t = 4 time steps. In the top sub-figure, we present the event sequence of y(t ), where each vertical line indicates
the timing of one (or more -depending on thickness) event(s), while ti e is the inter-event time and two events
happening at the same time have an inter-event time zero.

We aggregate the global activity at each time bin of duration ∆t time steps as follows.
The time steps t ∈ [0,T −1] can be divided into a set of non-overlapping consecutive time
bins of duration ∆t . The aggregated activity y∆t (t ′) at a time bin [t ′∆t , t ′∆t +∆t ) is the
average activity of y(t ) within the time bin [t ′∆t , t ′∆t +∆t )}, as shown in Figure 2.2. Given

bin duration∆t , the aggregated time series of activity is Y∆t = {y∆t (t ′),0 ≤ t ′ ≤
⌊

T −1

∆t

⌋
−1}.

To evaluate the correlation among the elements of the activity time series Y , we investi-
gate V ar [Y∆t ]

V ar [Y ] , the ratio of the variance of the aggregated Y∆t to that of the original time series
Y , as a function of ∆t (see Figure 2.3).

6This evaluation is performed via the likelihood ratio test on power-law and exponential fits. If the test indicate a
better performance of the power-law fit with p-value p < 0.05, then the exponent of power-law fit δ is reported in
bold characters.
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Figure 2.3: The normalized variance
V ar [Y∆t ]

V ar [Y ] as a function of the aggregation resolution∆t . Circles correspond to
physical contact temporal networks, triangles correspond to virtual contact networks (online messages and mail),

while the black dashed line (
Var[Y∆t ]

Var[Y ] = 1
∆t ) represents the uncorrelated curve. The resolution∆t is in units of time

steps.

Firstly, we derive Var[Y∆t ]
Var[Y ] analytically for the general case and then prove that Var[Y∆t ]

Var[Y ] =
1
∆t , if each element of Y is independent. The global activity Y can be considered as a re-
alization of a set of T random variables {Ŷ (t )}, that are identically distributed as a variable
Ŷ . Hence, V ar [Ŷ (t )] =V ar [Ŷ ], where t ∈ [0,T −1]. The variance of the aggregated activity

Ŷ∆t (t ′) at a random time biin t ′ with 0 ≤ t ′ ≤
⌊

T −1

∆t

⌋
−1 follows

Var
[

Ŷ∆t (t ′)
]
= Var

[ 1

∆t

t ′∆t+∆t−1∑
t=t ′∆t

Ŷ (t )
]

= 1

(∆t )2

t ′∆t+∆t−1∑
t=t ′∆t

(
Var[Ŷ (t )]+2

∑
t ′∆t≤s<k≤t ′∆t+∆t−1

Cov[Ŷ (s), Ŷ (k)]
)

= Var[Ŷ ]

∆t
+ 2

(∆t )2

t ′∆t+∆t−1∑
t=t ′∆t

∑
t ′∆t≤s<k≤t ′∆t+∆t−1

Cov[Ŷ (s), Ŷ (k)]

(2.2)

When the activity Ŷ (t ) at each time t is independently distributed, i.e. the set {Ŷ (t )} are

independent, the second term is zero and we have Var[Ŷ∆t (t ′)]
Var[Ŷ ]

= 1
∆t .

This explains why Var[Y∆t ]
Var[Y ] = 1

∆t in Figure 2.3 when we randomly re-shuffle the global ac-
tivity Y = {y(t ), t ∈ [0,T − 1]} in each of the thirteen temporal networks. Figure 2.3 shows
that Var[Y∆t ]

Var[Y ] > 1
∆t in all real-world temporal networks, suggesting the correlation among the

number of contacts per time step at different time steps. Moreover, it is seen that the phys-
ical contact networks are further away from Var[Y∆t ]

Var[Y ] = 1
∆t compared to the virtual contact

networks, reflecting higher correlation in physical contacts than in virtual activities. The
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higher correlation in global activity in physical contacts networks than in virtual networks
seems to be supported by the relatively higher probability for the global inter-event time to
be relatively small in physical contact networks (see Figure S3.3) than that in virtual contact
ones (see Figure S3.2).

2.4.2. TOPOLOGICAL AND TEMPORAL DISTANCES BETWEEN TWO CONTACTS

Next we wish to explore the relation between the topological distance and temporal dis-
tance of two contacts. Firstly, we explore whether contacts that are close in time are also
close in topology. Contacts of temporal networks are measured at discrete time steps. The
duration of each time step is either 1 or 20 seconds in the datasets listed in Table 3.1. To
compare physical and virtual contact networks, we present the time distance between any
two contacts in units of seconds.

We analyze the average topological distance E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] of two contacts
given that their temporal distance is less than ∆t . If topological and temporal distances
of two contacts are independent, E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] = E [η(ℓ,ℓ′)] does not depend on
the temporal distance ∆t . Figures 2.4 and 2.5 show that E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] increases
with∆t in real-world temporal networks. That is, contacts that are close in time are typically
also close in topology. Such an increasing trend or correlation between temporal and topo-
logical distances in each real-world temporal network is evidently higher than that in the
corresponding three randomized networks. Network G 3 (swapping the activity time series
of the two randomly selected links but with the same total number of contacts) preserves
more properties of the original temporal network compared to G 1 (swapping timestamps
among contacts) and G 2 (swapping the activity time series of two randomly selected links).
Consistently, the increasing trend between temporal and topological distances is signifi-
cantly reduced in G 3, reduced further in G 2 and disappears in G 1. The slight initial de-
crease and afterwards increase of E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] with ∆t in G 2 can be explained
by the changes of the probability that a couple of contacts with temporal distance smaller
than∆t are activations of the same link with∆t (see the detailed discussion in Section 2.6.2
of Appendix). The increase of E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] with ∆t in G , in comparison with
that in G 2, is more significant in virtual contact networks and physical contact networks
Infectious. In these networks, contacts that occur close in time tend to be close in topology.
The stronger correlation in virtual networks and the physical network Infectious has also
been observed when the other methods are used to characterize the temporal-topological
correlation of contacts (see Subsections 2.4.3 and 2.4.3). The high correlation in network
Infectious is related to the specific properties of this network. Network Infectious records
the contacts among visitors of a museum and only people that visit the museum at a similar
time could have contacts [39].



2

20 2. TOPOLOGICAL-TEMPORAL PROPERTIES OF EVOLVING NETWORKS

Figure 2.4:
E [η(ℓ,ℓ′)|T (ℓ,ℓ′)<∆t ]

E [η(ℓ,ℓ′)]
as a function of ∆t for real world network G (points, solid line) and the three ran-

domized reference models G 1 (pluses, dotted line), G 2 (squares, dash line) and G 3 (diamonds, dash-dotted line) in

each virtual contact dataset. When
E [η(ℓ,ℓ′)|T (ℓ,ℓ′)<∆t ]

E [η(ℓ,ℓ′)]
= 1, topological and temporal distances are independent.

Moreover, lim∆t→∞ E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] = E [η(ℓ,ℓ′)]. The results for each of the three randomized networks
are obtained from 10 independent realizations of the randomized network. Note that the horizontal axis is pre-
sented in logarithmic scale.
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Figure 2.5:
E [η(ℓ,ℓ′)|T (ℓ,ℓ′)<∆t ]

E [η(ℓ,ℓ′)]
as a function of ∆t for real world network G (points, solid line) and the three ran-

domized reference models G 1 (pluses, dotted line), G 2 (squares, dash line) and G 3 (diamonds, dash-dotted line)

in each physical contact dataset. When
E [η(ℓ,ℓ′)|T (ℓ,ℓ′)<∆t ]

E [η(ℓ,ℓ′)]
= 1, topological and temporal distances are indepen-

dent. Moreover, lim∆t→∞ E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] = E [η(ℓ,ℓ′)]. For each of the three randomized models, the
lines and corresponding error bars correspond to the average and standard deviation of the results obtained from
10 independent realizations. Note that the horizontal axis is presented in logarithmic scale.

We could also identify the temporal and topological correlation of contacts via E [T (ℓ,ℓ′)|η(ℓ,ℓ′) =
j ], the average temporal distance of two contacts given that their topological distance is j .
However, this measure could be limited in distinguishing the difference among networks
due to the small diameter, i.e., the maximal hopcount of real-world networks.

2.4.3. LOCAL EVENTS
In this section, we explore the temporal correlation of contacts that happen within (at any
link of) a local neighborhood in the aggregated network. The local neighborhood refers to
the ego network eg o(e(i , j )) centered at a link e(i , j ) which consists of the link itself and
all its neighboring links that share a common node with the link e(i , j ). The objective is to
understand whether and how local events are correlated in time, in forming trains (bursts)
of events, where events within a burst have short inter-event times and trains are separated
by a long inactive period.
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TEMPORAL CORRELATION OF CONTACTS AT AN EGO NETWORK

We will analyze the activity (sequence) of an eg o(e(i , j )) which records the number of con-
tacts that happen within the ego network at each time step, and equals the sum of the ac-
tivity time series of every link in eg o(e(i , j )) (see Figure 2.6).

To evaluate correlation of local events in forming trains of events, we study the train size
distribution [18] of the activity sequence of an ego network. A train of events is a sequence
of consecutive contacts/events whose inter-event times are shorter than or equal to ∆t and
separated from the other contacts by an inter-event time larger than ∆t . Given a ∆t , trains
can be identified for each ego network activity sequence (see Figure 2.6). Given a ∆t and a
temporal network, the train size distribution Pr [E∆t = s], i.e., the probability that the size
E∆t of a random train is s can be derived from the trains of all the ego networks centered at
every link. The train size distribution is compared between each real-world network and its
three randomized networks.







a)

b)

c)

Figure 2.6: Schematic representation of a) the ego network of the link e(i , j ), i.e. eg o(e(i , j )), b) the time series
associated to each links in eg o(e(i , j )) , c) the activity time series of eg o(e(i , j )), which is the sum of the time series
of links belonging to the ego network, and its event trains when ∆t = 2s.

We find that the train size distribution when ∆t = 60s in a real-world network has an
evidently higher tail than that of the corresponding randomized networks in the four real-
world virtual contact network (Figure 2.7) and the physical contact network Infectious (Fig-
ure 2.8). Later, we will explain why ∆t = 60s is representative. In these real-world networks,
local events have a higher chance to form long trains, than in their corresponding ran-
domized networks. Randomized network G2 is obtained by shuffling the activity sequences
among the links, thus preserving the set of link activity sequences but removing their cor-
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relation with the network topology. The difference between the train size distribution in
the ego networks of G2 and an exponential distribution (the train size distribution when
the inter-event times in the activity sequence are independent7) reflects solely the tempo-
ral correlation of events in a link activity sequence in real-world networks. The different
train size distributions in real-world networks G and their corresponding randomized net-
works G2 in Figures 2.7 and 2.8 indicate that temporal correlation of activities at each link
is insufficient to explain the temporal correlation of contacts at ego networks. Instead, the
correlation between the activity sequences and topology also contributes. Such temporal
correlation of local activities suggests that neighboring nodes tend to have contacts or ac-
tivities within a short time. The evidently stronger correlation observed in virtual networks
and the physical network Infectious is in line with the finding in Section 2.4.2.

The choice of ∆t is non-trivial. Karsai et al. [18] have observed a power-law train size
distribution Pr [E∆t = s] ∼ s−β of the activity of a link with β = 0.39 (0.42) in voice calls
(SMS) temporal contact network and found that the power-law exponent remains approx-
imately the same when ∆t varies within a broad range. Our comparison of train size dis-
tribution with different ∆t for virtual (Figure S3.6) and physical contact datasets (Figure
S3.7) shows that when ∆t is small (∆t ≤ 120s), the distribution is fat-tailed. The expo-
nent β of the power-law fit seems more stable across different values of ∆t in virtual con-
tacts (FigureS3.6) datasets than in physical contact ones (Figure S3.7). The changes in the
shape of the train size distribution of physical contact datasets are likely due to finite size
effects which emerge because of limited duration of empirical temporal networks’ observa-
tion window. When ∆t is sufficiently large, for example, any ego network has a single train,
whose size is the total number of contacts that occur within the ego network. Figures 2.4
and 2.5 show that the positive correlation between topological and time distances (in linear
scale) of two contacts is more evident when the time distance is small. Moreover, the obser-
vation time windows of temporal networks, especially physical contact networks, are short
in duration. All these perspectives motivate us to consider a small ∆t , e.g. ∆t = 60s. More-
over, our observations are similar when ∆t = 120s and when ∆t = 60s for all the analysis.
Hence, we focus our discussion on ∆t = 60s and all the results when ∆t = 120s are given in
the Appendix.

7The train size distribution follows an exponential function Pr [E∆t = s] = Pr [ti e ≤∆t ](s−1)(1−Pr [ti e ≤∆t ]) when
the inter-event times in the activity sequence are independent. Such exponential function is the product of the
probability of observing s-1 inter-event times shorter than or equal to ∆t , and a single inter-event time longer
than ∆t .
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Figure 2.7: Train size distribution (∆t = 60s) of ego network activity for G (blue), G1 (red), G2 (green), G3 (yellow)
of virtual contact datasets. The black solid line represents the fit P [E∆t = s] ∼ s−β to the distribution of the train
size of G with ∆t = 60s. The power law fit and its fitting region were computed with Clauset’s method [48]. If
the goodness of the power-law fit is significantly better than the exponential fit (likelihood ratio test with p-value
p < 0.05), the value of β is reported in bold characters.
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Figure 2.8: Train size distribution (∆t = 60s) of ego network activity for G (blue), G1 (red), G2 (green), G3 (yellow)
of physical contact datasets. The black solid line represents the fit P [E∆t = s] ∼ s−β to the distribution of the train
size of G with ∆t = 60s. The power law fit and its fitting region were computed with Clauset’s method [48]. If
the goodness of the power-law fit is significantly better than the exponential fit (likelihood ratio test with p-value
p < 0.05), the value of β is reported in bold characters.

EGO NETWORK ACTIVITY VERSUS LINK ACTIVITY

We investigate further whether the temporal correlation of contacts that occur within an
ego network in forming long event trains could be explained or introduced by the temporal
correlation of contacts at each single link.

Firstly, we explore whether each activity train of an ego network contains the activities
(contacts) of a single link or multiple links in the ego network. We examine the number
M of distinct active links that a train of an ego network involves. Specifically, each identi-
fied train of an ego network is composed of a set of contacts, occurring at a subset of links
within the ego network, the so-called active links. For each real-world network and given
∆t = 60s, trains are identified for every ego network centered at each link, and the number
M of distinct active links of each train is counted. Figure 2.9 illustrates the average num-
ber of active links E [M |E∆t=s]

s for trains with size E∆t = s, normalized by the train size s, for
virtual and physical contact networks, respectively. In all networks the fraction of active
links E [M |E∆t=s]

s is above E [M |E∆t=s]
s = 1/s suggesting that a train usually involves far more

than 1 active link. Interestingly, we observe in all 9 physical contact networks a seemingly
power-law decay E [M |E∆t=s]

s ∼ s−α (right plot of Figure 2.9). In contrast, α ≈ 0, or equiva-
lently E [M |E∆t = s] ∼ s in virtual contact networks, especially mail dataset, i.e. EEU, ME
and DNC2 (left plot of Figure 2.9). This suggests that, in virtual contact networks, each train
is mostly composed of the activities of many links in an ego network.
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Figure 2.9: The average number of active links
E [M |E∆t=s]

s for trains with size E∆t = s, normalized by the train size s
of the ego networks for virtual (left) and physical (right) contact datasets, when ∆t = 60s. The three reference lines

in right plot indicate
E [M |E∆t=s]

s = s−α with slope α1 = 0.31 (dotted), α2 = 0.52 (dashed) andα3 = 0.77 (dash-dot).
Note that the horizontal and vertical axes are presented in logarithmic scales. In total 30 logarithmic bins are split
within the interval [1, smax ], where smax is the largest train size observed in the considered real temporal network.

