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Executive Summary

Today’s societies face many grand challenges, such as climate change and the defeat of poverty. These
challenges can be characterized as wicked problems and are hard to address as there is no single solution,
many actors are involved and possible solutions are shrouded in uncertainty of possible outcomes. The
energy transition required to reach carbon reduction targets set in the Paris Agreement is an example of such a
challenge.

The Dutch government has undertaken an extensive multi-stakeholder process to create the climate
agreement. The agreement is composed of five sectors for which policies have been formulated up to 2030.
These policies should ensure the country is on track to meet carbon dioxide reduction targets set in the
Paris Agreement. Energy transition policy aimed at reducing CO, emissions, however, is surrounded by deep
uncertainties, due to climate change, technological innovations and socio-economic developments. In the face
of deep uncertainty, Conventional decision making to find policies for a single best guess future is inadequate.
Hence, there is a need to assess performance of policies under deep uncertainty. Policy robustness is a metric
of policy performance that describes insensitivity to differences in future circumstances. Adaptive policies
can be created that adapt to changing conditions, in contrast to more conventional static policies, that are
constant over time.

The design of the climate agreement has proposed many promising measures, but only sparsely mentions
uncertainty as an important factor for the impacts of these measures. More specifically, uncertainties are only
mentioned in the chapter describing measures for the mobility sector and in the chapter judging cross-sectoral
consistency in a systems approach. Hence, the effect of beneficial robust or adaptive policies for the climate
agreement are unknown.

The aim of this study is to investigate how policies could be designed in such a way that they have a
more robust performance, regardless of how the future develops. The study is scoped on the Dutch built
environment sector and hence aims to answer the following research question:

“How could policies be designed to establish a more robust performance of the climate agreement’s built
environment sector?”

Methodology

In this study a modelling approach is used to answer this research question. Specifically, the Adaptive Robust
Design (ARD) framework (section 2.2.3) is used to allow for experimenting with large variety of (parametric and
categorical) uncertainties which are used as model inputs to assess the influence of uncertainties on policy
performance. Influential uncertainties are identified using a computational model that represents the energy
transition in the Dutch built environment sector. This method of exploratory modelling distinctly differs
from traditional predictive modelling in the way that not a single future will be predicted. Rather, exploratory
modelling aims to understand trends of multiple plausible futures.

Subsequently, the model is connected to the Exploratory Modelling & Analysis workbench in Python
(see section 2.2.3 and 2.2.4). The ARD framework consists of five steps: (1) uncertainties and outcomes of
interest are defined, (2) a base ensemble is created by simulating the system without any policies using these
uncertainties, (3) influential uncertainties are identified from this base ensemble using advanced Scenario
Discovery techniques such as PRIM and Feature Scoring (see section 5.1.1). (4) Policies are created to counter
undesired effects of uncertainties. (5) Subsequent policy experiments are performed to assess the performance
of these policies under uncertainty.

Energy Systems Models

A literature review has been conducted to find the state-of-the-art regarding energy systems models (see
chapter 3). A wide variety of recent energy transition models exists in academic literature. More recently, a
push to open source publicly funded models opened up some models to general public. Within the Dutch
scope, many models are used for a variety of purposes and entertaining different scopes. The variation in both
purpose and scope could explain the many models in circulation. There are few models that are fit for dynamic
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policy testing and are publicly available. For the Dutch built environment transition, only PBLs Vesta MAIS and
Quintel’s Energy Transition Model meet these criteria. They do not, however, conform to the prerequisites for
connection to the EMA workbench and would subsequently require the creation of computational wrappers
to interface between the model and the workbench. Given the time limit to complete this study, a pragmatic
alternative is preferred and an in house model of the Dutch built environment sector has been developed.

Built Environment Energy Transition Model

In this study a Systems Dynamics representation of the Dutch built environment sector is used (see chapter
4). The model is scoped to residential buildings in The Netherlands divided over 10.000+ neighbourhoods
(roughly 20% of the neighbourhoods are dropped due to incomplete data) and is scoped to household heat
generation and does not explicitly include energy efficiency components (such as isolation), because this
data is not available on a neighbourhood level. The low resolution of neighbourhoods is used to facilitate
neighbourhood, or district-based policies from a bottom up perspective.

The model consists of six main components: 1) a household renovation structure that enables a renovation
decision for each neighbourhood and subsequently allocates a renovated house to a heat generation alternative
(2): district heating or all electric heat generation. Costs related to these renovations are scoped in this model
to label jumps to the A-label energy label. 3) Energy demand is calculated for the houses in the model, based
on their standard house type (apartments, row houses, corner houses, two under one roof homes and free
standing homes). 4) available labour is simulated to meet renovation demand. 5) a policy structure enables
policy implementation that effects household renovations. Finally, a Key Performance Indicator structure
(6) captures main outcomes for policy evaluation. Next to home renovations to remove gas connections of
households, carbon intensity in power generation is set be reduced by 50-80% for both electricity and district
heat to model policies of the electricity sector within this study’s scope on the built environment sector.

Subsequently, the model is used in the ARD framework. Real world open data has been gathered and
prepared to create an extensive data set for the neighbourhood scale. The model is initialized from this data
set to optimally represent the actual case.

Results of the Uncertainty Analysis

First, a base case analysis has been performed on the model to find key uncertainties in the energy transition of
the built environment (see chapter 5). Therefor 1000 experiments have been performed with the model without
any policies, but with defined and varying parametric uncertainties. A combination of Open Exploration and
Scenario Discovery has been used to analyze influence of these defined uncertainties on the outcomes of
the model. Three outcomes of interest have been analyzed. Contrary to expectations, the uncertainties most
strongly influencing Annual CO»-equivalent emissions were uncertainties related to energy supply. Namely,
annual electricity demand growth and by reduction carbon intensity power generation. Cumulative costs of
renovation were greatly influenced by a reduction in renovation costs and a standard renovation rate.

Results of the Policy Analysis

Findings from the base case analysis have been used to create policies that reduce undesirable effects of
uncertainties. Subsequently, policies are evaluated on their robustness under deep uncertainty. For the
three most likely policy instruments (a neighbourhood approach and subsidy in the privately owned sector,
a neighbourhood approach and subsidy in the rental sector and norms to built new homes without a gas
connection), three policy variations have been created, next to a no policy alternative. A static policy, a dynamic
adaptive policy and a mission oriented policy have been applied to the model. A static policy subsidizes a fixed
percentage over time, a dynamic adaptive policy has adjustment mechanisms to steer towards a certain goal
and a mission oriented policy is deemed to have a broader approach that also targets innovation to increase the
renovation rate and decrease renovation costs. For the neighbourhood approach and subsidy in both sector of
privately owned homes and the rental sector, only subsidy based policies have been taken into consideration
in this study. For each policy, the percentage of renovation costs to be subsidized has been used as a policy
lever. In the simulation, four subsidy percentages between 20 and 80% have been simulated for each policy
variant.

When discussing effectiveness of policies, policy targets should be evaluated. As targets are only known for
the period up to 2030, a more general target has been maintained for 2050. This general target has been set at
95% reduction and was obtained from the Dutch climate law. Most policies simulated in this study reached
2030 targets after its deadline in 2030.
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Results have been evaluated both within policy variants (withing varying subsidy levels) as between policy
variants (with a constant subsidy level). The static and mission policy options showed similar trends, but
maintained different absolute outcomes. Most notably, the mission policy allows for a higher renovation rate
and thus cumulative renovated houses turned out highest for this policy while holding a 80% subsidy level.

The dynamic adaptive policy variant does not perform significantly better than the other two policy
variants. Even though annual CO, emissions and cumulative renovated houses are higher, uncertainty is
not reduced significantly. This shows that subsidy percentage, alone, does not ensure that policy targets for
2050 are reached. None of the policies simulated in this study have been able to reach the 2050 goal and
seemed to converge around two to three million renovated homes in the 80% subsidy level. This finding was
unexpected and suggests that other variables prevent more renovation to be completed. The renovation rate
used in this study is likely an obstacle for ample renovations. The renovation rate used in this study is drawn
from the climate agreement and seems to be too small to meet renovation demand within this study. This is
demonstrated in the mission policy where an additional increase of the renovation rate by 25% resulted in
higher cumulative renovated houses.

Discussion

The results of this study highlight the importance of decision making under deep uncertainty. Both with and
without policies, results were strongly affected by uncertainties influencing the system. However, policies can
be created to reduce influence of uncertainties governing the system. Specifically, policies that have the ability
to adapt to changing circumstances, so called adaptive policies, have been found to be better able to cope with
uncertainty compared to static policies. These findings imply that policies should be created to be adaptive
and have the ability to adjust, or steer, towards a predefined goal.

Additionally, this study found that the renovation rate is a key factor in achieving renovation targets. Even
when households are willing to renovate (at various subsidy percentages), renovation capacity should be
adequate to meet demand. The renovation rate used in this study has been drawn from the climate agreement
and seems to be insufficient to meet targets within the scope of this study. This would imply that an additional
increase in renovation capacity is required to meet renovation targets, next to creating incentives for home
owners to renovate. Hence, this study would suggest a combined effort that creates incentives for home owners
to renovate and simultaneously incentivizes the renovation industry to increase capacity to meet demand.

In previous iterations in the Adaptive Robust Design cycle, experiments have been performed with a
lower reduction target for 2050. This allowed for better adjustment by a mechanism that solely influences the
subsidies awarded (see figure E1). In that case, the dynamic adaptive policy performed significantly better
than its static or mission oriented counterpart, compared to the results shown in this chapter. Subsequently
switching to a higher reduction target, in line with the climate law (Klimaatwet, 2019), had unforeseen
consequences in later simulations and resulted in too little adjustment room for the dynamic adaptive policy.

Conclusion
The aim of this study is to understand how policies in the Dutch built environment sector could be designed to
establish a more robust policy performance. This study has identified key uncertainties influencing the built
environment sector as a system and proposes policy variations to reduce the influence of these uncertainties.
The experiments performed in this research confirmed that an adaptive dynamic policy can better cope with
uncertainties influencing the model. Next, this study showed that subsidy-based policies alone are unlikely to
reach desired targets and have to be accompanied by additional policies that accelerate renovation capacity.
The approach used in this study can be used as an example to combine current policy analysis with the
concept of deep uncertainty and subsequently highlight the importance of adaptive policies. Moreover, the
neighbourhood based approach embraced in this study allows for bottom up policy testing and neighbourhood
specific subsidies. The approach has been particularly fruitful when it is considered that it has been based on
publicly available data sources

Recommendations
Further research should be undertaken to explore impacts of the following six main recommendations. First, it
is recommended to validate the model used in this study. Second, energy efficiency components should be
explicitly added to the model, when data availability allows for it.

Third, future studies could investigate policies that could stimulate the renovation rate (through e.g.
standardization or automation) to keep up with demand.
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Fourth, further research could also analyze the impact of differentiation of collective versus individual
renovations. For instance, a multi story flat will have different renovation costs than an identical number of
households living in free standing houses.

Fifth, regulation on district heating will also impact renovation costs and availability across the Netherlands.
Will district heat networks become open to competition and, if so, what temperatures will be defined?

Finally, uncertainties sampled in this study are by no means exhaustive. Effects of other uncertainties could
also have large influence on the system, as, for instance, arrangements that stimulate solar PV by allowing
owners to feed generated electricity back to the grid.
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Introduction

1.1. International Grand Challenges

Today’s societies face many grand challenges, ranging from climate-change and energy needs (Reid et al., 2010)
to zero-hunger and the defeat of poverty (United Nations, 2018). These challenges can be characterized as
wicked problems (Rittel and Webber, 1973) or post normal challenges (Funtowicz and Ravetz, 1990) and are
hard to address as there is no single solution, many actors are involved, and possible solutions are shrouded in
uncertainty of possible outcomes (Conklin, 2006). Governance of these wicked problems is crucial to counter
their effects (Kuhlmann and Rip, 2014) for which new policy methods are needed (Mowery et al., 2010).

1.2. The Dutch Energy Transition

An example of such a wicked problem is the energy transition required to reach carbon reduction targets stated
in the Paris Agreement (UNFCCC, 2015). In The Netherlands, recent efforts to reduce Dutch carbon emissions
have been in the making since 2011 (see figure D.1). Despite different government coalitions, the climate
agenda has been continued for almost a decade. A first attempt to create an energy agreement for sustainable
growth has been made in 2013 by the Sociaal Economische Raad (2013). The newly elected government
coalition of Rutte 3 has set the ambition to reduce carbon emissions by 49% by 2030 (Rijksoverheid, 2017), two
years after the Paris Agreement was made.

November 2011 ¢ Local Climate Agenda
September 2013 ¢ Presentation Energy Agreement Sustainable Growth
October 2013 ¢ Climate agenda
December 2015 International Climate agreement (Paris Agreement)
January 2016 ¢ Energy report
December 2016 ¢ Energy agenda
May 2017 ¢ Agreement Energy Intensive Industry
May 2018 ¢ Prohibition coal-fueled electricity production as of 2030
June 2018 ¢ Proposal climate law
July 2018 ¢ Proposal for key points of the climate agreement
September 2018 ¢ PBL Analysis of key points of the climate agreement
October 2018 ¢ Cabinet’s appreciation the climate agreement & start second round of negotiations
December 2018 ¢ Presentation of the Design of the Climate Agreement
March 2019 ¢ Presentation of computed effects by planning bureaus

Figure 1.1: Timeline of Dutch Climate Policies (Rijksoverheid, 2019d; Hekkenberg and Koelemeijer, 2018; PBL, 2019)

To realize its ambitions, the Dutch government initiated a massive stakeholder consultation process to
create a new climate agreement with all relevant actors. Five sector tables (Electricity, Industry, Mobility,
Agriculture and Built Environment) had been created and assigned indicative reduction targets early 2018
(Lugt, 2018). Each sector was requested to draft concept measures with relevant stakeholders in their field to
reach the indicative sector target.
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Box 1: Dutch emission targets explained

Currently, total Dutch GHG emissions are 193 Mton CO;-eq (2017), which is 13 % lower compared to the
221 Mton CO;-eq baseline of 1990. Total Dutch GHG emissions should decrease to a maximum of 113
Mton CO3-eq to reach the reduction target of 49 % GHG reduction in 2030 (compared to 1990-levels)
(CBS, 2018a).

Hence, from 2017 onwards, a reduction of 80 Mtons has to be achieved. Of these 80 Mtons, the Dutch
government assumes that 39 Mtons will be reduced through existing policies, the so called “baseline
policies” (Schoots et al., 2017). The remainder of this sum has to be achieved through policy from the
climate agreement, that contributes 48.7 Mtons (see Table D.1), reaching the total of 80 Mton reduction
compared to 2017 emissions.

Figure 1.2: Dutch emission targets explained

The task at hand for the climate tables was to formulate additional policies to realize an additional reduction
of 48.7 Mtons of CO,-eq GHG emissions. In little less than a year, the design of the climate agreement had
been made and has been published in December 2018. It proposes many different solutions for the energy
transition (Klimaatakkoord, 2018; Waaijers, 2017) in order to meet the renewed reduction targets.

To put policy into practice, the climate agreement proposes Regional Energy Strategies (RES) to effectuate
national agreements, stimulate cross-sectoral cooperation and enable societal involvement. Thirty regions
have been composed in which governments, social partners, distribution system operators, business and,
where possible, citizens (Klimaatakkoord, 2019, p. 224). The Netherlands has multiple levels of public
governance. These RES’s will form an extra dimension to facilitate, on top of the existing administrative
division of national government, provincial administration and municipal administration.

1.3. Deep uncertainty

Energy transition policy, is beset by many deep uncertainties that impede normal decision making in this,
so called, post normal domain (Pye et al., 2018; Li and Pye, 2018). Adaptive programming could provide a
solution to cope with these uncertainties and general complexity of energy transition policies (Klimaatakkoord,
2018; Ministry of Infrastructure and the Environment, 2018), but decision making under conditions of deep
uncertainty requires special attention as “analysts do not know, or the parties to a decision cannot agree on,
(1) the appropriate conceptual models that describe the relationships among the key driving forces that will
shape the long-term future, (2) the probability distributions used to represent uncertainty about key variables
and parameters in the mathematical representations of these conceptual models, and/or (3) how to value the
desirability of alternative outcomes.” (Lempert et al., 2003).

Walker et al. (2001) argue that “/public] policies should be adaptive- devised not to be optimal for a best
estimate future, but robust across a range of plausible futures.” and provide a carefully constructed adaptive
policy-making framework.

Adaptive policy making emerged from the field of Exploratory Modelling and Analysis (EMA). EMA involves
performing many computational experiments “... to explore the implications of varying assumptions and
hypotheses.” (Bankes, 1993), which has been applied in the range from combat- to policy research. Recently,
Hamarat et al. (2013) and Haasnoot et al. (2013) have applied the concepts of robust decision making and
adaptive policies to real-world cases (the Dutch energy transition and the Dutch Delta program respectively).
Kwakkel et al. (2016a) provide a comparison of robust decision making with dynamic adaptive policy pathways.
The authors conclude that “Robust Decision-Making offers insights into conditions under which problems
occur, and makes trade-offs transparent. The Dynamic Adaptive Policy Pathways approach emphasizes
dynamic adaptation over time, and thus offers a natural way for handling the vulnerabilities identified through
Robust Decision-Making.”.

1.4. Need for Informed Decision Making

It is essential for Dutch policymakers to create policies that significantly reduce carbon emissions, as “there is
no right to be wrong” when battling climate change (Rittel and Webber, 1973). Making proper decisions when
faced with deep uncertainty is highly complex, as man simply does not know which future will unfold.Dutch
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climate policies for the next decade are currently in the making. Inspired on measures proposed in the climate
agreement, instruments are created to effectuate policy ambitions.

Energy transition policy aimed at reducing CO, emissions, is surrounded by deep uncertainties, due
to climate change, technological innovations and socio-economic developments. These uncertainties pre-
vent conventional decision making, as policy formulation for a single best guess of future circumstances is
inadequate under deep uncertainty. Hence, there is a need to assess performance of policies under deep
uncertainty. Policy robustness is a metric of policy performance that describes insensitivity to differences in
future circumstances. Adaptive strategies can be created that are flexible to changing conditions and thus
increase policy robustness, in contrast to more conventional static policies, that are constant over time.

Capano and Woo (2018) state that, although literature shows a growing interest in policy robustness,
empirical cases of robust policies are limited. The authors put two reasons forward for this gap. First,
operationalization and definition of robustness of policy design is difficult due to differences in understanding
of uncertainty across political and social contexts. Second, the authors state that robustness tends to be mixed
up with similar concepts such as resilience, which makes understanding of existing efforts in robustness of
policy design hard to determine. More recently, Verroen (2018) bridged the gap between academic literature
and real life policy making in a session on decision making under uncertainty.

Concepts from the fields of Exploratory Modelling and Analysis and decision making under deep uncertainty
provide tools, such as robust decision making or adaptive planning to cope with these highly uncertain
challenges. These tools are, however, not used in the current policy making process. This inspires the following
research gap:

Research Gap: The effect of robust or adaptive policies have not been reported in the current
Dutch climate agreement, even though it has been presented as an adaptive agreement. This brings
into question how robust energy transition policies can be formulated under deep uncertainty.

1.5. Scope: the Dutch Built Environment Sector

The formulation of the climate agreement has been a massive undertaking including over a hundred different
stakeholders. Subsequently, analyses by the PBL Netherlands Environmental Assessment Agency (PBL, 2019)
too has been a monumental performance in very limited time to provide a quantitative review of intended
plans. Hence, this study by no means has the illusion to outdo both.

Therefor, a scope of the Built Environment Sector will be entertained. This sector has been selected for
multiple reasons. First, data availability, accuracy and completeness is expected to be better than other sectors
in the climate agreement such as the industrial or agricultural sector. Second, this sector holds a technical
challenge (switching to sustainable energy solutions, increase household energy efficiency, etc) and a strong
social challenge (how will costs be distributed, how to prevent energy inequality, etc.). Moreover, policies for
the built environment will quite literately hit home for all citizens in The Netherlands and will subsequently
face major scrutiny. Combined with the heterogeneity of the current Dutch housing stock and its inhabitants,
these two challenges increase complexity of policymaking.

1.6. Research Goal and Main Research Question

The main goal of this research is to perform a pilot study to analyze the effects of different climate policy
instruments under the influence of deep uncertainty. The aim is to create an open source work flow from
data acquisition and manipulation to modelling and simulation to establish a quantitative framework for
exploratory modelling and analysis of energy transition policies under deep uncertainty. Specifically, climate
ambitions following from the Dutch climate agreement for the built environment sector will be addressed as a
case study. The main research question to be answered in this thesis can be presented as:

“How could policies be designed to establish a more robust performance of the climate agreement’s built
environment sector?”

In answering this research question insights on policy performance and (in)sensitivity to changing circum-
stances could be obtained. Hence, creating understanding of plausible future scenarios and policies that reach
desired scenarios.
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1.7. Structure of the Report

This thesis consists of ten chapters. In this first chapter an introduction provides context, knowledge gaps
and associated research questions. Second, the research approach is presented in chapter 2. Sub questions
following from the main research question, methodology, applied frameworks and the scope of the study
are discussed in more detail. Subsequently, chapter 3 begins by laying out general energy transition model
taxonomies and continues to analyze the state-of-the-art regarding energy systems models. Chapter 4 elabo-
rates on the quantitative model applied for the scope of this study. The chapter presents a general conceptual
overview of the model, it’s most important structures, constants and data used for model calibration. After that,
a base case analysis of the system under study is performed without any implemented policies (chapter 5). Key
uncertainties are highlighted and their influence on the system discussed next to presenting results and more
general trends of the sector. Subsequently, chapter 6 presents a policy analysis that aims to mitigate negative
effects of influential uncertainties. In this chapter, three most promising policy instruments are selected
and combined in various policy implementation mechanisms, before being tested under deep uncertainty.
Outcomes of these policies are presented and their implications discussed. Chapter 7 discusses interpretation
and implication of results, their limitations and recommendations for future research. Thereafter, the research
questions are answered in chapter 8. Finally, this thesis is concluded by offering a critical reflection on the
study and its societal and academic relevance.



Research Approach

This chapter explains the methodology used to answer the sub questions (grouped by dominant method).
Besides that, this chapter will briefly address data, tools and scope. The chapter concludes by providing an
outline of research activities

The focus of this study is to explore robust Dutch energy transition policies under deep uncertainty. Build-
ing on the Robust Decision Making (RDM) framework by Lempert et al. (2006), this study proposes an Adaptive
Robust Design (ARD) (Hamarat et al., 2013) approach to establish a more robust climate agreement. The goal
of this Adaptive Robust Design (ARD) is to use a digital twin of the Dutch built environment sector, as discussed
in the climate agreement, and test proposed policy instruments under deep uncertainty. Understanding of the
performance of different strategies could help redesign, and hence improve, policy strategies to create robust
policy instruments.

2.1. Sub Research Questions

The main research question presented in section 1.6 cannot be answered directly, as the energy transition is
a massive systemic make-over and hence involves many uncertainties. These uncertainties strongly affect
the ability for informed decision making, because dynamic relations between key factors of the system’s
structure are unknown. Which creates difficulties to formulate assumptions to assess long-term policy effects.
Consequently;, it is vital to know which key uncertainties are involved, how they affect the system and each
other, and how sensitive Key Performance Indicators KPI's are to uncertainties and policy instruments. To
answer this main question, the following sub questions will be adopted:

Sub-question 1: What energy transition models are currently available and compose the state-of-
the-art?

Before creating a quantitative model within the scope of this study, it will be beneficial to understand the
current state-of-the-art in terms of energy transition modelling. Hence, an overview and taxonomy of different
energy systems models should be created. Moreover, this deep-dive in existing energy systems models provides
the possibility to analyze the appreciation of deep uncertainty in the energy systems modeling sector. Hence,
an overview of main uncertainties provided in literature will be included in this sub-question.

Sub-question 2: How can the energy transition of the Dutch built environment sector be specified
in a simulation model?

A quantitative model of the Dutch energy transition in the built environment sector needs to be created to
allow for quantitative policy testing. This model is a formalization of inputs, relations and outcomes of the
conceptualization of the energy transition. Secondly, model mechanisms need to be created that enable
policy instrument implementation in the digital twin of the Dutch energy transition. Each policy instrument
identified in sub-question 1 needs to be formally represented in the digital twin of the energy transition.

Sub-question 3: What are, according to a Deep Uncertainty approach, the key uncertainties in the
energy transition of the built environment?
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Understanding of the influence of uncertainties on the general outcome of the model is required, prior to
policy analysis of robust policy options. Hence, this question aims to analyze outcomes of possible future of
the system under deep uncertainty.

Sub-question 4: Can policies be designed that accelerate the energy transition of the built envi-
ronment sectorm which are robust under deep uncertainty?

Robust policies can be found through quantitative policy analysis. The three most promising policy instru-
ments are selected and combined in various policy implementation mechanisms to be tested in the energy
transition model. Large ranges of parametric uncertainty are sampled to simulate deep uncertainty. Policy
variations can thereafter be analyzed on their performance to provide insights in their robustness under deep
uncertainty.

2.2. Research Methods and Data collection

2.2.1. Desk Research (sub-question 1)

To answer the second sub question, a literature overview of the state of the art will be provided regarding
energy systems modelling in scientific literature, complemented with models being used in public policy
making or commercial advisory.

2.2.2. System Dynamics (sub-question 2)

An operationalized model of Dutch built environment sector will be created using System Dynamics to explore
system behaviour under the identified uncertainties. Energy transition policies are implemented in a highly
dynamic socio-technical system in which system outcomes shaped by various underlying processes and
feedback loops. Because of these dynamics, system Dynamics modelling will be used to create models of the
climate sectors. Moreover, the model will have to be instantiated from a very low (local) level to accommodate
for different policy perspectives and to enable specific built environment policies such as a district-based
approach for household renovations. Hence, the model has to include neighbourhood, district, municipality
and country level.

2.2.3. Robust policy options (sub-question 3 & 4)

Robust Decision Making

The RDM framework (Lempert et al., 2006) consists of four key steps. Firstly, a conceptualization of the system
under study, key uncertainties besetting the system, policy levers and outcomes of interest (Kwakkel et al.,
2016b). Secondly, cases are generated using the conceptual model from the previous step (Bankes et al., 2013).
During this case generation, the model behaviour is systematically explored across identified uncertainties to
assess performance of candidate strategies. Step three is scenario discovery (Bryant and Lempert, 2010) which
employs statistical machine learning algorithms to analyze the results of the case generation stage to reveal
conditions under which candidate strategies perform poorly. These vulnerabilities are analyzed in the fourth
step, trade-off analysis, to assess performance of the candidate strategies on outcome indicators (Kwakkel
et al., 2016b), which can be used to redesign strategies and repeat the process.

Adaptive robust design

Building on the RDM framework, Adaptive Robust Design explicitly iterates over the RDM framework to
investigate robustness of candidate policies using the System Dynamics model. The inherently iterative
approach will identify vulnerabilities from troublesome scenarios and strengths from promising scenarios to
create better policies (Hamarat et al., 2013).

Firstly, the problem will be conceptualized and uncertainties identified. Then, an iterative cycle begins that
uses the conceptualization and uncertainties to (1) design of policies and actions, (2-3) implement candidate
policies in the model, (4) case generation (exploratory modelling) of all plausible scenarios, subject to the
candidate policies, (5) find troublesome and promising scenarios using scenario discovery, (6) evaluation of
the performance of candidate policies using trade-off analysis and thereafter redesign policies and repeat the
process (see figure 2.1).
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Figure 2.1: Iterative Adaptive Robust Design process according to Hamarat et al. (2013) and Lempert et al. (2006)

Exploratory Modelling and Analysis

The ARD framework requires many simulations of various experimental setups. Exploratory Modelling and
Analysis (EMA) helps in this process by allowing for experimentation with various combination of input
parameters (uncertainties) to analyze their effects on the system (Kwakkel and Pruyt, 2013). Specifically, EMA
supports distinction of input parameters in uncertainties and policies as needed in the ARD process.

2.2.4. Data & Tools

Data will be vital to instantiate the model to have it represent the Dutch energy transition in the built environ-
ment sector. In order to uphold the open source character of the pilot study (see 1.6) only publicly available
data sources will be consulted. As no centralized data set on energy transition information yet exists (CBS,
2019b), multiple sources will have to be acquired and merged to provide a single data file.

Vensim DSS is used to model the energy transition in the built environment sector. Vensim allows for
visually structuring model relations and equations. Moreover, the DSS version of Vensim enables model
compilation in C-language (a near-machine level programming language), that enables very fast simulations.
Also, the Vensim DSS package avoids the necessity of specifically modelling every single model entity (neigh-
bourhoods in this study), as it offers a sub scripting ability for a general model structure. The EMA workbench
a Python package developed by Kwakkel (2017) provides all necessary tools to apply the ARD method to the
System Dynamics model. The workbench connects the compiled Vensim model to Python and injects the
policies and uncertainties, defined in its experimental setup, to the compiled model and stores outcomes
of interests after simulation. This method enables simulation of several 100’s if not thousands of possible
scenarios with the model.

2.3. Research flow

Figure 2.2 shows the order of the research, as a result of the sub questions proposed in section 2.1. First,
a literature review will be performed examining existing energy systems models. Subsequently, tooling is
prepared in Vensim and Python to facilitate the ARD process later on. Thereafter, the simulation model
expanded and subsequently used in the ARD process. Finally, results are discussed before concluding the
study and providing critical reflections.
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Energy Transition Models

This chapter aims to answer the second sub question by providing an overview of the current state of energy
transition models. Firstly, the introduction sheds light on perspectives on energy transitions and quantitative
energy systems modelling. Thereafter, an overview of energy models for policymaking is provided, grouped in
academic, open source and Dutch energy models. Finally an overview of uncertainty in energy modelling is
provided before concluding the chapter.

3.1. Introduction

In the face of anthropogenic climate change, it is crucial that decision makers are optimally informed for the
creation of national policies to realize carbon reduction goals set in the Paris Agreement (UNFCCC, 2015). As
Li and Strachan (2017) state: “The scale of the energy transition challenge is extremely daunting” and hence
models and decision support tools are needed for decision makers to create effective policies.

This sections aims to explore the state-of-the-art of current energy-related models for policymaking. By
providing (i) a brief introduction to energy systems modelling and (ii) an overview of current energy models
for policymaking? In an effort to answer the second sub question of this thesis: “What climate/energy models
are currently available and compose the state-of-the-art?” (see section 1.6).

3.1.1. Perspectives on Energy Transitions

Cherp et al. (2018) distinguish three main systems of interest in energy transitions. Namely (i) techno-economic
(energy production, conversion and consumption), originating from energy systems analysis and economics.
(ii) Socio-technical systems (energy technologies embedded in their socio-technical context), stemming from
evolutionary economics and STS. (iii) Systems of political actions, which has its roots in political science and
political economy. The authors go on to introduce a multi-tier framework for energy systems to facilitate
cross-sectoral collaboration between academics and different fields, as proposed by Ostrom (2007). Regarding
the shaping of energy transitions, Turnheim et al. (2015) identified five key challenges. (i) scales, geographies
and temporality, (ii) complexity and uncertainty, (iii) Innovation and inertia, (iv) Normative goals of transitions
and (v) Perspectives on governing transitions. In short, energy transition models should include the three
specific domains as mentioned by Cherp et al. (2018) and have resolutions including the dimensions provided
by Turnheim et al. (2015).

3.1.2. Quantitative Energy Systems Modelling
Quantitative analyses can support decision makers om their effort to better grasp effects of their policies.
More specifically, “quantitative systems modelling studies provide a forward-looking perspective of transitions”
(Turnheim et al., 2015). Cherp et al. (2018) conceptualize the energy transition as a co-evolutionary system
containing two main mechanisms. Namely, (i) “those explaining the evolution of each of the subsystems” and
(ii) “ those connecting these subsystems”.

Naturally, quantitative systems modelling has drawbacks too. Bolwig et al. (2018) argue that a quantitative
systems modelling approach has limitations when considering the behaviour of the actors, the role of inertia
and innovation and also explaining the spatial dimension of energy transitions.”
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On a similar note, Turnheim et al. (2015) mention that each quantitative approach is a lens that generates
only a partial understanding of sustainability transitions. The authors provide a framework that combines
quantitative systems modelling, socio-technical analysis and initiative based learning to overcome these
challenges. Hence, providing a “more robust evaluation of sustainability transitions as they unfold in as
complex systems transformations with emergent properties.” (Turnheim et al., 2015).

As Bolwig et al. (2018) and Turnheim et al. (2015) stated, however, no single model can fully capture
reality, due to many uncertainties involved. The Dutch environmental assessment agency acknowledges three
main categories of uncertainties in their modelling effort: uncertainty regarding policy design, (ii) behavioral
uncertainty and (iii) exogenous uncertainty (PBL, 2019).

Li et al. (2015) introduce the Socio-Technical Energy Transition (STET) model taxonomy for the characteri-
zation of integrated quantitative modelling and conceptual socio-technical transitions. Moreover, the authors
provide a comprehensive overview of current (near) STET models and how they score on (i) techno-economic
detail, (ii) explicit actor heterogeneity and (iii) incorporation of transition pathways.

Bolwig et al. (2018) argue that “an enriched modelling approach should not focus just on technology
development and deployment, but also on feedback loops, learning processes, the importance of policy and
governance and of behavioural changes, inter linkages between the energy and other economic sectors, and
infrastructure development.”

Similar to Bolwig et al. (2018), this study will use Li et al. (2015)’s taxonomy to create a STET model that
integrates Cherp et al. (2018)’s meta theoretical framework of techno-economic, socio-technical and political
perspectives on national energy transitions.

3.2. Energy Models for Policy making

This section will provide a brief overview of the state of the art regarding energy models for policy making.
Three main themes will be considered: (i) a review of academic models, (ii) a review of open sourced models
and (iii) a review of energy models specifically designed or calibrated for the Dutch energy sector.

3.2.1. Academic STET Models
Table3.1 provides an overview of energy transition models derived from the extensive inventory of energy
transition models and assessment on STET criteria by Li et al. (2015).

Table 3.1: An overview of STET models. Source: (Li et al., 2015)

Model name Source Sectors Model Class  Georesolution
BLUE-MLP (Trutnevyte et al., 2014)  Power sector (UK) SDM Country
CASCADE Model Frame- (Allen and Varga, 2014) Power sector (UK) ABM Country
work
Chappin’s Power Sector- (Chappin, 2011) Power sector ABM Country
Model (ABM) (Netherlands)

ElecTrans (Yiicel and van Daalen, Power sector ABM Country

2012) (Netherlands)

ENGAGE DFR Module (Gerst et al., 2013) National energy de- ABM Global
mand and supply

Computer Assisted Rea- (Lempert, 2002) Global energy de- ABM Global

soning (CAR) Framework mand and supply

Tran’s Alternative Fuel Ve- (Tran et al., 2013) Passenger car mar- MCSM Multiple

hicle (AFV) Model ket (UK) Coun-

tries

Struben’s  Alternative (Struben and Sterman, Passenger car mar- SDM Region

Fuel Vehicle (AFV) Model 2008) ket (California)

Transition Lab Frame- (Kohler etal., 2009) Ground vehicle ABM + Country

work transport (UK, US) SDM

Transition Lab Frame- (Bergman et al., 2008) Residential buildings ABM + Country

work (UK) SDM

Continued on next page
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Table 3.1 - continued from previous page

Model name Source Sectors Model Class Georesolution
REMG and IMAGE/- (Daioglou etal., 2012) Residential buildings CGEM Multiple
TIMER Coun-

tries

Charlier's  Residential (Charlier and Risch, Residential buildings ? Country
Sector Model 2012) (France) (IODE

Bel-

gium)
Res-IRF and IMACLIM-R  (Giraudet et al., 2012) Residential buildings CGEM Country

(France)

Yiicel's Housing Stock (Yiicel, 2013) Residential buildings SDM Country
Model (Netherlands)
Chappin’s Consumer (Chappin and Afman, Residential buildings ABM Country
Lighting Agent-Based 2013) (Netherlands)
Model (ABM)

3.2.2. Open Model Initiative

Furthermore, the majority of energy models for policymaking or research purposes that are in use are not
publicly available. The open (energy) modelling initiative aims to change that, by advocating for and actively
publishing open source energy transition models.

Of the models that are openly available, many have different semantics regarding the sectors includes, KPI's
determined, time resolution simulated, modelling approach applied and geospatial resolution incorporated.
The open-source models presented in table 3.2 are selected on their time resolution being greater than a
day and the ability to run scenarios in the model, because this study concerns long-term effects of energy
transition policies and its dynamic policy implications.

Table 3.2: Opensource Energy Transition Models. Source: (Open Model Initiative, 2018)

Model Institution Sectors Model class Georesolution
EMLab-Generation  Delft University of Electricity Market, ABM Zones
Technology Carbon Market
Energy Transition QuintelIntelligence Households, Build- Demand driven Country
Model ings,  Agriculture, energy model
Transport, Industry,
Energy
MEDEAS University of Val- Electricity, Heat, Liqg- SDM global, conti-
ladolid uid Fuels, Gas, Solid nents, nations
Fuels
Temoa NC State University  all energy sys- single, region
tem,optimization,
model

3.2.3. Dutch Energy Models

The policies mentioned in Chapter D have all been evaluated on feasibility by the Dutch Environmental Agency
(PBL, 2019). The agency employs several models (including both national and international scope) to calculate
policy effects. The agency’s assessment had been appointed for the assessment by the Dutch Ministry of
Economic Affairs and climate, who had also facilitated the multi-stakeholder deliberation of the climate tables.
As a result of this, PBLs analysis is most influential and hence considerably criticized (sources).

Apart from PBLs model, however, many other quantitative models are used to support policy makers in
their decisions for energy transition policies. This section will present main energy models specifically used in
Dutch Policy making, concentrating on the (vision) formulation phase of the policy cycle (Source policy cycle)
to enable policy- and scenario evaluation.
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Netbeheer Nederland (2019) have provided a large overview of computational energy models for the Dutch
energy transition. These models stimulate municipalities, building corporations and energy corporations to
use existing, proven, models. Table 3.3 shows an overview of these models, selected on the policy formulation
phase and having a time horizon of a target year in the future.

