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Abstract

Tip vortex cavitation was previously identified as a source of the broadband noise emitted by ships underwater. This leads to
unwanted noise and vibrations on board, which reduces passenger comfort, and increases the underwater signature of naval
ships. The influence of different cavitation regimes on propellers and boundary layer transition on wings, has led to studies
that isolate the cavitating tip vortex. This is done by using a converging-diverging nozzle (Venturi tube) geometry, combined
with a suitable inflow condition to simulate a cavitating line vortex. The currently available computational power allowed for
a comparative study of Scale-Resolving Simulation (SRS) methods (i.e. the Improved Delayed Detached-Eddy Simulation
(IDDES) model) and Reynolds-Averaged Navier-Stokes (RANS) models (i.e. the k −ω Shear Stress Transport (SST) and
Explicit Algebraic Reynolds Stress Model (EARSM)) in wetted and cavitating vortex conditions. Both the general flow field,
as well as the dynamics of the cavity deformations in the vortex were analyzed in this thesis.

The geometry was selected based on the available experimental validation data for the wetted flow case, whereby preliminary
studies determined the inflow and outflow lengths of the domain. A Lamb-Oseen tangential velocity profile was specified
at the inlet. The vortex strength and viscous core size were tuned to obtain similar inflow conditions as in the experimental
measurements, which used a fixed-blade swirl generator to generate the line vortex.

The flow field in the wetted vortex case demonstrated an excessive amount of viscous diffusion of the vortex for both RANS
models. As in previous research regarding RANS modeling of vortices, this was caused by the overproduction of modeled
turbulent kinetic energy at the viscous core edge. EARSM resuls were verified in a grid- and time step refinement study,
however the large modeling error in the viscous core prevented the validation of the results. The IDDES model results were
closer to the experimental reference, but were obtained with an almost laminar flow field. Modeled turbulence was mostly
dissipated and no resolved velocity fluctuations were present in the flow at the measurement section.

The increased numerical diffusion of the EARSM led to a more diffuse vapor core interface and a more downstream devel-
opment of the vortex cavity compared to IDDES. The IDDES flow field remained predominantly laminar at the measurement
section. Both EARSM and IDDES predicted a solid-body rotation of the vapor core, combined with an increase of radial
velocity towards the vapor core edge. The non-negligible radial velocity resulted in a conical cavity shape. The velocity
profile of the simulated line vortex therefore did not correspond to that of a cavitating Lamb-Oseen vortex (which assumes
no radial velocity components), such that the simulated line vortex was not representative of a cavitating tip vortex.

The sheet cavities originating from sharp edges at the front and end of the Venturi throat strongly influenced the flow field
and cavity dynamics. The developed front sheet cavity determined the streamwise inception of the vapor core of the vortex.
Periodic shedding and collapse of the irregular downstream sheet cavity caused axial and radial contractions of the vapor core
as well as a noncircular deformation of the cavity cross-section. No traveling or standing Kelvin waves could be identified on
the cavity interface using the developed post-processing and spectral analysis tool. The identified cross-sectional deformation
did not correspond to cavity deformation modes defined in previous research and none of the other deformation modes were
found to occur. Grid-dependent solutions, numerical noise and large wavenumber resolution indicated that a finer grid is
required and that the analyzed length of the cavity should increase to improve the quality of numerical analyses of simulated
cavity dynamics.
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1
Introduction

The advent of affordable numerical simulations of the flow around ships, using potential and Computational Fluid Dynamics
(CFD) codes, has drastically increased the possibilities for producing efficient new designs and improving already built vessels
(e.g. using add-on energy-saving devices) in order to reduce costs, fuel consumption and emissions. Since the hull of the
vessel is constrained due to cargo requirements, a significant increase in efficiency can be found by reducing losses from the
propeller. As propeller research allows for ever more efficient designs, the risk of unacceptable cavitation nuisance increases.
Cavitation is defined as the phase change from liquid to vapor caused by a change in pressure, as opposed to temperature
(boiling). The locally high flow velocities around the propeller blade induce very low pressure regions, that might lead to
cavitation. Cavitating vortices, originating from the tip of the propeller blade, generate pressure pulses on e.g. the rudder
or hull and radiate broadband noise into the environment [1]. The emitted frequency is usually between 30-100 Hz when
measured on the hull above the propeller [2]. The prediction and quantification of these vibrations and the emitted noise are
of great interest for designers of passenger and navy vessels to respectively increase the comfort on board and reduce the
underwater signature of vessels. Noise radiated from ships also has a negative impact on marine life and it is therefore of
general interest to design propellers such that the noise emission is limited.

The numerical modeling of a tip vortex is challenging due to the interaction of turbulence and cavitation, each requiring
their own model as well as the complex dynamics involved. The accuracy required for an acoustic calculation requires
a careful selection of these models, for which there is still a lack of industry guidelines. While there has been extensive
research into the modeling of sheet and bubble cavitation, it is difficult to study the tip vortex as an isolated phenomenon
on propellers owing to the interaction with e.g. sheet cavities. Furthermore, using a fully rotating propeller geometry in
the domain is computationally very expensive, leading to simplifications that try to maintain as much of the dynamics of
generating the tip vortex, but simplify the geometry and try to isolate the vortex. Various types of wings were developed as
test cases, and the Arndt wing [3, 4] is an often used reference case in literature. An important issue with using a wing-shaped
blade is the transition of flow from laminar to turbulent along the blade surface. The difficulty of the exact determination of
the transition location and the limited applicability of transition models [5] make it interesting to try and eliminate the blade
geometry to isolate the tip vortex even further. Previous research of isolated tip vortices [2, 6] has focused on the development
of semi-analytical relations to predict the dynamics and noise emission from a cavitating tip vortex. For the present numerical
simulation, the tip vortex is generated using a boundary condition at the inlet of the domain. As such, it is more correct to
use the term ‘line vortex’ for such cases. A Venturi tube - a circular domain consisting of a contraction followed by a parallel
section and an expansion - was previously used as a computational domain for such simulations [6, 7]. The contraction causes
the flow to accelerate, leading to a sufficiently low pressure for the vortex to start cavitating. The simple geometry should
allow for the generation of a high-quality grid with a limited number of cells so that extensive Verification and Validation
(V&V) studies can be performed at reasonable computational cost.

1.1. Research objectives
Janssen [6] and de Montgolfier [7] performed numerical computations of a cavitating line vortex in a Venturi. Both studies
were made without experimental validation and coarse grids were used, especially given today’s computing power. Finer grids
need to be generated using a geometry for which experimental validation material is available. The experimental study of a
wetted and cavitating line vortex by Rudolf et al. [8] is used in the present study as a validation base for the wetted flow vortex.

The preceding considerations allow the formulation of the following research question:

Which turbulence model is most suitable to be used for the accurate simulation of the flow field inside an isolated cavi-
tating line vortex and its dynamics in a converging-diverging nozzle?

With the subquestions:

i) What are suitable inflow conditions to obtain a realistic vortex at the inlet of the converging nozzle?

1



2 1. Introduction

ii) To what extent do SRS and higher-order turbulence models perform superiorly to standard two-equation RANS models
in the context of predicting the flow variables in the vortex core for a wetted line vortex?

iii) How do different turbulence models influence the structure of the vortex core of a cavitating tip vortex?

iv) What influence do different turbulence models have on the cavity dynamics of the cavitating line vortex inside the Venturi
throat?

Given these research questions, the following approach was taken to provide the answers. The experimental flow field
measurements by Rudolf et al. [8] were obtained using Laser-Doppler Velocimetry (LDV). The vapor core inside the vortex
core reflects the laser beams, such that no reliable measurements within the vapor core could be made. Therefore, only the
wetted vortex can validated using these experimental results. The specification of a suitable boundary condition can be based
on [6, 7] to a certain extent but requires tuning based on the experimentally generated vortex in [8]. Rudolf et al. reported
the measured velocity angles [9] which serve as a way to tune the inflow condition such that a realistic flow field is obtained
at the inlet of the converging nozzle. The currently available computational power permits the use of turbulence models such
as the IDDES model and the EARSM that should lead to improved results compared to the common k −ω SST approaches
used in the past [6, 7]. This can be reasonably expected based on results by Rudolf et al. [9] and Pereira [10].
The recent application of semi-analytical cavitating vortex model predictions to empirical measurements, including a detailed
spectral analysis of the cavity dynamics by Bosschers [2] is a promising step towards predicting the acoustic signature of a tip
vortex. The present work will make an attempt to apply the same analysis to numerical results, hoping to identify deformation
modes of the cavitating line vortex.

An answer also needs to be provided to the question whether the Venturi tube is a suitable candidate to simulate isolated
tip vortices. It is of interest to evaluate, taking into account results by Liebrand [11] obtained for the elliptical Arndt foil, to
what extent the findings for the current test case can be extended towards a tip vortex originating from a wing.

1.2. Thesis structure
This work begins with a thorough introduction in Chapter 2 of the different physical phenomena present in cavitating tip
vortices and the numerical techniques that are used to model these physics. The flow inside the Venturi tube is considered to
be fully turbulent and turbulent effects are expected to significantly affect the prediction of the vortex. Turbulence is therefore
discussed first. The dynamics and description of vortices is touched upon afterwards, introducing the boundary condition
that is used to simplify a tip vortex into the line vortex simulated in this thesis. The dynamics and numerical modeling of
cavitation is treated subsequently, followed by the dynamics of cavitating vortices. The previously mentioned noise emission
from cavitating tip vortices was traced back to small-scale oscillations of the cavity [12], which can be studied in the spectral
domain to identify deformation modes of the cavitating vortex core [2, 13]. The method used by Bosschers [2] for this anal-
ysis is presented in the fourth section of this chapter. Afterwards, the V&V procedure is discussed, followed finally by the
discretization procedures applied in the CFD code REFRESCO that was used for this work.

The third chapter considers the numerical set-up of the simulation, comprising the domain discretization, applied bound-
ary conditions, the measurement locations and the normalization procedure. Preliminary simulations were carried out in order
to determine the required domain length and the tuning parameters for the specification of the vortex at the inflow boundary.
These studies are discussed at the end of Chapter 3.

Next, in Chapter 4, the flow field in a wetted vortex is analyzed and discussed, whereby the coarse grid performance of
the different turbulence models is compared first. This is followed by the grid- and time step convergence study.

Cavitating vortex results can be found in Chapter 5 of which the first section contains an analysis of the flow field as in
the previous chapter. The second section is dedicated to the discussion of the cavity dynamics in the spectral domain.
Final conclusions and recommendations can be found in Chapter 6 at the end of this work.



2
Theoretical and numerical concepts

This chapter provides an overview of the theoretical knowledge that was gathered to understand and critically judge the
obtained results in Chapter 4 and Chapter 5. This thesis combines three major areas of research within the Computational
Fluid Dynamics (CFD) community: turbulence, vortex dynamics and cavitation. These three topics form the first three
sections of this chapter. Fourth, the dynamics of cavitating vortices are discussed from the angle of the previous work by
Bosschers [14] and Pennings et al. [15], who observed the cavity deformations in the spectral domain. Next, the quantification
of numerical uncertainties and validation procedure is discussed, followed by the characteristics of the REFRESCO CFD
code used in this work.

2.1. Turbulence
Turbulent flows can be found everywhere in our daily lives: in the rivers flowing through the landscape, in the smoke rising
from a cigar and in the strong wind blowing into the sails of a sailing boat. If one pays attention, these flows seem chaotic,
irregular and even random and are very unsteady. Pope [16] remarks that the velocity field is a function of both space and
time u(x, t ) and varies significantly and irregularly in these four dimensions. Due to the characteristics of turbulent flows
(i.a. improved mixing) and the prevalence of turbulent flow in engineering applications (i.a. airplanes, cars and ships) a lot of
research has been dedicated to try to understand the guiding physical processes. The Navier-Stokes equations that govern the
flow of incompressible and viscous fluids also apply to turbulent flows and the mass and momentum conservation equations
are given in respectively Equations (2.1) and (2.2) in the incompressible, single-phase formulation:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ ∂

∂x j

(
ν
∂ui

∂x j

)
+ fi , (2.2)

where fi is an external force applying to the bulk of the fluid (i.e. a body force). Arguably one of the more important
characteristics of a turbulent flow is the presence of a (large) spectrum of different scales. The higher the Reynolds number,
the larger the separation between these scales [16]. The Reynolds number defines the ratio of inertial to viscous forces:
Re = u∞l∞/ν, where u∞ and l∞ are the reference velocity and length scale and ν is the kinematic viscosity. The different
ways in which turbulent flows are simulated, then, can be categorized based on the amount of scales they resolve. Direct
Numerical Simulation (DNS) resolves all turbulent scales, but is limited to lower Reynolds numbers and not commonly
applied outside a fundamental research context due to the computational cost (the number of grid cells scales with Re9/4).
The Reynolds-Averaged Navier-Stokes (RANS) method on the other hand, models all turbulent scales and is discussed in the
next section.

2.1.1. Reynolds-Averaged Navier-Stokes (RANS) modeling
RANS modeling is arguably the most commonly used approach when dealing with turbulent flows in industrial applications
and at high Reynolds numbers. For most common engineering flows, two-equation RANS models (e.g. k−ω , k−ε ) manage
to deliver results with sufficient accuracy despite their relatively moderate computational cost. RANS takes a statistical
approach to turbulence, which requires a separation between the large scales of motion and the irregular smaller scales.
The large scales have the largest velocity and timescales, and the timescales are used to achieve the separation between the
unsteadiness of the mean field f̄ (caused by the large scales) and turbulent fluctuations (of the small scales) through a form
of filtering called Reynolds averaging [17], defining the resolved field f̄ (t ) as:

f̄ (t ) = 1

T

∫ t

t−T
f (s)ds with T ≫ τ, (2.3)

where τ is the characteristic timescale of turbulence, T is the averaging period and τ≪ T ≪ θ, where θ is the characteristic
period for the temporal evolution of the mean properties.

To achieve this separation using the Navier-Stokes equations, Reynolds put forward the idea of splitting the local velocity

3



4 2. Theoretical and numerical concepts

field ui in a mean ui and a fluctuating u′
i part [18]. The same rationale applies to the pressure. Reynolds based the flow

field decomposition on the assumption that the flow and the turbulence is steady from a statistical perspective, i.e. time-
derivative terms are zero, but the decomposition itself remains valid for some unsteady flows as well. Some flow problems
are characterized by a slow periodic motion without relation to turbulence (e.g. the flow over a helicopter blade) and therefore
still demonstrate a scale separation between the unsteadiness of the mean flow field and turbulence. These flow problems
can be still solved quite accurately using the rationale of unsteady RANS modeling, which includes the time derivative in
the momentum equation. The flow variables could then be split in a time-averaged part ϕ̄, coherent fluctuating part ϕ̃ and a
chaotic (turbulent) fluctuation ϕ′ [17]:

ϕ= ϕ̄+ ϕ̃+ϕ′. (2.4)

The Reynolds average of a quantity ϕ has the following properties:

ϕi =ϕi , (2.5)

ϕiϕ j =ϕiϕ j , (2.6)

ϕ′
i = 0. (2.7)

The last identity follows from applying the Reynolds average to the continuity equation. The Reynolds-averaged form of the
incompressible, single-phase Navier-Stokes equations is given by:

∂ui

∂xi
= 0, (2.8)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p̄

∂xi
+ ∂

∂x j

(
ν
∂ūi

∂x j

)
−
∂u′

j u′
i

∂x j
. (2.9)

The last term in Equation (2.9) contains the turbulent stresses that make up the Reynolds stress tensor τi j . Since there is no
complete information available in the flow to calculate −u′

i u′
j exactly, a certain degree of modeling is required to close the

system of equations.

2.1.2. The eddy viscosity hypothesis
The most straightforward method of closing the system of equations, employed by the majority of the turbulence models (i.a.
k −ω , k − ε ) used nowadays, uses the Boussinesq hypothesis to model all components of the symmetric Reynolds stress
tensor. In this way, no separate transport equation needs to be solved for each of its six components. An explicit constitutive
relation is used instead to compute the Reynolds stress tensor, using transport equations for turbulent variables. Without
resolving the turbulent stresses, the turbulent stress tensor is then merely a function of the mean velocity gradient and the
turbulent length and velocity scales [19]. In fact, the main idea brought forward by Boussinesq was that the principal axes
of the Reynolds stress tensor τi j align with the rate-of strain tensor Si j , with the eddy viscosity νt as the proportionality
constant of choice [20]. This idea was originally introduced by Boussinesq in 1877, even before the formal definition of the
Reynolds stress tensor (which was in 1895) [21]. The introduction of the eddy viscosity νt into the linear relation between
the rate-of-strain and Reynolds stress tensor in Equation (2.10) gives name to the models that use this approximation: linear
Eddy Viscosity Models (EVMs). The eddy viscosity can be computed in different ways, but the most popular models use two
transport equations to calculate the eddy viscosity based on the turbulent kinetic energy k. The k −ω Shear Stress Transport
(SST) model, perhaps the most used two-equation model nowadays, is discussed next.