We compare further the physical contact networks. Their power-law exponents are
within 0.31 ≤ α ≤ 0.77. The slope of the power-law decay seems to be influenced by the
type of human interaction and spacial constraints of the contact environment. Networks
that lead to the slowest decay, i.e. α≈ 0.31 are Infectious and PS datasets, which are contact
networks in a museum and primary school respectively. The two contact networks of em-
ployees at a work place, WP and WP2 have the largest slope α ≈ 0.77. The other networks,
i.e., contacts of high school students, conference participants have a power-law exponent
in between 0.31 ≤ α ≤ 0.77. A similar trend has been observed when ∆t = 120s (see Fig-
ure S3.12 in Appendix). These observations could be explained by the spatial constraints of
contacts and the nature that younger students tend to interact with many others in an ac-
tive period. The bursty events of a train tend to engage the largest number of links in an ego
network in network Infectious and PS than the other physical contact networks. This could
be due to the freedom for individuals to move in the museum and in the primary school
(relative to the small museum/class room) and the tendency that primary school students
interact with many others in an active period. The other way round, employees at a work
place are confined in space (their offices) and tend to interact with limited number of col-
leagues during a train of activities. In this sense, virtual contacts are the least confined to
space, leading thus to a larger number of active links than physical contacts.

Whether each activity train of an ego network contains the activities of a single link or of
multiple links could also be reflected via the train size distribution in an ego network versus
the train size distribution in a link. In Figures 2.10 and 2.11, we compare the train size
distribution (with ∆t = 60s) of the activity sequence of single links, of the most active single
links (top 10% of links with the largest number of contacts) and of ego networks. The trains
of ego networks tend to be longer than those of single links and the most active single links,
in all networks except for WP. Therefore, the trains of the ego network are usually the results
of the activity of more than one link. The same observations are obtained when ∆t = 120s
(see Figures S3.10 and S3.11 in Appendix). The similar train size distribution in ego networks
and in links in the WP dataset is consistent with the largest power-exponent observed in
Figure 2.9. In WP, a train of an ego network is composed of the activity of relatively few
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Figure 2.10: Train size distribution (∆t = 60s) of ego network activity (blue), single link activity (red), most active
link activity (green) of virtual contact datasets. Note that the horizontal and vertical axes are presented in logarith-
mic scales.
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Figure 2.11: Train size distribution (∆t = 60s) of ego network activity (blue), single link activity (red), most active
link activity (green) of physical contact datasets. Note that the horizontal and vertical axes are presented in loga-
rithmic scales.

EGO NETWORK ACTIVITY VERSUS NODE ACTIVITY

We further address the question whether a train at an ego network eg o(e(i , j )) involves the
activity of both end nodes i and j , or only one of them. Event trains at ego networks engag-
ing activities of both end nodes may suggest a possible social contagion in activity between
nodes.

For each train of an ego network eg o(e(i , j )), we consider the events that associate with
only one end node but not both. Among these events, we count the fraction of events φi

and φ j that associate with end node i and j respectively and φi +φ j = 1. The maximum of
the two fractions B = max(φi ,φi ) quantifies how unbalanced the activities of the two end
nodes i and j contribute to a train and is called the activity balance of a train.

Table 2.2 shows the average activity balance E [B ] and the probability Pr [B ≤ 0.95] of
the activity balance for all contact networks, accounting all trains (whose sizes are larger
than 1) of all ego networks. We find that the average activity E [B ] < 1, suggesting that an
activity train in an ego network eg o(e(i , j )) engages in the activity of both end nodes i and
j . This is in line with the previous finding that the activity correlation in an ego network
cannot be explained by the activity of a single link. Moreover, the activity is found to be
larger, thus more unbalanced, in virtual contacts than in physical contact networks. This is
likely because, in a virtual contact network like email contact network, an individual tends
to contact many others at a similar time. A train of events at an ego network eg o(e(i , j )) in
a virtual network contains mainly the activities of a single end node i or j .
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Virtual Contacts Physical Contacts
Dataset P [B ≤ 0.95] E [B ] Dataset P [B ≤ 0.95] E [B ]

DNC 2* 0.05 0.98 Infectious 0.38 0.87
ME* 0.12 0.95 PS 0.44 0.86
CM* 0.03 0.99 HS2012 0.16 0.95
EEU* 0.12 0.94 HS2013 0.25 0.93

HT2009 0.21 0.94
SFHH 0.19 0.95
WP 0.06 0.98
WP2 0.1 0.97
Hospital 0.12 0.97

Table 2.2: Probability P [B ≤ 0.95] and average E [B ] of the activity balance B in virtual contact (left) and physical
contact (right) networks.

2.5. CONCLUSIONS
In this chapter, we developed systematically methods to characterize jointly the topological
and temporal properties of contacts in a time-evolving network, ranging from global net-
work level to local neighborhoods. Via applying these methods to real-world networks, we
identified substantial differences between virtual and physical contact networks.

We find that contacts that occur close in time tend to be close in topology and this trend
is more evident in virtual contact networks compared to physical contact networks. This is
in line with the observation that the contacts within an ego networks tend to have a higher
chance to form long trains and thus happen closely in time in real-world networks. Such
activity correlation is more evident in virtual contact networks. Moreover, an event train
of an ego network eg o(e(i , j )) is mostly composed of the activities of multiple component
links. Interestingly, more links tend to be engaged in e.g., virtual networks and physical con-
tact network primary school where the contacts are less constrained in space, in contrast to
e.g., the contact network at workplace. These may suggest that contacts with a low cost may
better facilitate social contagion, i.e. influence between neighboring nodes in the activity.
Finally, an event train of an ego network eg o(e(i , j )) usually contains the activity of both
ends, node i and j . Two connected nodes, thus, tend to have contacts with their neighbors
close in time. The two end nodes’ contributions are more unbalanced in virtual contacts
than in physical contacts, likely driven by the nature that in a virtual (e.g. email) contact
network, an individual tends to contact many others close in time.

Our methods are confined to undirected networks. A full-fledged directed temporal net-
work characterization method is deemed as promising to develop. The application of these
methods may enhance our understanding of diverse time-evolving systems and allow ex-
ploration of the influence of detected properties/patterns on a dynamic process upon the
network. Finally, the detected patterns may further inspire the development of more realis-
tic temporal network models that reproduce key realistic temporal and topological proper-
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ties of contacts.
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2.6. APPENDIX

2.6.1. DATASETS DESCRIPTION (* INDICATES VIRTUAL CONTACTS)
• Manifacturing Email (ME) *: Emails exchanged between 167 employees of a mid-size

company in Poland, observation time: 270 days, time resolution 1 s

• European Union Mail(EEU) *: Emails exchanged between 986 accounts of a large
European research institution during a period from October 2003 to May 2005 (18
months), time resolution 1 s

• Democratic National Committee Mail *: Emails of 1900 members (1598 after prepro-
cessing) of the Democratic National Committee, in our case only final 33 days were
considered, because they are more than 95% of the entire corpus of email, time reso-
lution 1 s

• College Messages (CM) *: messages from an online community of 1899 (1892 after
preprocessing) students at the University of California, Irvine. Time span of approxi-
mately 6 months, time resolution 1 s

• Hypertext 2009 (HT09) face-to-face interactions (Rfid sensors, range of 1.5-2 m, time
resolution of 20s) of the 113 participants to Hypertext conference, during 3 days.

• Infectious (Science Gallery, Dublin) face-to-face interactions (Rfid sensors, range of
1.5-2 m, time resolution of 20s) of 14000 visitors (410 after preprocessing) at the Sci-
ence Gallery of Dublin, during 3 months of observation (after preprocessing, i.e. se-
lecting the largest connected component, 1 day). Community structure linked to time
of visit (only visitors present at the same time can interact)

• Workplace (WP) face-to-face interactions (Rfid sensors, range of 1.5-2 m, time reso-
lution of 20s) of 92 employees in one of the two office buildings of the InVS, located
in Saint Maurice near Paris, France, during two weeks. Each participant belongs to a
department (5 in total), so the network has community structure.

• Workplace (WP2) Second deployment of WP, same details as WP, but larger number
of participants (217) and more departments included (12). Each participant belongs
to a department, so the network has community structure.

• SFHH Conference (SFHH) face-to-face interactions (Rfid sensors, range of 1.5-2 m,
time resolution of 20s) of 403 participants to the 2009 SFHH conference in Nice, France
(June 4-5, 2009).

• Primary School (PS) face-to-face interactions (Rfid sensors, range of 1.5-2 m, time
resolution of 20s) of 242 individuals (232 children and 10 teachers) in a primary school
in Lyon, France during two days in October 2009. Each kid or teacher belongs to a
class, so the network has community structure.

• High school 2012 (HS2012) face-to-face interactions (Rfid sensors, range of 1.5-2 m,
time resolution of 20s) of 180 students of five classes of a high school in Marseilles,
France, during 7 days (from a Monday to the Tuesday of the following week) in Nov.
2012. Each student belongs to a class, so the network has community structure.
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• High school 2013 (HS2013) face-to-face interactions (Rfid sensors, range of 1.5-2 m,
time resolution of 20s) of 327 students of nine classes of a high school in Marseilles,
France, during 5 days in Dec. 2013. Each student belongs to a class, so the network
has community structure.

• Hospital face-to-face interactions (Rfid sensors, range of 1.5-2 m, time resolution of
20s) between patients, patients and health-care workers (HCWs) and among HCWs in
a hospital ward in Lyon, France, from Monday, December 6, 2010 at 1:00 pm to Friday,
December 10, 2010 at 2:00 pm. The study included 46 HCWs and 29 patients.

2.6.2. E [η(ℓ,ℓ′)|T (ℓ,ℓ′) <∆t ] IN G 2

In this subsection, we will explain the initial decreasing trend of E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ]
with ∆t observed in G 2 in every considered dataset. In general,

E [η(ℓ,ℓ′)|T (ℓ,ℓ′) <∆t ] = E [η(ℓ,ℓ′)|T (ℓ,ℓ′) <∆t ,η(ℓ,ℓ′) > 0]Pr [η(ℓ,ℓ′) > 0|T (ℓ,ℓ′) <∆t ]
(2.3)

where E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ,η(ℓ,ℓ′) > 0]] is the average topological distance of couple of
contacts ℓ,ℓ′ that are not activations of the same link (η(ℓ,ℓ′) > 0), given that their tem-
poral distance T (ℓ,ℓ′) < ∆t . In G 2, E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ,η(ℓ,ℓ′) > 0] ≈ E [η(ℓ,ℓ′)], i.e.,
the average topological distance of a couple of random contacts ℓ,ℓ′ which are not acti-
vations of the same link and have temporal distance T (ℓ,ℓ′) < ∆t does not depend on
∆t , as shown in Figure S3.1. By substituting this approximation in Equation 2.3, we ob-
tain E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] ≈ E [η(ℓ,ℓ′)]Pr [η(ℓ,ℓ′) > 0|T (ℓ,ℓ′) < ∆t ]. As shown in Figure
S3.1, Pr [η(ℓ,ℓ′) > 0|T (ℓ,ℓ′) < ∆t ] and E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] as a function of ∆t follow
the same trend and obtain the minimum at the same value of ∆t . This is likely due to the
relatively bursty activation patterns of single links, i.e., the high chance of observing small
inter-event times in the time series of activations of single links in the considered temporal
networks (see Figures S3.4 and S3.5))
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Fig. S3.1: The average topological distance E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ,η(ℓ,ℓ′) > 0] of two random contacs ℓ,ℓ′
which are not activations of the same link and have temporal distance T (ℓ,ℓ′) < ∆t (first row), the probability
Pr [η(ℓ,ℓ′) > 0|T (ℓ,ℓ′) <∆t ] of observing two random contacts ℓ,ℓ′ which are not activations of the same link and
have temporal distance T (ℓ,ℓ′) < ∆t (second row), the average topological distance E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] of a
couple of random contacts ℓ,ℓ′ with temporal distance T (ℓ,ℓ′) <∆t , and the number of couples of contacts (ℓ,ℓ′)
with temporal distance T (ℓ,ℓ′) <∆t (fourth row) and topological distance η(ℓ,ℓ′) = 0 (blue) or η(ℓ,ℓ′) > 0 (yellow)
as a function of ∆t in randomized reference model G 2 for two examples of virtual (ME, CM) and physical (Infec-
tious, PS) contact datasets. First and third row vertical axes are presented normalized by the average topological
distance of contacts E [η(ℓ,ℓ′)]. In second and third row the value ∆t = ∆t∗ where Pr [η(ℓ,ℓ′) > 0|T (ℓ,ℓ′) < ∆t ]
and E [η(ℓ,ℓ′)|T (ℓ,ℓ′) < ∆t ] reach their minimum is highlighted. The results are the average of 10 independent
realizations of randomized network G 2. Horizontal axes are presented in logarithmic scale.
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2.6.3. GLOBAL PROBABILITY DISTRIBUTION OF INTER-EVENT TIMES

100 101 102 103 104

m+ 1 [seconds]

10−4

10−3

10−2

10−1

Pr
[t i

e
=
m

]

DNC_2*

100 101 102 103 104 105

m+ 1 [seconds]

10−5

10−4

10−3

10−2

10−1

Pr
[t i

e
=
m

]

ME*

100 101 102 103 104 105

m+ 1 [seconds]

10−4

10−3

10−2

Pr
[t i

e
=
m

]

CM*

100 101 102 103 104

m+ 1 [seconds]

10−5

10−4

10−3

10−2

10−1

Pr
[t i

e
=
m

]