Table 3.3: An overview of Dutch energy transition models, from (Netbeheer Nederland, 2019; Donker and Ouboter, 2015)

Model name(s) Institute Sectors Model Class Georesolution
Resolve-E, Com- PBL Electricity, Industry, Mo- CGEM(?) National, Inter-
petes, Tool industrie, bility, Built Environment national
Vesta-MAIS, Tool & Agriculture
woningen, Phoenix,

EFISCEN, CO2-Fix,
NEMA, Compact,
NEMA, Carbon-
tax,Tool ZE-zones,
Tool mobiliteit
CEGOIA CE Delft Built environment Spreadsheets Neighborhoods,
national
DSSM DNV GL Electricity Spreadsheets Neighborhoods,
national
DIDO TNO Regional decentral en- Dynamic, CGEM, Region, City
ergy solutions ABM
Energy Transition Quintel Intelli- Households, Buildings, Demand driven Country
Model gence Agriculture, Transport, energy model
Industry, Energy
Energie Transitie At- Over Morgen Heat GIS Neighborhood,
las region
Gebiedsmodel Alliander Households, companies, Spreadsheets Neighborhood,
industries, producers Region
and DSO’s
Transform Accenture Built environment Simulation, opti- Neighborhood,
mization city
Warmtevraagprofielen ECN Residential homes - Neighborhood

From the models presented in Table 3.3 only Vesta, DIDO and the Energy Transition Model allow policy
implementation. This ability is crucial to allow for policy testing across various scenarios to analyze dynamic
policy effects. Hence, these three models will be considered more thoroughly.

Donker and Ouboter (2015) provide an in depth analysis of many Dutch energy related models and have
compared them on eight dimensions.

The authors classify the Vesta model as a static back casting model that does not include any dynamic
feedback. It is a demand driven model that determines energy demand in different scenarios. Users have to
manually find optimal solutions, no optimization is included. The model’s time horizon spans from the present
to 2050 with a yearly time resolution. The user makes many decisions top down. Energy prices are provided as
an input variable for the model. Grid balancing and physical infrastructure have not been included.

DiDo is a dynamic forecasting model in terms of both pricing and forecasting. As it partly is an agent
based model, information is exchanged between actors every fifteen minutes. Macro economic feedback in
a dynamic pricing module that is based on the Computed General Equilibrium Model’s (CGEM) yearly base
price. The model is demand driven with demand curves changing yearly in the macro-economic CGEM. DiDo
includes operational and investment optimization on a micro, individual level of the actors. The model’s
time horizon spans from ten to thirty years with a yearly resolution for macro-effects. Decisions are made
via actor-specific utility functions for short- and long term choices. DiDo includes a pricing module that
determines (spot)market prices based on daily forecasts and supply and demand curves. The model also
simulates grid balancing on a regional level, which is extrapolated to a national level and includes physical
transport infrastructure and DSOs.
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The Energy Transition Model (ETM) is a static back casting model and does not include any dynamic
feedback. The model is demand driven. A single performance indicator “levelized cost” is used to compare
different technologies. Input variables have to be altered manually to reach a desired state, no optimization
isincluded in the model. Essentially, the ETM time horizon only includes two time steps: “the present” and
“the future”. Similar to the Vesta model, decisions are made top down, without inclusion of any behavioural
uncertainty of possible stakeholders. The ETM uses a merit order to determine pricing and also includes fuel
costs as a parameter for many technologies and carriers. Inclusion of the merit order ensures grid balance and
calculates necessary investments in the network. A simplified (graph) network represents the physical grid
infrastructure to calculate network investment costs.

Table 3.4: Overview of Donker and Ouboter (2015)’s analysis on the DiDo, Vesta and Energy Transition Model

Dimensions DiDo Vesta ETM
Dynamic/static Dynamic Static Static
Supply/demand-driven Demand Demand Demand
Optimization Operational and investment None None

Time resolution Yearly time steps Yearly time steps 2 time steps
Time horizon 10-30 years 2050 2050

Level of decision making Agents User User
Pricing Supply/demand Pricing as input variable = Merit order
Back casting/forecasting Forecasting Back casting Back casting
Grid balancing Regionally None Regionally
Modelling physical infrastructure  Detailed None Simplified

Energy models provide an important role for policy decision in The Netherlands and are characterized by
their many differences. On the topic of models that include a large time horizon and allow for policy testing
only three models stand out. These three models (see Table3.4) each show a different perspective on the
Dutch energy transition and only two of them allow analysis of dynamic policy effects (Vesta and DiDo). The
open-source model ETM does not include any feedback and has a time resolution of merely two time steps.
Thus the ETM is less suitable for extensive policy testing.

3.3. Uncertainty in energy modelling

The search for strategic policies that accelerate the energy transition is hindered by high degrees of uncertainty
on many different knowledge domains and reinforced by the high stakes for decision makers and the fear
of potential path dependencies and locking to legacy assets. Pye et al. (2018) identify the future availability
and costs of transition technologies, the political environment under which they may be deployed and the
role of changing societal preferences and individual behaviour as key uncertainties characterizing the energy
transition. Agreement on these uncertainties seems to exist, as Maier et al. (2016) and Walker et al. (2013)
also note that uncertainty regarding energy transition policies is marked by complex drivers such as climate,
technological innovation, socio-economic and political change and their effect on society and policymaking.

Pye et al. (2018) mark the type of challenge the energy transition entails as “post normal science”. A situation
“where urgent near-term choices must be made in an environment where perfect information and universal
agreement amongst key stakeholders is impossible to achieve” (Pye et al., 2018).

In their paper, Li and Pye (2018) have interviewed 31 UK experts from government, industry, academia, and
civil society on their views on the major uncertainties surrounding the ability of the UK to meet their climate
targets. Even though the authors agree that it is possible that the perspectives of the interviewees are strongly
conditioned by existing frames, it does provide an empirical baseline of key uncertainties and the level of
agreement amongst key stakeholders. Categorized in technological, societal, political, economical and global
dimensions, Figure 3.1 shows relations between main uncertainties in the context of the UK’s decarbonization
goals.

The Dutch environmental assessment agency mentions the following critical uncertainties in their assess-
ment of the climate agreement (PBL, 2019). Firstly, (i) option uncertainty regarding the design of the energy
transition itself. Secondly, (ii) the policy instrumentation and its effects (state space uncertainty). Thirdly, (iii)
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Figure 3.1: Relations between key uncertainties, from (Li and Pye, 2018)’s uncertainties in the UK’s energy transition. Solid lines
show relations as discussed by Li and Pye (2018), dashed lines show the author’s own additions. Orange shows political factors, green

technological, yellow societal, purple economic and blue global.

the response of citizens and companies to climate policies (preferential uncertainty). Fourthly, (iv) uncertainty
regarding the energy prices and finally (v) uncertainty of CO; prices.

In line with PBLs calculations, Menkveld et al. (2017) adopt similar categories of uncertainties in their
National Energy Outlook. Firstly, knowledge- or modelling uncertainties, which involves uncertainties around
calculations, statistical uncertainties in sectorspecific data, or modelparameterisations and representations.
Secondly, general uncertainties or externalities such as macro-economic uncertainty around GDP growth,
population growth, fuel- and CO; prices and the pace of climatic change. Thirdly, specific policy uncertainties
are entertained. These include uncertainties on the effectiveness of energy-, or carbon related policy measures.

3.4. Conclusion
The goal of this chapter is to answer the first sub question of this study:
“What energy transition models are currently available and compose the state of the art?”

In short, energy system models play a vital role in energy transition policies by providing an evidence base
for policy testing (Pye et al., 2018). to answer the second sub question of this thesis, this chapter has provided a
brief introduction of quantitative energy systems modelling in general, the STET taxonomy provided by Li
et al. (2015) and Cherp et al. (2018)’s meta theoretical framework of techno-economic, socio-technical and
political perspectives on national energy transitions. Moreover, an overview of state-of-the-art energy systems
models has been provided in three groups. Namely, Academic STET models (Li et al., 2015), open source
energy models (Open Model Initiative, 2018) and Dutch energy models (Netbeheer Nederland, 2019; Donker
and Ouboter, 2015).

All models described in this chapter differ significantly on their dimensions, scope, modelling methodology
and objectives, etc. While Li et al. (2015) and citeBolwig et al. (2018) both propose clear methodologies for
modelling energy systems, standardization of models or convergence of their components still seems distant.
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On another note, energy system models that allow policy testing seem to be a minority of all models classifying
as energy system models. Many energy systems model focus on a specific sector and provide static forward
looking perspectives of reality. Furthermore, many modellers still refrain from opening up their work to the
public. Even academic and publicly funded environmental agencies keep their models to themselves. The
ETM is the only open source energy model within the Dutch context. It does not, however, allow for dynamic
policy testing and thus is inadequate for this study. Hence, an open source dynamic model would offer a major
contribution to the existing model base for the Dutch context.






The Built Environment Transition Model

4.1. Introduction

The previous chapter discussed the state of the art of energy transition models and their variety. This section
will discuss a fitting energy systems model in line with the intended pilot study on the Dutch built environment
sector. This is done in an aim to answer the second sub question entertained in this thesis: How can the energy
transition of the Dutch built environment sector be specified in a simulation model?

First, this chapter will highlight key data acquisition processes developed for this study, as the model has
been instantiated from multi-level real-world data. Secondly, the base model that forms the backbone of this
study will be discussed. Finally, modifications to the base model to prepare it for the Adaptive Robust Design
method will be explained.

4.2. Data acquisition

Currently, there is no centralized, open data platform for energy transition-related data. A collaboration of
public and semi-public stakeholders aims to change that through project Vivet (De Ronde, 2019; CBS, 2019b).
This study, however, needs data prior to completion of the Vivet project. Hence, several openly available data
sources have been consulted and combined by the author in order to create an extensive, publicly available
and reproducible data set for the Dutch energy transition (see section B.1 for the Python code).

Moreover, the model will require the same on data on multiple scales to include these scales in later
analyses. This will make data acquisition significantly more difficult given the lack of a centralized data set.
Figure 4.1 shows an overview of a neighbourhood in a district of the municipality of the Hague. For the
model data on every neighbourhood and district for all municipalities will have to be gathered to create a
multi-scale data set for the built environment sector. All these scales had to be aligned for the simulation
model to function. Hence, the output of the data merge script (section B.1) was handled by another script to
remove inconsistencies (consult section B.2 for the alignment script).

17
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Figure 4.1: Spatial data decomposition of neighbourhood Kijkduin in district Kijkduin en Ockenburgh in the Municipality of the Hague.
From (CBS, 2018b)

Table 4.1: Overview of consulted data sources

Database Main contents [geospatial scale] Source

Klimaatmonitor - mobility ~ FEV’s and PHEV's, EV chargers [Zipcode 4]  (Rijkswaterstaat, 2019b)

Klimaatmonitor - energy Energy consumption, Renewable energy (Rijkswaterstaat, 2019d)
sources [neighbourhood]

Klimaatmonitor Green Gas and renewable heat [munici- (Rijkswaterstaat, 2019c)
pality]

EP-Online (BAG) Data on building type, construction year (RVO, 2019)
and provisional label [zipcode + house-
number]

CBS Passenger vehicles [Zipcode 4] source CBS

Table 4.1 provides an overview of consulted data sources as part of the data mining effort. Two main data
sources have been used. Firstly, the “climate monitor” (Rijkswaterstaat, 2019d,b): an open data initiative from
Rijkswaterstaat (Ministry of Infrastructure and Water Management) that combines several smaller data sources
on their platform. For instance, the mobility subset (Rijkswaterstaat, 2019b) used in this study is based on
data from Netherlands vehicle Authority (RDW). Subsequently, the energy subset (Rijkswaterstaat, 2019d)
combines data from the Central Bureau for Statistics and Rijkswaterstaat. Secondly, the EP-Online provisional
label data set provides detailed information per house on provisional label, building type and construction
year. A CBS data set on passenger vehicles on zip code 4 level has been used to determine number of EV’s and
PHEV’s on a neighbourhood level.

Combined, these data sets provide a detailed, open source representation of the Dutch residential housing
stock and its characteristics.

4.3. The base model

This study builds on an existing built environment System Dynamics model made available by courtesy of dr. E.
Pruyt. The model is a multi-level representation of national residential housing stock dynamics in an energy
transition.
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Figure 4.2: Top part of the modelsetupfile on neighbourhood level

This model in particular has been selected mainly for two reasons. First, the model provides a representative
structure that allows modifications and specifications to any case within its scope. Secondly, the model has
been written and packaged by Vensim DSS. Essential for any model in this study would be interconnectivity
with the Exploratory Modelling and Analysis workbench in Python to perform the Adaptive Robust Design
study. Vensim simulation models are well supported in this modeling workbench and thus can be connected.
Moreover, Vensim DSS enables model compilation to the C programming language, which in itself might
sound trivial, but results in enormous gain in computational efficiency. Thus, significantly reducing simulation
time.

This paragraph will firstly provide a general structural overview of the model components. Secondly, the
scope of the model is addressed and thirdly, data handling is discussed.

4.3.1. General structural overview
The model has been developed to allow policy testing on energy transition dynamics in the residential built
environment sector. Figure 4.3 shows a simplistic overview of the main structures composing the model.

Data processing Renovation Heat generation  Energy demand

?

Labour

Figure 4.3: High level overview of the base model

Firstly, the data processing structure imports data for model calibration (see section 4.3.3). Moreover, the
structure bridges gaps in data completeness when data is missing between one or more levels (municipalities,
districts and neighbourhoods). Data on lower levels (ie. neighbourhoods) is extracted from higher levels (ie.
municipalities) using distributional assumptions. Secondly, residential dwellings are divided on ownership
in privately-owned, commercial rent and building corporation homes for each neighbourhood in the data.
Houses can be renovated from gas-powered heating to either all all-electric or district heating. Thirdly, a
demand driven labour structure simulates the required workforce for renovation. Labour shortages, due to
system scarcity, are overcome by accepting foreign labour in the system. Hence, a regional labour market
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is assumed in the model. Subsequently, energy demand is calculated for each neighbourhood given the
neighbourhood specific characteristics (see section 4.3.3 for more details).

A detailed overview of the base model structures can be found in section C.1.

4.3.2. Model scope

The model focuses on heat generation of the (Dutch) residential housing stock and does not include household
energy efficiency components, because data availability on household isolation is virtually non-existent at this
point in time.

Furthermore, the model differentiates between three levels of ownership. Dwellings can be either owned
by building corporation, by commercial owners (for rent) or by private owners. Building corporations have
societal targets next to their commercial interests and are hence deemed to become front runners in the
household energy transition. Commercial- and private home owners lack such incentives and require other
stimuli. Thus, policies in the model are formulated for two groups: building corporations and privately
owned/commercially rented.

4.3.3. Data driven modelling approach

Albeit scattered, much building-related data is openly available in The Netherlands. This allows for accurate
model calibration to represent the Dutch system using real world data. The data is used to calibrate variable
values, but assumptions and theories define the relations between the variables in the model. The model
provides a generic residential household renovation structure. To have the model represent the Dutch housing
sector, it is calibrated to empirical data. The data driving the model has been acquired from several public
sources which have been manipulated to create a single data set (see 4.2).

This data set includes many building related characteristics segmented on municipal level (N = 332),
district level (N = 2533) and neighbourhood level (N = 10786). In short it includes building data (building type,
building year, energy label, average value), energy data (average electricity and gas demand per building type
per neighbourhood, households connected to district heating, installed PV capacity), building ownership
information (private, commercial rent and corporation), population data (demographics, households).

4.4. The policy model

Building on the the base model presented in the previous section, the policy model includes several modules
and structures to facilitate the pilot study and enable Adaptive Robust Design cycle, such as a policy structure,
uncertainties and key performance indicators. Figure 4.4 shows a simplistic overview of the main structures
composing the model, which will be discussed in more detail in this section. A detailed overview of the model
structures can be found in section C.2.

Uncertainties

. Key performance
Policy structure

i E indicators
| - N . '
i : i Costs
. Data processing Renovation Heat generation !
! y S e
i «— i Emissions
i ! (CO2-eq)
| Labour Energy demand i

Figure 4.4: High level overview of the policy model. Inspired by the XLMR framework (Lempert et al., 2003)
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4.4.1. Policy Structure

A policy structure has been implemented to mimic societal response to fiscal stimuli, such as subsidies.
Decision behaviour has been modelled on a neighbourhood level, as individual household data is limited to
housing characteristics rather than personal details such as income (by virtue of privacy protection). Prior
to policy implementation, modules had to be added to the model to simulate renovation costs and mimic
decision behaviour in neighbourhoods.

Renovation costs

To model peoples reaction to subsidy policies, renovation costs must also be included in the model. Average
labels have been assigned to each neighbourhood in the data file using the BAG data mentioned in section
4.2. Assigning values € (1-7) for each label € (A-G) enabled numerical operations. Subsequently, label groups
(1-4) have been assigned to the first, second, third and fourth quantile of the average label per neighbourhood.
Basically creating for groups of neighbourhoods based on their energy label. Renovation costs have been
retrieved from the Nationale EnergieAtlas (2019), which currently only offers insights in label jump costs for a
single exemplary household: a row house built between 1945 and 1964. To accommodate for other building
types (apartments, detached houses, etc.) and varying building years (which influences household energy
efficiency) four distinct renovation costs parameters have been sampled as uncertainties in the model for each
label group.

Subsidy structure

Subsidies are modelled to be awarded on a neighbourhood level, as a percentage of the renovation costs.
These costs differ per neighbourhood and depend on average energy label per neighbourhood. This structure
allows for creating policies that use subsidy percentage as a policy lever in a neighbourhood based approach.
Various types of policies (see chapter 6) can be implemented, which will be taken into consideration in the
neighbourhood decision logic given their propensity to renovate. In case of acceleration policies, the subsidy
awarded can never exceed the costs of renovation.

Renovation Decision Logic and Implicit Discount Rates

The model employs subsidy cut off levels to simulate renovations in the commercial sector in the model.
Specific subsidy cut-off levels sampled, depending on average building value per neighbourhood. Average
building value (n=10099 neighbourhoods) has been used, rather than average income (per receiver/citizen,
n=3363/4072 neighbourhoods), because of data completeness. The data set has been divided in four value
groups using the first to fourth quantile of average building value per neighbourhood.

Renovation decisions by owners of private dwellings and owners of commercial rent are assumed to be alike
in this study. For each time step in the simulation a neighbourhood is faced with the decision if its inhabitants
want to renovate, if they haven't done so already. If a given subsidy is greater than or equal to a subsidy cut-off
threshold for each value group, a decision to renovate is made and renovations will be performed by the current
renovation rate at the time step.

Table 4.2: Sampled subsidy cut off levels

Variable Lower bound Upperbound Unit Source
Subsidy percentage cut-off level 10 30 % Assumed
high building value
Subsidy percentage cut-off level 30 50 % Assumed
upper middle building value
Subsidy percentage cut-off level 50 70 % Assumed
lower middle building value
Subsidy percentage cut-off level 70 90 % Assumed
low building value

These subsidy cut-off levels represent the minimum percentage of subsidies required for home owners to
decide to renovate their homes. Implicit Discount Rates (IDR) are often used to model household investment
decisions. Train (1985) provides a review of discount rates of energy related decisions. Schleich et al. (2016)
revisited the Implicit Discount Rates and created a framework to better understand its underlying drivers. The
authors note preferences (for example on time and risk), predictable (ir)rational behavior (bounded rationality,
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behavioural biases) and external barriers to energy efficiency (split incentives, lack of information, lack of
capital, etc.) as most notable for the IDR. Due to these factors, the authors point out that IDR’s used in models
should be varied by household and technology characteristics. In line with this critical approach, Stadelmann
(2017) provides a critical review of the energy efficiency gap (and its underlying discount rates) with empirical
evidence.

Jaccard and Dennis (2006) discuss an estimated discount rate for energy-efficient renovation of 20.79%.
Berkovec et al. (1983) present discount rates for space heating systems using household income as a proxy.
The presented discount rates vary from 56 % at $1000 to 14% at $60.000. Another study showed widely varying
discount rates, both between and within certain groups, ranging from 2-300% Stadelmann (2017).

Table 4.3: Required subsidies to substitute differences in implicit discount rates, assuming a payback time of 20 years. Based on equation
4.1

Discount rate [%] Corresponding payback time [years] Corresponding subsidy [%)]
5 20 0.0
8 12.5 375
10 10.00 50.0
20 5.00 75.0
30 3.33 83.3
40 2.50 87.5
50 2.00 90.0
60 1.67 91.7
70 1.43 92.9
80 1.25 93.8
90 1.11 94.4
100 1.00 95.0

Table 4.2 shows the assumed subsidy cut-off thresholds for each of the value groups in the model. This
subsidy cut-off threshold explicitly assumes actors predisposition on payback period (20 years) and Implicit
Discount Rates.

In line with the findings of Berkovec et al. (1983) this study samples different subsidy cut-off levels (table
6.2) for different building value groups. Again, average building value is used as a proxy for household income,
because data is much more complete (see section 4.4.1). Over all building value groups a subsidy cut-off level
is sampled from 10 to 100 % to allow for a highly varying implicit discount rates (see table 6.2). Based on an
average payback time of 20 years for a renovation, required subsidies have been calculated for each discount
rate using equation 4.1.

paybacktime

* 100 4.1
discountrate; “.h

subsidy; =1-
Where the paybacktime is set at 20 years.

Energy generation allocation
If a decisions has been made to renovate a specific neighbourhood. Then, individual households will be
renovated given a dynamic renovation rate (which starts out small and increases over time). Renovation is
simplified in this model as disconnection from gas infrastructure and providing heat generation by either
electricity or district heating. The allocation of a dwelling disconnected from gas is performed by firstly
assessing vicinity of existing district heat sources. Specific allocation fractions are sampled as uncertainties,
given fractions of existing infrastructure in neighbourhoods. Thresholds for deciding which fraction to district
heating to use are set at 0%, <50% and >50% of percentage district heating fraction 2017 for no, low and
high existing infrastructure (respectively). For each group of existing district heating infrastructure, different
uncertainties are sampled. No existing infrastructure corresponds to uncertainty fraction to district heat no
existing infrastructure, low existing infrastructure to fraction to district heat low existing infrastructure and
high to fraction to district heat high existing infrastructure. These uncertainties are sampled for the building
corporations and privately owned and commercially rented homes.

The only alternative for disconnected dwellings that cannot be included in a district heat net is to generate
heat electrically, given the model’s scope of gas-based, district heat, or electric heat generation. This constraint
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Table 4.4: Assumed uncertainties allocation to district heating

Variable Lower bound Upperbound Unit
fraction to district heat building corporation no existing infrastructure 0 30 % /year
fraction to district heat building corporation low existing infrastructure 30 70 %/year
fraction to district heat building corporation high existing infrastructure 70 100 %/year
fraction to district heat commercial sector no existing infrastructure 0 10 %/year
fraction to district heat commercial sector low existing infrastructure 10 30 %/year
fraction to district heat commercial sector high existing infrastructure 30 60 %/year

takes effect by allocating all renovated houses, that cannot be connected to district heating, to all electric heat
generation.

4.4.2. Model constants

The model relies on certain constants on national level, next to the real-world multi-level data used to
instantiate the model (see section 4.2). Table 4.5 shows an overview of implemented national constants and
their sources. Parametric uncertainties sampled in the model are discussed in section 5.2.1.

Table 4.5: Model constants

Variable Value Unit Source

Emissionfactor electricity start 0.45 kg/kWh  (Rijkswaterstaat, 2019a)
Emissionfactor natural gas start 1.791 kg/m3 (Rijkswaterstaat, 2019a)
Emissionfactor district heating start 0.035696 ton/GJ  (Rijkswaterstaat, 2019a)
Climate agreement renovation rate 2021 0.8 %/year  (Klimaatakkoord, 2019, p. 17)
Climate agreement renovation rate 2030 2.9 % /year (Klimaatakkoord, 2019, p. 17)
Energy density district heating 0.20934 GJ/m?3 (Nuon, 2018)

4.4.3. Key Performance Indicators

The final module added to the existing base model is a key performance indicator (KPI) structure. To prepare
the model for the Adaptive Robust Design method, outcomes need to be formulated. Therefor, specific KPI
structures have been formulated for CO2-eq emissions and costs.

Emissions

This structure creates a CO;-eq KPI by taking the sum of local energy demand € (electricity, gas and district heat)
and multiplying it an emission factor (see table 4.5). Decarbonization efforts in the energy sector have been
included in the model by making the emission factors dynamic (decreasing over time) for electricity and district
heating. In line with the climate agreement, carbon emissions will be reduced by 77% by 2050 (Klimaatakkoord,
2019; PBL, 2019). The amount of decarbonization reduction, however, is uncertain. Hence, the fraction of
innovation on the emission factors of electricity and heat is sampled as an parametric uncertainty (see section
5.2.1). No decarbonization trajectory has been included for natural gas, as policies to accelerate the production
of green gas (natural gas grade bio gas), the SDE++ subsidy, are deemed uncertain and hence not accounted to
a specific sector (PBL, 2019, p. 72).

Monetary structure

A monetary structure has been added to the base model which samples different uncertain renovation costs
for each label group (see section 4.4.1 and 5.2.1) for each neighbourhood. Similar to the emission structure,
renovation costs have been made dynamic by including a reduction of renovation costs over time. The amount
of reduction, too, has been sampled as an uncertainty and varies from 20-50% reduction, following a subsidy
grant to realize this reduction (Rijksdienst voor Ondernemend Nederland, 2019).

Total societal costs have been calculated by taking the product of the sum of renovated houses per neigh-
bourhood and renovation costs per neighbourhood for each ownership type €(building corporations, privately
owned homes and commercial rent). Subsidies are calculated by either multiplying the number of renovated
houses with a static subsidy amount or a dynamic annual subsidy budget.
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4.5. Model Verification

To verify the equations implemented in the model, two verification tests have been conducted. First, a
mass balance test has been conducted on the total number of houses in the model. Second, a mass balance
test showing the total number of houses segmented by heat generation type has been performed. If the
implementation has been performed correctly, the sum of houses in the model should stay constant under
frozen growth rates (no new homes are constructed, no old homes are demolished).

Figure 4.5 confirms this hypothesis as the total number of houses remains constant over time (figure 4.5a.
Similarly, the homes segmented by heat generation type show no clear signs of leakage in the model. Hence, it

can be concluded that conceptual relations have been implemented correctly.
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Figure 4.5: The mass balance test for the total houses in the entire model. During this mass balance test, there are no new houses built or
old houses demolished, so the total number of houses does not change. The small decrease shown over time

4.6. Conclusion
The goal of this chapter is to answer the second sub question of this thesis:

“How can the energy transition of the Dutch built environment sector be specified in a simulation model?”

In this chapter a description of modifications and additions to an existing System Dynamics model have
been discussed. Open data has been gathered and prepared for model instantiation on multiple scales and
policy structures have been defined.

Main conclusions from this chapter are that the model represents a simplified perspective on household
renovations in The Netherlands. Data is available, but does not uniformly represent all scales (neighbourhood
- municipality). Data from even lower levels (zipcode 4 areas) has been scaled up to cope with this issue. The
model’s scope does not include more detail than data currently allows for. So energy efficiency efforts have
been completed left out of the model. This immediately poses a major limitation to the current model, as
policies will naturally also include energy efficiency measures.

In the following chapter, the model is subjected to uncertainties to gain insights in trends of possible
futures without any defined policies.



Base case analysis

5.1. Introduction

This chapter will discuss possible outcomes of the built environment sector without any additional policies
under deep uncertainty. This base case analysis employs of the built environment energy transition model (see
chapter 4) to explore possible outcomes in order to answer the third sub question: “What are, according to a
Deep Uncertainty approach, the key uncertainties in the energy transition of the built environment?”. Results
presented in this chapter are derived from base case experimentation (see section A.1 for code) and scenario
discovery (see section A.3).

5.1.1. Approach of this chapter
This sections aims to find most influential uncertainties affecting the model under deep uncertainty. There-
for experiments are generated with the model without any policies that stimulate renovations in the built
environment sector.

The XLRM framework, introduced by Lempert et al. (2003) is used to summarize the experimental setup.
This framework structures input, output and external factors visually. Figure 5.1 shows the XLRM framework
used in this chapter.

-None
Policy
levers (L)
- Energy related values
{demand growth, carbon
intensity of power
generation) Built Environment Energy - Annual CO: emissions
- Renovation related values Transition model - Cumulative subsidy
{costs renovation rate) {Defines the relations - Cumulative renovated
> between the nternal houses >
variables and external
External factors and policy levers) Outcomes
factors () of interest
(R} (M)

Figure 5.1: XLRM framework applied to this research

First, the experimental setup for case generation will be discussed (section 5.2 in which details are provided
on parametric uncertainties and key performance indicators. These uncertainties together with selected
outcomes and the defined policies are applied to the model using the EMA workbench in Python to generate
experiments.

25
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Secondly, outcomes of the simulated cases will be explored in section 5.3. Effects of these uncertainties on
the outcomes of the model are explored by analyzing the trends of experiments on the outcomes of interest.
This, so-called open exploration, is performed by plotting the lines of all performed experiments to visualize
their trends over time. Additionally, Kernel Density Estimation are plotted next to the outcome plots to give
insights in the distribution of cases per on the outcome’s axis. Hence, providing information on the certainty
that a certain value (or range of values) will be reached.

Third, scenario discovery will be performed to find most influential uncertainties and worst case scenarios
in section 5.4. Most influential uncertainties in the worst case scenarios are derived for each KPI using scenario
discovery. Scenario discovery in python uses the EMA workbench (Kwakkel, 2015), which is inspired on Bryant
and Lempert (2010) who first proposed a computer assisted approach to scenario discovery using the Patien
Rule Induction Method (PRIM) algorithm. PRIM finds regions in the model’s input space that highly influence
outcomes of interest using a lenient hill climbing optimization algorithm (Kwakkel and Jaxa-Rozen, 2016).
Next, feature scoring is used to analyze and visualize the effects of uncertainties. The feature scoring method
used in the EMA workbench uses univariate lineair regression tests to show influences of the models input
space on the outcomes. Finally, the chapter is concluded in section 5.5.

5.2. Experimental setup

This section briefly explains the parameters set to represent the base case analysis without any policies. First, a
quick overview of parametric uncertainties is provided in section 5.2.1. Thereafter, outcomes of interests are
defined in section 5.2.2.

5.2.1. Uncertainties

Table 5.1 shows the uncertainty ranges sampled to generate the cases of the base analysis. Note that uncertain-
ties have been modelled as ratios, but are displayed in the table as percentages for more intuitive interpretation.
For example, an uncertainty range of 40-60% will be sampled as a ratio of 0.4-0.6 in the model. mentioned as
percentages in this table have been modelled as ratios.

Table 5.1: Uncertainties in the base case ensemble

Variable Lower bound Upperbound Unit Source
Reduction carbon intensity power 20 50 %/year (PBL, 2019)
generation
Annual development of new 0.88 0.97 %/year (CBS, 2019a)
homes
Annual standard renovation rate 0.7 0.8 %/year assumed to be lower

of (Klimaatakkoord,
2019, p. 17) 50k/year

Reduction renovation costs 20 50 % (Rijksdienst voor
Ondernemend
Nederland, 2019)

Renovation costs label group 1 8000 12000 Euro (Nationale En-
ergieAtlas, 2019)

Renovation costs label group 2 20000 28000 Euro (Nationale En-
ergieAtlas, 2019)

Renovation costs label group 3 30000 36000 Euro (Nationale En-
ergieAtlas, 2019)

Renovation costs label group 4 30000 40000 Euro (Nationale En-
ergieAtlas, 2019)

Annual electricity demand growth -1 1 % /year (Schoots et al., 2017)

Fraction houses to district heat 10 20 % Assumed

building corporations no existing

infrastructure

Fraction houses to district heat 30 70 % Assumed

building corporations low existing

infrastructure

Continued on next page
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Table 5.1 - continued from previous page

Variable Lower bound Upperbound Unit Source
Fraction houses to district heat 70 1 % Assumed
building corporations high existing
infrastructure
Fraction houses to district heat pri- 0 10 % Assumed
vate sector no existing infrastruc-
ture
Fraction houses to district heat pri- 10 30 % Assumed
vate sector low existing infrastruc-
ture
Fraction houses to district heat pri- 30 60 % Assumed
vate sector high existing infrastruc-
ture

It is yet unknown what fractions of neighbourhoods will be connected to district heating infrastructure, as
this is the major challenge for the coming years. Therefor, assumptions have been made on uncertainty ranges
of transitions to district heating infrastructure, depending on current capacity per neighbourhood.

5.2.2. Key performance indicators

The main goal of this study is to find policies that meet climate-agreement goals efficiently. Hence, main KPI's
of this study relate to carbon emissions and financial costs and available labour. Therefor the following KPI's
have been defined:

1. Annual CO;-eq emissions [ton CO;]: reflecting total annual CO, equivalent emissions summed over all
neighbourhoods in the model.

2. Cumulative costs of renovation [€]: total costs of renovations, neighbourhood specific renovation costs
summed over all neighbourhoods

3. Cumulative renovated houses [# houses]. Total number of houses that have been renovated during the
simulation.

All outcomes of the KPI’s are stored as a time series for each timestep in the simulation over a period of 31
years (2019 - 2050). Experiments are performed by sampling values for the parametric uncertainties using
Latin Hypercube Sampling (LHS). LHS is a statistical method that generates near-random samples within
the defined uncertainty ranges (see section 5.1. LHS samples from a multi-dimensional distribution which
is dynamically adjusted to previously taken samples to ensure that samples are evenly distributed over the
specified parameter ranges. 1000 scenarios are simulated to ensure adequate coverage of results.

5.3. Base case exploration
This section will discuss the results of the base case scenario of the energy transition in the built environment
sector, without defined policies, but with defined uncertainties.

The set of experiments and results is first analyzed by generating line plots of all cases (i.e. the number of
scenarios) for each KPI over time. Kernel Density Estimation (KDE) are shown next to these line graphs, to offer
insights in the occurrence of certain outcomes, by plotting the distributions of all outcomes over the y-axis.
This generates a single graph that offers insights on the potential range and robustness of the outcomes.

Figure 5.2a shows the development of total CO,-equivalent emissions without any policies. As a result of
the uncertainties (section 5.2.1) sampled on the model, outcomes vary quite largely. Starting from 15 Mton
CO3-eq in 2015, outcomes in 2050 vary from roughly 12-18 Mton CO;-eq emissions. The KDE plot, however,
shows that the majority of the cases are concentrated slightly below 14Mton (a 1 Mton decrease). The tails of
the distribution shown in the KDE plot are rather short. Hence, cases are also quite strongly represented over
the entire range.

Total costs of renovations are shown in figure 5.2b. Even without policies, some citizens and corporations
will decide to renovate their homes. The graph shows an exceptionally large spread in outcomes, ranging from
0 to 40 billion euros. Moreover, the KDE plot shows a large spread in distribution of the cases.

Figure 5.3 shows the development of the total renovated houses over time. Given the lack of policies in
the base case ensemble, it is not surprising that only a few homes changes to different methods (relatively
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speaking). Judging from the KDE, the cases seem very uniformly distributed over the outcome space. This
could imply rather deterministic behaviour and hence high influence from uncertainties related to this KPI.

5.4. Scenario Discovery
Exploration of the base case ensemble in section 5.3 showed strongly varying KPI’s over time and substantial
differences in density of the outcomes. This section aims to analyze to what extent the defined uncertainties
influence the model and its KPI’s. The scenario discovery in this section employs the Exploratory Modelling
Workbench (Kwakkel, 2017), which to perform scenario discovery in Python () and feature scoring.

PRIM (Patient Rule Induction Method) is a machine-learning algorithm used in scenario discovery. For
a single KPI, cases are selected that are outside a certain threshold (say the 10% best performing or the 10%
worst performing cases). Subsequently, the PRIM algorithm will try to fit the smallest box around these cases.
Iteratively, the algorithm restricts dimensions in a trade-off between coverage (explain coverage) and density
of results.

The scenario discovery process is carefully discussed on the primary KPI, Annual CO; emission. For the
remaining KPI’s, main results are presented and discussed.

5.4.1. Annual CO,-eq emissions
Figure 5.5 shows the main uncertainties influencing the model KPI Annual CO, emission. These uncertainties
have been used in the PRIM process as restricted dimensions to explain the worst performing cases (i.e. cases
with highest Annual CO;-eq emissions). The 8% worst case scenarios have been selected in this PRIM analysis
to find the most dense box, which is represented as scenario A in figure E.2b.

Figure E.2b shows the trade offs the PRIM algorithm made in the peeling and pasting trajectory (see figure
E.2a) of the restricted dimensions of the boxes. As the PRIM algorithm restricts more and more dimensions, it
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Figure 5.4: Coverage density trade-off for scenarios that describe the high Annual CO2-eq emissions.

peelslayers of parameters (uncertainties) in the subspace. Hence, we want to look at boxes at the top left of the
density/coverage curve. At the highest density, the uncertainties shown in figure 5.5 are most influential.
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Figure 5.5: Inspection of the PRIM box KPI: Annual CO2 emission.The figure shows parameters (uncertainties) used to define scenario A in
figure E.2b. The figure also shows the density and coverage for the box drawn for scenario A: 92% of the cases that meet these conditions
have high Annual CO2-eq emissions (i.e. 92% density). Of all high CO2 emission cases in the dataset, 73% meet these conditions (i.e. 73%
coverage). Annual electricity demand growth growth and fraction innovation on emission factors are most important and statistically
significant

Of the four uncertainties portrayed in graph 5.5, only the first two statistically are significant (p<0.05).
Namely, annual electricity demand growth demand growth, p =2.4e-26 and reduction of carbon intensity in
power generation, p = 3e-20.

