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Abstract

The exponential growth in mobile network traffic, driven by the rapid deployment of 5G technologies
and the proliferation of new services, presents significant challenges for telecommunication opera-
tors. This thesis addresses these challenges by developing a predictive capacity management solution
for 4G and 5G cellular networks. The primary objective is to forecast network traffic and identify
potential congestion points up to one year in advance, enabling proactive network management and
optimizing resource allocation, particularly through the use of spectral efficiency as a key predictive
measure.

This study utilizes data from KPN’s Operations Support System (OSS), comprising 67 days
of hourly data across the entire network, with a focus on predicting future traffic and network
performance up to one year ahead. The methodology integrates historical data analysis, time se-
ries forecasting, and machine learning techniques. The approach combines Cumulative Distribution
Function (CDF) modeling for traffic volume prediction with supervised machine learning algorithms,
including Linear Regression, Lasso Regression, Random Forest, and CatBoost, to forecast Physical
Resource Block (PRB) utilization and spectral efficiency at the sector level.

The detailed analysis identifies Lasso Regression as the most effective model for predicting spec-
tral efficiency, with the lowest Mean Absolute Percentage Error (MAPE). Lasso’s ability to handle
extrapolation beyond observed data ranges makes it particularly well-suited for long-term capacity
management when combined with CDF-based traffic prediction. The findings demonstrate signifi-
cant improvements in the accuracy of congestion predictions and the efficiency of resource utilization.

The study also revealed that, without additional resources, the number of congested sectors is
expected to increase as traffic demand continues to grow. This highlights the critical need for new
spectrum allocation to maintain service quality. Additionally, the research evaluated the impact of
deploying new spectrum resources, such as the 3.5 GHz band, in specific sectors. The results showed
that the deployment of the 3.5 GHz band significantly reduced congestion and improved network
performance and user experience during the forecast period.
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Abbreviations and Acronyms

Acronyms

2G Second generation
3G Third generation
4G Fourth generation
5G Fifth generation
GB Gigabyte
VR Virtual Reality
AR Augmented Reality
LTE Long-Term Evolution
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TDD Time Division Duplex
NR New Radio
UE User Equipment
BS Base Station
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QoS Quality of Service
KPI Key Performance Indicator
NSA Non-Standalone
SA Standalone
BW Bandwidth
OSS Operations Support System
CA Carrier Aggregation
DL Downlink
UL Uplink
CDF Cumulative Distribution Function
MAPE Mean Absolute Percentage Error
OFDMA Orthogonal Frequency Division Multiple Access
FWA Fixed Wireless Access
RAN Radio Access Network
MNO Mobile Network Operator
MIMO Multiple Input Multiple Output
DBSCAN Density-Based Spatial Clustering of Applications with Noise
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1

Introduction

1.1 Overview of Cellular Networks

The evolution of cellular networks from second-generation (2G) to fifth-generation (5G) represents
a journey of technological advancement driven by the increasing demand for higher data rates, en-
hanced connectivity, and improved capacity. Each generation has addressed the limitations of its
predecessor while introducing new capabilities to meet growing user demands and emerging appli-
cations.

2G technology, introduced in the early 1990s, marked the transition from analog to digital cellular
systems. Global System for Mobile Communications (GSM) and its enhancement Enhanced Data
rates for GSM Evolution(EDGE) provided data rates up to 384 Kbps, enabling basic data services
such as text messaging [1]. However, 2G systems were primarily designed for voice communications
and faced limitations in data transmission capacity [2]. Third-generation (3G) technology brought
substantial improvements in data transmission. High-Speed Downlink Packet Access(HSDPA) and
High-Speed Uplink Packet Access(HSUPA) technologies achieved downlink speeds up to 14.4 Mbps
and uplink speeds up to 5.76 Mbps, respectively [3]. This advancement facilitated mobile internet
access and video calling, though challenges in spectrum allocation and energy consumption persisted.
Fourth-generation (4G) technology, introduced in 2009, represented a significant leap forward. Long-
Term Evolution(LTE) and LTE-Advanced delivered peak downlink throughput exceeding 100 Mbps
and uplink speeds of 50 Mbps [4]. A key innovation in 4G was the use of Orthogonal Frequency Di-
vision Multiple Access (OFDMA), which improved spectrum efficiency by dividing carrier frequency
bandwidth into sub carriers allocated to different users [5].

The current deployment of 5G networks marks another revolutionary step in mobile communi-
cation technology. Figure1.1 shows that 5G is designed to support three primary use cases [6]:

• Enhanced Mobile Broadband (eMBB): Supports high data rates for applications like AR,
ultra-high-definition (UHD) video streaming, and cloud gaming, with average speeds of 200
Mbps [7].

• Ultra-Reliable Low-Latency Communications (URLLC): Ensures 1 ms latency and
99.999% reliability, crucial for applications such as self-driving cars and industrial automation
[8].

• Massive Machine-Type Communications (mMTC): Facilitates connectivity for up to 1
million devices per km², supporting IoT applications and smart cities.

5G employs advanced technologies such as beamforming and massive Multiple Input Multiple
Output(MIMO) to meet these diverse requirements. It operates across two frequency ranges: sub-6
GHz Frequency Range 1(FR1) and millimeter wave Frequency Range 2(FR2), offering both broad
coverage and enhanced capacity [9].

This evolution reflects the industry’s response to exponential growth in data traffic and the
emergence of new applications requiring high bandwidth and low latency. Each generation has
brought significant improvements in spectrum efficiency, network capacity, and user experience,
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Figure 1.1: Applications relation to the three 5G categories.

setting the stage for increasingly sophisticated capacity management techniques. Understanding
this progression is crucial for developing effective forecasting and congestion detection strategies in
modern cellular networks, particularly as operators like KPN transition from 4G to 5G technologies.

1.2 Radio Access Network (RAN) Architecture

The Radio Access Network (RAN) is a foundational component of cellular networks that facilitates
communication between user equipment (UE) and the core network. The RAN connects UEs to base
stations (BSs), which in turn interface with the core network via backhaul links. These components
provide services such as voice communication, video calls, and internet access, as shown in Figure
1.2 [10].
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Figure 1.2: Simplified diagram of a cellular network.

The architecture of the RAN has evolved significantly from 4G to 5G to meet increasing demands
for faster data rates, lower latency, and higher throughput [11]. In 4G networks, the RAN consists
primarily of eNodeBs (eNBs), which handle radio communications, including signaling, control, and
data transfer. A distinctive feature of the 4G RAN is its flat architecture, which reduces latency and
enhances data transmission efficiency compared to previous generations [12]. Key technologies in
4G RAN include Orthogonal Frequency Division Multiple Access (OFDMA) for downlink commu-
nication, Single Carrier Frequency Division Multiple Access (SC-FDMA) for uplink, and Multiple
Input Multiple Output (MIMO) technology, which increases communication capacity. Addition-
ally, Carrier Aggregation enables operators to combine multiple frequency bands, improving overall
data throughput [13]. Supporting these features is the Evolved Packet Core (EPC), which includes
network components like the Mobility Management Entity (MME), Serving Gateway (SGW), and
Packet Data Network Gateway (PGW) [14].

The transition to 5G introduces changes to the RAN architecture. In 5G networks, the eNodeB is
replaced by the gNodeB (gNB), which serves as the central node for managing radio communications
in the 5G New Radio (NR) system. The architecture is further segmented into Distributed Units
(DUs), responsible for real time functions such as scheduling and transmission, and Centralized
Units (CUs), which handle non real time functions like resource management [15]. This separation
of functions improves scalability and performance in 5G networks. 5G RAN incorporates advanced
technologies to meet the growing demand for network capacity and performance. Massive MIMO
uses a large array of antennas to significantly increase capacity and coverage, while Beamforming
improves signal quality by directing the signal toward specific users, reducing interference [16, 17].
Another key innovation is Network Slicing, which allows the physical network to be divided into
multiple virtual networks tailored to specific use cases, such as high speed broadband or low latency
industrial applications [18].

5G RAN can be deployed in two primary configurations: Non-Standalone (NSA) and Standalone
(SA). NSA leverages the existing 4G LTE infrastructure for control functions while using 5G NR
for higher data rates, allowing for faster 5G deployment. In contrast, the SA configuration uses
a dedicated 5G core network, delivering lower latency and better overall performance [19]. Both
configurations offer flexibility in deployment and support a variety of use cases, from wide area
coverage with macro cells to dense urban environments served by small cells.
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The evolution from 4G to 5G RAN architecture reflects the industry’s focus on improving net-
work flexibility, scalability, and performance to meet the growing demands of modern cellular com-
munications. This progression sets the foundation for advanced capacity management techniques,
which are crucial for optimizing network resources in increasingly complex and demanding cellular
environments.

1.3 Data Growth and Network Challenges

The telecommunications industry is experiencing unprecedented growth and challenges, as high-
lighted by the Ericsson Mobility Report (November 2023) [20]. By the end of 2023, global 5G sub-
scribers reached 1.6 billion, with projections estimating a rise to 5.3 billion by 2029. This substantial
increase in mobile subscribers, coupled with the development of new applications, has significantly
expanded mobile connectivity.

The surge in mobile data usage is equally striking. Individual consumption is expected to grow
from 15 giga byte (GB) per month in 2022 to 75 GB per month by 2030, representing an annual
growth rate of 25% [21]. This exponential increase places immense pressure on the telecommuni-
cations industry to scale its infrastructure and services rapidly. Over the past two years alone, the
volume of mobile traffic has nearly doubled, with video content now constituting over 60% of the
total traffic [20].

Figure 1.3 illustrates a significant shift in mobile network data traffic trends. While 2G / 3G /
4G mobile traffic is expected to peak around 2026 and then decline, 5G mobile and Fixed Wireless
Access (FWA) traffic are projected to continue their upward trajectory. This trend aligns with the
advancement of high resolution video applications, including virtual reality (VR) and augmented
reality (AR) [20].
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Figure 1.3: Global mobile network data traffic (exabytes per month)

To manage this increasing data traffic, Mobile Network Operators (MNOs) are compelled to
adopt new solutions, techniques, and technologies. These efforts aim to bridge the gap between
the growing demand for cellular network data services and the available network capacity. Strate-
gies include acquiring additional spectrum or repurposing existing bands from older technologies.
However, spectrum allocation remains a significant challenge, with frequencies being divided among
MNOs and businesses through costly auctions. For instance, in 2020, the Dutch government raised
1.23 billion Euros from the auction of the 700, 1400, and 2100 MHz bands [22].

The scarcity and high costs of spectrum acquisition underscore the critical importance of effective
capacity management. Capacity management, is the strategic process of optimizing network assets
to meet current and projected user demands while maintaining cost effectiveness and service quality.
It encompasses accurate traffic measurement, timely expansion, precise demand forecasting, and
efficient congestion detection [23]. Through implementation, mobile operators can ensure sufficient
capacity to handle user traffic, both presently and in the future, without overprovisioning or under-
utilizing their assets. Capacity planning, a key aspect of this management approach, has become
essential for maintaining operational efficiency in the rapidly evolving mobile telecommunications
landscape. It involves analyzing usage patterns, predicting future needs, and strategically planning
expansions or upgrades. This proactive strategy prepares infrastructure for upcoming demands,
prevents disruptions, and sustains service quality.

Effective capacity management maximizes spectrum utilization, ensuring this scarce resource
is used to its full potential. Additionally, it reduces unnecessary expansion costs by pinpointing
when and where upgrades are needed. Moreover, it enables networks to meet growing data traffic

5



requirements while preserving the financial viability of mobile operators.

1.4 The KPN Network

1.4.1 Overview of KPN Network

KPN, a major telecom provider in the Netherlands, operates approximately 5,500 sites nationwide,
ensuring near complete coverage (Figure 1.4) [24]. Each site typically comprises three sectors, though
this can vary from two to nine depending on area requirements.

Figure 1.4: KPN 4G coverage across the Netherlands [24].

KPN’s network serves over 11 million mobile subscribers and provides broadband to more than
4 million customers [25]. The company’s commitment to network quality has been recognized by
Umlaut, achieving the highest score in independent tests for three consecutive times [26]. These
tests evaluate network quality, user experience, and performance of services like YouTube and mo-
bile gaming, underscoring KPN’s position as a leader in the Dutch telecom market.

KPN’s spectrum utilization spans low and mid band frequencies (Figure 1.5) [27]. The network
operates across 700, 800, 900 MHz (low-bands) and 1400, 1800, 2100, and 2600 MHz for Frequency
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Division Duplex (FDD), as well as 2600 MHz for Time Division Duplex (TDD) (mid-bands). A
sector refers to a specific geographic area that is served by an individual antenna within a cellular
site. Each sector uses a combination of these bands, allowing for flexible network design. The
1400 MHz band is dedicated solely to downlink traffic, enhancing downlink capacity. For optimal
network performance, KPN requires licenses across low bands (for basic coverage), mid bands (for
higher speeds and capacity), and high bands (for extreme bandwidth at short ranges) [27]. Currently,
KPN lacks high-band spectrum, as the Dutch government has not yet auctioned these frequencies
(e.g., 26 GHz) for use.

Figure 1.5: Spectrum band categorization [27].

KPN’s spectrum strategy has evolved to accommodate growing demand and technological ad-
vancements. The company launched LTE services in February 2013, marking a significant improve-
ment in spectrum efficiency and introducing a new radio interface[28]. More recently, KPN has been
at the forefront of 5G deployment. The initial 5G rollout in July 2020 utilized the 700 MHz band,
which continues to serve as a cornerstone of KPN’s 5G network [29].

A pivotal development in KPN’s network evolution occurred on May 21, 2024, when the com-
pany repurposed the 2100 MHz band from LTE to 5G New Radio (NR). This transition, carefully
executed over two nights during off-peak hours, represents a major step forward in expanding KPN’s
5G capacity. The repurposing of the 2100 MHz band highlights KPN’s strategy to efficiently manage
its spectrum resources to support the increasing number of 5G-capable devices on its network. Cur-
rently, the 700 MHz and 2100 MHz bands are fully dedicated to 5G services, while other bands, such
as 800 MHz, 1800 MHz, and 2600 MHz, continue to support 4G LTE traffic. To further enhance its
5G network performance and manage the growing traffic from 5G-capable terminals, KPN plans to
incorporate the 3.5 GHz band. The acquisition of this additional spectrum is critical for increasing
network capacity and ensuring the delivery of high-speed 5G services as demand continues to grow.
In this thesis, the impact of deploying the 3.5 GHz band on spectral efficiency will be studied, with a
focus on how it can help KPN handle larger traffic volumes and maintain the high quality of service
its users expect.