EEU*

Fig. S3.2: Probability distribution Pr [ti e = m] of the inter-event time of the global activity of virtual contact tem-
poral networks. Inter-event times are reported in seconds.
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Fig. S3.3: Probability distribution Pr [ti e = m] of the inter-event time of the global activity of physical contact
temporal networks. Inter-event times are reported in seconds.
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2.6.4. INTER EVENT TIME DISTRIBUTION OF LINKS
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Fig. S3.4: Inter-event time distribution of single link activity of virtual contact datasets. Note that the horizontal
and vertical axes are presented in logarithmic scales. Inter-event times are measured in seconds. In total 40 log-
arithmic bins are split within the interval [tmi n , tmax ] where tmi n and tmax are, respectively, the minumum and
maximum inter-event time observed in the considered dataset.
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Fig. S3.5: Inter-event time distribution of single link activity of physical contact datasets. Note that the horizontal
and vertical axes are presented in logarithmic scales. Inter-event times are measured in seconds. In total 40 log-
arithmic bins are split within the interval [tmi n , tmax ] where tmi n and tmax are, respectively, the minumum and
maximum inter-event time observed in the considered dataset.
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2.6.5. TEMPORAL CORRELATION OF LOCAL EVENTS, ADDITIONAL FIGURES
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Fig. S3.6: Train size distributions of ego network activity of G of virtual contact datasets with ∆t = 60 (blue), 120
(red), 300 (green), 600 (yellow), 1200 (purple) seconds. The black solid line represents the fit P [E∆t = s] ∼ s−β to
the distribution of the train size of G with ∆t = 60s. The power law fit and its fitting region were computed with
Clauset’s method [48]. If the goodness of the power-law fit is significantly better than the exponential fit (likelihood
ratio test with p-value p < 0.05), the value of β is reported in bold characters.
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Fig. S3.7: Train size distributions of ego network activity of G of physical contact datasets with ∆t = 60 (blue), 120
(red), 300 (green), 600 (yellow), 1200 (purple) seconds. The black solid line represents the fit P [E∆t = s] ∼ s−β to
the distribution of the train size of G with ∆t = 60s. The power law fit and its fitting region were computed with
Clauset’s method [48]. If the goodness of the power-law fit is significantly better than the exponential fit (likelihood
ratio test with p-value p < 0.05), the value of β is reported in bold characters.
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Fig. S3.8: Train size distribution (∆t = 120s) of ego network activity for G (blue), G1 (red), G2 (green), G3 (yellow)
of virtual contact datasets. The black solid line represents the fit P [E∆t = s] ∼ s−β to the distribution of the train
size of G with ∆t = 120s. The power law fit and its fitting region were computed with Clauset’s method [48]. If
the goodness of the power-law fit is significantly better than the exponential fit (likelihood ratio test with p-value
p < 0.05), the value of β is reported in bold characters.
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Fig. S3.9: Train size distribution (∆t = 120s) of ego network activity for G (blue), G1 (red), G2 (green), G3 (yellow)
of physical contact datasets. The black solid line represents the fit P [E∆t = s] ∼ s−β to the distribution of the train
size of G with ∆t = 120. The power law fit and its fitting region were computed with Clauset’s method [48]. If
the goodness of the power-law fit is significantly better than the exponential fit (likelihood ratio test with p-value
p < 0.05), the value of β is reported in bold characters.
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Fig. S3.10: Train size distribution (∆t = 120s) of ego network activity (blue), single link activity (red), most active
link activity (green) of virtual contact datasets. Note that the horizontal and vertical axes are presented in logarith-
mic scales.
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Fig. S3.11: Train size distribution (∆t = 120s) of ego network activity (blue), single link activity (red), most active
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H Uman social interactions are typically recorded as time-specific dyadic interactions, and
represented as evolving (temporal) networks, where links are activated/deactivated over

time. However, individuals can interact in groups of more than two people. Such group in-
teractions can be represented as higher-order events of an evolving network. Here, we propose
methods to characterize the temporal-topological properties of higher-order events to com-
pare networks and identify their (dis)similarities. We analyzed 8 real-world physical contact
networks, finding the following: a) Events of different orders close in time tend to be also close
in topology; b) Nodes participating in many different groups (events) of a given order tend to
involve in many different groups (events) of another order; Thus, individuals tend to be con-
sistently active or inactive in events across orders; c) Local events that are close in topology
are correlated in time, supporting observation a). Differently, in 5 collaboration networks,
observation a) is almost absent; Consistently, no evident temporal correlation of local events
has been observed in collaboration networks. Such differences between the two classes of net-
works may be explained by the fact that physical contacts are proximity based, in contrast
to collaboration networks. Our methods may facilitate the investigation of how properties
of higher-order events affect dynamic processes unfolding on them and possibly inspire the
development of more refined models of higher-order time-varying networks.

3.1. INTRODUCTION
Interactions among individuals are usually experimentally measured as time-resolved records
of face-to-face contacts between couples of people in controlled social setting such as work-
places, hospitals, schools and conferences. These time specific records are thus collected
in the form of dyadic interactions, and have been effectively studied in the framework of
evolving (temporal) networks, where each link between two nodes is activated only when
the node pair interacts [1–3]. The temporal patterns of link activations (or contacts) in real-
world networks are far from being fully random nor deterministic [4]. Contacts between
a pair of nodes usually occur in bursts of many contacts close in time followed by a long
period of inactivity [5] and the time between two consecutive interactions is usually fat-
tailed distributed [6–8]. Such temporal properties of contacts influence the dynamic pro-
cesses unfolding on the network [9–17]. Despite these tremendous advances in the last
decade, studies on temporal networks have traditionally focused on pairwise interactions
only. However pairwise interactions can only partially capture interactions among con-
stituents of a system [18, 19]. For example, a neuron may receive the output from or send a
signal to many different neighbouring neurons [20], individuals may gather in groups [21],
and scientific collaborations are not limited to couples of authors [22]. Such interactions
are named higher-order, to emphasize that they involve more than just a couple of nodes.
Benson et al.[23] showed that a generalization of triadic closure seems to lead the first acti-
vation of a given hyperlink. On the other hand, Cencetti et al. [24] focused on temporal in-
homogeneities of activations of the same hyperlink. The focus so far is on the prediction of
hyperlink activations [23] or on pure temporal properties of higher-order events [24]. How-
ever, the interplay between temporal and topological properties of higher-order events, e.g.
if higher-order events close in time tend to occur also close in topology, remains far from
well understood. Hence, this work aims to systematically characterize the relation between
temporal and topological properties of higher-order events to compare higher-order tem-
poral networks. Inspired by our recent work that characterizes temporal and topological
properties of dyadic interactions in temporal networks [25], we redesign the characteriza-
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tion method for higher-order events. In particular, we are going to explore such properties
from three perspectives: 1) The interrelation between the distance in topology and the tem-
poral delay of events, 2) Their correlation or overlap in topological location 3) The temporal
correlation of local events that overlap in component nodes. In order to compare real-world
networks with different sizes, we design null models where temporal and topological prop-
erties of events of an arbitrary order are systematically destroyed or preserved. We applied
our methods to 8 real-world physical contact networks and 5 collaboration networks. We
show that, in physical contacts, events of different orders with short temporal delay tend to
be close in topology too. We then investigate the correlation of events in topology and dis-
cover that events of different orders are likely to overlap in component nodes. In particular,
nodes who participate in many different groups (events) of a given order are likely to be in-
volved in many different groups (events) of another order. Individuals do not reduce their
number of interactions of one order due to frequent interactions of another order. Finally,
we show that those local events that overlap in component nodes are correlated in time,
which supports the finding that events close in time are also close in topology. In collab-
oration networks, we observe that events also overlap in component nodes. However, the
correlation between topological distance and temporal delay of events are usually either
weak or absent. Coherently, in collaboration networks, the temporal correlation of local
events that overlap in component nodes is almost absent. Such differences between phys-
ical contacts and collaboration networks may be due to the fact that physical interactions
are partly driven by proximity, so that a set of individuals close to each other tend to interact
close in time among (subsets of) them.

Our methods can be applied to compare real-world higher-order networks and to inves-
tigate how the properties of their events affects the dynamic processes unfolding on them.
More realistic models of higher-order evolving networks can be further developed to repro-
duce specific properties of the higher-order interactions observed in this chapter.

3.2. DEFINITIONS

3.2.1. HIGHER-ORDER EVOLVING NETWORKS

Time-varying social interactions or contacts have been mostly measured pairwise and stud-
ied with the formalism of (pairwise) temporal networks. A temporal network observed at
discrete time within [0,T ) can be described by G = (N ,C ), where N is the set of nodes or
individuals, C is the set of pairwise interactions. If node u and v have a contact at time step
0 ≤ t ≤ T −1, (ℓ, t ) ∈ C , where ℓ = ℓ(u, v) is the link connecting the pair of nodes between
which the contact occurs. The contact (ℓ(u, v), t ) can be regarded as the activation of the
link ℓ(u, v) at time t . This traditional temporal network representation records social con-
tacts as a set of pair-wise interactions. However, individuals may gather in larger groups,
so that more than two people interact with each other at the same time. For example, an
interaction (h(i , j ,k), t ) among three nodes at time t is usually measured and recorded as
three pair-wise interactions (ℓ(i , j ), t ), (ℓ( j ,k), t ) and (ℓ(i ,k), t ). Social interactions can be
more precisely represented as a higher-order evolving network H = (N ,E ) (or temporal
hypergraph, following the definition of Cencetti et al. [24]), where E is the set of events
of arbitrary orders. Such group interaction or higher-order event (h(u1, . . .ud ), t ) can be re-
garded as the activation of the corresponding hyperlink h(u1, . . .ud ) at t . The size or order of
the interaction is d , where d is the size of the group. The pairwise time aggregated network
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of a traditional pairwise temporal network is G = (N ,Λ), where any couple of nodes (i , j ) is
connected by a link ℓ(i , j ) ∈Λ if ℓ(i , j ) has been active at least once during the entire obser-
vation time [0,T ). Consistently, the higher-order time aggregated network is H = (N ,L ),
where any set {u1, . . .ud } of d nodes are connected by a hyperlink h(u1, . . .ud ) ∈L with size
d if h(u1, . . .ud ) has been activated at least once. The activity of each hyperlink h can be
represented by a time series Xh = {xh(t ),0 ≤ t < T } where xh(t ) = 1 only if the hyperlink h is
active at time t, i.e., e = (h, t ) ∈ E .

3.2.2. TEMPORAL AND TOPOLOGICAL DISTANCE OF EVENTS
The temporal distance or delay between two events e1 = (h1, t ) and e2 = (h2, s) is T (e1,e2) =
|t − s|.

The topological distance, also called hop-count, between two nodes on a pair-wise static
network is the number of links contained in the shortest path between these two nodes. We
define the topological distance η(e1,e2) between two events e1 = (h1, t ) and e2 = (h2, s) as
the topological distance between the corresponding two hyperlinks h1 and h2, which is fur-
ther defined as follows. The distance between the same hyperlink is zero, e.g., η((h1, t ), (h1, s)) =
0. The distance between two different hyperlinks h(u1, . . . ,ud ) and h(v1, . . . , vd ′ ) with size d
and d ′, respectively, follows

η((h(u1, . . . ,ud ), t ), (h(v1, . . . , vd ′ ), s)) = mi nu∈{u1,...,ud },v∈{v1,...,vd ′ }(δ(u, v)+1) (3.1)

where δ(u, v) is the distance or hop-count between node u and v on the unweighted pair-
wise time aggregated network G . The distance between two events is thus one plus the
minimal distance between two component nodes from the two events respectively. For ex-
ample, the distance between events e1 = (h(i , j ,k), t ) and e2 = (h(i ,m,n), s) is η(e1,e2) = 1.

3.2.3. NETWORK RANDOMIZATION - CONTROL METHODS
To detect non-trivial temporal and topological patterns of events, we compare properties
obtained from real-world higher-order temporal networks with those of designed null mod-
els. We generalize the randomized reference models of pairwise evolving networks which
gradually preserve and destroy temporal and topological properties of pairwise interactions
[25–27] for higher-order temporal networks. Given a higher-order evolving network H and
any given order d of events, we introduce 3 randomized null models H 1

d , H 2
d and H 3

d which
systematically randomize order d events only, without changing events of any other order
d ′ ̸= d . We denote as Ed the set of events with the same size d . Randomized network H 1

d
is obtained by randomly re-shuffling the time stamps of the events in Ed , without chang-
ing the topological locations of these events. This randomization does not change the total
number of activations of each hyperlink, nor the probability distribution of the topological
distance of two randomly selected events. Null model H 1

d randomizes the time stamps of
order d events. As a consequence, the distribution of the inter-event time of order d events,
i.e., the time between two consecutive activations of a random order d hyperlink, in H 1

d
tends to be less heterogeneous than that in H . As mentioned in Subsection 3.2.2, the ac-
tivations of a given hyperlink h can be represented by a time series Xh . The randomized
network H 2

d is obtained by iteratively swapping the time series of two randomly selected
order d hyperlinks . In H 2

d , the inter-event time distribution of order d events is preserved
as in the original network H , while the time series of activations of a given order d hy-
perlink are independent from its topological location. The third randomized network H 3

d
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is obtained by swapping the activity time series of two randomly selected order d hyper-
links with the same total number of activations. This randomization does not change the
number of activations of any hyperlink, the distribution of the topological distance of two
random events, nor the inter-event (order d events) time distribution. The pairs of order d
hyperlinks with the same number of events can be few in number in real-world temporal
networks, such that the difference between a real-world network and its randomized net-
work H 3

d is small. This is especially the case when the order d is large, thus the number of
hyperlinks is small. These three randomized models preserve the unweighted higher-order
time aggregated network H and the probability distribution of the temporal distance of two
random events of size d .

3.3. DATASETS

We will apply our method to 13 real-world datasets of human physical interactions and
scientific collaborations. The first 8 datasets are collections of face-to-face interactions
at a distance smaller than 2 m in several social contexts such as conferences (HT2009,
SFHH)[28, 29], hospital[30], primary school (PS) [31, 32], high schools (HS2012 ,HS2013)[33,
34], workplace (WP2)[29] and museum (Infectious)[28]. Face-to-face interactions are recorded
as a set of pair-wise interactions. Based on them, we deduce group interactions, by pro-
moting each set of

(d
2

)
dyadic interactions occurring at the same time and forming a fully

connected clique of d nodes to an event of size d . Since a clique of order d contains all its
sub-cliques of order d ′ < d , only the maximal clique is promoted to a higher-order event,
whereas sub-cliques are ignored. For example, 3 pairwise contacts (ℓ(i , j ), t ), (ℓ( j ,k), t )
and (ℓ(i ,k), t ) occurring at the same time t are regarded as a single event of order 3 i.e.,
(h(i , j ,k), t ) without any order 2 event. This method has been already used by Cencetti et
al [24]. to deduce higher-order interactions from datasets of human face-to-face interac-
tions. We further preprocess these datasets by removing nodes which are not connected to
the largest connected component in the pairwise time-aggregated network. We also remove
long periods of inactivity, when no event occurs in the network. Such periods usually cor-
respond, e.g., to night and weekends, and are recognized as outliers in the inter-event time
distribution of the time series which records the total number of events per timestamp.
Such data pre-processing method has also been used in our recent work [25]. The other 5
higher-order collaborations networks are obtained based on scientific papers recorded in
the arxiv in various fields: lattice high energy physics (hep-lat), theoretical nuclear physics
(nucl-th), quantitative biology (q-bio), quantitative finance (q-fin) and quantum physics
(quant-ph). In a collaboration network, each node represents an author, and an event of
order d occurs at time t if a paper co-authored by d authors is published at t. Assigning
papers to the correct authors is not easy. The same author can be named differently, e.g.,
using the full or initial of the first name and typographic errors may be present. Thus, we
applied standard text preprocessing methods to authors’ name, and we identify each author
by the initials of their first names, together with their surname according to the method of
Newman et al.[35]. The total number of events of each order in each real-world tempo-
ral network is shown in Figures S3.1 and S3.2 in Appendix. In each dataset, the number of
events with order 2 ≤ d ≤ 4 is not negligible; however events with an order larger than 4
are rare (if not absent) in most of the physical contact datasets. Details of the datasets after
preprocessing are given in Table 3.1.
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Network |N | |L | |E | T d t contact type

Primary School (PS) 242 12704 106877 3099 20 s physical
High School 2013 (HS2013) 327 7818 172031 7371 20 s physical
Hypertext 2009 (HT2009) 113 2434 19037 7227 20 s physical
Infectious (Infectious) 410 3350 14275 1422 20 s physical
Workplace 2015 (WP2) 217 4909 73820 20947 20 s physical
SFHH Conference (SFHH) 403 10541 54306 3800 20 s physical
Hospital (Hospital) 75 1825 27835 16027 20 s physical
High School 2012 (HS2012) 180 2645 42105 14115 20 s physical
High energy physics, lattice (hep-lat) 10598 11588 18267 10809 1 d collaboration
Nuclear physics, theory (nucl-th) 25246 27094 39511 10620 1 d collaboration
Quantitative biology (q-bio) 45645 22978 25973 10704 1 d collaboration
Quantitative finance (q-fin) 7509 6192 7577 9027 1 d collaboration
Quantum physics (quant-ph) 56036 70119 88769 10600 1 d collaboration

Table 3.1: Basic features of the empirical higher-order time-evolving networks after data processing. The number
of nodes (|N |), the number of hyperlinks (|L |), the total number of events (|E |), the length of the observation time
window in time steps (T ), the time resolution or duration of each time step (d t) in seconds or days and the contact
type are shown.