These two significant uncertainties make sense, because the electricity growth rate directly influences
total energy consumed (and thus the total CO2 emitted). Second, the innovation in carbon intensity of power
generation, too, directly influences total CO2 output as it describes the innovation of carbon reduction in the
power sector.

The standard renovation rate and the fraction of privately owned homes that will switch to district heating
in the case of limited capacity also come up as important, but not as significant. They do, however, deserve
some more attention. The standard renovation rate, as follows from the current climate agreement provides a
baseline renovation rate without any additional policies. Its very interesting that this standard renovation rate
does not show up as significant in the model. Rather, annual electricity demand growth growth and reduction of
carbon intensity in power generation are more significant. Looking at these results from a systemic perspective,
this is an interesting finding, but reductions have to be made over all sectors to reach targets.

As most houses fall in the category ‘district heat no existing infrastructure’, second 'district heat low existing
infrastructure’ and least in ‘district heat high existing infrastructure’ it makes sense that the low variant for
privately owned homes pops up in this PRIM analysis. It is the first of these three groups (no, low, high existing
infrastructure) that has an impact carbon reduction (as acquisition of new district heat sources is scoped out
of this study), and more houses belong to this group rather than the group of high existing infrastructure.
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5.4.2. Cumulative costs of renovation

Even without any additional policies, renovations are performed and costs will be made. A PRIM analysis has
been performed on the 30% most expensive cases. This limit has been set to achieve the highest density. Figure
5.6 shows the the trade-off between coverage and density of for this scenario.
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Figure 5.6: Coverage density trade-off for scenarios that describe the high cumulative costs of renovation CO2 emissions.
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Figure 5.7: Inspection of the PRIM box KPI: cumulative costs of renovation.The figure shows parameters (uncertainties) used to define
the most left scenario in figure 5.6. The figure also shows the density and coverage for the box drawn for this scenario: 92% of the cases
that meet these conditions have high costs (i.e. 92% density). Of all high costs cases in the dataset, 68% meet these conditions (i.e. 68%
coverage). Reduction renovation costs and the standard renovation rate are most important and statistically significant

Of the four uncertainties portrayed in graph 5.7 only the first two statistically significant (p<0.05) within
the most dense box (coverage = 0.68, density = 0.92). Namely, Reduction renovation costs (p=3.4e-28) and
standard renovation rate (p=3.3e-20).

It appears obvious that the two uncertainties mentioned above are significant in their contribution to
cumulative costs of renovation. The first uncertainty directly influences individual renovation costs. The
second uncertainty defines the number of houses to be renovated in case of no additional policy.

The two final two uncertainties, fraction to district heat building corporation no existing infrastructure and
fraction to district heat building corporation low existing infrastructure, spike interest. Building corporations
are less dependent on merely financial incentives due to their societal goals. Moreover, most corporation
owned homes are in neighbourhoods with no or low existing district heating capacity. Hence, the higher the
propensity of these groups is to renovate, the larger their effect on cumulative costs of renovation.
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5.4.3. Uncertainty Analysis

Figure 5.8 shows a feature scoring on the main KPI’s of the base case study. The figure shows influence
of uncertainties (y-axis) on the model’s KPI's (x-axis). Annual renovation rate (standard renovation rate),
cumulative costs of renovation, annual electricity demand growth, reduction renovation costs and reduction
carbon intensity power generation and annual electricity demand growth are most influential.
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Figure 5.8: Feature scores of the experiments and outcomes of the base case ensemble. The figure shows influence of uncertainties (y-axis)
on the model’s KPI's (x-axis). Annual standard renovation rate, reduction renovation costs, annual electricity demand growth, reduction
renovation costs and reduction carbon intensity power generation are most influential

Cumulative costs of renovation

5.5. Conclusion
This chapter set out to answer the third sub question of this study: “What uncertainties are most influential in
the built environment sector under deep uncertainty?”.

Outcomes of the modelled built environment system under deep uncertainty without any implemented
policies have been analyzed to better understand the effects of uncertainties on possible futures of the
energy transition in the built environment sector. This has been done by performing an open exploration to
understand trends of main KPI’s and through scenario discovery to better understand influences of specific
uncertainties on certain KPI’s.

First, open exploration showed possible trends of main KPI’s in the model. None of the main outcomes is
naturally robust under the uncertainties defined in the experiments. In other words, all cases show a large
spread over the KPI’s.

Second, scenario discovery has been performed to understand the influence of specific uncertainties using
the Patient Rule Induction Method (PRIM). In the base case ensemble, a limited number of uncertainties
significantly influences the selected KPI's. Significant uncertainties influencing the selected KPI’s are listed
below.

¢ Annual CO;-eq emissions: annual electricity demand growth, p =2.4e-2 and fraction innovation in
carbon intensity of power generation, p = 3e-20.
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¢ Cumulative costs of renovation: Reduction renovation costs (p=3.4e-28) and annual standard renova-
tion rate (p=3.3e-20).

From to the Annual CO, emissions of the built environment sector, main KPI of this base case analysis,
it clearly shows that additional policies are needed to secure targets set for 2030 and 2050. Hence, the next
chapter will formulate policies to counter the uncertainties discovered in this chapter in an aim to create
robust policies for the ambitions in the built environment sector.



Robust Policy Analysis

6.1. Introduction

This chapter will discuss the results of the Adaptive Robust Design methodology performed on the case of the
energy transition in the Dutch built environment sector. The aim of this chapter is to answer the fourth sub
question of this study: Can policies be designed that accelerate the energy transition of the built environment
sectorm which are robust under deep uncertainty? Results presented in this chapter are derived from policy
case experimentation (see section 6.3 for code) and scenario discovery (see section A.4).

To answer this question new experiments have been iteratively performed on incrementally improved
models employing the ARD methodology. First, policies will be discussed which have been devised to counter
uncertainty and undesirable scenarios. Second, the experimental setup is presented showing input parameters
and outcomes of interest. Finally, results of the specified policies are discussed before concluding the chapter.

6.1.1. Approach of this chapter
This section aims to analyze the effects of policies to reduce negative effects of influential uncertainties as
discussed in the previous chapter (chapter 5). Therefore policy instruments are selected from current policy
documents. Variations how these instruments are implemented are discussed and applied to the instruments
in section 6.2.

The XLRM framework, introduced by Lempert et al. (2003) is used to summarize the experimental setup.
This framework structures input, output and external factors visually. Figure 6.1 shows the XLRM framework
used in this chapter.
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intensity of power
generation) Built Environment Energy - Annual C0; emissions
- Renovation related values Transition model - Cumulative subsdy
[costs, renovation rate) {Defines the relations - Cumulative renovated
- Choice behaviour values hetween the nternal houses
variables and external B
External factors and policy levers) Outcomes
factors (X) of interest
(R) (M)

Figure 6.1: XLRM framework applied to this research

Subsequently, experiments are prepared in section 6.3 by defining additional uncertainties. These uncer-

33
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tainties together with selected outcomes and the defined policies are applied to the model using the EMA
workbench in Python to generate experiments.

Next, policy effects are explored by analyzing the trends of experiments on the selected outcomes. This is
done by plotting envelopes of outcomes grouped by policy. These envelopes show minimum and maximum
value for a set of runs over time. Additionally, Kernel Density Estimations are plotted next to the outcome
plots. A Kernel Density Estimation (KDE) is a way to estimate the probability density function of a variable. In
these plots, the KDE offers insights in the distribution of cases per policies on the outcome’s axis and hence
describes the (un)certainty of the outcomes.

6.2. Policies and variations

Within the scope of the energy transition in the Dutch built environment sector, many policies have been
considered in the climate agreement. These policies have been analyzed by the Netherlands Environmental
Assessment Agency (PBL). This study will assess the possible effects under deep uncertainty of the three most
promising instruments as discussed by PBL.

Table 6.1: Three most promising policy instruments for CO2 emission reduction in the Dutch built environment sector according to (PBL,
2019, p. 67)

Instrument Emission reduction Investments (2019 National costs in

in 2030 [Mton] t/m 2030)[mln euro] 2030 [mIn euro per
year]

Neighbourhood approach and sub- 0.2-1.3 1080 — 4632 24-28

sidy in the privately owned homes

sector

Neighbourhood approach and sub- 0.2-0.3 1787 — 2059 54 -53

sidy in the rental sector

Norms newly built homes (gas free) 0.1-0.1 591 - 364 6--9

Total 0.5-1.7 3458-7055 84-72

Table 6.1 shows the three most promising instruments to reduce CO, emissions in the built environment
and hence reach the climate targets for the sector. (PBL, 2019). These three instruments have been modeled
in the System Dynamics model to simulate results with policies. The performance of these policies under
deep uncertainty is strongly influenced by the delivery mechanism (policy variations). For the neighbourhood
approach and subsidy in both the sector of privately owned homes and the rental sector, only subsidy based
policies have been taken into consideration in this study.

6.2.1. Policy variations

A policy can be implemented in a variety of ways. The delivery mechanism selected for a specific policy
naturally impacts the outcome of the policy. The list below briefly shows several possible mechanisms for
policies.

» Static policy: setting a fixed policy for a preferred outcome

¢ Dynamic reactive policy: finding balance between two opposing KPI’s over time (stop and go policy)

¢ Dynamic adaptive policy: create adaptive strategies that make policies robust under deep uncertainty
(Walker et al., 2001)

¢ Capping policies (rate-based emission policy or cap-and-trade policy (Fischer, 2003)

* Mission oriented policies: aiming to accelerate R&D to realize innovations and costs reductions (Mazzu-
cato, 2018)

For the sake of simplicity three policy delivery mechanisms have been selected on top of the no policy base
case. First, a static policy is defined to reach a preferred outcome. Second, an dynamic policy is formulated that
is designed to be adaptive to future developments. Third, a mission-like policy is implemented to understand
effects of labour availability, scarcity and costs.
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Static policy

In the static policy experiments. Subsidy percentages, static over time, are defined as policy levers in the model.
Currently, rough indications of total subsidy budgets have been made public (Klimaatakkoord, 2019), but it is
yet unknown how these subsidies will be distributed over different groups. Hence, subsidies percentages are
varied as policy levers ranging from 0 to 80%.

Adaptive policy

Performance is dynamically evaluated for the adaptive policy experiments. Progress on the main KPI, total
CO; emission is referenced to the yearly carbon budget of 2050. A multiplier kicks in if the current emissions
are higher than the linear reduction path required to meet 2050 emission targets. Different multipliers are
used, given the state of underachievement as shown in equation 6.1.

.¢ Annual CO, emission;_;
>
2, f CO» emission 2050 = 1.5
if1.5> Annual CO, emission;_; >1.25

) . L5 issi
subsidy multiplier, = o5 if1255 A O o, 1 (6.1)

CO> emission 2050

1, otherwise

Mission oriented policy

For the mission oriented policy, major scaling and R&D are expected to contribute to the transition. The
subsidy schematic is similar to the static policy scenario (see section 6.2.1). Major differences, however, are set
in an additional 25% higher renovation rate (of the standard renovation rate) and an additional 25 % higher
decrease in renovation costs (so a higher reduction renovation costs).

6.2.2. Policy targets

Policy targets are clear on a national level. Carbon equivalent emissions should be reduced by 49% by 2030
(Klimaatakkoord, 2019) and by 95% by 2050 (Klimaatwet, 2019). The climate agreement mentions a reduction
of 3.4 Mton for the built environment sector compared to the reference scenario. The reference scenario
mentioned the National Energy Outlook in 2017 refers to 2015 as base year (in which the built environment
sector in total accounted for 23.7 Mton of which households made up 17 Mton). A reduction of 3.4 Mton thus
accounts for 15.6% reduction of the total emissions in the sector.

This study will hold PBLSs targets as reference. PBL (2019, p. 25) present an emission of 24.5 Mton in
2015 and an emission ceiling of 15.3 Mton in 2030. This 38% reduction target by 2030 will be applied to the
household emissions in the model alongside the general reduction targets of 49% in 2030 and 95% in 2050.

Monetary targets for subsidies are set at a cumulative subsidy of 3.5 billion euros between 2020 and 2030
for the transition of the Dutch built environment sector (PBL, 2019, p. 74).

6.3. Experimental setup
This section will present the experimental setup for the policy experiments. First, additional uncertainties will
be discussed. Second, Key Performance Indicators are defined. Third, the simulation setup is discussed.

6.3.1. Uncertainties

Additional uncertainty ranges have been added on top of the uncertainty table mentioned in the previous
chapter (see table 5.1. Table 6.2 shows the additional uncertainties sampled in the policy run. The subsidy
cut-off levels are derived from implicit discount rates (see section 4.4.1).

Table 6.2: Uncertainties in the policy ensemble, additional to base case uncertainties (see table 5.1)

Variable Lower bound Upperbound Unit Source
Subsidy percentage cut-off level 10 30 % Assumed
high building value
Subsidy percentage cut-off level 30 50 % Assumed
upper middle building value
Subsidy percentage cut-off level 50 70 % Assumed

lower middle building value

Continued on next page
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Table 6.2 - continued from previous page

Variable Lower bound Upperbound Unit Source

Subsidy percentage cut-off level 70 90 % Assumed

low building value

Renovation rate improvement after 0 10 % /year Assumed 10%

2030 improvement of
climate agreement
renovation rate
(Table 4.5)

6.3.2. Key Performance Indicators

Key Performance Indicator (KPI) are defined prior to simulation to store only outcomes of interest, similar to
the base case exploration. The following KPI’s are selected for the policy exploration:

1. Annual CO-eq emission [ton CO]: reflecting total annual CO, equivalent emissions summed over all
neighbourhoods in the model.

2. Cumulative subsidy [€]: total subsidized amount for all neighbourhoods accumulated over time.

3. Cumulative renovated houses [# houses]: total renovated houses for all neighbourhoods accumulated
over time.

6.3.3. Simulation Setup

The policies defined in section 6.2.1, uncertainties presented in table 6.2 and outcomes from section 6.3.2
are added to the model. Each policy variation (static, dynamic adaptive and mission policy) is subsequently
differentiated in a 20, 40, 60 and 80% subsidy percentage variant. Since the subsidized percentage is a clear
political decision, these policy lever alternatives allow for assessment of effectiveness of different subsidies.

Three defined policy variants and four subsidy percentage alternatives result in 12 distinct policies to be
simulated, next to a no policy variant. Again, experiments are performed by sampling values for the parametric
uncertainties using Latin Hypercube Sampling (LHS). Since 13 individual policies need to be simulated, 100
scenarios per policy are simulated. Hence, a total of 1300 experiments have been performed (see chapter A).

6.4. Policy exploration

The results from the experiments discussed in the previous section will presented and interpreted in this section.
In general this section consists of two parts. First, different subsidy percentage levels are compared within
each policy variant. Second, policy variants are compared to each other with identical subsidy percentage
levels. Because of the large amount of experiments, visualization of the results in this section rely on envelope
plots and Kernel Density Estimation (KDE) plots. Envelop plots shows the minimum and maximum value of
an outcome of interest for a set of runs over time. KDE plots show the distribution of cases on the y-axis and
hence provide insights in the distribution of cases within the envelope.

6.4.1. Comparing subsidy levels within each policy

First, subsidy percentage levels are compared within each policy variant (static, dynamic adaptive policy and
mission policy). All KPI's are taken into account for each policy.

Static Policy

Figure 6.2 shows the results of the experiments performed on the four subsidy percentage levels within the
static policy ensemble. Differences in subsidy percentage levels effect outcomes positively. Unsurprisingly,
higher subsidy percentages increase the number of renovated homes (see figure 6.2b) proportionally and
hence decrease CO, emissions. Though different subsidy levels effect the outcomes, they do not clearly impact
uncertainties around these outcomes. Distribution of outcomes does not change significantly between the
subsidy levels. The general uncertainty distributions are similar between the groups of subsidy levels.
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Figure 6.2: Envelopes of annual CO2-eq emissions and cumulative renovated houses under static policy with four levels of subsidy
coverage (20,40,60 and 80% of renovation costs). An envelope shows the minimum and maximum value for a set of runs over time.

Figure 6.3 shows envelopes of cumulative subsidies corresponding to figure 6.2. Whereas uncertainty
distributions were rather similar for annual CO, emissions and cumulative renovated houses, they are distinctly
not similar for the cumulative subsidies. The higher the subsidy percentage level, the more uncertainty on
outcomes increases. In general the increase of subsidy makes sense, the higher the subsidy percentage
level, the more people will apply for subsidies and hence cumulative subsidies will increase exponentially. A
possible explanation for the increased uncertainty in the higher subsidy percentage regions might be that
the uncertainties for the subsidy percentage cut-off levels of low building value are quite influential. To put it
differently, sampled uncertainties for cut-off levels for low-value housing strongly influence the outcome of
the 80% level subsidy, since this subsidy percentage level is the only variant that appeals to low building value
home owners in the model. This would also explain the ceiling of renovated houses reached in the lower bound
of the 20% static variant (blue envelope in figure 6.2b). Household renovations stop after 2030, because no
more household are stimulated to renovate (due to low subsidies and high renovation costs) in the minimum
of the blue envelope. In the red envelope (80% subsidy), houses are continued to be renovated according to
renovation rate
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Figure 6.3: Envelopes of Cumulative subsidy static policy [euro]. The graph shows that static policies with high levels of subsidy percentages
have relatively large bandwidths of uncertainty. This is explained by the increasing number of households applying for subsidies, given
the sampled subsidy cut-off thresholds

Dynamic Adaptive Policy

Figure 6.4 shows the envelopes of annual CO, emissions under dynamic adaptive policies. Surprisingly, figure
6.4a shows only three envelopes and three KDE plots, while including all four levels of subsidy percentages.
Dropping the highest level (80%) shows that the 60% subsidy level performs identical to the 80% variant (see
figure 6.4b). An explanation for this might be that the 2050 target of 95% reduction is at such a high level
that the multiplier is constant for the duration of the simulation and set to its highest adjustment value of 2
(see equation 6.1). Moreover, subsidies are capped at the renovation costs. This means that for both the 60%
and the 80% renovation costs are fully covered, because the gap between current annual CO, emissions and
required 2050 annual emissions is large.
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(a) Annual CO2-eq emissions dynamic adaptive policy (20-69%) [Mton]. This figure shows that the 60 and 80%
(20-80%) [Mton]. The figure shows lower CO2 emissions subsidy variants are identical. This is explained by the
and relatively smaller uncertainty bandwidths for higher cap set on renovation costs which kicks in due to the
subsidy levels subsidy multiplier.

Figure 6.4: Envelopes of annual CO2-eq emissions and cumulative renovated houses under dynamic adaptive policy with four levels of
subsidy coverage (20,40,60 and 80% of renovation costs). An envelope shows the minimum and maximum value for a set of runs over time.

Although cumulative subsidies are significantly larger under dynamic adaptive policy (see figure 6.5a),
CO2 emission targets for 2050 are not met. Moreover, whether 2030 targets are reached on time is also unclear
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based on figure 6.4. This finding was unexpected and suggests that, although people are willing to renovate, the
renovation rate of houses cannot keep up with demand. The renovation rate up to 2030 is modelled according
to ambitions set in the climate agreement (Klimaatakkoord, 2019, p. 15), ramping from 50.000 homes in 2021
up to 200.000 homes prior to 2030. An additional increase in renovation capacity is sampled as an uncertainty
between 0 and 10% of the maximum capacity in 2030. Figure 6.4 thus shows that the renovation rate poses a
boundary for reaching emission reduction goals, regardless of (additional) subsidies (see section 7.1.3).
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(b) Cumulative renovated houses [# houses]. The figure
shows a large difference in uncertainty bandwidths. The
60 and 80% policy alternatives show a relatively small
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(a) Envelopes of Cumulative subsidy dynamic adaptive
policy [euro]. Again, the 60 and 80% alternative overlap.
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Figure 6.5: Envelopes of cumulative subsidies and cumulative renovated houses under dynamic adaptive policy with four levels of subsidy
coverage (20,40,60 and 80% of renovation costs). An envelope shows the minimum and maximum value for a set of runs over time.

Figure 6.5a shows large cumulative subsidies. Again, having identical results for 60 and 80% subsidy levels.
Figure 6.5b shows very certain outcomes for the 60 and 80% subsidy levels. To some extent, these graphs show
false certainty in the high subsidy regions of 60 and 80%. The dynamic adaptive policy continuously tries to
adjust the CO, emission trajectory for the duration of the simulation. As explained in the previous paragraph,
this is likely caused by the high reduction target set in 2050, resulting in subsidies maximized at the renovation
costs. This does, however, provide certainty in the cumulative subsidy in the high subsidy regions (see figure
6.5a).

Mission Oriented Policy

The effects of mission policy on CO, emissions are shown in figure 6.6. Although CO, reductions, cumulative
renovated homes and cumulative subsidies are generally higher under mission policy, the trends are similar
to the graphs shown in section 6.4.1. This similarity can be explained by the similarity in policy and model
structure between the static and mission policy. In essence, the mission policy relies on the same policy
mechanisms, but includes a mission scale factor that increases the renovation rate and increases the reduction
of renovation costs.
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Figure 6.6: Envelopes of annual CO2-eq emissions and cumulative renovated houses under mission policy with four levels of subsidy
coverage (20,40,60 and 80% of renovation costs). An envelope shows the minimum and maximum value for a set of runs over time.

While 2030 targets are within reach, similar to previous policies, the 2050 target seems too progressive
to attain, even with an increased renovation rate. The upper limit of cumulative subsidies (figure 6.7) is the
highest of all policy variants used in the simulations. A possible explanation for this might be that, more
houses are renovated, because of the increased renovation rate under mission policy. Naturally, an increase in
renovated homes leads to higher cumulative subsidies.
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Figure 6.7: Envelopes of Cumulative subsidy dynamic adaptive policy [euro]. The graph shows that mission policies with high levels of
subsidy percentages have relatively large bandwidths of uncertainty. This is explained by the increasing number of households applying
for subsidies, given the sampled subsidy cut-off thresholds

6.4.2. Comparing policies with identical subsidy levels

The previous section shows the effects of subsidy percentage levels within policy variants. This section analyzes
the effects of policy variants within subsidy levels. Hence, this paragraph will subsequently describe policy
effects of each of the four subsidy percentage levels.
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20% subsidies

Results of the 20% subsidy policy lever are shown in figure 6.8. From this figure it is fair to say that the dynamic
adaptive policy performs best. Still, adjustment from the multiplier (see equation 6.1) is not enough at this
subsidy level to get more people to renovate. Hence, 2050 targets are out of range with this subsidy level.
Moreover, as subsidies are low, uncertainties whether people will renovate are high (since, uncertainty on
renovation costs will be more influential in this case).
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(a) Annual CO2-eq emissions of various policies with 20%
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mission policy. Overall, the dynamic policy has lowest 20% subsidy

emissions.

Figure 6.8: Envelopes of annual CO2-eq emissions and cumulative renovated houses of various policies, each with 20% subsidy as policy
lever. An envelope shows the minimum and maximum value for a set of runs over time.

Figure 6.9 shows cumulative subsidies at the 20% subsidy level. Unsurprisingly, uncertainty ranges of the
dynamic adaptive policy are clearly highest. Total subsidies for other policies are surprisingly low. Top ranges
of both static and mission policy do not exceed 4 billion euros. As a reference, PBL calculated that the climate
agreement reserves 3.5 billion euros for the built environment sector up to the year 2030. There are, however,
possible explanations. Most notably, the fact that people are reluctant to renovate their homes, since subsidy
percentage cut-off levels simply are not reached (see table 6.2).
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Figure 6.9: Envelopes of Cumulative subsidy of various policies with 20% subsidy as policy lever [euro]. The dynamic policy shows the
largest bandwidth of uncertainty, while the mission and static policy KDE plots show results are distributed around the extremities of
the envelopes. The large bandwidth of the dynamic policy can be explained by the combination of the subsidy multiplier and sampled
subsidy cut-off thresholds.
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40% subsidies

At the 40% subsidy level, differences between policies are significantly larger compared to the previous
paragraph. In terms of both CO, emission reduction and cumulative renovated houses, the dynamic adaptive
policy performs best. This is in line with expectations regarding the subsidy multiplier included in the dynamic
adaptive policy. Results on cumulative renovated houses are still highly uncertain. The KDE plot suggests
policies can most likely expect either of two extreme outcomes. This can be explained by the interplay between
uncertainties sampled on subsidy cut-off levels and renovation costs. Once a cut-off level is not reached,
household will not renovate. This discrete behaviour is reflected in the KDE plot.

Dynamic_40 None Static_40 Dynamic_40 Mission_40 Static_40
Mission_40

Cumulative Renovated Houses (40% Subsidy)

le7 Annual CO2 emissions (40% Subsidy) le7
2.54
1.4 \ ]
1.2 2.0
g 1.0 B
= = 15
o =
E 0.8 v
= T 4
: 0.6 #* 1.0
[o]
O
0.4 4 Reduction
target 0.5
-0 386% Renovation
0.2 - 49% target
95% 1.5M
_______ 0.0 ~77 houses
2020 2025 2030 2035 2040 2045 2050 0 4.4e-07 20‘20 20’25 20‘30 20'35 20'40 20‘45 20‘50 0 2
Time Time
(a) Annual CO2-eq emissions of various policies with 40% (b) Cumulative renovated houses of various policies with
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perform best at this subsidy level, generally reaching ities of the envelopes. This is explained by the discrete
lowest emissions character of the sampled subsidy cut-off levels.

Figure 6.10: Envelopes of annual CO2-eq emissions and cumulative renovated houses of various policies, each with 40% subsidy as policy
lever. An envelope shows the minimum and maximum value for a set of runs over time.

The high number of renovated homes in the dynamic adaptive policies is also reflected in figure 6.11. Due
to its multiplier, the dynamic adaptive policy has much higher cumulative subsidy. The mission and static
policy show similarly discrete behaviour as mentioned in the previous paragraph for cumulative renovated
houses.



6.4. Policy exploration 43

Dynamic_40 Mission_40 Static_40

Cumulative Subsidy (40% Subsidy)

Euro (Billion)
N N w w IS
S & S & 3

-
«

104 1
54 4

2020 2025 2030 2035 2040 2045 2050 [ 0.22
Time

Figure 6.11: Envelopes of Cumulative subsidy of various policies with 40% subsidy as policy lever [euro]. The dynamic policy shows the
largest bandwidth of uncertainty, while the mission and static policy KDE plots show results are distributed around the extremities of
the envelopes. The large bandwidth of the dynamic policy can be explained by the combination of the subsidy multiplier and sampled
subsidy cut-off thresholds.

60% subsidies

The 60% subsidy variant shows significant differences in certainty on outcomes of the dynamic adaptive policy
(see figures 6.12b and 6.13), compared to the 20 and 40% subsidy. This surprising result is most likely related
to the subsidy multiplier and its cap on renovation costs (see section 6.4.1). Other policies show increasingly
improved results, substantially lower than previous subsidy levels, but still with similar uncertainty ranges on
the KDE plot. From this subsidy level, 2030 goals have all been reached in 2050. A 95% reduction of emissions
in the sector seems distant still.
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(b) Cumulative renovated houses of various policies with
60% subsidy. Compared to lower subsidy levels, the dy-
namic adaptive policy as significantly reduced uncer-
tainty at the 60% level. The mission and static policy
still show most cases distributed on the extremes of the
envelopes.

(a) Annual CO2-eq emissions of various policies with 60%
subsidy. Dynamic adaptive policy seems to perform best
at this subsidy level, generally reaching lowest emissions.
Compared to lower subsidy levels, static and mission
policy close in on dynamic adaptive policy.

Figure 6.12: Envelopes of annual CO2-eq emissions and cumulative renovated houses of various policies, each with 60% subsidy as policy
lever. An envelope shows the minimum and maximum value for a set of runs over time.
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Figure 6.13: Envelopes of Cumulative subsidy of various policies with 60% subsidy as policy lever [euro]. This graph also shows increased
certainty of outcomes compared to lower subsidy levels for the dynamic adaptive policy.

80% subsidies

Finally, the 80% subsidy percentage policy variants are shown in figures 6.14 and 6.15. Unsurprisingly, static
and mission policy have improved and center on a similar distribution level as the dynamic adaptive policy.
Surprisingly, the dynamic adaptive policy itself did not improve. This behaviour has already been explained in
section 6.4.1 and is caused by subsidies capped at renovation costs. Moreover, the renovation rate does not
allow for significantly more renovations, even though subsidy cut-off thresholds are met.
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speaking, but have higher bandwidths of uncertainty.

Figure 6.14: Envelopes of annual CO2-eq emissions and cumulative renovated houses of various policies, each with 80% subsidy as policy
lever. An envelope shows the minimum and maximum value for a set of runs over time.
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Figure 6.15: Envelopes of Cumulative subsidy of various policies with 80% subsidy as policy lever [euro]. At this level, all policies show
rather large bandwidths of uncertainty.

6.5. Uncertainty Analysis

Figure 5.8 shows a feature scoring on the main KPI’s of the robust policy analysis. The figure shows influence
of uncertainties (y-axis) on the model’s KPI's (x-axis). In contrast to the influence of uncertainties in the base
case (see figure 5.8), the policy ensemble shows a strongly reduced influence of uncertainties on the policy
model (see figure 6.16).
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Figure 6.16: Feature scores of the experiments and outcomes of the policy ensemble. The figure shows influence of uncertainties (y-axis)
on the model’s KPI’s (x-axis). Policies are most influential in the policy ensemble. Influence of uncertainties has been reduced significantly
compared to the base case analysis (see figure 5.8)
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6.6. Conclusion

This chapter set out to answer the fourth sub question of this thesis: “Which robust policy variations can be
discovered for the energy transition of the Dutch built environment sector?”.

To answer this sub question, the model (chapter 4) and insights from the base case analysis (chapter 5)
have been used to create policy variations. The most promising instruments from PBL (2019, p. 67) have
been selected and implemented in three different variants compared to a no policy reference. A static policy, a
dynamic adaptive policy and a mission oriented R&D policy have been implemented and complemented by
four policy levers holding a subsidy percentage of 20, 40, 60 and 80%. Subsequently, the policies have been
simulated under deep uncertainty.

When discussing effectiveness of policies, policy targets should be evaluated. As targets are only known for
the period up to 2030, a more general target has been maintained for 2050. This general target has been set at
95% reduction and was obtained from the Dutch climate law. Most policies simulated in this study reached
2030 targets after its deadline in 2030.

Results have been evaluated both within policy variants (withing varying subsidy levels) as between policy
variants (with a constant subsidy level). The static and mission policy options showed similar trends, but
maintained different absolute outcomes. Most notably, the mission policy allows for a higher renovation rate
and thus cumulative renovated houses turned out highest for this policy while holding a 80% subsidy level.

The dynamic adaptive policy variant does not perform significantly better than the other two policy
variants. Even though annual CO; emissions and cumulative renovated houses are higher, uncertainty is
not reduced significantly. This shows that subsidy percentage, alone, does not ensure that policy targets for
2050 are reached. None of the policies simulated in this study have been able to reach the 2050 goal and
seemed to converge around two to three million renovated homes in the 80% subsidy level. This finding was
unexpected and suggests that other variables prevent more renovation to be completed. The renovation rate
used in this study is likely an obstacle for ample renovations. The renovation rate used in this study is drawn
from the climate agreement and seems to be too small to meet renovation demand within this study. This is
demonstrated in the mission policy where an additional increase of the renovation rate by 25% resulted in
higher cumulative renovated houses (figure 6.14b).

Table 6.3: Overview of policy outcomes in 2050. Annual CO2-eq emissions are shown as a reduction from CO2 emissions in 2015.

Policy Subsidy Mean CO; Maximum Maximum Mean cu- Maximum Mean cu-
Percent- reduction CO, re- cumula- mulative cumu- mulative
age [Mton] duction tive ren- renovated lative subsidies

[Mton] ovated houses [M subsidies awarded
houses [M  houses] awarded [Billion
houses] [Billion euros]

euros]
20 2.9 7.21 1.52 0.67 10.64 3.46

Dynamic 40 3.94 9.53 2.6 1.19 40.35 15.09
60 4.18 9.53 2.6 1.31 50.44 21.31
80 4.18 9.53 2.6 1.31 50.44 21.31
20 2.39 6.34 1.02 0.41 3.51 0.71

Mission 40 2.98 7.49 1.66 0.71 13.31 4.09
60 3.57 8.89 2.29 1.0 29.13 9.83
80 4.13 10.07 2.87 1.28 50.47 17.85
20 2.41 6.26 0.98 0.43 2.96 0.71

. 40 2.94 7.26 1.55 0.7 10.89 3.66

Static
60 3.46 8.51 2.1 0.96 23.6 8.57
80 3.97 9.56 2.62 1.21 40.65 15.4

Table 6.3 shows mean and maximum outcomes per policy and subsidy percentage level. It summarizes
policy outcomes shown in the graphs in this chapter. Compared to table 6.1, results from this study indicate
higher CO, emission reductions and higher subsidy expenditure. It is important, however, to acknowledge the
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different scope of the studies (12 years for table 6.1 vs 32 years for table 6.3) and the exploratory nature of this
study compared to the predictive modelling study of (PBL, 2019).

The model underlying this study has not been validated (see section 7.3.1 for limitations and recommen-
dations). These results therefore need to be interpreted with caution. Moreover, most figures of cumulative
renovated houses show an unanticipated trend. The KDE plots of these figures are centered around the
extremities of the envelopes shown in each figure. This indicated discrete behaviour in the model. Subsidy
cut-off levels are sampled once for the duration of the simulation. Subsequently, once a certain cut-off level is
not reached, one does not renovate. This explains the discrete behaviour of the plots.

Finally, an answer to the sub question seems clear at first. The dynamic adaptive policy has shown to
be slightly more robust under deep uncertainty in this study. However, this certainty comes at a cost, quite
literally. Cumulative subsidies of the dynamic adaptive policy are substantially higher than any other policy
variant used in the simulations of this study. Hence, the only correct answer to this sub question depends
on a trade off between robustness and policy expenditure (cumulative subsidies in this study). Due to the
exploratory nature of this study limits have not been applied to either of these two criteria. Validation for such
trade off should be sought in the political arena.






Discussion

This chapter will firstly discuss results presented in chapter 5 and chapter 6 in section 7.1. Second, a limitations
are discussed in section 7.2 and future recommendations are presented in section 7.3.

7.1. Discussion of Results

This section will briefly discuss and interpret the main results of this study and try to put them into context. An
important question to ask oneself when presenting results such as those in chapter 3, 5 and chapter 6 is “what
do they mean?”.

7.1.1. Energy Transition Models
Chapter 3 presented a wide range of current Energy Transition models built or in development. Studies using
energy transition models have been performed for quite some time. Recent improvements in data availability
and software for computational simulations, however, enabled far more and extensive research. Subsequently,
avery large variety of energy transition models has been created. This study tried to provide an overview of
most of these models, mainly categorizing them on purpose of use. Academic models are well documented and
much discussed about, but are mostly not available to the public. The same holds true for models created for
public policy (see section 3.3). More recently, the open model initiative aimed to break open this elusiveness of
public policy models. Since Python has become a main programming language, transferibiliyt of modelling
was much easier. Subsequently, open source models, written in or controlled by Python, have appeared such
as MEDEAS (see section 3.2.2).

The taxonomy presented by Li et al. (2015) provides a very interesting way to categorize this abundance
of energy systems models. Naturally, the overview presented in this is most likely far for complete. It did,
however, provide a snap shot of the current state of the art. Future research, however, could find many more,
and perhaps better, ways to categorize these models to provide a more extensive overview. The purpose for
which these energy systems models have been created varies so much and the threshold to understand and
use existing models is considerable, that one could imagine the reason behind the abundance of already
existing models. A great step forward, at least in the field of System Dynamics, would be to create shared and
maintained open source libraries of reproducible model components. Instead of reinventing the wheel, one
could look up existing model structures in an existing library. That said, one could argue what the benefit of
this would be for individual researching trying to get their research published.

7.1.2. Base Case Analysis
Chapter 5 presented results of open exploration and scenario discovery on the model with defined uncertain-
ties, but without any policies. First, the employed model of renovation transitions in the built environment
sector is extensive and includes many outcomes on a variety of levels (neighbourhood, district, municipality
and country). This allows a modeller to entertain various scopes and policy perspectives simultaneously, but
also makes analysis and interpretation increasingly difficult. This resulted in a selection of key outcomes on an
aggregated (country) level in a search for best and worst case scenarios.

Results showed main influence from uncertainties directly related to the built environment sector such
as standard renovation rate and average electricity consumption growth. The latter mainly effecting total Co,
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emission, where the first strongly influenced all other KPI’s. It must be said that the standard renovation rate
complies with ambitions set in the climate agreement, so some policy had been implied in the base case
ensemble (due to a lack of data of a normal standard renovation rate). Even so, efforts were long short of
meeting carbon reduction targets.

The feature scores also showed large influence from uncertainty sampled on variable reduction carbon
intensity power generation. This variable, represented emission reduction achieved in energy generation in
the electricity sector. Hence, to validly represent the energy transition in the built environment sector, other
sector should be included in the modelling effort, as they are interdependent.

7.1.3. Robust Policy Analysis

Chapter 6 showed results of policies aimed at mitigating effects from influential uncertainties on the base
case ensemble. Three policy variations of a selection of policy instruments have been implemented and
tested under deep uncertainty. Two relatively equal policy variations performed similarly (static policy and
mission oriented R&D policy). The dynamic adaptive performed slightly better under deep uncertainty and
maintained a direction whilst evaluating progress and steering towards its goal. The adjustment mechanism of
the dynamic adaptive policy (see equation 6.1), however, was pushed to its limits with the current goal of 95 %
CO3-eq reduction by 2050 and fully adjusting for the duration of the simulation.

In previous iterations in the Adaptive Robust Design cycle, experiments have been performed with a
lower reduction target for 2050. This allowed for better adjustment by a mechanism that solely influences the
subsidies awarded (see figure E1). In that case, the dynamic adaptive policy performed significantly better
than its static or mission oriented counterpart, compared to the results shown in this chapter. Subsequently
switching to a higher reduction target, in line with the climate law (Klimaatwet, 2019), had unforeseen
consequences in later simulations and resulted in too little adjustment room for the dynamic adaptive policy.