τi j

ρ
=−2νt Si j − 2

3
kδi j , (2.10)

where k is the turbulent kinetic energy and δi j is the Kronecker delta:

δi j =
{

0 if i ̸= j ,

1 if i = j .
(2.11)

The strain-rate tensor Si j is defined as:

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (2.12)

2.1.3. k −ω Shear-Stress Transfer (SST) model
The k −ω SST model solves transport equations for the turbulence kinetic energy k and the specific turbulence dissipation
rate ω. Menter developed the original version of the model in 1994 [22] and a revision of the model took place in 2003
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by Menter et al. [23]. Menter’s aim was to combine the strong points of the k − ε and k −ω models into a single set of
equations. The SST model blends between the formulations of the k −ω and k −ε models, using the k −ω formulation close
to a non-slip boundary (in the viscous sublayer) and blending to the k − ε model in the free-stream. This is accomplished
by an additional cross-diffusion term in the ω transport equation that contains a blending function (1−F1), where F1 = 1 in
the viscous sublayer and logarithmic layer and gradually switches to zero in the wake region [23]. The modifications that
were applied to the original SST model in 2003 comprise i) the use of the rate-of-strain tensor S in the definition of the eddy
viscosity νt and ii) a factor 10 instead 20 in the production term limiter. The k −ω SST transport equations are given in
Equations (2.13) and (2.14) using the modifications described in [23]. The derivations, constants and definitions of relevant
functions are provided in Appendix A.1.

∂(ρk)

∂t
+ ∂(ρui k)

∂xi
= P̃k −β∗ρkω+ ∂

∂xi

[
(µ+σkµt )

∂k

∂xi

]
, (2.13)

∂(ρω)

∂t
+ ∂(ρuiω)

∂xi
=αρS2 −βρω2 + ∂

∂xi

[
(µ+σωµt )

∂ω

∂xi

]
+2(1−F1)ρσw2

1

ω

∂k

∂xi

∂ω

∂xi
. (2.14)

The eddy viscosity is determined using Equation (2.15)

νt = a1k

max(a1ω,SF2)
, (2.15)

where S is the invariant measure of the strain rate:

S =
√

2Si j Si j =
p

2|Si j |, (2.16)

and F2 is a second blending function. The definition of the production term Pk is derived from the Boussinesq hypothesis.
The quadratic dependence on the strain rate in the kinetic energy production term Pk leads to a build up of turbulence in
stagnation regions, which is solved by adding a production limiter P̃k :

Pk =µt
∂ui

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi

)
→ P̃k = min(Pk ,10β∗ρkω). (2.17)

Streamline curvature- and flow rotation corrections
Linear EVM models (i.a. the k −ω SST model) cannot correctly predict the effects of streamline curvature [20]. The effects
of curvature are contained in the production term of the turbulent kinetic energy k, more specifically the strain-rate tensor.
Considering the linear relation between the Reynolds stresses and the magnitude S of the strain-rate tensor, more modeled
turbulent kinetic energy is produced as S increases. This is not a physical increase of turbulence, which led to the develop-
ment of correction methods to reduce the amount of turbulent kinetic energy in such cases. Effects of curvature are usually
negligible since the flow generally varies much faster in cross-stream direction than the ratio of the mean (axial) velocity
and the streamline curvature radius R; i.e. ∂ux /∂y ≫ ux /R [20]. The curvature correction terms that can be added to the
transport equation do improve the accuracy of some simulations when significant streamline curvature is present. They are
still ad hoc modifications however, which cannot be generalized for arbitrary flows. Additionally, the linear EVMs are not
able to correctly predict prominent features of rotating (and stratified) flows unless these ad hoc corrections are added to the
transport equations [20].
The Spalart-Shur correction is the most common of these modifications and applicable to the SST model. The derivation and
application are discussed by Smirnov & Menter [24]. A simpler correction is applied by Dacles-Mariani [25] which just takes
into account the incorrect turbulence prediction in locations of pure (solid-body) rotation such as inside the core of a vortex.
The eddy viscosity is reduced artificially in regions where vorticity is dominant over strain rate, slightly improving results in
some cases.

Studies comparing standard SST & Spalart-Allmaras one-equation models and the rotation and/ or curvature correction ver-
sions show that a moderate improvement can be achieved regarding pressure and (tangential) velocity prediction inside the
viscous core [26–29]. The curvature correction mainly improves the prediction of the sharp velocity gradients inside the
vortex core [29]. Results obtained by Cheng et al. [30], studying the tip leakage of a hydrofoil, still demonstrate the defi-
ciency of eddy viscosity models in predicting the correct axial velocity, pressure and turbulence quantities inside the vortex
core. This is due to their assumption of homogeneous isotropic turbulence, which inside the strongly swirling flow in a (tip)
vortex is no longer valid [29]. One of the goals of this research is to present a comparison of results obtained with more ad-
vanced models (the Explicit Algebraic Reynolds Stress Model (EARSM) and Improved Delayed Detached-Eddy Simulation
(IDDES) model) which do not require additional curvature-correction terms. This, combined with the ad hoc nature of the
correction anyway, forms the basis for the decision to not apply curvature or rotation corrections to the SST model for the
present research.
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2.1.4. Reynolds Stress Modeling (RSM)
Although the models involving the Boussinesq approximation generally perform quite well, the previous paragraph demon-
strated that there are applications where they do run into trouble and experimental and numerical measurements differ greatly.
As mentioned previously, problems arise for flows with sudden changes in the strain-rate, as the way in which Reynolds
stresses adjust to them is not related to processes or timescales in the mean flow, as assumed in Boussinesq’s hypothesis.
Despite the large amount of flows for which Boussinesq-based models should theoretically not be used, they are still the
most commonly used models due to the large gap in computational expense with alternative models and in some cases still
sufficiently accurate results. A more complex closure approach for the Reynolds stresses −ρu′

i u′
j , relying on a non-linear

relation with the eddy viscosity and involving more than just the strain-rate tensor, is provided by Reynolds Stress Models
(RSMs) and will be discussed on the next pages.

Analytical expression for the transport equation
Unless indicated otherwise, the discussion follows the discourse of Hellsten [19]. As a first step in deriving a model for the
Reynolds stresses, the transport equation for the Reynolds stress tensor τi j can be derived by:

i) rewriting Equation (2.9) for the velocity component u′
i ,

ii) subtracting said expression from Equation (2.9),

iii) multiplying it by u′
j ,

iv) Reynolds-averaging this expression and

v) applying the same procedure for u′
j and adding both expressions together to obtain [19, 31]:

∂τi j

∂t
+ uk

∂τi j

∂xk︸ ︷︷ ︸
convection

=−τi k
∂u j

∂xk
−τ j k

∂ui

∂xk︸ ︷︷ ︸
production

− εi j︸︷︷︸
dissipation

− Φi j︸︷︷︸
redistribution

+ ∂

∂xk

[
ν
∂τi j

∂xk
+Ti j k

]
︸ ︷︷ ︸

diffusion

, (2.18)

where:

Φi j = p ′

ρ

(
∂u′

i

∂x j
+
∂u′

j

∂xi

)
, (2.19)

εi j = 2ν
∂u′

i

∂xk

∂u′
j

∂xk
and (2.20)

Ti j k =−u′
i u′

j u′
k −

1

ρ

(
p ′u′

iδ j k −p ′u′
jδi k

)
. (2.21)

The diffusion term contains the turbulent fluxes term Ti j k , responsible for the transport of the Reynolds stress by turbulence.
The trace of the dissipation tensor εi j reduces to twice the dissipation rate ε of k in homogeneous isotropic turbulence.
The goal of deriving a transport equation of the Reynolds stress is to be able to solve a transport equation for each of
the components of the Reynolds stress tensor and k. Neither the production term nor the convection by the mean flow in
Equation (2.18) require modeling, which explains the interest in the RSM approach. The other terms, however, do require
modeling, often involving strong assumptions. The tensor functions that make up the models in RSM assume isotropy to
ensure that their application does not depend on the rotation of the reference frame. Scalar invariants (recognizable by
the Roman numerals in the model equations) are introduced to simplify higher-order tensor products based on the Cayley-
Hamilton theorem. The modeling of the different terms can be found in Appendix A.2.1.

Algebraic Reynolds Stress modeling
The Algebraic Reynolds Stress Model (ARSM) approach significantly simplifies the solution procedure compared to a full
RSM, but inherently also cannot represent transport effects as well as the latter [32]. Algebraic models neglect the convection
and diffusion (i.e. transport) terms of the anisotropy tensor ai j , Equation (2.22). The anisotropy tensor redistributes the
energy to the different Reynolds stress components. The algebraic modeling approach also links the transport of the turbulent
fluctuations directly to the transport of kinetic energy (D (k) =P−ε), D being a transport operator defined by Equation (2.23)
[19].

ai j =
u′

i u′
j

k
− 2

3
δi j (2.22)

D
(
u′

i u′
j

)
≈

(
ai j + 2

3
δi j

)
(P −ε) (2.23)
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The weak-equilibrium limit is used to express the traceless anisotropy tensor ai j as a (tensor) function of two second-order
tensors; the strain-rate Si j and vorticity tensor Ωi j :

ai j = f (Si j ,Ωi j ). (2.24)

In the weak-equilibrium limit, the assumption is made that the anisotropy only depends on the mean-velocity gradients and the
timescale τ. This assumption allows the expression of ai j as its integrity basis (i.e. the most general representation invariant
under transformations) as a polynomial with 10 independent terms, see Appendix A.2.2. The global system of equations is
not closed yet as there is still a scalar unknown: P/ε = −ai j S j i . EARSM models calculate the ratio P/ε explicitly using a
cubic approximation of a sixth-order equation. The final expression of the Reynolds stress term is:

−ρu′
i u′

j =−ρk

(
2

3
δi j +ai j

)
. (2.25)

2.1.5. Hellsten’s Explicit Algebraic Reynolds Stress Model (EARSM)
The EARSM by Hellsten can be split into two parts: a constitutive and a scale-determining model. Both parts are elaborated
upon in the following two sections. Unless stated otherwise, the formulation of the model as outlined below is adapted from
the PhD thesis of Hellsten [19].

Constitutive model
The Hellsten model uses the EARSM framework developed by Wallin and Johansson [32] as a constitutive model. The C. co-
efficients are chosen from the Launder-Reece-Rodi (Reynolds Stress model) (LRR), with a modification for C2 so that A2 = 0
to simplify the solution process. The version of the model implemented in REFRESCO contains a curvature correction with
a recalibrated A0 coefficient, leading to modified values for all C coefficients except C2. All coefficients for the model are
provided in Appendix A.3.

The explicit expression for the Reynolds stress anisotropy tensor in the Wallin & Johansson constitutive model is given
by:

ai j =β1Si j

+β3

(
Ω∗

i jΩ
∗
k j −

1

3
IIΩδi j

)
+β4

(
Si jΩ

∗
k j −Ω∗

i k Sk j

)
+β6

(
Si kΩ

∗
klΩ

∗
kl Sl j −Ω∗

i kΩ
∗
kl Sl j −

2

3
IVδi j

)
+β9

(
Ω∗

i k SklΩ
∗
lmΩ∗

m j −Ω∗
i kΩ

∗
kl SlmΩ∗

m j

)
,

(2.26)

where the nondimensional vorticity Ω∗ includes an optional rotation modification to improve the behavior of the model in
flows with strong streamline curvature, see Equation (A.24) in Appendix A.3.1. For a background on this term, the reader is
advised to consult [33]. The timescale τ used to nondimensionalize the vorticity and strain-rate tensors is now redefined as
the maximum of the turbulent and viscous timescales:

τ= max

(
1

β∗ω
; Cτ

√
ν

β∗kω

)
, (2.27)

using the coefficient values of Cτ = 6.0 and β∗ = 0.09. The β functions in the solution of Equation (2.26) depend on the
invariants of the strain and vorticity tensors. The β functions and invariants are given in Appendix A.3.1.

For an easier implementation in codes already containing the eddy viscosity models, the Reynolds stress term is slightly
altered in the EARSM. The eddy viscosity is replaced by an effective eddy viscosity, Equation (2.29), which is balanced by
adding a corrective additional anisotropy term a(ex)

i j , see Equation (2.30) [19]:

τi j (ui ,u j )

ρ
= 2νt |Si j |− 2

3
kδi j −a(ex)

i j . (2.28)

νt =Cµkτ, with Cµ =−1

2
(β1 + IIΩβ6), so that: (2.29)
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a(ex)
i j = ai j − (β1 + IIΩβ6)

=β3

(
Ω∗

i jΩ
∗
k j −

1

3
IIΩδi j

)
+β4

(
Si jΩ

∗
k j −Ω∗

i k Sk j

)
+β6
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klΩ

∗
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i kΩ
∗
kl Sl j − IIΩSi j − 2

3
IVδi j

)
+β9

(
Ω∗

i k SklΩ
∗
lmΩ∗

m j −Ω∗
i kΩ

∗
kl SlmΩ∗

m j

)
.

(2.30)

Scale-determining model
The Hellsten model is based on the k −ω SST model, but uses space-dependent coefficients. The transport equations for k
and ω in the formulation of [19] are given by:

Dk

Dt
=P −β∗kω+ ∂

∂x j

[
(ν+σkνt )

∂k

∂x j

]
, (2.31)

Dω

Dt
= γ

ω

k
P −βω2 + ∂

∂x j

[
(ν+σωνt )

∂ω

∂x j

]
+ σd

ω
max

(
∂k

∂x j

∂ω

∂x j
, 0

)
. (2.32)

The variation of the coefficients in space is governed by a new blending function fmix that replaces the original blending
function F1. Even though the blending function fmix is defined in a different way than Menter’s F1, the idea is more or less
the same. As the F1 function, fmix → 1 almost up to the boundary layer edge and is zero in free turbulent flows.

2.1.6. Hybrid RANS-LES models
The moderate cost of unsteady RANS approaches and their decent performance for most flows reflects itself in the popularity
of models such as the k −ω (SST) and k − ε models and to a smaller extent the more complicated EARSM and general
RSM. Despite this success, the interest in accurately resolving smaller turbulent scales occurring in massively separating
flows, present in many fluid dynamics applications, has led to a shift towards Large Eddy Simulation (LES) modeling. RANS
models fall short when large scale unsteadiness dominates time-averaged solutions and wake turbulence is more important
than the turbulence generated from upstream boundary layers [17]. As LES resolves all but the smallest turbulent scales,
the computational requirements at high Reynolds numbers are significantly larger than for RANS but still lower than for
DNS. This has led to the development of hybrid schemes of which the hybrid RANS-LES,Detached-Eddy Simulation (DES),
Delayed Detached-Eddy Simulation (DDES) and IDDES models are the most widely used. Following the classification
of Sagaut et al. [17], these models fall in the category of “global hybrid RANS-LES” models1 and have the following
characteristics:

i) a weak coupling between RANS and LES zone: modeled turbulence is not converted into resolved turbulence,

ii) a single set of equations is used in the domain,

iii) the RANS-LES interface is continuous and

iv) eddies can develop rapidly due to the decrease of eddy viscosity away from solid walls, but there is no reconstruction of
(resolved) velocity fluctuations at the interface.

The DES and DDES methods are briefly introduced below, followed by a more detailed description of the IDDES model
which was chosen for this work as it is the most recent development of this series of hybrid RANS-LES models implemented
in REFRESCO.

Detached-eddy simulation (DES)
The aim of the development of the DES model by Spalart [34] in 1997 was to combine the relative affordability of RANS
simulations with the accuracy obtainable by LES simulations. Based on the local grid conditions, DES solves the Navier-
Stokes equations using RANS or LES length scales to model or resolve part of the flow. A smooth transition is maintained
between the regions where the LES and RANS length scales are used. Attached boundary layers are home to the smallest
of eddies, which are often prohibitively expensive to solve using LES, so that RANS is used in these regions. Larger (i.e.
detached) eddies in the free-stream and separation and wake regions are resolved by the LES model up to the filter size. The
RANS model functions as a sort of Subgrid-Scale (SGS) model in the LES region [35]. In between these two regions there is a
transition region called “gray area” where both models are active. The physics in this area are unclear as the model transitions
to fully modeled turbulence in the attached boundary layer to mostly resolved turbulence in the free stream. This may lead to
grid-induced separation, see Section 2.1.6 and is a necessary but unwanted characteristic of global hybrid RANS-LES models
[17]. The regions in DES simulations are sketched in Figure 2.1.
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Figure 2.1: Illustration of RANS and LES regions in the DES simulation of a flat plate. Image adapted from [17].