3.4. CHARACTERIZING TEMPORAL-TOPOLOGICAL PROPERTIES OF

NETWORKS

In this section we introduce a systematic characterization method of higher-order tempo-
ral networks. We characterize the temporal and topological properties of events from three
different perspectives. In Subsection 3.4.1, we analyze the interrelation between the tempo-
ral and topological distance of two arbitrary events of different orders. In Subsection 3.4.2,
we study the topological correlation of events, i.e., how events of different orders overlap in
component nodes. Finally, Subsection 3.4.3 introduces a method to characterize the tem-
poral correlation of events occurring close in topology.
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3.4.1. CORRELATION OF TEMPORAL AND TOPOLOGICAL DISTANCE OF EVENTS
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, between an

order d = 3 event and an event of a different order, in each physical contact network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.

In this subsection we investigate how temporal and topological distance of events are re-
lated to each other. Specifically, we aim to understand to what extent events close in time
are also close in topology. In our previous work [25], we considered all interactions in a
temporal network as pairwise interactions alone and found in real-world physical and vir-
tual contact networks that pairwise interactions that are close in time tend to be close in
topology (in the pairwise time aggregated network). Here, we generalize the method of
characterizing the relation between topological and temporal distance of two dyadic in-
teractions to that of two higher-order events with different orders. In this analysis, normal-
izations in topological distance and randomizations in networks have been applied so that
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we can compare real-world temporal networks with different properties in e.g., the num-
ber of nodes and contacts. We take order d = 3 as an example to illustrate our method
and observations. In Figures 3.1 and 3.2 we investigate the average topological distance
E [η[(e,e ′)|T (e,e ′) < ∆t ,e ∈ Ed , e ′ ∈ E \ Ed ] between two events (e,e ′) with different orders
d ̸= d ′, given that their temporal distance is smaller than ∆t in physical contact and col-
laboration networks, respectively. In physical contact networks (Figure 3.1 ), we observe
in general an increasing trend of the normalized average topological distance µd (∆t ) =
E [η(e,e ′)|T (e,e ′)<∆t , e∈Ed , e ′∈E \Ed ]

E [η(e,e ′)| e∈Ed , e ′∈E \Ed ] between between events of different orders with their con-
ditional temporal distance ∆t , except that the topological distance decreases with ∆t when
∆t is small, approximately when ∆t ≤ 100s . Usually, events of different orders that occur
relatively close in time tend to be also close in topology. The decrease of the average dis-
tance µd (∆t ) with ∆t when ∆t is small is introduced by the way how higher-order physical
contact networks are constructed. In these networks higher-order events are inferred from
their contact records, so that if a higher-order event that involves a set of d nodes occur at
a given timestamp, no event of an order d ′ smaller than d involving only a subset of these
d nodes can occur at the same timestamp. This explains why as ∆t decreases further when
it is small, the topological distance µd (∆t ) does not decrease anymore. This is not the case
in collaboration networks, where when a group of scientists collaborate in a paper, a sub-
group could co-author another paper at the same time. Accordingly, we do not observe the
decreasing trend of the µd (∆t ) with ∆t when ∆t is small in collaboration networks. Besides
this initial decreasing trend, we observe an increasing trend of µd (∆t ) between events with
their conditional temporal distance in every physical contact networks, but this is gener-
ally much less evident in collaboration networks. The slope of the increase of µd (∆t ) with
the conditional temporal distance∆t indicates the relative strength of temporal-topological
correlation of events. In Figures 3.1 and 3.2 we show the slope of the linear fit of µd (∆t )
as a function of log10(∆t ) for the part of the curve that has an increasing trend. In physi-
cal contacts, the highest slopes are observed in Infectious and Workplace (WP2) networks.
Moreover, in each dataset we observe an increasing trend with slope larger than 0. In con-
trast, this slope is small around zero in the corresponding randomized network H 1

d , H 2
d

and H 3
d . This means the set of activity time series of each order 3 hyperlink of a higher-

order network H , which is preserved in the corresponding randomized network H 2
d and

H 3
d does not contribute to the correlation between topological and temporal distance of

events of different orders.

Differently, in collaboration networks, the increasing trend is usually either very weak
(nucl-th, quant-ph) or absent (q-bio and q-fin), with the only exception of hep-lat dataset.
The temporal-topological correlation of events tends to disappear in collaboration net-
works.
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Fig. 3.2 : The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 3 event and an event of a different order, in each collaboration network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.

Conclusions drawn from the discussion of Figures 3.1 and 3.2 hold for the other or-
ders d = 2 (see Figures S3.5 and S3.6 in Appendix) and d = 4 (see Figures S3.7 and S3.8 in
Appendix). The only exceptions are observed in datasets HT2009 and WP2 when d = 4: in
this case indeed the trend of µd (∆t ) in three randomized reference models seems to par-
tially re produce the increasing trend observed in H . This is likely due to the low number
of hyperlinks of order 4 in these two networks.

We focus on the analysis of events of different orders. We have also analyzed events of
the same order and obtain similar observations. As an example, Figures 3.3 and 3.4 , show

the normalized average topological distance νd (∆t ) = E [η(e,e ′)|T (e,e ′)<∆t , e, e ′∈Ed ]
E [η(e,e ′)| e, e ′∈Ed ] of events of

the same order d = 3 with a temporal delay smaller than ∆t . The temporal-topological
correlation is observed in physical contact networks but not collaboration networks. In
contrast to events of different orders, in physical contacts, events of the same order demon-
strate similar temporal-topological correlation in randomized networks H 2

d and H 3
d as in

the corresponding real-world network H , reflected the similar slope of the increase of the
topological distance with ∆t in these three networks. Randomized network H 2

d and H 3

preserve the same set of activity time series of each single order d hyper link. The bursti-
ness property, i.e. the frequent activation of the same hyperlink within a short time followed
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by a long resting period of an activity time series contributes to the temporal-topological
correlation observed in real-world physical networks. These conclusions hold also for the
analysis for orders d = 2 (Figures S3.9 and S3.10 in Appendix) and 4 (Figures S3.11 and S3.12
in Appendix). The only exception is that no evident increase of νd (∆t ) with ∆t is observed
when d = 4 in Workplace and Hypertext 09, likely due to the low number of order d = 4
events observed in these two networks. In this work, we focus on the analysis of events of
different orders, whose temporal-topological correlation cannot be explained by the bursti-
ness of the activations of each hyperlink.
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Fig. 3.3 : The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two or-

der d = 3 events, in each physical contact network and its corresponding three randomized null models
H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 3 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.
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Fig. 3.4 : The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two or-

der d = 3 events, in each collaboration network and its corresponding three randomized null models H 1
d

(yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 3 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.

3.4.2. TOPOLOGICAL CORRELATION OF EVENTS WITH DIFFERENT ORDERS
To better understand the observed correlation between temporal and topological distance
of events, we explore further whether higher-order events overlap in component nodes (cor-
relation in topology) in this subsection and whether events that overlap in topology are cor-
related in time in Subsection 3.4.3. Higher-order events that overlap in component nodes
and occur close in time may partially explain the observed temporal and topological corre-
lation between events. Would a node that belongs to many hyperlinks of order d , also be
connected to many hyperlinks of order d ′ ̸= d? To investigate this question, we examine
the number of hyperlinks of each order that a node belongs to in the unweighted higher-
order time aggregated network. The total number of order d hyperlinks that the node v is
connected to, denoted as kd (v), is also called the d-degree of node v . In Figure 3.5 (3.6 ),
we compare the d-degree and the d ′-degree of a node when (d ′,d) is equal to (3,2), (4,2)
and (4,3) respectively in each physical contact (collaboration) network. All three random-
ized networks H 1

d , H 2
d and H 3

d have the same higher-order time-aggregated unweighted
network as the corresponding real-world network H . Hence, the d−degree and d ′−degree
of each node remain the same in the randomized networks as in the real-world network.We
focus on the case when (d ′,d) is equal to (3,2), as an example. We observe that the d ′-degree
of a node is an increasing function of the d-degree of the node in every considered collab-
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oration and physical contact networks. Hence, a node that participates in many groups of
order 3, tends to involve in many groups of order 2. When (d ′,d) equals to (4,2) and (4,3),
such trend is less evident in physical networks (especially in WP2, HS2012, Infectious and
HT2009) and remains evident in collaboration networks. This is likely because the num-
ber of order 4 hyperlinks is generally low (see Figure S3.3 in Appendix) in physical contact
networks, but not in collaboration networks (see Figure S3.4 in Appendix).

Furthermore, we investigate whether a node that involves in many order d events tends
to join many order d ′ interactions. The number of order d events that a node v is involved
in, denoted by sd (v), is also called the d-strength of node v . The d−strength of a node is
actually the sum of the weights of order d hyperlinks that a node belong to in the weighted
higher-order time aggregated network. The weight of each hyperlink represents the number
of events/activations of the hyperlink. Similar to our analysis of the d-degree and d ′-degree
of node, we find the d-strength and d ′-strength of a node are also positively correlated when
(d ′,d) equal to (3,2) in each temporal network, as shown in Figures 3.7 and 3.8 . This trend
is less evident only in physical contacts that have few order 4 events, when (d ′,d) is equal
to (4,3) and (4,2). This suggests that an individual’s large number of interactions of one
order would not reduce his or her number of events of another order. Individuals tend to be
consistently active or inactive in events across orders.
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Fig. 3.5 : The d ′-degree kd ′ (v) versus the the d-degree kd (v) of a node v when (d ′,d) is equal to (3,2) (blue line),
(4,2) (yellow line) and (4,3) (green line) respectively in each physical contact network. Each axis (e.g., kd (v)) has
been normalized by its maximum (e.g., maxv (kd (v))). Only nodes whose d-degree and d ′-degree are both non-

zero are considered. The dashed line represent the reference case
kd ′ (v)

maxv (kd ′ (v)) =
kd (v)

maxv (kd (v)) . Note that both axes

are presented in logarithmic scales. In total 30 logarithmic bins are split for horizontal axis.
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Fig. 3.6 : The d ′-degree kd ′ (v) versus the the d-degree kd (v) of a node v when (d ′,d) is equal to (3,2) (blue line),
(4,2) (yellow line) and (4,3) (green line) respectively in each collaboration network. Each axis (e.g., kd (v)) has been
normalized by its maximum (e.g., maxv (kd (v))). Only nodes whose d-degree and d ′-degree are both non-zero

are considered. The dashed line represent the reference case
kd ′ (v)

maxv (kd ′ (v)) =
kd (v)

maxv (kd (v)) . Note that both axes are

presented in logarithmic scales. In total 30 logarithmic bins are split for horizontal axis.
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Fig. 3.7 : The d ′-strength sd ′ (v) versus the the d-strength sd (v) of a node v when (d ′,d) is equal to (3,2) (blue line),
(4,2) (yellow line) and (4,3) (green line) respectively in each physical contact network. Each axis (e.g., sd (v)) has
been normalized by its maximum (e.g., maxv (sd (v))). Only nodes whose d-strength and d ′-strength are both non-

zero are considered. The dashed line represent the reference case
sd ′ (v)

maxv (sd ′ (v)) = sd (v)
maxv (sd (v)) , where d ′-strength

is a linear function of the d-strength of nodes. Note that both axes are presented in logarithmic scales. In total 30
logarithmic bins are split for horizontal axis.
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Fig. 3.8 : The d ′-strength sd ′ (v) versus the the d-strength sd (v) of a node v when (d ′,d) is equal to (3,2) (blue line),
(4,2) (yellow line) and (4,3) (green line) respectively in each collaboration network. Each axis (e.g., sd (v)) has been
normalized by its maximum (e.g., maxv (sd (v))). Only nodes whose d-strength and d ′-strength are both non-zero

are considered. The dashed line represent the reference case
sd ′ (v)

maxv (sd ′ (v)) = sd (v)
maxv (sd (v)) , where d ′-strength is a

linear function of the d-strength of nodes. Note that both axes are presented in logarithmic scales. In total 30
logarithmic bins are split for horizontal axis.
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Fig. 3.9 : The d-strength sd (v) versus the the d-degree kd (v) of a node v when d is equal to 2 (blue line), 3 (yellow
line) and 4 (green line) respectively in each physical contact network. The dashed line represent the reference case
sd (v) =ωd ∗kd (v), where ωd is the average number of activations of a hyperlink of order d . In total 30 linear bins
are split for horizontal axis.

To explain the positive correlation observed both in the degree of a node between two
different orders and in the strength of a node between two different orders, we investigated
the correlation between the d-strength and d-degree of a node, in every dataset as shown
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in Figures 3.9 and 3.10 . We find that the d-strength of a node is approximately a linear
function of the d-degree of the node at each order. In particular, we found that, given a
node v , sd (v) ≈ωd ∗kd (v), where ωd is the average number of activations of a hyperlink of
order d .

The degree and strength of each node for any order remain the same in a real-world
network and its three randomized networks except that the strength of nodes in H 2

d differs
from that in the other networks. In H 2

d , sd (v) = ωd ∗ kd (v) is expected for each order d
and confirmed in Figures S3.13 and S3.14 (in Appendix), since the time series of order d
hyperlinks are swapped in H 2

d . This linear function sd (v) = ωd ∗kd (v) observed in each
real-world network approximately, means that the average number of times a node inter-
acts with an order d group (the ratio of the d-strength to the d-degree of the node) is a
constant, independent of the number of distinct order d groups the node interacts with.
Thus, engaging in more groups of a given order d will not affect an individual’s average
number of interactions per group. The positive correlation in the degree of a node between
two different orders, together with the linear relation found between the d-strength and d-
degree of a node, explains the positive correlation found in the strength of a node between
two different orders.
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Fig. 3.10 : The d-strength sd (v) versus the the d-degree kd (v) of a node v when d is equal to 2 (blue line), 3 (yellow
line) and 4 (green line) respectively in each collaboration network. The dashed line represent the reference case
sd (v) =ωd ∗kd (v), where ωd is the average number of activations of a hyperlink of order d . In total 30 linear bins
are split for horizontal axis.

3.4.3. TEMPORAL CORRELATION OF EVENTS AT A LOCAL EGO NETWORK
Since higher-order events overlap in topology, e.g., the component nodes of a higher-order
event tend to participate in events of a lower order, we explore further the temporal corre-
lation of events that occur locally in topology. The topological neighborhood of a hyperlink
hd of order d , so called the ego network eg o(hd ) centered at hd , is defined as the union
of the hyperlink hd and all hyperlinks with an order lower than d that share at least one
node with hd in the higher-order aggregated network. We construct the time series of the
aggregated activity of an ego network eg o(hd ), as the sum of the time series of hyperlinks
belonging to eg o(hd ), as shown in Figure 3.11 . We then evaluate the temporal correlation of
the time series of an ego network eg o(hd ), to understand whether the activation of the cen-
ter hyperlink hd tend to cluster in time with the activation of the other low order hyperlinks
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a)

b)

c)

SDt=2s = 4SDt=2s = 6

Fig. 3.11 : Schematic representation of a) the ego network of the hyperlink h(i , j ,k), i.e. eg o(h(i , j ,k)), b) the time
series associated to links belonging to eg o(h(i , j ,k)) , c) the time series of the activity of eg o(h(i , j ,k)) , which is
the sum of the time series of hyperlinks belonging to the ego network, and its event trains identified when∆t = 2s.

in the ego network eg o(hd ).