Thus, the results showed that a policy focusing on a single tool (subsidies) has not been adequate enough
to meet renovation targets within this study. Even in the dynamic adaptive policy, results showed that subsidies
only affect the renovated homes to a certain point. After that, the renovation rate at which houses are renovated
becomes dominant. Hence, policies should include mechanisms to scale renovation capacity next to creating
incentives for renovations (subsidies in this case), to sufficiently increase renovations to meet reduction targets.

Moreover, the slightly better performance of dynamic adaptive policy has it’s costs. As the dynamic adaptive
policy has been designed to steer away from under performance towards meeting a distant goal, cumulative
subsidies increase much earlier than in the static or mission policy cases. Remarkably, the dynamic adaptive
policy was much more robust under deep uncertainty as shown in the main KPI of the analysis total CO,
emission. It showed from this analysis that a robust policy needs an adaptive mechanism to make sure policies
are on track and the ability to correct under achieving behaviour. The other two policy variants lacked this
mechanism, making it more of a one shot wonder, which naturally results in much spread in possible outcomes
under deep uncertainty.

7.2. Limitations
7.2.1. Data

Even though this study managed quite well to combine several data sets to form a single extensive data set
for model initialization, current data on neighbourhood level is limited. Throughout the data set values are
missing, or even values are missing for all variables of interest. If the latter occurred, the entire neighbourhood
has been dropped in the data set. This resulted in approximately 2500+ neighbourhoods being lost, which
account for roughly 20% of total neighbourhoods in the Netherlands. When Vivet (CBS, 2019b) has been
launched, more complete data on neighbourhood level could hopefully be used, which would significantly aid
completeness of future studies.

Similarly, data on household renovation costs has been derived from label jumps on Nationale EnergieAtlas
(2019). This platform has performed an analysis to distill average label cost jumps for a single building type: a
row house built between 1945 and 1964. Renovation costs for this particular segment are naturally not valid
for all houses in the data set. This study has sampled wide range of uncertainty on these renovation costs
to accommodate for these differences. It would be much better, however, if average label jump costs would
become available for all building types and more categories of building year. Hence, renovation costs could be
far better determined, which would greatly increase the validity of renovation costs in the model.
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7.2.2. Model

A major limitation of the model, and selected scope in general, is the lack of other sectors in the analysis.
Other sectors from the climate agreement include the electricity sector, the industrial sector, the mobility
sector and the agricultural sector. All of these sectors interact with each other and exactly these interaction
(or cross-sector) effects would be very interesting to observe under deep uncertainty. Moreover, this could
potentially identify reinforcing or decreasing feedback effects.

Furthermore, the applied model is strongly subjected to the modeler’s perspective on the functioning of
the system. The model constructed entertains the understanding of system function from the modeler. This
is by no means an universal truth, as other perspectives might be equally fit for purpose.Currently, however,
the renovation of households can either go to all electric or district heating when disconnected from natural
gas. This is a great simplification and limitation of reality and as mentioned in the model’s scope (see section
4.3.2) incentives to increase energy efficiency methods cannot be simulated due the lack of data on energy
efficiency metrics, such as isolation. Similar to assumptions on system behaviour, selected uncertainties and
their relation to modelling structure could also be cause of bias. Many more uncertainties, such as behavioural
uncertainties, could play a role in this very same study, but have not been included.

Also, the model does not include a demolition option of existing housing. It might be worth investigating if
it the entire society would not be better of if certain houses will not be renovated at all. Instead, having them
demolished and replaced by newly built homes. Furthermore, discovery (or creation of) new district heating
capacity is scoped out of the model. This, however, greatly limits the viability of district heating in the model
due to the amount of missing data on district heating capacity on neighbourhood level.

Renovation rationale of home owners is currently simplified using implicit discount rates. Aspects outside
the scope of these IDR’s, such as comfort, financial security or family planning could also influence one’s
propensity to renovate.

As data on renovation costs still is limited, this study has divided the housing stock data in four groups
based on the average label per neighbourhood. Subsequently, four different uncertainties have been sampled
on these groups to accommodate for differences in building type, renovation costs themselves. This greatly
limits accuracy of costs in the model. A better way to include renovation costs in the model would be to assess
a single houses characteristics and calculate the renovation costs by the intended label jump.

7.2.3. Robust Policy Analysis

That said, much improvement can be made to these policy variants. The mission R&D policy options is a strong
simplification of a real mission oriented policy as described by Mazzucato (2018). Moreover, the selection of
policy variants in this study excluded other, perhaps more effect, variants, such as dynamic reactive policy (stop
go policy) or capping policies (rate-based emission policy or cap-and-trade policy). Section 7.3.1 elaborates
on model improvements to facilitate these excluded policies in future research.

Moreover, subsidy cut-off levels are modelled to be dependent on average building value and average label
group per neighbourhood. Different average building value groups have different propensities to renovate.
In short, a more expensive house is deemed to be more likely to renovate even with small subsidy coverage
(subsidy/renovation costs), but less expensive houses are deemed to renovate only if a large sum of expenses is
covered by subsidies. Hence, if the subsidy amount is higher, an increasing number of households will apply
for subsidies to renovate their homes resulting in exponential behaviour in the total subsidy amount. As the
renovation rationale depends on the subsidy cut-off level, it explicitly assumes different Implicit Discount
Rates for different building value groups. As average label group is also taken into account, neighbourhoods
with a good average label (A or B) and high average building value will quickly be able to renovate their homes
(as renovation costs are low an the household’s requirement for subsidy coverage is also low). This directly
results in energy inequality, since only “rich” households apply for subsidies. This dynamic should be corrected
for in future studies to prevent unwanted energy inequality. A start would be to analyze to what extend average
building value correlates to average label groups, or better: to what extent a dwellings label correlates to its
value.

7.3. Recommendations

7.3.1. Model recommendations
The model applied model has limitations (as mentioned in the previous paragraph). This section aims to
address these limitations by providing recommendations for improvement.

First, the current model structure focuses around the migration of households from having a gas connection
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to either being heated by electricity or district heating. This makes sense when energy efficiency data (energy
labels or energy index) is not available, because assumptions need to made on general energy consumption
per building type, rather than more accurate energy demand estimations. An improvement to the model would
be to get rid of this current structure and include an entirely new flow structure of households, where they
are segmented by energy label. Hence, houses are divided by label per neighbourhood and can be renovated
incrementally using label steps.

This also improves the renovation logic as renovation costs could be implemented in the model more
accurately. As more accurate data becomes available on renovation costs per building type and building year,
better renovation costs can be selected for an intended label jump, as discussed in the previous paragraph.

The financial renovation logic in the model could also be improved after label jumps and label jump costs
have been determined. If specific costs are known for the label jump and the energy savings are known for that
label jump, return on investment can be calculated.

In the current model, renovation decisions are made every time step. Decision making inertia should be
included in the model for a more valid representation on renovation decision making. Currently, a renovation
decision is made at every time step in the simulation. Naturally, a person would not continuously decide
whether or not he wants to renovate his unrenovated house, but rather would have moment throughout the
year when he would be more considerate to renovate.

Average building value has been used as a predictor for ones propensity to renovate (due to limited
information on income). Four groups have been created by dividing the data on building value in quantiles.
These groups are used to assign different uncertainties to the propensity to renovate in a neighbourhood. If a
neighbourhood is in the top quantile (ie. average housing value is among the 25% highest), the neighbourhood
is assumed to be less reluctant to renovate than if it would be in the lower quantile. The model could be
improved by including data on household income (as a better predictor for a households propensity to
renovate) and including a much higher segmentation in groups. The current division in four groups is much
too broad.

An energy taxation structure should be included in the model. The current analysis did not include any
fee-bates policies, but fee-bate policies are in the making: taxes on gas are increased to lower taxes on electricity.
This taxation structure could be used to also test the effect of taxation policies under deep uncertainty.

The current multi-scale model goes down to neighbourhood level. This results in a very extensively sub
scripted model, which subsequently is more computationally intensive. For the lowest level decision makers
in the RES (municipalities) a district-level approach would be satisfactory in current policy plans. Hence, it is
recommended to up the model scale to districts instead of neighbourhoods. Prior to doing so, one should test
whether housing stock in neighbourhoods is not significantly more uniform, than that of districts. If housing
stock in neighbourhoods is significantly more uniform, one should reconsider to increase computational
power, because the detail does provide important insights in the renovation task (it could prove to be more
(cost) effective to take on homogeneous neighbourhoods first, and heterogeneous neighbourhoods later).

As mentioned in the limitations of the policy analysis (section 7.2.3), the multiplier mechanism used in the
dynamic adaptive policy struggled with the high reduction target set to 95% in 2050. As the reduction was that
high, the multiplier constantly tried to adjust at its maximum capacity. This showed that subsidies, alone, are
not enough to realize reduction ambitions. Similarly, the static and mission oriented policy also meet this limit
of the renovation rate in high-subsidy scenarios. Hence, the dynamic adaptive policy should also be able to
influence the renovation rate at which homes are to be renovated. A mechanism similar to the multiplier for
subsidies should be used to influence the renovation rate, next to incentivizing household through subsidies
to further improve effectiveness of the policy.

Finally, to create a more valid and supported model, it should be validated by industry experts. The model
and the defined policies should be subjected to validation methods such as “Evaludation” (Augusiak et al.,
2014), which could improve validity, credibility and general effectiveness the model and its results.

7.3.2. EMA & ARD recommendations

Currently, variables are calculated on neighbourhood level, but results if KPI's are stored on national level.
The EMA workbench stores all simulation data in the computer’s RAM memory before simulation is finalized.
Preferably, all KPT’s are stored on neighbourhood level to allow for different interpretation by various policy
makers. Local policymakers on municipal level could for instance benefit from being able to switch scope
from local neighbourhoods to national targets to put their efforts into perspective. A different approach to
storing data in the EMA workbench is required to achieve this in future research.
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Computational performance
For better computational performance, model experiments can also be run on computer clusters (mostly
running on linux). The current model setup, however, does not allow for computational experiments on a Linux
machine, since the EMA and Vensim DSS connection relies on the Vensim DLL, which enables communication
between the various software packages. Recently, a python package for translating Vensim models to purely
Pythonic models, called PySD, released a new version which includes subscripts in model translation.
However, this method would loose the ability to run the model in compiled mode (in the C programming
language), which in itself already is a great computational improvement. Hence, computational performance
of the computer clusters must be significantly better to outperform the compiled simulation on a local machine
(which requires a local copy of Vensim DSS).

7.3.3. Alternative Recommendations

Renovatino behaviour in this study is based on implicit discount rataes. Such financial motives are dominantly
represented in other modelling studies too Wilson et al. (2015), but renovation decisions are made on many
more levels as Wilson et al. (2018) have shown in their study. Future research should be conducted to better
map individual renovation decisions and their indicators.

Integration of individual decision behaviour with a dynamic model would greatly increase simulation
validity. Novel simulation solutions such as Ventity enable entity based system dynamics modelling and could
provide tools for combining actor behaviour and system dynamics to investigate this knowledge gap in future
studies.

7.4. Innovation
7.4.1. Python scraper EV chargers

EV charger data is, surprisingly, not openly available. Only aggregations to national levels have been made
public. Ie. the total amount of public or private charging points in the Netherlands (Rijkswaterstaat, 2019).
Much data, however, is available on interactive maps online.

Since knowledge of location (longitude and latitude), ownership (public, private, semi-public) and capacity
(charging speed) could be important for dynamics in local electricity demand, a python webscraper has
been constructed (see section B.3) that retrieves specific characteristics from an online map showing EV
charging infrastructure in the Benelux from EV charging data supplier www.eco-movement . com. This data
can subsequently be scaled to multiple levels (neighbourhood, municipality) as it includes GPS coordinates.

7.4.2. Interactive neighbourhood generation

Using a multi-level model can be a hassle from time to time. Clear decision support on higher levels (such as
municipalities) can be hampered by its many sub levels (neighbourhoods in this case). Naturally, one does not
know which of the 13.000+ neighbourhoods belong to which of the 350+ municipalities.

This poses quite the challenge for experimentation in scenario discovery. Specific outcomes need to be
assigned prior to simulation in order to store region-specific KPI's, simply because the sheer numbers of entities
(10.000+ in this case) prevent keeping track of all KPI's, on all levels, throughout the simulation period.

To cope with this barrier in multi-level simulation, a python script has been developed (see section A.6) that
enables user-friendly selection of a high level entity (such as a municipality) for a simulation run. Subsequently,
the script selects all neighbourhoods belonging to that specific region and automatically adds them as an
outcomes to the scenario discovery simulation.


www.eco-movement.com




Conclusion

8.1. Research Summary

This research has been performed to gain insights on performance of robust policy variations to reduce carbon
emissions under deep uncertainty. Robust policies can be a solution to better counter undesired uncertainties
influencing the system. A case study has been performed on the Dutch built environment sector as a pilot of
the Adaptive Robust Design framework. The research starts by identifying the state of the art regarding energy
transition models. The study continues with the development of a case-specific system dynamics models,
initialized from real-world multi-level data. Subsequently, open exploration and scenario discovery has been
performed to assess the systems vulnerability to influential uncertainties. Thereafter, policy variants have
been created to test policy options on their robustness under deep uncertainty.

8.2. Answers to Sub Questions
1. What energy transition models are currently available and compose the state of the art?

Chapter 3 has provided a brief introduction of quantitative energy systems modelling in general, the STET
taxonomy provided by Li et al. (2015) and Cherp et al. (2018)’s meta theoretical framework of techno-economic,
socio-technical and political perspectives on national energy transitions. Moreover, an overview of state-
of-the-art energy systems models has been provided in three groups. Namely, Academic STET models (Li
etal., 2015), open source energy models (Open Model Initiative, 2018) and Dutch energy models (Netbeheer
Nederland, 2019; Donker and Ouboter, 2015).

All models described in the chapter differ significantly on their dimensions, scope, modelling methodology
and objectives, etc. While Li et al. (2015) and citeBolwig et al. (2018) both propose clear methodologies for
modelling energy systems, standardization of models or convergence of their components still seems distant.
On another note, energy system models that allow policy testing seem to be a minority of all models classifying
as energy system models. Many energy systems model focus on a specific sector and provide static forward
looking perspectives of reality. Furthermore, many modellers still refrain from opening up their work to the
public. Even academic and publicly funded agencies keep their models to themselves. The Dutch Energy
Transition Model is the only open source energy model within the Dutch context. It does not, however, allow
for dynamic policy testing and was thus deemed inadequate for this study.

2. How can the energy transition of the Dutch built environment sector be specified in a simulation
model?

Chapter 2 provided a description of modifications and additions to an existing System Dynamics model
have been discussed. Open data on multiple scales has been gathered and prepared to feed into the model.

Main conclusions from this chapter are that the model represents a simplified perspective on household
renovations in The Netherlands. Data is available, but does not uniformly represent all scales (neighbourhood
- municipality). Data from even lower levels (zipcode 4 areas) has been scaled up to cope with this issue. The
model’s scope does not include more detail than data currently allows for. So energy efficiency efforts have
been completed left out of the model. This immediately poses a limitation to the current model, as policies
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will naturally also include energy efficiency measures.
3. What uncertainties are most influential in the built environment sector under deep uncertainty?

Outcomes of the modelled built environment system under deep uncertainties have been analyzed to better
understand the effects of uncertainties on possible futures of the energy transition in the built environment
sector in chapter 5. This has been done by performing an open exploration to understand trends of main KPI’s
and through scenario discovery to better understand influences of specific uncertainties on certain KPI’s. First,
open exploration showed possible trends of main KPI’s in the model. None of the main outcomes is naturally
robust under the uncertainties defined in the experiments. In other words, all cases show a large spread over
the KPI's. Second, scenario discovery has been performed to understand the influence of specific uncertainties
using the Patient Rule Induction Method (PRIM). In the base case ensemb]e, a limited number of uncertainties
significantly influences the selected KPI's. Significant uncertainties influencing the selected KPI’s are listed
below.

¢ Total CO, emission: average electricity demand growth, p =2.4e-2 and fraction innovation in carbon
intensity of power generation (fr innovation CoM), p = 3e-20.

¢ Costs: fr reduction renovation costs (p=3.4e-28) and standard renovation rate (p=3.3e-20).

¢ Labour deficiency (renovations to all electric, renovations to district heat): standard renovation rate(p=1.8e-
31, p=2.3e-20) and fr to district heat wcorp no existing infrastructure (p=1.8e-21, p=4.5e-17)

From to the total CO, emission of the built environment sector, main KPI of this base case analysis, it
clearly shows that additional policies are needed to secure targets set for 2030 and 2050. Hence, the next
chapter will formulate policies to counter the uncertainties discovered in this chapter in an aim to create
robust policies for the ambitions in the built environment sector.

4. Which robust policy variations can be discovered for the energy transition of the Dutch built envi-
ronment sector?

To answer this sub question, the model (chapter 4) and insights from the base case analysis (chapter 5)
have been used to create policy variations. The most promising instruments from PBL (2019, p. 67) have
been selected and implemented in three different variants compared to a no policy reference. A static policy, a
dynamic adaptive policy and a mission oriented R&D policy have been implemented and complemented by
four policy levers holding a subsidy percentage of 20, 40, 60 and 80%. Subsequently, the policies have been
simulated under deep uncertainty.

When discussing effectiveness of policies, policy targets should be evaluated. As targets are only known for
the period up to 2030, a more general target has been maintained for 2050. This general target has been set at
95% reduction and was obtained from the Dutch climate law. Most policies simulated in this study reached
2030 targets after its deadline in 2030.

Results have been evaluated both within policy variants (withing varying subsidy levels) as between policy
variants (with a constant subsidy level). The static and mission policy options showed similar trends, but
maintained different absolute outcomes. Most notably, the mission policy allows for a higher renovation rate
and thus cumulative renovated houses turned out highest for this policy while holding a 80% subsidy level.

The dynamic adaptive policy variant does not perform significantly better than the other two policy
variants. Even though annual CO; emissions and cumulative renovated houses are higher, uncertainty is
not reduced significantly. This shows that subsidy percentage, alone, does not ensure that policy targets for
2050 are reached. None of the policies simulated in this study have been able to reach the 2050 goal and
seemed to converge around two to three million renovated homes in the 80% subsidy level. This finding was
unexpected and suggests that other variables prevent more renovation to be completed. The renovation rate
used in this study is likely an obstacle for ample renovations. The renovation rate used in this study is drawn
from the climate agreement and seems to be too small to meet renovation demand within this study. This is
demonstrated in the mission policy where an additional increase of the renovation rate by 25% resulted in
higher cumulative renovated houses (figure 6.14b).

Table 6.3 shows mean and maximum outcomes per policy and subsidy percentage level. It summarizes
policy outcomes shown in the graphs in this chapter. Compared to table 6.1, results from this study indicate
higher CO, emission reductions and higher subsidy expenditure. It is important, however, to acknowledge the
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different scope of the studies (12 years for table 6.1 vs 32 years for table 6.3) and the exploratory nature of this
study compared to the predictive modelling study of (PBL, 2019).

The model underlying this study has not been validated (see section 7.3.1 for limitations and recommen-
dations). These results therefore need to be interpreted with caution. Moreover, most figures of cumulative
renovated houses show an unanticipated trend. The KDE plots of these figures are centered around the
extremities of the envelopes shown in each figure. This indicated discrete behaviour in the model. Subsidy
cut-off levels are sampled once for the duration of the simulation. Subsequently, once a certain cut-off level is
not reached, one does not renovate. This explains the discrete behaviour of the plots.

Finally, an answer to the sub question seems clear at first. The dynamic adaptive policy has shown to
be slightly more robust under deep uncertainty in this study. However, this certainty comes at a cost, quite
literally. Cumulative subsidies of the dynamic adaptive policy are substantially higher than any other policy
variant used in the simulations of this study. Hence, the only correct answer to this sub question depends
on a trade off between robustness and policy expenditure (cumulative subsidies in this study). Due to the
exploratory nature of this study limits have not been applied to either of these two criteria. Validation for such
trade off should be sought in the political arena.

8.3. Answer to Main Question
The main research question entertained in this thesis is answered below.

“How could policies be designed to establish a more robust performance of the climate agreement’s built
environment sector?”

This study set out to fill the knowledge gap on the effects of robust climate policies in the Dutch energy
transition. Policies can be designed in a variety of ways. This study has embraced a quantitative framework that
created an energy systems model of the Dutch built environment sector. Predetermined policy instruments
have been selected and various policy variants relying on different policy mechanisms have been modeled and
used to simulate a thousand possible combinations in which a future could unfold. Results of this analysis
have been used to asses the policy variants robustness to future uncertainties.

The way policy instruments are implemented greatly effect their future outcomes and the certainty that
these outcomes will (or will not) be achieved. policies that monitor progress such as the dynamic adaptive
policy greatly reduce uncertainty and hence increase the likelihood that goals are met.

Ultimately, quantitative modelling provides a means to understand system and policy dynamics under
future uncertainties. No energy systems model can, however, be fully exhaustive and externalities such as
actor behaviour must be considered. Hence, policies require pre-specified trigger moments to determine next
policy actions, or policy mechanisms that dynamically adapt to changing externalities.

8.4. Implications for Policy Making

This project is a first exploratory study of decision making under deep uncertainty for current climate agree-
ment policies to renovate the Dutch built environment sector. This approach provides useful tools to expand
our understanding of how uncertainties influence policy performance. The findings reported here shed new
light on the importance of adaptability to changing circumstances for policies related to energy transitions.

In relation to current policymaking in The Netherlands, the findings suggest that performance of poli-
cies should be monitored and room should be provided within policies to react to changing circumstances.
Currently, energy transition policies in the Netherlands are divided in three stages. First, policy ambitions
are set in the climate law (Klimaatwet, 2019). Second, policy measures have been proposed in the climate
agreement (Klimaatakkoord, 2019). Third, the climate plan obligates the government to formulate a plan to
reach ambitions set in the climate law. The first climate plan will be published in 2019, which will be primarily
based on the climate agreement. Thereafter, the climate plan will be updated every five years based on new
insights (Rijksoverheid, 2019e). In a way, the current organization of energy transition policies thus includes
an adaptive component in which policies are evaluated based on new knowledge.

Returning to the scope of the renovation of Dutch households in the built environment sector, many parties
will have to be involved to make the mission a success. This study has shown that an increase of renovation
capacity is necessary next to creating incentives for households to renovate and realizing a reduction in carbon
emission intensity. Innovations in, for example, household isolation and heat generation will also be vital for
the national renovation to be a success. This entails the cooperation of many public and private actors. In
it’s current capacity, once the climate plan is formulated, the policies need to be carried out by a variety of
ministries.
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To benefit of the adaptive nature of the climate plan, policies should include ample adjustment mecha-
nisms to realize their goals. A collection of responsible actors could hinder rapid decision making on these
mechanisms. Perhaps the energy transition would also need innovation institutionally to create a new task
force to secure progress on targets. Such an approach, similar to institutionalization of the Dutch delta pro-
gram, could however be too technocratic for such a large scale socio-technical transition. That said, agility is
needed for policies to adapt to changing circumstances. This agility is, in turn, vital from all actors involved in
the sector.

There are known knowns; there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not know. But there are also unknown
unknowns — the ones we don’t know we don’t know...

- Donald Rumsfeld
This quote also holds true for policy analysis under deep uncertainty. In any policy analysis, only known

unknowns can be used to make quantitative models subject to future uncertainties. It is therefor vital to always
to appreciate the limits of quantitative modelling efforts, regardless of their fruits.



Reflections

9.1. Societal Relevance

This thesis started out from personal interest and engagement in the Dutch energy transition. In the past
two years, and especially over the past six months of this thesis, policies for the Dutch energy transition have
become much more tangible. Moreover, (civil) engagement has strongly increased (be it positive or negative).

This thesis has set out to be a first pilot aiming to create a dynamic, multi-level and open source household
renovation model to explore possible futures of the Dutch energy transition under deep uncertainty. To achieve
this, data has been gathered and handled from multiple public sources to create the first open-source multi-
level data set for the Dutch housing sector. Contrary to the main findings in this thesis, the model and its EMA
setup can also be used for local policymakers. Moreover, the combination of the low-level model structure,
high-resolution data for calibration and ability to select scopes (neighbourhood, district, municipality and
country) also allows for local policy makers to put their efforts in to perspective. Naturally, the current setup
still has many limitations and data can always better (ie more complete, more accurate, etc.), still this thesis
has shown that it is possible to provide policy insights on several levels using the same model structure.

Naturally, others have also seen potential knowledge gaps hindering local policymakers to assess results
of their policy plans. Quintel Intelligence, for instance, has recently added a new scope of Regional Energy
Strategies (a combination of provinces and municipalities), who are burdened with the task of formulation
regional strategies that enable the policy ambitions set in the climate agreement.

The resolution of this thesis is far higher than that of regions, but more importantly, the setup allows for
dynamic policy testing under deep uncertainty. As this project set out to open-source all code and data, it
could offer a backbone for future studies or even implementations of tooling.

At the beginning of this study policy directions were still very unclear, but over the course of the past half
year and after very impressive work of many important actors, policies have been created and will most likely
be implemented in the not too distant future. Studying current policy developments, as performed in this
thesis, has been quite the challenge. Throughout the analysis, previous insights become outdated and obsolete,
which required new direction for this course of study. While studying a contemporary challenge does provide
many ways to make valuable contributions, it certainly also does have its setbacks. Personally, though, it made
all the difference to make a contribution to studies on the energy transition. However, futile it might be.

9.2. Academic Relevance

Academically, this study has made a contribution by applying an existing framework to a new contemporary
knowledge gap. Subsequently, The aim of this study was to create an open source work flow from data acqui-
sition and manipulation to modelling and simulation to establish a quantitative framework for exploratory
modelling and analysis of energy transition policies under deep uncertainty. A novel way has been created that
utilizes existing, decentralized, data sources on multiple geospational levels to create a single multi-level data
set. All scripts and data used for this study have been made open source through github.
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9.3. Concluding words

The duality of the sections in this chapters illustrates the challenge this thesis faced throughout the duration of
the project. Academic relevance and societal relevance do not necessarily complement each other. On the
contrary, they often have different questions that require other answers. For example, national policymakers
have charged local policymakers (eg. municipalities or provinces) with the task to make the transition happen.
Naturally, local officials require more detailed information than national analysts. Maintaining both perspec-
tives within the scope of a single thesis was quite difficult. Hence, after data acquisition and modelling had
been performed on a multi-level scale, the scope was upped to national KPI’s for easier interpretation and
comparison to other nation-wide studies.
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EMA Codes

This chapter provides all codes used in the Exploratory Modelling & Analysis chapters of this study (see chapter
5 and chapter 6). First, codes for base case experiments are shown in section A.1 and the policy experiments in
section 6.3. Second, scenario discovery codes are shown in section A.3 for the base case and in section A.4 for
the policy case. Third, feature scoring code is presented in section A.5. Finally, thesis utilities specified by the
author which are used throughout the scripts mentioned in this chapter are presented in section A.6.

A.1. Experiments Base Case
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Experiments Notebook Base Emsenble

@author: Mark Hupkens, 2019

Introduction

This notebook performs experiments on the basemodel without policies, but with defined
uncetainties. The outcomes of these simulations are stored and later interpreted in the Scenario
Discovery notebook.

This notebook relies on a packaged Vensim model (.vpm) to perform parallel simulations of the
compiled simulation models. For dependencies of this notebook, please refer to EMA Workbench
documentation.

In [1]: from ema_workbench import(Model, RealParameter,Constant, IntegerParameter,C
ategoricalParameter, TimeSeriesOutcome,
Policy, perform_experiments, ema_logging, save_r
esults, load results)
from ema_workbench.connectors.vensim import VensimModel
from ema_workbench.em_framework.evaluators import LHS, SOBOL
import timeit
from ema_workbench import MultiprocessingEvaluator

ema_logging.log_to_stderr(ema_logging. INFO)
import pysd

import numpy.random

import pandas as pd

numpy . random.seed((123456789)

from ema_workbench.connectors.pysd_connector import PysdModel

C:\Users\LocalAdmin\Anaconda3\lib\site-packages\ema_workbench\em_ framework
\optimization.py:22: ImportWarning: platypus based optimization not availa
ble

warnings.warn("platypus based optimization not available", ImportWarning
)
C:\Users\LocalAdmin\Anaconda3\l ib\site-packages\ema_workbench\connectors\__
_init__ .py:18: ImportWarning: netlogo connector not available

warnings.warn(*'netlogo connector not available', ImportWarning)
C:\Users\LocalAdmin\Anaconda3\lib\importlib\_bootstrap.py:219: ImportWarni
ng: can"t resolve package from _ spec  or _ package , falling back on
name__ and __ path_

return f(*args, **kwds)
C:\Users\LocalAdmin\Anaconda3\lib\importlib\ bootstrap.py:219: ImportWarni
ng: can"t resolve package from _ spec  or _ package , falling back on
name__ and _ path__

return f(*args, **kwds)
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Simulation

In [2]: wd =r"./model/20190707 - Policymodels®™ # this is the directory where the m
odel is located
model = VensimModel ("BuiltEnvironmentModel®, wd = wd , model_ file="2019071
5 Energymodel_Labour_basecase.vpm®)
ema_logging.log to stderr(ema_logging. INFO) # we want to see what EMA is
doing

Out[2]: <Logger EMA (DEBUG)>

Policies

As this experiments notebook aims to create the base ensemble, no policies switched on.

In [3]: # Select policies

policies = [Policy("None", # turn on all policy switches
**{"SWITCH normering nieuwbouw®:0,
"SWITCH elec efficiency”:0,
"SWITCH wi jkaanpak woningcorp®:0,
"SWITCH wi jkaanpak koop®:0,

1

Uncertainties

Uncertainties are defined in the cell parametric uncertaint below. Durings the simulations,
uncertainties are sampled using Latin Hypercube Sampling (LHS).

In [4]: # Specify uncertainties and aggregated outcomes
# No policycase, so no uncertaint

uncertainties = [RealParameter(“groei gem elek gebruik®, -0.01, 0.01),
RealParameter("groei nieuwbouw®,0.0088,0.0097),
RealParameter (" fr innovation CoM", 0.5,0.9),
RealParameter("standard renovation rate®, 0.0,0.001),
RealParameter(“policy time", 2020, 2025),
RealParameter("renovation costs label group 1", 8000, 120

00),

RealParameter (" renovation costs label group 27, 20000, 28
000),

RealParameter("renovation costs label group 3", 30000, 36
000),

RealParameter (" renovation costs label group 47, 30000, 40
000),

RealParameter (" fr reduction renovation costs",0.5,8),

RealParameter("fr to district heat wcorp no existing infr
astructure®,0.1, 0.3),

RealParameter("fr to district heat wcorp low existing inf
rastructure®,0.3, 0.7),

RealParameter("fr to district heat wcorp high existing in
frastructure®,0.7, 1.0),

RealParametef{ " fr to district heat koop low existing infr
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astructure®,0.1, 0.3),

RealParameter("fr to district heat koop high existing inf
rastructure®,0.3, 0.6),
# RealParameter (" fr to district heat koop no existing inf
rastructure®,0, 0.1) # throws Vensim-EMA error (model | RUN), set uncertai
nty to O in model

1

outcomes = [TimeSeriesOutcome("total renovated houses®),
TimeSeriesOutcome("total renovated houses wcorp®),
TimeSeriesOutcome("total renovated houses koop®),
TimeSeriesOutcome("total renovated houses verhuur®),
TimeSeriesOutcome("total subsidy amount®),
TimeSeriesOutcome("total costs”),
TimeSeriesOutcome("“total CO2 emission®),
TimeSeriesOutcome("total warmte via elek"),
TimeSeriesOutcome("total warmtenet®),
TimeSeriesOutcome("total woningen gas"),
TimeSeriesOutcome("total houses in model*),
TimeSeriesOutcome("prijseffect schaarste manuren transitie GAS
NrELEK NL*®),
TimeSeriesOutcome("prijseffect schaarste manuren transitie GAS
nriwN NL®),
TimeSeriesOutcome("totaal benodigde manuren transitie GebOmg G
ASnrELEK NL corp®),
TimeSeriesOutcome("totaal benodigde manuren transitie GebOmg G
ASnrWN NL corp®),
TimeSeriesOutcome("tekort manuren transitie GebOmg GASnrELEK N

L"),

TimeSeriesOutcome("tekort manuren transitie GebOmg GASnrWN NL*
),

TimeSeriesOutcome("beschikbare manuren transitie woningen GASn
rWN NL®),

TimeSeriesOutcome("beschikbare manuren transitie woningen GASn
rELEK NL®)

1

# Set constants: override some of the defaults of the model

constants = [Constant(“baseline CoM reduction®,l1),
Constant("CoM elec start", 0.45),
Constant("CoM gas start", 1.791),
Constant("CoM heat start®, 0.0356)

1

Start Simulations

In [6]: # Append specified parameters to the model
model .uncertainties = uncertainties
model .outcomes = outcomes
model .constants = constants
nr_scenarios = 1000

In [7]: start_time = timeit.default_timer()
70
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with MultiprocessingEvaluator(model) as evaluator:
policy results = evaluator.perform_experiments(scenarios=nr_scenarios,
policies=policies)

elapsed = timeit.default_timer() - start_time
print(*"Total time in minutes:*, elapsed/60, "-- Time per run in seconds:",
elapsed/(nr_scenarios*len(policies)))

[MainProcess/INFO] pool started
[MainProcess/INFO] performing 1000 scenarios * 1 policies * 1 model(s) =1
000 experiments

[MainProcess/INFO] 100 cases completed
[MainProcess/INFO] 200 cases completed
[MainProcess/INFO] 300 cases completed
[MainProcess/INFO] 400 cases completed
[MainProcess/INFO] 500 cases completed
[MainProcess/INFO] 600 cases completed
[MainProcess/INFO] 700 cases completed
[MainProcess/INFO] 800 cases completed
[MainProcess/INFO] 900 cases completed
[MainProcess/INFO] 1000 cases completed
[MainProcess/INFO] experiments finished
[MainProcess/INFO] terminating pool
[SpawnPoolWorker-4/INFO] finalizing
[SpawnPoolWorker-3/INFO] finalizing
[SpawnPoolWorker-2/INFO] finalizing
[SpawnPoolWorker-1/INFO] finalizing

Total time in minutes: 268.9098323708046 -- Time per run in seconds: 16.13
4589942248276
In [8]: save_results(policy_results, r-"C:\Users\LocalAdmin\Desktop\ETModel\results

\20190715_experiments_energymodel labour_base_ensempble.tar.gz®)

[MainProcess/INFO] results saved successfully to C:\Users\LocalAdmin\Deskt
Op\ETMode I\results\20190715 experiments_energymodel_labour_base ensempble.
tar.gz
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In [1]:

Experiments Notebook Policy Ensemble

@author: Mark Hupkens, 2019

This notebook performs experiments on the basemodel without policies, but with defined
uncertainties. The outcomes of these simulations are stored and later interpreted in the Scenario
Discovery notebook. In this file specific policy variants are benchmarked against the 'no policy'
alternative. The policy variants all include set policies (wijkaanpak koop, woningcorp, normering
nieuwbouw and efficiency) but vary in delivery mechanism: static, dynamic adaptive or mission
oriented

This notebook relies on a packaged Vensim model (.vpm) to perform parallel simulations of the
compiled simulation models. For dependencies of this notebook, please refer to EMA Workbench
documentation.

from ema_wor kbench inport(Mdel, Real Paraneter, Constant, | nt egerParaneter, C
at egori cal Paraneter, TinmeSeriesQutcone,
Pol i cy, performexperinments, ena | ogging, save_r
esults, load results)
from ema_wor kbench. connect ors. vensi m i nport Vensi mvbdel
from ema_wor kbench. em franewor k. eval uators i nport LHS, SOBOL
i mport timeit
from ema_wor kbench i nmport Miltiprocessi ngEval uat or

ema_| ogging.log to _stderr(ema_| oggi ng. | NFO
i mport pysd

i mport nunpy.random

i nport pandas as pd

nunpy. random seed( 123456789)

from ema_wor kbench. connect ors. pysd _connect or i nport PysdModel

C.\ User s\ Local Admi n\ Anaconda3\ | i b\ si t e- packages\ ema_wor kbench\ em f r amewor k
\optim zation. py: 22: | nportWrning: platypus based optim zation not availa
bl e

war ni ngs. war n(" pl at ypus based optini zati on not avail abl e", |nportWarning
)
C:\ User s\ Local Adm n\ Anaconda3\ | i b\ si t e- packages\ ema_wor kbench\ connect or s\ _
_init__.py:18: InportWarning: netlogo connector not avail able

war ni ngs. war n("netl ogo connector not avail able", |nportWarning)
C:\ User s\ Local Adm n\ Anaconda3\ | i b\i nport!i b\ _boot strap. py: 219: | npor t VWr ni
ng: can't resolve package from __spec__ or _ package_, falling back on __

nane__ and _ _path__

return f(*args, **kwds)
C:\ User s\ Local Admi n\ Anaconda3\ | i b\'i nport!i b\ _boot strap. py: 219: | npor t Vr ni
ng: can't resolve package from __spec__ or _ package__, falling back on __
nane__ and _ path_

return f(*args, **kwds)
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Simulation

In [2]: wd =r'./nodel /20190707 - Policynodels' # this is the directory where the m
odel is |ocated
nodel = Vensi mvbdel (' Bui |l t Envi ronnment Model ', wd = wd , nodel _file='2019070
5 _Ener gyModel _Labour _Subsidy_StaticPolicy.vpm) # nodel contains only 1 su

bscri pt
eme_| oggi ng.l og_to_stderr(ema_| oggi ng. | NFO # we want to see what EMA is
doi ng

Qut[2]: <Logger ENA (DEBUG >

Policies

The cell below specify the policies this notebook will use in its simulations. This notebook includes a
no-polcu option, identical to the base case notebook, but also includes three policy variants, which
are loaded as separate models.