1.4.2 Capacity Management Process

Capacity management in cellular networks is critical to maintaining optimal network performance,
especially with the rapid growth in data traffic. With the advent of 5G, MNO are facing increased
pressure to efficiently manage limited resources while ensuring high quality services delivery. As
data consumption continues to rise , particularly driven by services like video streaming, and virtual
reality , proactive capacity management has become a key focus for operators. The deployment of
5G introduces new challenges due to higher data rates and the need for lower latency. Therefore,
capacity management strategies must evolve to ensure that the network resources are allocated ef-
fectively, preventing congestion and enhancing user experience.
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KPN’s capacity management is a continuous, cyclical process comprising several critical stages.
It’s important to note that this process is iterative and ongoing. Each cycle begins with predicting
future network traffic and ends with implementing necessary upgrades or optimizations. However,
the end of one cycle immediately triggers the start of the next, ensuring constant adaptation to
changing network conditions and user demands.

This process includes:

• Capacity Planning: Predicting future network traffic and capacity needs based on historical
data and growth trends. This will be one of the most compelling aspects of this report, offering
key insights for proactive network management.

• Dimensioning: Establishing guidelines for air interface capacity to support expected user
numbers and service quality levels.

• Product Configuration: Selecting and configuring hardware and software components to
meet capacity and performance requirements.

• Capacity Monitoring: Continuously tracking key performance indicators (KPIs) to assess
network performance and identify potential issues.

• Capacity Optimization: Analyzing performance data to improve user experience and re-
source utilization.

• Network Capacity Expansion: Implementing physical or virtual expansions, such as adding
new base stations, upgrading infrastructure, or deploying new technologies when optimization
reaches its limits.

The monitoring stage involves about 450 counters in the Radio Access Network (RAN), longside
numerous hardware resource counters.

While the current (Excel-based) traffic prediction model of KPN provides valuable insights into
overall network traffic trends, it serves primarily as a contextual input for the present research. The
projection growth rate per month derived from this model will be utilized in this study.

1.5 Problem definition

KPN faces critical challenges in managing its network capacity to maintain high-quality service
amidst growing demand and the transition to 5G technology. The core problem centers around two
primary uncertainties: variability in traffic demand and differences in sector capacity across the net-
work. Each network sector has distinct spectral efficiency and capacity, influenced by factors such
as geography, user distribution, and local infrastructure. This variability complicates the prediction
of network congestion, particularly under high traffic loads. Furthermore, traffic demand fluctuates
across sectors, and the network must support both 4G-only terminals and 5G-capable terminals,
increasing the complexity of resource allocation. While 5G users should benefit from reallocated 5G
spectrum, the system must continue to support 4G users effectively.

Current congestion prediction methods, including KPN’s existing Excel-based model, rely on
multiple variables and average sector data, which are insufficient for long-term, sector-specific fore-
casting. The current approach does not fully account for sector-level variations in spectral efficiency
or the distinct traffic patterns of 4G and 5G users, leading to inaccurate congestion predictions.
Additionally, this model is limited in its use of historical data patterns, which are essential for ac-
curately predicting long-term trends. These limitations hinder KPN’s ability to proactively manage
capacity and optimize resource allocation, particularly for long-term predictions and in handling
large datasets. As KPN continues transitioning to 5G and faces increased data demands, existing
capacity management strategies must adapt to the evolving network landscape. Expanding capac-
ity through additional sites or spectrum allocation involves long lead times and high costs, making
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precise forecasting essential to avoid both overinvestment and service degradation.

However, the specific aim is to predict peak hours in each sector to detect congestion, a granular
analysis that this general traffic forecast model alone cannot provide. The approach focuses on sec-
tor level dynamics during high traffic periods, complementing the broader network wide projections
presented here. This more detailed analysis is necessary for identifying potential congestion issues
at the sector level, which is crucial for effective capacity management.

The rapid evolution towards 5G exacerbates these challenges, requiring more management of
limited network resources to meet growing demands for higher data rates and enhanced quality of
service. The key challenge is to develop a predictive capacity management system that accounts
for sector-specific characteristics and variability in capacity, forecasts traffic patterns, and predicts
spectral efficiency under varying load conditions for both 4G and 5G users.

1.6 Research goals

To address these challenges, this research aims to assist KPN in developing an 5G radio capacity
planning system with the following objectives:

1. Develop a model to forecast data volume across KPN sites for one year in advance, incorpo-
rating:

• Pattern recognition based on historical data

• Projected growth traffic

• Sector-level analysis to capture localized trends

2. Create a machine learning regression model to identify and analyze congested sectors by:

• Determining spectral efficiency for each sector individually under varying load conditions.

• Detecting congestion based on this metric

• Analyzing traffic distribution across all available cells within congested sectors

3. Proactively detect congestion in sectors to prevent capacity shortages before they impact
service quality.

4. Ensure the delivery of the minimum required user throughput, as defined by KPN based on
customer needs.

5. Develop capabilities to assess sector-specific capacity limits, evaluating whether congested
sectors can accommodate additional traffic or have available capacity. Furthermore, predict
how sector capacities would evolve with the implementation of future spectrum resources,
determining if congestion would persist or be alleviated.

By addressing these objectives, this research aims to provide KPN with a practical tool for
proactive capacity management. This approach will support both strategic network planning and
tactical decision making for optimization and expansion, enhancing network efficiency, improving
user experience, and optimizing resource utilization as KPN transitions to 5G technology.

1.7 Research questions

This research aims to address the challenges KPN faces in capacity management and service quality
assurance as it transitions to 5G technology. The primary research question is:

How can sector capacity and spectral efficiency be predicted using historical traffic
data to forecast congestion under high traffic loads in KPN’s 4G/5G network up to
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one year in advance?

To help answer this main research question, the following sub questions are proposed:

1. How can historical traffic data and projected growth patterns be leveraged to accurately fore-
cast sector-specific traffic volumes for both 4G and 5G users over a one-year period?

2. How can machine learning models be used to predict sector-specific spectral efficiency under
varying load conditions, and how can these predictions be applied to forecast congestion?

3. What proactive strategies can be developed to detect potential congestion points before they
occur, considering the variability in sector capacities and traffic demand?

1.8 Thesis synopsis

This section describes the structure of this thesis. Chapter 2 describes the literature survey, covering
RAN architecture, capacity management, and congestion management in cellular networks. Chapter
3 focuses on data analysis, detailing selection, preprocessing, and network traffic patterns, including
the 4G to 5G transition. Chapter 4 outlines the methodology, explaining traffic volume forecast-
ing models and the congestion forecasting approach using machine learning techniques. Chapter
5 presents the results, discussing traffic volume prediction, congestion forecasting, and analysis of
congested sectors. Chapter 6 concludes the thesis, summarizing key findings and offering recom-
mendations for future work in cellular network capacity management.
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2

Literature Review

This chapter delves into capacity management in cellular networks, focusing on enhancing user
satisfaction and preventing network issues. It examines the architecture of Radio Access Networks
(RAN), explores various strategies for managing network capacity, discusses techniques for detecting
congestion, and evaluates the use of predictive modeling to improve network performance.

2.1 Capacity management strategies in cellular networks

Effective capacity management in cellular networks is crucial to maintaining optimal network perfor-
mance and ensuring high quality service delivery, especially as the demand for data and new services
continues to grow. The primary goal of capacity management is to balance the use of network re-
sources, such as spectrum and infrastructure, to prevent congestion, enhance user satisfaction, and
optimize overall network performance. This process must address various challenges, including fluc-
tuating user demand, limited spectrum availability, and diverse traffic patterns.

One of the core elements of capacity planning is resource allocation, which involves efficiently
distributing Physical Resource Blocks (PRBs) across users and services. PRB’s are the fundamental
units of radio resources in LTE and 5G NR (New Radio) networks, and their effective allocation
directly impacts user throughput and network efficiency [30].

In LTE networks, each PRB spans 180 kHz and 0.5 milliseconds, consisting of 12 subcarriers, each
with a bandwidth of 15 kHz, and 7 OFDM symbols within a time slot, as shown in Figure 2.1. A PRB
can thus be visualized as a grid, with subcarriers on one axis (frequency domain) and OFDM symbols
on the other (time domain), making up a total of 84 resource elements (12 subcarriers x 7 symbols)
in a time slot. These resource elements are the smallest units for data transmission, with PRBs being
the blocks that the scheduler allocates to users for downlink or uplink transmission. As networks
transition to 5G, PRB structures remain similar, but 5G introduces additional flexibility with various
subcarrier spacings to better accommodate different deployment scenarios. This flexibility enables
operators to tailor resource allocation according to specific service needs, maximizing spectrum
efficiency and optimizing performance for both low-latency and high-capacity applications.

As illustrated in Table 2.1 the number of available PRBs in a 4G cell is directly related to carrier
bandwidth. As bandwidth increases from 1.4 MHz to 20 MHz, the number of PRBs scales from 6
to 100 [4], enabling efficient capacity management across different deployment scenarios.

Table 2.1: 4G Carrier bandwidth and corresponding number of PRBs

Carrier Bandwidth (MHz) Number of PRBs

1.4 6
3 15
5 25
10 50
15 75
20 100
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Figure 2.1: Radio resource structure in FDD mode: 4G LTE and one configuration option for 5G
NR

5G’s flexible numerology system, which allows for multiple subcarrier spacings (15 kHz, 30 kHz,
60 kHz, 120 kHz, and 240 kHz), further enhances spectrum efficiency and resource allocation capa-
bilities. Table 2.2 illustrates how 5G handles various carrier bandwidths and subcarrier spacings,
resulting in different numbers of PRBs [31]. For instance, a 20 MHz carrier with 15 kHz subcarrier
spacing in 5G supports 106 PRBs, compared to 100 PRBs in LTE, due to reduced guard bands. This
range of subcarrier spacings allows network operators to optimize their resource allocation based on
specific deployment needs, whether for wider coverage or for high-capacity applications in smaller
cells.

Table 2.2: 5G Maximum Carrier Bandwidth and PRBs for Different Subcarrier Spacings.

Subcarrier Spacing (∆f) Maximum Carrier BW Maximum #PRBs

15 kHz 20 MHz 106
15 kHz 50 MHz 270
30 kHz 100 MHz 273
60 kHz 100 MHz (FR1) 135
60 kHz 200 MHz (FR2) 264
120 kHz 400 MHz 264

Traffic forecasting plays a vital role in capacity management by predicting future network load
and guiding infrastructure expansion decisions. Accurate traffic forecasting helps network operators
plan for peak demand periods and preemptively address congestion, preventing network degradation.
By analyzing historical traffic data, machine learning algorithms and predictive models can forecast
the demand for data services, ensuring that the network is adequately prepared to handle increasing

12



traffic loads while maintaining service quality [32].
Another critical aspect of capacity management is performance monitoring, which involves the

continuous evaluation of Key Performance Indicators (KPIs). These KPIs include metrics such as
PRB utilization, throughput, latency, and spectral efficiency. Monitoring these indicators allows
operators to identify potential bottlenecks and take corrective measures before they impact user ex-
perience. For instance, as PRB utilization approaches a certain threshold, user throughput typically
decreases, indicating that the network is nearing congestion. Spectral efficiency, defined as the ratio
of data throughput to bandwidth, is another key metric used to assess how effectively the available
spectrum is being utilized.

Spectrum utilization techniques, such as carrier aggregation, are essential for optimizing capacity
management in cellular networks. Carrier aggregation allows network operators to combine mul-
tiple frequency bands, or component carriers, to create a larger, aggregated bandwidth for data
transmission. In LTE, this aggregation can include up to five component carriers, each with a band-
width of up to 20 MHz, resulting in a total bandwidth of up to 100 MHz, as shown in Figure 2.2
[33]. However, In 5G NR, operators can aggregate even more component carriers, up to 16 in some
cases, which can combine both sub-6 GHz and mmWave frequency bands, allowing for up to 1 GHz
of aggregated bandwidth. This increased bandwidth enhances both user throughput and network
capacity, enabling faster data speeds and more efficient spectrum use. Carrier aggregation can be
applied in both the downlink and uplink, allowing for a better user experience, higher peak data
rates, and lower latency.

Figure 2.2: Carrier Aggregation in LTE [33]

In practice, mobile network operators, such as KPN, implement a range of strategies to manage
capacity efficiently, with a key focus on selecting appropriate frequency bands for 4G and 5G to
optimize data transmission and reduce latency. Initially, as part of its 5G deployment, KPN repur-
posed the 700 MHz band for 5G, leveraging its wide coverage capabilities to establish broad area
5G service. However, as 5G traffic and capacity demands grew, KPN strategically reallocated the
2100 MHz band from 4G to 5G, thus increasing available bandwidth for high speed data services in
areas with significant user demand. This band reallocation approach underscores the importance of
careful planning in capacity management, where decisions about which bands to use for 4G versus
5G are critical. Lower bands like 700 MHz are ideal for wide coverage, while mid-range bands, such
as 2100 MHz, are essential for balancing coverage and capacity, especially in high-density urban
environments. To further enhance 5G capacity in these high-demand areas, KPN is planning to
acquire spectrum in the 3.5 GHz band. This high-frequency band will support significantly greater
data rates and capacity, making it well-suited for densely populated urban centers where network
demand is highest.

The selection and deployment of 4G and 5G bands is time-intensive, with new 4G or 5G layers
typically taking six months to implement and new base stations up to two years. This means
operators must plan proactively to ensure that infrastructure is in place to support expected future
demands, which requires a forecasting model that can accurately predict network congestion based
on PRB utilization, throughput, and spectral efficiency in both 4G and 5G settings [34].
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In conclusion, capacity management in cellular networks involves a combination of capacity
planning, dimensioning, product configuration, capacity monitoring, capacity optimization, and
network capacity expansion. These strategies work together to ensure that the network operates
efficiently, balancing growing demand with available resources. Key metrics like PRB utilization,
throughput, and spectral efficiency provide insight into network performance and help operators
optimize service delivery while planning for future growth.

2.2 Predictive Modeling for Network Capacity and Conges-
tion

Accurate traffic forecasting and capacity management in cellular networks heavily rely on predictive
modeling techniques that utilize historical data and machine learning algorithms. These models are
essential for anticipating network demand and optimizing resource allocation, ensuring the network
is prepared to handle future traffic loads efficiently. With the evolution of networks from 4G to
5G, predictive modeling becomes increasingly vital due to the growing complexity of user behaviors,
service requirements, and network technologies.

Time Series Analysis is a widely used approach in traffic forecasting. Time series models, such
as Auto-Regressive Integrated Moving Average (ARIMA), are employed to identify patterns and
trends in historical data to predict future values. By analyzing past traffic, ARIMA models forecast
network load and guide capacity planning decisions. ARIMA’s structure relies on three components:
the Auto-Regressive (AR) part, which uses past values for predictions; the Integrated (I) component,
which ensures stationarity by differencing data points; and the Moving Average (MA) component,
which models the residual error from lagged observations [35] [36].