Our analysis method is based on the concept of event trains, proposed by Karsai et al.
[5]. A train of events is a sequence of consecutive events whose inter-event times are shorter
than or equal to a reference temporal interval ∆t and separated from the other contacts by
an inter-event times larger than∆t . Given a∆t and an activity time series of an ego network
eg o(hd ), trains can be identified, as exemplified in Figure 3.11 . Given ∆t and an order d ,
we identify all the trains for each activity series of the ego network centered at each order
d hyperlink. The size of a train is the number of events the train contains. Then, we ex-
amine the size distribution Pr [S ∗

d = s] of the identified trains in which a center hyperlink
has been activated at least once. The timescales of physical contacts and collaboration net-
works are different. The two classes are measured per step of seconds and day respectively.
To illustrate our method and findings we consider ∆t = 60s (60d) in physical contact (col-
laboration) networks to identify the trains in each ego network. The choice ∆t = 60s is also
motivated by the observation in Figure 3.1 that we start to observe the positive temporal
and topological correlation of higher-order events since ∆t is about 100s in physical con-
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tact networks. Moreover, we observe the same when ∆t = 120s (120d) in physical contact
(collaboration) networks in the coming analysis.

Fig. 3.12 : Probability distribution Pr [S ∗
3 = s] of the size S ∗

3 of trains (obtained from the activity series of ego
networks centered at each order 3 hyperlink), where a center link is activated at least once, in each physical contact
network H (blue) and its three randomized reference models H 1

3 (yellow), H 2
3 (green) and H 3

3 (red). To identify
the trains, we consider∆t = 60s. For each network, the average size of the trains is reported. The maximum average
size among network H , H 1

3 , H 2
3 and H 3

3 is in bold. The horizontal and vertical axes are presented in logarithmic
scale.

Figure 3.12 and 3.13 show the train size distribution Pr [S ∗
3 = s] of the ego networks

centered at each order 3 hyperlink in each physical and collaboration network H and its
three null models H 1

3 , H 2
3 , H 3

3 . Only order 3 events have been randomized in the three
randomized reference models H 1

3 , H 2
3 , and H 3

3 while the set of events of any other order
d ′ ̸= 3 remain unchanged in each real-world network and its corresponding randomized
network H 1

3 , H 2
3 , H 3

3 . In physical contact networks, the train size is evidently larger on
average than that in their corresponding randomized networks. This indicates that an or-
der 3 event tend to occur close in time with many local order 2 events, forming large trains.
The trains in collaboration networks are, however, not evidently longer than those in ran-
domized reference models on average. We found similar when considering ∆t = 120s for
physical contacts and ∆t = 120d for collaboration networks (see Figures S3.15 and S3.16 in
Appendix).

The temporal correlation analysis of local events helps to explain the interrelation of



3

66 3. TEMPORAL-TOPOLOGICAL PROPERTIES OF EVOLVING HIGHER-ORDER NETWORKS

Fig. 3.13 : Probability distribution Pr [S ∗
3 = s] of the size S ∗

3 of trains (obtained from the activity series of ego
networks centered at each order 3 hyperlink), where a center link is activated at least once, in each collaboration
network H (blue) and its three randomized reference models H 1

3 (yellow), H 2
3 (green) and H 3

3 (red). To identify
the trains, we consider∆t = 60s. For each network, the average size of the trains is reported. The maximum average
size among network H , H 1

3 , H 2
3 and H 3

3 is in bold. The horizontal and vertical axes are presented in logarithmic
scale.

topological and temporal distance of higher-order events discovered in Subsection 3.4.1.
In physical contact (collaboration) networks, we observe evident (no evident) correlation
between topological and temporal distance of events with different orders. Consistently,
whereas events overlap in component nodes in both types of networks, local events, thus
events close in topology, are strongly (weakly or not) correlated in time, in forming long
trains, in physical contact (collaboration) networks. In networks where the interrelation
between topological and temporal distance of events is more evident (e.g., Infectious and
WP2), the correlation of local events in time also tends to be stronger (average train size ob-
served in real-work network is evidently larger than that of randomized reference models).
We observe similar results also for the distribution Pr [S ∗

4 = s] of the size S ∗
4 of trains ob-

tained from the activity series of ego networks centered at each order 4 hyperlink, as shown
in Figures S3.17, S3.18, S3.19 and S3.20 in Appendix.

The detected differences between physical contact and collaboration networks may be
explained by the fact that physical interactions are driven by physical proximity. For ex-
ample, individuals that have a group interaction are close in physical distance, which may
facility the interaction of a subgroup, resulting in events close in time and topology.

Finally, we discuss briefly whether our finding of the temporal-topological correlation in
higher-order temporal networks is still valid taking into account that the higher-order tem-
poral networks we constructed is likely imprecise. The physical contact networks measured
are possibly incomplete, influencing the resultant higher-order temporal networks. If the
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(d
2

)
pair-wise contacts of an order d event are not observed completely but with one contact

missing, the observed higher-order network would be composed of two order d −1 events.
Hence, we will add such potential missing contacts back to our pair-wise physical contact
networks, re-construct the corresponding higher-order networks and explore whether sim-
ilar temporal-topological correlation could be still be observed. We examine each pair-wise
physical contact network at each time step, identify all subgraphs that are composed of a
clique of size d > 3 with one missing link, add such missing links to original pair-wise phys-
ical contact networks and construct the corresponding higher-order networks Hmi ss as de-
scribed in Section 3.3. Figure S3.21 (in Appendix) shows the slight change in the number of
events of each order in Hmi ss symbol where the missing links have been added. The general
observation of the temporal-topological correlation and Infectious and WP2 being among
the networks with the strongest correlation holds also for Hmi ss , as shown in Figures S3.22
and S3.23 (Appendix) for order d = 3 and d = 4, respectively.

3.5. CONCLUSION
In this chapter, we have proposed a method to systematically characterize temporal and
topological properties of events of arbitrary orders. We applied our methods to 8 physical
contact and 5 collaboration higher-order evolving networks and observe their difference.
In physical contacts, events relatively close in time tend to occur also close in topology.
Moreover, events usually overlap in component nodes and these local events overlapping
in component nodes are also usually correlated in time. Such temporal correlation of lo-
cal events supports again the correlation between temporal and topological distances of
events observed in our first analysis. Differently, in collaboration networks, the temporal
and topological correlation of events is either weak or absent. Despite events also overlap in
component nodes, their temporal correlation almost disappears in collaboration networks.
The detected dissimilarities between physical contacts and collaboration networks could
be related to a fundamental difference between the two kind of networks. In physical con-
tacts individuals participate in events driven by physical proximity. The physical proximity
of individuals that participate in a higher-order event may facilitate interaction of them or a
subgroup in the near future. The time of scientific collaborations are likely driven more by
their content and creation process.

Via our analysis of the topological overlap of events with different orders in component
nodes, we also observe similarities between the two kinds of networks. Nodes that partici-
pate in many events (groups) of a given order tend to interact in many events (groups) of a
different order. Hence, nodes are consistent in interactions with respect to frequency and
diversity across different orders.

Our method explores the temporal and topological relation of the basic building block
of events, the activations of fully connected cliques. A promising direction could be gener-
alizing this method to the activations of relevant motifs, and to investigate the interplay be-
tween topological location and temporal delay of such structures. Beyond, our method can
be applied to compare different classes of networks (e.g. biological, brain or collaboration
networks) and to explore how detected properties/patterns of a network can influence the
dynamic processes unfolding on the network. Finally, the topological and temporal prop-
erties of events detected in this chapter could foster higher-order evolving network models
that better reproduce patterns observed so far.
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3.6. APPENDIX

3.6.1. GENERAL STATISTICS
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Fig. S3.1: Total number of events (|Ed |) for each order d in physical contact networks. Vertical axis is presented in
logarithmic scale.
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Fig. S3.2: Total number of events (|Ed |) for each order d in collaboration networks. Vertical and horizontal axes are
presented in logarithmic scale.
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Fig. S3.3: Total number of hyperlinks (|Ld |) in the time aggregated higher-order network for each order d for
physical contact datasets. Vertical axis is presented in logarithmic scale.
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Fig. S3.4: Total number of hyperlinks (|Ld |) for each order d in collaboration networks. Vertical and horizantal
axes are presented in logarithmic scale.

3.6.2. TEMPORAL-TOPOLOGICAL CORRELATION OF EVENTS



3

70 3. TEMPORAL-TOPOLOGICAL PROPERTIES OF EVOLVING HIGHER-ORDER NETWORKS

CORRELATION OF TEMPORAL AND TOPOLOGICAL DISTANCE OF EVENTS
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Fig. S3.5: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 2 event and an event of a different order, in each physical contact network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.
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Fig. S3.6: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 2 event and an event of a different order, in each collaboration network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 2 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.
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Fig. S3.7: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 4 event and an event of a different order, in each physical contact network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 4 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.
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Fig. S3.8: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 4 event and an event of a different order, in each collaboration network and its corresponding three
randomized null models H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of

order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈ Ed , e′ ∈ E \ Ed ] for any d .
The horizontal axes are presented in logarithmic scale. The dashed line in each figure corresponds to the linear
fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve has an increasing trend.
For each dataset, the results of the three corresponding randomized models are obtained from 10 independent
realizations.
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Fig. S3.9: The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two or-

der d = 2 events, in each physical contact network and its corresponding three randomized null models
H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 2 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.



3.6. APPENDIX

3

75

101 103

ΔtΔ[days]

0.96

0.98

1.00

ν d
(Δ
t)

m=0.004

hep-la 

101 103

ΔtΔ[days]

0.990

0.995

1.000

ν d
(Δ
t)

m= 0.001

nucl- h

101 103

ΔtΔ[days]

0.995

1.000

1.005

ν d
(Δ
t)

m= 0.0

q-bio

101 103

ΔtΔ[days]

0.97

0.98

0.99

1.00

1.01

ν d
(Δ
t)

m=0.002

q-fin

101 103

ΔtΔ[days]
0.9925

0.9950

0.9975

1.0000

1.0025

ν d
(Δ
t)

m= 0.0

quan -ph

dΔ=Δ2

 1
d 2

d 3
d m

Fig. S3.10: The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two or-

der d = 2 events, in each collaboration network and its corresponding three randomized null models H 1
d

(yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 2 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.
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Fig. S3.11: The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two

order d = 4 events, in each physical contact network and its corresponding three randomized null models
H 1

d (yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 4 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.
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Fig. S3.12: The normalized average topological distance νd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e, e′∈Ed ]
E [η(e,e′)| e, e′∈Ed ]

, between two or-

der d = 4 events, in each collaboration network and its corresponding three randomized null models H 1
d

(yellow), H 2
d (green) and H 3

d (red), which preserve or destroy specific properties of order d = 4 events.

lim∆t→∞ E [η(e,e′)|T (e,e′) <∆t , e, e′ ∈ Ed ] = E [η(e,e′)| e, e′ ∈ Ed ] for any d . The horizontal axes are presented in
logarithmic scale. The dashed line in each figure corresponds to the linear fit (with slope m) of νd (∆t ) as a func-
tion of log10(∆t ) in H , for the part that the curve has an increasing trend. For each dataset, the results of the three
corresponding randomized models are obtained from 10 independent realizations.
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TOPOLOGICAL CORRELATION OF EVENTS
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Fig. S3.13: The d-strength sd (v) versus the the d-degree kd (v) of a node v in the randomized reference model H 2
d

obtained from each real-world physical contact network, when d is equal to 2 (blue dashed line), 3 (red dashed
line) and 4 (green dashed line). The black dashed line represents the reference case sd (v) =ωd ∗kd (v), where ωd
is the average number of activations of a hyperlink of order d . The error bar correspond to the standard deviation,
centered in the mean value of 10 independent realizations of randomized reference model H 2

d . In total 30 linear
bins are split for horizontal axis.
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Fig. S3.14: The d-strength sd (v) versus the the d-degree kd (v) of a node v of the randomized reference model H 2
d

obtained from each real-world collaboration network, when d is equal to 2 (blue dashed line), 3 (red dashed line)
and 4 (green dashed line). The black dashed line represents the reference case sd (v) = ωd ∗kd (v), where ωd is
the average number of activations of a hyperlink of order d . The errorbar correspond to the standard deviation,
centered in the mean value of 10 independent realizations of randomized reference model H 2

d . In total 30 linear
bins are split for horizontal axis.
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TEMPORAL CORRELATION OF EVENTS AT A LOCAL EGO NETWORK

Fig. S3.15: Probability distribution Pr [S ∗
3 = s] of the size S ∗

3 of trains (obtained from the activity series of ego
networks centered at each order 3 hyperlink), where a center link is activated at least once, in each physical contact
network H (blue) and its three randomized reference models H 1

3 (yellow), H 2
3 (green) and H 3

3 (red). To identify
the trains, we consider ∆t = 120s. For each network, the average size of the trains is reported. The maximum
average size among network H , H 1

3 , H 2
3 and H 3

3 is in bold. The horizontal and vertical axes are presented in
logarithmic scale.
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Fig. S3.16: Probability distribution Pr [S ∗
3 = s] of the size S ∗

3 of trains (obtained from the activity series of ego
networks centered at each order 3 hyperlink), where a center link is activated at least once, in each collaboration
network H (blue) and its three randomized reference models H 1

3 (yellow), H 2
3 (green) and H 3

3 (red). To identify
the trains, we consider ∆t = 120d . For each network, the average size of the trains is reported. The maximum
average size among network H , H 1

3 , H 2
3 and H 3

3 is in bold. The horizontal and vertical axes are presented in
logarithmic scale.
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Fig. S3.17: Probability distribution Pr [S ∗
4 = s] of the size S ∗

4 of trains (obtained from the activity series of ego
networks centered at each order 4 hyperlink), where a center link is activated at least once, in each physical contact
network H (blue) and its three randomized reference models H 1

4 (yellow), H 2
4 (green) and H 3

4 (red). To identify
the trains, we consider∆t = 60s. For each network, the average size of the trains is reported. The maximum average
size among network H , H 1

4 , H 2
4 and H 3

4 is in bold. The horizontal and vertical axes are presented in logarithmic
scale.
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Fig. S3.18: Probability distribution Pr [S ∗
4 = s] of the size S ∗

4 of trains (obtained from the activity series of ego
networks centered at each order 4 hyperlink), where a center link is activated at least once, in each collaboration
network H (blue) and its three randomized reference models H 1

4 (yellow), H 2
4 (green) and H 3

4 (red). To identify
the trains, we consider ∆t = 60d . For each network, the average size of the trains is reported. The maximum
average size among network H , H 1

4 , H 2
4 and H 3

4 is in bold. The horizontal and vertical axes are presented in
logarithmic scale.
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Fig. S3.19: Probability distribution Pr [S ∗
4 = s] of the size S ∗

4 of trains (obtained from the activity series of ego
networks centered at each order 4 hyperlink), where a center link is activated at least once, in each physical contact
network H (blue) and its three randomized reference models H 1