In [3]: # Select policies

policies = [Policy('None', # turn on all policy swtches
**{' SW TCH norneri ng ni eunwbouw : 0,
'"SW TCH el ec efficiency':0,
" SW TCH wi j kaanpak woni ngcorp': 0,
' SWTCH wi j kaanpak koop': 0,
)
Policy('Static', nmodel _file = '20190705_Ener gyModel _Labour _Sub
sidy StaticPolicy.vpm ),
Pol i cy(' Dynam c_Adaptive', nodel _file = '20190705_Ener gyModel _
Labour _Subsi dy_Dynam cAdapti ve. vpm ),
Policy('Mssion R and D, nodel file = '20190705 EnergyModel L
abour _Subsi dy M ssi onRandD. vpm ,
**{'m ssie schaal factor':1.25})]

Uncertainties

Uncertainties are defined in the cell parametric uncertaint below. Durings the simulations,
uncertainties are sampled using Latin Hypercube Sampling (LHS).

In [4]: # Specify uncertainties and aggregated outcones

uncertainties = [Real Paranmeter('fr innovation CoM,0.2,0.5),
Real Par anet er (' groei ni euwbouw , 0.0088, 0.0097),
Real Par anet er (' standard renovation rate', 0.0007,0.00085)

Real Paraneter (' policy tinme', 2020, 2025),

Real Paraneter (' fr reduction renovation costs', 0.5, 0.8),

Real Par aneter (' renovation costs |abel group 1', 8000, 120
00),

Real Par anet er (' renovation costs |abel group 2', 20000, 28
000),

ReaIParaneter(‘regfvation costs | abel group 3', 30000, 36
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In [5]:

000),

000) ,

.1,0.3),
ncome', 0. 3,0.5),

ncone', 0.6, 0. 8),

Real Par anet er (' renovation costs | abel group 4', 30000, 40

Real Par anet er (' opschalings factor', 1, 1.1),
Real Paraneter (' fracti on subsidy over costs high incone', 0

Real Paraneter (' fracti on subsidy over costs upper niddle i

Real Paraneter (' fracti on subsidy over costs |ower niddle

Real Paraneter (' fracti on subsidy over costs |ow incone', 0.

8,1),
Real Par anet er (' subsi dy', 5000, 40000),
Real Par aneter (' groei gem el ek gebrui k', -0.01,0.01)],

out comes = [Ti meSeriesQutcone('total renovated houses'),

Ti meSeri esCut come('total renovated houses wcorp'),

Ti meSeri esQut come('total renovated houses koop'),

Ti meSeri esQut come(' total renovated houses verhuur'),

Ti meSeri esCut come('total subsidy anount'),

Ti meSeri esQut conme('total costs'),

Ti meSeri esQut come('total CO2 emi ssion'),

Ti meSeri esCQutconme('total warnmte via elek'),

Ti meSeri esCut cone('total warntenet'),

Ti meSeri esCut cone('total woni ngen gas'),

Ti meSeri esCQut come('total houses in nodel'),

Ti meSeri esCut come(' prijseffect schaarste manuren transitie GAS
nr ELEK NL"),

Ti meSeri esQut come(' prijseffect schaarste manuren transitie GAS
nr\AN NL' ),

Ti meSeri esCut come(' t ot aal benodi gde manuren transitie GebOrg G
ASnr ELEK NL corp'),

Ti meSeri esCut come('totaal benodi gde manuren transitie GebOrg G

ASnrWN NL corp'),

Ti meSeri esCQut come('tekort manuren transitie GebOrg GASnrELEK N
L),

Ti meSeri esQut come('tekort manuren transitie GebOng GASnrVWN NL'
) )

Ti meSeri esQut come(' beschi kbare manuren transiti e woni ngen GASn
r'viW NL' ),

Ti meSeri esQut cone(' beschi kbare manuren transiti e woni ngen GASn
rELEK NL')

]
# ADD:

# Set constants:

override sone of the defaults of the nodel

constants = [ Constant (' baseline CoM reduction', 1),

Constant (' CoM el ec start', 0.45),
Const ant (' CoM gas start', 1.791),
Const ant (' CoM heat start', 0.0356)

]

Start Simulations

nodel . uncertai nti

es = uncerta%gties
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In [6]:

In [7]:

nodel . out cones = out cones
nodel . constants = constants
nr_scenari os = 250

start _time = tinmeit.default _tiner()

wi th Ml tiprocessi ngEval uat or (nodel) as eval uator:
policy results = eval uator. perform experinents(scenari os=nr_scenari o0s,
pol i ci es=pol i ci es)

el apsed = tineit.default tiner() - start_tine

print("Total tine in mnutes:", elapsed/ 60, "-- Time per run in seconds:",
el apsed/ (nr_scenarios*l en(policies)))

[ Mai nProcess/ | NFO pool started

[ Mai nProcess/ | NFO perform ng 250 scenarios * 4 policies * 1 nodel (s) = 10
00 experinents

[ Mai nProcess/ I NFO 100 cases conpl eted
[ Mai nProcess/ | NFO 200 cases conpl et ed
[ Mai nProcess/ I NFO 300 cases conpl et ed
[ Mai nProcess/ I NFO 400 cases conpl et ed
[ Mai nProcess/ | NFO 500 cases conpl et ed
[ Mai nProcess/ I NFO 600 cases conpl et ed
[ Mai nProcess/ I NFO 700 cases conpl eted
[ Mai nProcess/ I NFO 800 cases conpl et ed
[ Mai nProcess/ | NFO 900 cases conpl et ed
[ Mai nProcess/ I NFO 1000 cases conpl et ed
[ Mai nProcess/ I NFO experinents finished
[ Mai nProcess/ | NFO| term nating pool

[ SpawnPool Wor ker -3/ I NFQ fi nali zi ng

[ SpawnPool Wor ker-1/1 NFQ fi nali zi ng

[ SpawnPool Wor ker -4/ 1 NFQ finali zi ng

[ SpawnPool Wor ker -2/ 1 NFQl finali zi ng

Total time in mnutes: 518.397588466936 -- Tine per run in seconds: 31.103
855308016158

save_results(policy_results, r'C\Users\Local Adm n\ Deskt op\ ETModel \resul ts
\ 20190708 _t est _experinents _policies.tar.gz')

[ Mai nProcess/ I NFQ results saved successfully to C \Users\Local Adm n\ Deskt
op\ ETModel \ resul t s\ 20190708 t est _experi nents_policies.tar. gz
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Scenario Discovery Basecase

@author: Mark Hupkens, 2019

This notebook explores outcomes of the base case experiments using open exploration. Sensitvity of
the model is analyzed in the Feature scoring notebook.

For dependencies of this notebook, please refer to EMA Workbench documentation.

Importing the necessary Python modules

In [1]: inmport thesis utils as tu # specified own utilities package to nake thesis
life easier (thesis.utils.py)
i mport tine

i nport seaborn as sns

i mport nunpy as np

i mport matplotlib.pyplot as plt
i nport scipy as sp

# inport npld3

from ema_wor kbench. anal ysi s.plotting inport |ines

from ema_wor kbench. anal ysis. plotting_util inmport KDE

from ema_wor kbench. anal ysi s inport prim

from ema_wor kbench.util inport ema_ | ogging

ema_| ogging.log to_stderr(ema_| oggi ng. | NFO

from ema_wor kbench. util inport load results

from ema_wor kbench. anal ysis.plotting inport lines, plot lines with _envel op
es, envel opes

# %matplotlib inline
%onfig InlineBackend.figure format = 'retina'

C.\ User s\ Local Adm n\ Anaconda3\ | i b\ si t e- packages\ ema_wor kbench\ em f r amewor k
\optim zation. py: 22: | nportWrning: platypus based optim zation not availa
bl e

war ni ngs. war n(" pl at ypus based optim zati on not avail abl e", |nportWarning

)

1. Loading the data

This basecase analysis relies on experiments performd in the notebook '20190715 - Experiments
Basemodel-V6 - extra uncertainty district heating.ipynb'. 1000 experiments have been simulated
without any policies, but with defined uncertainties.

e See notebook '20190715 - Experiments Basemodel-V6 - extra uncertainty district heating.ipynb'
for experimental design
e See Vensim model '20190715_Energymoglgl_Labour_basecase.mdl' for the model structure.
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In [60]: |# Select run

fn = "results/ 20190715 _experi nents_ener gynodel _| abour _base_ensenpble.tar.g
2
results = | oad_results(fn)

experinments, outcomes = results

[ Mai nProcess/ I NFO results | oaded succesfully from C: \Users\Local Adm n\ Des
kt op\ ETMbdel \r esul t s\ 20190715 _experi nent s_ener gynodel _| abour _base_ensenpbl
e.tar.gz

Open Exploration

First, the general trends of the experiments under uncertainty are visualized using national KPI's.
Second, Kernel Densitity Estimation graphs are used to display the distrubition of cases over the KPI
(the y-axis).

Plotting kernel density estimations graphs of aggregated results

KPI's in basecase analysis:

1. Total CO2-eq emission [Ton CO2]

2. Total costs [euro]

3. Total renovated houses [# houses]

4. Labour deficiency (all-electric, district heating) [hours]

Total CO2-eq emission

In [61]: fig, axes = lines(results, density=u'kde', show envel ope=Fal se, outcones_t
o_show="total CO2 em ssion')
plt.savefig(' C/Users/Local Adm n/ Deskt op/ ETMbdel / pl ot s/ scenari o_basecase/"'
+time.strftinme(" %% )+ total co2.png', dpi =300,)
plt.show()

1e7 total CO2 emission 1e7

total CO2 emission

T T T T T T T
2020 2025 2030 2035 2040 2045 2050 O 2.9e-07
Time
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2. Total costs

In [63]: fig, axes = lines(results, density=u'kde', show envel ope=Fal se, outcones_t
o_show="total costs')
plt.savefig(' C /Users/Local Adm n/ Deskt op/ ETMbdel / pl ot s/ scenari o_basecase/'
+tinme.strftinme(' %% )+ total costs.png', dpi =300)
plt.show()

1e10 total costs 1e10

total costs

2020 2025 2030 2035 2040 2045 2050 O 4.6e-11
Time

3. Total Renovated houses

In [64]: fig, axes = lines(results, density=u'kde', show envel ope=Fal se, outcones_t
o_show="total renovated houses')
plt.savefig(' C./Users/Local Adnm n/ Deskt op/ ETMbdel / pl ot s/ scenari o_basecase/
+time.strftinme(' %%a' )+ total renovated_houses. png', dpi =300)

pl t.show()
total renovated houses
200000 - . \
n
2 150000 - -
[e]
N
el
Q
e
2 100000 - .
[e]
c
g
I
© 50000 - .
0_ -
T T T T T T T
2020 2025 2030 2035 2040 2045 2050 O 7.3e-06
Time

4.A Labour deficiency (all-electric) [hours]
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In [65]: fig, axes = lines(results, density=u'kde', show envel ope=Fal se, outcones_t
o_show="tekort manuren transitie GebOng GASnr ELEK NL')
plt.savefig(' C/Users/Local Adnm n/ Deskt op/ ETMbdel / pl ot s/ scenari o_basecase/"'
+time.strftinme(" %%a' )+ tekort_manuren_el ek. png', dpi =300)
pl t.show()

tekort manuren transitie GebOmg GASnrELEK NL

200 A

150 A

100 A

50 A1

T T T T T T T
2020 2025 2030 2035 2040 2045 2050 O 0.013
Time

tekort manuren transitie GebOmg GASnrELEK NL

4.B Labour deficiency (district heating) [hours]

In [66]: fig, axes = lines(results, density=u'kde', show envel ope=Fal se, outcones t
o_show="tekort manuren transitie GebOng GASnrWN NL')
plt.savefig(' C /Users/Local Adm n/ Deskt op/ ETMbdel / pl ot s/ scenari o_basecase/'
+time.strftinme(’ %%a' )+ tekort nmanuren_warnt enet. png', dpi =300)
plt.show()

tekort manuren transitie GebOmg GASnrWN NL
700

600 A

500 A

400 -

300 A

200 A

100 A

0

tekort manuren transitie GebOmg GASnrWN NL

2020 2025 2030 2035 2040 2045 2050 O 0.0041
Time

Scenario Discovery

Scenario Discovery (Kwakkel, 2015) will be employed by performing PRIM on the main KPI's and
their worst case scenarios.
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PRIM total CO2

In [67]: def classify(data):
i = 'total CO2 enmission' # unit in ton
out come = np. max(outcones[i], axis=1)
cl asses = np. zer os(out cone. shape[ 0])
cl asses[outcome> (.92 * outcones['total CO2 em ssion'].max())] = 1 #E"
6 Megat on
return cl asses

primobj = primsetup_primresults, classify, threshol d=0.8)
box_1 = primobj.find_box()

[ Mai nProcess/ | NFO 1000 poi nts remnaini ng, containing 67 cases of interest
[ Mai nProcess/ I NFO nean: 0.9245283018867925, mass: 0.053, coverage: 0.7313
432835820896, density: 0.9245283018867925 restricted_di nensions: 4

Multiple dimensions have been restricted in the peeling process. The final box contains 67 cases of
interests after reaching a density of 0.92 (cases of interest in the box) and a coverage of 0.73 (cases
included in the box of all cases in experiments)

In [68]: # % matplotlib notebook

box_1. show_ppt ()

plt.savefig(' plots/scenario_basecase/' +tine.strftinme(' %W%?ad' )+ PRI M showp
pt _box 1.png', dpi=300, bbox inches = "tight")

plt.show()

—— mean—— mass— coverage— density— restricted_dim

1.0
- 4.0
3.5
0.8 - "
-3.0 6
w
]
0.6 r25¢g
£
Fr20o
Q
9]
0.4 15 S
I
g
F1.0
0.2 <
0.5
- 0.0
0.0 1— . . .

0 10 20 30 40 50
peeling and pasting trajectory

multiple dimensions have been restricted in 50 iterations shown below:

In [69]: box_1.show tradeoff()
plt.savefig(' plots/scenario basecase/' +tine.strftinme(' %W%ad' )+ PRI Mtrade
of f_box_1.png', dpi =300, bbox_inches = "tight")
plt.show()
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1.2 M

1.0 A
0.8 1

0.6 >

density

0.4 4

0.2 1
| 0

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

coverage

nr. of restricted dimensions

As the PRIM algorithm restricts more and more dimensions, it peels layers of uncertainties in the
subspace. Hence, we want to look at boxes at the top left of the density/coverage curve. At the
highest density, the following uncertainties are most influential:

In [70]: box_1.inspect()
box_1.inspect(style=" graph")
plt.savefig(' plots/scenario_basecase/"' +time.strftime(' %omba' )+ PRI M graph
_box_1.png', dpi =300, bbox_inches = "tight")

plt.show()

cover age 0.731343
density 0. 924528
mass 0. 053
nmean 0.924528
res dim 4

Nane: 57, dtype: object

box 57
\
nm n max
groei gem el ek gebruik 5.918055e-03 0.009991
fr innovation CoM 8.016297e-01 0.899977
standard renovation rate 2.620310e-07 0.000927
fr to district heat koop low existing infrastru... 1.000408e-01 0.298160
gp val ues
groei gem el ek gebruik 2.378311le- 26
fr innovation CoM 3.026049e- 20
standard renovation rate 3.162436e-01
fr to district heat koop low existing infrastru... 6.289372e-01
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coverage| 0.731
groei gem elek gebruik (2.4e-26) A -0.01 0.01
0.0059
fr innovation CoM (3e-20) A 0.5 —_— 0.9
0.8
standard renovation rate (0.32) 4 2.6e-07 0.001
0.00093
fr to district heat koop low existing infrastructure (0.63) - 0.1 0.3
0.3

Conclusion PRIM Total CO2

Of the 4 uncertainties portrayed in the graphs only the first two statistically significant (p<0.05),
namely:

e average electricity demand growth (groei gem elek gebruik): p =2.4e-26
¢ fraction innovation in carbon intensity of power generation (fr innovation CoM): p = 3e-20

These two significant uncertainties make sense, because the electricity growth rate directly
influences total energy consumed (and thus the total CO2 emitted). Second, the innovation in carbon
intensity of power generation, too, directly influences total CO2 output as it describes the innovation
of carbon reduction in the power sector.

The standard renovation rate and the fraction of privately owned homes that will switch to district
heatingin the case of limited capacity also come up as important, but not as significant. They do,
however, deserve some more attention. The standard renovation rate, as follows from the current
climate agreement provides a baseline renovation rate without any additional policies. Its very
intersting that this standard renovation rate does not show up as significant in the model. Rather,
average electricity growth an innovation in carbon intensity of power generation are more significant.
Looking at these results from a systemic perspective, this is an interesting finding, but reductions
have to be made over all sectors to reach targets.

As most houses fall in the category 'district heat no existing infrastructure’, second 'district heat low
existing infrastructure' and least in 'district heat high existing infrastructure' it makes sense that the
low variant for privately owned homes pops up in this PRIM analysis. It is the first of these three
groups (no, low, high existing infrastructure) that has an impact carbon reduction (as acquisition of
new district heat sources is scoped out of this study), and more houses belong to this group rather
than the group of high existing infrastructure.

In [34]: |# box 1.select(21)
fig = box_1.show pairs_scatter()

plt.show()
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In [71]:

In [72]:
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PRIM Total costs

def classify(data):

i = 'total costs
outcone = np. max(outcones[i], axis=1)
cl asses = np. zer os(out cone. shape[ 0])

cl asses[outconme> (.70 * outcones[i].max())] =1
return cl asses

primobj = primsetup_primresults, classify, threshol d=0.8)

box 2 = primobj.find_box()

[ Mai nProcess/ I NFO 1000 poi nts renmai ni ng, containing 69 cases of interest

[ Mai nProcess/ I NFO nean: 0.9215686274509803, nass: 0.051, coverage: 0.6811

594202898551, density: 0.9215686274509803 restricted di nensions: 4

# make plots

box_2. show_ppt ()

plt.savefig(' plots/scenario basecase/' +tine.strftinme(' %W%ad' )+ PRI M showp
pt _box_2_costs(koop).png', dpi =300, bbox_inches = "tight")

box 2. show_ t radeof f ()

plt.savefig(' plots/scenario basecase/' +tine.strftinme(' %W%ad' )+ PRI Mtrade
of f_box_2 costs(koop).png', dpi=300, bbox_i nches = "tight")

box 2.inspect(style=" graph")

plt.savefig(' plots/scenario _basecase/' +tine.strftime(' %% d' )+ PRI M graph
_box_2_costs(koop).png', dpi =300, bbox_inches = "tight")

plt.show()
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—— mean—— mass— coverage— density— restricted_dim
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coverage
coverage | 0.681
fr reduction renovation costs (3.4e-28) 0.5 - 8
6.5
standard renovation rate (3.3e-20) | 2.6e-07 —— 0.001
0.00068
fr to district heat wcorp no existing infrastructure (0.25) - 0.1 0.3
0.11 0.29
fr to district heat wcorp low existing infrastructure (0.33) 4 0.3 0.7
0.68

Conclusion PRIM Total costs

Of the 4 uncertainties portrayed in the graphs only the first two statistically significant (p<0.05) within
the most dense box (coverage = 0.68, density = 0.92), namely:

¢ fr reduction renovation costs (p=3.4e-28)
e standard renovation rate (p=3.3e-20)
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In [81]:

In [82]:

20190716 - Scenario Discovery - PRIM - BASECASE

It appears obvious that the two uncertainties mentioned above are significant in their contribution to
total costs. The first uncertainty directly influences individual renovation costs. The second
uncertainty defines the number of houses to be renovated in case of no additional policy.

The two final two uncertainties, fr to district heat wcorp no existing infrastructure and fr to district heat
wecorp low existing infrastructure, are do spike interest. Building corporations are less dependent on
merely financial incentives due to their societal goals. Moreover, most corporation owned homes are
in neighbourhoods with no or low existing district heating capacity. Hence, the higher the propensity
of these groups is to renovate, the larger their effect on total costs.

box_2.show pairs_scatter ()
plt.show()

7.5 1
5.0
2.5 A

0.75 > .

b —0.025
T T T T T
0.1 0.2 0.3-0.02 0.00 0.02

Manhours Electricity

i= 'tekort manuren transitie GebOrg GASnr ELEK NL'

def classify(data):

"tekort manuren transitie GebOng GASnr ELEK NL'
outcone = np. max(outcones[i], axis=1)

cl asses = np. zer os(out cone. shape[ 0])

cl asses[outcome> (.75 * outcones[i].max())] =1
return cl asses

primobj = primsetup_prinm(results,
box 3 = primobj.find _box()

classify, threshol d=0. 8)

i nt er est
0.7727

[ Mai nProcess/ I NFO 1000 poi nts renmai ni ng, containing 66 cases of
[ Mai nProcess/ I NFO nean: 0.9622641509433962, nmss: 0.053, cover age:
272727272727, density: 0.9622641509433962 restricted_di mensi ons: 4

# make plots

box 3. show ppt ()
plt.savefig('plots/scenario_basecase/' +tine.strftinme(' %W%Pad' )+ PRI M showp
pt _box 3 '+i+'.png' , dpi =300, bbox _inches = "tight")

box_ 3. show_t radeof f ()
plt.savefig('plots/scenario_bgsecase/"' +time.strftime(' %%td' )+ PRI Mtrade
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of f_box_3 ' +i+'.png', dpi=300, bbox_inches = "tight")

box_3. i nspect (styl e=' graph')

plt.savefig(' plots/scenario_basecase/' +tine.strftime(' %% ad' )+ PRI M _graph
_box_3 '+i+' .png', dpi=300, bbox_inches = "tight")

plt.show()
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[ density [0.962]
standard renovation rate (1.8e-31) - 2.6e-07 - 0.001
0.00082
fr to district heat wcorp no existing infrastructure (1.8e-21) 0.1 — 0.3
0.24
policy time (0.26) { 2e+03 2e+03
2e+03
fr reduction renovation costs (0.43) 4 0.5 8
0.61

Conclusion PRIM labour deficiency electriciy
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The PRIM analysis shows two out of four significant uncertainties in the most dense box. Namely,

e Standard renovation rate (p=1.8e-31)
o fr to district heat wcorp no existing infrastructure (p=1.8e-21)

In the case of no policy, relatively few homes will be renovated and all of these will be explained by
the standard renovation rate, which explains the first significant uncertainty. The second significant
uncertainty might seem peculiar at first sight, as this PRIM analysis focuses on labour deficiency for
renovations to all-electric housing. The model, however, is limited to three heating generation types
(gas, district heating or all-electric). Hence, if a house is renovated it is either connected to district
heating or made all-electric. In the case that current district heating capacity is too little, the house
has to be made all-electric. This explains the importance of the renovation to district heating if there is
no exsiting infrastructure.

In [54]: box_3.show pairs_scatter()
plt.show()

0.000 -|onsEneEQERy) B
—0.025 A —0.025 1 —0.025[ 1 —0.025|
25 50 75 01 0.2 032020 202%.02 0.00 0.02
small boxes

Labour deficiency District heating

In [83]: i= "tekort manuren transitie GebOng GASnr\WN NL'
def classify(data):
i = 'tekort manuren transitie GebOrg GASnrWN NL'
outcone = np. max(outcones[i], axis=1)
cl asses = np. zeros(out conme. shape[ 0])
cl asses[outcome> (.75 * outcones[i].max())] =1
return cl asses

primobj = primsetup _primresults, classify, threshol d=0.8)
box_4 = prim.obj.find_box()

[ Mai nProcess/ I NFO 1000 poi nts renai ni ng, containing 56 cases of interest
[ Mai nProcess/ | NFO nean: 0.8431372549019608, nmass: 0.051, coverage: 0.7678
571428571429, density: 0.8431372549019608 restricted_di mensi ons: 3

In [85]: # make plots 89
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box_4. show _ppt ()
plt.savefig('plots/scenario _basecase/' +tine.strftinme(' %% ad' )+ PRI M showp
pt _box_4 '+i+'.png', dpi=300, bbox_inches = "tight")

box_4. show_t radeof f ()

plt.savefig(' plots/scenario_basecase/' +tinme.strftinme(’ %W%d' )+ PRI M trade
of f_box_4 ' +i+'.png', dpi=300, bbox_inches = "tight")

box_4. i nspect (styl e=' graph')

plt.savefig(' plots/scenario_basecase/' +tine.strftime(' %% Pad' )+ PRI M _graph
_box_4 '+i+" . png', dpi=300, bbox_inches = "tight")

# save figures

plt.show()
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coverage [ 0.768

[density [0.843]
standard renovation rate (2.3e-20) - 2.6e-07 - 0.001
0.00077
fr to district heat wcorp no existing infrastructure (4.5e-17) 0.1 —F 0.3
0.25
policy time (0.23) 1 2e+03 2e+03
2e+03

Conclusion PRIM labour deficiency district heating

The PRIM analysis shows two out of three significant uncertainties in the most dense box. Namely,

e Standard renovation rate (p=2.3e-20)
o frto district heat wcorp no existing infrastructure (p=4.5e-17)

In the case of no policy, relatively few homes will be renovated and all of these will be explained by
the standard renovation rate, which explains the first significant uncertainty. The second significant
uncertainty might seem peculiar at first sight, as this PRIM analysis focuses on labour deficiency for
renovations to all-electric housing. The model, however, is limited to three heating generation types
(gas, district heating or all-electric). Hence, if a house is renovated it is either connected to district
heating or made all-electric. In the case that current district heating capacity is too little, the house
has to be made all-electric. This explains the importance of the renovation to district heating if there is
no exsiting infrastructure.

In [59]: box_4.show pairs_scatter()
plt.show()

0.3

0.2

0.1 A

2024 A

2022 A

2020 A

0.02 1

0.02 1

0.00 1 COCHEIOEINOSIESNES() () - SRR () -

—0.02 1 —0.02 1 —0.0% A

0.1 0.2 0.3 2020 2022 2024 —0.01 0.00 0.01

PRIM total renovated houses

In [80]: def classify(data):
i = 'total renovated houses'
outcone = np. n’ax(outconﬁs[ji], axi s=1)
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cl asses = np. zer os(out cone. shape[ 0])
cl asses[outconme> (.95 * outcones[i].max())] =1
return cl asses

primobj = primsetup_primresults, classify, threshol d=0.8)
box_5 = primobj.find_box()

[ Mai nProcess/ | NFO 1000 poi nts renaini ng, containing 75 cases of interest
[ Mai nProcess/ | NFO nean: 1.0, mass: 0.072, coverage: 0.96, density: 1.0 re
stricted_di nensions: 1

In [78]: # nmake plots

box_5. show_ppt ()
# plt.savefig('plots/scenario_basecase/' +tinme.strftinme(' %%?a )+ PRI M sho
wppt _box_4 ' +i+'.png', dpi =300, bbox _inches = "tight")

box_5. show_t radeof f ()

# plt.savefig('plots/scenario_basecase/' +time.strftine(’' %%?d )+ PRIMtra
deof f _box_4 '+i +'.png', dpi =300, bbox _inches = "tight")

box 5. i nspect (styl e=' graph')

# plt.savefig('plots/scenari o _basecase/' +tinme.strftinme(' %%d )+ PRIMgra
ph_box_4 '+i+' .png', dpi=300, bbox_i nches = "tight")

# save figures

plt.show()
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20190729_Scenario_Discovery_Policies_final

Scenario Discovery Policies

@author: Mark Hupkens, Date: 29 July 2019

This notebook contains results from the policy experimentation with new subsidy logic. Subsidies have been modelled to be awarded as a
percentage of neighbourhood-dependent renovation costs.

Importing the necessary Python modules

In [1]:

Load data

In [2]:

In [3]:

import thesis_utils as tu # specified own utilities package to make thesis life easier (thesis.uti

Ls.py)
import time

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt
import scipy as sp

# import mpld3

from ema_workbench.analysis.plotting import lines

from ema_workbench.analysis.plotting_util import KDE

from ema_workbench.analysis import prim

from ema_workbench.util import ema_logging

ema_logging.log to_stderr(ema_logging.INFO)

from ema_workbench.util import load_results

from ema_workbench.analysis.plotting import lines, plot_lines_with_envelopes, envelopes

# Zmatplotlib inline
%config InlineBackend.figure_format = 'retina’

C:\Users\LocalAdmin\Anaconda3\1lib\site-packages\ema_workbench\em_framework\optimization.py:22: Imp
ortWarning: platypus based optimization not available
warnings.warn("platypus based optimization not available", ImportWarning)

# Select run
fn = 'results/20190726_experiments_policies_v2_100.tar.gz'

results = load_results(fn)
experiments, outcomes = results

[MainProcess/INFO] results loaded succesfully from C:\Users\LocalAdmin\Desktop\ETModel\results\201
90726_experiments_policies_v2_100.tar.gz

# divide outcomes by e6 to show outcomes in billion euros
outcomes[ 'total cumulative subsidies awarded'] = outcomes['total cumulative subsidies awarded'] /
1le9

# divide outcomes by e6 to show outcomes in millions of renovated houses
outcomes[ 'total renovated houses'] = outcomes['total renovated houses'] / 1le6

results = experiments, outcomes

95
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In [4]: # Create shorter policy names for better visualizations

for n, i in enumerate(experiments['policy']):
if 'Dynamic' in i:
if '20' in i:

experiments['policy'][n] = 'Dynamic_20'
elif '40' in 1i:

experiments['policy'][n] = 'Dynamic_40'
elif '60' in i:

experiments['policy'][n] = 'Dynamic_60"'
elif '80' in i:

experiments['policy'][n] = 'Dynamic_80'

elif 'Mission' in i:
if '20' in i:

experiments['policy'][n] = 'Mission_20'
elif '40' in 1i:

experiments['policy'][n] = 'Mission_40'
elif '60' in i:

experiments['policy'][n] = 'Mission_60'
elif '80' in i:

experiments['policy'][n] = 'Mission_80'

In [5]: len(np.unique(experiments['policy']))

Out[5]: 13

Extract policies used in experiments

In [6]: policies = list(tu.return_experimented_policies(experiments=experiments))
policies

out[6]: ['Static_4e',
'Dynamic_80"',
'Static_8e',
"None"',
'Mission_60"',
'Mission_20',
'Dynamic_490°',
'Static_60',
'Dynamic_60",
'Dynamic_20",
'Mission_80°',
'Static_20',
'Mission_40']

Create subsets of policy combinations
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In [7]:

20190729_Scenario_Discovery_Policies_final

# create subsets of policy combinations

pol_20
pol_40
pol 60
pol_80

[]
[]
=[]
=[]

pol_dynamic = []
pol_static = []
pol mission = []

for i in policies:

if

'20" in i:
pol_20.append(i)

elif '40' in i:

pol_40.append(i)

elif '60' in i:

pol_60.append(i)

elif '80' in 1i:

pol_86@.append(i)

for i in policies:

if

'Dynamic' in i:
pol_dynamic.append(i)

elif 'Static' in i:

pol_static.append(i)

elif 'Mission' in i:

# sort

pol 20.
pol 40.
pol 60.
pol 80.

pol 20

pol mission.append(i)

lists for identical Llegends
append( 'None")
append( 'None")
append( 'None")
append( 'None')

.sort()
pol_40.
pol 60.
pol _80.

sort()
sort()
sort()

pol_dynamic.sort()
pol_static.sort()
pol_mission.sort()

1. Dynamic policy

1.1 CO2

file:///D:/markhupkens/Downloads/20190729_Scenario_Discovery_Policies_final (1).html
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In [8]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="policy",
grouping_specifiers= pol_dynamic,
titles={"'total CO2 emission':'Annual CO2 emissions (Dynamic Adaptive Policies)'},
ylabels={'total CO2 emission':'C0O2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title='Reduction \n target',loc='best"')
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Annual_C02_emissions_Dynamic_Adaptive_Policies(20-80).png', d
pi=300, bbox_inches = "tight")

plt.show()
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1e7ANNUal CO2 emissions (Dynamic Adaptive Policies) 1e7
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e -== 38.6%
=== 49%
1.7 4 -—= 95%
5 1.0 4
=
=S
2 0.8 A
o
2z
=]
o
L1
~ 0.6
o
(]
0.4 4 1
0.2 4 1

2020 2025 2030 2035 2040 2045 2050 0 6.2e-07
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In [9]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by='policy"’,
grouping_specifiers= {'Dynamic_20', 'Dynamic_40', 'Dynamic_60'},
titles={"total CO2 emission':'Annual CO2 emissions (Dynamic Adaptive Policies)'},
ylabels={"total CO2 emission':'C02 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--"')

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title="'Reduction \n target',loc='best')
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Annual_C02_emissions_Dynamic_Adaptive_Policies(20-60).png', d
pi=300, bbox_inches = "tight")

plt.show()
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Within the subset of dynamic policies, it seems that 2 policies show identical results, though, subsidy percentages have been set
differently e(0.2-0.8). Subsidies, however, are capped at the renovation costs themselves. Results in this plot are identical for dynamic 60
and 80 percent, because at a 60% subsidie level and at the behindtime CO2 reduction trajectory a doubling multiplier will be active for
entire simulation period. Hence, already at the 60% subsidy policy, subsidies are already fully covering renovation costs. A higher subsidy
percentage does not effect the annual co2 emissions, because renovation costs have already been fully subsidized in the lower subsidy
level.

More interestingly, this implies that subsidies alone are not enough to reach targets. The rate at which houses can be renovated becomes
leading right after people have been incentivized to renovate their homes. In these simulations, the renovation rates mentioned in the
climate agreement (50k in 2020 to 200k homes in 2030) are adopted. From 2030 onwards an additional increase between 0 and 10% (of
the 2030 renovation rate) is sampled as an uncertainty. These graphs on annual CO2 emissions show that these renovation rates are
simply too little to renovate all homes by 2050, let alone renovate all of them by 2030.

In [10]: time = 2030-2019
housesperyear = 200000
renovated_houses = time * housesperyear
renovated_houses

Out[10]: 2200000
99

1.2 Annual subsidies
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In [11]: import time
fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show="total cumulative subsidies awarded',
fill=True,
group_by="policy",
grouping_specifiers= pol_dynamic,
titles={"'total cumulative subsidies awarded':'Cumulative Subsidy (Dynamic Adaptive
Policies)'},
ylabels={"'total cumulative subsidies awarded':'Euro (Billion)'}

)

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies_(Dynamic_policy).png',
dpi=300,bbox_inches = "tight")

plt.show()

Dynamic_20 Dynamic_60 Dynamic_80
Dynamic_40

Cumulative Subsidy (Dynamic Adaptive Policies)
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2020 2025 2030 2035 2040 2045 2050 0 0.22
Time

2. Static policy

2.1.CO2
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In [12]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by='policy"’,
grouping_specifiers= pol_static,
titles={"total CO2 emission':'Annual CO2 emissions (Static Policies)'},
ylabels={'total CO2 emission':'C0O2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title='Reduction \n target',loc='best',bb
ox_to_anchor=(0.95,.3))
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Annual_C02_emissions_Static_Policies.png', dpi=300, bbox_inch
es = "tight")

plt.show()
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2.2. Annual subsidies
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In [13]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_static,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (Static Policy)’
s
ylabels={"total cumulative subsidies awarded':'Euro (Billion)'}

)
# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies_(Static_policy).png', d
pi=300, bbox_inches = "tight")

plt.show()

Static_20 Static_60 Static_80
Static_40

Cumulative Subsidy (Static Policy)

40 1

35 4 1

30 A 1

25 4 1

20 1 1

Euro (Billion)

15 1

10 A 1

2020 2025 2030 2035 2040 2045 2050 4] 0.44
Time

3. Mission policy

3.1. CO2
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In [14]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="'policy"',
grouping_specifiers= pol_mission,
titles={"'total CO2 emission':'Annual CO2 emissions (Static Policies)'},
ylabels={"total CO2 emission':'Mton CO2 equivalent'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color="g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title='Reduction \n target',loc='best',bb
ox_to_anchor=(0.95,.3))
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Annual_C02_emissions_Mission_Policies.png', dpi=300, bbox_inc
hes = "tight")

plt.show()
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3.2. Annual subsidies
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In [15]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_mission,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (Mission Policy)'
s
ylabels={"total cumulative subsidies awarded':'Euro (Billion)'}

)
# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies_(Mission_policy).png',
dpi=300, bbox_inches = "tight")

plt.show()
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4. Grouped by subsidy plot

4.1. Co2
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In [16]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="policy’,
grouping_specifiers= pol_20,
titles={"total CO2 emission':'Annual CO2 emissions (20% Subsidy)'},
ylabels={'total CO2 emission':'C0O2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title='Reduction \n target',loc='best',bb
ox_to_anchor=(0.95,.35))
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Annual_CO2_emissions(20_Subsidy).png', dpi=300, bbox
_inches = "tight")

plt.show()
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In [17]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_490,
titles={"total CO2 emission':'Annual CO2 emissions (40% Subsidy)'},
ylabels={'total CO2 emission':'C0O2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title='Reduction \n target',loc='best',bb
ox_to_anchor=(0.95,.3))
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Annual_CO2_emissions(40_Subsidy).png', dpi=300, bbox
_inches = "tight")

plt.show()
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In [18]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="'policy"',
grouping_specifiers= pol_ 60,
titles={"total CO2 emission':'Annual CO2 emissions (60% Subsidy)'},
ylabels={'total CO2 emission':'C0O2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-0.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--")
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title="'Reduction \n target',loc='best')
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Annual_CO2_emissions(60_Subsidy).png', dpi=300, bbox
_inches = "tight")

plt.show()
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In [19]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total CO2 emission’,
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_ 890,
titles={"total CO2 emission':'Annual CO2 emissions (80% Subsidy)'},
ylabels={'total CO2 emission':'CO2 equivalent (Mton)'}

)
# plot targets and legend
linel = plt.axhline(y=(1-.38) * outcomes['total CO2 emission'].max(), color='g', linestyle='--"')
line3 = plt.axhline(y=0.05 * outcomes['total CO2 emission'].max(), color='r', linestyle='--"')
line2= plt.axhline(y=0.51 * outcomes['total CO2 emission'].max(), color='b', linestyle='--")

plt.legend((linel, line2, line3), ('38.6%','49%', '95%'),title="'Reduction \n target',loc="best')
plt.legend()

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Annual_C02_emissions(80_Subsidy).png', dpi=300, bbox
_inches = "tight")

plt.show()
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The plot shows a positive relationship between subsidy percentage (in the policies) and the amount of CO2 reduced.