The mathematical definitions of the model as implemented in REFRESCO are adapted from the work by Strelets [36] using
the SST model as the background RANS model with corresponding turbulent length length scale lk−ω:

lk−ω = k1/2

β∗ω
. (2.33)

The length scale is incorporated into the dissipation term Dk
SST of the transport equation for the turbulent kinetic energy k.

Dk
SST = ρβ∗kω= ρ

k3/2

lk−ω
. (2.34)

DES uses a modified length scale l̃ depending also on the local grid spacing, which is substituted for lk−ω in Equation (2.34).

l̃ = min

lk−ω, CDES∆l︸ ︷︷ ︸
lLES

, (2.35)

where ∆l = max
{
hx ,hy ,hz

}
is the grid spacing. The SST model blends between k −ε and k −ω formulations using the F1

function built into the model.

Delayed detached-eddy simulation (DDES)
DDES was introduced eight years after the original formulation to combat the issue of Modeled Stress Depletion (MSD).
MSD occurs when the DES model switches to a LES formulation in a region where it is not supposed to (e.g. an attached
boundary layer) due to the local value of the DES limiter switching to LES mode. The grid is too coarse to fully resolve the
velocity fluctuations in LES mode, but reduces the eddy viscosity nonetheless. This also decreases the modeled Reynolds
stress, but, since the grid is too coarse, there is no increase in the resolved Reynolds stress to restore the balance - hence the
name of modeled stress depletion [37]. This is prevented in DDES by a shielding function fd active in attached boundary
layers, incorporated in the modified definition of the DES length scale and defined as [38]:

lDDES = lRANS − fd max(0, lRANS − lLES) , (2.36)

fd = 1− tanh
[
(Cd1rd )Cd2

]
, (2.37)

where lRANS in this case is the k−ω length scale defined above, and rd is a function used to detect attached shear layers. The
corresponding definitions are provided in Appendix A.5.

Improved Delayed Detached-Eddy Simulation (IDDES)
IDDES was developed to solve the problem of Log-Layer Mismatch (LLM) that arose when DES or DDES was applied to
higher quality (“LES”) grids leading to large errors in the predicted skin friction. IDDES additionally consists of a single set
of functions that allow it to resolve attached boundary layers in WMLES mode if velocity fluctuations (i.e. turbulent content)

1The IDDES model with specified turbulent content operates in Wall-modeled Large Eddy Simulation (WMLES) mode, making it a “zonal hybrid RANS-
LES” model according to Sagaut’s definition [17], and therefore has the opposite characteristics
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is present in the local flow field and if the grid is fine enough [39]. WMLES models were developed to weaken the strong
dependency of LES on the Reynolds number for wall-bounded flows. The dependence is weakened by resolving most of the
turbulence in boundary layer by LES and only a small region close to the wall in RANS mode. The modeling of all dynamics
in the inner layer (i.e. viscous sublayer and log-layer) removes the production of turbulence in this region. The resolved
turbulence in the flow is therefore only produced and dissipated in the outer layer (which is solved in LES mode) [40]. The
computational effort of WMLES is 10-100 times higher than for DES due to the more stringent resolution requirements in
the inner layer to resolve the smaller turbulent structures [38, 40].

Despite significant theoretical differences compared to DES and DDES - elaborated upon in the following paragraphs -
there are no large differences in the implementation of IDDES [39]. Since IDDES no longer simply bans the use of LES in
boundary regions, but is a more all-encompassing approach which switches between wall-modeled LES and RANS based on
the specification of turbulent fluctuations, it is convenient to define the DDES and WMLES branches for IDDES which are
briefly discussed subsequently. The formulation discussed below is based on the work presented in [39].

Modified sub-grid length scale

The sub-grid length scale of the LES model was modified from the DDES length scale to maintain a single definition for
wall-bounded and free turbulent flows. Its derivation can be found in Appendix A.6. The new length scale is defined as:

∆l = min{max[Cw dw ,Cw hmax,hwn] ,hmax} , (2.38)

where hwn is the grid step in wall-normal direction and Cw = 0.15 is an empirical constant independent of the specific SGS
model.

DDES BRANCH OF IDDES

The DDES branch of IDDES activates if there is no turbulent content specified at the inflow. The DDES definitions are
the same as the ones provided in Appendix A.5 according to [39], however there is some debate regarding the differences in
results between DDES and IDDES on the same grid. Pereira notes in [10] that the SST IDDES model, contrary to its DDES
counterpart, does not fall back into full RANS mode if the grid is too coarse to support an LES. This hypothesis is not backed
up by the work of Saini et al. [41], which demonstrated that on coarse meshes the SST-based IDDES successfully identifies
the region as too coarse to perform LES calculations, contrary to the Spalart-Allmaras IDDES implementation. The simula-
tions performed by Shur et al. [39] also show that the IDDES model falls back into DDES mode when no turbulent content
is specified. However, differences between DDES and IDDES model results were also reported in [5], which indicates that a
certain caution should be used when selecting the IDDES model.

WMLES BRANCH OF IDDES

The WMLES branch is activated when an unsteadiness or turbulent content is present at the inflow or existent in the ini-
tial conditions, if the grid is fine enough to resolve dominant eddies in the boundary layer. Also for this branch an empirical
function is used to blend between RANS and LES length scales to obtain a new length scale l̃WMLES:

l̃WMLES = fB(1+ fe )l̃RANS + (1− fB)l̃LES, (2.39)

where l̃RANS and l̃LES are the RANS and LES length scales. The fB function is responsible for the rapid switching from
RANS (where fB = 1) to LES mode (in which case fB = 0) within the wall-distance range 0.5hmax ≤ dw ≤ hmax so that
dynamics of the flow don’t linger between both modes:

fB = min
{
2exp

[−9α2] ,1.0
}

, α= 0.25− dw

hmax
. (2.40)

The elevating function fe is responsible for combating the mismatch in the log-layer. This is done by preventing an excessive
reduction of the Reynolds stresses modeled by the RANS model, which was observed to happen in the interfacial region
between LES and RANS. In two cases the function should be almost zero:

1. when the grid is fine enough to do a wall-resolved LES (negligible modeled Reynolds stress near the interface)

2. when the final IDDES performs as the base RANS model (the SST model in the present case)
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The final function is defined as [38, 39]:

fe = fe2 max
{
( fe1 −1), 0

}
, (2.41)

where:

fe1 =
{

2exp
[−11.09α2

]
for α≥ 0

2exp
[−9.0α2

]
for α< 0

, (2.42)

fe2 = 1.0−max
{

ft , fl
}

, (2.43)

ft = tanh
[
(C 2

t rdt)
3] , (2.44)

fl = tanh
[
(C 2

l rdl)
10] . (2.45)

The quantities rdt and rdl are the turbulent and laminar analogues of rd (which identifies the wall region), defined by:

rdt =
νt

κ2d 2
w

√
0.5 · (S2 +Ω2)

, (2.46)

rdl =
ν

κ2d 2
w

√
0.5 · (S2 +Ω2)

. (2.47)

The values of the additional model constants are provided in Appendix A.6 and were obtained from [38].

BLENDING OF DDES AND WMLES BRANCHES

A slight modification needs to be made to the DDES length scale definition to obtain a model which automatically selects
between both branches. The new definition becomes [38]:

l̃DDES = f̃d lRANS + (1− f̃d )lLES, (2.48)

in which new the shielding functions f̃d is defined as [38, 39]:

f̃d = max
{
(1− fd t ), fB

}
, (2.49)

fd t = 1− tanh
[
(Cd t1rd t )Cd t2

]
. (2.50)

The final IDDES length scale, combining both DDES and WMLES, is then implemented as:

lhyb = f̃d (1+ fe )lRANS + (1− f̃d )lLES. (2.51)

For inflow or initial conditions that include fluctuations, rd t ≈ 0, fd t ≈ 1 and fd ≈ fb , so that lhyb reduces to lWMLES. Without
turbulence, the elevation function fe = 0 and DDES behavior is theoretically recovered.
Apart from being the most recently developed model, the IDDES model was used for the simulations in this thesis considering
its capability of dealing with turbulent inflow conditions and locally switching to WMLES mode. This is considered to be out
of the scope of this work, as the method to generate the turbulent information is being extensively tested in REFRESCO by
Klapwijk and described in [42]. This could allow for a comparison of the model with and without turbulent inflow conditions
on the same mesh and with simmilar numerical settings.

FURTHER CONSIDERATIONS

The main issue of global hybrid RANS-LES models is the presence of a gray area where CDES∆l is of same order as lR AN S .
In this region, the detached shear layer is supposed to grow free shear eddies, but does not receive information on the small
boundary layer eddies as they are suppressed by the RANS model [34]. The flow physics in this area are unclear and possibly
unphysical, so that the goal is generally to have the gray area as thin as possible. The channel flow simulations by Saini et al.
[41] highlighted the significant size of this gray zone, where both RANS and LES models are active, but turbulent information
is not transferred between them. In the same study the gray area seems to be larger for the SST based model than for the
Spalart-Allmaras formulation, but no clear cause was identified.

2.2. Wetted vortex dynamics
This section starts of by introducing the physical concept of a vortex and how vortices are generated and collapse. Secondly,
the most commonly used vortex models are discussed as they form the basis for interpreting the results for the tangential
velocity and pressure distribution inside the vortex core.
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2.2.1. Vortex generation
A vortical structure is defined as a circulating flow in a certain plane in a fluid, meaning that the streamlines are closed and
contain only fluid. A vortex can also be defined as a concentration of vorticity in a single direction. Vorticity can only be
generated as a result of shear forces in the fluid; meaning that the fluid element deforms, but does not rotate [43]. The vortical
structure has a strength Γ, called the circulation. The circulation around any closed curve s is invariant with time (Kelvin’s
theorem) [44]. The contour integral of the velocity u along a streamline s can be rewritten as the integral of vorticity Ω=∇×u
in an area dA enclosed by that streamline using the Stokes theorem:

Γ=
∮

s
uds =

Ï
A
ΩdA. (2.52)

In wall-bounded flows (no-slip) boundaries will generate vorticity, whereas in free flows a vortex can only be generated as a
result of separation. When a vortex is formed, it tends to roll up into an approximately cylindrical shape [43]. An example of
the roll-up mechanic is given in Figure 2.2a. The ‘coherent structures’ often discussed in literature are based on the definition
of vortex tubes, which are the surfaces consisting of all vortex lines passing through the surface bounded by s. Vortex lines
are defined as lines that are tangent to the vorticity vector. By the Helmholtz theorem, vortex lines and tubes are considered
material lines and surfaces respectively, meaning that they consist of the same material elements and move with the fluid
flow [45]. Also according to the Helmholtz theorem, the ratio of vorticity Ω and length of a vortex tube δl is constant; i.e.
as a vortex is stretched, its cross-sectional area δs decreases and the vorticity per cross-section increases accordingly [44].
This can be interpreted as a faster rotating vortex tube, visualized in Figure 2.2b where Ω2 >Ω1. The independence of the
circulation on the cross-section of a vortex tube implies that the circulation Γ is constant and that a vortex tube never ends
inside the fluid [44].

(a) Vortex roll-up behind a wing. Image adapted from [43]. (b) Vortex stretching of an ideal vortex.

Figure 2.2: Illustration of Vortex roll-up and vortex stretching.

The above theorems are derived assuming inviscid flow (around the vortex contour), barotropic flow (i.e. density is only a
function of local pressure) and that conservative body forces (like gravity) act through the center of mass of each particle (i.e.
don’t rotate the particle). The first assumption is violated in the presence of viscous effects along the path of the contour,
which can occur due to viscosity in boundary layers and more importantly turbulence. These viscous effects lead to the
diffusion of vorticity outward from the vortex core and subsequently reduce the circulation Γ [45].

A vortex is characterized by two zones: a vortex core with constant vorticity and dominant viscous effects and an outer
region which is mainly irrotational and where the fluid can be assumed to be inviscid [44]. This does not mean that there are
no viscous stresses in the fluid, but rather that the net viscous force on each fluid particle is zero [45]. The irrotational outer
flow follows from the assumption that all the vorticity is fully contained inside the vortex core. The vortex core consists of
a viscous core which rotates like a solid body, surrounded by a thin layer where viscosity leads to viscous dissipation of the
vorticity outwards from the viscous core.

2.2.2. Vortex breakdown
A vortex breakdown phenomenon is defined in [46] as an abrupt structural change, occurring for swirling flows along the
swirl axis. In that context, vortex breakdown implies the formation of a free stagnation point or a recirculation zone on this
axis for flows with a significant vorticity in streamwise direction. A first breakdown method consists of the formation of an
almost axisymmetric bubble-like structure and is called axisymmetric breakdown. Another way in which vortices break down
is characterized by the spiraling of the vortex without a growth in core size [47]. This mode is called the spiral mode, and can
lead to the formation of a double helix depending on the swirl number [48]. The spiral mode is more frequently observed for
delta wings at high angles of attack and the axisymmetric breakdown appears in an axisymmetric swirling flow [49].
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Figure 2.3: Sketch of the different regions of a wetted vortex.

2.2.3. Analytical vortex models
An ideal vortex following the Kelvin and Helmholtz theorems is represented as two-dimensional, even though the vortex
roll-up clearly demonstrates its three-dimensional nature. For most practical flow cases, the two-dimensional vortex is a good
assumption and can be extended into the third dimension invoking self-similarity. To simplify matters further, the vortex is
often also assumed to be axisymmetric. For a tip vortex originating from a wing, this approximation was validated i.a. by
Fruman et al. [50], albeit only after a certain distance (two chord lengths) behind the wing in his case.
It was also shown that the pressure is proportional to the square of the ratio between the maximum of tangential velocity and
free-stream velocity, no matter the shape of uθ(r ) [50]:

Cp (x) =−2
∫ ∞

0

u2
θ

(x,r )

u2∞

dr

r
≈−k

[
uθ,max

u∞

]2

, (2.53)

where Cp is the pressure coefficient, uθ is the free stream velocity, uθ,max is the maximal tangential velocity and k is a pro-
portionality constant depending on the shape of the tangential velocity profile.

This section first discusses two frequently used two-dimensional base models called the Rankine and Lamb-Oseen vortex
models. The Rankine vortex is discussed first since it is based on the ideal case of an inviscid vortex. Second, the Lamb-
Oseen vortex model is discussed as it was shown to fit the experimentally measured flow field [8] that was used for the
validation of the numerical data presented in this thesis. Previous studies of a cavitating line vortex in a Venturi by Janssen
[6] and de Montgolfier [7] also applied the Lamb-Oseen vortex as an inflow condition.

Rankine vortex
The definition of an ideal Rankine vortex, is a vortex where all the vorticity is assumed to be concentrated in an infinitely
small circle in a plane perpendicular to the vortex. The strength of the vortex is defined by the circulation Γ and is maintained
as the radius of the core becomes infinitesimally small. This leads to a singular situation with infinite velocity at r = 0. The
resulting velocity field is called the Rankine vortex, and the flow field around it is only determined by Γ:

uθ(r ) = Γ

2πr
. (2.54)

The axial velocity gradient in radial direction ∂ux /∂r is relatively moderate away from the center, so that viscosity can be
neglected. Additionally there is assumed to be no vorticity in the outer flow of a vortex (i.e. potential flow). The outer
flow field can then be described by adding and distributing several Rankine vortices. It is obvious that this representation
is not realistic due to the singularity at the vortex axis. In reality, the tangential velocity at the center needs to be 0 to sat-
isfy the symmetry condition. The strength of the vortex is measured by the circulation at the vortex core radius, where the
velocity gradient in radial direction becomes very large. The strong velocity gradients increase the importance of viscosity,
which reduces the tangential velocities. A certain vorticity distribution is created, reaching its maximum value at the vortex
axis. The circulation Γ decreases inward from the vortex core radius due to the vorticity, governed by the decreasing area
in Equation (2.52) and leads to a deviation from the ideal Rankine distribution (Equation (2.54)). The tangential velocity is
subsequently zero at the vortex center and the maximum tangential velocity is reached at r =p

α
p

4νt . This is the viscous
core radius rv , which is used as definition of the core radius since it can be determined directly from the velocity field. If it
is assumed that all vorticity is contained within this radius, the viscous core radius and the vortex core radius coincide. The
vorticity and tangential velocity then follow a linear distribution and the core rotates like a solid body.
Assuming a solid body rotation of the viscous core and no vorticity outside the viscous core, the velocity distribution for a
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(non-ideal) Rankine vortex is given by:

uθ(r ) =


Γr

2πr 2
v

for 0 ≤ r < rv ,

Γ

2πr
for rv ≤ r < R.

(2.55)

Figure 2.4: Tangential velocity distribution of the Rankine vortex.

The pressure is lower in a vortex than in the surrounding fluid due to centrifugal effects, where for a Rankine vortex:

∂p

∂r
= ρ

u2
θ

(r )

r
,

p∞−p(rv ) = ρ
Γ2

4π2r 2
v

.