However, while ARIMA and other traditional statistical models offer a flexible framework for
network traffic modeling, they often fall short in handling complex, non-linear relationships in data.
Recent studies indicate varying effectiveness of ARIMA and machine learning models across dif-
ferent domains. For example, Kontopoulou et al. (2023) [37] demonstrated that ARIMA models
perform well for linear pattern forecasting with smaller datasets, such as in short-term financial
predictions and certain environmental and healthcare metrics. Conversely, machine learning models
like Long Short-Term Memory (LSTM) networks and XGBoost excel in handling larger datasets
and complex, non-linear patterns, making them particularly effective in areas such as network traffic
and COVID-19 forecasting. This limitation has driven a growing interest in developing estimation
models that leverage known traffic growth projections for adaptability and accuracy, especially in
dynamic, heterogeneous environments like cellular networks. These models are further discussed in
the Methodology chapter.

To ensure optimal Quality of Service (QoS), Mobile Network Operators (MNOs) continuously
monitor their infrastructure through network counters at base stations. These counters provide
raw data that is aggregated into specific Key Performance Indicators (KPIs), which summarize
network performance. According to the European Telecommunications Standards Institute (ETSI),
the critical KPI categories for LTE and NR include [38] [39]:

• Accessibility: Measures the ability of users to access network services, e.g., RRC Setup
Success Rate.

• Retainability: Reflects the network’s capacity to maintain ongoing sessions, e.g., Call Drop
Rate.

• Integrity: Concerns the quality of service experienced by the user, focusing on performance
aspects like latency.

• Mobility: Evaluates the network’s effectiveness in maintaining service continuity as the user
moves, e.g., Handover Success Rate.

14



• Availability: Indicates the proportion of time network elements are operational, e.g., eNodeB
uptime.

• Utilization: Measures how efficiently the network’s resources, such as Physical Resource
Blocks (PRBs), are used.

• Quality of Service: Assesses how well the network supports various service requirements,
e.g., QCI performance.

In [40], the authors focused on analyzing KPIs like Accessibility, Mobility, Retainability, and
Traffic KPIs. They developed a traffic forecasting platform using big data analytics and machine
learning algorithms to predict traffic patterns for GSM, 3G, and 4G cells. Although their approach
is valuable for general traffic prediction, it does not directly address spectral efficiency or user-
experienced throughput, critical factors in 4G and 5G networks. Similarly, authors in [41] focused
on forecasting average downlink throughput using LTE probes and predicted congestion events up
to 30 hours in advance. However, this study did not account for the long-term evolution of spectral
efficiency over time. While Channel Quality Indicator (CQI) prediction has been explored, the re-
lationship between CQI, spectral efficiency, and user throughput remains underexplored in dynamic
environments with changing network loads [34].

Congestion in cellular networks occurs when resource demand exceeds availability, leading to
degraded service quality. This significantly impacts average user throughput and overall network
performance. As network demands increase, congestion detection becomes critical for maintaining
performance and ensuring user satisfaction. Several factors influence average user throughput in
cellular networks [23]:

1. Number of Scheduled PRBs.

2. Signal to Interference and Noise Ratio (SINR), reported as Channel Quality Indicator (CQI).

3. MIMO Usage Performance

These factors interact in complex ways, creating dynamic relationships between individual user
throughput and overall cell traffic. In LTE, the eNodeB determines the Modulation and Coding
Scheme (MCS) based on UE reports. The combination of MCS and scheduled PRBs defines the
transport block size (TBS) for each Transmission Time Interval (TTI) [42]. For example, scheduling
100 PRBs with MCS 28 on a 20 MHz LTE cell can yield around 150 Mbit/s for MIMO 2x2 QAM64
users. However, the same 100 PRBs with MCS 0 and transmit diversity would result in only
2792 kbit/s [42]. In NR networks, this variability increases due to wider bandwidths and advanced
modulation schemes. Allocating 273 PRBs on a 100 MHz NR cell with MCS index 28 can achieve
2 Gbps per MIMO stream with 256-QAM modulation [43].

Given this complexity, PRB Utilization defined as the proportion of PRBs in use relative to
the total available PRBs, becomes a critical measure for congestion detection and performance
assessment. Here, PRB utilization, denoted by ρ, is calculated at the sector level, representing the
degree of resource consumption within a sector based on its specific user demands. This metric
reflects both the number of PRBs in use and the impact of varying MCS levels on each PRB’s
effective throughput.

The relationship between PRB utilization and user throughput can be modeled using queuing
theory, specifically the M/G/1 Processor Sharing (PS) approach, which expresses user throughput
(Tue) as:

Tue =
C(1− ρ)

ρ
ln

(
1

1− ρ

)
(2.1)

Where C is the sector capacity, adjusted for MCS, and ρ is the sector-level PRB utilization. A
simplified expression for scheduled throughput is:
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Tsch = C(1− ρ) (2.2)

This model enables congestion detection by monitoring PRB utilization, providing a consistent
reflection of sector capacity and usage dynamics under varying MCS and traffic conditions.

It’s crucial to distinguish between user throughput (Tue) and scheduled throughput (Tsch):

• User throughput: Actual data rate experienced by individual users.

• Scheduled throughput: Network-level metric representing overall cell throughput.

The scheduled throughput is typically lower due to resource sharing and network overhead. This
relationship enables congestion detection and performance assessment by focusing on PRB utiliza-
tion, offering a consistent measure of cell capacity and utilization.

Congestion Thresholds are typically determined based on specific commercial requirements,
which can vary depending on the network configuration and operator policies [23]. For example:

• An LTE cell on the 800MHz band with 10MHz bandwidth might be deemed congested at 60%
utilization (20 PRBs unused).

• An LTE cell on the 1800MHz band with 20MHz bandwidth might have a higher congestion
threshold, perhaps 80% utilization (20 PRBs remaining available).

These thresholds help operators optimize resource management based on traffic load.

2.3 Predictive modeling for spectral effeciency

The relationship between PRB load and traffic enables the calculation of spectral efficiency, a critical
factor in assessing how much traffic a cell can handle before reaching its PRB load threshold. Spectral
efficiency, in turn, informs how much data can be transmitted over a given amount of spectrum
under current network conditions. As traffic increases, predicting spectral efficiency becomes vital
for forecasting network congestion and planning capacity expansions.

Given the complex interaction between spectral efficiency, PRB load, and congestion, machine
learning models are increasingly being used to predict congestion and PRB utilization more ac-
curately. These models can dynamically adjust predictions based on current traffic patterns and
network performance, providing more effective tools for congestion prevention and capacity manage-
ment. By forecasting PRB utilization and congestion, machine learning techniques enable operators
to proactively address network issues and optimize resource allocation.

Recent studies have explored advanced techniques like Linear Regression (LR), XGBoost, Lasso
Regression, Random Forest (RF), and CatBoost to predict network performance and manage capac-
ity effectively. For example, the study by Tomic et al. (2022) demonstrated that XGBoost excelled
in modeling spectral efficiency for network performance prediction, significantly outperforming linear
models in handling large-scale data and incorporating complex features such as modulation schemes
and PRB utilization from surrounding cells [34]. This study underscored the model’s adaptability
to dynamic load conditions, a factor that is highly relevant for cellular networks facing variable user
demand.

Additionally, Chmieliauskas et al. (2019) used Facebook’s fbProphet algorithm for LTE cell traffic
forecasting, demonstrating its effectiveness in anticipating traffic growth and congestion across a
limited number of LTE cells (100 sites). Their approach allowed for proactive planning by accurately
predicting busy hour trends and congestion risks over a short-term period [23].

2.4 Research gaps

Despite numerous studies focusing on network traffic prediction, significant gaps remain in addressing
the challenges of capacity planning, particularly in terms of predicting user experience. Most current
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research emphasizes traffic forecasting and network-centric Key Performance Indicators (KPIs) but
often neglects the end-user experience, especially regarding data throughput. The majority of studies
[ [44] [45] [46] [47]] concentrate on general traffic prediction or short-term forecasting of network
performance metrics. For example, authors in [40] developed a traffic forecasting platform using
big data analytics and machine learning algorithms to predict traffic patterns in GSM, 3G, and
4G networks. While this approach is valuable for general traffic forecasting, it does not adequately
address spectral efficiency or user-experienced throughput.

Similarly, [41] demonstrated the ability to predict cell congestion events up to 30 hours in advance,
but this work was limited to short-term forecasting and did not consider the long-term evolution of
spectral efficiency. A critical limitation in existing research is the absence of comprehensive models
that integrate traffic prediction with spectral efficiency forecasting to estimate user-experienced
throughput over longer periods. While studies such as [34] have focused on predicting Channel
Quality Indicator (CQI), they have not fully explored how CQI translates to actual user throughput
or how it evolves under changing network loads.

These research gaps have significant implications for capacity planning. Inefficient planning
often stems from the lack of accurate long-term predictions of user-experienced throughput, leading
network operators to mismanage resources. This mismanagement can result in inefficient use of
capital and potential declines in service quality. The predominant focus on short-term predictions
has led to reactive network management, which may result in suboptimal user experiences during
peak usage periods. Furthermore, the absence of comprehensive models that consider both 4G and
5G technologies has hindered effective planning for the transition to 5G, potentially slowing adoption
and optimization.

This research addresses these gaps. First, it proposes an integrated approach to spectral effi-
ciency and resource block modeling, combining traffic prediction with network performance metrics
to offer a more complete view of network capacity and user experience. Second, it introduces a
methodology for predicting the long-term evolution of spectral efficiency under changing network
loads, which is essential for strategic capacity planning. Finally, it addresses the challenges of pre-
dicting performance in hybrid 4G/5G environments, filling a gap in current literature that often
focuses on single-generation networks without considering their coexistence.
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3

Data Analysis and Network Traffic
Characterization

This chapter provides an analysis of KPN’s LTE and NR network data, forming the foundation for
research on network capacity management. It covers the selection of datasets, including their gran-
ularity and scope, as well as data preprocessing techniques to ensure quality and consistency, such
as handling missing values, normalization, and outlier detection. The analysis examines network
wide traffic patterns, trends, and distributions, followed by a detailed sector level analysis, introduc-
ing concepts like spectral efficiency. Additionally, a correlation analysis explores the relationships
between key performance metrics.

3.1 Data Selection

The time granularity of the dataset is crucial in traffic and spectral efficiency predictions, influencing
two key factors. First, the length of the time series affects the forecast horizon, determining the
prediction period. It is important that the number of observations exceeds the model parameters
during training [48]. Second, data aggregation can reduce variations and limit the available data
points for model training, impacting prediction performance. Therefore, selecting an appropriate
granularity is essential for deriving accurate insights from the forecast results.

MNO employs an Operations Support System (OSS) for performance monitoring. This system
utilizes network counters placed at base stations, which serve as network access points. These
counters provide raw measurements that are aggregated to form specific KPIs. This research employs
two primary datasets to analyze mobile network performance and traffic patterns:

• The dataset includes hourly data over 67 days, exceeding the typical one month OSS collection
window to capture weekly and monthly variations, resulting in a more robust and representa-
tive dataset. It contains around 159 million records from 5,500 sites. This hourly granularity
is essential for studying peak usage congestion and detailed sector level analysis [23].

• Additionally, The research uses a year long daily dataset, representing the maximum historical
data available from the OSS system. This dataset is used to analyze long term trends, including
the transition from 4G to 5G, traffic distribution patterns, and changes in downlink and uplink
traffic.

This research is based on an analysis of KPN’s LTE and NR network data, encompassing ap-
proximately 5,500 sites across the Netherlands. These sites cover diverse geographical areas with
varying traffic patterns, including urban and suburban areas, as well as wide rural coverage zones
with low traffic density.

Figure 3.1 illustrates the total data traffic volume over the year long study period. It shows
an increasing trend in data volume traffic throughout the year, signifying growing demand for data
services. Periodic fluctuations are observable, likely due to user activity patterns and network
management activities. A notable dip in traffic during the last week of December 2023 and the first
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week of January 2024 is attributable to reduced data usage during the Christmas holiday and New
Year in the Netherlands.

Figure 3.1: Growth Trend in KPN Data Traffic Volume (4G and 5G) combined

The primary input variables for the predictive models are shown in the appendix A in Table A.1.

3.2 Data Preprocessing

Data preprocessing is a crucial step in any data analysis or machine learning project, particularly
in the context of network capacity management. Raw data from network systems often contains
inconsistencies, missing values, and varying scales that can impact the accuracy and reliability of
subsequent analyses. The preprocessing phase involved two main steps: handling missing values and
data normalization. These steps are essential to create a clean, consistent dataset that could provide
meaningful insights into network traffic patterns and facilitate accurate capacity management.

3.2.1 Handling Missing Values

Missing data in the network traffic records is addressed using linear interpolation. This method
estimates unknown values within a set of known data points, providing a continuous and smooth
estimation of the missing data. Linear interpolation is chosen over other methods, such as mean im-
putation or more complex algorithms, because it preserves the overall trend and pattern of the data,
which is essential for capacity management. The interpolation formula used is given in Equation
3.1:

y = y1 +
(x− x1)(y2 − y1)

(x2 − x1)
(3.1)

where y is the interpolated value, x is the estimation point, and (x1, y1) and (x2, y2) are known
data points.
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3.2.2 Data normalization

Data normalization is a crucial preprocessing technique for the congestion prediction model, which
utilizes LR, RF, Lasso, and CatBoost. This process adjusts the scale of features in the dataset,
ensuring they fall within a specific range, typically [0, 1]. Normalization is particularly important in
this context, where features like traffic volume, time of day, and bandwidth usage are measured on
different scales. By applying Min-Max normalization, consistency in feature evaluation is achieved,
preventing any single feature from disproportionately influencing the model and improving overall
model performance.

The Min-Max normalization technique, chosen for its advantages in this scenario, scales the data
to a fixed range using the following equation 3.2:

x′ =
x−min(x)

max(x)−min(x)
(3.2)

where x is the original value, min(x) and max(x) are the minimum and maximum values in the
feature, and x′ is the normalized value.

This normalization technique leads to more stable gradients during training. Figure 3.2 illustrates
the result of applying Min-Max normalization to the traffic data from daily dataset , scaling values
between [0,1] range. The plot demonstrates the preservation of the overall upward trend in traffic
volume, clear visibility of daily and weekly fluctuations, and easy identification of anomalies.