4.2. Cumulative subsidies

In [20]: # Drop policy None from groups as it skews results in KDE
pol_20.remove( 'None')
pol_40.remove( 'None')

pol_60.remove( 'None')
pol_80.remove( 'None')
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In [21]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_20,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (20% Subsidy)'},
ylabels={'total cumulative subsidies awarded':'Euro (Billion)'}

)

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies(20_subsidies).png', dpi
=300, bbox_inches = "tight")

plt.show()
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In [22]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_490,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (40% Subsidy)'},
ylabels={"'total cumulative subsidies awarded':'Euro (Billion)'}

)

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies_(40_subsidies).png', dp
i=300, bbox_inches = "tight")

plt.show()
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In [23]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_ 690,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (60% Subsidy)'},
ylabels={"'total cumulative subsidies awarded':'Euro (Billion)'}
)
# plot subsidy budget up to 2030 (3.5e9)
# x = np.arange(2020,2031,1)
#y = 3.5e8 + 3.5e8*(x-2020)
# Linel = axes['total cumulative subsidies awarded'].plot(x, y, 'r', label='subsidy')
# axes[ 'total cumulative subsidies awarded'].legend((linel),title="Subsidy budget')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies(60_subsidies).png', dpi
=300, bbox_inches = "tight")

plt.show()
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In [24]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_890,
titles={"total cumulative subsidies awarded':'Cumulative Subsidy (80% Subsidy)'},
ylabels={'total cumulative subsidies awarded':'Euro (Billion)'}

)

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_Awarded_Subsidies_(8@_subsidies).png', dp
i=300, bbox_inches = "tight")

plt.show()
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4.3 Renovated houses
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In [25]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total renovated houses',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_20,
titles={"total renovated houses':'Cumulative Renovated Houses (20% Subsidy)'},
ylabels={'total renovated houses':'# Houses (Million)'}
)
linel = plt.axhline(y=1.5, color='red', linestyle='--', label='1.5M \n houses')
plt.legend(title="'Renovation \n target')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(20_subsidies).png', dpi=
300, bbox_inches = "tight")

plt.show()
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In [26]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total renovated houses',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_490,
titles={"total renovated houses':'Cumulative Renovated Houses (40% Subsidy)'},
ylabels={'total renovated houses':'# Houses (Million)'}
)
linel = plt.axhline(y=1.5, color='red', linestyle='--', label='1.5M \n houses')
plt.legend(title="'Renovation \n target')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(40_subsidies).png', dpi=
300, bbox_inches = "tight")

plt.show()
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In [27]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total renovated houses',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_ 690,
titles={"total renovated houses':'Cumulative Renovated Houses (60% Subsidy)'},
ylabels={'total renovated houses':'# Houses (Million)'}
)
linel = plt.axhline(y=1.5, color='red', linestyle='--', label='1.5M \n houses')
plt.legend(title="'Renovation \n target')
# Save
fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(60_subsidies).png', dpi=
300, bbox_inches = "tight")
plt.show()
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In [28]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total renovated houses',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_890,
titles={"total renovated houses':'Cumulative Renovated Houses (80% Subsidy)'},
ylabels={'total renovated houses':'# Houses (Million)'}
)
linel = plt.axhline(y=1.5, color='red', linestyle='--', label='1.5M \n houses')
plt.legend(title="'Renovation \n target')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(80_subsidies).png', dpi=
300, bbox_inches = "tight")

plt.show()
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In [29]: fig, axes = envelopes(results=results,

density=KDE,

outcomes_to_show='total renovated houses',

fill=True,

group_by="'policy"’,

grouping_specifiers= pol_dynamic,

titles={"total renovated houses':'Cumulative Renovated Houses (Dynamic Adaptive Po
licies)'},

ylabels={"total renovated houses':'# Houses (Million)'}

)

linel = plt.axhline(y=1.5, color='red', linestyle='--', label="1.5M \n houses"')
plt.legend(title='Renovation \n target')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(Dynamic).png', dpi=3080,
bbox_inches = "tight")

plt.show()
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In [30]: fig, axes = envelopes(results=results,
density=KDE,

outcomes_to_show='total renovated houses',

fill=True,
group_by="policy",
grouping_specifiers= pol_mission,

titles={"'total renovated houses':'Cumulative Renovated Houses (Mission Policies)"’

3

ylabels={"total renovated houses':'# Houses (Million)'}

)

linel = plt.axhline(y=1.5, color='red', linestyle='--', label="1.5M \n houses"')

plt.legend(title="Renovation \n target')

# Save
fig.set_size_inches(8,6)

plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(Mission).png', dpi=3080,

bbox_inches = "tight")
plt.show()
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In [31]: fig, axes = envelopes(results=results,
density=KDE,
outcomes_to_show='total renovated houses',
fill=True,
group_by="'policy"’,
grouping_specifiers= pol_static,
titles={"total renovated houses':'Cumulative Renovated Houses (Static Policies)'},
ylabels={'total renovated houses':'# Houses (Million)'}
)
linel = plt.axhline(y=1.5, color='red', linestyle='--', label='1.5M \n houses')
plt.legend(title="'Renovation \n target')

# Save

fig.set_size_inches(8,6)
plt.savefig('plots/scenario_policies/Envelope_Cumulative_renovated_houses(Static).png', dpi=300, b
box_inches = "tight")

plt.show()
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In [32]: fig, axes = lines(results=results,
density=KDE,
outcomes_to_show='total cumulative subsidies awarded',

group_by=

'policy’,

grouping_specifiers= pol_20,
titles={"total CO2 emission':'Cumulative Renovated Houses (Static Policies)'},

ylabels={

)
plt.show()
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Create table of outcomes

In [63]: outcomes_for_table = ['total CO2 emission’,
"total cumulative subsidies awarded',
"total renovated houses']

In [137]: outcomes['total CO2 emission'].max()

Out[137]: 14765408.0

In [130]: d =[]
for policy in policies:

selected_results = tu.

slice_results(experiments=experiments, outcomes=outcomes, policy=policy)

d.append({'Policy': policy,

'Annual C02
'Annual CO2
'Annual C02
'Cumulative
awarded'].min(),
'Cumulative
awarded'].max(),
'Cumulative
awarded'].mean(),
'Cumulative
0>
'Cumulative
X(),
'Cumulative
ean()

)

emission min': selected_results[1][ 'total CO2 emission'].min(),

emission max': selected_results[1]['total CO2 emission'].max(),

emission mean': selected_results[1]['total CO2 emission'].mean(),
subsidies awarded min': selected_results[1]['total cumulative subsidies
subsidies awarded max': selected_results[1]['total cumulative subsidies
subsidies awarded mean': selected_results[1]['total cumulative subsidies
renovated houses min': selected_results[1]['total renovated houses'].min

renovatead houses max': selected_results[1]['total renovated houses'].ma

renovatead houses mean': selected_results[1]['total renovated houses'].m
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In [192]: dimport pandas as pd
df_table = pd.DataFrame(d)

# add seperate columns for policy and percentage

df_table[ 'Percentage']= df_table['Policy'].str.split("_",1).str[1]

df_table['Policy']= df_table['Policy'].str.split("_",1).str[0]

# Calculate reduction

df_table[ '"Mean CO2 reduction'] = df_table['Annual CO2 emission max'] - df_table['Annual CO2 emissi
on mean']

df_table[ '"Maximum CO2 reduction'] = df_table['Annual CO2 emission max'] - df_table['Annual CO2 emi
ssion min']

In [193]: # Beautify the table

df_table[ 'Mean CO02 reduction'] = df_table[ 'Mean CO2 reduction']/1le6
df_table[ '"Maximum CO2 reduction'] = df_table[ 'Maximum CO2 reduction']/1le6

df_table = df_table.rename(columns={'Mean CO2 reduction':'Mean CO2 reduction [Mton]',

'Maximum CO2 reduction': 'Maximum CO2 reduction [Mton]',

'Cumulative renovatead houses max':'Cumulative renovated houses max [M ho
uses]',

"Cumulative renovatead houses mean':'Cumulative renovated houses mean [M
houses]',

"Cumulative subsidies awarded max':'Cumulative subsidies awarded max [Bil
lion euros]',

'Cumulative subsidies awarded mean':'Cumulative subsidies awarded mean [B

illion euros]'
)
df_table.drop([ 'Annual CO2 emission max',
'Annual CO2 emission mean’,
'Annual CO2 emission min',
'Cumulative renovated houses min',
'Cumulative subsidies awarded min'],
inplace=True, axis=1)

In [196]: # rearrange
cols = df_table.columns.tolist()
cols = cols[-2:] + cols[:-2]
df_table = df_table[cols]

df_table
Out[196]:
Mean | Maximum Cumulative Cumulative Cumulative Cumulative
. Cc02 Cc02 renovated renovated subsidies subsidies
Policy | Percentage . .
reduction | reduction| houses max| houses mean| awarded max| awarded mean
[Mton] [Mton] [M houses] [M houses] | [Billion euros]| [Billion euros]
0 |Static 40 2.939828 |[7.258255 (1.547244 0.696646 10.894588 3.655211
1 |Dynamic |80 4.181880 |9.530335 |2.603651 1.306148 50.443469 21.314507
2 |Static 80 3.969878 [9.559074 |[2.619571 1.205295 40.653967 15.395988
3 [None NaN 1.486250 |4.747432 |0.161051 0.084759 2.511862 1.223181
4 |[Mission |60 3.567050 [8.888918 |[2.288859 1.004981 29.132988 9.830192
5 |[Mission |20 2.388709 [6.344406 |[1.019654 0.413463 3.507677 0.708797
6 |Dynamic |40 3.936263 [9.530335 (2.602112 1.185199 40.354693 15.090002
7 |Static 60 3.464768 [8.512401 [2.103567 0.957108 23.597537 8.570260
8 |Dynamic |60 4.181880 |9.530335 |2.603651 1.306148 50.443469 21.314507
9 |Dynamic |20 2.897626 [7.210981 [1.518462 0.671174 10.638348 3.456620
10 | Mission |80 4.129544 |110.071556 |2.873070 1.281970 50.470846 17.854594
11 | Static 20 2.406756 [6.262664 [0.982143 0.427123 2.960721 0.710109
12 | Mission |40 2.982424 [7.486335 |[1.659452 0.714255 13.305162 4.091620
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In [197]: df_final = df_table.groupby(['Policy', 'Percentage']).mean().round(2)
df_final
out[197]:
Mean Maximum | Cumulative Cumulative Cumulative Cumulative
CO2 (07 renovated renovated subsidies subsidies
reduction | reduction [ houses max houses mean |awarded max awarded mean
[Mton] [Mton] [M houses] [M houses] [Billion euros] |[Billion euros]
Policy Percentage
Dynamic |20 2.90 7.21 1.52 0.67 10.64 3.46
40 3.94 9.53 2.60 1.19 40.35 15.09
60 4.18 9.53 2.60 1.31 50.44 21.31
80 4.18 9.53 2.60 1.31 50.44 21.31
Mission |20 2.39 6.34 1.02 0.41 3.51 0.71
40 2.98 7.49 1.66 0.71 13.31 4.09
60 3.57 8.89 2.29 1.00 29.13 9.83
80 4.13 10.07 2.87 1.28 50.47 17.85
Static 20 241 6.26 0.98 0.43 2.96 0.71
40 2.94 7.26 1.55 0.70 10.89 3.66
60 3.46 8.51 2.10 0.96 23.60 8.57
80 3.97 9.56 2.62 1.21 40.65 15.40
In [198]: df_final.to_clipboard()
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Feature scoring

Featurescoring (poor man's alternative for sensitivity analysis) on the basecase ensemble (without any policies) and policycase

o Date: 11 July 2019
« M. Hupkens

In [1]: from ema_workbench import load_results
from ema_workbench.analysis import feature_scoring

C:\Users\markhupkens\Anaconda3\1lib\importlib\_bootstrap.py:219: ImportWarning: can't resolve packa
ge from __spec__ or _ package_ , falling back on __name__ and _ path__
return f(*args, **kwds)

1. Basecase

In [2]: experiments, outcomes = load_results('C:/Users/markhupkens/EnergyTransitionModelling/Final noteboo
ks/Results/20190715_experiments_energymodel labour_base_ensempble.tar.gz')

In [3]: outcomes.keys()

Out[3]: dict_keys(['TIME', 'total renovated houses', 'total renovated houses wcorp', 'total renovated hous
es koop', 'total renovated houses verhuur', 'total subsidy amount', 'total costs', 'total CO2 emis
sion', 'total warmte via elek', 'total warmtenet', 'total woningen gas', 'total houses in model’,
'prijseffect schaarste manuren transitie GASnrELEK NL', 'prijseffect schaarste manuren transitie G
ASnrWN NL', 'totaal benodigde manuren transitie GebOmg GASnrELEK NL corp', 'totaal benodigde manur
en transitie GebOmg GASnrWN NL corp', 'tekort manuren transitie GebOmg GASnrELEK NL', 'tekort manu
ren transitie GebOmg GASnrWN NL', ‘'beschikbare manuren transitie woningen GASnrWN NL', 'beschikbar
e manuren transitie woningen GASnrELEK NL'])

In [4]: keys_to_keep = ['total renovated houses',
"total costs’,
"total CO2 emission']

new_outcomes = {key: outcomes[key] for key in keys_to_keep}

In [5]: # Rename keys to match
new_outcomes[ 'Cumulative renovated houses'] = new_outcomes.pop('total renovated houses')

new_outcomes[ 'Annual CO2 emission'] = new_outcomes.pop('total CO2 emission')
new_outcomes[ 'Cumulative costs of renovation'] = new_outcomes.pop('total costs"')
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In [6]:

In [7]:

In [8]:

In [9]:

20190819 _Feature_scoring

# Rename uncertainties
experiments.dtype.names=[ 'Reduction carbon intensity power generation',
'Reduction renovation costs’,

'"Fraction houses to district heat private sector high existing infrastruc

ture',

'"Fraction houses to district heat private sector low existing infrastruct

ure',

'"Fraction houses to district heat building corporations high existing inf

rastructure’,

'"Fraction houses to district heat building corporations low existing infr

astructure’,

'"Fraction houses to district heat building corporations no existing infra

structure’,
'Annual electricity demand growth',
'Annual development of new homes',
'policy time’,
"renovation costs label group 1°',
'renovation costs label group 2',
"renovation costs label group 3',
'renovation costs label group 4°',
"Annual standard renovation rate’,
'scenario_id’,
'policy’,
'model’

def remove_field_name(array, name):
""'removes a dtype column from the uncertainties in the experiments'''
names = list(array.dtype.names)
if name in names:
names.remove(name)
b = array[names]
return b

experiments = remove_field name(experiments, 'policy")
experiments remove_field_name(experiments, 'policy time')
experiments = remove_field_name(experiments, 'model")

x1 = experiments
yl = new_outcomes

fsl = feature_scoring.get_feature_scores_all(x1,yl)

C:\Users\markhupkens\Anaconda3\1lib\site-packages\pandas\core\frame.py:6692: FutureWarning:

because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.
To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)

C:\Users\markhupkens\Anaconda3\1lib\site-packages\pandas\core\frame.py:6692: FutureWarning:

because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False’.
To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)
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In [25]: dimport seaborn as sns
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(12,8))

base = sns.heatmap(fsl, cmap='viridis', annot=True)
base.set_xticklabels(base.get_xticklabels(),rotation=90)

plt.tight_layout()
plt.savefig('C:/Users/markhupkens/Dropbox/Thesis/EMA/PLOTS/Feature_Scoring Basecase.png', dpi=300,
bbox_inches="tight")

plt.show()
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2. Policy

In [11]: experiments2, outcomes2 = load_results('C:/Users/markhupkens/Dropbox/Thesis/FINAL/Final results/20
190726_experiments_policies_v2_100.tar.gz"')

In [12]: outcomes2.keys()

Out[12]: dict_keys(['TIME', 'total cumulative subsidies awarded', 'total subsidy awarded annually', 'total
renovated houses', 'total renovated houses wcorp', 'total renovated houses koop', 'total renovated
houses verhuur', 'total costs', 'total CO2 emission', 'total warmte via elek', 'total warmtenet’,
‘total woningen gas', 'total houses in model', 'prijseffect schaarste manuren transitie GASnrELEK
NL', 'prijseffect schaarste manuren transitie GASnrWN NL', 'totaal benodigde manuren transitie Geb
Omg GASnrELEK NL corp', 'totaal benodigde manuren transitie GebOmg GASnrWN NL corp', 'tekort manur
en transitie GebOmg GASnrELEK NL', 'tekort manuren transitie GebOmg GASnrWN NL', 'beschikbare manu
ren transitie woningen GASnrWN NL', 'beschikbare manuren transitie woningen GASnrELEK NL'])

In [13]: keys_to_keep = ['total renovated houses',
"total cumulative subsidies awarded',
"total costs’,
"total CO2 emission']

new_outcomes2 = {key: outcomes2[key] for key in keys_to_keep}
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In [14]:

In [15]:

In [16]:

20190819 _Feature_scoring

# Rename uncertainties

experiments2.dtype.names=['Reduction carbon intensity power generation',

'Reduction renovation costs',

'"Fraction houses to district heat private sector high existing infrastruc

ture',

'"Fraction houses to district heat private sector low existing infrastruct

ure',

'"Fraction houses to district heat building corporations high existing inf

rastructure’,

'"Fraction houses to district heat building corporations low existing infr

astructure’,

'"Fraction houses to district heat building corporations no existing infra

structure’,

'Subsidy percentage cut-off level high building value',
'Subsidy percentage cut-off level low building value',
'Subsidy percentage cut-off level lower middle building value',
'Subsidy percentage cut-off level upper middle building value',

'Annual electricity demand growth',
"Annual development of new homes',
'Renovation rate improvement after 2030°',
'renovation costs label group 1°',
'renovation costs label group 2°',
'renovation costs label group 3',
'renovation costs label group 4°',
'Annual standard renovation rate’,
'scenario_id’,

'policy’,

'model’

]

experiments2 = remove_field_name(experiments2, 'model')

X2 = experiments2
y2 = new_outcomes2

fs = feature_scoring.get_feature_scores_all(x2,y2)

C:\Users\markhupkens\Anaconda3\1lib\site-packages\pandas\core\frame.py:6692:

because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)

C:\Users\markhupkens\Anaconda3\1lib\site-packages\pandas\core\frame.py:6692:

because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)

C:\Users\markhupkens\Anaconda3\lib\site-packages\pandas\core\frame.py:6692:

because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False’.

To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)
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In [26]: import seaborn as sns
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(12,8))

sns.heatmap(fs, cmap='viridis', annot=True)

plt.tight_layout()
plt.savefig('C:/Users/markhupkens/Dropbox/Thesis/EMA/Feature_Scoring Policies.png', dpi=300, bbox_
inches="tight")

plt.show()
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Untitled

Thesis Utilities

Utilities file for scenario discovery backup and make coding life easier. @author: Mark Hupkens,
2019

In[ ]: # coding: utf-8
i nport pandas as pd
i mport nunpy as np
i mport matplotlib. pyplot as plt
i nport seaborn as sns
i mport tinme

from ema_wor kbench. anal ysi s. plotting inport |ines

from ema_wor kbench. anal ysis. plotting util inport KDE

from ema_wor kbench. anal ysis inport prim

from ema_wor kbench. util inport enma_| oggi ng

enma_l ogging.l og to_stderr(ema_| oggi ng. | NFO

from ema_workbench. util inport load results

from ema_wor kbench. anal ysis. plotting inport lines, plot_lines with _envel op
es, envel opes

# ### Plotting |lines and saving results

def plot_all_lines(results, outcones, grouped, save, title):
i f grouped == True
for kpi in list(outconmes.keys())[1:]: # drop first entry (TINE)
fig, axes = lines(results, density=u'kde', show envel ope=F
al se, out comes_t o_show=kpi, group_by='policy")

i f save==True:
plt.savefig('plots/scenario_policies/'+time.strftime(’
%% )+ title + _lines_grouped_' + kpi + '.png',dpi=1200)
el se:
print(kpi + ' was not saved')
el se:
for kpi in list(outcones.keys())[1:]: # drop first entry (TI M)
fig, axes = lines(results, density=u'kde', show envel ope=Fal se
, out comes_t o_show=kpi )

i f save==True:
plt.savefig(' plots/scenario_policies/'+tinme.strftime(" %%n
%' )+ title + ' _lines_' + kpi + '.png',dpi=1200)
el se:
print(kpi + ' was not saved')

def plot_all_envel opes(results, outcones, grouped, save, title):
i f grouped == True:
for kpi in |ist(outcones.keys())[1:]: # drop first entry (TIME)
fig, axes = envel opes(results, density=u'kde', outconmes to_
show=kpi, group_by="policy', fill=True)
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i f save==True:
plt.savefig(' plots/scenari o _basecase/' +tine.strftime("
%r%mbe' ) + title + ' _lines_grouped ' + kpi + '.png', dpi =1200)
el se:
print(kpi + ' was not saved')
el se:
for kpi in list(outcones.keys())[1:]: # drop first entry (TIME)
fig, axes = envelopes(results, density=u'kde', outconmes_to_show
=kpi, fill=True)

i f save==True:
plt.savefig(' plots/scenario policies/'+time.strftime(' %%n
%l') + title + ' _lines_' + kpi + '.png', dpi=1200)
el se:
print(kpi + ' was not saved')

def slice_results(experinments, outcomes, policy):
'"''Selects policy fromexperinents and keeps only outconmes of selected

policy

i nport nunpy as np
gl obal sliced_results

new_experi nment s=experi ments. copy()
new_out cones=out cones. copy()

i ds_renoved = [] # list for renoved ids
i ds_not _renoved = [] # ids for remaining runs

count er =0 # As we delete lines, the index of the new ndarray chang
es. This counter accounts for that.

for i in range(len(experinents)):
if experiments['policy' ][i] !'= policy:
count er +=1
i ds_renoved. append(i)
for key in outcones. keys():
new_out cones[ key] =np. del et e( new_out cones[ key], i-(counter-
1), 0)
new_experi ment s=np. del et e( new_experi ments, i-(counter-1), 0)
el se:
i ds_not _renpved. append(i)
sliced_results=(new _experinments, new_out comnes)
return sliced results

def pl ot _individual _policies_|lines(experinments, outcones, policy,outconmes_
to_show):

"'*"Plot individual policy experinent sets''

sliced result = slice results(experinents, outcones, policy)

fig = lines(sliced_result, outcones_to_show=outconmes_to_show, density=
KDE)
print('Plot of policy: ', policy)

def pl ot _individual policies_envel opes(experinents, outcones, policy,outco
nmes_to_show):
"'""Plot individual policyizxperinent sets
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sliced_result = slice_results(experinments, outcones, policy)

i g, axes = envel opes(sliced result, outconmes_to_show=outconmes to_show,
fill=True , group_by=Fal se, density=KDE)
print('Plot of policy: ', policy)

#### Buurt sel ector

# Inport data and Define functions to clean data and sel ect buurten from m
unicipalities
i mport ipyw dgets as w dgets

# Functions for case sel ection

def merge_and_cl ean_mappi ng():

"'"Merge mappings and entities of nodelsetup files to get nei ghbourhoo
ds'"''

# I nport data

df _buurt = pd.read_excel (' C./Users/Local Adm n/ Deskt op/ ETMbdel / nodel / ba
ckup/ MSETWhIl EPdat aMHv02. xI sx' , sheet nane=' buurt')

df _wijk = pd.read_excel (' C./Users/Local Adm n/ Deskt op/ ETMbdel / nodel / bac
kup/ MSETWnl EPdat aMHv02. x| sx' , sheet name="wi j k')

df _gem = pd. read_excel (' C./ Users/ Local Adm n/ Deskt op/ ETModel / nodel / back
up/ MSETWhl EPdat aMHv02. x| sx' , sheet narme=' geneent e')

df _mapping = df _buurt.iloc[:, 0:2].nerge(df _wjk.iloc[:, 0:2],left_on=
"Mapping', right_on="Entities',how="inner")

df _mappi ng. drop(' Entities_y', axis=1,inplace=True)

df _mappi ng. renanme(col ums={"' Entities_x':"'Buurt',' Mapping_x':'Wjk',' M
pping_y':' Geneente'},inplace=True)

df _mappi ng[' Geneente_nane'] = df _mapping[' Geneente'].str.split(' G).s
tr[0]

return df _mappi ng

def get buurten(geneente):
"'""Return and save |ist of buurten and sel ected nunicipality"'
gl obal nei ghbour hood_Ii st
gl obal sel ect ed_geneente

df = merge_and_cl ean_mappi ng()
df y = df. | oc[df. Geneent e_nanme==geneent €]

nei ghbour hood_list = |ist(df_y.Buurt)
sel ect ed_geneente = geneente
print (' Nunber of nei ghbourhoods in'," ', selected geneente,' :',len(ne

ghbour hood _|ist))
return nei ghbourhood_Ii st

def create_dropdown_val ues():

gl obal geneente_li st

df _wijk = pd.read_excel (' C./Users/Local Adm n/ Deskt op/ ETMbdel / nodel / bac
kup/ MSETWnl EPdat aMHv02. x| sx' , sheet name="w j k')

geneente_list = df _wijk. Mapping.str.split(" G).str[0].unique()

return geneente_li st

def sel ect_buurten():
'"'"Create interactive dropdowngpo sel ect buurten from nmunicipalities'
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geneente = create_dropdown_val ues()
wi dgets.interact _manual (get buurten, geneente=geneente)

def return_experinented_policies(experinments):
=[]
for i in range(len(experinments)):
| . append(experinments[i][-2])
policies = set(l)
return policies
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Data Codes

This chapter provides all codes used in the data acquisition and data merge process to prepare the real-world
data for the multi-level modelling effort. First, scripts cleaning and merging several data sets are shown in
section B.1. Section B.2 presents scripts to allign the several levels, so that all entities appear in their mapping
and vice versa. Finally, section B.3 presents code used to scrape EV charging data from online sources

B.1. Data Merge Model Setup
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Data_merge_model setup

In [1]:

In[2]:

i nport pandas as pd

i mport nunmpy as np
i nport seaborn as sns

# from data_prep. py inport

Modelsetup (datamerge)

This notebook uses the following datasets to merge ep-online(BAG) data with klimaatmonitordata:

BAG data per house, including buildingtypes, retrieved from: eponline
Energy data per buurt, retrieved from: klimaatmaonitor

Solar PV data per neighbourhood (CBS)

on chargingpoints (private)

FEV and PHEV data on low scale

CBS data on vehicles per zipcode

Green gas and renewable heat per municipality

N o ~wDNPE

@author: Mark Hupkens last edit: 13-05-2019

All code available on github repo

To do (21-05):

1. fix column naming issue on import in vensim: add sheet name to column
variables.

2. Check length of variables and their mapping --> buurten have more wijken as
mapping than wijken have entities (see modelfix file)

Step 1. importing data

""'lInport Data'"''

# BAG dat a

df = pd.read_csv(' C /Users/ mar khupkens/ Dropbox/ EnTransi ti onNL/ 0. Dat a/ mast
erdf.csv', error_bad |lines=False, sep =';') # handled data fromhttps://ww

w. rvo.nl/sites/default/files/2019/01/ Voorl opi ge_| abel s_okt 2018. zi p

# Energy Data

df _energy buurt = pd.read_excel ("C. / Users/ mar khupkens/ Dr opbox/ EnTransi ti on
NL/ 0. Data/Klimaatnonitor (energieverbruik , stadsverwarm ng, pv - Buurten
, W j ken en geneenten 2017).xl s", sheet _nanme="Buurt"')

df _energy geneente = pd.read_excel ("C:/ Users/ mar khupkens/ Dr opbox/ EnTr ansi t
i onNL/ 0. Data/Klimatmonitor (energieverbruik , stadsverwarm ng, pv - Buur
ten,w j ken en geneenten 2017).xl s", sheet _name='" Geneente')

df _energy wijk = pd.read_excel (" C:{3%Jser s/ mar khupkens/ Dr opbox/ EnTransi ti onN
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In [3]:

In [4]:

In [5]:

L/ 0. Datal/Klinmaatnmonitor (energieverbruik , stadsverwarm ng, pv - Buurten,
wi j ken en geneenten 2017). x| s", sheet _nane="Wj k')

df i nkonen_buurt = pd.read_csv("C./Users/ mar khupkens/ Dr opbox/ EnTr ansi ti onN
L/ 0. Data/CBS_2017_I nkonen_Buurt.csv", sep=";")

# Repl ace string values with nan val ue 0. 424
df _energy_buurt.replace(to_replace="?",val ue=0. 4242, i npl ace=Tr ue)
df _energy_buurt.replace(to_replace="-"',val ue=0.4242,i npl ace=Tr ue)

df _energy_geneente.replace(to_replace="?",val ue=0. 4242, i npl ace=Tr ue)
df _energy_geneente.replace(to_replace="-"',val ue=0.4242,i npl ace=Tr ue)

df _energy wijk.replace(to_replace="?",val ue=0.4242, i npl ace=Tr ue)
df _energy_wi j k.replace(to_replace="-",val ue=0.4242,inpl ace=Tr ue)

# green gas and renewabl e heat

df _heat = pd.read_excel ("C./Users/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Da
ta/Kli maatnonitor. G een gas and heat- Geneenten. x| s", sheet name=' Geneent e
n)

1. Solar PV data

''"1. Solar PV per neighborhood’

# Sol ar PV data, url: https://ww.cbs.nl/nl-nl/nieuws/2019/17/vernbgen-zon
nepanel en- neer - dan- de- hel ft -t oegenonen

df _solar = pd.read _csv("C./Users/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat
a/ Zonnestroom__wi j ken_en_buurten__2017_16052019 130403. csv", sep=';', erro
r _bad |ines=Fal se)

# clean data
df _sol ar[' Regi oaandui di ng/ Soort regio (onschrijving)'] = df _sol ar[' Regi oaa
ndui di ng/ Soort regio (onschrijving)'].str.split(" ").str[O0]

# Select |levels

df _solar _buurt = df_sol ar.l oc[df _sol ar[' Regi oaandui di ng/ Soort regi o (onsch
rijving)']=="Buurt']

df _solar_wijk = df _solar.loc[df_sol ar[' Regi oaandui di ng/ Soort regi o (onschr
ijving)']=="Wjk']

df _solar_gem = df _sol ar. | oc[ df _sol ar[' Regi oaandui di ng/ Soort regi o (onschri
jving)']=="CGeneente']

# To Do

2. FEV and PHEV

""" FEV and PHEV Data''

df _fev = pd.read_excel (' C./ Users/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat
a/ Kl i matnonitor - Aantal geregistreerde EV- PHEV2019 - Postcodes. xls', sh
eet _name=' Auto s voertui gen 2019 Postcode')

df _voertuig = pd.read_csv(' C./Users/ mar khupkens/ Dr opbox/ EnTr ansi ti onNL/ 0.
Dat a/ Mbt or voert ui gen_cbs_postggde. csv' , error_bad_| i nes=Fal se, sep=';")
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df _pc = pd.read_csv(' C /Users/ mar khupkens/ Dropbox/ EnTransi ti onNL/ 0. Data/2
017- cbs- pc6hui snr20170801_buurt/ pc6hnr20170801_gwb. csv', sep=";")

df _pc_buurt = pd.read _csv(' C./Users/ mar khupkens/ Dr opbox/ EnTr ansi ti onNL/ 0.
Dat a/ 2017- cbs- pc6hui snr20170801_buurt/ buurt naanR017. csv' , sep="; "', encodi ng
= 'uni code_escape')

df _pc wijk = pd.read_csv(' C /Users/ mar khupkens/ Dropbox/ EnTransi ti onNL/ 0. D
at a/ 2017- cbs- pc6hui snr20170801_buur t/wi j knaanR017. csv', sep=";"', encodi ng =
'uni code_escape')

df _pc_geneente = pd.read _csv(' C. /Users/ mar khupkens/ Dropbox/ EnTransi ti onNL/
0. Datal/2017-cbs-pc6hui snr20170801_buurt/ geneent enaank017. csv', sep=";"', enc
odi ng = 'uni code_escape')

a. Zipcode coupling dataframe (CBS)

In [6]: df_pc = df_pc. nmerge(df pc_buurt,
| eft _on='Buurt2017',
ri ght _on="BUURT2017'). nmerge(df_pc_wi jk,
| eft _on="Wjk2017',
ri ght _on="WJK2017'). mer ge
(df _pc_geneent e,

| eft _on=' GenR017',
ri ght _on=' GEM2017")

df _pc['PC4A'] = df _pc[' PC6'].str[: 4]
df _pc.drop_duplicates(subset="PC4", keep="first', inplace=True)

b. Vehicles dataframe (CBS + Klimaatmonitor (RDW)

In [7]: # Create nerge columms
df _fev[' Postcode'] = df _fev["Auto's/voertuigen 2019 - Postcodes"].str.spli
t(" ").str[0]
df _voertuig[' Postcode'] = df _voertuig['RegioS ].str.split(" ").str[0]
df _fev = df _fev. merge(df_voertuig,|eft_on='Postcode', right_on='Postcode',
how='i nner")

# Add buurt,w jk and geneente nanmes based on pc4
df _veh = df _fev. merge(df_pc, |left_on='Postcode', right_on='PC4', how='inne
r')

C. group data

In [8]: '""'"Goup data in wjken en geneenten (pc4)'""’
# Geneent en
df _veh_gem = df _veh. groupby(' GEMNAAM ) . agg({" Aant al geregi streerde el ektri
sche personenauto's (FEV)":'sum,
"Aant al geregistreerde plug-in hybride personenauto's (PHEV)":'sum,

"Aant al geregi streerde personenauto's op aardgas (CNG ":'sumi,

"Aant al geregistreerde hybride38ersonenauto’ s": ' sun,
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In [9]:

In [10]:
Qut[10] :

"Personenauto's op waterstof (H2)":'sum,

" Personenauto_2':'sunm})

df _veh_geni' Benzi ne_Di esel ' ] =df _veh_geni' Per sonenaut o_2']- (df _veh_gen{" Aan
tal geregistreerde el ektrische personenauto's (FEV)"] +

df _veh_genf " Aan
tal geregistreerde plug-in hybride personenauto's (PHEV)"] +

df _veh_gen{ " Aan
tal geregistreerde personenauto's op aardgas (CNG"] +

df _veh_geni " Aan
tal geregistreerde hybride personenauto's"] +

df _veh_gen{ " Per
sonenauto's op waterstof (H2)"])
# W ken
df _veh_wijk = df_veh. groupby(' WJKNAAM ). agg({"Aantal geregi streerde el ekt
ri sche personenauto's (FEV)":'sum,

"Aant al geregistreerde plug-in hybride personenauto's (PHEV)":'sum,
"Aant al geregi streerde personenauto's op aardgas (CNG ":'sum,

"Aant al geregistreerde hybride personenauto's":'sum,
"Personenauto's op waterstof (H2)":'sum,

" Personenauto_2':'sum})

df _veh wijk['Benzine Diesel']=df veh wijk['Personenauto 2']-(df _veh wijk["
Aant al geregi streerde el ektrische personenauto's (FEV)"] +

df _veh_wijk["Aa
ntal geregistreerde plug-in hybride personenauto's (PHEV)"] +

df _veh_wi j k[ " Aa
ntal geregistreerde personenauto's op aardgas (CNG "] +

df _veh_wijKk["Aa
ntal geregistreerde hybride personenauto's"] +

df _veh_wi j k[ " Pe
rsonenauto's op waterstof (H2)"])

df _veh_wij k. drop(' Personenauto_2', axis=1, inplace=True)
df _veh _gem drop(' Personenauto 2', axis=1, inplace=True)

df _veh_wij k. head()

Aantal Aantal Aantal
. . . Aantal .

geregistreerde geregistreerde  geregistreerde . Personenauto's

) ; . , geregistreerde
elektrische plug-in hybride personenauto's hvbride op waterstof
personenauto's personenauto's op aardgas ersonen)z:\uto's (H2)

(FEV) (PHEV) cNg) P
WIJKNAAM
's Gravenmoer 4.0 8.0 1.0 25.0 0.0
's-Gravenpolder 3.0 10.0 1.0 38.0 0.0
's-Heer Abtskerke 8.0 17.0 0.0 52.0 0.0
139
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Aalsmeerderbrug/
Oude Meer/

89.0 36.0 46.0 20.0 0.0
Rozenburg /
Schiphol Rijk
Aarlanderveen 3.0 4.0 0.0 26.0 0.0

Building stock data on buurt-level

Firstly, binary columns have to be created to allow for counting in a groupby dataframe. 13 new
columns are added to show housing type (c1-c6) and label (A-G).