4 (yellow), H 2
4 (green) and H 3

4 (red). To identify
the trains, we consider ∆t = 120s. For each network, the average size of the trains is reported. The maximum
average size among network H , H 1

4 , H 2
4 and H 3

4 is in bold. The horizontal and vertical axes are presented in
logarithmic scale.
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Fig. S3.20: Probability distribution Pr [S ∗
4 = s] of the size S ∗

4 of trains (obtained from the activity series of ego
networks centered at each order 4 hyperlink), where a center link is activated at least once, in each collaboration
network H (blue) and its three randomized reference models H 1

4 (yellow), H 2
4 (green) and H 3

4 (red). To identify
the trains, we consider ∆t = 120d . For each network, the average size of the trains is reported. The maximum
average size among network H , H 1

4 , H 2
4 and H 3

4 is in bold. The horizontal and vertical axes are presented in
logarithmic scale.
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3.6.3. INCOMPLETE HIGHER-ORDER EVENTS
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Fig. S3.21: Total number of events (|Ed |) in original network H and Hmi ss for each order d in physical contact
networks. Vertical axis is presented in logarithmic scale.
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Fig. S3.22: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 3 event and an event of a different order, in each physical contact networkHmi ss and its corresponding
three randomized null models H 1

d ,mi ss (yellow), H 2
d ,mi ss (green) and H 3

d ,mi ss (red), which preserve or destroy

specific properties of order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) < ∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈
Ed , e′ ∈ E \ Ed ] for any d . The horizontal axes are presented in logarithmic scale. The dashed line in each figure
corresponds to the linear fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve
has an increasing trend. For each dataset, the results of the three corresponding randomized models are obtained
from 10 independent realizations.
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Fig. S3.23: The normalized average topological distance µd (∆t ) = E [η(e,e′)|T (e,e′)<∆t , e∈Ed , e′∈E \Ed ]
E [η(e,e′)| e∈Ed , e′∈E \Ed ]

, between an

order d = 4 event and an event of a different order, in each physical contact networkHmi ss and its corresponding
three randomized null models H 1

d ,mi ss (yellow), H 2
d ,mi ss (green) and H 3

d ,mi ss (red), which preserve or destroy

specific properties of order d = 3 events. lim∆t→∞ E [η(e,e′)|T (e,e′) < ∆t , e ∈ Ed , e′ ∈ E \ Ed ] = E [η(e,e′)| e ∈
Ed , e′ ∈ E \ Ed ] for any d . The horizontal axes are presented in logarithmic scale. The dashed line in each figure
correspond to the linear fit (with slope m) of µd (∆t ) as a function of log10(∆t ) in H , for the part that the curve
has an increasing trend. For each dataset, the results of the three corresponding randomized models are obtained
from 10 independent realizations.
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I N this chapter, we explore the possibility of using a heterogeneous Susceptible- Infected-
Susceptible SIS spreading process on an airline network to model airport congestion con-

tagion with the objective to reproduce airport vulnerability. We derive the vulnerability of
each airport from the US Airport Network data as the congestion probability of each airport.
In order to capture diverse flight features between airports, e.g. frequency and duration, we
construct three types of airline networks. The infection rate of each link in the SIS spreading
process is proportional to its corresponding weight in the underlying airline network con-
structed. The recovery rate of each node is also heterogeneous, dependent on its node strength
in the underlying airline network, which is the total weight of the links incident to the node.
Such heterogeneous recovery rate is motivated by the fact that large airports may recover fast
from congestion due to their well-equipped infrastructures. The nodal infection probabil-
ity in the meta-stable state is used as a prediction of the vulnerability of the corresponding
airport. We illustrate that our model could reproduce the distribution of nodal vulnerabil-
ity and rank the airports in vulnerability evidently better than the SIS model whose recovery
rate is homogeneous. The vulnerability is the largest at airports whose strength in the airline
network is neither too large nor too small. This phenomenon can be captured by our het-
erogeneous model, but not the homogeneous model where a node with a larger strength has
a higher infection probability. This explains partially the out-performance of the heteroge-
neous model. This proposed congestion contagion model may shed lights on the development
of strategies to identify vulnerable airports and to mitigate global congestion by e.g. conges-
tion reduction at selected airports.

4.1. INTRODUCTION
Networks, ranging from social, transportation to physical contact networks, support the
diffusion of information, transportation of goods and spreading of epidemics. Therefore,
networks and processes that unfold on them have been investigated in a wide range of fields
such as mathematics, engineering and social sciences [1–5]. The Susceptible-Infected-Susceptible
(SIS) epidemic spreading process is one of the most studied dynamic processes on networks
[6–14]. The classic homogeneous SIS spreading process has been defined as follows. At any
time t , a node is either susceptible S or infected I . A susceptible node can be infected by
each of its infected neighbors with an infection rate β. Each infected node recovers to be
susceptible again with a recovery rate δ. Both the infection and recovery processes are in-
dependent Poisson processes. For a given network upon which the SIS process is deployed,
a critical epidemic threshold τc exists. When the effective spreading rate τ = (β/δ) > τc ,
a non-zero fraction of infected nodes persists in the meta-stable state. When τ < τc , the
epidemic dies out. The vulnerability of a network to an epidemic is estimated by the preva-
lence, defined as the average fraction of infected nodes in the meta-stable state. The infec-
tion probability vi∞ of a node i indicates its vulnerability to the epidemic. Recent studies
have focused on the influence of the underlying network topology and heterogeneous infec-
tion/recovery rates on the epidemic threshold, the prevalence [15, 16] and nodal infection
probabilities [17]. Epidemic spreading processes have been developed to model e.g. the
propagation of epidemic, information, failures and computer worms.

A fundamental question is to what extent an abstract process like the epidemic spread-
ing process could model a generic complex system, i.e. reproduce the key properties of
the system. This question is motivated at least from the following perspective. The oper-
ating mechanisms of many complex systems like social systems and the brain are far from



4.1. INTRODUCTION

4

95

well understood. A model that could well reproduce the key properties of a complex sys-
tem may unravel the possible operating mechanism. The operating mechanisms of many
complex systems are possibly known, however, too complex to derive optimization/control
solutions. In this case, an abstract model that well captures the key features of the system
may possibly facilitate the development of optimization solutions.

For airline transportation networks, initial effort has been devoted to the analysis of
their topologies, demonstrating properties such as the small-world and scale-free degree
distribution [18, 19]. Topological properties of subsets of a network based on geography and
airlines/alliances have also been explored [20, 21]. Recent investigations have focused on
network resilience and vulnerability regarding random failures [22, 23]. The performance or
state of an airport (e.g. congested or not and the average delay per hour) is not independent
of the states of other airports. The delay propagation between airports has been studied via
e.g. the correlation or causality measures between the time series (average delay per hour)
of airports [24–28]. One of the main reasons why delay propagates is that each aircraft has
a flight sequence where it travels between possibly multiple airports a day. The congestion
at an airport can be introduced by local factors such as the slow boarding of passengers,
the mechanical issues of an aircraft at the airport. Beyond, delayed flights that depart from
a congested airport could cause an overcharge at the arrival airports. The Air-Traffic Flow
Management systems use strategies such as ground holding (intentionally delaying an air-
craft’s takeoff) and re-routing to reduce overload [29].The weather condition could lead to
the congestion of several nearby airports, which may further cascade to more airports due
the rescheduling or re-routing of aircraft. These perspectives imply the possible contagion
of congestion between airports. Airline congestion has been studied via network dynam-
ics like queuing models [30]. Epidemic spreading process has been recently used to model
the spreading of traffic jams in urban networks, assuming both homogeneous infection and
recovery rate and homogeneous mixing approximation in network topology [31]. The pos-
sibility of modeling congestion contagion on an airline network using epidemic spreading
process has been barely explored, not to mention how to develop a full-fledged heteroge-
neous spreading model.

In this chapter, we explore the possibility and limits of modeling airport congestion con-
tagion by a heterogeneous SIS spreading process on an airline network in reproducing or
predicting airport vulnerability. We consider the US Airport Network data [32]. The airport
vulnerability is defined as the ratio of the duration of traffic congestion over the total oper-
ation time and derived from data. We construct three types of airport networks to capture
diverse features such as the frequency and duration of flights. In the heterogeneous SIS
model that we proposed, the infection rate of a link is proportional to the weight of the link,
as defined in each of the three airline networks. Moreover, the recovery rate of a node is
also heterogeneous, dependent on the strength of the node in the underlying network. We
use the nodal infection probability in the meta-stable state as an estimation of the corre-
sponding airport’s vulnerability, which will be further compared with the airport vulnera-
bility derived from the US Airport dataset to evaluate our model. Specifically, our model is
evaluated according to its capability to reproduce the distribution of the vulnerability of a
node and the ranking of nodes in vulnerability. The modeling of airport congestion conta-
gion by the SIS process, where the infection rate of a link is proportional to the weight of the
link and the recovery rate is homogeneous, has been explored in [33]. That SIS process is a
special case of our heterogeneous model and is called the homogeneous SIS model in this
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chapter to emphasize its homogeneous recovery rate. We illustrate that the heterogeneous
SIS model evidently outperforms the homogeneous model according both aforementioned
evaluation perspectives. Our further exploration of the infection probability in relation to
the node strength of an airport explains the better performance of the heterogeneous model
in reproducing the ranking of nodes in vulnerabilities.

We propose and illustrate the basic method to model a complex system by an epidemic
spreading process, via the airline system. The relatively good performance of the model
does not imply that the derived model is the precise mechanism of congestion contagion.
Further verification of the contagion mechanism is needed, e.g. regarding whether nodes
with a large strength recover faster. The derived model may inspire the development of
strategies to identify vulnerable airports and to mitigate global congestion by e.g. reducing
congestion at selected airports.

The content of this chapter is arranged as follows. Firstly we define, derive and charac-
terize the airport vulnerability derived from data. Furthermore we introduce the heteroge-
neous SIS spreading model and network construction. Afterwards, the methods to evaluate
the model are presented. In results, we compare the performance of our model with the ho-
mogeneous model. The final section summarizes our key findings and discusses possible
future work.

4.2. MATERIALS AND METHODS

4.2.1. TRAFFIC VULNERABILITY OF AN AIRPORT
Firstly, we describe the US Airport Network data. Airport vulnerability and its distribution
are further defined and derived respectively. Airport vulnerability obtained from data will
be adopted as a benchmark to evaluate the performance of our model.

DATA

We obtain the U.S. airport dataset from the Bureau of Transportation Statistics (BTS). This
data set includes detailed information about the U.S. flight schedules since 1987 [32]. The
computer reservation system (CRS) further distinguishes flight schedules as the planned
schedule under optimal operation conditions, and the actual schedule. In order to demon-
strate our modeling approach, we use the data spanning the high season period from July
1st 2018 to July 14th 2018, since flight schedule and rotations periodically repeat. In total
N = 349 airports and E = 645299 flights have been considered. This data set contains as well
extra information for each flight e.g. Tail-number, Origin and Destination, Date, the actual
and scheduled Departure/Arrival Times.

DEFINITION AND STATISTICAL PROPERTIES

The vulnerability of an airport is defined as its duration of traffic congestion over its total
operation time, which is its probability of being congested. Per hour, an airport’s declared
capacity corresponds approximately to the number of movements (the total number of de-
parture and arrival flights) planned for that hour, such that a reasonable level of service
(LOS) can be ensured. Delay is the principal indicator of LOS. Usually the declared capacity
of an airport is up to 85−95% of its maximum throughput capacity, which is the maximal
number of movements per hour that the airport’s runway system allows according to air
traffic management rules and assuming continuous aircraft demands. An airport is con-
sidered congested if its actual number of movements per hour during operation is greater
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than its declared capacity (the planned number of movements) divided by a parameter α,
where 0.85 ≤α≤ 1. We consider α = 0.9 as an example to illustrate our methods. The state
of each airport i at each hour t is derived from U.S. airport dataset as follows: the airport
is congested (Xi (t ) = 1) if the actual number of movements is larger than the number of
movement planned at time t divided by 0.9. If this condition is not satisfied, the airport is
not congested (Xi (t ) = 0). Airport i ’s vulnerability φi = 1

m
∑m

t=1 Xi (t ) is the fraction of time that
airport i is congested. We considered all hours in the previously specified two week’s inter-
val (excluding hours between 0 and 6 of each day due to their low number of movements).
The hours considered are indexed as [1,2, ...,m], where m = 18 ·14 = 252.

In this chapter, we confine ourselves to this limited definition of airport vulnerability to
start and to illustrate our method. The definition could be further generalized to capture
the level of congestion per hour. The declared capacity can also also be better estimated
based on airport characteristics (e.g. active runways, taxiways, etc.) and weather condi-
tions, beyond flight schedule.

Figure 4.1 shows the distribution of airport vulnerability, whose average is 0.15 and vari-
ance is 0.01. The vulnerabilities of all the airports are within the range [0,0.4].
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Fig. 4.1: Probability density function fφ(x) of the vulnerabilityφof an airport. The average vulnerability is E [φ] =
0.15 and the variance is V ar [φ] = 0.01. In total 45 bins are split within the interval [0,1] with the same bin size. The
probability density fφ(x) at a given bin x equals the percentage of the airports whose vulnerability falls within the
bin normalized by the bin size 1/45.

4.2.2. HETEROGENEOUS SIS SPREADING MODEL ON AIRLINE NETWORKS
We model the contagion of airport congestion as a heterogeneous SIS spreading process on
an airline network. Firstly we introduce how to construct the three types of airline networks.
Secondly, we propose the heterogeneous SIS spreading model. The last subsection illus-
trates the individual-based mean-field approximation to compute nodal infection proba-
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bilities in the meta-stable state, given the underlying network and the model parameters.

NETWORK CONSTRUCTION AND PROPERTIES

We derive three types of undirected networks from the U.S. Airport Network data over the
two weeks’ period in order to capture various flight properties. This is motivated by the fact
that the SIS spreading process unfolds differently on different underlying networks. Net-
work G1 is unweighted: two nodes (airports) are connected if at least one direct flight exists
in between. Each existing link has a weight wi j = 1. Network G2 and G3 are both weighted

and have the same network topology as network G1. It is assumed that the infection rate
along a link is proportional to the link’s weight. In G2, the link which connects node i and j
has weight w∗

i j = Fi j +F j i , which is the sum of the total number Fi j of flights from i to j and

the number F j i of flights from j to i in the two weeks’ period. We motivate this weight def-
inition by the assumption that frequent flights between two airports correspond to a high
chance that congestion spreads from one airport to the other. Furthermore, congestion
propagation may be affected also by the duration of flights between airports. An airplane
that has departed with a delay in time, in fact, can adapt its speed to respect its scheduled
arrival time at the destination airport. In order to capture these effects we introduce Net-
work G3. This network is defined by assigning to each link (i , j ) the weight w∗

i j = 1
E

[
Ti j

] ,

which is the inverse of the average flight time between airport i and j . We adopt the con-
vention that the flight time between airports not connected by any direct flights is infinite:
this ensures that the weight of non-existing links is always null. A smaller average flight time
may result in a higher chance that flights delayed at the departure airport would affect the
arrival time at the destination airport. This situation may be less likely in the case of a larger
average flight time, when there is more room for airplanes to re-optimize the flight velocity.

Finally, the weights in Networks G2 and G3 are respectively normalized as

wi j =
 w∗

i j

max
k,l

w∗
k,l

 .