(2.56)

The pressure drop inside the core is independent of the viscous core radius (rv ) and defined as:

pmin −p(rv ) = ρ
Γ2

4π
. (2.57)

The minimum pressure is then given by:

p∞−pmin = ρ
Γ2

4π2r 2
v

. (2.58)

Lamb-Oseen vortex
A more realistic velocity distribution can be found when using the Lamb-Oseen vortex, which is an exact solution of the
laminar Navier-Stokes equations and is based on the (singular) Rankine vortex. The velocity gradients are very large in the
viscous core and viscosity will create an outward dissipation of vorticity. The velocity has an asymptotic behavior in radial
direction and approximately follows the Rankine distribution outside of the vortex core radius rv (t ) = 2

p
νt . This implies

that potential flow is assumed outside the vortex core. The maximum tangential velocity uθ,max is reached at the radius
rmax =

p
αrv (t ), where α= 1.25643 [51]. The tangential velocity distribution for the Lamb-Oseen vortex at a time t is given

by:

uθ(r ) = Γ

2πr

[
1−e−r 2/r 2

v

]
. (2.59)

Figure 2.5: Tangential velocity distribution of the Lamb-Oseen vortex.

The minimum pressure for the Lamb-Oseen vortex is given by:

p∞−pmin = ρ
Γ2

4π2

ln(2)

4νt
. (2.60)
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This means that there is only a difference of factor ln(2) between the Rankine and Lamb-Oseen vortex models in the minimum
pressure for equal max. velocities uθ,max, as visualized in Figure 2.6b.

(a) Velocity distribution (b) Pressure distribution

Figure 2.6: Comparison of tangential and pressure profiles of Rankine and Lamb-Oseen vortex definitions.

2.2.4. Vortex detection
There are various methods to visualize vortices present in a flow. The first method is based on intuition and is based around
using regions of low pressure for vortex detection. As proposed by Robinson et al. [52], low pressure regions in incompress-
ible turbulent flows almost always indicate vortex cores. When two vortices merge, the isobaric surfaces become indistinctive,
however, and the criterion can no longer be used to identify individual vortices [53]. A second possibility is to detect vortices
based on the analysis of the velocity gradient tensor D=∇u. The velocity gradient tensor D is defined as :

Di j = ∂ui

∂x j
, (2.61)

which is a second-order tensor, allowing it to be decomposed into a symmetric and skew-symmetric part; respectively the
strain-rate Si j and vorticity Ωi j tensors:

Di j = Si j +Ωi j , (2.62)

where Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2.63)

and Ωi j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
. (2.64)

The characteristic equation for ∇u is given by:

λ3 +Pλ2 +Qλ+R = 0, (2.65)

where P, Q and R are the three invariants of the velocity gradient tensor and λ its eigenvalues. From decomposing these
invariants into their symmetric and skew-symmetric parts follows that [54]:

P =−tr(Di j ), (2.66)

Q = 1

2

(
tr(Di j )2 − tr(D2

i j )
)
= 1

2

(||Ωi j ||2 −||Si j ||2
)

, (2.67)

R =−det(Di j ). (2.68)

This forms the basis for the common different vortex detection methods (Q, λ2 and ∆), of which the Q-criterion was chosen
as it is easily obtained using REFRESCO.

Q-criterion
This method was developed by Hunt, 1988 (as cited in [53]). When using the Q-criterion, the vortex is defined as the spatial
region in which the second invariant Q > 0, see Equation (2.67). In other words, the vortex is defined as the connected region
where the magnitude of vorticity is greater than the strain-rate [54]. The Q-criterion is also widely used in similar research
for visualization of the vortex.
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Due to the simplicity of the single vortex in this research, the Q-criterion is expected to be sufficient for visualization
purposes of the vortex. The size of the vortex core can be easily identified by determining the location at which the highest
tangential velocity is attained. The Q-criterion is also widely used in literature to identify the vortex, where the value of Q is
often chosen by the authors based on the size of the turbulent structures to be identified.

2.3. Cavitation
Cavitation is generally defined as the phenomenon where a phase change takes place from liquid to vapor due to a decrease
in pressure instead of an increase in temperature (which would be boiling). Even though water is often assumed to be
incompressible, the water molecules can be torn apart (i.e. the molecular distance increases without breaking the hydrogen
bonds) to create vapor cavities. This rupture occurs when the tension exerted on the liquid exceeds the tensile strength of the
liquid. The tension is defined by the difference between the local pressure p and the vapor pressure pvap: (pvap −p). The
tensile strength is defined as

∆p = 2Tω

Rcrit
, (2.69)

where Tω is the surface tension and Rcrit is a critical bubble radius, comparable to the intermolecular distance. Both parame-
ters are temperature dependent [55]. Early experiments by Briggs [56] pointed out that although the tensile strength of water
is generally high, it can quickly drop by an order of magnitude and the purity of the water has an important impact. Cavitation
generally initiates at a so called cavitation nucleus, which may be a gas bubble, solid particle or surface imperfection [15].
Water which has not been filtered or degassed contains plenty of cavitation nuclei, which considerably lowers the tensile
strength of the water and leads to cavitation close to the vapor pressure [57].

Cavitation occurs in two phases: i) cavitation inception, which is the limiting regime between non-cavitating and cavi-
tating flow and ii) developed cavitation, which implies a certain permanency and extent of the cavitating flow. Additionally,
cavitation inception and collapse happens on a small timescale; the duration of the final stage of bubble/ cavitating vortex col-
lapse is in the order of 1×10−6 second [44]. The pressure coefficient Cp and the cavitation number σ are useful dimensionless
quantities to quantitatively assess cavitation phenomena:

Cp = p
1/2ρl u2∞

, (2.70)

σ= p∞−pvap
1/2ρl u2∞

, (2.71)

where ρl is the liquid density, u∞ and p∞ are the reference (free stream) flow velocity and pressure respectively. Vaporization
and condensation are two terms that are used throughout literature and in the remainder of this work to denote the phase
change from liquid to vapor and vapor to liquid respectively. The inception of cavitation may be difficult to define as the
relationship between the vapor pressure is altered by i.a. the surface tension delaying bubble growth, the time required for
nuclei to become observable and turbulent fluctuations of the pressure [58]. It is nonetheless commonly accepted to postulate
that cavitation will occur when reaching the vapor pressure in numerical simulations, as the cavitation models only depend on
the difference between the local and the vapor pressure to determine the source term that determines the creation/ destruction
of vapor.

In the next section, the theoretical description of the physical process governing bubble growth and collapse is introduced.
This is followed by the description of the Schnerr-Sauer model which was chosen for the cavitating vortex simulations.

2.3.1. Bubble growth and collapse dynamics
Unless stated otherwise, this section was based on the work by Brennen [58]. Figure 2.7 provides an illustration of a bubble,
indicating the different terms used in the equations.

Bubble growth is governed by the Rayleigh-Plesset equation:

pB (t )−p∞(t )

ρl
= R

d2R

dt 2 + 3

2

(
dR

dt

)2

+ 4νl

R

dR

dt
+ 2Tω

ρl R
, (2.72)

whereby the pressure inside the bubble is defined as

pB (t ) = pvap(TB )pG0

(
TB

T∞

)(
R0

R

)3

, (2.73)

with pG0 the initial pressure at (t∞,R0), T∞ the reference temperature, R0 the initial bubble size and Tω the surface tension.
The expression for pB can now be substituted in the generalized Rayleigh-Plesset equation Equation (2.72) to account for the
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Figure 2.7: Image of a bubble indicating variables used in the Rayleigh-Plesset equation. Image was adapted from [58].

bubble contents:
pvap(T∞)−p∞(t )

ρl︸ ︷︷ ︸
driving term

+ pvap(TB )−pvap(T∞)

ρl︸ ︷︷ ︸
thermal term

+ pG0

ρl

(
TB

T∞

)(
R0

R

)3

= R
d2R

dt 2 + 3

2

(
dR

dt

)2

+ 4νl

R

dR

dt
+ 2Tω

ρl R
.

(2.74)

The first term of this equation represents the instantaneous surface tension determined by the far-field conditions. The second
term is the thermal term, which has a significant influence on bubble dynamics. If one assumes inertially controlled growth,
thermal effects do not influence bubble growth and the temperature is constant and uniform, so that the thermal term drops
out of the Rayleigh-Plesset equation:

pvap(TB )−pvap(T∞)

ρL
= 0. (2.75)

Neglecting the effects of temperature is quite practical in describing the bubble growth process, but misleading for the dy-
namics of bubble collapse. During collapse, various (inertial) assumptions are violated; thermal effects are important, the
liquid does not behave as incompressible at high velocities and pressures and spherical symmetry is lost during collapse.
Nevertheless, compressible and thermal effects are neglected for most practical fluid dynamics computations as the added
complexity requires substantial computational effort which might not always be necessary.

2.3.2. Numerical modeling
The large amount of processes in different industries (hydraulics in particular) that are plagued by cavitation, has led to the
development of a variety of different models. Cavitation entails the existence of two-phases in the flow and the transition
between these phases. The interface between the vapor and liquid phase constitutes a jump in density from pure liquid to
pure vapor. Numerical treatments were developed to smoothen the density distribution at this interface. The first method
is to track the interface of every vapor bubble, which for the large amount of cavitation nuclei is too expensive [59]. The
second way captures the interface between both phases, by determining the relative volume of a cell that is filled by either
liquid of vapor. The dynamics of bubble growth and collapse are then modeled by a mass transport equation between the
species. The interface is therefore relatively coarse, but low storage requirements are a great benefit of this method [60]. The
Volume-of-Fluid (VOF) method, developed by Hirt & Nichols [60], is a common interface-capturing model and is also used
in REFRESCO. Cavitation models which use the VOF method to capture the bubble interface generally also assume the
fluid to be a homogeneous mixture of dispersed vapor bubbles. The phases in this mixture are assumed to be in kinematic,
mechanical and thermal equilibrium so that phases locally have the same velocity, pressure and temperature. This type of
cavitation models, called ‘mixture models’, can be subdivided based on the origin of their mathematical description of the
phase transition and accompanying mass transport. They either stem from the (simplified) Rayleigh-Plesset equation (bubble
dynamics models), or they solve a continuum formulation for the transport of the vapor phase (vaporization-condensation
models). Assuming an homogeneous mixture for practical cavitation problems is generally accepted due to the lack of reli-
able physical models that would model the mass transfer in a two-fluid formulation. The simplification of assuming no slip
between vapor and liquid phases is warranted for most cases, since the low-pressure regions normally coincide with regions
of high velocity in which the slip is in fact rather small [61]. The following derivation is adapted from the work by Schnerr
& Sauer [59].

The introduction of a second phase requires solving an additional transport equation for the vapor volume fraction of a
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cell αvap:
Dαvap

Dt
= ∂αvap

∂t
+ ∂αvapui

∂xi
= 0. (2.76)

The continuity equation in derivative form is given below, where for incompressible flow without phase transition the right-
hand side becomes zero;

∂ui

∂xi
=− 1

ρ

dρ
dt

. (2.77)

When assuming that the fluid is actually a mixture, the mixture density ρ and the mixture viscosity µ are defined as follows:

ρ =αvapρvap + (1−αvap)ρl , (2.78)
µ=αvapµvap + (1−αvap)µl . (2.79)

Using these definitions, the derivative of the mixture density dρ/dt becomes:

1

ρ

dρ
dt

= 1

αvapρvap + (1−αvap)ρl

d
(
αvap(ρvap −ρl )

)
dt

. (2.80)

The velocity field is no longer divergence free, i.e.:

∂ui

∂xi
=− ρvap −ρl

αvapρvap + (1−αvap)ρl

dαvap

dt
, (2.81)

and a source term Svap has to be added to the vapor transport equation Equation (2.76):

∂αvap

∂t
+ ∂αvapui

∂xi
= Svap

ρvap
. (2.82)

Assuming that ρl ≫ ρvap The continuity equation for the mixture can then be written as:

∂ui

∂xi
=

(
1

ρvap
− 1

ρl

)
Svap. (2.83)

The source term is also incorporated into the conservation equation of linear momentum as an additional force. The force
slows down the flow during evaporation (Svap/ρvap > 0) and accelerates it during condensation (S/ρvap < 0):

Dρui

Dt
= fi −ρui (

∂ui

∂xi
) = fi −ρui

(
Svap

ρvap

)
, (2.84)

for the i th component of the velocity vector u and where pressure and viscous forces are contained in the fi term. An
equivalent notation sometimes used in literature splits the source term into a positive (vapor production) and negative (vapor
destruction) mass transfer rate, ṁ+ and ṁ− respectively:

∂αvap

∂t
+ ∂αvapui

∂xi
= 1

ρ

(
ṁ++ṁ−)

. (2.85)

Bubble dynamics models: The Schnerr-Sauer model
The first class of models is based on the description of bubble dynamics by the Rayleigh-Plesset equation. A simplified form
of this equation is used, neglecting the second-order time derivative of the bubble radius and the effect of non-condensible
gases. Empirical constants are then used to make up for this simplification, but require tuning for different types of simula-
tions [62]. In bubble dynamics models, every vapor bubble originates from a cavitation nucleus. The increase of the vapor
volume fraction due the growth of the nuclei is compensated by loss of vapor fraction due to bubbles that are displaced out of
a cell [59]. The Schnerr-Sauer model was chosen for the cavitating flow simulations in this thesis, since it is the most com-
monly used model for cavitating simulations in REFRESCO. Other types of bubble dynamics models exist, most notably the
Singhal and Zwart models.

The Schnerr-Sauer Model, introduced in 2001 by Schnerr and Sauer [59], assumes that bubble-bubble interactions and the
coalescence (merging) of bubbles can be neglected. Bubbles are also assumed to remain spherical throughout their growth
and collapse process. The bubble growth process is governed by the simplified Rayleigh-Plesset equation:

pvap −p

ρL
− 4νL

R

dR

dt
− 2Tω

ρLR
= R

d2R

dt 2 + 3

2

(
dR

dt

)2

. (2.86)
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Inertially controlled bubble growth is assumed, so that bubble growth is modeled by the Rayleigh relation:

DR

Dt
=

√
2

3

pvap −p

ρl
. (2.87)

The increase of the vapor fraction inside a cell now depends on the amount of bubbles in each cell and how the volume of a
single bubble changes, as well as on the convection of bubbles downstream. The vapor fraction αvap can be expressed as a
function of the initial amount of nuclei n0:

αvap = Vc

Vcell
= Nbubbles · 4/3πR3

Vvap +Vl
= n0Vl 4/3πR3

n0Vl 4/3πR3 +Vl
= n0 · 4/3

1+n0 · 4/3πR3 , (2.88)

so that:
4

3
R3n0 =

αvap

1−αvap
. (2.89)

The number of nuclei Nbubbles is explicitly linked to the volume of water in a cell Vl , allowing the number of bubbles to be
conserved. This is visualized in Figure 2.8.

Figure 2.8: Relation between the size and amount of dispersed bubbles and the vapor fraction in the VOF method. Image was adapted from [59].

Combining the expressions in Equation (2.81) and Equation (2.88), defines the source term Svap/ρvap as:

Svap

ρ
=

(
n0

1+n0 · 4/3πR3

)
d
dt

(
4

3
πR3

)
. (2.90)

This equation can be rewritten using the relation in Equation (2.89) into the formulations used in REFRESCO for evaporation
and condensation respectively: Equations (2.91) and (2.92).

ṁ+ = 3

(
4

3
πR3n0

)
1−αvap

R

DR

Dt
, (2.91)

ṁ− = 3
αvap

R

DR

Dt
. (2.92)

The bubble radius R is defined in REFRESCO as [63]:

R = min

{
max

[
3×10−5,

(
3αvap

4πn0(1−αvap)

)1/3
]

,10−2

}
. (2.93)

The initial amount of nuclei n0, the bubble size limits 3×10−5 and 1×10−2 can be set by the user. The initial amount of
nuclei was set to n0 = 109 as this improved stability. The limiters were left at the default values for the simulations presented
in this thesis.
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Considerations regarding compressibility
The O(104) difference in density of vapor and liquid leads to large variations in the local mixture density. The local Mach
number M a = u/c also varies greatly due to the much lower speed of sound in mixtures of air and water than in air [58, 64].
Compressible effects become important when M a > 0.3 [45], which can be attained within cavitating flow cases due to the
lower speed of sound in mixtures. REFRESCO is an incompressible solver and compressible simulations therefore lie out-
side the scope of this work. That does not take away that it is useful to mention ways to deal with compressible effects in
incompressible flows and determine the actual necessity of applying compressibility corrections in similar flow cases.