In [11]: ''' Create housing matrix' "'

# Add housing matri x to enable building type count at the end of the scrip
t

df .l oc[ df [' Housi ng Type']=="Cl', 'Houses Detached BAG2018d'] = 1

df .l oc[ df [' Housi ng Type']=="C2', 'Houses 2ulRoof BAG2018d'] =1

df . l oc[df [ ' Housi ng Type']=="C3', 'Houses Corner BAXR2018d'] =1

df . l oc[ df [' Housi ng Type']=="C4', 'Houses Row BA&R018'] =1

df .l oc[ df [ ' Housi ng Type']=="'C5', 'Houses Singl eFl oor Appartnents c5 BAG018
d] =1

df . l oc[ df [' Housi ng Type']=="C6', 'Houses MiltiFl oor Appartnents c6 BAG2018d
1 =1

# Add prelimnary eval uation

df .loc[df[' Prelimnary Evaluation']=="A", 'Label A BAR018d'] =1

df .loc[df[' Prelimnary Evaluation']=="B', 'Label B BAQ018d'] =1

df .loc[df['Prelimnary Evaluation']=="C, 'Label C BAGR018d'] =1

df .loc[df[' Prelimnary Evaluation']=="D, 'Label D BAR018d'] =1

df .loc[df['Prelimnary Evaluation']=="E, 'Label E BAR018d'] =1

df .loc[df['Prelimnary Evaluation']=="F, 'Label F BAGR018d'] =1

df .loc[df[' Prelimnary Evaluation']=="G, 'Label G BAR018d'] =1

# Add Nunerical |abels (A=1, G=7)

df .loc[df[' Prelimnary Evaluation']=="A", 'Average Label BAGX018d']
df .loc[df['Prelimnary Evaluation']=="B', 'Average Label BA&018d']
df .loc[df['Prelimnary Evaluation']=="C, 'Average Label BA&018d']
df .loc[df[' Prelimnary Evaluation']=="D, 'Average Label BAG018d']
df .loc[df['Prelimnary Evaluation']=="E , 'Average Label BA&018d']
df .loc[df['Prelimnary Evaluation']=="F, 'Average Label BA&018d']
df .loc[df[' Prelimnary Evaluation']=="G, 'Average Label BA&X018d']

L1 | A A A
~N~No oh wWwN P

# convert to string

df [ ' Nei ghbour hood Code'] = df[' Nei ghbourhood Code']. astype(str).str.split(
".").str[0] # map(str).str.split(".").str[O0]

df[' District Code'] = df['District Code'].astype(str).str.split(".").str[O
] # or .map(str).str.split(".").str[0]

1. Group Data

140
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In [12]:

In [13]:
Qut[13]:

In [14]:

""" &roup adressdata in neighborhoods within nmunicipalities

# group data
df _bag = df.groupby([' Municipality Nanme',
' Nei ghbour hood Nane',
" Nei ghbour hood Code']).agg({' House No':'count"',
' Houses Det ached BAG2018d':'

count'

' Houses 2ulRoof BAG2018d':'
count'

' Houses Cor ner BAG2018d':'co
unt ',

' Houses Row BAG2018' :' count
' Houses Si ngl eFl oor Appart nen
ts ¢5 BAG018d' :' count',
' Houses Ml ti Fl oor Appart nment
s c6 BAGR2018d':'count',
"Construction Year':'nean',
' Label A BAG2018d':'count',
' Label B BAG2018d':'count',
' Label C BA®G2018d':' count'

'Label D BAG2018d':' count’
' Label E BAG2018d':' count'’
' Label F BAG2018d':' count’

'Label G BAG2018d':' count’

" Aver age Label BAGR2018d':
mean' })

# Renane col um and duplicate index for merge later on

df _bag. renanme(col utms={"' House No':' Houses Al BA&G018d'})

df _bag[' Nei ghbour hood Nanme_2'] = df _bag.index. get | evel _val ues(' Nei ghbourh
ood Nane')

df _bag[' Municipality Name_2'] = df_bag. i ndex. get | evel _val ues(' Muni ci pal it
y Name')

df _bag[' Nei ghbour hood Code 2'] = df bag.index.get | evel val ues(' Nei ghbourh
ood Code') # string values for easy nerge

df _bag[' Average Label BAG2018d']. descri be()
count 12987. 000000

mean 4,.093182
std 1. 309312
nmn 1. 000000
25% 3.149821
50% 4.166434
75% 5. 048930
max 7.000000

Nane: Average Label BAGR2018d, dtype: fl oat64

"'"Group adressdata in distriﬁhg Wi thin rmunicipalities''
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# group data
df _bag_wjk = df.groupby([' Municipality Nanme',
"District Nanme',
"District Code']).agg({' House No':'count",
' Houses Detached BA&2018d' :'

count ',
' Houses 2ulRoof BAG2018d':'
count ',
' Houses Cor ner BAG2018d':'co
unt ',

' Houses Row BAG2018':' count'

' Houses Si ngl eFl oor Appart nen
ts ¢5 BA&R018d' : ' count',
' Houses Mul ti Fl oor Appart nent
s ¢6 BAG2018d':'count',
'Construction Year':'nean',
' Label A BAG2018d':'count',
' Label B BA&2018d':' count',
' Label C BAG2018d':' count'

' Label D BAG2018d':' count'
'Label E BAG2018d':' count'

' Label F BAG2018d':' count'

})

'Label G BAG2018d':' count’

# Renane colum and duplicate index for nerge | ater on

df _bag wij k. renanme(col ums={' House No':' Houses Al |l BAG2018d'})

df _bag wijk['District Nane_2'] = df _bag _wijk.index.get |evel values('Distr
ict Nane')

df _bag_wijKk['Minicipality Name_2'] = df_bag_w j k.index. get | evel _val ues('M
unicipality Nane')

df _bag wijk['Di strict Code_2'] = df _bag _wi jk.index.get_|evel values('Distr
ict Code') # string values for easy nerge

In [15]: '"''"Goup adressdata in districts within nunicipalities'"'

# group data
df _bag_gem = df . groupby([' Munici pality Nanme']).agg({' House No':'count',
' Houses Det ached BAG2018d' :'

count ',
' Houses 2ulRoof BAG2018d':'
count ',
' Houses Cor ner BAG2018d':'co
unt ',

' Houses Row BAG2018' :' count'

' Houses Si ngl eFl oor Appart nen
ts c5 BAR2018d' : ' count',

' Houses Mul ti Fl oor Appart ment
s ¢6 BA®X2018d':' count',

142 Construction Year':'nean',

file:///D/markhupkens/Desktop/Python%20A ppendices/Data_merge_model setup.html[22-Jul-19 11:56:31]



Data_merge_model setup

' Label A BAG2018d':' count',
'Label B BAG2018d':' count',
' Label C BAG2018d':' count'
'Label D BAG2018d':' count’
' Label E BAG2018d':' count’

' Label F BAG2018d':' count'

})

' Label G BAG2018d':' count’

# Renane colum and duplicate index for nerge | ater on

df _bag_gem rename(col ums={' House No':' Houses Al| BAGX2018d'})

df _bag_geni' Municipality Name_2'] = df _bag_gem i ndex. get_| evel _val ues(' Mun
icipality Nane')

Step 2 Merge All Data

o df _bag[buurt, wijk, gemeente]: data for each building on housingtype, provisional label and
building year

e df _energy [buurt, wijk, gemeente]: average energy consumption

e df solar[buurt, wijk, gemeente]: # installations and KW

o df_veh[wijk, gemeente]: EV's, PHEV's and Diesel/petrol

Buurten

In [16]: df_inkomen_buurt. head()

Qut[16]:
o ID WijkenEnBuurten Gemeentenaam_1 Codering_3 GemiddeldinkomenPerinkomensontvanger_65

0 O NLOO Nederland NLOO 32.0
1 1 GM1680 Aa en Hunze GM1680 31.6
2 2 WK168000 Aa en Hunze WK168000 34.0
3 3 BU16800000 Aa en Hunze BU16800000 33.3
4 4 BU16800009 Aa en Hunze BU16800009

In [17]: |"''Buurt: nerge grouped bag data with klinmaatnmonitordata on buurt'"'

df _nmerged_buurt = df bag. nerge(df energy buurt,
| eft _on=" Nei ghbour hood Nane_2',
right_on="Buurt', how="left"). merge(df_sol ar
_buurt,
[ eft _on
=' Nei ghbour hood Nane_ 2',

right _o
143 gnt_
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n=df _sol ar_buurt[' W] ken en buurten'],
how=' | ef
t")
df _nerged _buurt = df _rmerged buurt. groupby([' Municipality Name 2',
' Nei ghbour hood Nane_2',

" Nei ghbour hood Code_2']). nean()
# group by original index

Wijken

In [18]: df _veh_wijk.index

Qut[18]: Index([''s Gravennmoer', ''s-Gavenpolder', ''s-Heer Abtskerke',
" Aal smeerder brug/ OQude Meer/ Rozenburg / Schiphol R jk',
" Aar | anderveen', 'Abbenes / Buitenkaag', 'Abcoude', 'Achthuizen',
" Aet svel dsepol der', ' Afferden',
"Zuid', 'Zuidas', 'Zuidland', 'Zuidoost', 'Zuidwest', °'Zuigerplaspa
rk',
' Zwaanshoek' , ' Zwammerdam , ' Zwanenburg', 'de Hoef'],

dt ype='obj ect', nane=' WJKNAAM , | ength=1903)

In [19]: '''Wjk nerge grouped bag data with klinmaatnonitordata on wijk'""'

df _nmerged wijk = df _bag w jk.nmerge(df _energy wjKk,
left on="District Nane',
right_on="Wjk',
how="left'). merge(df _veh w jKk,
left_on="District Name

2",
ri ght i ndex=Tr ue,
how='left'). nerge(df _s
olar_wi jk,
| ef
t_on="District Name_2',
rig
ht _on="Wjken en buurten',
how

='left')
df _nerged wijk = df _nerged_wij k. groupby([' Municipality Nanme 2',
"District Nane_ 2',

"District Code_2']).nean() # grou
p by original index

Gemeenten

In [20]: |'"'' CGenmeente nerge grouped bag data with klinaatnonitordata on Geneente'''
df _nmerged_geneente = df bag_gem nerge(df energy_ geneente,

| eft _on="Minicipality Nanme',
1r4i49ht _on=' Ceneente',
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how="left'). merge(df_veh_gem
|l eft _on="Minicipality

Nane_ 2',
ri ght _i ndex=Tr ue,
how="left"'). merge(df _h
eat,
| ef t
_on='Minicipality Nanme_ 2',
righ
t_on="Thema's - Geneenten",
how='
left")

df _nmerged_geneente = df _nmerged_geneent e. nerge(df _sol ar _gem

| eft _on="Minicipality Nane_ 2
', # .astype(str),

right_on="Wjken en buurten’
, #.str[2:].str.strip(" ").str.lstrip("0"),

how="1left")

df _nmerged_geneente = df _nmerged_geneente. groupby([' Municipality Nane_2']).m
ean() # group by original index

Clean merged dataset

In [21]: |# Drop index columms (used for nerging)
| _drop= ['Huisnunmer', 'Buurt2017', 'Wjk2017', 'GenR017', 'BUURT2017',
"WJK2017', ' GEM2017']

# df _merged_buurt. drop(l _drop, axi s=1, i npl ace=Tr ue)
# df _mer ged_geneent e. drop(| _dr op, axi s=1, i npl ace=Tr ue)
# df _merged_wi j k. drop(l_drop, axi s=1, i npl ace=Tr ue)

In [22]: |# Renobve special characters from col um nanes
df _nmerged_geneente. colums = df _nerged_geneente. colums. str.replace("[",""

).str.replace("]","")

df _nmerged_buurt.colums = df _nmerged _buurt.colums.str.replace("[","").str.
replace("]","")

df _nmerged_wi j k. colums = df _merged_wi j k. colums. str.replace("[","").str.re
place("]","")

Step 3. Create new Model-setup

Import modelsetup file and merge new data on geospatial index (buurt, wijk, gemeente)

In [23]: |# Inport nodel setup files

df _nod_geneente = pd.read_excel ("C./users/ mar khupkens/ Dr opbox/ EnTransi ti on

NL/ 0. Dat a/ Mbdel Set UpEner gi eNLO2 (1). x| sx", sheet _name=' geneente')

df _nod_buurt = pd.read_excel ("C./users/ markhupkens/ Dropbox/ EnTransi ti onNL/

0. Dat a/ Model Set UpEner gi eNLO2 (1) . xl sx", sheet _nanme=' buurt')

df _nod_wijk = pd.read_excel ("C:/users/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ O
Dat a/ Mbdel Set UpEner gi eNLO2 145) . x| sx", sheet _name="wi jk') # w jkdata horri
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bl e from Kkl i maat noni t or
df _nmod _nod = pd.read_excel ("C./users/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0.
Dat a/ Model Set UpEner gi eNLO2 (1).xl sx", sheet _nanme=' Model Speci fi cation')

In [24]: |# split entity string to match building data on nunicipality nanme
df _nod_geneente[' Municipality Name'] = df _nod_geneente["Entities"].str.sp
it(" G').str[0]
df _nmod wijk['Wjk Code'] = df_nod wijKk["Entities"].str.split(" W).str[-1]
.str.ostrip("K').str.strip(" ").str.lstrip("0") # Wjk on wijkcode, ditchin
g leading 0's
df _nod_buurt['Buurt Code'] = df _nmod_buurt["Entities"].str.split(" B").str]
-1].str.strip("U').str.strip(" ").str.Istrip("0") # Buurt on buurt code, d
itching leading 0's

In[25]: # fillna with 0.4242

df _nmerged_geneente.fillna(0.4242,inpl ace=Tr ue)
df _nmerged_wij k. fillna(0.4242,inpl ace=True)
df _merged_buurt.fillna(0.4242,inplace=True)

In [26]: '''Merge prepared data with nodel setup data

# Geneent en

df _nod_geneente = df _nod_geneent e. ner ge(df _nerged_geneente, |eft_on="Minic
ipality Nanme', right_on= df_nerged geneente.index, how="inner")

df _nod_geneente = df _nod_geneente.drop([' Municipality Nanme'], axis=1)

# Buurten
df _nod_buurt = df _nod_buurt. merge(df _nerged buurt,

| eft _on='"Buurt Code',

ri ght _on= df _nerged _buurt.index. get |eve
| _val ues(' Nei ghbour hood Code 2'),

how='i nner")

# df _nmod_buurt = df _m

od buurt.drop(['Buurt Nane'], axis=1)

# W] ken

df nmod wijk = df _nod w jk. nerge(df _nerged wijk, left on="Wjk Code', right
_on=df _nmerged_wi j k. i ndex. get _| evel _val ues(' District Code_2'), how="inner")
# df _nmod wijk = df _nod wijk.drop(['District Nane_2'], axis=1)

Add classes to neighbourhoods

¢ based on building value, assign value classes. divide in quantiles and assign integer
e based on % district heat, assign quantitles of district heat availability

In [27]: |"'"Add quantile groups of average labels''' # LOW QUANTILE = GOOD LABEL (A
:]_)

df _nod_buurt .l oc[df _nod_buurt[' Average Label BAG2018d']<=df _nmod_buurt[' Ave
rage Label BAG2018d'].quantil e(qg=0.25), 'label group'] =1

df_nod_buurt.Ioc[(df_nDd_buurt['Awﬁ%age Label BA&2018d' ] >=df _nmod_buurt[" Av
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In [28]:
Qut[28]:

In [29]:

In [30]:
Qut[30]:

In [31]:

erage Label BAGR2018d'].quantile(q=0.25)) &
(df _nod_buurt[' Average Label BA®&2018d' ] <=df nod buurt[' Av
erage Label BAG2018d'].quantile(g=0.50)), 'label group'] = 2

df _nod_buurt. | oc[(df _nod_buurt[' Average Label BAG2018d']>=df_nod_buurt[' Av
erage Label BAGR2018d'].quantile(q=0.50)) &

(df _mod_buurt[' Average Label BA®&018d' ] <=df nmod_buurt["' Av
erage Label BAGR2018d'].quantile(qg=0.75)), 'label group'] = 3

df _nod_buurt .l oc[ (df _nmod_buurt[' Average Label BAG2018d']>=df_nod_buurt[' Av
erage Label BAG2018d'].quantile(q=0.75)) &

(df _rmod_buurt[' Average Label BA®&2018d' ] <=df nmod buurt[' Av
erage Label BAG2018d'].quantile(g=1.00)), 'label group'] = 4

df _nod_buurt[' | abel group'].val ue_counts()

1.0 3247
4.0 3247
3.0 3247
2.0 3247
Nane: |abel group, dtype: int64

""" Add val ue cl asses'"’
# distribute nei ghourbhoods in 4 classes based on building value from1 (
owest quantile) to 4 (highest quantile)

df _nmod _buurt .l oc[df _nod buurt['woni ngwaarde keuro buurt']<=df nod buurt['w
oni ngwaar de keuro buurt'].quantil e(qg=0.25), 'value group'] =1

df _nmod_buurt .l oc[ (df _nod buurt['woni ngwaar de keuro buurt']>=df nod_buurt[’
woni ngwaar de keuro buurt'].quantile(qg=0.25)) &

(df _mod_buurt[' woni ngwaar de keuro buurt']<=df _nod_buurt][’
woni ngwaar de keuro buurt'].quantile(q=0.50)), 'value group'] = 2

df _nod_buurt .| oc[ (df _nod_buurt["' woni ngwaar de keuro buurt']>=df _nod_buurt[’
woni ngwaar de keuro buurt'].quantil e(q=0.50)) &

(df _mod_buurt[' woni ngwaar de keuro buurt']<=df nod_buurt]['
woni ngwaar de keuro buurt'].quantile(q=0.75)), 'value group'] = 3

df _nod_buurt. !l oc[(df _nod buurt['woni ngwaar de keuro buurt']>=df nod_buurt[’
woni ngwaar de keuro buurt'].quantile(qg=0.75)) &

(df _mod_buurt[' woni ngwaar de keuro buurt']<=df _nod_buurt[’
woni ngwaar de keuro buurt'].quantile(q=1.00)), 'value group'] = 4

df _nmod_buurt['val ue group'].val ue_counts()

4.0 3264

3.0 3258

1.0 3236

2.0 3230

Nane: val ue group, dtype: int64

df _show = df _nod_buurt. drop(col ums=[' Bevol ki ng buurt', 'Mannen buurt"',
"Vrouwen buurt', 'Bevolking O tot 15 jaar buurt'’
'Bevol king 15 tot 25 jaar buurt', 'Bevol king 25 tot 45 jaar buurt',
'Bevol king 45 tot 65 je@r buurt', 'Bevol king 65 jaar of ouder buurt
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' Bevol ki ng CGeboorte en
' Bevol ki ng Geboorte en
buurt',

buurt',

tla

Hui shoudens t ot aa
Hui shoudens zonder

hui shoudensgrootte ',
Woni ngvoorraad buurt'
eengezi nswoni ng pc buurt',
onbewoond pc buurt',
Huur woni ngen t ot aal
Huur woni ngen woni ngcor poratie pc buurt',
Huur woni ngen overi ge verhuurders pc buurt',
Ei gendom onbekend pc buurt’
Opper vl akte

Bevol ki ng Geboorte en
Bevol ki ng Geboorte en

buurt',
ki nderen buurt',

sterfte Geboorte totaal

sterfte CGeboorte rel atief per

sterfte Sterfte totaa
sterfte Sterfte relatief per 1 000 i nwoners

aant al

buurt',
1 000 i nwoners

buurt',

' Eenper soonshui shoudens buurt',
' Hui shoudens net ki nderen buur

' Bevol ki ngsdi cht hei d per sgkm buurt',

"woni ngwaar de keuro buurt"',

' meer gezi nswoni ng pc buurt',
' Koopwoni ngen pc buurt',
pc buurt',

' Bouwj aar voor

" Qppervl akte | and ha buurt',

2000 pc buurt’,

' Oppervl akte water ha buurt', 'Buurt Code', 'House No'])
df _show. head()
Qut[31]:
Houses Houses Houses Houses Houses
Entities Mapping Detached 2ulRoof Corner Row SingleFloorAppartments Mu
BAG2018d BAG2018d BAG2018d BAG2018 c¢5 BAG2018d
Annen Wijk 00
0 Annen 582 478 160 204 134
BU16800000 WK168000
Versrf’l:iez'gi Wijk 00
1 Annen Annen 61 1 0 0 0
BU16800009 WK168000
Wijk 01
Eext
2 Eext 301 146 37 40 16
BU16800100 WK168001
Verspreide Wijk 01
3 huizen Eext Eext 47 1 0 0 1
BU16800109 WK168001
Wijk 02
Anloo
4 Anloo 99 41 2 1 2
BU16800200 WK168002

5 rows x 35 columns

Check data on income per neighbourhood 148

file:///D/markhupkens/Desktop/Python%20A ppendices/Data_merge_model setup.html[22-Jul-19 11:56:31]



Data_merge_model setup

In [32]: df_inkomen_buurt = pd.read_csv("C: /Users/markhupkens/ Dropbox/ EnTransiti onN
L/ 0. Data/CBS_2017_I nkonen_Buurt.csv", sep=';")

df i nkonmen_buurt[' Gem ddel dl nkonenPer | nkonmensont vanger _65'] = pd.to_numeri
c(df _i nkomen_buurt[' Gem ddel dl nkonenPer | nkomensont vanger _65'].str.Istrip("

").replace('."', np.nan)) * 1000
df i nkonen_buurt["' Gem ddel dl nkomenPer | nwoner 66'] = pd.to_nuneric(df _i nkom
en_buurt[' Gemni ddel dl nkonmenPer | nwoner _66'].str.Istrip(' ').replace('."', np.

nan)) * 1000

[ en(df _i nkonmen_buurt .| oc[ df _i nkomen_buurt[' Geni ddel dl nkomenPer | nwoner _66' ]
>0])

Qut[32]: 4072

In [33]: len(df _nod_buurt. | oc[df _nmod_buurt[' woni ngwaarde keuro buurt']>0]) - |en(df
_nmod_buurt. |l oc[df _nod_buurt[' woni ngwaar de keuro buurt']==0.4242])

Qut[33]: 10099

Data completeness of building value is far higher than data completeness of income per capita or
average income per person.

4. Export new modelspecification file

In [34]: |# export as xlsx to genereate new nodel specification file
from pandas inport Excel Witer

# with pd. Excel Witer('D:/mar khupkens/ Dropbox/ EnTransi ti onNL/ 0. Dat a/ Model
Set UpEner gyNLO1 IVH. xl sx') as witer: # doctest: +SKIP
wi th pd. Excel Witer (' C /Users/ markhupkens/ Dr opbox/ EnTransi ti onNL/ Model Set U
pEner gyNLO1_MH avgl abel group. xlI sx') as witer: # doctest: +SKIP

df _nmod _buurt.to_excel (witer, sheet nanme='buurt')

df _nod_wijk.to_excel (witer, sheet_name="wijk")

df _nod_geneente.to_excel (witer, sheet_name=' geneente')

df _nmod_nod.to_excel (witer, sheet nane=' Model Specification')

OR ADD SPECIFIC COLUMN TO EXISTING FILE

In [35]: # Select colunmsn to nerge
df _new = df _nod_buurt[['Entities', 'label group','Average Label BAG2018d']

]

In [36]: |# Inport exsiting file
df _inport _geneente = pd.read _excel ("C:./users/ mar khupkens/ Dr opbox/ EnTr ansi t
i onNL/ MSETMWhI EPdat aMHv02. x| sx", sheet _nane=' geneente')
df _inport_buurt = pd.read_excel ("C:. /users/ markhupkens/ Dropbox/ EnTransi ti on
NL/ MSETMhl EPdat aMHv02. x| sx", sheet _nanme=' buurt')
df _inport_w jk = pd.read_excel ("C./users/ mar khupkens/ Dr opbox/ EnTr ansi ti onN
L/ MSETWhl EPdat aMHv02. x| sx", sheet _name="wijk') # w jkdata horrible from Kkli

maat noni t or 149
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df _inport_nod = pd.read_excel ("C:./users/ mar khupkens/ Dropbox/ EnTransi ti onNL
/ MBETWnl EPdat aMv02. x| sx", sheet _nanme="' Model Speci fi cation')

In [37]: df_final _buurt = df _i mport_buurt. merge(df_new, | eft_on="Entities', right_on
='"Entities',how="inner")

# export as x|l sx to genereate new nodel specification file
from pandas i nport Excel Witer

# with pd. Excel Witer (' D:/markhupkens/ Dropbox/ EnTransi ti onNL/ 0. Dat a/ Model
Set UpEner gyNLO1 MH. xI sx') as witer: # doctest: +SKIP
wi th pd. Excel Witer(' C /Users/ markhupkens/ Dr opbox/ EnTransi ti onNL/ Model Set U
pEner gyNLO2_ NMH avgl abel group. xl sx') as witer: # doctest: +SKIP

df _final _buurt.to_excel (witer, sheet_nane='buurt"')

df _inport_w jk.to_excel (witer, sheet_nanme="wjk")

df _inport _geneente.to_excel (witer, sheet nanme=' geneente')

df _inport_nod.to_excel (witer, sheet nanme=' Model Speci fication")

150
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Multi-scale-allignment

In [1]:

In[2]:

In [3]:

In [4]:

In [5]:

i nport pandas as pd

Multi-scale-alignment

e Alignement of spatial resolution in modelsetup data
¢ Part of the energytransitionmodelling effort

@author: Mark Hupkens @date: 16-05-2019

"""Inport files'"'

df _gem = pd. read_excel ("D:/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat a/ Mode
| Set UpEner gyNLO1 MH. x| sx", sheet name=' geneente')

df _buurt = pd.read_excel ("D:/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat a/ Mo
del Set UpEner gyNLO1_MH. x| sx", sheet _nane=' buurt')

df _wijk = pd.read_excel ("D:/ mar khupkens/ Dropbox/ EnTransi ti onNL/ 0. Dat a/ Mod
el Set UpEner gyNLO1_IH. x| sx", sheet_name="w j k')

df _nmod = pd.read_excel ("D:/ mar khupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat a/ Mode
| Set UpEner gyNLO1 IH. xI sx", sheet name=' Mbdel Speci fi cation')

Q: how do model scales line up in the data?

print(df _wijk.Entities.nunique())
3067

print (df buurt. Mappi ng. nuni que())
3067

A: There are more wijken included as a mapping on buurt-level, than as there are entities on wijk-
level A2: same applies for municipalities

Allign data resolutions

"'" Check and keep only rows if entities and mappings line up "'

# Keep only geneenten that are mappings in wjk
df _gem new = df _gem loc[df _gem Entities.isin(df_wjk. Mappi ng)==Tr ue]

# Keep only wijk rows whose mapping is an entity in geneente
df _wijk_new = df _wijk.loc[df _wjk. Mapping.isin(df_gemnew Entities)==True]

# Keep only wijk rows whose entity is a mapping in df _buurt
df _wijk_new = df_wijk _new loc[df_w jk _new Entities.isin(df_buurt. Mpping)=
=True]

# Keep only buurten whose nmapping 58 an entity in df _wjk
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In [6]:

In [7]:

Qut[7]:

In [10]:

df _buurt_new = df _buurt. | oc[df _buurt. Mapping.isin(df_wijk new Entities)==T
ruej

print('df_buurt_new has | ength',|en(df_buurt_new))
print('df_wijk _new has length', len(df_wjk_new))
print('df _gem has length',|en(df_gem new))

df _buurt _new has | ength 11649
df _wijk _new has |length 2729
df _gem has | ength 342

Check new data resolutions

# buurt to wjk
(df _buurt _new. Mappi ng.isin(df_wijk new Entities)==True).val ue_counts()

True 11649
Nane: Mapping, dtype: int64

# Wjk to gem
(df _wi j k_new. Mappi ng.isin(df _gem new Entities)==True).val ue_counts()

True 2729
Narme: Mappi ng, dtype: int64

# CGemto wjk
(df _gem new. Entities.isin(df_w jk_new Mapping)==True) . val ue_count s()

Tr ue 342
Nanme: Entities, dtype: int64

All resolutions now line up, as all mappings in a low-resolution dataframe are included as entities in a
high-resolution dataframe

Data completeness

How much data has been lost in the alignment process

print(len(df_gen)-Ilen(df _gem new),' Geneenten have been lost', (len(df_gen
-len(df _gem new)) /Il en(df_gem *100 )

print(len(df_wijk)-len(df_w jk new),'Wjken have been lost', (len(df_wjk)
-len(df _wijk _new))/len(df_wi jk)*100)

print(len(df_buurt)-Ien(df _buurt_new), ' Buurten have been lost', (len(df_bu
urt)-len(df _buurt_new))/ I en(df_buurt)*100)

0 Geneenten have been lost 0.0
338 Wj ken have been | ost 11.020541245516792
1339 Buurten have been | ost 10.309516476747767

Export data to new stup file
153
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In [11]: |# export as xlsx to genereate new nodel specification file
from pandas i nport Excel Witer

wi th pd. Excel Witer(' D/ markhupkens/ Dr opbox/ EnTransi ti onNL/ 0. Dat a/ Model Se
t UpEner gyNLO2EPMH3AI i gned. xI sx') as witer: # doctest: +SKIP

df _buurt _new. to_excel (witer, sheet nanme='buurt')

df _wijk _new to_excel (witer, sheet_nane="w j k')

df _gem new. to_excel (witer, sheet_ nanme='geneente')

df _nod.to_excel (witer, sheet nane=' Model Speci fication")

In [12]: print(len(df_buurt_new))
print(len(df_wjk _new)
print(len(df_gem new))

11649
2729
342

154
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ev_charger_scraper

EV charger scraper

¢ Notebook to scrape available data on public and private ev chargers in The Netherlands
e Data from oplaadpalen.nl

e Quick visualization

e part of MSc thesis at Delft University of Technology

@author: Mark Hupkens

In [1]: inport pandas as pd
i mport requests
# inmport urllib2
from bs4 inport Beautiful Soup
i mport urllib.request

i nport nunpy as np

API| Parameters

e access_type element of (public, company, private)
¢ availability (available, in use)
e charging & power (Normal, fast)

Loop over arange of gps coordinates

In [2]: # Loop over range to create box

zoom ="' 15'

accesstype = 'public, conpany, private' # gather types of chargers

d = {}

boxes (lon, lat) for lon in np.arange(50.5,54,.1) for lat in np.arange

= [
(3.4,7.5,.4)]

for count, box in enunerate(boxes):
i f count==0:

box = (str(boxes[count])+","+str(box))
box = box.replace(")","").replace("(","").replace(" ","")
el se:
box = (str(boxes[count-1])+","+str(box))
box = box.replace(")","").replace("(","").replace(" ","")
url = "https://oplaadpal en. nl/api/ maplist/cl usterset ?box=" +box+' & oom=

"+str(zoon) +' &ccessType=' +accesst ype+' &avai | abl e=avai | abl e, char gi ng&power
=f ast, normal '

response = requests.get(url)

data = response.json()

df = pd. DataFranme.fromdict(data[' data'])

if len(df) !'= 0: # only save data if |en>0

d[box] = df -
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In [5]:

print(box, | en(df))

50. 5, 7. 399999999999999, 50. 6, 3. 4 58

50. 6, 7. 399999999999999, 50. 7, 3. 4 114

50. 7, 7. 399999999999999, 50. 800000000000004, 3. 4 297

50. 800000000000004, 7. 399999999999999, 50. 900000000000006, 3. 4 603
50. 900000000000006, 7. 399999999999999, 51. 00000000000001, 3. 4 537
51. 00000000000001, 7. 399999999999999, 51. 10000000000001, 3. 4 479
51. 10000000000001, 7. 399999999999999, 51. 20000000000001, 3. 4 491
51.20000000000001, 7. 399999999999999, 51. 30000000000001, 3. 4 487
51. 30000000000001, 7. 399999999999999, 51. 40000000000001, 3. 4 362
51. 40000000000001, 7. 399999999999999, 51. 500000000000014, 3. 4 843
51. 500000000000014, 7. 399999999999999, 51. 600000000000016, 3.4 932
51. 600000000000016, 7. 399999999999999, 51. 70000000000002, 3. 4 664
51. 70000000000002, 7. 399999999999999, 51. 80000000000002, 3. 4 548
51. 80000000000002, 7. 399999999999999, 51. 90000000000002, 3. 4 1448
51. 90000000000002, 7. 399999999999999, 52. 00000000000002, 3.4 1790
52. 00000000000002, 7. 399999999999999, 52. 10000000000002, 3. 4 2616
52.10000000000002, 7. 399999999999999, 52. 200000000000024, 3. 4 1577
52.200000000000024, 7. 399999999999999, 52. 300000000000026, 3.4 1386
52. 300000000000026, 7. 399999999999999, 52. 40000000000003, 3. 4 2156
52.40000000000003, 7. 399999999999999, 52. 50000000000003, 3. 4 666
52. 50000000000003, 7. 399999999999999, 52. 60000000000003, 3. 4 468
52.60000000000003, 7. 399999999999999, 52. 70000000000003, 3. 4 482
52. 70000000000003, 7. 399999999999999, 52. 80000000000003, 3. 4 225
52. 80000000000003, 7. 399999999999999, 52. 900000000000034, 3.4 77
52.900000000000034, 7. 399999999999999, 53. 000000000000036, 3. 4 165
53. 000000000000036, 7. 399999999999999, 53. 10000000000004, 3. 4 150
53. 10000000000004, 7. 399999999999999, 53. 20000000000004, 3. 4 270
53. 20000000000004, 7. 399999999999999, 53. 30000000000004, 3. 4 280
53. 30000000000004, 7. 399999999999999, 53. 40000000000004, 3. 4 63
53. 40000000000004, 7. 399999999999999, 53. 50000000000004, 3. 4 20
53. 50000000000004, 7. 399999999999999, 53. 600000000000044, 3. 4 12
53. 600000000000044, 7. 399999999999999, 53. 700000000000045, 3.4 3
53. 700000000000045, 7. 399999999999999, 53. 80000000000005, 3. 4 2

# Show |l ength of all stored datafranes

I =[]
for key in d:
| . append(l en(d[ key]))

sun( )
20271

# Save uni que headi ng conbi nati ons

| 2=[]
for key in d:
if d[ key].colums.values.tolist() not in |2:
| 2. append(d[ key] . col ums. val ues.tolist())
I 2
[['id, "point', 'power', 'publicaccess', 'status'],
['cluster', "id, "point', 'power', 'publicaccess', 'status'],

['staticCuster']]

# Append keys of correct col ulfnunber to Iist
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In [32]:

In [7]:

In [8]:

In [9]:

In [10]:

I _5col =[]
| _6col =[]
[ _1col = []
for key in d:
i f d[key].colums.values.tolist() ==12[0]:
| _5col . append(key)
elif d[key].colums.values.tolist() == 12[1]:
| _6col . append(key)
elif d[key].colums.values.tolist() == 12[2]:

| _1col . append(key)

# Used lists of keys to create datafranes

df 5 col = pd. DataFranme(colums = 12[0])
df _6_col = pd. DataFranme(colums = 12[1])
df _1 col = pd. DataFranme(colums = 12[2])

for key in | _b5col:

df 5 col = df _5 col.append(d[key],ignore_index=True)
for key in |_6col:

df _6_col = df_6_col.append(d[ key],ignore_i ndex=True)
for key in |_1col:

df 1 col = df _1 col.append(d[key],ignore_index=True)

# Drop usel ess col um
df _6_col .drop('cluster', axis=1, inplace=True)

Function to parse data

def parse_df (df):

if df.colums.isin(['id, '"point', 'power', 'publicaccess', 'status'])
.all () or df.colums.isin(['cluster', "id', 'point', 'power', 'publicacces
s', 'status']).all():

# Extract Dict data

df = df.merge(df[' point'].apply(pd. Series), left_index=True, right
_index=True) #l ng |at

df = df.nmerge(df.status. apply(pd. Series), left _index=True, right i
ndex=True) #avail ability charging

#drop col ums
df = df[[' power', ' publicaccess','lat','Ing',"'available',"'charging
1]
return df
el se:
print(' Scraped data not in correct format')

# Parse data and nerge
df charge = parse_df (df _5 col)
df _charge df _charge. append(parse_df (df _6_col))

df _charge. head() -
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Qut[10]:

In [33]:

out[33]:

In [12]:

out[12]:

In [13]:

Qut[13]:

In [14]:

power publicaccess lat Ing available charging
0 22080 Public 50.50073376 5.24111517 1 0
1 22000 Public 50.50283086 5.11911117 0 0
2 22000 Public 50.50300603 5.87175581 0 0
3 22080 Private 50.50388791 4.46993699 2 0
4 22000 Public 50.50503506 5.88437543 0 0

df _1 col = df_1 col.staticC uster.apply(pd. Series)
df _1 col[' publicaccess'] = 'unknown'
df 1 col . head()

lat Ing count publicaccess
0 52.01225628 6.13546952 1 unknown
1 52.01644447 6.13132338 1 unknown
2 52.04621124 5.67533739 1 unknown
3 52.04557260 5.66836542 1 unknown
4 52.01906509 5.66270176 1 unknown

df _charge = df _charge. append(df _1 col)
| en(df _charge)

C. \ User s\ mar khupkens\ Anaconda3\ | i b\ si t e- packages\ pandas\ cor e\ f r ane. py: 6692
Fut ureWar ni ng: Sorting because non-concatenation axis is not aligned. A

future version

of pandas will change to not sort by default.

To accept the future behavi or, pass 'sort=Fal se'
To retain the current behavior and silence the warni ng, pass 'sort=True'.

sort=sort)

20271

# Data overview
df _charge. publi caccess. val ue_count s()

Publ i c 9123
Conpany 3467
unknown 2616
Private 2545
Nane: publicaccess, dtype: int64

# store data
df _charge.to_csv(' data/ev_chargers_scraped.csv')

159
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In [15]:

In [16]:

In [17]:

In [18]:

out[18]:

In [19]:

out[19]:

In [30]:

out[30]

Plot with geopandas

df _charge = pd.read csv(' data/ev_chargers_scraped. csv')

i nport geopandas as gpd

from shapel y. geonetry i nport Point,

i nport descartes

i mport matplotlib.pyplot as plt
%ratplotlib inline

df _charge.
df _charge.

geonetry = [Point(xy) for xy in zip (df_charge.lng

geonetry|:

[ <shapel y. geonet ry. poi nt. Poi nt at
<shapel y. geonetry. poi nt. Poi nt at
<shapel y. geonetry. poi nt. Poi nt at

I ng =
| at

3]

Pol ygon

pd.to_numeri c(df _charge. | ng)
pd.to_numeric(df _charge. | at)

0x193l1leac7da0>,
0x1931eac7el10>
0x1931eac7f 98>]

df _charge.lat)]

gdf = gpd. GeoDat aFr ane(df charge, geonetry=geonetry)
gdf . head()
Unnamed: . . .
available charging count lat Ing  power publicaccess geometry
POINT
0 0 1.0 0.0 NaN 50.500734 5.241115 22080.0 Public (5.24111517
50.50073376)
POINT
1 1 0.0 0.0 NaN 50.502831 5.119111 22000.0 Public (5.11911117
50.50283086)
POINT
2 2 0.0 0.0 NaN 50.503006 5.871756 22000.0 Public (5.87175581
50.50300603)
POINT
3 3 2.0 0.0 NaN 50.503888 4.469937 22080.0 Private (4.46993699
50.50388791)
POINT
4 4 0.0 0.0 NaN 50.505035 5.884375 22000.0 Public (5.88437543
50.50503506)
gdf .crs = {"init' :'epsg:4326'}
gdf . pl ot ()

<mat pl ot | i b. axes. subpl ot s. AxesSubpl ot at 0x19322133b38>

160

file:///D/markhupkens/Desktop/Python%20A ppendices/ev_charger_scraper.html[22-Jul-19 09:56:49]



ev_charger_scraper

53.5 1

53.0 1

52.5 4

52.0 4

51.5 1

51.0 4

50.5 4

161

file:///D/markhupkens/Desktop/Python%20A ppendices/ev_charger_scraper.htmi[22-Jul-19 09:56:49]






Model Overview

This chapter provides an overview of the most important model structures used in the Vensim model.