The normalization by the maximum link weight max
k,l

w∗
k,l in each network leads to the nor-

malized link weights within the range (0,1]. Since there is no self-loop, wi i = 0 ∀i .
Heterogeneous infection rate and recovery rate (link weight) have been shown to in-

fluence the nodal infection probabilities [11, 17]. Since the infection rate of a link and the
recovery rate will later be defined as a function of the link weight and node strength of a
node respectively, we examine the distribution of the link weight and node strength (the
total weight of the links incident to a node) in 4.2. Network G2 and G3 manifest different
link weight and node strength distributions, which motivate again the consideration of the
three types of networks that capture different features of the airline system.

We explore relation between the strength of a node and other centrality metrics that
describe varies topological properties of a node via the linear correlation coefficient. The
following centrality metrics have been considered:

• Clustering Coefficient. In an unweighted network, the clustering coefficient is the proba-
bility that two random neighbors of a node are connected. In a weighted network, a
generalized definition for clustering coefficient has been introduced by [34]. The in-
tensity of a triangle among node i , j and k is defined as 3

p
wi j w j k wki . The clustering
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Fig. 4.2: The probability density functions fW (x) of the weight W of a link (a) and fS (x) of the strength S of a node
(b) in network G2 (blue points) and G3 (red points). Horizontal and vertical axes are presented in logarithmic
scale. The horizontal axis is split into 20 bins, each with the same bin size in the linear scale. The probability
density fW (x) ( fS (x)) at a given bin x is equal to the fraction of the links (nodes) whose weight (strength) falls
within the bin normalized by the bin size. Both link weight and node strength have, respectively, a higher average
in G3 and higher coefficient of variation (the ratio of standard deviation over the average) in G2.

coefficient of a node i is then defined as the sum of the intensities of the triangles that
i resides in, normalized by the maximum possible number of triangles that i could re-
side in, i.e. 1

2 di (di −1), where di is the degree of node i .

• Betweenness Centality. The betweenness centrality of a node is the fraction of the short-
est paths between all possible node pairs that pass through the node. To compute the
shortest path between a node pair, we define the distance of each link in the underly-
ing network as the reciprocal of its link weight [35].

• Closeness Centrality. The closeness centrality is the average hopcount of a node to any
other node. The hopcount between two nodes is the number of links of the shortest
path, which is computed as described in betweenness.

• Principal Eigenvector Component The principal eigenvector component of a node is its
corresponding component in the principal eigenvector of the weighted adjacency
matrix. The principal eigenvector is the one corresponding to the largest eigenvalue.

The linear correlation coefficient between node strength and each of centrality metric in
the three networks constructed are shown in 4.1

Network Clustering Betweenness Closeness Eigenvector
G1 -0.09 0.80 0.81 0.95
G2 0.00 0.81 0.54 0.98
G3 -0.17 0.81 0.44 0.92

Table 4.1: The linear correlation coefficient of node strength with clustering coefficient, betweenness, closeness
and eigenvector centrality respectively in network G1, G2 and G3.

Node strength is strongly correlated with all the centrality metrics that describe a given
importance of node in the whole network except for the clustering coefficient, a nodal prop-
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Fig. 4.3: Airport vulnerability versus nodal centrality measures. The scatter plot of airport vulnerability φ versus
node strength (a,b,c), clustering coefficient (d,e,f), betweenness (g,h,i), closeness (j,k,l) and eigenvector (m,n,o)
centrality in network G1 (first column, blue color), G2 (second column, red color) and G3 respectively.

erty derived from local network connections. Hence, node strength that will be used to de-
fine the nodal recovery rate in the epidemic spreading model, captures as well nodal prop-
erties like betweenness, closeness and principal eigenvector component.
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Fig. 4.4: Geographic location and vulnerability of U.S. airports. The geographic location and vulnerability of an
airport in U.S. mainland (a), Alaska (b), Hawaii Islands (c), Puerto Rico (d), American Samoa and Guam (e). The
nodes/airports are color-coded according to their airport vulnerability φ. We show the names of the top 30 most
vulnerable airports.

Furthermore, we study the relation between the vulnerabilityφ of an airport and a given
centrality metric of the corresponding node in each of the three underlying networks. This
helps us to evaluate the possibility of using a nodal centrality measure to estimate nodal
vulnerability. In the scatter plot in 4.3, we do not observe any monotonic trend between
the vulnerability φ of an airport and the centrality metric of the corresponding node. This
implies that centrality metrics can not be used as a good estimation of airport vulnerability.
Our previous work [33] illustrated as well the worse performance of vulnerability prediction
via centrality metrics than that via the homogeneous SIS model. Hence, we will compare
performance of the heterogeneous SIS model with that of the homogeneous SIS model but
not of the centrality metrics.

The networks we constructed have not taken the geographical locations of the airports
explicitly into account. One may wonder whether the vulnerability of an airport may strongly
correlate with its location, thus can be possibly estimated by its location. 4.4 shows that vul-
nerable airports are scattered in location and no evident relation between vulnerability and
location.

THE HETEROGENEOUS SIS MODEL

We model the airport congestion dynamics as a heterogeneous SIS spreading process, where
both the infection rate per link and the recovery rate per node are heterogeneous. The in-
fection rate of a link with weight wi j is βi j = βwi j . In network G1, which is unweighted,
the infection rate is homogeneous. The heterogeneous recovery rate is motivated by the
fact that airports with a larger declared capacity may recovery faster i.e. are more capa-
ble to deal with operational delay and congestion due to their better infrastructure. The
declared capacity of an airport is affected by the number and geometric layout of the run-
ways, type and location of taxiway exits from the runway and the ATM system. The primary
factor in determining the capacity is the number of simultaneous active runways. The se-
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lection of runways to be operated depends on demand, weather conditions (visibility, wind
speed/direction) and noise restrictions. During periods of high congestion, a large airport
can decide to keep more runways active to match the demand, however, a small airport
does not have that option. Furthermore, a large airport with several runways will have
even more runway configurations, which is a combination of simultaneous active runways,
weather conditions and assignment of aircraft types and movements (arrival/departures).
This makes larger airports more suitable to handle congestion [29]. Similarly, recent studies
showed that large airports are less likely to propagate delay [27, 28]. In the three networks
we constructed, the node strength tends to be a good proxy of the declared capacity and
it is strongly correlated with several other nodal centrality metrics. Hence, we define the
recovery rate δi of a node as a function of its node strength:

δi = δ
(
c +

( si

smax

)θ)
(4.1)

where node i ’s strength is si = ∑
j wi j and smax = max

1≤i≤N
{si }. In the unweighted network

topology G1, the strength si of a node i corresponds to its degree. The parameter c is a con-
stant. The scaling factor θ ≥ 0 regulates to what extent the recovery rate of a node depends
on the normalized node strength si

smax
. A large c results in a more homogeneous recovery

rate, whereas a large θ leads to a high heterogeneity in recovery rate. When θ > 0 a node
with a higher strength has a larger recovery rate. The heterogeneous SIS model coincides
with the homogeneous one when θ = 0. The definition of the heterogeneous recovery rate
4.1 is generic in the sense that it is a polynomial function of the node strength where the
extent of homogeneity or heterogeneity can be tuned via parameter c and θ. The parameter
set (δ,c,θ) will be calibrated or identified as the set that best reproduced the properties of
the vulnerability of airports, as described in subsection Experiment description. The nor-
malization by smax in 4.1 has no influence on the performance of the model but may ease
the choice of the search space of c when we calibrate the parameters.

INDIVIDUAL-BASED MEAN-FIELD APPROXIMATION OF THE HETEROGENEOUS SIS MODEL

We derive nodal infection probabilities via mean-field approximation instead of simulat-
ing the SIS stochastic process for computational efficiency. The N-Intertwined Mean-Field
Approximation (NIMFA) is one of the most precise individual-based mean-field approxima-
tions [9]. Different from homogeneous or degree-based mean-field approximations where
only the degree of a node is taken into account, NIMFA preserves the whole network topol-
ogy in its governing equations, coupling the infection probability of neighboring nodes. It
further assumes that the states of neighboring nodes are uncorrelated. Under NIMFA, the
governing equation for a node i in our heterogeneous SIS spreading model is

dvi (t )

dt
=−δi vi (t )+ (1− vi (t ))

N∑
j=1

βi j v j (t ) (4.2)

where vi (t ) is the infection probability of node i at time t , and βi j = βwi j is the infection

rate associated to the link (i,j). In the meta-stable state, dV (t )
dt = 0, where V (t ) = [v1(t ) v2(t ) ·

· · vN (t )]T , limt→∞ vi (t ) = vi∞ and limt→∞V (t ) = V∞. The infection probability of each
node V∞ in the meta-stable state can be derived. The trivial all-zero solution corresponds
to the absorbing state where all nodes are susceptible. The non-zero solution of V∞, if exists,
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indicates the existence of a meta-stable state with a non-zero fraction of infected nodes. Or
else, the meta-stable state is 0 or not-existent. Given θ, c and the underlying network, the

infection probability of each node remains the same if β
δ does not change. Without loosing

the generality, we consider β= 1.
In a heterogeneous SIS model, the condition for the epidemic to spread out on a given

network G is Re(λ1(Ā) > 0 where Re(λ1(Ā)) is the real part of the largest eigenvalue of the
matrix Ā, with its elements āi j = βi j if i ̸= j and āi i = −δi [36]. In particular, in our model
βi j = wi j , hence Ā = W −di ag (δi ). δi is defined according to 4.1. Furthermore, the three
network topologies G1, G2 and G3 are undirected: thus Ā is real and symmetric and λ1(Ā) is
real. The condition Re(λ1(Ā)) > 0 becomes

λ1

( 1

δ
W −di ag

( si

smax

)θ)> c (4.3)

4.2.3. EVALUATION METHODS
We evaluate our model via its capacity to capture: (a) the probability distribution of airport
vulnerability and (b) the rank of airports in vulnerability.

SIMILARITY OF VULNERABILITY AND INFECTION PROBABILITY DISTRIBUTION

We firstly quantify the similarity of the probability distribution of nodal infection proba-
bility obtained from the heterogeneous SIS model with that of airport vulnerability via the
Jensen Shannon divergence JSD . Given two discrete probability distributions P = (p1, p2, . . . , pK )
and Q = (q1, q2, . . . , qK ) where K ≥ 2, the Jensen-Shannon divergence(JSD) [37] measures
the similarity of P and Q. We define the mixture of P and Q as M = (m1,m2, . . . ,mK ) where
mi = pi+qi

2 , i ∈ {1,2, . . . ,K }. The Shannon’s entropy of of a distribution e.g. P is denoted as

H(P ) =−∑K
j=1 p j log2 p j . Jensen Shannon divergence measures the difference between the

Shannon entropy of the mixture M = 1
2 (P +Q) and the average Shannon entropy of P and Q,

i.e.

JSD(P,Q) = H(M)− 1

2
(H(P )+H(Q)) (4.4)

The Jensen-Shannon divergence is symmetric 0 ≤ JSD(P,Q) ≤ 1. A smaller JSD(P,Q) indi-
cates a high similarity between the two distribution P and Q.

AIRPORT RANKING IN VULNERABILITY

From the application perspective, the identification of the most vulnerable airports is cru-
cial. We can evaluate the quality of using nodal infection probability to rank airports in vul-
nerability as follows. A node with a high infection probability is supposed to correspond to
an airport with a high vulnerability. We rank the nodes (airports) according to their infection
probability and vulnerability respectively. These two rankings are recorded by two vectors

Rv = [Rv
(1),Rv

(2), ...,Rv
(N )] and Rφ = [Rφ

(1),Rφ

(2), ...,Rφ

(N )] where Rv
(i ) is the index of the i − th high-

est node in infection probability and Rφ

(i ) is the index of the i − th most vulnerable airport.
The performance of using nodal infection probability to identify the top f fraction most
vulnerable airports can be quantified by the top f recognition rate

rφv ( f ) =
|Rφ

f ∩Rv
f |

|Rφ

f |
(4.5)
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where Rφ

f and RV
f are, respectively, the sets of nodes ranked in the top f fraction according

to vulnerability and infection probability. |Rφ

f | = f N is the number of nodes in Rφ

f . A higher

recognition rate indicates a higher precision of using nodal infection probability to identify
the top f fraction most vulnerable nodes.

We define the overall recognition quality ξ as the area under the rφv ( f ) function:

ξ=
∫ 1

0
rφv ( f )d f (4.6)

The recognition quality 0 ≤ ξ≤ 1 measures the overall performance of using infection prob-
ability to rank airports in vulnerability. The quality ξ= 1

2 is obtained by the random ranking,
which selects uniformly at random f fraction of nodes as the top f fraction most vulnera-
ble ones. The maximum ξ corresponds to the case when rφv ( f ) = 1 ∀ f , which means that
Rv = Rφ.

4.3. RESULTS AND DISCUSSION

4.3.1. EXPERIMENT DESCRIPTION
Our heterogeneous SIS model has three control parameters δ, c and θ. In order to under-
stand the influence of the parameters on the performance of the model, we consider all
possible combinations of the parameters. We consider for c all possible values within [0,2]
and with step size 0.02. Similarly, θ can be any value within [0,2] and with step size 0.1.
The smaller step size of c is motivated by the high sensitivity of the model’s performances

(especially the recognition quality ξ) on c. This is because the term
( si

smax

)θ in the recovery
rate of a node can be small, when θ is large, especially in view of the heterogeneous node
strength distribution (see 4.2). Given the underlying network G1, G2 or G3, and given the
parameter c and θ, the prevalence in the meta-stable state that can be derived via NIMFA is
an increasing function of 1/δ. We consider the optimal value of δ, which is denoted as δo , as
the one that minimizes (E [φ]− 1

N

∑N
i=1 vi )2, i.e. when the average nodal infection probabil-

ity is the closest to the average airport vulnerability. We obtained it via Brent optimization
algorithm [38, 39]. For each possible c, θ and the underlying network G1, G2 or G3, which
together determine the δo , we derive the infection probability for each node via the NIMFA.
The performance of the corresponding model is evaluated in comparison with the airport
vulnerabilities via the Jensen-Shannon divergence JSD and the recognition quality ξ. We
compare the performance of the heterogeneous SIS model on each network with the cor-
responding homogeneous model. In the baseline homogeneous SIS model on a given net-
work, the infection rate of a link is βi j = wi j , while the homogeneous recovery rate δ(c +1)
is tuned effectively as one parameter so that the average infection probability is the closest
to the average vulnerability.

4.3.2. PERFORMANCE OF THE HETEROGENEOUS SIS MODEL
The Jensen Shannon divergence JSD evaluates the similarity between nodal infection and
vulnerability distribution, whereas the recognition quality ξ assesses the capability of iden-
tifying the most vulnerable airports according to their corresponding infection probabili-
ties. In this section we explore the performance of the heterogeneous SIS model in compar-
ison with the baseline homogeneous SIS model. If we aim to develop a model to reproduce
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the vulnerability distribution alone (to minimize the JSD) or the ranking of nodal vulner-
ability (to maximize ξ), but not both at the same time, the heterogeneous SIS model evi-
dently outperforms the homogeneous one. As shown in 4.5, the minimal possible JSD and
the maximal ξ achieved by the heterogeneous model are far lower and higher respectively
than those obtained by the homogeneous model. The minimal JSD and the maximal ξ are
not obtained by the heterogeneous model at the same time, i.e. via the same parameter set
θ and c.