Figure 3.2: Daily traffic data after Min-Max normalization

3.2.3 Outlier Detection

In the analysis of network traffic data, particularly at the granular hourly level, the presence of
outliers, the data points that deviate from the normal traffic patterns can negatively affect the
accuracy of predictive models and skew the interpretation of network behavior. Outliers in this
context may represent anomalous network events, measurement errors, or extreme but valid traffic
spikes. Handling outliers is crucial because they can distort key calculations, such as spectral
efficiency and congestion predictions, leading to inaccurate assessments of network performance.
Several outlier detection methods are evaluated for this task:

Initially, the Interquartile Range (IQR) method is a statistical approach that focuses on the
central 50% of the data distribution. It identifies outliers based on the spread between the first
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quartile (Q1) and the third quartile (Q3), known as the Interquartile Range. Data points are
classified as outliers if they fall below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. This method is
effective for detecting extreme values in symmetrically distributed data, but it only detects outliers
in a single dimension at a time. For example, when applied separately to PRB utilization and traffic
data as illustrated in Figure 3.3c, the IQR method can overlook multidimensional anomalies where
unusual combinations of PRB utilization and traffic might signal congestion events.

Secondly, the Z-Score method standardizes data points based on their deviation from the mean,
measured in standard deviations, and is also limited to univariate outlier detection. Each data point
is assigned a Z-score calculated as:

Z =
x− µ

σ
(3.3)

where x is the data point, µ is the mean, and σ is the standard deviation of the dataset. Typically,
points exceeding a predetermined threshold (e.g., a Z-score of ±3) are flagged as outliers. While
this method is effective for detecting anomalies in normally distributed data, it does not account for
interactions between multiple dimensions. In complex, real-world network traffic, single-dimensional
outlier detection fails to capture unusual combinations of PRB utilization and traffic. This limitation
is evident in Figure 3.3b where the Z-score method struggles to identify multidimensional anomalies.

Given the complexity of the dataset, Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) emerges as the optimal choice for outlier detection. DBSCAN’s density-based approach
can identify isolated points from high-density regions regardless of their absolute values, making it
particularly effective for network traffic analysis [49]. While traditional methods like IQR and Z-score
examine variables independently, DBSCAN analyzes data in multidimensional space, enabling the
detection of unusual combinations of PRB utilization and traffic metrics that may indicate network
anomalies. This multidimensional analysis captures atypical patterns and relationships between
variables that single-dimensional methods would miss, providing a more assessment of potential
congestion.

Figure 3.3 illustrates a comparison of original data and outlier cleaning methods applied to PRB
utilization and traffic volume for sector 75271-4 over an hourly data period from May 2 to July 8,
2024. During this time, the 2100 MHz band is reconfigured for 5G to accommodate increased traffic,
but the 3.5 GHz spectrum had not yet been introduced (its deployment occurred at the end of week
28 in 2024). The reason for selecting this specific sector for analysis will be discussed in the upcoming
section. In Figure 3.3a, the dataset contains outliers that may not be extreme in terms of absolute
value but are spatially isolated from the denser data clusters. DBSCAN, a density-based algorithm,
is chosen for its ability to identify such outliers by focusing on data density rather than just value
extremity. This approach is particularly useful in identifying points with unusual combinations of
PRB utilization and traffic volume, indicating atypical network conditions.

The DBSCAN algorithm relies on two primary parameters:

• ϵ (eps): This parameter sets the maximum distance between two samples for them to be consid-
ered in the same neighborhood. Through iterative tuning, an optimal ϵ value is determined by
observing the formation of data clusters, ensuring that only closely packed points are grouped
while isolated points remained detectable as potential outliers.

• MinPts: The minimum number of samples require to form a dense region. By setting MinPts
based on the natural density of typical data points in the distribution, the model ensured that
sparsely populated areas with low PRB utilization, where favorable propagation conditions are
likely more effectively flagged as outliers.

After tuning these parameters, DBSCAN is applied to the hourly dataset, focusing on key metrics
such as traffic volume and PRB utilization. The algorithm specifically flagged data points with
unusually low PRB utilization relative to high traffic levels.

The outliers removed by DBSCAN were primarily those with unusually low PRB utilization
relative to the observed traffic volume. These cases often reflect favorable propagation conditions or
optimal user distribution within a sector, where high data throughput is achieved with minimal PRB
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usage. By excluding such points, the goal was to obtain conservative spectral efficiency estimates
that would inform a cautious planning approach, as shown in Figure 3.3d. A key consideration
was the potential removal of data points that exhibit high PRB utilization for the given traffic, as
these could indicate challenging propagation conditions or other network limitations. To prevent the
erroneous exclusion of such critical cases, the fine-tuning process included a threshold that preserves
clusters near the higher bounds of PRB utilization for each traffic volume level. This approach
ensures that high utilization outliers remain in the dataset, capturing instances where suboptimal
spectral efficiency could signal capacity constraints that should be addressed in the planning process.

(a) Original Data (b) Z-Score Cleaned Data

(c) IQR Cleaned Data (d) DBSCAN Cleaned Data

Figure 3.3: Comparison of Original Data and Outlier Cleaning Methods on sector 75271-4

This cleaned dataset provides the foundation for subsequent analyses, including spectral efficiency
calculations and the development of the congestion prediction model, which will be discussed in detail
in the Methodology chapter. By applying these preprocessing techniques, a robust data pipeline is
ensured.

To further analyze the development of spectrum efficiency over time and understand its depen-
dency on daily patterns, Figure 3.4 presents the average traffic and spectral efficiency by hour of
the day for sector 75271-4. Here, the traffic and spectral efficiency averages were calculated for each
hour of the day. The figure shows that as traffic load decreases during early morning hours, spectral
efficiency also drops to its lowest levels. As the day progresses and traffic load increases, spectral
efficiency rises correspondingly, demonstrating an upward trend with higher traffic volumes, up to a
certain threshold. During peak traffic hours, spectral efficiency tends to stabilize or slightly decrease,
likely due to high PRB utilization approaching the sector’s capacity limits. This pattern suggests
that at higher traffic loads, the sector manages demand by efficiently utilizing available resources.
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Figure 3.4: Hourly patterns of traffic and spectral efficiency for sector 75271-4.

3.3 Time series analysis

This research is predicting network traffic for the upcoming year. To achieve this, analyzing the
daily dataset spanning one year of 4G and 5G traffic is crucial. This time series analysis aims to
assess the data characteristics and extract insights critical for the prediction model described in
Chapter 6. Time series data can be decomposed into three distinct components: trend, seasonal-
ity, and noise [50]. The trend represents long term changes (increasing, constant, or decreasing)
over time. Seasonality captures recurrent patterns within specific periods (e.g., weekly or monthly),
influenced by seasonal factors. The residual component, also known as noise, accounts for unex-
plained variability not attributed to trend or seasonality. Empirical analysis of the dataset reveals
an increasing trend in traffic volume over time, with a consistent weekly pattern, likely influenced
by seasonal changes in user behavior. To better understand these underlying patterns, time series
decomposition is performed using Python [51], employing a multiplicative model [52]. This model
combines various components to reconstruct the historical time series, as expressed in Equation 3.4:

Yt = Tt × St ×Rt (3.4)

Where Tt represents the trend component, St the seasonal component, and Rt the residual
component.

Given the daily data with weekly seasonality, a 7 day season length is used for decomposition.
Figure 3.5 illustrates the results of this multiplicative decomposition for both 4G and 5G data time
series. The trend component is defined by traffic volume in bits per day, while the seasonality
exhibits a weekly pattern. The y-axes for seasonality and residual components represent factors to
be multiplied by the trend to reconstruct the historical time series.
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Figure 3.5: The multiplicative decomposition of the time series.

Figure 3.6 provides a detailed view of the trend and seasonality components. The observed
increasing trend indicates consistent traffic growth, with a steep slope reflecting an annual increase
of approximately 50%. This aligns with the expanding demand for network services. The weekly
seasonality is evident, showing recurrent patterns influenced by seasonal factors. Notable features
include an upward trend from the start of the calendar year, significant traffic drops during Christmas
and New Year’s, followed by a drastic increase. As traffic grows, the magnitude of the seasonal
component increases proportionally.
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Figure 3.6: The trend and seasonality components of 4G & 5G data.

Further investigation is conducted to examine the traffic patterns in DL and UL directions. This
analysis is crucial for understanding network usage and informing the focus of the congestion pre-
diction model. Figure 3.7 illustrates the comparison between DL and UL traffic volumes over time.

Figure 3.7: Comparison of Data Volumes in DL and Uplink UL.

As shown in the figure, DL traffic consistently exceeds UL traffic, with DL volumes approximately
3-4 times greater than UL volumes. The observed asymmetry between DL and UL traffic aligns
with typical network usage patterns, driven by download-centric activities such as video streaming,
browsing media-rich websites, and downloading large files. While uplink capacity remains a crucial
consideration, many network technologies are optimized for greater DL capacity to handle the heav-
ier load associated with these high-bandwidth activities.
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Although DL traffic is significantly higher, this alone does not directly imply that DL is the
sole cause of congestion, as congestion is also influenced by the capacity of each traffic direction.
However, because DL traffic generally represents a larger portion of the total network load and is
more likely to contribute to congestion under high usage conditions, subsequent analyses and model
development will primarily focus on DL traffic patterns.

Figure 3.8 presents a heatmap of combined LTE and NR bands’ traffic distribution across the
entire network. This visualization reveals that the 1800 MHz and 2100 MHz bands consistently
carry the highest percentage of total downlink traffic, with the 1800 MHz band handling 35-41%
and the 2100 MHz band managing 25-29% before its repurposing. This concentration stems from
the network’s traffic steering algorithm, which preferentially directs traffic to these bands due to
their higher capacity.

A notable transition occurs around May 21, 2024, when the 2100 MHz band is repurposed for 5G
deployment. This shift redistributes traffic, with the 1800 MHz band increasing to over 41% and the
2100 MHz band, now operating as 5G, decreasing to about 17%. The decrease in 2100 MHz band
traffic results from limited 5G technology support among client end-user equipment. Meanwhile,
other bands such as 2600 MHz experience slight increases in traffic share.

Figure 3.8: Traffic Distribution Across Different Frequency Bands

This traffic distribution analysis provides valuable insights into how different frequency bands
handle traffic and where potential congestion may occur. Higher-frequency bands like 1800 MHz
and 2100 MHz have more available capacity and are suitable for managing increased traffic volumes.
However, they also tend to experience higher congestion, with higher data demand.

Moreover, by conducting a sector-level analysis that considers all frequency bands within a
sector, the congestion prediction model aligns with real-world network operations, which utilize
carrier aggregation a technique that combines multiple frequency bands to increase capacity and
improve data rates—to manage traffic more efficiently.

Figure 3.9 illustrates the comparison between downlink traffic for permanent macro sites and the
total downlink traffic, including indoor sites. The graph shows that macro sites handle the majority
of network traffic, which aligns with KPN’s infrastructure of approximately 5,000 macro sites com-
pared to only 500 indoor sites. Although the difference between the two lines in the graph suggests
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that indoor sites contribute a smaller percentage of the overall network traffic. Both macro and
indoor sites can experience congestion depending on their spectral efficiency and capacity, especially
as more 5G devices enter the network. While this study focuses on macro sites due to their role as
primary load bearers and their higher likelihood of experiencing congestion, the developed model is
capable of analyzing traffic patterns and predicting congestion for indoor sites as well. However, the
macro sites will remain the primary focus, given their larger contribution to overall network traffic
and their critical role in network-wide congestion management.

Figure 3.9: Comparison of Downlink traffic in Macro Sites and All sites.

Conclusion

Based on the above analysis of traffic patterns and network infrastructure, the congestion pre-
diction model will focus on downlink traffic at the sector level for permanent macro sites. This
approach aligns with the predominant traffic flow, accounts for dynamic frequency allocation within
sectors, and targets the network elements handling the majority of data traffic. By concentrating
on these key aspects, the model aims to effectively predict and address potential congestion issues
in the most critical areas of the network.

3.4 Sector level Analysis

While a network wide analysis provides a broad view of traffic patterns and trends, a more granular
approach is essential for understanding network performance and accurately identifying congestion
points. Sector-level analysis delves deeper into individual sectors, assessing traffic patterns, resource
utilization, and, critically, spectral efficiency to offer insights that would be obscured in an aggre-
gated, network wide view. This focus on sectors rather than individual cells is particularly valuable
due to the unique structure of cellular networks. Each sector comprises multiple cells operating on
different frequency bands, where higher frequency cells provide higher capacity but more limited
coverage than lower frequency cells. The goal of sector-level planning is to maintain a consistent
Quality of Service (QoS) across the entire sector, even in areas with lower capacity.

This shift to sector-level analysis is also driven by variations in user density, geographical fea-
tures, and local events that affect each sector differently. By examining each sector individually,
network planners can optimize resource allocation, address localized congestion points, and improve
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spectral efficiency where it is most needed. This approach enables a tailored strategy for capacity
management, ensuring that resources are allocated effectively to maintain network performance and
meet user demands across all areas of the network.

For this analysis, The focus on Sector 75271-4, which consistently experiences high traffic vol-
umes, aims to address its unique challenges in traffic and spectral efficiency.

Spectral efficiency, measured in bits per second per Hz, reflects how effectively each sector uses
its allocated spectrum. Figure 3.10 compares the spectral efficiency of Sector 75271-4 and Sector
1001-1. The plot clearly shows that Sector 75271-4 (represented by green circles) exhibits a wider
spread in both traffic volume and PRB usage, reflecting higher spectral efficiency compared to Sector
1001-1 (represented by black triangles). This supports the observation that Sector 75271-4 experi-
ences higher traffic and utilizes its spectrum more efficiently, particularly during peak hours. Sector
75271-4, located in a high-demand recreational area, sees a high concentration of users engaged
in data-intensive activities, such as media streaming and navigation. The combination of modern
devices and an open environment further enhances signal quality and data rates, driving the sector’s
spectral efficiency. In contrast, Sector 1001-1, which experiences lower traffic volumes, has a more
concentrated, narrower distribution of PRB usage and traffic, reflecting lower spectral efficiency.

Figure 3.10: Comparison of spectral efficiency between two network sectors.

These observations from the sector level analysis provide crucial insights that will guide the
subsequent modeling efforts, particularly in developing predictive models for congestion and spectral
efficiency.

3.5 Correlation Analysis

This section explores the relationships between key performance metrics at the sector level, focusing
on PRB utilization, traffic volume, and average user throughput. Understanding these relationships
is essential for predicting network performance and managing congestion effectively. Correlation
measures the degree to which two variables are linearly related, and the strength of this relationship
is quantified using the Pearson correlation coefficient (r), which ranges from -1 to 1 [53]. The Pearson
correlation coefficient is calculated as:

rX,Y =

∑
(X − X̄)(Y − Ȳ )√∑

(X − X̄)2 ·
√∑

(Y − Ȳ )2
(3.5)

Where X and Y represent the variables being analyzed, such as PRB utilization and traffic
volume. X̄ and Ȳ are the mean values of X and Y , respectively. The summation

∑
is calculated
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over all paired data points. The denominator consists of the product of the standard deviations of X
and Y . A positive correlation indicates that as one variable increases, the other also rises, showing
a direct relationship. Conversely, a negative correlation suggests that as one variable increases, the
other decreases, highlighting an inverse relationship. A correlation close to zero implies no significant
linear relationship between the variables.