C.1.Base Model

This section shows the main structural components of the basemodel used in the analyses in this study.
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Figure C.1: Base model: general housing structure and electricity demand accumulation
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Figure C.2: Base model: electricity demand



C. Model Overview

166

A <P e apmeps
¥ ) ,mnf unng £ 10T #5
M 8107 Y1 w8 a0 saspe praLlors
dnoi [sqe] anpEa =d ajpuRd A g spmensiSen Hnnn..n.( spas
iomi prasiidn
<1gzep> <@gy gmep> <> 1gme> <sigmEp> g <> <1g=ep> <eTgme>
mng L WY STTUoaTessn . 1n0Q L 107 Y SuroacEoy ¥nng [ 10T U IRmRRdds unng £ 100 . unng g g
L107 By S spumsieliss 10T ana % SR e £ Suioa il oL Emdvier £107 £ Sumascpoy L1067 £ Susdasssen L107 g wsmisd
UG ERIRILTRIS PR L G ! i PERPI=O PRPPIRO sl PIPPITRD ugeseS PIRPPIESD gl pEppID. se preppim
s < g g g g g P s ST
o ¥ ¥ ¥ ¥ ¥ ¥
10t Gy o L10¢ Eo eeduon 18998 107DVE 100 PIOTOYE 004 PE10TOVE g PELOTOYE 804 PR10ZOVE 0 PELOTOYE #004 PRIOZOVE pnag mex
L e e (A DT A19ET FarT arael JwarT ERGET ¥ 1RET OHIANES)
i R A g g g e g g N
s R e L A S unng §107OVE pnng PELOTOVE 4m0q PSIOLOVE LG PSLOTOVE unng pnng unnq ey mes 60 £ puE]
SneH Tenen : 0 SER0H RW0) SIMOH JoodInT SeoH PHETEQ FHICH oN #0oH #pop unag seEjaRddo sniamddy
<sIggEe <SIgED> <sigEe <SP <s1g <sIgEDs <1 SR> <> g
.‘~ ¥ v .‘H it v 15 it v .‘H Ul v 1 'y v
pnng E..._&Maeaeﬁ» g, E.su_.:n.e unngdu b Eu_a unng>d s

unng
spmaRddo % % 351RA0 BRFUTSOAMNH &% UREUOAMnY sSumoadooy 2d puooasquo SumoaTTE R oAt

IR <*|gEIED> <slEmER

g g Sigpep IgEm S — e o .
A b b _!_Msso iE_M!an [ - v~y E_.M ) 1n0q si=gon! 000 pang e

WNNG OMEX ¥ unng pee B ¥
prrafuuon mocaSuIsON uﬁ% SsEpneriing 1B SRPAOUSIEL ROUOT SRPROSINEL ¥ ¥ T RpHER) RIS o RS e
<S|FRp> <S[EIRP> g <E IR g P SlEE IR SEE g
; : A ¥ A v b ¥ ¥
vnag siEuaay) unng T =iy T sl pong veng
000 [ AENERI BUC0gRD TEEI) & g t it [
L R by B by ol vl Pt P T 01 5T Fosasg 100 51 Bupyaseg §T101 0 Fomiossg wanoi pmeg s ForyoaE

Figure C.3: Base Model: data import. Data described in section 4.2 and section B.1
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Figure C.8: Base Model: Renovation to all electric
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C.2. Policy Model

This section presents main structures used in the policy models employed in this study.
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The Dutch Energy Transition

This chapter aims to answer the first sub question by identifying baseline- and additional policies in the Dutch
climate agreement. Firstly, a quick chronological introduction to dutch energy policy is given. Thereafter,
baseline policies, additional policies and instruments are discussed in separate paragraphs. Finally the chapter
is concluded by answering the sub question.

D.1. Introduction

Dutch climate policies to mitigate effects of climatic change have been in the making since 2011 (see figure
D.1). Despite different government coalitions, the climate agenda has been continued for almost a decade.
A first attempt to create an energy agreement for sustainable growth has been made in 2013 by the Sociaal
Economische Raad (2013). The newly elected government coalition of Rutte 3 has set the ambition to reduce
carbon emissions by 49% by 2030 (Rijksoverheid, 2017), two years after the Paris Agreement was made.

November 2011 ¢ Local Climate Agenda
September 2013 ¢ Presentation Energy Agreement Sustainable Growth
October 2013 ¢ Climateagenda
December 2015 International Climateagreement (Paris Agreement)
January 2016 ¢ Energyreport
December 2016 ¢ Energyagenda
May 2017 ¢ Agreement Energy Intensive Industry
May 2018 ¢ Prohibition coal-fueled electricity production as of 2030
June 2018 ¢ Proposal climatelaw
July 2018 ¢ Proposal for key points of the climate agreement
September 2018 ¢ PBL Analysis of key points of the climate agreement
October 2018 ¢ Cabinet’s appreciation the climate agreement & start second round of negotiations
December 2018 ¢ Presentation of the Design of the Climate Agreement
March 2019 ¢ Presentation of computed effects by planning bureaus

Figure D.1: Timeline of Dutch Climate Policies (Rijksoverheid, 2019d; Hekkenberg and Koelemeijer, 2018; PBL, 2019)

Currently, Dutch greenhousegas emissions amount to roughly 0.5% of worldwide CO, emissions (The World
Bank, 2019), which some argue is rather insignificant and hence provides little incentive for decarbonization
policies (Luttikhuis, 2017; Mommers, 2018). However, if corrected for population, Dutch CO, emissions per
capita are considerable compared to other countries (see figure D.2). Table 2?2 shows current Dutch emissions
per sector and the proposed ceilings to arrive at 49% CO, emission reduction by 2030.

This chapter aims to provide an overview of all current and potential climate policies in The Netherlands
in an attempt to answer the sub question stated in 22: “Which base- and additional policies can be identified in
the design of the Dutch climate agreement?”

Firstly, an overview of baseline decarbonization policies from current government coalition Rutte 3 is pro-
vided in section D.2. Subsequently, an inventorization of additional policies drafted in the climate agreement
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Figure D.2: Different perspectives on CO2 emissions (World Bank, 2019a,b)

is provided in section D.3. Section 3.3 elaborates on main uncertainties in current climate policies and section
D.5 concludes this chapter.

D.2. Baseline Policies: Government Coalition Agreement

The Rutte 3 coalition presented sector specific decarbonization targets in their government agreement (NOS,
2017). The newly installed government set a target of 49% CO--eq reduction of by 2030, exceeding reduction
targets mention in the Paris Agreement(UNFCCC, 2015). To kickoff their progressive climate ambitions the
coalition set sector specific reduction targets that amounted to a total of 56 Mton CO;-eq reduction.

Table 22 provides an overview of reduction targets as mentioned in the government agreement (Rijksover-
heid, 2017) assigned to different sectors. However, no policies had yet been created, hence these targets would
mostly show ambition in the coming policy formulation process.

More recently, PBL (2019) published all calculated measures in their analysis of the effects of the climate
agreement. The authors also included climate related policies which would be implemented regardless of
additional climate policies, so called “baseline policies”. Most instruments in the baseline policies are attributed
to the electricity sector, such as inclusion of grid-on-sea costs in grid rates, a ban on coal or a minimum CO,
price for electricity production. Next are baseline policies for the built environment sectors focusing on an
intensification of the SDE+ subsidy scheme (focusing on renewable heat and green gas), increasing the ISDE
(investment subsidy renewable energy) and increase enforcement on regulations for the utility sector. Included
baselines policies for the mobility sector include an implementation of truck tax and implementation of EU
standards for passenger cars and trucks or delivery vans. The agricultural sector would already face policies
to facilitate the remediation of pig farming. Addressing societal upheaval around odor nuisance would go
hand in hand with reducing carbon emissions of the agricultural sector, simply by reducing the number of pig
farmers. Finally, baseline policies for the industrial sector only include development of the Emissions Trading
Scheme (ETS) in an international context. Table 22 provides an overview of all instruments included in the
baseline policy path.

D.3. Additional Policies: Focal Points Climate Agreement

To realize its ambitions, the Dutch government Rutte 3 initiated a stakeholder consultation process to create
a new climate agreement with relevant actors to realize their ambition set in the coalition agreement. Five
sector tables (Electricity, Industry, Mobility, Agriculture and Built Environment) had been created and assigned
indicative reduction targets early 2018 (Lugt, 2018). Each sector was requested to draft concept measures with
relevant stakeholders in their field to reach the indicative sector target.

In short, the task at hand for the climate tables was to formulate additional policies (on top of the existing
baseline policies) that would attain a reduction of 48.7 Mtons of CO,-eq GHG emissions. In little less than a
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Box 1: Dutch emission targets explained

Currently, total Dutch GHG emissions are 193 Mton CO;-eq (2017), which is 13 % lower compared to the
221 Mton CO;-eq baseline of 1990. Total Dutch GHG emissions should decrease to a maximum of 113
Mton CO3-eq to reach the reduction target of 49 % GHG reduction in 2030 (compared to 1990-levels)
(CBS, 2018a).

Hence, from 2017 onwards, a reduction of 80 Mtons has to be achieved. Of these 80 Mtons, the
government assumes that 39 Mtons will be reduced through existing policies, the so called “baseline
policies” (Schoots et al., 2017). The remainder of this sum has to be achieved through policy from the
climate agreement, that contributes 48.7 Mtons (see Table D.1), reaching the total of 80 Mton reduction
compared to 2017 emissions.

Figure D.3: Dutch emission targets explained

year, the climate agreement had been made and has been published in December 2018. It proposes many
different solutions for the energy transition (Klimaatakkoord, 2018; Waaijers, 2017) in order to meet the
renewed reduction targets (shown in Figure 22). For the sake of feasibility not all measures will be included in
this study. Hence, this section will focus on a selection of the focal points per climate table as mentioned by
Rijksoverheid (2019a,b,c,f,g) (see Chapter ??), selected on the concreteness of the proposed measure.

Table D.1: Main Reduction Targets Climate Sectors (Klimaatakkoord, 2018)

Sector Reduction Target (Mton CO3-eq)
Electricity 20.2

Industry 14.3

Mobility 7.3

Agriculture 3.5

Built Environment 3.4

Total 48.7

D.3.1. Electricity

The electricity sector had been attributed the highest reduction target (table ?2). In addition to its own target,
most cross-sectoral effects between the climate tables would amount to some increase in electricity use, which
requires facilitation by the electricity sector and hence increases their challenge. Many different stakeholders
joined the main table, chaired by Kees Vendrik, to create new measures for the sector and to defend their
company’s interests.

Most concrete solutions proposed by the electricity sector included measures around (i)a CO, minimum
price, (ii) increasing the offshore wind capacity, (iii) increasing the onshore renewable energy generation and
(iv) energy storage (see section 22):

1. A minimum CO; price will be introduced for electricity generated with fossil fuels.

2. Largest [renewables] growth comes from offshore wind farms. These will grow to 49 Billion KWh by 2030.

3. Renewable energy on land (wind and solar) also grows significantly. This [renewable energy generation]
will increase to 35 Billion KWh annually.

4. Electricity production will be more subject to changing weather. This requires a flexible system that
matches supply and demand. This could be achieved with storage, back-up generation plans, converting
electricity in (hydrogen)gas or heat and links with neighbouring countries.

The enumeration above is merely a selection of proposed measures listed in section 2?2 and are derived
from focal points aggregated by Rijksoverheid (2019a).

Note that although the electricity sector specifically mentions a minimum CO; price for electricity gener-
ated from fossil fuels, this policy measure had already been included in current policies (see section D.2).
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D.3.2. Industry

The Netherlands are home to a large carbon intensive industrial sector that has been assigned the second
largest reduction target. Monetizing carbon emissions would directly affect the competitive position of
Dutch industry and hence provided a considerable challenge to reach consensus for the table Ronde (2018a).
Environmental organizations and NGO’s, however, lost faith in an effective climate agreement and dropped
their endorsement (Ronde, 2018b).

Most concrete solutions recommended by the industry table included (i) ambitions to increase energy
efficiency, (ii) capture CO, emissions and store it underground (CCS) or (iii) put it to use as a feedstock (CCU).
(iv) Utilize residual heat for district heating and (v) create a bonus-malus system that rewards progressive
decarbonization plans and penalizes conservative plans (see section 22).

1. Industrial plants will be able produce even more efficiently, through a variety of technologies. [The
sector] has high expectations of different heat-use, utilization of heat pumps and recycling of materials.

2. CO; can be stored in empty gas fields in the North sea. Carbon Capture and Storage (CCS) can realize a

reduction of carbon emissions on the road to full decarbonization [of industry].

CO> can be captures and used as a feedstock in other fields such as greenhouses and synthetic fuels.

4. Residual heat from industrial processess will be put to use to provide heat to offices, residential areas
and greenhouse farms, which will decrease natural gas demand in other sectors.

5. The design of the climate agreement proposes measures that oblige companies to reduce their carbon
emissions. Progressive plans are rewarded subsidies. Conservative, or none, plans will be penalized.
Hence, rewarding pioneers and correcting conservative companies.

w

The enumeration above is merely a selection of proposed measures listed in section ?? and are derived
from focal points aggregated by Rijksoverheid (2019c).

D.3.3. Mobility
The government coalition already included an ambitious target of EV-only sales by 2030 (Rijksoverheid, 2017).
The sectortable mobility aimed to create measures to enable this policy target.

Main ambition of the sector is to electrify personal transport by (i) making EV’s financially more attractive
through subsidies pro EV and levies on fossil vehicles, (ii) increasing the coverage of the EV charging grid and
(iii) electrifying all public transport. Moreover, (iV) biofuels would enable an additional emission reduction of
the existing fossil fleet. Finally, (v) the table suggests mobility in itself should be changed and focus on mobility
as a service, more bikes and public transport and less carkilometers (Duijnmayer, 2018).

1. Cars without [carbon] emissions will become common before 2030.

2. 1.8M charging points will become available by 2030.

3. All (5000) public transport buses will be 100% free of emissions by 2030. The same holds true for
construction vehicles and mobile appliances.

4. The scarce sustainable biofuels will preferably be used for heavy transport segments

5. Work-related personal mobility can be decarbonized by implementing new parking policy, transfer to a
full electric fleet, free public transport, stimulating bicycle use, introduce a bonus-malus in mobility
budgets, distribute mobility cards for lease-users

The enumeration above is merely a selection of proposed measures listed in section ?? and are derived
from focal points aggregated by Rijksoverheid (2019g).

D.3.4. Agriculture
Rijksoverheid (2019f) categorized the policy recommendations of the climate table of agriculture and landuse
in four distinct groups. Namely, life stock farming, horticulture, land use and consumers.

Most concrete solutions recommended by the agriculture and landuse table included (i)differently process
manure to reduce GHG emissions, (ii) replace fossil heat demand with geothermal or residual heat sources
in the horticulture industry and substitute the absent CO, with captured CO, from the industrial sector. (iii)
Peatlands should be kept wet to reduce GHG emissions, (iv) foodwaste and animal protein should be reduced.
Finally, (v) biomass can be produced by the sector, but should be wisely used.

1. Plans to differently process manure of cattle will be made in 2019, as manure emits the powerful
greenhouse gas methane. This starts in the life stock pen where manure is processed differently. Other
life stock diets can result in a methane reduction.
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2. Horticulture will be disconnected from the gas infrastructure.Geothermal installations or residual heat
of industry will satisfy the heat demand instead. Captured CO, from industrial process will be used for
the growth of plants - as a form of Carbon Capture and Utilization (CCU).

3. Peat lands should be kept wet to reduce green house gas emissions.

4. Companies and organization will stimulate people to waste less food. Less meat consumption in favor
of vegetable protein will help too.

5. Agriculture can produce biomass. Firstly as a soil fertilizer. Secondly as animal feed or other food. Thirdly
as a building block for the [petro]chemical industry. Finally as a fuel for heat or electricity.

The enumeration above is merely a selection of proposed measures listed in section 2?2 and are derived
from focal points aggregated by Rijksoverheid (2019f).

D.3.5. Built Environment

While having the lowest reduction target (absolutely speaking), the built environment sector plays a tremen-
dous role in the energy transition as a whole. Socioeconomic support is vital, because all citizens are affected
by policies for the built environment.

The table’s main recommendations focus on (i) an early kickstart of residential renovation through building
corporations, (ii) proof of concept neighborhoods to increase standardization and reduce unit costs. (iii) new
financial schemes need to unburden homeowners in their effort to make their homes more sustainable and
(iv) new energy taxes should tweaked so investments will be returned through energy savings.

1. Building corporations will kick start the [residential] transition by making their 2.4M housing stock more
sustainable. They promised not to increase housing costs as a result.

2. Proof of concepts will be launched for natural-gas free neighborhoods and kick start projects. Together
they are a first step in standardization of building types and [rebuilding] approaches. This results in
lower costs.

3. There will be building-related funding [for sustainable rebuilding]. The loan will be transferred to the
new owner when the house is sold.

4. Energy tax on gas will increase, tax on electricity will decrease.

The enumeration above is merely a selection of proposed measures listed in section 2?2 and are derived
from focal points aggregated by Rijksoverheid (2019b).

D.3.6. Cross-sectoral effects

Cross sectoral consistency is emphasized in the appendix of the climate agreement and expresses the need for
system integration, vision on energy carrier and infrastructure and choices in organization and regulation.
The document clearly states ambitions on this topic, but lacks concrete measures to ensure cross-sectoral
consistency. It does, however, show a roadmap of government visions, market organizations and stakeholder
programs to ensure a more consistent climate agreement,

Table D.2: Timeline cross-sectoral consistency (Klimaatakkoord, 2018)

Period Policy Plans

2019 Regional Energy Strategies

Early 2019 Infrastructure Outlook 2050 Gasunie / Tennet

Mid 2019 Government Vision CCS market organization and financing of CO2 infrastructure. The
statutory framework must be adjusted no later than 2021.

Mid 2019 Government Vision on the market organization for collective heating networks. The legal
frameworks must be adjusted by 2021 at the latest

2019 Gasunie and TenneT start an integral infrastructure exploration 2030-2050 in collaboration
with regional DSO’s. Deadline 2021.

2019 Government starts a program on spatial planning and spatial reservations for main energy
systems on a national scale.

2019-2020 CO2 reduction plans industry sector

Continued on next page
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Table D.2 - continued from previous page
Period Policy Plans
2020 Detailed government vision on market organization & energy transition. Including a policy
agenda towards 2030, that addresses organization from a systems perspective on regulation,
costs of new infrastructure (mainly heat, hydrogen and CO2. Taking into account the
implications for gas- and electricity networks for scenario’s 2030-2050.
(from) 2020 Detailed monitor security of supply
End 2021 Transition visions heat

D.4. Additional Instruments

Policy measures mentioned in section D.3 mainly show ambitions rather than concrete instruments to be
implemented by government ministries. As these measure had to be analyzed, however, the ministry of
economic affairs & climate distilled concrete instruments from the climate agreement and provided them to
the Dutch Environmental Assessment Agency (PBL). In their assessment of the climate agreement, PBL (2019)
provide an overview of instruments the authors included in their analysis of the climate agreement. Table ?2
(see appendix ?2) shows all concrete instruments implemented in their analysis of the impacts of the climate
agreement.

D.5. Conclusion

The aim of this chapter was to answer the first sub question “Which base- and additional policies can be
identified in the design of the Dutch climate agreement?”. Baseline policies and instruments have been
identified in the coalition agreement of Dutch government and from an overview of existing policies from
the Dutch Environmental Assessment Agency (see section D.2 and Table ?2 for full list). Additional policies
have been derived from the climate agreement (see section D.3) based on their level of concreteness and
are complemented by more concrete instruments from the Dutch Environmental Assessment Agency (see
section D.2 and Table 22 for full list). These baseline and additional policies will form a starting point for policy
modelling in later stages of the study:.
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E.1. Open exploration

tekort manuren transitie GebOmg GASnrWN NL
700 -

tekort manuren transitie GebOmg GASnrELEK NL

600 200 -
500 -
150 -
400 1

300 4 100 4

200 A
50
100 A

04

tekort manuren transitie GebOmg GASnrWN NL

tekort manuren transitie GebOmg GASnrELEK NL

2020 2025 2030 2035 2040 2045 2050 O 0.0041 2020 2025 2030 2035 2040 2045 2050 O 0.013

Time Time
(a) Deficiency man hours for renovation to district heat (b) Deficiency man hours for renovation to all-electric
[hours] [hours]

Figure E.1: Labour deficiency for renovations

Both figure E.1a and E.1b show similar patterns, even though they differ in absolute terms. Generally
speaking, labour deficiency in the policy scenario is very limited. A relatively higher ratio of district heating
could be explained by a lack of incentive for households to change the way they heat their homes.

E.2. Scenario discovery
E.2.1. Labour deficiency

Policy timing and renovation demand could influence labour deficiency strongly. This section briefly discusses
a PRIM analysis performed on labour deficiency for renovation to district heating and renovation to all-electric
households. For both KPT’s, the 25 % worst performing cases (i.e. cases with highest labour shortages) have
been selected to perform the PRIM analysis.

Figure 5.6 shows the peeling and pasting trajectory and the trade-off between coverage and density.
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Figure E.5: PRIM inspection of boxes gas to all-electric
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Figure E.6: PRIM inspection of boxes gas to district heat







Robust Policy Analysis (Previous
iteratation)

This chapter shows a first iteration of robust policy formulation using the ARD methodology. Main differences
compared to the chapter in the main body if this report are the goals set for the dynamic adaptive policy. In this
chapter, a target of 49% reduction of CO, emissions by 2050 is maintained, whilst the newer analysis (found in
section 2.2.3) sets the target to 95% reduction by 2050 in accordance with the Dutch climatelaw (Klimaatwet,
2019).

E1l. Introduction

This chapter will discuss the results of the Adaptive Robust Design methodology performed on the case of the
energy transition in the Dutch built environment sector. The aim of this chapter is to answer the fourth sub
question of this study: What policies to accelerate the energy transition of the built environment are robust?
Results presented in this chapter are derived from policy case experimentation (see section 6.3 for code) and
scenario discovery (see section A.4).

To answer this question new experiments have been iteratively performed on incrementally improved
models employing the ARD methodology. First, policies will be discussed which have been devised to counter
uncertainty and unwanted scenarios. Second, the experimental setup is presented showing input parameters
and outcomes of interest. Finally, results of the specified policies are discussed before concluding the chapter.

E.2. Policies and variations

Within the scope of the energy transition in the Dutch built environment sector, many policies have been
considered in the climate agreement. These policies have been analyzed by the Netherlands Environmental
Assessment Agency (PBL). This study will investigate the possible effects under deep uncertainty of the three
most promising instruments as discussed by PBL.

Table E1: Three most promising policy instruments for CO2 emission reduction in the Dutch built environment sector according to (PBL,
2019, p. 67)

Instrumentation Emission reduction Investments (2019 National costs in

in 2030 [Mton] t/m 2030) [mln euro] 2030 [mln euro per
year]

Neighbourhood approach and sub- 0,2-1,3 1080 — 4632 24 -28

sidy in the commercial sector

Neighbourhood approach and sub- 0,2-0,3 1787 — 2059 54 -53

sidy in the rental sector

Norms newly built homes (gas free) 0,1-0,1 591 -364 6--9

Total 0.5-1.7 3458-7055 84-72
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Table 6.1 shows the three most promising instruments to reduce CO» emissions in the built environment
and hence reach the climate targets for the sector. PBL (2019). These three instruments have been modeled in
the System Dynamics model to simulate results with policies. The performance of these policies under deep
uncertainty is strongly influenced by the delivery mechanism (policy variations) of said policy.

E.2.1. Policy variations

A policy can be implemented in a variety of ways. The delivery mechanism selected for a specific policy
naturally effects the outcome of the policy. The list below briefly shows several possible mechanisms for
policies.

» Static policy: setting a fixed policy for a preferred outcome

¢ Dynamic reactive policy: finding balance between two opposing KPI’s (stop and go policy)

* Dynamic adaptive policy: create adaptive policies robust under deep uncertainty (Walker et al., 2001)

* Capping policies (rate-based emission policy or cap-and-trade policy (Fischer, 2003)

* Mission oriented policies: aiming to accelerate R&D to realize innovations and costs reductions (Mazzu-
cato, 2018)

For the sake of simplicity three policy delivery mechanisms have been selected on top of the no policy
base case. First, a static policy will be defined to reach a preferred outcome. Second, an dynamic policy is
formulated that is designed to be adaptive to future developments. Third, a mission-like policy is implemented
to understand effects of labour availability, scarcity and costs.

Static policy

In the static policy experiments. Subsidy amounts, static over time, are sampled as uncertainties in the model.
Currently, rough indications of total subsidy budgets have been made public (Klimaatakkoord, 2019), but it is
yet unknown how these subsidies will be distributed over different groups. Hence, subsidies are varied over a
wide range of 5000 to 40000 euros, which account for limited subsidy coverage ,regardless of label group, to full
coverage, for all label groups (see table 6.2. A static policy is implemented with a varying subsidy amount and
policy timing (as uncertainties).

Adaptive policy
Performance is dynamically evaluated for the adaptive policy experiments. Progress on the main KPI, fotal
CO; emission is referenced to the yearly carbon budget of 2050. A multiplier kicks in if current emissions are
higher than the 2050 goal. Different multipliers are instantiated, given the state of underachievement as shown
in equation 6.1.

.¢ total CO, emission
2, if 55, budgerzos0. = 19
. 1 CO, emission
1.5 if1.5> @tz emission 4 55
subsidy multiplier = COz budget 2050 (E1)

. total CO, emission
1.25 if1.25> m >1

1, otherwise

Mission oriented policy

For the mission oriented policy, major scaling and R&D are expected to contribute to the transition. The
subsidy schematic is similar to the static policy scenario (see section 6.2.1). Major differences, however, are set
in an additional 25% higher renovation rate (of the standard renovation rate) and an additional 25 % higher
decrease in renovation costs (so a higher reduction renovation costs).

E.2.2. Policy targets

Policies are created to meet targets within realistic boundaries. Currently, the CO, emission target for 2050 is
set at a 3.4 Mton reduction (20% compared to 2015 levels) (Klimaatakkoord, 2019). The 2050 target is set at a
more generic 49% reduction in line with the Paris agreement (2030 goal), as the horizon of this study expands
past the scope of the climate agreement.

Monetary targets for subsidies are set at a yearly maximum of 3.5 billion euros for the transition of the
Dutch built environment sector (PBL, 2019, p. 74). The subsidies naturally does not cover all costs required
for the transformation. There is, however, no clear boundary for such societal costs and hence needs to be
answered in the political arena.
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E.3. Experimental setup
E.3.1. Uncertainties

Additional uncertainty ranges have been added on top of the uncertainty table mentioned in the previous

chapter (see table 5.1.

Table E2: Uncertainties in the policy ensemble

Variable Lower bound Upperbound Unit Source

Fr innovation emissionreduction 20 50 %/year (PBL, 2019)

Annual development of new 0.88 0.97 %/year (CBS, 2019a)

homes

Annual standard renovation rate 0.07 0.08 %/year (Klimaatakkoord,
2019, p. 17) 50k/year

fr reduction renovation costs 50 80 % (Rijksdienst  voor
Ondernemend
Nederland, 2019)

renovation costs label group 1 8000 12000 Euro (Nationale En-
ergieAtlas, 2019)

renovation costs label group 2 20000 28000 Euro (Nationale En-
ergieAtlas, 2019)

renovation costs label group 3 30000 36000 Euro (Nationale En-
ergieAtlas, 2019)

renovation costs label group 4 30000 40000 Euro (Nationale En-
ergieAtlas, 2019)

Renovation speed improvement af- 100 110 %/year Assumed 10%

ter 2030 improvement of
climate agreement
renovation rate
(Table 4.5)

fraction subsidy over costs high in- 10 30 % Assumed

come

fraction subsidy over costs upper 30 50 % Assumed

middle income

fraction subsidy over costs lower 60 80 % Assumed

middle income

fraction subsidy over costs low in- 80 1 % Assumed

come

subsidy 5000 40000 euro 25-100% subsidies

Annual electricity growth -1 1 %/year (Schoots et al., 2017)

fr to district heat wcorp low exist- .3 70 % Assumed

ing infrastructure

fr to district heat wcorp high exist- 70 1 % Assumed

ing infrastructure

fr to district heat koop no existing 0 10 % Assumed

infrastructure

fr to district heat koop low existing 10 30 % Assumed

infrastructure

fr to district heat koop high existing 30 60 % Assumed

infrastructure

E3.2. Key performance indicators
Key performance indicators are also similar to the ones used in the previous chapter, but an extra outcome of
interest is added: total subsidy amount. This KPI sums awarded subsidies over all policies.

1. Total CO2-eq emission [ton CO;y]: reflecting total CO, equivalent emissions summed over all neighbour-

hoods in the model.
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2. Total subsidy amount [€]: total awarded subsidies.

3. Total renovated houses [# houses]. Total number of houses that have been renovated during the simula-
tion.

4. Labour deficiency [hours]: difference between available and required hours for household renovations

E.4. Policy exploration

This section will discuss the exploration of the policy ensemble. Each KPI is considered and examined to what
extent policies have effect on its future outcomes.

E4.1. CO5 emissions

Main criterion for effective policy is the expected CO,-eq emissions over time. Figure 22 shows implications of
the various policies over time.

Dynamic_Adaptive None Static
Mission_R_and_D

le7 total CO2 emission le7

144

1.24

1.04

total CO2 emission

/

0.8

0.6 1

2020 2025 2030 2035 2040 2045 2050 0 8e-07
Time

Figure E1: Total CO2-eq emissions [ton] of policies under defined uncertainties and with defined policies

The figure clearly shows the wide spread of possible outcomes. Ranging from approximately 5-14 Mton
CO2-eq. What is interesting in this figure, is the difference in the KDE plot. All policy variants naturally
outperform the reference scenario without any policies.

The dynamic adaptive policy (in blue) clearly stands out from the other two policy variants. It's KDE is
strongly centered around the 2050 CO; target of 7.6 Mton (51% of the 2015 level), fanning out to approximately
10Mton.

In sharp contrast to the focused KDE of the dynamic adaptive policy are the other two policy variants.
Both the static and mission policies show relatively most cases around the desired goal. Their outcomes are,
however, much more uncertain as the KDE show a much wider distribution of cases over the KPI.

E4.2. Subsidies

The previous paragraph showed effective results. However, the first if raised by public and parliament will be
on the affordability of suggested measures. Figure 22 shows development of subsidies over time for each of the
defined policies.
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Figure E2: Total CO2-eq emissions under static and dynamic adaptive policy
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Figure F4: Total subsidized amount [euro] of policies under defined uncertainties and with defined policies
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What is striking in this figure is the extremely uncertain outcome of all policy variants. Glancing back on
the uncertainties sampled in these experiments, this is quickly explained by the parametric range the subsidy
amount is sampled over (see E2). Because of the fact that subsidies are sampled from 5000 euros (roughly half
of the cheapest, sampled renovation costs) to 40000 euros (100% of the most expensive renovation), the total
subsidy amount itself ranges from 0 to a staggering 100 billion euros (annually). The graph does, however,
provide insights in the timing of policy expenditure. The dynamic adaptive policy clearly kicks in early. The
subsidy multiplier is initiated quickly, as evaluated progress is deemed insufficient.
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Figure E5: Subsidy amount for Static and Dynamic adaptive policy
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Figure E6: Mission R&D

Figure E5 and E6 show line plots of the total subsidy amount for each policy. The static policy and mission
R&D policy show similar patterns. Virtually identical KDE plots indicate the similarity of the two policies.
In essence, the mission R&D policy relies on the same structure as the static policy, but includes a higher
renovation rate and a higher decrease in renovation costs. Both policies are unable to reduce uncertainties as
the KDE plots show in figure E5a and E6.

The dynamic adaptive policy (figure E5b) shows a very different trend and KDE. What stands out in the
graph is the noncontinuous trajectory of the various cases. This can be explained by the discrete character
of this policy as defined by equation E1. As soon as a threshold is met, a new multiplier is instantiated. This
results in decreasing annual subsidy amounts.

Surprisingly, cases seem most frequently distributed around 0. At a closer look, however, cases are dis-
tributed between 0 and approximately 10 billion euros. The multiplier mechanism is a pretty blunt instrument
that simply multiplies the static subsidy amount. In extreme cases, where the subsidy coverage is too little due
to high renovation costs (upper range of uncertainty of renovation costs) even though subsidies are relatively
high (upper range of uncertainty of subsidies), the multiplier still kicks in resulting in exceptionally high
annual subsidy levels. This in turn results in high total subsidy amounts. These mechanics could explain the
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surprisingly low KDE plot of this policy.

E.4.3. Renovated houses

Another KPI to show effectiveness of policies is the number of renovated houses. Current ambitions have set
their sights on a renovation ambition of 1.5M homes by 2030 (Klimaatakkoord, 2019, p. 17). Figure E7 shows
effects of various policies on the number of renovated homes over time.
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Figure E7: Renovated houses [# of houses] grouped by policy

It is apparent that there is a very large difference between (any) policy and the no policy reference scenario.
The number of renovated houses in the no policy scenario is so certain, that it completely skews the KDE plot.
Hence, KDE plots of the policy variations are incomparable, because of their higher distribution on the KDE
PLOT.
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Figure E8: Renovated houses for static and dynamic adaptive policy

Figures E8 and E9 provide a more comprehensive comparison of the effect of different policies on the
number of renovated houses. The static and mission R&D policy variations (see figures E8a and E9a) show
similar KDE plots. Their absolute numbers vary mostly on the upper limit of the KPI total renovated houses.
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Figure E9: Renovated houses for mission R&D policy and the no policy reference

The mission policies upper limit almost reaches three million renovated homes. Whereas the static policy
enables renovation of a maximum of two-and-a-half million homes in the most positive scenario. Despite the
high absolute numbers, the cases are quite strongly distributed over the y-axis.

The dynamic adaptive policy option (figure E8b), on the other hand, shows a much smaller spread in
possible outcomes. The distribution of cases over the y-axis of this policy is much more contained, as shown in
the graphs KDE. Nevertheless, outcomes still vary from approximately 1.25M - 2.5M renovated homes, but
the spread under dynamic adaptive policy is much smaller than in any other policy (apart from the no policy
reference).

E.4.4. Labour deficiency

Labour demand will strongly increase if the renovation of the built environment sector sets off. Figure E10
shows grouped policy plots for both labour deficiency for renovation to all-electric and renovations to district
heat.
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Figure E10: Labour deficiency for renovations to all-electric and district heating grouped by policy

For all policies (apart from the no policy reference), shortages peak shortly after policies are implemented
and take several years to be smoothed. Moreover, an additional renovation rate increase in the mission R&D
policy causes an extra spike in 2030. For all policies, demand for labour is too high to supply ample capacity
for the transition for the duration of the simulations. The labour market is modelled such, that it is entirely
demand driven and is not directly influenced by policies. This explains the backlog and the inability for policies
to counter shortages.

Individually (see section ?2), the graphs show no additional insights. All policy plots show similar trends
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and similar (low) KDE’s, but high shortages shortly after policy implementation.

E5. Uncertainty analysis

Similar to the section on sensitivity analysis in the previous chapter (see ??) a sensitivity analysis has been
performed using feature scoring on the policy results. Figure E11 shows the feature scores of the policy
ensemble.
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Figure E11: Feature scores of the experiments and outcomes of the policy ensemble. The figure shows influence of uncertainties (y-axis)
on the model’s KPI's (x-axis).

Whereas the base case ensemble was strongly influenced by uncertainties, the policy ensemble seems to
be less affected by uncertainties. The only uncertainties that do play a large role are policy time and subsidy.
Both variables that can be influenced by policy makers, but are sampled as uncertainty to analyze impacts of
variations (in timing or subsidy amount). Overall, the policy ensemble seems mostly influenced by the policy
variation implemented. Regardless of the spread in outcomes discussed in section F4, figure E11 shows ability
to mitigate influence from dominant uncertainties through policies.

E6. Conclusion

This chapter set out to answer the fourth sub question of this thesis: “Which robust policy variations can be
discovered for the energy transition of the Dutch built environment sector?”.

To answer this sub questions the model (chapter 4) and insights from the base case analyses from chapter
5 have been used to create policy variations. The most promising instruments from PBL (2019, p. 67) have
been selected and implemented in three different variants compared to a no policy reference. A static policy, a
dynamic adaptive policy and a mission oriented R&D policy have been implemented and simulated under
deep uncertainty. Main KPI’s have been evaluated and the goal-seeking dynamic adaptive policy shows its
cases to be distributed more closely around desired targets. This holds true for both the KPI fotal CO, emission,
total subsidy amount and total renovated houses. Regarding labour shortages, however, there appear to be
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little differences in the general trend of labour deficiency. In all policy cases, labour shortages peak after policy
implementation.

The dynamic adaptive policy variation of the selected policy instruments turned out to be most robust
under deep uncertainty. Other policy variations too reduced uncertainty of possible futures, but the spread of
cases (KDE plots) remained relatively higher compered to the adaptive policy.
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