Furthermore, the data points on the top-left panel in each sub-figure of 4.5 correspond
to the parameter sets with which the heterogeneous model outperforms the homogeneous
one in reproducing both the vulnerability distribution and ranking the airports in vulner-
ability. Among those points, those that lead to an evidently high recognition quality are
within the parameter range θ > 1 and c = 0.02, when the recovery rate is highly heteroge-
neous. The heterogeneous SIS model on the unweighted network G1 could possibly achieve
slightly better recognition quality than the model on G2 and G3. The homogeneous model
on network G1 however, performs worse than that on G2 and G3 in recognition quality.
The network G1, which contains less information than the other two networks, is sufficient
for the heterogeneous model to perform well. When c = 0.02, the heterogeneous model
achieves the best performance in ξ. This suggests that a fine tuning of the c within the
range (0,0.02) may further improve the performance of the model. The parameter sets that
we have considered are sufficient for us to illustrate that the heterogeneous SIS model could
perform better than the homogeneous one.

4.3.3. THE INFECTION PROBABILITY VERSUS THE NODE STRENGTH OF A NODE

Identifying the most vulnerable airports is crucial for operations. In this section, we aim
to understand why the heterogeneous SIS model better recognizes vulnerable airports, i.e.
is higher in recognition quality than the homogeneous model. In the homogeneous SIS
model, a node with a large strength tends to have a high infection probability. In the het-
erogeneous SIS model, a node with a large strength has high rates of getting infected by its
neighbors, contributing to a high infection probability. On the other hand, a node with a
large strength could have a large recovery rate when θ > 0. These two factors imply that a
node with a large node strength does not necessarily have a high infection probability. In
this section, we explore whether the better performance of our heterogeneous SIS model in
recognition quality corresponds to its better capability to reproducing the relationship be-
tween the vulnerability and strength of a node if compared to the homogeneous SIS model.

We take network G1 as an example. The heterogeneous SIS model on G1 achieves the
highest recognition quality ξ when c = 0.02 and θ = 1.5. We consider the SIS model when
c = 0.02 whereas θ varies and when θ = 1.5 whereas c varies. We plot the vulnerability φ
and the meta-stable infection probability v (derived by the heterogeneous SIS model or the
homogeneous SIS baseline model ) of a node versus the strength of the node in 4.6a. When
θ < 1, and c = 0.02, the infection probability increases monotonically with the strength of a
node (see 4.6a). When θ > 1, the new phenomena unfolds: high nodal infection probability
is obtained by nodes with an intermediate strength, but not those having a small nor large
strength. A large θ attributes to the heterogeneity of the recovery rates, allowing nodes with
a large strength to have a small infection probability. Given the θ = 1.5, 4.6b shows that the
nodal infection probability increases monotonically with the node strength when c is large,
e.g. c > 1. A large c reduces the heterogeneity of the recovery rate. When c is small, the
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Fig. 4.5: The scatter plot of the recognition quality ξ versus Jensen-Shannon divergence JSD for both hetero-
geneous and homogeneous SIS model with diverse parameter sets. The scatter plot is obtained in network G1
(figure a1, a2), G2 (b1, b2) and G3 (c1, c2). Points correspond to the heterogeneous model, where θ ∈ [0,2] with
step size 0.1 and c ∈ (0,2] with step size 0.02. The points are colored according to parameter c in a1, b1, c1 and
according to θ in a2, b2, c2. The dash lines correspond to the baseline homogeneous model.

maximal vulnerability has also been obtained by nodes with an intermediate node strength.

The node strength that leads to the maximal infection probability increases as c in-
creases because a larger c makes the recovery rate more homogeneous. In the extreme case,
the most heterogeneous case, when θ > 1 and c = 0, v decreases monotonically as the node
strength increases, which can be seen in 4.6a. In this special case, a larger θ > 1 corresponds
to a steeper decrease. The relative magnitude of the constant term c with respect to the
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node strength dependant term
( si

smax

)θ of δi decides when the phenomena occurs that the
infection probability increases first and decreases afterward as the node strength increases.

Figure 4.7 illustrates the cumulative distribution Pr [
( S

smax

)θ ≤ x] of the term
( si

smax

)θ. The
model on G1 that maximizes the recognition quality is obtained when θ = 1.5 and c = 0.02
(observed within the range we have searched for). In this case, the constant c is larger than

the term
( si

smax

)θ of δi in less than 70% of the nodes. The model where
( si

smax

)θ ≤ c in most
nodes (e.g. when c = 0.1 and θ = 1.5) is not optimal. These observations motivate that we
may identify the optimal parameter set more efficiently by better choosing the search space.
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Fig. 4.6: Airport vulnerability and nodal infection probability versus normalized node strength. The scatter plot
of the vulnerability φ (points) and infection probability v (lines) of a node versus the normalized node strength

si
smax

of the node on the underlying network topology G1. The black dashed line corresponds to the baseline
homogeneous model (θ = 0). Solid lines correspond to the heterogeneous model with θ = 1.50, colored according
to the parameter c (figure a) or with c = 0.02, colored according to the parameter θ (figure b).
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4.4. CONCLUSION
We model airport traffic congestion contagion as a heterogeneous SIS spreading pro-

cess on an airport transportation network, aiming to identify airport’s vulnerability, i.e.
probability of being congested, using nodal infection probabilities derived from our model.
Three airline networks are constructed to capture diverse information e.g. flight frequency
and duration and the infection rate of each link is assumed to be proportional to its link
weight. Per node, we introduce an heterogeneous recovery rate which is a function of its
node strength. The model is evaluated via its capability to reproduce the distribution of
nodal vulnerability and to rank airports in vulnerability. Our model evidently outperforms
the SIS model with a homogeneous recovery rate in ranking airports from both perspec-
tives. One explanation of the better performance of our heterogeneous model in reproduc-
ing the ranking of airports in vulnerability is that: the phenomena that the vulnerability
is the largest at airports whose strength in the airline network is neither too large nor too
small can be only captured by the heterogeneous model. In particular, a node with a large
strength has high rates (link weights) of getting infected by its neighbors, whereas its large
recovery rate could reduce its infection probability. Finally, the simplest airline network that
represents which airports have direct flight(s) in between already allows the heterogeneous
model to evidently outperform the homogeneous one.

The identification of vulnerable airports is crucial for airport operations. Beyond, our
model may facilitate the development and evaluation of optimization strategies. The opti-
mization problem can be, e.g. which airports should be invested in improving their capacity
thus reducing their vulnerability or in improving their recovery rates in order to minimize
the global vulnerability. The derived model that describes how congestion at one airport
spreads to other airports could be used to evaluate optimization solutions as a starting
point. Such questions require as well further improvement and validation of the model,
accounting for e.g. other operational factors and the time varying nature of airport vulnera-
bility. The definition of airport vulnerability can also be generalized by considering e.g. the
extent of congestion at an airport.
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I N this thesis, we propose characterization methods for time-varying networks that could
take into account the joint topological and temporal properties of connections among

nodes. Moreover, we show a methodology to understand to what extent we can identify or
approximate an unknown underlying spreading process, given the observation of node ac-
tivities and the topology of the network on which the process unfolds, in the specific case of
congestion contagion among airports. We show our methods, findings and results in three
technical chapters. In order to conclude the circular path started in the introduction, in
Section 5.1 we answer the research questions and discuss limitations of the work presented
in this thesis. In lights of these reflections, we propose then possible future directions in
Section 5.2.

5.1. MAIN CONTRIBUTION AND REFLECTIONS
In Chapter 2, we proposed systematic methods to jointly characterize the topological and
temporal properties of contacts in a time-evolving network. By applying our methods to
real world networks, we identify substantial differences between physical and virtual con-
tacts. First, contacts occurring in short temporal delays tend to occur also close in their
topological location, more evidently in virtual contact networks than in physical contact
ones. This is supported by higher local temporal correlation of contacts belonging to the
ego networks of different links. Such local temporal correlation manifests as long trains of
consecutive contacts in a ego network1. These consecutive contacts are, in general, activa-
tions of many different links belonging to the same ego network. This is particularly evident
in virtual contacts and in those physical contact network where the contacts are less con-
strained in space, such as pupils in primary school or visitors in museum, than in more
spatially constrained social settings, such as individuals in a workplace. Such findings may
suggest that contacts with a low cost may better facilitate social contagion, i.e. the influence
of a node activity on the activity of its neighbors.

These results are limited to traditional pairwise time-evolving networks, where interac-
tions at a given time among a group of nodes composed of d > 2 nodes are decomposed
in a clique of

(d
2

)
contacts occurring at the same timestamp. Such group interactions are

observed in many networked systems such as brain, social and collaboration networks.
In Chapter 3, we proposed systematic methods to characterize temporal networks with-

out decomposing such group (or higher-order) events in pairwise interactions, i.e. higher
order temporal networks. We applied our methods to eight physical contact and five col-
laboration higher-order temporal networks. Coherently with what observed in Chapter 2,
in physical contacts, events relatively close in time tend to occur also close in topology.
Moreover, events of different orders usually overlap in component nodes. The occurrence
of such local events is also usually correlated in time and supports the observed correla-
tion between temporal and topological distances of events. The temporal and topological
correlation of events observed in collaboration networks is instead either weak or absent.
In these networks, events of different orders overlap in component nodes but their local
temporal correlation almost disappears. These different results seems to reflect the funda-
mental differences between the two kind of networks. In physical contacts indeed individu-
als participate in events driven by physical proximity, so that participants of a higher-order
event may results in a higher chance for them or a subgroup of them in the near future.

1The contacts of the ego networks of a link connecting i to j are the contacts that involve either node i or j .
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Differently, the evolution of the higher-order temporal network of scientific collaboration is
likely driven more by their content and creation process. Furthermore, the topological over-
lap of events with different orders in component nodes observed in both physical contacts
and collaboration networks, suggested that nodes participating in many events (groups) of
a given order tend to interact in many events (groups) of a different order. Hence, nodes are
consistent in interactions with respect to frequency and diversity across different orders.

The insights obtained from the first and second chapter of this thesis show that, except
the case of collaboration networks, the topological-temporal correlation in pairwise and
higher-order temporal networks is supported by the temporal correlation of neighboring
(hyper-)links. This seems to suggest that an epidemic spreading process could potentially
reproduce properties of temporal networks. A temporal network can indeed be consid-
ered as a static network, together with an unknown dynamical process unfolding on it and
determining the link activities at each timestamp. Note that, thanks to the line graph trans-
formation, the links of a network can be represented as nodes of the corresponding line
graph of the network. The problem of modelling a temporal network then is fundamen-
tally equivalent to that of reproducing an unknown dynamical process unfolding on a static
network and determining the activity of nodes/links. Despite some initial evidence, in tem-
poral networks, we do not have sufficient domain knowledge to justify the assumption that
the activity of links evolve on a network according to a spreading process.

Thus, in Chapter 4, we propose a methodology to identify the epidemic spreading pro-
cess that can model the node activity in a simplified case, where the activity of a node clearly
influence the state of its neighbors, i.e., the airport congestion contagion mediated by the
air transportation network. We propose three airline static weighted networks to capture
diverse properties of flight connections, e.g. their frequency or duration. We assume that
the infection rate of each link is assumed to be proportional to its link weight. Each node is
assigned a heterogeneous recovery rate which is a function of its node strength: this reflects
the different capabilities of airports of different size to handle congestion. We evaluate the
model via its ability to reproduce two key properties of the airport congestion: the distribu-
tion of airport congestion probability and the ranking of airports according to their chance
to be congested. Our model evidently outperforms the SIS model with a homogeneous re-
covery rate from both perspectives. The better performance of our heterogeneous model
in reproducing the ranking of airports in vulnerability may be due to the fact that only the
heterogeneous model can capture the phenomena that the largest congestion probability
is observed in airports whose strength in the airline network is neither too large nor too
small. In our model, indeed, a node with a large strength has high chance of getting in-
fected by its neighbors, while its large recovery rate could reduce its infection probability.
Finally, the simplest airline topology, where two nodes are connected if the corresponding
airports have direct flight in between already allows the heterogeneous model to evidently
outperform the homogeneous one.

5.2. FUTURE WORK
In Chapters 2 and 3, dedicated to characterization methods , we proposed topological and
temporal distances between contacts/events, we studied the relation between these two
quantities in the case of pairwise and higher order temporal networks, and then investi-
gated which temporal or topological properties of contacts/events can (partially) explain
such relation. On the other hand, in Chapter 4, we proposed a method to identify (or ap-
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proximate) the underlying contagion mechanism of airport congestion. We obtained from
data the node state (airport congestion) at each time, the network topology over which the
process unfolds and we identify key properties of the dynamical process, e.g. the vulner-
ability of an airport in congestion that our proposed model should reproduce. Then, we
proposed a SIS model where the nodal recovery rate is heterogeneous, function of the de-
gree (or strength) of the corresponding node and show that it evidently outperform a SIS
model where the recovery rates is the same at each node in reproducing airport conges-
tion vulnerability. In this last section we try to briefly present some of the possible research
directions inspired by the work presented in this thesis.

Generalizations of characterization methods. In the first two chapter of this thesis, we
have proposed methods that can characterize jointly the temporal and topological prop-
erties of contacts/events. Our study of the relation between topological and temporal dis-
tance of pairwise/group interactions can be generalized, for example, by considering dif-
ferent types of distances apart from the traditional shortest path, such as the effective resis-
tance or the spatial distance (in case of spatially embedded networks). Another promising
generalization of methods of the Chapter 2 seems to include also directed networks. More-
over, the generalized methods proposed in Chapter 3 solve the problem of generalizing the
characterization method of the first chapter to higher order temporal networks by consid-
ering each interaction order as an independent interaction layer. Thanks to this, we can
almost straightforwardly extend these methods to multilayer temporal networks. A final di-
rection deemed as promising is to generalize the definition of higher-order event to other
types of temporal motifs. For example, different events occurring at the same time overlap-
ping in some component nodes may be merged in a single event.

Effect of the topological-temporal correlation of contacts/events on dynamical pro-
cess unfolding on networks. Another promising research direction that can benefit from
our proposed characterization methods is the traditional study of how dynamical processes
unfolding on the networks are influenced by properties of the underlying networks. Previ-
ous studies on temporal networks have shown that specific temporal properties of link ac-
tivations, e.g., burstiness, clearly affects the dynamics on networks. To our knowledge, no
study has investigated how the topological-temporal correlation of contacts influence key
properties of epidemic spreading, synchronization process or random walks on temporal
networks. More than that, the randomized reference models for higher order temporal net-
works proposed in Chapter 3 offer tools to investigate how temporal properties of events in-
fluence those dynamic processes that explicitly take into account group interactions, such
as generalized spreading, synchronization and random-walk processes.

Modelling temporal networks In the first two chapter of this thesis, we proposed char-
acterization methods to investigate the joint topological and temporal properties of con-
tact/events. Thanks to these methods, we discovered substantial differences among dif-
ferent kind of networks, e.g. physical/virtual contacts and scientific collaborations. Such
differences are usually supported by a local temporal correlation of contact/events overlap-
ping in component nodes. This seems to suggest that an epidemic spreading model can
reproduce key properties of a temporal network. The fourth chapter showed that a modi-
fied epidemic spreading models is able to reproduce key properties of congestion dynamics
of an airports. The method proposed in Chapter 4 can be used as a starting point to model
temporal networks, by using the line graph of the time aggregated topology instead of the
airline network, and substituting the link activity to the airport congestion. However, we
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expect a further generalized epidemic spreading model to be able to reproduce other fun-
damental properties of temporal networks, e.g. burstiness.
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