The correlation analysis is performed on daily data over a one year period for Sector 75271-4,
revealing strong relationships between the key metrics, as illustrated in Figure 3.11:

Figure 3.11: Correlation matrix for sector 75271-4

As expected, the analysis revealed a strong positive correlation (0.87) between traffic volume
and PRB utilization, indicating that higher traffic leads to increased resource usage. However,
this correlation is intuitive and commonly observed in network performance analysis. The primary
insight comes from the negative correlation between traffic volume and user throughput (-0.90) and
between PRB utilization and user throughput (-0.93). These findings indicate that as traffic and
PRB usage increase, service quality, reflected by user throughput, degrades significantly.

While the correlation between traffic and PRB utilization is predictable, the strong negative
correlations involving user throughput underscore the critical importance of managing PRB resources
effectively to avoid congestion and ensure consistent service quality. The results also underscore the
role of spectral efficiency as a key measure, integrating these variables to assess sector performance
and identify areas where capacity issues are most likely to affect service quality, offering key insights
for network management improvements.
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4

Forecast Methodology

This chapter details the methodology for developing a prediction model using time series data for
Cumulative Distribution Functions (CDF) and machine learning regression models. The goal is to
produce weekly forecasts of congested sectors for up to one year, providing insights into future traffic
patterns and potential congestion areas.

4.1 Overview of the Forecasting Process

The forecasting process integrates several key components to predict traffic demand, resource uti-
lization, and potential congestion points in the network:

• Time Series Models: Utilizing both projection growth rates and hourly historical time series
data to predict traffic volume.

• CDF Model for Traffic Prediction: Employing a Cumulative Distribution Function ap-
proach to identify sector specific traffic distribution patterns and integrate known projection
growth rates. The CDF model allows for detailed analysis of peak traffic loads and assists in
determining the likelihood of congestion occurring in each sector. .

• Machine Learning Regression Models: Applying various supervised learning techniques,
such as Linear Regression, Lasso, Random Forest, and CatBoost to model the relationship
between traffic demand, PRB utilization, and spectral efficiency.

• Spectral Efficiency and Congestion Forecasting: Spectral efficiency, is a primary mea-
sure used to assess each sector’s ability to handle increasing traffic. By analyzing spectral
efficiency alongside traffic capacity, the model can predict potential congestion points.

In radio networks, spectral efficiency is closely related to factors such as system design, modu-
lation schemes, and radio channel propagation characteristics. These aspects influence the model’s
predictions of spectral efficiency, as each sector’s radio environment is unique. This thesis approaches
spectral efficiency predictions on a sector-by-sector basis, using historical traffic and PRB utilization
data specific to each sector. This methodology inherently captures the local propagation conditions
and design factors, indirectly accounting for fluctuations in radio environments. While system de-
sign and propagation conditions significantly impact spectral efficiency, the sector-specific approach
ensures that these factors are incorporated within the predictions, supporting a more accurate as-
sessment of each sector’s capacity to manage traffic growth.

4.2 Time series models

While mobile network operators store daily performance indicators, shorter time periods (e.g., 1
hour) are needed to evaluate peak congestion. This study uses hourly historical time series data
and projection growth rates to predict traffic volumes. Growth projections consider factors such as
subscriber increases and new service rollouts, providing a comprehensive view of potential future
congestion. The predicted traffic volumes are then compared against each sector’s spectral efficiency
to evaluate whether the sector can handle the anticipated load. Spectral efficiency is a critical mea-
sure in this comparison because it reflects how effectively each sector utilizes its allocated spectrum.
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By doing so, the model identifies sectors where the load threshold may be exceeded, providing insight
into potential congestion points during peak hours.

As illustrated in Figure 4.1, the forecasting workflow begins with historical network traffic mea-
surements and projected growth rates. These inputs are processed through a CDF to generate a
one-year traffic prediction. Machine learning models, such as LR, CatBoost, Lasso, and RF, are
then employed to predict each sector’s spectral efficiency, which plays a pivotal role in identifying
capacity limitations. Based on the predicted spectral efficiency and the sector’s traffic capacity, the
model generates weekly forecasts of congested sectors.

Figure 4.1: Integrated Process for Traffic Volume Prediction and Congestion Forecasting

To ensure efficiency in the methodology development, The initial focus is on Sector 75271-4,
which experiences high peak hour traffic due to its location in a popular recreation area. As shown
in Figure 4.2 spectral efficiency in this sector approaches its capacity during peak times, making
it an ideal candidate for model development. Once validated in Sector 75271-4, the model will be
extended to other sectors across the network.

Figure 4.2: Spectral efficiency for sector 75271-4.

31



4.3 Cumulative Distribution Function (CDF) Model for Traf-
fic Prediction:

The CDF model is preferred over other commonly used models for mobile network traffic predic-
tion due to its ability to capture sector-specific traffic patterns and provide a probabilistic view of
traffic distribution. While many forecasting models rely solely on historical data, the CDF model
incorporates known growth projections, allowing it to account for future changes in traffic demand.
Additionally, the CDF model is particularly effective in handling bursty and peak traffic patterns
and is adaptable to sector-specific variability, making it better suited for mobile network traffic
forecasting.

The CDF model predicts future traffic volumes in mobile networks. It represents the probability
that traffic volume will be less than or equal to a given amount. This is expressed as:

FX(x) = P (X ≤ x) (4.1)

where FX(x) is the CDF and X is the traffic volume.

The implementation of this model for traffic prediction begins with the collection and prepro-
cessing of historical traffic data, organized into time series for each network sector and categorized
by day of the week and hour of the day.

To capture temporal traffic patterns, the model constructs 168 distinct CDFs for each sector,
corresponding to each hour of the day across every day of the week. These unique CDFs allow the
model to capture sector-specific traffic distributions that vary by hour and day, ensuring that each
sector’s forecast reflects its own traffic patterns. The traffic data for each hour and day is sorted
in ascending order, which allows for the calculation of cumulative probabilities for any given traffic
volume and provides insights into the likelihood of different traffic levels, especially during peak
usage periods. A key metric derived from each CDF is the 95th percentile:

P95 = F−1
X (0.95) (4.2)

which serves as a threshold for identifying peak traffic volumes and helps in classifying hours as
peak or non-peak.

The model assumes independence in traffic values generated per hour, meaning that sequential
correlations (e.g., traffic increases or decreases across consecutive hours) are not directly modeled.
However, by creating unique CDFs per hour and day, the model partially captures natural daily
and weekly traffic patterns. This level of granularity reflects typical traffic variations across different
times of the week.

The model incorporates a sector specific weighting system to adapt the network wide projection
growth rate. This weighting system is designed to more accurately apply the overall network growth
rate to individual sectors based on each sector’s unique capacity and traffic characteristics. Since
the projected growth rate data is provided monthly for the entire network (spanning all sites and
sectors), the weight is calculated to adjust this network-wide growth rate to fit the specific traffic
profile of each sector. Each sector’s weight is determined by calculating the ratio of its total traffic
volume to the total network traffic volume. Specifically:

Weighti =
Total Traffici∑n
j=1 Total Trafficj

(4.3)

where n is the total number of sectors. This weight allows us to proportionally allocate the
projected growth rate across sectors, reflecting sector-specific traffic demand relative to the network
as a whole.

Traffic predictions are generated through a process of inverse CDF sampling. For each hour,
a new random value (u) is drawn from a uniform distribution (0,1), and the corresponding traffic
volume is determined by applying the inverse CDF (F−1

X (u)). This process, called inverse CDF
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sampling, reflects the probabilistic nature of historical traffic patterns and enables realistic variation
in traffic forecasts, as each prediction is based on a unique random draw from the traffic distribution.

The base prediction is then scaled by a dynamic growth factor:

Gt = Base Growth×
(
1 +

Weekt
52

)
(4.4)

where:

• Base Growth represents the initial growth factor specific to either peak or non-peak hours,
accounting for different rates of increase during high and low usage times.

• Weekly Adjustment: The term
(
1 + Weekt

52

)
scales the growth factor incrementally over the

weeks in a year, adjusting the base growth upward as time progresses. By dividing by 52 (the
number of weeks in a year), the growth factor increases smoothly, reflecting cumulative traffic
growth throughout the forecast period.

The final traffic prediction for a given time t (Tt) is calculated as:

Tt = F−1
X (u)×Gt ×Weighti (4.5)

where:

• F−1
X (u) Provides the base traffic prediction using a unique random value u from the CDF,

simulating the inherent variability in traffic demand.

• Gt: The dynamic growth factor, which adjusts the base prediction based on expected network-
wide growth over time.

• Weighti: This sector-specific weight (Weighti) is a sector-specific weight that scales the growth
rate according to each sector’s unique traffic characteristics. This is calculated as each sector’s
proportion of the total network traffic volume, ensuring that growth adjustments align with
each sector’s actual traffic profile.

By implementing the CDF model in this way, MNOs generate sector-specific traffic predictions
that incorporate historical patterns, future growth, and sector-specific characteristics. This ap-
proach allows each sector’s forecast to reflect both the expected network-wide traffic increase and
the individual traffic characteristics of that sector.

4.4 Spectral efficiency and congestion forecasting

In mobile networks, predicting sector congestion and managing user throughput are essential for
effective capacity management. Spectral efficiency is a key metric that reflects how efficiently a
sector uses its spectrum resources, measured up to the PRB load threshold. It directly quantifies
the relationship between traffic volume and PRB utilization. Strong correlations between these
factors indicate that as traffic increases, PRB utilization also rises, impacting user throughput.
Therefore, spectral efficiency is the primary measure used to assess a sector’s ability to manage
traffic growth and avoid congestion.

Spectral efficiency is calculated using the following equation:

SEsector =
Data Volumesector

PRB Utilsector × Total Bandwidthsector ×Measurement Period
(4.6)

where:

• SEsector represents the spectral efficiency at the sector level in bits/Hz/second,

• Data Volumesector is the total data volume handled by the sector during the measurement
period (in bits),
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• PRB Utilsector is the average PRB utilization across all cells in the sector,

• Total Bandwidthsector is the sum of the bandwidths of all carriers (frequency bands) operating
within the sector (in Hz),

• Measurement Period is the duration over which the data is collected (e.g., 1 hour).

PRB is the smallest unit of bandwidth and time allocated for data transmission in cellular
networks. The number of PRBs available in a cell depends on the channel bandwidth and subcarrier
spacing used as discussed in Section 2.1.

Given that cells within a sector may operate on different bandwidths and subcarrier spacings,
each cell may inherently have a different number of PRBs thus, a different spectral efficiency. To
incorporate this variation, historical PRB utilization data is collected for each cell individually. The
sector-level PRB utilization (PRB Utilsector) is then calculated as the average PRB utilization across
all cells within the sector. This averaged utilization reflects the sector’s performance as a whole,
accounting for the varying PRB numbers and spectral efficiency across different cells.

The congestion forecasting process involves a detailed analysis of each sector’s spectral efficiency
and traffic handling capacity before reaching the PRB utilization threshold. This approach captures
sector-specific traffic patterns and user distributions. The forecasting process consists of four key
steps:

1. Collect and analyze historical PRB utilization and traffic volume data at the cell level, then
aggregate these metrics by summing traffic volume and averaging PRB utilization across all
cells within each sector. This aggregation creates a sector-level performance model reflecting
typical traffic behavior and resource usage.

2. Apply machine learning regression techniques to model the relationship between traffic de-
mand and PRB utilization. This helps in understanding how traffic growth affects spectrum
utilization and PRB load thresholds at the sector level.

3. Use the regression model to calculate spectral efficiency by determining the maximum traffic
volume each sector can handle before exceeding the PRB utilization threshold. This sector-
level approach assumes that cell-specific variations in spectral efficiency, such as those due
to differences in frequency bands, are minimal or effectively averaged out in the aggregation
process. Spectral efficiency serves as the benchmark for congestion prediction.

4. Forecast future traffic patterns and identify potential congestion points by monitoring spectral
efficiency trends at the sector level. This enables proactive network management and allows
operators to take targeted interventions before congestion affects user throughput.

Machine learning techniques are categorized into unsupervised, supervised, and reinforcement
learning. Unsupervised learning groups data based on similar characteristics, while supervised
learning builds a mapping function between input and output data to estimate output features.
Reinforcement learning involves training an agent through interaction with an environment. For
this study, supervised learning is chosen due to the clear relationship between PRB utilization and
traffic volume in the historical data as shown above. With extensive labeled data pairs of traffic
volumes (input) and PRB utilization (output), supervised learning is well suited to meet the study’s
objectives. Therefore, this chapter introduces supervised learning techniques and their implementa-
tion challenges to achieve accurate predictions.

4.4.1 Supervised machine learning Regression approach

The primary reason for using machine learning algorithms in this project is to estimate and predict
PRB utilization and spectral efficiency in mobile network sectors. By utilizing sector level metrics
such as traffic volume and PRB usage from large historical datasets, machine learning can model
complex relationships between these variables, enabling more accurate and adaptive predictions.
This approach is particularly effective for managing the vast amounts of data generated by mobile
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networks, which traditional methods would struggle to handle. Machine learning enhances resource
allocation and network performance by improving the forecasting of potential congestion points. LR
and Lasso are used to explore the linear relationship between traffic volume and resource utiliza-
tion, while CatBoost is applied to capture non linear relationships. RF combines both linear and
non linear boundaries through tree based modeling. More information about the machine learning
techniques used in this project can be found in Appendix B.

The methodology for predicting network congestion and traffic volume integrates a systematic
data flow and operations pipeline, as illustrated in Figure 4.3. The process begins with Data Col-
lection and Preparation, where raw data is collected from the OSS and stored in a local database.
This data includes historical hourly traffic data and PRB utilization for all network sectors. Feature
Engineering is then applied to add time based features such as hour, day, and weekday, which are
crucial for capturing the temporal variations in traffic patterns and accounting for the dynamic and
nonlinear nature of network traffic.