As mentioned in the previous paragraph, compressible effects are present in the mixture of vapor and liquid that is cav-
itation. The question is whether it is necessary to incur additional computational cost by running the simulations using a
compressible solver instead of an incompressible one. Studies by Coutier-Delgosha et al. [65] showed that the unsteady
dynamics of the cavity are better captured using a compressible approach. They incorporated the turbulent Mach number into
the β and β∗ parameters in the k and ω transport equation respectively for the k −ω model. These modifications (called the
Sarkar-Zeman-Wilcox compressibility corrections) were proposed by Wilcox in [20] and aimed to correct the deficiency of
the k-equation in correctly predicting the compressible mixing layer. The mixing layer grows as the Mach number increases,
which is not likely the result of a change in density across the layer.

Based on the comparison between incompressible and compressible solution methods by Goncalvés da Silva et al. [66]
and the lack of similar studies for vortex cavitation, this seems to be more of an issue for sheet cavitation and the prediction
of the re-entrant jet formation than for vortex cavitation. Regardless of the limitations of assuming incompressibility, it is still
a commonplace decision to use incompressible solvers, due to their relative computational simplicity, for the re-entrant jet
prediction e.g. [67–69] with reasonable results.

Influence of eddy viscosity on cavity dynamics
The introduction of a second phase with a density that differs considerably from the primary (liquid) phase has an effect on
the turbulent eddies inside the flow. The effect of compressibility on turbulence was assessed in a series of computations
in [65]. The main takeaway from this work is that, for RANS models relying on the Boussinesq hypothesis, eddy viscosity
is generally too high in the two-phase flow area. This is not an issue for Scale-Resolving Simulation (SRS) methods. This
excessive value of the eddy viscosity can be countered by modifying the turbulence models. The modification is based
around the incorporation of compressibility effects due to the considerably lower speed of sound in a liquid-vapor mixture.
The disproportionate amount of eddy viscosity was shown to lead to entirely different flow patterns by Egorov, 2004 (as cited
in [28]) with and without inclusion of a turbulence damping term.
The application of a dilatation correction (i.e. the Sakar model), solved the problem of non-shedding sheet cavitation in
[65]. Another correction, which appears more frequently in literature, is the Reboud correction, first brought forward in
[70] and implemented in [65]. This correction was developed (like the Sakar model) to reproduce sheet cavity shedding that
was not reproduced without corrections [28, 70]. Again, the focus was on the shedding of sheet cavities, where excessive
eddy viscosity prevented the formation of a re-entrant jet [70]. Apart from the too high eddy viscosity, Coutier-Delgosha,
Fortes-Patella & Reboud [71] noticed that the self-oscillatory behavior of the cavity (see Section 2.4.1) could not be recovered
without modifying the incompressible RNG k −ε model. The modification outlined below, which is the form implemented
in REFRESCO [72], therefore increases the damping of νt :

νt ,cav = νt

[
ρvap + (1−αvap)n(ρl −ρvap)

ρvap + (1−αvap)(ρl −ρvap)

]
, (2.94)

where the exponent n ≈ 10.

The concluding remarks by Schot in [28] highlight the significant smearing of the cavity interface by using the VOF method.
This might have a much larger impact than an ad hoc reduction of the eddy viscosity by any of the commonly used correc-
tions. Since no additional cost has to be paid to incorporate the Reboud correction, and recognizing the importance of the
self-oscillatory behavior of the cavity as discussed in [65], the Reboud correction was applied to the EARSM simulations.
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2.4. Dynamics of cavitating vortices
This section builds on the vortex dynamics discussed in Section 2.2 and starts off by introducing the concept of cavitating
vortices and their sensitivity to the surrounding flow. This is followed by a short summary of the work by Bosschers [14] and
Pennings et al. [13] regarding spectral analysis of cavitating vortex dynamics. The methodology described in this section is
applied to the cavitating flow simulations in this thesis.

2.4.1. Cavitating vortices
Unless stated otherwise, the following section is based on the work of Franc & Michel [44]. Vortex cavitation is the latest
form of cavitation to be studied, in particular by Genoux & Chahine in 1983 [73], and by Ligneul in 1989 [74]. The cavitation
number at inception σi for tip vortex flows can be calculated using two estimators: the circulation Γ around the vortex and
the size of the viscous core. Cavitation inception strongly modifies the flow geometry close to the vortex axis. The change of
vortex diameter due to cavitation is governed by [44]:

dl

dc
=

√
ρvap

ρl
, (2.95)

with dl the diameter of the cylindrical volume of liquid before phase change, dc the cylindrical vapor core diameter and ρl

and ρvap respectively the liquid and vapor density. The evolution of a cavitating vortex depends on the external pressure
and the induced pressure drop due to the velocity and gradients inside the vortex core. A sketch of the different parts of a
cavitating Lamb-Oseen vortex, including the radial distribution of tangential velocity is provided in Figure 2.9. The tangential
velocity inside the vapor core increases linearly towards the edge of the vapor core as the vapor rotates as a solid body. The
Lamb-Oseen profile describes the tangential velocity outside of the vapor core. Bosschers [2] derived an analytical expression
for the tangential velocity profile of a cavitating Lamb-Oseen vortex, using that the viscous core size rv (t ) =p

4ναR t :

uθ(r ) = Γ

2πr

[
1−βR exp

(
−αR

r 2

r 2
v

)]
. (2.96)

The βR parameter is given by

βR = r 2
v

r 2
v +αR r 2

c
exp

(
αR

r 2
c

r 2
v

)
, (2.97)

where rc is the cavitating core radius. This profile can be used to compare the obtained solutions in the cavitating vortex sim-
ulations to the theory. When the vortex core fills with vapor, the size of the vortex becomes dependent on the pressure field.

Figure 2.9: Structure of and tangential velocity profile inside a cavitating Lamb-Oseen vortex.

This dependency breaks the link between the elongation rate δl of a rotating filament and its vorticity: Ω/δl ̸= textconst .
For a constant ambient pressure, vortex stretching will increase the rotation rate and the vapor core radius. For constant vortex
length, the increase of ambient pressure leads to two opposing effects. The increasing ambient pressure will reduce the size
of the vapor core and therefore the vortex core size. At the same time it increases the rate of rotation which increases the
centrifugal force and subsequently enlarges the vapor core. This antagonistic behavior can lead to oscillatory cavity behavior
for isolated vortices, called self-oscillatory behavior. The volume variations affect the translation velocity of the vortex as the
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added mass (half of the mass of the displaced fluid) governs the resistance experienced by the cavitating vortex core. When
the vortex cavity finally collapses, it will do so either in an axial or radial mode. The former happens for vortices ending on
solid walls. The radial collapse mode requires the presence of (viscous) dissipation. The stability of a vortex is promoted by
large surface tension (an effect generally neglected in the numerics) and small circulation (i.e. low vortex strength).

Vortex cavitation is most often studied in the context of tip vortex cavitation, where a cavity originates from a propeller
or a foil due to the boundary-layer roll-up and subsequent formation of a tip vortex with a sufficiently low pressure on the
vortex axis. The sensitivity of the cavity is discussed below in the context of tip vortex cavitation contrary to the isolated line
vortex studied in this work. The main difference is the confinement of the vortex due to the venturi, and the absence of a
vortex trajectory. The length of the cavitating part of the vortex is - in this study - also dependent on the domain, whereas for
tip vortices a large influence is noticeable between different turbulence models when comparing the streamwise extent of the
cavity in [5].

Sensitivity to flow velocity
For (tip) vortices originating from wings, the influence of the Reynolds number can be found mainly in the thickness of the
boundary layer. The boundary layer becomes thinner as Reynolds number increases, which influences the viscous core size
and the pressure drop in the vortex core [11]. The relation between the tip vortex core radius and the boundary layer thickness
was first assessed by McCormick, 1962 (as cited in [44]). The dependence of cavitation inception at σi on the lift coefficient
Cl was confirmed by the experiments conducted by Maines & Arndt [3], who fitted the scaling law in Equation (2.98) to
experimental observations. This scaling law was in first instance derived by McCormick, relating the tip vortex core radius
and the boundary layer thickness. Experimental results by Arndt & Dugue, 1992 (as cited in [3]) as well as Fruman, 1994 (as
cited in [3]) confirmed its validity and determined the value of 0.4 as the exponent for the Reynolds number.

σi = KC 2
l Re0.4, (2.98)

where 0.045 ≤ K ≤ 0.073 is a proportionality constant depending on the boundary layer thickness [3]. Despite this proven cor-
relation, there is no direct link between the boundary layer thickness and the core radius. Furthermore, the original hypothesis
stated by McCormick implies a transitional boundary layer, whereas some authors of the experimental results assume a fully
turbulent boundary layer on the wing. The boundary layer thickness scales with power 0.4 for the former, but power 0.2 for
the latter, so that the power of the Reynolds number in Equation (2.98) should theoretically vary based on the exact state of
the boundary layer on the foil, which is contradicted the experiments [4]. Further research on this relation and the effects of
the boundary layer thickness on the tip vortex cavity has been conducted by Liebrand [5]. As there is no boundary layer roll-
up for the case studied in this thesis, the Reynolds number should not influence the size of the cavity for the same circulation Γ.

Sensitivity to turbulence
In turbulent flows, both the flow velocity and the pressure consist of mean (ϕ̄) and fluctuating (ϕ′) parts. The pressure
fluctuations contribute to the cavitation inception criterion insofar that they are able to locally (and during small timescales)
decrease the pressure leading to cavitation inception. This is demonstrated by Franc & Michel [44] for the inception of jet
cavitation, defining the inception criterion:

σi <−Cp − pvap −pcrit
1/2ρu2∞︸ ︷︷ ︸

≈0

+ p ′
1/2ρu2∞

. (2.99)

The first term on the right hand side takes into account the mean pressure field of the turbulent flow. The second term
expresses the static delay in cavitation inception due to the difference between vapor pressure and the actual critical pressure
of the nuclei. It is usually negligible for industrial flows. The third term expresses the advance to cavitation inception
due to the pressure fluctuations and is the hardest to model. Statistically speaking, pressure fluctuations are proportional to
turbulent stress −ρu′

i u′
j . The pressure fluctuation term can be determined by assuming that the root-mean-square value of the

fluctuation p ′ is correlated with the turbulent kinetic energy k [44]:

k = 1

2

(
u′2 + v ′2 +w ′2

)
, (2.100)√

p ′2 =C
2

3
k =Cρu

′2
i , where C ≈ 0.7. (2.101)

Apart from these observations, there is a general lack of understanding regarding the interplay of turbulence (models) and
cavitation (models) [75]. The interplay of turbulence models and cavitation is something that this thesis aims to improve
upon.
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2.4.2. Spectral assessment of cavity dynamics
The ultimate goal of this project is to predict acoustic emissions from an oscillating cavity. The dynamic behavior of a vortex
cavity results in broadband hull-pressure fluctuations and underwater radiated noise. The extrapolation from cavity oscillation
to radiated noise is described in detail in the work of Bosschers [2, 76]. The center frequency of the broadband hump was
linked to tip vortex cavity resonance by Ræstad, 1996 (as cited in [13]) and Bosschers [1]. Previous analyses of the dynamic
cavity behavior were presented in the research by Bosschers [2, 12, 14] and Pennings et al. [13].

Analytical dispersion relation
The different modes in which the cavity deforms each have a distinct dispersion relation between frequency and wave number
[13] that allows them to be identified in spectral space. This section only contains the equations that determine the lines in
wavenumber-frequency space, the derivation of the dispersion relation can be found in Appendix B.1.
Three different modes can be distinguished by their shape: mode n = 0 (breathing mode) shows a volume variation, whereas
mode n = 1 (helical mode) shows a displacement of the vortex centerline. Mode n = 2 (double helix mode) has an elliptical
vortex core shape. The shape of the three modes is presented in Figure 2.10. The distortions of the vortex core are propagating
inertial waves, often referred to as Kelvin waves [13] as they were first studied by Lord Kelvin.

Figure 2.10: Deformation modes n = 0, 1 and 2, reproduced with permission from [12].

The non-dimensional dispersion relation is given by:

ω̃±(κ,n) = ω±rc

u∞
= ũx,c kz rc + ũθ,c n ±

√
Kσ

√√√√−κH (1)′
n (κ)

H (1)
n (κ)

Tω, (2.102)

where κ= kr rc is the non-dimensional radial wavenumber, rc is the average cavity radius and ũx,c = ux,c /u∞, ũθ,c = uθ,c /u∞
are the non-dimensional forms of respectively axial and azimuthal velocity at the cavity interface. The Tω parameter repre-
sents the surface tension:

Tω(kz ,n) =
√

1+ 1

KσW e
(n2 +k2

z r 2
c +1), (2.103)

with the Weber number W e:

W e = ρu2∞rc

Tω
. (2.104)

The Kσ in Equation (2.105) represents a stiffness in the equation of motion of the cavity perturbation, see Chapter 4 of [2] for
more background on this term. The stiffness coefficient Kσ is defined as:

Kσ =σ
r 2

c

r 2
v + r 2

c
, (2.105)

where σ is the cavitation number. The velocities at the cavity interface, as well as the contribution of the surface tension need
to be tuned using experimental or numerical solutions to determine the dispersion relation for the dynamics of a particular
cavitating line vortex. The dispersion lines were drawn using the above definitions for a cavitating ideal line vortex similar to
a simulated one in this thesis and are presented in Figure 2.11.
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Figure 2.11: Analytical dispersion lines for a vortex similar to the one simulated (M4 IDDES SS): rc = 0.006 m, rv = 1.41 rc , u∞ = 14.147 ms−1, ux,c =
1.1 u∞, uθ,c = 0.2 u∞, σ= 0.65. Numbers indicate deformation modes.

Application to experimental results
Pennings et al. [13] performed experimental measurements of cavity deformation of a cavitating tip vortex generated by the
Arndt foil, which is an elliptical wing used previously in experiments by Arndt [3, 4]. High-speed video shadowgraphy was
used in two orthogonal planes (x y , xz), along with force and sound measurements. The frame rate of the cameras was 5000
frames per second, with a resolution of 1920×1080 pixels. The phase difference between images recorded by both cameras
helps distinguishing the different modes. The evolution of the cavity diameter was subsequently studied seperately in the
time- and spatial domain, followed by a spectral study using a two-dimensional Fourier transform.

Two different flow cases from the experiments carried out by Pennings [13, 15] were analyzed by Bosschers in [2] to establish
the differences in their respective cavity dynamics. The frequency spectrum of both experimental cases was also assessed
by Bosschers [2], with the difference that Pennings et al. [13] considered positive wavenumbers and positive and negative
frequencies and Bosschers positive frequencies and positive and negative wavenumbers. A one-dimensional Fast Fourier
Transform (FFT) was used to determine the Power Spectral Density (PSD) of the spatially averaged and time-averaged diam-
eter separately. This was done to highlight tonal frequencies from the cavitation tunnel used by Pennings et al. [13] and to
obtain a first indication of the cavity shape. The broadband noise that is commonly emitted by tip vortex cavities could also
be identified for one of the cases. Bosschers [2] applied the analytically-derived dispersion relation to identify the different
modes in the experimental results in [13, 15] and the spectrum of the time-averaged diameter allowed for a first estimate of
the non-dimensional wavenumber κ.

The more rigorous analysis and the comparison between the analytical and experimental dispersion relation, also described
in [2], requires a two-dimensional FFT of the diameter fluctuations for modes n = 0, 2, and the fluctuations of the centerline
location for mode n = 1. The analysis in the wavenumber-frequency domain allows an even clearer distinction between modes
and allows for the validation of the derived dispersion relation for a three-dimensional vortex by Bosschers [2]. The dominant
feature in wavenumber-frequency plots is a straight line of which the slope ∂ω/∂kx equals the group velocity. These plots
also allow identifying harmonics of the group velocity, which are small perturbations on the cavity interface that are linked to
disturbances in the free stream. A stationary wave can be identified by the zero-crossing wave-number of the group velocity
line. The identification of the modes depends on the group velocity and the related amount of energy transfer with other
modes [13]. An example of a wavenumber-frequency plot is given in Figure 2.12.

Figure 2.12: Wavenumberfrequency amplitude (left) and phase spectrum (right). Included are the lines for the breathing n = 0± and helical n = 2− modes
and a line for constant group velocity that is 19 % larger than the tunnel free stream velocity, reproduced with permission from [13].

The frequency and wave number where the group velocity becomes zero is defined by a local minimum/maximum of the
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mode n = 0− line [14], since the axial group velocity is defined by Bosschers in [76] as:

c̄g1,2 =
cg1,2

ux
=

∂ω1,2/∂kz

ux
. (2.106)

The analytical dispersion (prediction) curves in the frequency-wavenumber domain were obtained by tuning the characteris-
tic cavity dynamics parameters ũx,c , ũθ,c and Kσ to the experimental spectrum from [77]. The stiffness coefficient Kσ was
determined using the slope and wave number at ω̃= 0 for the mode n = 0−. The axial and tangential velocities at the interface
ũx,c and ũθ,c were derived by matching the curves for n = 1+ and n = 1− to the experimental curves obtained in [77] and
[15]. The effect of surface tension (taken into account in the analytical formulation) was shown to be very small Tω = 1.026
for mode n = 2.