Figure 4.3: Data flow in the pipeline

In the Data Splitting phase, the dataset is divided into two parts: the training set and the test set.
The training set is used to train the machine learning model, allowing the model to learn patterns
from the data. This set forms the foundation for building the predictive model. The test set, on the
other hand, is kept separate and unseen by the model during training. It is used later in the process
to evaluate the model’s performance, ensuring that the model can generalize well to new, unseen
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data and doesn’t overfit to the training data. To ensure robust model performance, the training set
is further split into a sub-training set and a validation set using Cross-Validation. Cross-validation
helps assess the model’s performance on different subsets of the training data, allowing for better
hyper-parameter tuning and model selection. The validation set is specifically used to fine-tune the
model by evaluating it during training, while the test set remains reserved for final model evaluation.

During Feature Importance Evaluation, the significance of various features is assessed to identify
those that most influence the model’s predictions. Afterward, the Model Selection phase compares
different machine learning algorithms, such as Linear Regression (LR), Lasso, Random Forest, and
CatBoost.

In the Hyper-parameter Tuning phase, GridSearchCV with cross-validation is used to optimize
model parameters. If the validation error is still reducing, the process loops back to hyper-parameter
tuning for further fine-tuning. The pipeline continues this iterative process until the validation error
reaches a constant or acceptable value, ensuring the model is well-optimized. Once the validation
error has stabilized or is minimized, the pipeline proceeds to Training the Optimal Model. The
model is trained on the full training set with the best-tuned hyperparameters.

The final step involves Performance Evaluation, where the trained model is tested on the test set
to assess its predictive accuracy. This process produces the Optimized Model for Sector Capacity
Prediction, which can be used to forecast network congestion and manage traffic across different
network sectors.

4.5 Hyperparameter Tuning

Hyperparameter tuning is essential for optimizing the performance of machine learning models used
for PRB utilization prediction. This study uses the GridSearchCV tool to systematically explore
the hyperparameter space for models including LR, Lasso Regression, RF, and CatBoost.

For each model, a set of hyperparameters and their potential values are defined, as shown in
Table 4.1. GridSearchCV evaluates all combinations by training the model on subsets of the data
and validating performance using k-fold cross validation. The average performance metric (negative
mean squared error) is calculated for each fold, and the hyperparameter set with the best overall
performance is selected.

The study uses 5-fold cross validation to ensure reliable performance estimation by testing the
model on different data subsets. This method reduces the risk of overfitting and ensures the model
generalizes well to unseen data.

Table 4.1: Hyperparameters and Their Ranges for Lasso Regression, Random Forest, and CatBoost
Models

Model Parameter Values
Lasso Regression alpha [0.1, 0.5, 1.0, 10.0]

Random Forest

n estimators [100, 200, 500]
max depth [10, 20, None]
min samples split [2, 5, 10]
min samples leaf [1, 2, 4]

CatBoost
iterations [100, 500]
depth [4, 6, 8]
learning rate [0.01, 0.1, 0.3]

Negative mean squared error is used as the scoring metric for GridSearchCV, aiming to minimize
prediction errors in PRB utilization. After completing the grid search, the best hyperparameters
for each model are selected based on the highest average cross validation score. These optimal
hyperparameters are then used to train the final model on the entire training dataset.

By carefully tuning the hyperparameters as outlined in Table 4.1, this approach ensures that the
best possible version of each algorithm is compared in the evaluation of PRB utilization prediction
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performance. This process contributes to the robustness and reliability of the congestion forecasting
methodology.

4.6 Model Evaluation

The results from the forecasting methods are evaluated and compared to determine the necessary
steps for the final design of the prediction model. To assess the performance of the models, the Mean
Absolute Percentage Error (MAPE) is used, a widely recognized metric for evaluating prediction
accuracy. The model with the lowest MAPE is considered the most optimal, as it indicates closer
alignment between the predicted values and the actual observed data. The formula for calculating
MAPE is shown in:

MAPE =
1

n

n∑
t=1

∣∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣∣× 100 (4.7)

where t represents a specific time period, n is the total number of observations, and Yt is the
observed throughput at time t. The MAPE is calculated by taking the absolute difference between
the predicted Ŷt and observed values, relative to the observed values.

In addition to MAPE, the R2 score, also known as the coefficient of determination, was used to
measure the proportion of the variance in the observed data that is predictable from the independent
variables. The formula for calculating R2 is shown in Equation 4.8:

R2 = 1−
∑n

t=1(Yt − Ŷt)
2∑n

t=1(Yt − Ȳ )2
(4.8)

where Yt represents the observed throughput at time t, Ŷt represents the predicted throughput,
and Ȳ is the mean of the observed data. The R2 score provides insight into how well the model
explains the variability of the observed data. A value of R2 = 1 indicates a perfect fit, meaning that
the model explains all the variance in the data, while an R2 of 0 indicates that the model explains
none of the variability.

Together, MAPE and R2 provide a assessment of model performance. While MAPE quantifies
the percentage error of predictions, R2 indicates how much of the variation in the data can be
explained by the model.

4.7 Congestion threshold and Forecasting

To maintain a minimum service requirement of 6.0 Mbit/s for 90% of user connections, it is crucial
that a sector’s PRB load does not reach full capacity. KPN has set the PRB load threshold at 89%
of the utilization, leveraging carrier aggregation across its sites [54]. Congestion in a sector is defined
by two key criteria [55]:

• Short-term: PRB utilization exceeds the established threshold, resulting in service degrada-
tion (below 6.0 Mbit/s for 90% of connections) over a 1-hour period.

• Long-term (Structural): Weekly congestion is identified when the total traffic during con-
gested hours exceeds 5% of the total weekly traffic volume (including both congested and
non-congested hours). This criterion must be met for at least 6 out of the last 13 weeks,
including one of the most recent two weeks.

The congestion threshold of 89% PRB utilization in the downlink is based on KPN’s satisfaction
criteria, which indicates when the network is considered congested from an average user experience
perspective, aligning with KPN’s service quality standards. This threshold signifies the point at
which average user satisfaction significantly decreases, irrespective of variations in active user count
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during high PRB utilization.

In this study, congestion is assessed weekly. The final output is a weekly report identifying
congested sectors across the network. These reports help network operators quickly detect problem
areas, monitor congestion trends, and prioritize interventions for capacity improvement or traffic
management. This approach supports proactive network management, enabling timely responses to
emerging and ongoing congestion issues.
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5

Results

This chapter presents the results of traffic volume prediction, PRB utilization modeling, and conges-
tion forecasting for the network. The analyses were conducted using the methodologies outlined in
the previous chapter, which involved both time series forecasting with the Cumulative Distribution
Function (CDF) model and machine learning models for PRB utilization. The results are structured
into the following sections.

5.1 Time series forecasting results

The time series forecasting approach uses the CDF model, as outlined in the Methodology chapter.
This model predicts traffic volumes for Sector 75271-4, selected due to its higher frequency of peak
hours and elevated traffic compared to other sectors.

Figure 5.1 illustrates the hourly forecasted traffic for Sector 75271-4, providing a granular view
of traffic fluctuations essential for identifying short term congestion periods.

Figure 5.1: Hourly traffic forecasting .

The hourly forecast reveals clear daily patterns in both historical and predicted data, with regu-
lar peaks corresponding to high usage hours. Over time, there is a noticeable increase in peak traffic
magnitudes, aligning with the overall growth trend. Additionally, the baseline traffic shows a rise,
indicating growth in off peak usage. Despite the inherent variability at the hourly level, the forecast
maintains consistent patterns throughout the prediction period, suggesting model stability.
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Figure 5.2: Daily traffic forecasting.

Figure 5.2 presents the daily forecasted traffic for the same sector over approximately one year.
The daily forecast demonstrates a smooth continuation from historical data, indicating good model
fit. An upward trend is evident, suggesting increasing data usage over time. The model successfully
preserves cyclical patterns, capturing weekly and monthly usage trends. It also maintains realistic
day to day variability, avoiding overly smoothed predictions. Several high peaks are forecasted,
potentially indicating periods of exceptionally high demand and possible congestion.

The CDF model effectively captures long-term growth trends and seasonal traffic patterns while
maintaining realistic variability, as demonstrated in Figure 5.3, which compares historical and fore-
casted traffic distributions. The close alignment of the curves highlights the model’s ability to learn
from past patterns, while slight divergences at higher volumes reflect the inherent variability in
traffic projections.
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Figure 5.3: CDF of Traffic Volume – Historical vs. Forecasted

Quantitatively, the model achieved a MAPE of 13.6%, demonstrating strong predictive accuracy.
However, the model’s assumption of independence between hourly predictions may limit its ability
to capture sequential patterns or extreme traffic spikes.

The model’s hourly granularity provides actionable insights for short-term network management,
while daily forecasts support strategic long-term capacity planning. These results serve as crucial
inputs for subsequent analyses, including PRB utilization and congestion forecasting, forming a solid
foundation for optimizing network performance.

5.2 Machine learning model performance

Machine learning models are developed to predict spectrum efficiency using four different algorithms:
LR, Lasso Regression, RF, and CatBoost. Each model is trained on the same dataset and evaluated
using consistent metrics to ensure a fair comparison. The primary metrics for evaluating the models
are R2 and MAPE, which provide insights into each model’s goodness of fit and prediction accuracy.

The prediction line generated by each model is essential for understanding its performance. By
plotting the predicted PRB utilization against the true PRB utilization, the prediction line visually
represents the model’s accuracy and reliability. A strong alignment of points along the prediction
line indicates how well the model captures underlying patterns in the data, reflecting its effectiveness
in making accurate predictions.

Table 5.1 summarizes the performance metrics for each model, both before and after outlier
removal.

As shown in Figures 5.4 till 5.7, the prediction lines for each model before outlier detection
demonstrate that both Random Forest and CatBoost achieve strong alignment with the actual
SE. The actual SE illustrates the observed efficiency of resource usage relative to the traffic load
within the network, providing insight into how effectively resources are allocated at varying levels
of demand. In contrast, the predicted SE refers to the values estimated by the models based on the
input features. Both models exhibit a natural ability to handle outliers effectively. CatBoost, in
particular, shows minimal deviation from the true values, as indicated by its high R2 value of 0.9592
and low MAPE of 8.76% on the original dataset (see Table 5.1 for detailed performance metrics).
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Table 5.1: Performance Comparison of Machine Learning Models Before and After Outlier Removal

Model Dataset R2 MAPE (%)
Linear Regression Original Data 0.8628 15.19%
Linear Regression After Outlier Removal 0.9255 11.39%
Lasso Regression Original Data 0.8609 17.80%
Lasso Regression After Outlier Removal 0.9251 11.25%
Random Forest Regressor Original Data 0.9504 10.15%
Random Forest Regressor After Outlier Removal 0.9586 8.77%
CatBoost Regressor Original Data 0.9592 8.76%
CatBoost Regressor After Outlier Removal 0.9783 6.02%

Similarly, the Random Forest model achieves an R2 of 0.9504 and a MAPE of 10.15%. These results
indicate that both models manage outliers effectively while maintaining a high level of prediction
accuracy. In contrast, the linear models LR and Lasso Regression struggle to handle outliers in
the original data. As depicted in Figures 5.4 and 5.5, the points deviate more noticeably from the
prediction line, particularly for higher PRB utilization values. This deviation is reflected in the
higher MAPE values of 15.19% for Linear Regression and 17.80% for Lasso Regression, indicating
larger prediction errors when outliers are present.

Figure 5.4: Linear Regression - Before Outlier Removal

42



Figure 5.5: Lasso Regression - Before Outlier Removal

Figure 5.6: Random Forest - Before Outlier Removal
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Figure 5.7: CatBoost - Before Outlier Removal

In contrast, the linear models LR and Lasso Regression struggle to handle outliers in the original
data. As depicted in Figures 5.4 and 5.5, the points deviate more noticeably from the prediction
line, particularly for higher PRB utilization values. This deviation is reflected in the higher MAPE
values of 15.19% for Linear Regression and 17.80% for Lasso Regression, indicating larger prediction
errors when outliers are present.

To improve prediction accuracy, DBSCAN is applied to detect and remove outliers from the
dataset. The impact of this preprocessing step is clear in the improved prediction lines shown in
Figures ??, where the models show closer alignment with the true PRB utilization values after outlier
removal.

The removal of outliers has a particularly positive effect on the performance of the Linear Re-
gression and Lasso Regression models. After outlier removal, the Linear Regression model’s R2

improved from 0.8628 to 0.9255, and its MAPE decreased from 15.19% to 11.39%, as shown in
Table 5.1. Similarly, Lasso Regression’s R2 increased from 0.8609 to 0.9251, and its MAPE dropped
from 17.80% to 11.25%. These improvements, depicted in Figures from 5.8 till 5.11, demonstrate
that linear models benefit from outlier detection.

RF and CatBoost, which already performed well on the original dataset, also shows further
improvement after outlier removal. CatBoost’s R2 increased from 0.9592 to 0.9783, and its MAPE
dropped from 8.76% to 6.02%, reflecting an even stronger predictive capability. Random Forest’s R2

rose to 0.9586, while its MAPE reduced to 8.77%. These enhancements, depicted in Figures from
5.8 till 5.11, underscore the effectiveness of these models on both the original and cleaned datasets.
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Figure 5.8: Linear Regression - After Outlier Removal

Figure 5.9: Lasso Regression - After Outlier Removal
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Figure 5.10: Random Forest - After Outlier Removal

Figure 5.11: CatBoost - After Outlier Removal

5.3 Forecasting spectral efficiency

A grid search identifies the optimal hyperparameters for LR, Lasso Regression, RF, and CatBoost
models. These models then predict spectral efficiency, a key metric related to PRB utilization
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in a network sector. Performance metrics, including R² and MAPE, show how effectively each
model predicts traffic and PRB utilization. Accurate spectral efficiency predictions help operators
anticipate high PRB utilization periods and take proactive steps to prevent congestion.

As shown in Figures from 5.12 till 5.15 LR and Lasso regression models exhibit a clear linear
trend, indicating a reliable relationship between traffic and resource block utilization. In these
models, PRBs scale proportionally with traffic demand, ensuring effective resource management,
even during peak hours. In contrast, while Random Forest and CatBoost models perform well
within the training data range, they struggle to extrapolate beyond it. Random Forest achieves an
R² of 0.9592 and a MAPE of 8.76%, while CatBoost reaches an R² of 0.9783 and a MAPE of 6.02%.
Despite their accuracy under normal conditions, these models have limitations when predicting
traffic surges beyond typical levels.

Figure 5.12: Linear Regression
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Figure 5.13: Lasso Regression

Figure 5.14: Random Forest

48



Figure 5.15: CatBoost

LR and Lasso regression models consistently show a linear relationship between PRB utilization
and traffic, even when predictions extend beyond observed data. This aligns with the expectation
that increased traffic requires more resource blocks. In contrast, CatBoost and Random Forest mod-
els falter at higher PRB utilization rates, particularly with CatBoost, where forecasts plateau rather
than rise with increasing traffic. While these ensemble models perform well within the observed
data range, they struggle to predict traffic surges, which is crucial for effective spectral efficiency
forecasting. Linear and Lasso models are more reliable for long-term capacity management, as they
better capture the relationship between traffic and resource blocks at higher utilization rates.

The consistency of LR and Lasso regression models in maintaining predictable behavior across
the full range of PRB utilization rates reinforces their suitability for forecasting PRB utilization
rates at higher traffic volumes. On the other hand, CatBoost and Random Forest models flatten out
as traffic rises beyond average utilization, leading to potential inefficiencies and missed congestion
indicators. This limitation is visually evident in the plots, where ensemble models fail to predict a
proportional rise in PRB usage during high traffic periods, potentially leading to underestimations
of resource needs. As a result, Linear and Lasso models, with their consistent relationship between
traffic and PRB utilization, are better suited for forecasting peak traffic and planning for conges-
tion. Although CatBoost and Random Forest excel in moderate traffic conditions, their inability
to handle traffic surges makes them less effective for predicting resource demands during peak hours.

Accurate spectral efficiency forecasting enables proactive network management, ensuring optimal
performance during congestion prone periods. By predicting traffic surges and corresponding PRB
utilization, operators can allocate resources effectively, reduce the risk of network saturation, and
maintain consistent service quality.

5.3.1 Weekly Congestion Analysis

Building upon the spectral efficiency predictions, the focus now shifts to forecasting and analyzing
network congestion for Sector 75271-4. This analysis is critical for proactive network management
and capacity planning.
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The Lasso regression model was utilized for spectral efficiency prediction due to its consistent
performance in extrapolation and the lowest MAPE of 11.25%. From this model, the relationship
between PRB utilization and traffic volume is derived, enabling the determination of the sector’s
traffic capacity threshold.

Figure 5.16 illustrates the forecasted traffic volume for Sector 75271-4 during Week 8 of 2025.
This specific week was selected from a one-year forecast period due to its higher congestion ratio,
indicating a greater number of congested hours compared to other weeks. The forecast is generated
using the CDF model, which leverages historical traffic distributions to produce a probabilistic
view of future traffic loads. In the CDF model, traffic predictions for each hour are generated by
sampling from the cumulative distribution of historical traffic data. A random variable u, drawn
from a uniform distribution, maps to a corresponding traffic volume in the inverse CDF, allowing the
model to reflect both typical and peak traffic patterns. By applying this probabilistic sampling over
the full forecast period, the model identifies periods where traffic is expected to approach or exceed
the congestion threshold. The choice of Week 8, 2025, allows for a clear visualization of expected peak
points and highlights critical periods for network management, where proactive measures may be
necessary to mitigate congestion. The green dashed line in the figure represents the traffic capacity
threshold, which is the maximum traffic volume the sector can handle before congestion occurs,
approximately 9.74×1011 bits. Congestion is defined as periods when PRB utilization exceeds 89%.

Figure 5.16: Forecasted Traffic with Congestion hours for Sector 75271-4 for week 8, 2025

This analysis suggests that Sector 75271-4 can efficiently handle traffic up to 1×1012 bits before
experiencing congestion. During congested periods, the sector operates beyond its optimal capacity,
potentially leading to degraded service quality, slower data transmission rates, and increased risk
of dropped connections. The recurring congestion peaks indicate a need for increased capacity or
traffic offloading strategies, particularly during identified high traffic periods.

By anticipating these congestion points, network operators can implement targeted interventions
such as dynamic resource allocation during predicted peak times, load balancing to nearby sectors,
and temporary capacity enhancements during critical periods. The analysis of Sector 75271-4 reveals
a pattern of recurring congestion across multiple weeks in 2024 and early 2025.

Sector 75271-4’s current configuration utilizes multiple frequency bands (700, 800, 900, 1400,
1800, 2100, 2600 FDD, and 2600 TDD MHz), with a total of approximately 550 PRBs allocated
across these bands. Despite this substantial resource allocation, the persistent congestion issues
revealed in the forecast suggest that the current capacity is insufficient to meet future demand. This
indicates the need for capacity expansion or optimization strategies to address the increasing traffic
volume and prevent service degradation.
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To address these capacity constraints, KPN has taken a proactive approach by acquiring a new
3.5 GHz spectrum with 100 MHz bandwidth. This strategic acquisition will provide an additional
273 PRBs per site, increasing the total available PRBs for Sector 75271-4 by more than 50%. This
enhancement in resources is expected to accommodate the projected traffic growth and substantially
mitigate congestion occurrences.

5.4 Impact of 3.5 GHz Spectrum Implementation on Sector
75271-4

The implementation of the 3.5 GHz spectrum in Sector 75271-4 has demonstrated significant im-
provements in network performance, as evidenced by updated forecasts and spectral efficiency anal-
ysis. Figure 5.17 highlights the traffic forecast for Week 8, revealing no red points, which previously
indicated congestion. This demonstrates that adding 3.5 GHz resources has effectively resolved con-
gestion in the sector for the forecasted period. The absence of congestion points, even during peak
times, indicates that the 3.5 GHz spectrum provides an effective buffer against traffic fluctuations.

Figure 5.17: Forecasted Traffic with Congestion Highlight for Sector 75271-4 (Week 8) including
3.5GHz

The quantification and prediction of these improvements are achieved through a machine learning
approach using a Lasso regression model. This model is selected for its proven accuracy in minimizing
MAPE during initial testing phases, as detailed in the Methodology section. The model’s training
incorporate the substantial changes introduced by the 3.5 GHz spectrum implementation, particu-
larly focusing on the additional PRBs. With the 3.5 GHz band operating at 100 MHz bandwidth
and 15 kHz subcarrier spacing, the theoretical maximum of 273 additional PRBs is calculated. This
parameter is designed to be adjustable in the model, allowing for future recalibration if bandwidth
or subcarrier spacing configurations change.

For practical implementation, the model assumes uniform 3.5 GHz coverage across the sector.
While this simplification helps in strategic capacity planning, it’s worth noting that high-frequency
bands (3.5 GHz) typically have more limited coverage compared to lower frequencies (700, 800
MHz). Despite this limitation, the model provides valuable insights for capacity forecasting without
requiring complex cell-level analysis.
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The impact of these additional resources is clearly demonstrated in Figure 5.18, which compares
original PRB utilization with the model’s adjusted predictions. The steeper slope of the green
points (adjusted prediction) compared to the blue points (original utilization) indicates a significant
improvement in the sector’s ability to handle higher traffic volumes before approaching critical
utilization levels.

Figure 5.18: Spectral Efficiency Including Extra PRB Resources for Sector 75271-4 (Lasso Model)

The enhanced spectral efficiency revealed by the model translates directly to tangible user bene-
fits. The sector can now manage traffic volumes that previously would have caused severe congestion,
resulting in improved data rates, reduced latency, and more consistent service quality during peak
periods. This improvement is particularly significant given the increasing demands on network re-
sources. While the model and forecasts suggest complete congestion elimination for the upcoming
year, actual performance may vary due to external factors such as 5G device adoption rates, changes
in usage patterns, or unexpected demand spikes. Continuous monitoring will be essential to verify
that real-world performance aligns with the predictions. Nevertheless, the implementation of 3.5
GHz spectrum in Sector 75271-4 has not only resolved current congestion issues but also created a ro-
bust foundation for accommodating future data growth, demonstrating the effectiveness of strategic
spectrum deployment in maintaining high-quality service in the face of increasing demand.

5.5 Network Wide Congestion Analysis

The study initially focused on Sector 75271-4, selected as a representative test case due to its high
traffic demand and frequent congestion. This sector was used to develop and validate machine learn-
ing models. The CDF model for traffic prediction and the Lasso regression model for PRB utilization
demonstrated the best performance based on MAPE metrics. Subsequently, the methodology was
scaled to encompass all macro sectors across the network, enabling network-wide congestion fore-
casting and illustrating that models developed for a single sector could be applied across a larger
network with effective results. To further validate the scalability and reliability of this approach,
the models were tested on three additional sectors chosen randomly across the network. Detailed
validation results are provided in Appendix C.
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The network wide analysis replicated the steps of data collection, feature engineering, model
training, and evaluation for each macro sector. This approach captured the unique traffic patterns
and PRB utilization characteristics of individual sectors, facilitating effective network wide capacity
management. The results reflect the application of these predictive models across the entire network.

Figure 5.19 illustrates the total number of congested sectors steadily increases over time. This
is because traffic demand is expected to grow, while the available resources remain the same. With
increasing demand and unchanged resources, congestion naturally rises.There are fluctuations in
congestion levels, with occasional dips in certain weeks. These variations are expected and can be
attributed to the fact that different sectors experience peak usage at different times. Some sectors
may experience temporary relief or heightened congestion due to shifts in traffic demand. This
fluctuation highlights the dynamic nature of network traffic and reflects the capacity and operational
limits of individual sectors.

Figure 5.19: Total number of congested sectors over time across the network.

Figure 5.20 presents a comparison between predicted congested sectors and the actual number
of congested sectors for an eight weeks period. The prediction line shows an increase in the number
of congested sectors, suggesting worsening congestion over time without additional resources. In
contrast, the actual number of congested sectors exhibits a decreasing trend, likely due to the
3.5GHz band deployment. The deployment of new 3.5GHz band has been done in Week 28 of 2024.
This additional spectrum provided more resources to handle increased traffic, reducing congestion.
The actual trend mirrors the pattern of the predicted trend with a negative correlation. Both trends
display a drop from Week 28 to Week 29, followed by a slight increase from Week 30 onwards.
This similarity in pattern, despite the opposite directions, indicates the model’s ability to capture
underlying traffic dynamics, even without accounting for new spectrum deployment.
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Figure 5.20: Comparison of predicted and actual congested sectors.
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6

Conclusion

6.1 Conclusion

This study aimed to develop an effective capacity management model to proactively address network
congestion and maintain Quality of Service for both 4G and 5G networks. The primary objective
was to create a model capable of accurately forecasting sector-specific traffic volumes by leverag-
ing historical traffic data and projected growth patterns. Using these traffic forecasts, the study
then applied machine learning models to predict spectral efficiency and identify potential congestion
points within the network. Additionally, the model was designed to be adaptable across multiple
sectors, allowing for accurate, network-wide forecasting to manage diverse traffic demands.

To forecast future traffic loads, the study implemented a CDF model for traffic forecasting,
achieving effective results in capturing network behaviors. By incorporating historical data and
applying inverse CDF sampling, the model generated accurate sector-specific traffic predictions up
to a year in advance. The model’s performance highlighted its strength in handling diverse traffic
patterns, allowing for realistic congestion forecasting at peak times. This model is therefore valuable
for capacity planning, with the potential to optimize proactive resource allocation. However, while
effective on a sector level.

Four distinct machine learning models were evaluated for spectral efficiency prediction: Linear
Regression, Lasso Regression, Random Forest, and CatBoost. While Random Forest and CatBoost
performed well on training data, they struggled with extrapolation beyond the observed data ranges.
On the other hand, Linear Regression and Lasso Regression demonstrated superior performance in
long-term predictions. Lasso emerged as the most effective model, due to its ability to handle extrap-
olation with high accuracy and low Mean Absolute Percentage Error (MAPE), making it particularly
well-suited for predicting spectral efficiency and, consequently, identifying potential congestion.

A significant finding of this study was the effect of deploying the 3.5 GHz spectrum on network
performance in Sector 75271-4. By simulating the model under scenarios that incorporated this
new spectrum, we observed a reduction in PRB utilization rates due to the additional bandwidth,
confirming improved congestion management. However, while spectral efficiency appeared higher
due to reduced PRB strain, this improvement is nuanced. Since spectral efficiency is influenced by
both bandwidth and traffic load, the observed gains may partly result from the increased bandwidth
rather than an intrinsic efficiency gain.

After validating the models in Sector 75271-4, the methodology was extended to all macro sectors
across the network, the study assessed the accuracy and scalability of the developed model across
multiple macro sectors. By replicating the traffic forecasting and congestion prediction process across
sectors with varying demand patterns, the model maintained a good accuracy in predicting spectral
efficiency and congestion. Validation tests across different sectors revealed consistent MAPE scores,
confirming that the model can be adapted for network-wide forecasting and resource planning. This
scalability highlights the model’s utility for broader network capacity management, enabling MNO’s
to anticipate congestion points across diverse sector profiles.

In conclusion, this research provided an effective approach to proactive capacity management
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in 4G/5G networks. By combining a CDF model for traffic forecasting with Lasso Regression for
spectral efficiency prediction, the study delivered a scalable method for long-term network planning
and congestion management.

6.2 Recommendation for future work

Several recommendations are proposed to enhance capacity management strategies in cellular net-
works.

An extension of this work could involve refining spectral efficiency predictions by calculating and
forecasting at the individual cell level rather than at the sector level used in this analysis. This
approach would enable a more granular understanding of traffic distribution and spectral efficiency
across cells within each sector. Additionally, incorporating detailed system design parameters, such
as antenna configurations, MIMO technology, and localized propagation effects, would improve the
accuracy of spectral efficiency predictions, capturing the unique radio environment of each cell. By
explicitly modeling these factors, future studies could enhance congestion predictions and enable
more targeted capacity enhancement strategies.

Additionally, it is recommended to enhance the data measurement pipeline by retaining more
detailed hourly traffic data. This would offer deeper insights into network performance across sea-
sonal, yearly, and quarterly patterns, and enable dynamic prediction models for resource optimiza-
tion. Such models could result in cost savings and greater network efficiency by using daily traffic
profiles for more informed capacity planning and management. Expanding data storage capabilities
would allow for more advanced analyses, leading to more informed decision making regarding data
retention and operational automation in the evolving landscape of AI and machine learning.

To better capture long term trends, seasonal variations, and the impact of major events, future
studies should extend the data collection period to span multiple years. Real time adaptation is
another priority, where systems should continuously update predictions based on live network data,
allowing for more dynamic and responsive capacity management. Developing systems that can
suggest the optimal timing and locations for capacity upgrades based on predictive analytics would
also improve resource allocation and network planning. Finally, enhancing the interpret ability of
machine learning models is crucial for providing network operators with clear insights into the factors
driving congestion predictions, which would improve decision making and operational strategies.
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A

Data analysis

Table A.1: Primary input variables for predictive models

Input Variable Definition

Time stamp A specific point in time, typically recorded in a standardized format (e.g., YYYY-
MM-DD HH:MM:SS), indicating when the data was collected or the event occurred.

Site number A unique identifier assigned to each physical location where network equipment (such
as base stations) is installed, allowing for geographical tracking and management of
network resources.

Sector number An identifier for a specific directional antenna or set of antennas within a site, typically
covering a 120-degree arc. Most sites have three sectors for complete 360-degree
coverage.