Bosschers [2] argued that the agreement between the fitted prediction curves and the dispersion curves from the experi-
ments was relatively good for the experimental case studied in [15], where the helical mode (n = 2) was absent. Larger
discrepancies existed for the case with more developed cavitation studied in [13], although the twisting characteristic of the
cavity was easily distinguishable. The differences concerned mostly the appearance of possible harmonics in the experimental
spectrum which could not be directly attributed to a mode. Significant differences were noted by Bosschers [2] between the
matched and experimental tangential velocity at the cavity interface for both experimental cases, whereas the axial velocity
was approximately equal. Bosschers [2] did conclude that the stiffness coefficient could be calculated using the square of the
tangential velocity at the interface.

The spectra obtained using the centerline variations and the prediction curves for mode n = 1) are demonstrated by Boss-
chers [2] to agree quite well for the case without the helical mode, however the phase angles differed from the expected 90
degrees. The case with more developed cavitation and a helical deformation of the tip vortex showed the opposite behavior,
with poor correlation between prediction and experiment, but a correct phase angle.

2.5. Quantification of numerical uncertainties
It is important to verify the independence of the solution from the grid size and the time step used to justify that the obtained
answer was not just obtained by chance. This is part of what is called Verification and Validation (V&V) of CFD studies.
The difference between verification and validation is nicely illustrated by the following definition by Roach from 1984 as
cited in [78]: verification checks whether the equations are solved right, whereas validation has to show if the right equations
are solved. Validation requires the input of numerical uncertainties, which are calculated during the verification stage. The
verification procedure is addressed first, followed by the validation procedure.

2.5.1. Verification and numerical uncertainty
This paragraph is based on the procedure by Eça & Hoekstra [78] and Rosetti et al. [79] for the assessment of the dis-
cretization uncertainty for unsteady problems. Verification can be split into code verification and solution verification. Code
verification has to demonstrate that the equations of a certain model are solved correctly. Solution verification estimates the
error or uncertainty of a calculation without knowledge of the exact solution. An error requires knowing the exact solution
and has a plus or a minus sign, whereas an uncertainty is an interval which contains the ‘truth’ or exact solution with a certain
degree of confidence and has a ± sign. The uncertainty Uϕ is defined as the absolute value of the error estimate εϕ times a
safety factor Fs in the procedure laid out in [78].

Five types of numerical errors can be distinguished: i) round-off error, ii) iterative error, iii) discretization error, iv) input
error and v) statistical error. The round-off error is in the order of machine precision and sufficiently low if double precision
is used. The iterative error is a result of the non-linearity of the Navier-Stokes equation and is the most common error that is
referred to in literature when the simulation is said to be converged. For the simulations presented in this thesis, it was the goal
to obtain local L∞ residuals (which can be seen as normalized values of the iterative error) below 1×10−6. The discretization
error, which is the error arising from discretizing the continuous system in space and time, needs to be dominant to use the
procedure by Eça & Hoekstra [78], in practice by about two orders of magnitude. The input error results from differences
between the numerical simulation and the experimental set-up. The statistical uncertainty is due to the presence of start-up
effects within the measured signal.

Discretization error
The discretization error εϕ is estimated using a truncated power series expansion:

εϕ ≃ δRE =ϕi −ϕo =αx hpx
i +αtτ

pt
i , (2.107)

where ϕi is any integral or other functional of a local flow quantity, ϕo is the exact solution, αx and αt are the constants
obtained from the expansion, hi and τi are respectively the typical cell size and typical time step ratios and px and pt denote
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the observed order of grid convergence for respectively the space and time discretization. Monotonic convergence is defined
by 1.0 ≤ p ≤ 2.1, leading to the most accurate estimate of the discretization error. If the convergence is not monotonic, a larger
safety factor is applied when calculating the uncertainty. At least five grids and time steps, but in practice more geometrically
similar grids and time steps are required to accurately estimate the value of the five unknown parameters: αx,t , ϕo and px,t .
More background on the procedure can be found in [78] and [79].

Statistical uncertainty - Transient-scanning technique
Transient effects are a common issue with CFD simulations looking to obtain stationary values of certain parameter due to the
initial flow field and the boundary conditions at start-up. In many cases, a start-up effect is visible in which the flow adjusts
itself according to the physical model used. Transient effects should be excluded from the time-averaging procedures of vari-
ables to qualitatively assess performance of certain models in predicting flow or geometry parameters. However, the actual
uncertainty introduced by these transients is in most cases unknown. To determine this ‘aleatory uncertainty’ the Transient
Scanning Technique (TST) can be used. Usually the selection of data used for the time-averaging is based on experience and
guesswork, which would now be taken out of the equation. This allows for an objective statement to be made regarding the
period for which the average is statistically converged. The TST was developed by Brouwer [80, 81] and is not limited to
CFD, but also has applications for Experimental Fluid Dynamics (EFD). TST calculates the uncertainty of a signal cumu-
latively from the end (TST-B) or the beginning (TST-A) of the time series. Whether a signal is stationary is apparent from
assessing the decay of the uncertainty based on the following hypothesis:

“The realization of a stochastic process, longer than the period corresponding to the lowest frequency component, is sta-
tionary if the estimated, random uncertainty of the mean decays with the inverse of the realization length.” (80)

The use of the TST in this thesis will be twofold. First, the uncertainty of results can be accurately quantified to clarify
the reliability of the obtained results. The second benefit of TST is that it indicates what part of the time-series of results
can be used to determine the statistically converged time-averaged value of a parameter, by comparing the slope of the un-
certainty with lines parallel to 1/log(t ), i.e. the logarithmic decay of the uncertainty in time. The start-up period is easily
identified by the hockey-stick (see Figure 2.13) and not used for time-averaging flow variables. Results of DDES and Extra
large-eddy simulations (XLES) presented in [80] already demonstrated that SRSs generally require a longer running time to
obtain statistically stationary results compared to RANS.

Figure 2.13: Sketch of the TST-B plots with indication of the hockey-stick and logarithmic decay. Image adapted from [81].

Input uncertainty
The input or parameter uncertainty is related to the uncertainties in the fluid properties, the flow geometry and boundary
conditions [82]. The uncertainty of the flow properties is for this case mostly attributed to the turbulence quantities that
characterize the turbulent flow in a RANS context: the turbulence intensity I and the eddy viscosity ratio νt /ν. The turbulence
intensity is a measure for the amount of (averaged) fluctuations and is equivalent to specifying the turbulence kinetic energy.
In some cases the turbulence intensity is measured, but for this case the quantity was not reported [8]. The uncertainty
related to the boundary condition is expected to be of larger importance, as the method of generating a vortex differs with the
experimental set-up. In the experiments a fixed-blade swirl generator was mounted in front of the contraction to generate a
vortex [8]. CFD simulations of the same case modeled this swirl generator [9]. This was outside of the scope of this thesis due
to the added complexity and computation expense. For the present case, a Lamb-Oseen vortex (see Section 2.2.3) is specified
at the inlet. The characteristic parameters of the vortex were specified based on the mean velocity angle β = atan (uθ/ux )
reported by [9]. This was done to obtain a flow field in front of the converging nozzle that was as similar as possible to the
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reported one by [9] and to reduce the uncertainty related to the swirl generation process. The procedure is documented in
Section 3.4.

2.5.2. Validation procedure
The goal of validating a solution is to estimate the modeling error of a mathematical model (numerical data) in relation to
a physical model (experimental data). The validation procedure is based on the work by Eça et al., [82]. The validation
uncertainty Uval is made up of numerical uncertainty Uϕ, input uncertainty Uinput and experimental UD uncertainty. The
validation comparison error E(ϕ) is the difference between experimental (D) and simulated result prediction (S / ϕi ):

Uval =
√

U 2
ϕ
+U 2

input +UD, (2.108)

E(ϕ) = S(ϕ)−D(ϕ). (2.109)

The 95 % confidence interval ([E(ϕ)±Uval]) containing the modeling error δmodel needs to be determined. If |E | ≫ Uval,
then the modeling error is dominant and the model must be improved. In case that |E | <Uval, δmodel is within the numerical
uncertainty bounds caused by the numerical, experimental and parameter uncertainties. This either means that the model
and the solution are validated with precision Uval if E is deemed sufficiently small, or that the quality numerical and/ or
experiment should be improved before further conclusions are drawn [82].

Validation procedure using multivariate metrics
When the validation is done for quantities at several points (e.g. a velocity profile), then the method using multivariate metrics
is adequate. This method is proposed as a 2016 supplement to the ASME V&V 20-2009 standards [83] and used in the works
of Eça et al. [84, 85]. The metric r is introduced, and defined for N evaluations of the comparison error E(ϕ) as:

r =
√

E T V −1
val E , (2.110)

where E is a vector containing the N values of Eϕ and Vval is the covariance matrix given by:

Vval =VS +VD +Vinput. (2.111)

The uncertainties of numerical and experimental results are assumed to be uncorrelated and VS and VD are diagonal matrices
containing values of U 2

S (numerical uncertainty) and U 2
D (experimental uncertainty) respectively. When the uncertainties of

the N estimated δϕ are normal distributed, then the expected value of r is obtained from a χ2 distribution. This yields a
reference metric rref, equal to the expected value plus standard uncertainty, [85]:

rref =
√

N +
p

2N . (2.112)

If the ratio r /rref is clearly larger than one, the simulations are not consistent with experimental observation. This means that
validation uncertainty Uval is dominated by modeling errors. If r /rref < 1, then the differences between the simulation and
experimental data are overall within the interval of Uval.

2.6. Numerical discretization in REFRESCO
The open-usage (unsteady) incompressible flow solver REFRESCO (an acronym for REliable and Fast RANS Equations
(solver) for Ships and Constructions Offshore), developed by MARIN, was used to obtain the results presented in this thesis.
REFRESCO is optimized for maritime applications and was developed as an unsteady RANS solver and has been validated
for a wide array of flow cases [86]. It is able to deal with multiphase flows and moving grids, and contains couplings
with structural equations of motion as well as propeller models and wave-generation codes. The turbulence capabilities
were extended beyond the unsteady RANS base of the code by including various scale-resolving and EARSM models. A
comprehensive description of the code can be found in [87] and [63], which forms the basis for this section covering the
linearization and discretization of the Navier-Stokes equations and the solution process in REFRESCO.
REFRESCO is a finite-volume code with collocated variables at the cell-center. The principle of the finite volume method
can be found in Appendix C.2. The faces of the control volumes are triangulated within REFRESCO, with no limit to the
maximum number of faces per cell. The face-values are calculated using second-order interpolation. The effects of cell non-
orthogonality and the eccentricity between neighboring cells, see Figure 2.14, can be and were corrected for in the present
simulations.

The non-linearity of the system is contained within the convective term of the momentum equation:

∂ui

∂t
+ u j

∂ui

∂x j︸ ︷︷ ︸
convection

=− 1

ρ

∂p

∂xi
+ ∂

∂x j

(
ν
∂ui

∂x j

)
︸ ︷︷ ︸

diffusion

. ( 2.2 revisited)
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Figure 2.14: Illustration of cell non-orthogonality (left) and eccentricity (both).

The convective term is linearized in REFRESCO using Picard’s method, which uses the mass flux from the previous iteration
or from an initial condition. The linearization of the convection in the i -th direction in given by:

(u j ui n j )k+1 ≈ (u j n j )k (ui )k+1, (2.113)

where k + 1 indicates the current iteration number. The effective viscosity νeff = ν+ νt and the second contribution of
∂u j /∂xi (in the diffusion term) are also expected to be known from the previous iteration, so that the momentum and other
transport equations can be written as linear advection-diffusion equations. REFRESCO supports first- and second-order
accurate advection schemes, whereby second-order κ schemes were chosen for this research to improve accuracy and reduce
diffusivity as much as possible. The face value of the convected variable (see Figure C.1 for a sketch) is determined by
the cell center values corrected by an anti-diffusive term containing (upwind/ central) weighted gradients of the convected
quantity. The distribution between the upwind and central interpolation is controlled by the κ-parameter. The Quadratic
Upwind Interpolation for Convective Kinematics (QUICK) scheme, developed by Leonard [88] and for which κ= 1/2, was
used for wetted vortex simulations. This choice was made based on experience at MARIN and generally accurate results
as shown in [89, 90]. At MARIN, the model of choice for cavitating simulations is the limited QUICK scheme (T. Lloyd,
personal communication, April 2019), developed by Hoekstra [91]. The limited QUICK scheme extends the linear QUICK
scheme with a flux-limiter λ that ensures the boundedness of the solution in regions with large gradients. The equations for
the face value ϕ f of both schemes are given in Appendix C.3.
The pressure is calculated from the velocity field using a pressure-correction type method. The system of equations can be
written in a simplified form as:

Ax = b, (2.114)

where the A matrix contains the operators of the velocity and pressure terms in x and b contains the force terms. The
non-linear iterative method then solves this system of equations as:

xk+1 = xk +γÃ−1
k (b − Ak xk )︸ ︷︷ ︸

residual

, (2.115)

where γ is the explicit relaxation parameter, and the last term is the residual at time step k. The approximation method
of the inverse of the A matrix; Ã−1, depends on the solver choice (Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) or Fast RANS Equations solver for Ships and Constructions Offshore (FRESCO)). The FRESCO solver is based
on the SIMPLE algorithm, but the latter differs from the former in i) the order in which explicit relaxation is applied and ii)
the calculation of the residuals.

Relaxation of the iterative solution process can be used to increase the robustness, but slows down the convergence.
Two kinds of relaxation can be specified in REFRESCO: i) explicit relaxation of a variable and ii) implicit relaxation of an
equation (system). Explicit relaxation (i.e. changing the γ parameter) specifies how much of the solution at the next time
step should be used in order to avoid large oscillations of the variable. Implicit relaxation increases the diagonal of the linear
system so that it becomes easier to solve. Implicit relaxation can only be added in combination with explicit relaxation.
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2.7. Conclusions
The different turbulence models and their respective merits and shortcomings showed that the EARSM and IDDES model are
most promising for the accurate representation of the line vortex. The complicated nature of the EARSM made it difficult to
estimate the gain with respect to the SST model. The curvature-corrected form of the former is implemented in REFRESCO,
but ambiguous results and the ad hoc nature of standard curvature corrections (e.g. Dacles-Mariani) led to the decision not to
apply a correction for the SST simulations.

The Lamb-Oseen and Rankine analytical vortex models highlighted the importance of the tangential velocity magnitude
and profile inside the vortex core for the value of the minimum pressure on the vortex axis. The Lamb-Oseen vortex will
specified as an inflow condition as it is a direct solution of the (laminar) Navier-Stokes equations. The Q-criterion was chosen
to identify the vortex as it is readily available within REFRESCO and widely used in literature.

The multiphase flow will be solved using a VOF approach, assuming a homogeneous mixture of vapor and liquid inside
the domain. The Schnerr-Sauer model was selected for the cavitating flow cases as it is the most-used for cavitating flow
simulations within MARIN. The fact that many dynamic aspects of the cavity behavior are neglected, is commonly accepted,
as is the simplification to incompressible flow. It is still unclear within the community as to what the interplay is between
cavitation (models) and turbulence (models). The eddy viscosity is known to dampen the shedding of sheet cavities and cor-
rections like the Reboud correction are often applied for RANS models, but no conclusions with respect to vortex cavitation
could be found. The self-oscillatory behavior of the cavity, caused by the interplay between centrifugal forces and ambient
pressure fluctuations, is probably also dampened by the eddy viscosity. The Reboud correction is therefore applied for the
EARSM in the cavitating vortex case. An important hypothesis that was found, is that the VOF method is expected to affect
the representation of the cavity more profoundly due to the smearing of the interface. Furthermore, despite the knowledge that
pressure fluctuations influence the cavity behavior, they are generally neglected. The square root of the pressure is assumed
in literature to be correlated to the turbulent kinetic energy.

The theoretical basis for the spectral analysis of cavity dynamics was provided in this chapter. Modal deformations could
be identified in previous research by dispersion lines relating to the inertial (Kelvin) waves on the cavity interface. The ana-
lytical dispersion lines were incorporated in the post-processing routine to apply them to the results of the cavitating vortex.

From the theory regarding the V&V procedure, it was established that the discretization uncertainty should be two orders
larger than the next-largest uncertainty for the uncertainty estimate to be valid. The statistical uncertainty of the results will
be assessed using the TST-B method, which allows an accurate determination of the length of the start-up effect and the use
of statistically-converged time-averaged values. The multi-variate metric method was found to be applicable to validate the
numerical results using the experimental measurements.

The next chapter will present the numerical set-up, with a strong focus on the determination of the domain as well as the
tuning of the inflow condition. The post-processing procedure for the analysis of cavity dynamics is also discussed in detail.