Cell (frequency
band)

Refers to the specific frequency range used for communication in a particular sector.
The bands include 700, 800, 900, 1800, 2100, 2600 FDD, and 2600 TDD MHz.

Downlink Traffic
Volume

The total amount of data transmitted from the network to end-user devices, calculated
as follows:

• In LTE:

Total DL Traffic =
∑

L.Traffic.DL.SCH.QPSK.TB.bits

+
∑

L.Traffic.DL.SCH.16QAM.TB.bits

+
∑

L.Traffic.DL.SCH.64QAM.TB.bits

+
∑

L.Traffic.DL.SCH.256QAM.TB.bits

• In NR:
Total DL Traffic =

∑
N.ThpVol.DL.Cell(kbit)

PRB Utilization
Rate

Indicating the efficiency of resource usage, calculated as follows:

• In LTE:

PRB Utilization Rate =

∑
L.ChMeas.PRB.DL.Used.Avg∑
L.ChMeas.PRB.DL.Avail

• In NR:

PRB Utilization Rate =

∑
N.PRB.DL.Used.Avg∑
N.PRB.DL.Avail.Avg

User DL average
throughput

Represents the average data transfer rate experienced by users in the downlink direc-
tion. It’s typically measured in bits per second (bps) or a variation thereof (Kbps,
Mbps, etc.).

The counters mean:
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• L.ChMeas.PRB.DL.Avail: Number of available downlink PRBs.

• L.ChMeas.PRB.DL.Used.Avg: The average number of used PDSCH PRBs.

• L.Traffic.DL.SCH.QPSK.TB.bits: Number of bits of TBs initially transmitted on the
downlink SCH in QPSK modulation scheme.

• L.Traffic.DL.SCH.16QAM.TB.bits: Number of bits of TBs initially transmitted on the
downlink SCH in 16QAM modulation scheme.

• L.Traffic.DL.SCH.64QAM.TB.bits: Number of bits of TBs initially transmitted on the
downlink SCH in 64QAM modulation scheme.

• L.Traffic.DL.SCH.256QAM.TB.bits: Number of bits of TBs initially transmitted on the
downlink SCH in 256QAM modulation scheme.

• N.ThpVol.DL.Cell(kbit): Total volume of downlink data sent at the MAC layer in a cell.

• N.PRB.DL.Avail.Avg: Number of available downlink PRBs.

• N.PRB.DL.Used.Avg: The average number of used PDSCH PRBs.
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Machine Learning models

Machine learning, a subset of artificial intelligence, enables systems to learn and adapt without
explicit programming. It focuses on developing computer programs that evolve when exposed to
new data. These algorithms use data to detect patterns and adjust actions accordingly. Machine
learning techniques can be broadly categorized into supervised, unsupervised, and reinforcement
learning.

• Supervised Learning: Algorithms apply learned knowledge from labeled data to predict out-
comes on new, unseen data.

• Unsupervised Learning: Algorithms discover hidden patterns or intrinsic structures in input
data without labeled outcomes.

• Reinforcement Learning: Algorithms learn optimal policies by interacting with the environ-
ment, using feedback signals from actions to guide learning.

In the context of forecasting, the primary goal is to identify a model that can accurately fit past
measured data from the network and generalize well to future observations. Models can vary from
linear time series models to state-space and non-linear models. This study focuses on well-known
regression algorithms, including Linear Regression (LR), Random Forest (RF), Lasso Regression,
and CatBoost.

The choice of models is driven by their ability to capture different relationships between features:

• Linear and Lasso Regression are used to explore linearity between traffic and PRB utilization.

• Random Forest (RF) can capture both linear and non-linear boundaries through its ensemble
of decision trees.

• CatBoost is advanced ensemble techniques capable of capturing complex patterns, often en-
hancing prediction accuracy.

The Machine Learning Technique is trained on a given dataset and tested on new samples to
achieve good estimation performance, measured by low MAPE values in both phases. This process
aims for generalization, where a well-generalized model performs well on new data within the same
domain, addressing challenges like over-fitting and under-fitting FigureB.1. Fitting refers to how
well the model approximates the mapping between input and output variables [56]:

• Over-fitting occurs when the model fits the training data too well, including noise, leading to
poor performance on new data.

• Under-fitting occurs when the model fails to fit the training data or generalize to new data,
resulting in poor performance even during training.

• The optimal model strikes a balance between over-fitting and under-fitting, learning the data
pattern without memorizing noise.
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Figure B.1: Under fitting and overfitting cases in ML.

Linear Regression (LR):
Linear Regression identifies the statistical relationship between variables by fitting a linear equa-

tion to observed data. The prediction of PRB utilization (ŷi) is based on input features Xi, such
as traffic volume, hour of the day, day of the month, and weekday [57]. In linear regression, the
relationship between the input features and the target variable is modeled as a linear combination
of the input features:

ŷi = β0 + β1 · traffici + β2 · houri + β3 · dayi + β4 · weekdayi (B.1)

Where:

• ŷi is the predicted PRB utilization for the i-th data point.

• β0 is the intercept term.

• β1, β2, β3, β4 are the coefficients (weights) for the corresponding features.

• traffici,houri,dayi,weekdayi are the feature values for the i-th data point.

Linear regression estimates the coefficients by minimizing the sum of squared errors (SSE). The
objective is to find the values of β0, β1, . . . , β4 that minimize the following cost function:

J(β0, β1, . . . , β4) =

n∑
i=1

(yi − ŷi)
2

(B.2)

Where:

• yi is the actual PRB utilization for the i-th data point.

• ŷi is the predicted PRB utilization as defined in Equation (B.1).

• n is the total number of data points.

The solution to this optimization problem provides the coefficients that best fit the data.
LR will help understanding if there’s a straightforward linear relationship between traffic volume

and PRB utilization. It serves as a baseline model and can reveal if more complex models are nec-
essary.
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Lasso Regression (L1 Regularization):
Lasso regression is a type of linear model that adds an L1 regularization term to the cost function.
This helps prevent overfitting by shrinking some of the coefficients towards zero, effectively perform-
ing feature selection. The Lasso regression model predicts the PRB utilization using the same linear
form as in linear regression:

ŷi = β0 + β1 · traffici + β2 · houri + β3 · dayi + β4 · weekdayi (B.3)

However, unlike linear regression, Lasso regression introduces an additional regularization term
to the cost function. In Lasso regression, the objective is to minimize the sum of squared errors,
with an additional L1 regularization term that penalizes the absolute size of the coefficients:

J(β0, β1, . . . , β4) =

n∑
i=1

(yi − ŷi)
2
+ λ

p∑
j=1

|βj | (B.4)

Where:

• λ is the regularization parameter that controls the strength of the penalty. A higher λ leads
to stronger regularization.

•
∑p

j=1 |βj | is the L1 norm of the coefficients, which shrinks the coefficients towards zero.

• p is the number of features (in this case, p = 4).

The regularization term encourages sparsity in the model by forcing some coefficients to become
exactly zero, which can be useful for feature selection.

The main advantage of Lasso Regression is its ability to perform automatic feature selection by
shrinking some coefficients to exactly zero, effectively removing less important features from the
model. This can lead to simpler, more interpretable models, especially when there are many irrel-
evant or redundant features. However, Lasso can be sensitive to the choice of λ and may struggle
when features are highly correlated.

Random Forest (RF)
RF technique is an ensemble learning model that improves estimation performance by combining

predictions from multiple learning algorithms. RF is based on building multiple trees, called Decision
tree (DT). The DT models the problem in a tree structure, as illustrated on Figure B.2. from a root
node the algorithm takes several decisions to reach the leaf nodes. Each leaf node is an estimation
value. And, each internal node split refers to the taken decision. The individual decision tree is
sensitive to data and prone to over fitting. For that, RF combines at training phase many individual
decision trees by adding randomness in order to select the training subset and the feature in each
node.

The RF algorithm includes the following steps:

1. Draw multiple trees using bootstrap sampling. The number of trees (n estimators) is a user
defined hyper-parameter.

2. For each node split during tree construction, select the best split among a random subset of
predictors instead of choosing from all predictors. The number of features (max features)
controls the randomization strength.

3. Estimate new data by averaging the estimations of the constructed trees.

Each tree in the forest incorporates traffic volume. Each root contains a random subset of met-
rics, and each internal node represents a decision about these. Leaf nodes hold the PRB utilization
estimation. The final PRB utilization estimation is obtained by averaging the estimations from all
trees. RF is known for its robustness against over fitting due to the introduced randomness, its
simplicity, and its efficiency on large datasets with numerous input features. Hyper-parameters such
as n estimators, max features, max depth, min samples split, and min samples leaf are critical
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Figure B.2: Example of decision tree (DT).

for optimal model performance.

Gradient Boosting (CatBoost) The aim is to predict the PRB utilization (ŷi) based on
several features such as traffic volume, hour of the day, day of the month, weekday. CatBoost is an
ensemble of decision trees that are trained sequentially with each new model correcting the errors
of the previous ones, to improve overall prediction accuracy [58]. The final prediction, ŷi (PRB
utilization) for the i-th data point, is given by the sum of predictions from all decision trees in the
ensemble:

ŷi = FM (Xi) =

M∑
m=1

γmTm(Xi) (B.5)

Where:

• FM (Xi) is the final predicted PRB utilization for the i-th data point after M trees.

• Tm(Xi) is the prediction from them-th decision tree for the input featuresXi = (traffic,hour,day,weekday).

• γm is the learning rate (step size) for the m-th tree.

• M is the total number of trees in the ensemble.

Each tree Tm(Xi) represents a non linear mapping from the feature space to the target variable.
The training process in CatBoost follows a sequential approach.

Initially, CatBoost starts with a constant prediction, which is often the mean PRB utilization across
the training data:

ŷ
(0)
i = mean(y) (B.6)

For each boosting iteration m, the algorithm calculates the residuals, which represent the dif-

ference between the actual PRB utilization yi and the predicted PRB utilization ŷ
(m−1)
i from the

previous iteration:

r
(m)
i = yi − ŷ

(m−1)
i (B.7)

Where r
(m)
i is the residual for the i-th data point at iteration m, and yi is the actual PRB

utilization for that data point.

The next decision tree Tm(Xi) is trained to predict these residuals, effectively learning from the
errors made by the previous trees:

Tm(Xi) ≈ r
(m)
i (B.8)
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Here, Tm(Xi) is the prediction of the residual r
(m)
i based on the input features Xi = (traffic,hour,

day,and weekday).

After training the new tree, the model’s prediction is updated by adding the prediction from the
current tree, weighted by the learning rate γ:

ŷ
(m)
i = ŷ

(m−1)
i + γTm(Xi) (B.9)

Where γ controls how much the new tree’s prediction affects the overall model update.
After all M trees have been trained, the final prediction for PRB utilization for the i-th data

point is the sum of all individual tree predictions:

ŷi =

M∑
m=1

γTm(Xi) (B.10)

This equation represents the overall CatBoost model, where each tree Tm(Xi) contributes to the
final prediction based on the input features Xi = (traffic,hour,day,weekday).

The model handles non linear features efficiently, often achieves high accuracy. However, it can
be prone to overfitting if not properly tuned, may be computationally intensive, and is less inter-
pretable than simpler models.

Model performance is evaluated by comparing estimated values with actual measurements. Op-
timal performance depends on selecting the appropriate hyperparameters, which is detailed in the
hyperparameter tuning section. To ensure robustness, the models’ ability to generalize estimation
error to unseen data is assessed, providing a reliable measure of predictive accuracy on new data.
This approach ensures the models’ effectiveness in real world scenarios.
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C

Validation of Congestion
Forecasting Models Across

Multiple Sectors

The purpose of this appendix is to validate the scalability and reliability of the congestion forecasting
models developed in this study. While the initial model development and validation are conducted
using data from Sector 75271-4, the methodology is subsequently expanded to a network-wide appli-
cation. To verify that the models provide consistent and reliable results across different sectors, three
additional sectors—1001-2, 9981-3, and 10161-1 are randomly selected for further testing. Each of
these sectors presents distinct traffic characteristics:

• Sector 1001-2 and Sector 9981-3: These sectors have relatively low average traffic loads and do
not exhibit frequent congestion. Testing in these sectors assesses the model’s accuracy under
typical, low-demand conditions.

• Sector 10161-1: This sector experiences higher average traffic loads and exhibits peak conges-
tion hours. Testing in this sector evaluates the model’s ability to accurately forecast congestion
in high demand environments.

This selection of sectors provides a balanced validation across both low- and high-demand conditions,
allowing for a thorough assessment of the models’ performance and adaptability across varying traffic
patterns.

Table C.1 summarizes the performance metrics for each sector, comparing results for both the
Lasso regression model (predicting PRB utilization) and the CDF model (forecasting traffic). These
metrics demonstrate consistency across sectors, with MAPE values and R² scores close to those
achieved in the initial test case, Sector 75271-4, which had a MAPE of 13.6% for the CDF model
and 11.25% for the Lasso regression model after outlier removal.

Table C.1: Validation Results for Additional Sectors

Sector Model R2 MAPE (%) CDF Model MAPE (%)
1001-2 Lasso Regression 0.9229 9.69 12.13
9981-3 Lasso Regression 0.9203 8.83 14.0
10161-1 Lasso Regression 0.9439 10.68 11.68

The validation results demonstrate effective traffic forecasting through the CDF model, which
maintains MAPE values within a comparable range across all tested sectors. This consistency con-
firms that the CDF model effectively captures variations in traffic patterns throughout the selected
sectors. Additionally, the Lasso regression model achieves similar R2 values and low MAPE per-
centages across all sectors, with performance closely aligning with the initial results from Sector
75271-4. This alignment supports the scalability and reliability of the model for predicting PRB
utilization across various sectors. The validation in both low-demand sectors (1001-2 and 9981-3)
and a high-demand sector (10161-1) further indicates that the models are adaptable to different
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traffic conditions and congestion patterns, which is essential for effective network-wide congestion
forecasting.

The following figures illustrate the forecasted traffic volumes and predicted PRB utilization for
each of the selected sectors (1001-2, 9981-3, and 10161-1), showing both the CDF model’s traffic
forecast and the Lasso regression model’s PRB utilization predictions.

Figure C.1: Daily Forecasted Traffic for Sector 1001-2

Figure C.2: Spectral Efficiency - Lasso Regression Model for Sector 1001-2
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Figure C.3: Daily Forecasted Traffic for Sector 9981-3

Figure C.4: Spectral Efficiency - Lasso Regression Model for Sector 9981-3
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Figure C.5: Daily Forecasted Traffic for Sector 10161-1

Figure C.6: Spectral Efficiency - Lasso Regression Model for Sector 10161-1
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