3
Simulation set-up

This chapter comprises the information regarding the domain and the general settings used in the computations. The dis-
cretization of the domain and the generation of the grid are discussed first, as well as the boundary conditions that were
applied. The second part of this chapter contains the procedures for data processing (post-processing). Section 3.2 starts
off with the way in which variables were extracted from REFRESCO and defines their normalized values which are used
throughout Chapters 4 and 5. The spectral analysis of the cavity requires the extraction of isocontour data from REFRESCO
at specified intervals. The way in which this data was processed, is outlined in detail in Section 3.2.4. Section 3.3 and
Section 3.4 contain the investigation of the domain length and the tuning of the inflow condition respectively.

3.1. Computational domain
First, the validation test case is introduced, including the fluid properties and the uncertainty that was reported. This is
followed by the diskretization of the domain in time as well as the grid generation and the used boundary conditions.

3.1.1. Test case
The geometry of the Venturi tube, consisting of a converging nozzle, a parallel section (the throat) and the diverging nozzle,
was based on the experimental research by Rudolf et al. [8]. The exact dimensions of the Venturi section, provided in
Table 3.1, were obtained in personal correspondence with the main author (P. Rudolf, personal communication, January 25,
2019). A two-dimensional sketch of the entire computational domain can be found in Figure 3.1a.

Table 3.1: Geometrical details of Venturi section of domain. C-nozzle is converging nozzle, D-nozzle is diverging nozzle.

dinlet /m dthroat /m lC-nozzle /m lthroat /m lD-nozzle /m

0.053 0.030 0.050 0.060 0.090

The experiments in [8] were carried out for wetted and cavitating flow conditions and the axial and tangential velocity
profiles were measured in radial direction at a plane in the middle of the Venturi throat. The velocities were measured using
an Laser-Doppler Velocimetry (LDV) technique, which could not consistently measure velocities inside the vapor core due to
reflections of the laser at the cavity interface. This meant that only the wetted flow measurements could be used for validation
purposes of the present simulations. The uncertainty of the velocity measurements was not explicitly given, but were said to be
in the order of the velocity fluctuations (P. Rudolf, personal communication, January 25, 2019) and is therefore expected to be
small. The flow rate at the inlet was Q̇ = 4.56 ls−1 for the wetted flow conditions, with an uncertainty of Uexp = 5×10−5 ls−1.
The same geometry was used for cavitating flow simulations at a higher flow rate of Q̇ = 10.00 ls

−1. No information was
provided regarding measured turbulence intensity inside the flow. For this reason, the standard values of REFRESCO were
specified as uniform distributions at the inlet. The turbulence intensity I = 1 % and eddy viscosity ratio νt /ν= 1 correspond
to low turbulent conditions.

3.1.2. Domain discretization
A second-order implicit time-discretization scheme using three time levels was selected. This is the highest order time-
discretization possible using REFRESCO and is the default option. The interpolation method can be found in Appendix C.1.

The entire control volume can be divided into an inlet section, the converging nozzle, the throat, the diverging nozzle
and the outlet section. The influence of the length of the inlet and outlet section was investigated in preliminary simulations,
which are discussed in Section 3.3. The geometry, provided in Figure 3.1a, is characterized by sharp edges at the inlet and
outlet of the throat. These sharp edges lead to large local pressure and velocity gradients and are potential cavitation sites. In
the provided experimental results [8], no mention was made of issues regarding the sharp edges of the geometry. Instead, the
choice of making the edges sharp was made deliberately to force boundary layer transition [8].

31
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(a) 2D slice (x y-plane) of the domain. (b) Perspective view including boundary conditions.

Figure 3.1: Sketches of the computational domain.

3.1.3. Grid generation
A structured grid with OH topology, as seen in Figure 3.2a, was constructed using POINTWISE. The topology was chosen
based on a comparison study [92], which highlighted the benefit in accuracy and computational cost compared to O and
H-type grids. The same topology was used in the scale-resolved simulation of a turbulent swirling vortex in a suddenly
expanding pipe by Javadi & Nilsson [93]. The grid was constructed as a single block so that no hanging nodes were present
that might lead to convergence issues.

(a) Cell distribution at section in the middle of Venturi throat. (b) Cell distribution in streamwise direction, showing clustering of cells in the Venturi.

Figure 3.2: Overview of cell distribution for the grid series. Shown images are from coarsest M1mesh.

As can be seen in Figure 3.2, the throat and diverging nozzle section were most refined, followed by the converging nozzle.
The inlet and outlet sections have relatively large spacing in longitudinal direction. The outlet section is slightly coarser to in-
crease numerical diffusion towards the end of the domain, thereby avoiding numerical issues caused by fixing the pressure at
the outlet. This restrictive boundary condition was required to obtain convergence. The walls of the Venturi were resolved up
to the viscous sublayer (y+ < 1) and the growth in the first 4 boundary layers was limited to 1.2 in wall-normal direction based
on requirements for Large Eddy Simulation (LES) commonly applied in the industry. The level of refinement in streamwise
and circumferential direction (measured by x+ and z+) was based on staying around the 2 million cell limit on the coarsest
mesh to limit the computational expense. The streamwise resolution x+ was prioritized slightly due to the strongly convective
character of the flow and high axial velocities in the throat, as well as the significant cost of increasing the z+ resolution.

The final grid series M1, M2, M3 and M4 was created using the findings from the domain length study in Section 3.3,
with slightly different settings to improve the quality of the mesh and to reduce the number of cells for the verification study.
Results for the prediction of pressure and tangential velocity showed practically no differences between both grids so that the
modified version M1 was refined in three steps to obtain the M2, M3 and M4 grids. The refinement factor in every direction
was 1.25, based on common practice at MARIN. The number of cells for the three grids, and characteristic length scales x+,
y+ and z+ are given below in Table 3.2 for a flow rate of Q̇ = 10.0 ls−1; the higher flow rate used for the cavitating flow
analyses.
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Table 3.2: Characteristics of the meshes used for the verification study of the wetted vortex.

Grid # cells in millions x+ y+ z+

M1 1.89 220 0.65 710
M2 3.71 176 0.52 568
M3 7.26 141 0.42 454
M4 14.37 113 0.34 364

3.1.4. Boundary conditions
The no-slip boundary condition was specified at the wall of the venturi, as can be seen in Figure 3.1b. The pressure was
specified at the outlet as pout = 0. The reference experimental results by Rudolf et al. [8] were obtained using a swirl
generator mounted in front of the converging section. Modeling of this swirl generator was outside the scope of this thesis
and the resulting profile had to be replicated using the swirling inflow condition.
In multiple research it was found that the velocity field of the vortex which originates at the tip of a wing can be relatively
well-described by the Lamb-Oseen vortex [2, 50]. The Lamb-Oseen vortex was also used as a boundary velocity field in [6, 7]
which both numerically studied the development of a line vortex inside a venturi. The Lamb-Oseen vortex is a laminar vortex
model, which decays with increasing viscosity and whereby the radial velocity is assumed to be negligible. The definition
for a two-dimensional Lamb-Oseen tangential velocity profile uθ(r, t ) as derived by Bosschers [2] was previously given in
Section 2.4.1 but is given below for the reader’s convenience:

uθ(r ) = Γ

2πr

[
1−βR exp

(
−αR

r 2

r 2
v

)]
. (2.96 revisited)

The parameter βR = 1 for a non-cavitating vortex. Cavitation is only expected to occur in the contraction, therefore there is
no physical reason to use the cavitating version of the Lamb-Oseen vortex specification at the inlet. This equation can be
rewritten in a form that is more convenient to apply as a boundary condition, using that the tangential velocity will reach a
maximum at the edge of the viscous core radius r = rv :

uθ,max(r = rv ) = Γ0

2πrv

(
1−exp{−αR }

)
, (3.1)

so that Equation (2.96) can be rewritten as

uθ(r ) = uθ,max

1−exp{−αR }

rv

r

[
1−exp

(
−αR

r 2

r 2
v

)]
with r ∈ [0,rinlet] (3.2)

The tuning of the inflow conditions to match the experimental flow condition is described in Section 3.4. The boundary
conditions are specified in Figure 3.1b.

3.2. Data processing procedure
The extraction of flow variables is treated first, followed by the normalization procedure. The processing needed for assessing
the cavity dynamics from a spectral point of view is treated lastly.

3.2.1. Extraction of flow variables from REFRESCO
Various locations of interest where data is saved, called monitors, were defined before the start of the simulations. Two
types of monitors were used: line monitors (L), which only write data over a single line and disc monitors (P), which write
data in a circular two-dimensional plane and automatically calculate calculate vectors in a polar coordinate system. The
disk monitors were used for the analyses in Chapters 4 and 5. The exact locations of all monitor lines/ planes are given in
Table 3.3 and sketched in Figure 3.3. Plane A is defined by the measurement location of the velocity angle in experimental
measurements and is placed 0.037 m in front of the converging nozzle. Line monitors were normal to the xz-plane (i.e. z = 0).
For wetted flow, the disk monitors used a first-order nearest cell interpolation without updating the (r,θ) coordinates as this
was not possible in REFRESCO. Line monitors used the same interpolation method but with updating the coordinates. The
interpolation methods were changed to a second-order nearest cell-gradient interpolation in cavitating vortex simulations,
following the observations made during the verification study, see Section 4.2.

3.2.2. Analyzed flow variables
The general flow variables that were analyzed for the wetted flow case were: pressure p, velocity u and the modeled turbulent
kinetic energy kmod. The flow variables were averaged in time following the Transient Scanning Technique (TST)-B method



34 3. Simulation set-up

Table 3.3: Longitudinal position of monitor lines & planes.

Designation x-position /m Type

O 0 line
O1 0.053 plane, line
A 0.228 plane
B 0.315 plane, line

B1 0.330 line
C 0.345 plane, line

C1 0.360 line
D 0.375 plane, line

D1 0.390 line
D2 0.405 line
E 0.420 plane, line

Figure 3.3: Indications of monitor location.

to ensure statistical convergence of the average, see Section 2.5.1, and in tangential direction, implicitly assuming an axisym-
metric vortex. The graphs in this work are plotted using non-dimensional forms of the flow parameters. The non-dimensional
forms ϕ∗ of the flow variables ϕ are given by:

u∗ = ui

u∞
(3.3)

Cp = p
1/2ρu∞

(3.4)

Ω∗
i = Ωi dthroat

u∞
(3.5)

k∗
mod =

kmod

u2∞
, (3.6)

where dthroat = 0.030 m and u∞ = Q̇/(2πrthroat) is the flow rate divided by the area of the Venturi throat.

3.2.3. Fluctuating variables
The fluctuating components of the pressure p ′ and velocity components ui were calculated by subtracting the time-averaged
value of the pressure p̄ and velocity ui components. This allowed for the calculation of the resolved Reynolds stresses
τi j , res = u′

i u′
j and resolved turbulent kinetic energy kres = 1/2(ū′2

i ). The resolved turbulent kinetic energy was nondimen-
sionalized in the same way as kmod.

3.2.4. Assessment of cavity dynamics
Data extraction
The data was extracted from PARAVIEW using the co-processing capability built into the current version of REFRESCO.
Co-processing allows the user to specify a certain (filtered) part of the domain at a frequency specified before the simulation.
The goal was to analyze the centerline and diameter variation in space and time, which was accomplished by writing the
isocontours of αvap = 0.50 and αvap = 0.90 at a frequency of approximately fs = 2500 Hz. The Nyquist frequency, defined
as the largest identifiable frequency by a Fast Fourier Transform (FFT), is therefore equal to fN = 1250 Hz. This is half of
the Nyquist frequency used in the work by Bosschers [2], but still significantly larger than the largest dominant frequencies
identified in that work. Due to the low-frequency characteristics of tip-vortex cavitation (i.e. 30-100 Hz), it is not expected
that a higher frequency should be required. There is no information regarding the expected frequencies in this numerical case,
so the value for the sampling (and related Nyquist frequency) are a first estimate only and the obtained results will shed more
light on the requirements for further studies into this subject.
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The data was extracted using the PARAVIEW-PYTHON coupling and further processed in PYTHON to obtain values for the
space- and time dependent diameter dc and centerline cline location, visualized schematically in Figure 3.4a. The isocontours
of αvap = 0.50 and αvap = 0.90 were sliced by two orthogonal planes (y-normal and z-normal) to obtain a similar set-up as
in the processing of experimental data by [13] and [2] where two cameras were used. The phase difference between both
slices can be assessed in this way. The sharp edges of the geometry lead to significant sheet cavity development as well as
cavity shedding in the diverging nozzle. These cavities were filtered out by excluding all points laying outside a [0.85×rthroat]
interval from the geometry centerline (y, z = 0), see Figure 3.4b. The point cloud that is obtained as a result of slicing the
isocontours, is not ordered and the spacing is not uniform. Additionally, the diameter and centerline need to be calculated for
a set number of (axial) locations, irrespective of the cavity location and extent. The cavity diameter and centerline are there-
fore interpolated to axial locations x ′, spaced half a cell-width (as specified in the Venturi throat) apart, spanning a distance of
1.5 throat lengths (from the end of the converging nozzle until half a throat-length after the start of the diverging nozzle). A
linear interpolation is performed to obtain a positive y ′+ and negative y ′− spanwise coordinate (z/y value w.r.t. the x-axis) of
the cavity, using the closest points for each quadrant. This is shown schematically in Figure 3.4c. This method is not accurate
near the end of the cavity due to the inwards folding shape, so that that part of the domain cannot be used in the analysis.
Since the extent of the cavity is not known in this part of the process, it has to be removed in the next step. Whenever an
interpolation point could not be found for a quadrant within one cell length distance, it is assumed that there is no cavity
and diameter and centerline are set to zero. The diameter is then defined by the absolute sum of the y ′+ and y ′− coordinates,
whereas the location of the centerline is determined by the half the regular sum of both. The diameter and centerline values
are subsequently written for each sampled time step and for both planes.

(a) Workflow for extraction of cavity diameter and centerline
data.

(b) Sheet cavity removal.

(c) Interpolation method.

Figure 3.4: Illustrations of the post-processing of the data used in the cavity dynamics assessment for the cavitating vortex. Flow direction is in positive
x-direction in b) and c).

Power spectra and transformation to wavenumber-frequency space
Both one-dimensional (time or space) and two-dimensional (time and space) Power Spectral Density (PSD) analyses were
carried out, analogously to the work of Bosschers [2]. All one-dimensional spectra and the two-dimensional phase difference
spectra were obtained using a segmented and windowed approach. The entire signal, without applying a window function,
was used to determine the Cross-power Spectral Density (CPSD) in wavenumber-frequency space. This was done to increase
the resolution of the power spectra.

The time and space sequences were each split into segments half their length. The segment overlap was 75 % as in [2]
and a Hann window was used to reduce signal leakage. Zero-padding was applied after windowing the segments to increase
the number of points for the FFT to the nearest power of two. This is done to improve the performance of the FFT method.
The number of points used for the FFT on each segment differed between the simulations. A two-dimensional Hann window
was applied for the two-dimensional FFT, and the overlap was also 75 % in both space and time in that case. The fluctuating
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values, obtained by subtracting the time-averaged value from the instantaneous value, were used for the two-dimensional
spectra.

The CPSD was calculated from the FFT of the datasets for the z-normal and y-normal plane and will be represented in
decibel (dB) values as:

CPSD(kz , f ) = 120+10log10

(Gtop(kz , f )G∗
side(kz , f )

d 2
c

)
, (3.7)

where G(kz , f ) refers to the two-dimensional FFT of r ′ and G∗(kz , f ) is the complex conjugate. The dB-valued PSD was
obtained in a similar way:

PSD(kz / f ) = 120+10log10

(
S(kz / f )S∗(kz / f )

d 2
c

)
, (3.8)

where S and is the single-sided spectrum amplitude and its conjugate S∗. The phase difference was calculated from the
cross-spectrum G(kz , f )x y as the angle between the real and imaginary parts of the spectrum.

3.3. Investigation of required domain length
The determination of the inlet and outlet length was the first step in building the grid series. Three different inlet lengths
(2.5, 5 and 7.5 ×D) were studied, combined with two different lengths for the outlet (7.5 and 10 ×D, D = dinlet = 0.053 m).
The subscript notation is used for the inlet lengths and the superscript for the outlet lengths when referring to a certain grid;
MOUT

IN . The average cell distance was kept the same for all six options, such that an increased length implied a larger number
of cells. The simulation parameters were the same for all cases and are given in Table 3.4. An older version of the inflow
boundary condition used the swirl number instead of the circulation. Swirl is the ratio of the streamwise transport of angular
and axial momentum and is expressed by the swirl number Sn. The swirl number will be elaborated upon in Section 3.4.1 as
it is of larger importance there. The swirl number specified for the domain length study was about twice as large as the final
value used for the wetted and cavitating vortex simulations.

Table 3.4: Flow variable values for domain length study.

Flow variable Symbol Value Unit

Flow rate Q̇ 8.11 ls−1

Velocity in throat u∞ 11.47 ms−1

Reynolds number Rethroat 605600 -
Swirl number Sn 0.234 -
Viscous core size rv /rinlet 0.2 -
Turbulence intensity I 1 %
Eddy-viscosity ratio νt /ν 1 -

The k−ω Shear Stress Transport (SST) model was used as the turbulence model. Initial simulations indicated that an unsteady
approach was required to obtain converged solutions for the wetted vortex case. As this was too expensive for this domain
study, a steady simulation was run for the six different grids, where for all grids the largest velocity residual (L∞) was of
O(10−3) after 6000 iterations. This means that the results are not sufficiently converged, however the residuals stagnate
around this value. The different grids, along with their respective number of cells, are given below in Table 3.5. Despite this
lack of convergence, any large difference between grids still indicates whether respective inlet or outlet length is enough or
not. The different grids are shown in Figure 3.5.

Table 3.5: Designation of grids for inlet-/outlet length sensitivity study.

Designation Inlet length [×D] Outlet length [×D] Number of cells [×1M]

M7.5D
2.5D 2.5 7.5 2.17

M10D
2.5D 2.5 10.0 2.30

M7.5D
5D 5.0 7.5 2.25

M10D
5D 5.0 10.0 2.39

M7.5D
7.5D 7.5 7.5 2.33

M10D
7.5D 7.5 10.0 2.47



3.3. Investigation of required domain length 37

Figure 3.5: Two-dimensional sections of grids used in the domain length study.

3.3.1. Results of length sensitivity study
The results are compared at four locations: at the inlet of the converging nozzle, and at plane B, C and D. All data was
obtained from PARAVIEW slices at the final time step and averaged in tangential direction based on the axisymmetric nature
of the line vortex.

The spatially-averaged values for the axial velocity are presented in Figure 3.6. Apart from the geometry with the shortest
inlet length, there seems to be no influence of the outlet length on the axial velocity. There are significant differences between
M2.5D and the other cases. The grids with a longer inflow length (M5D & M7.5D ) predict a wake-like profile in Figure 3.6a,
which is not present for the short inlet. In the middle of the contraction, Figure 3.6c, the shorter inlet length causes a jet-like
profile to appear. This increase of axial velocity at the centerline is not visible in the other two cases. This jet-like profile was
also not visible in the experimental measurements.
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Figure 3.6: Profiles of spatially-averaged normalized axial velocity for the domain length study.

The radial velocity was three to four orders of magnitude smaller than the inflow velocity for all simulated cases. It was
therefore correct to neglect the influence of the radial velocity when specifying the Lamb-Oseen vortex as an inflow condition.
Again, the outlet length only significantly affects the results for the M2.5D grid. The differences in uθ are more pronounced at
the inlet and outlet of the converging nozzle; Figures 3.7a and 3.7b. The differences between the M5D and M7.5D simulation
show the influence of swirl decay between the inlet and the measurement section. This decay is due to viscous diffusion which
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reduces the vortex strength and moves the peak of tangential velocity outwards. The velocity distribution also behaves less
like the profile of a Lamb-Oseen vortex, indicating a secondary influence from the no-slip condition at the walls on the vortex
decay. The spatially-averaged profiles for the pressure coefficient are given in Figure 3.8. Just as for the velocity profiles, the
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Figure 3.7: Profiles of spatially-averaged normalized tangential velocity for the domain length study.

results obtained for M7.5D
2.5D and M10D

2.5D display a significant influence of the outlet length. The other two inlet lengths show a
very small difference between the pressure for the different outlet lengths. The differences between the M5D and M7.5D cases
are again attributed to the swirl decay, which leads to a higher tangential velocity in the center of the core for the M5D case
leading to a lower pressure coefficient. The differences between the outlet lengths are very small, and become smaller in the
Venturi throat (Figure 3.8c), i.e. the region of interest. Such a small difference might be attributed to the lack of convergence
of the simulations, which are of unsteady nature.

The magnitude of the vorticity, Figure 3.9, is predominantly determined by the axial vorticity, Figure 3.10. Again, the
shorter inflow length on M2.5D leads to a dependency on the outlet length, which is absent for the other geometries. The
decay of swirl for the longest inflow length M7.5D manifests itself also in the vorticity distribution, which is flatter than for
the M2.5D and M10D grids. The differences between the three different inlet lengths are less pronounced in the middle of the
throat.

The averaged radial distributions of the turbulent kinetic energy are provided in Figure 3.11. The same conclusions can
be drawn regarding the dependence of M2.5D on the outflow length. Differences are more pronounced after the converging
nozzle (Figures 3.11b and 3.11c) than before (Figure 3.11a). The differences between the M5D and M10D cases are again
attributed to the decay of swirl for the latter case, leading to significant differences in the radial turbulent kinetic energy
profile. The strain-rate tensor is larger for the M5D case due to the higher tangential velocity, which in return leads to a larger
production of turbulent kinetic energy by the SST model following the Boussinesq hypothesis. This explains the larger value
of the M5D compared to M10D after the converging nozzle.

3.3.2. Conclusions
The results of the grid with the shorter inflow length M2.5D was the only grid to display significant differences in predicted
quantities for the two outlet lengths (7.5D/10D). The axial velocity profile, which has a dip in the pressure close to the vortex
axis, visible in the M5D and M7.5D simulations, is predicted differently by the M2.5D simulation. These two observations lead
to the disqualification of the short inflow length. The differences between the M5D and M7.5D simulations can be explained by
the significant difference in the distribution of tangential velocity uθ, which has significant repercussions for the pressure. The
difference in tangential velocity was explained to be a result of swirl decay due to viscous diffusion. Since only the frictional
effects of having a longer inflow length are assumed to cause the differences between the M5D and M7.5D simulations, an inlet
length of M5D was chosen. No large differences were found between using a shorter or longer outflow section, apart from
a small difference in pressure. This difference in pressure is expected to be smaller for time-averaged unsteady simulations
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Figure 3.8: Profiles of spatially-averaged pressure coefficient for the domain length study.
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Figure 3.9: Profiles of patially-averaged normalized vorticity magnitude for the domain length study.

and the difference is relatively small compared to the differences between the inflow lengths. The M7.5D
5D grid was therefore

chosen for the final grid geometry.
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Figure 3.10: Profiles of spatially-averaged normalized axial vorticity for the domain length study.
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Figure 3.11: Profiles of spatially-averaged normalized turbulent kinetic energy for the domain length study.
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3.4. Tuning of the inflow condition
The specified size of the viscous core rv and the circulation at the inflow boundary Γ0 were tuned so that the angle of the
velocity vector could be matched to the one generated by the swirl generator at the inlet of the converging section.

β= atan(uθ/ux ) (3.9)

The angle β is used only in the case of a radial guide vane swirler. The benefit of using the swirl angle as a reference is
that it is independent of the Reynolds number for Re > 3000 [94]. This implies that the specified Lamb-Oseen vortex for
the higher flow rate Q̇ = 10.0 ls−1 should yield the same distribution of β as for Q̇ = 4.56 ls−1 at the measurement location.
This angle is measured most accurately close to the wall according to Steenbergen & Voskamp [95]. The velocity profile in
[9] was measured at plane A. It was not possible to achieve the same velocity angles close to the hub of the swirl generator
(0.4 ≤ r /rinlet ≤ 0.6). The numerically obtained velocity angles agree better with the experimental values towards the wall,
except close to the wall; i.e. r /rinlet ≥ 0.92. The achieved distributions are compared to the experimental measurements in
Figure 3.12 for both flow velocities. The tuning parameters in Table 3.6 were obtained by trial and error after assessing the
result after 6000 time steps. The data was not time-averaged. Table 3.6.
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Figure 3.12: Comparison of velocity angles for different values of the circulation Γ0 and viscous core radius rv /rinlet at plane A.

Table 3.6: Lamb-Oseen characteristic parameters for flow rates used in wetted and cavitating vortex simulations.

Parameter Q̇ = 4.56 ls−1 Q̇ = 10.0 ls−1

rv /rinlet 0.05 0.05
Γ0/10−2 m2s−1 3.75 8.22
uxinlet / ms−1 2.067 4.533

3.4.1. Swirl decay
Tuning the parameters in Table 3.6 was not straightforward, as the exact amount of decay and the influence of the wall could
not be determined. The core radius rv was more difficult to tune than the circulation Γ0, which simply increased or decreased
the tangential velocity over the entire radius. The decay of swirl from the inlet to the measurement location A was investigated
to be able to tune the viscous core radius more accurately. The streamwise decay of swirl is expressed by the Swirl Intensity
Decay Rate (SIDR). The swirl number Sn was calculated using the definition by Gupta [96], excluding the pressure terms
and turbulent stress terms as they are not commonly included in the consulted literature:

Sn =
∫ ∞

0 ux uθr 2dr

R
∫ ∞

0 u2
x r dr

. (3.10)

Experimental research by Steenbergen & Voskamp [95] and more recent numerical results by Najafi et al. [97] show that
the SIDR decreases with an increasing Reynolds number, similar to the friction factor c f for pipes. This is due to a growing
capacity of the transfer of tangential momentum with an increasing Reynolds number, reducing the magnitude of the SIDR
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[97]. The Reynolds numbers in this work are of O(105). This is higher than the measurements by both Steenbergen &
Voskamp [95] and Najafi et al. [97]. The SIDR is therefore expected to be rather limited. Furthermore, Najafi et al. [97]
showed that the the variation in SIDR is more dependent on the swirl intensity than the Reynolds number.

The integral values in Equation (3.10) were calculated at all x-coordinates of the inlet using PARAVIEW. This means that
the values are integrated over the entire pipe cross-sectional area instead of the radius. Since the swirl number is a ratio of
both integrals, this is not expected to influence the results. The axial evolution of the swirl number is presented in Figure 3.13.
There is a negligible difference between the SIDR of the three vortices that are compared in Figure 3.13b. The profiles appear
to be parallel and shift upward if the initially specified circulation increases. This behavior was expected, but shows that,
for the range of swirl numbers that are of practical interest for this study, there is negligible influence of the initial swirl
strength on the SIDR. The Reynolds number is also 1.5 orders of magnitude larger than the numerical results of Najafi et al.
[97], which together with the small magnitude of the swirl number explains the similarity of the SIDR across the graphs in
Figure 3.13b.

The deviating behavior of the rv /rmax = 0.05 vortex close to the inlet of the domain in Figure 3.13a is caused by the
relatively low amount of cells around the symmetry axis. This is also expected to cause the lower instead of higher value of
swirl at the inlet compared to the rv /rmax = 0.10 vortex. In general, the rv /rmax = 0.05 and rv /rmax = 0.10 simulations show
a different behavior than the other two cases, which are parallel. This difference was investigated by looking at the evolution
of the vortex core diameter from the inlet towards the converging section. Based on vortex theory, the Lamb-Oseen vortex is
expected to decay with the square root of time based on viscous diffusion:

rv (t ) =
√

4αRνt t (3.11)

This is illustrated in the comparison between the theoretical decay following the relation in Equation (3.11) and the measured
viscous core radius in Figure 3.14. The viscous core radius was determined by determining the radial position r at which the
maximum tangential uθ is reached. The results indeed show that the vortex decays purely due to viscous diffusion, but that
there is a secondary effect due to blockage from the wall causing a deviation from the theoretical profile.

0 0.2 0.4 0.6 0.8 1
0.100

0.102

0.104

0.106

0.108

0.110

x/xinlet

S

rv /rmax = 0.05 rv /rmax = 0.10
rv /rmax = 0.15 rv /rmax = 0.20

Plane A

(a) Constant Γ0 = 3.75×10−3

0 0.2 0.4 0.6 0.8 1

0.100

0.110

0.120

x/xinlet

S

Γ0 = 3.5×10−3 Γ0 = 3.75×10−3

Γ0 = 4.0×10−3 Plane A

(b) Constant rv /rmax = 0.12

Figure 3.13: Comparison of axial swirl decay at Re = 340500.
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3.5. Conclusions
The computational domain was based on the Venturi tube used in experimental measurements by Rudolf et al. [8]. The sharp
edges are expected to lead to potential sheet cavitation at the front and back of the parallel section of the venturi. An OH-type
grid topology was chosen based on superior results for similar simulations and the grid was constructed from a single block.
The non-dimensional resolution in streamwise and spanwise direction (x+ and z+) could not be increased to the level of a
LES grid due to the constraint of avoiding local grid refinement and computational expenses. Four grids were constructed,
whereby the coarsest grid had just under 2 million cells and the finest grid about 14.5 million. The required length of the
parallel inlet and outlet sections of the domain was studied in a separate study. Three inlet lengths were assessed of which the
middle one was selected and the shortest of the two analyzed outlet lengths was chosen. The inlet boundary condition was
determined by a Lamb-Oseen vortex profile. The values of the circulation and the location at which the maximal tangential
velocity was reached, were tuned using trial and error to obtain velocity angles as close as possible to experimental values at
measurement location A. This study also highlighted the significant decay due to viscosity and identified a secondary influ-
ence of the wall on this decay.

Data of the analyzed flow variables was extracted from REFRESCO using monitor disks and lines at multiple locations
inside the venturi. Both monitors used first-order nearest-cell interpolation for wetted flow simulations, whereby the disk
monitor did not allow for updating coordinates to the cell centers from which the values were interpolated. The interpolation
method was changed to a second-order method incorporating the gradient for the cavitating vortex simulations. The isocon-
tours of the vapor pressure, needed for the spectral analysis of the cavity dynamics, were obtained using the co-processing
ability of REFRESCO. The link between PYTHON and PARAVIEW was subsequently used to determine the diameter and
centerline location at equally-spaced locations in streamwise direction. The procedure from Bosschers [2] was used to deter-
mine the parameters of signal segmenting and processing.

Having discussed all relevant literature in Chapter 2 and the numerical set-up in this chapter, all building blocks are present
to interpret the results for the wetted and cavitating line vortex simulations in the next two chapters.





4
Results of wetted vortex simulations

The goal of this chapter is twofold: first, it serves to outline which turbulence model is most suited to solve the flow in a
wetted vortex, more particularly in the vortex core. These findings will be compared to the cavitating vortex results in Chap-
ter 5, to determine whether they also hold for a cavitating vortex. The size of the vapor core depends on the pressure on the
vortex axis and the shape of the pressure profile in radial direction. The minimum pressure and profile shape were shown in
Section 2.2.3 to solely depend on the tangential velocity profile and its maximum value at the viscous core radius. For the test
case described in this thesis, the prediction of axial velocity and the gradient in streamwise direction are not as important as in
the case of a tip vortex. This is due to the fact that the pressure drop inside the Venturi is controlled mostly by the geometry,
which causes an increase of axial velocity.
The second goal of this chapter is to verify the performance of the Explicit Algebraic Reynolds Stress Model (EARSM) by
determining whether the solution is independent of the discretization in space and time. This verification is needed to con-
clude whether or not the EARSM is a suitable model for vortex flows, as i.a. Pereira [10] noted that Reynolds Stress Models
(RSMs) have high grid resolution requirements and i.a. Asnaghi [98] also stressed the importance of having enough cells
inside the vortex core.

The flow conditions of all wetted vortex simulations are summarized in Table 4.1. The results can be split into two parts,
where the first part concerns the comparison in predictions by the Improved Delayed Detached-Eddy Simulation (IDDES),
EARSM and k −ω Shear Stress Transport (SST) turbulence models. The second part deals with the verification study of the
results obtained with the EARSM model. The turbulence models were compared on M1 due to i) the relatively low compu-
tational cost, ii) the already known shortcomings of the SST model and iii) the verification study of the EARSM model that
is performed on all four grids. An additional simulation of the IDDES model was done on M2 to determine the improvement
when using a finer grid. The verification study was carried out using the EARSM, as the IDDES solutions are inherently
grid-dependent. The time step for the simulations was based on the numerical criterion that the maximum Courant number,
defined as Co = u∆t/∆x, should be at most equal to one to reduce the temporal discretization error. The maximum Courant
number occurred at the sharp edges of the Venturi throat. A higher Courant number (Co = 10) was chosen for the verification
study to reduce computational cost, after verifying that results were not affected by the time step increase.

Table 4.1: Overview of wetted vortex simulation parameters. Equal color indicates that the same parameter value is shared across simulations.

Simulation ∆t /10−5s Q̇ /ls−1 u∞ /ms−1 Rethroat /105 I νt /ν max (Co)

M1 SST
M1 EARSM 4.0
M1 IDDES
M2 IDDES 3.2

1.0

M1 Co10 40.0
M2 Co10 32.0
M3 Co10 25.6
M4 Co10 20.5
M4 Co12.5 25.6
M4 Co15.6 32.0
M4 Co19.5 40.0

4.56 6.45 3.4 1.0 1.0

10.0

4.1. Coarse mesh performance
In this section the results from the SST, IDDES and EARSM turbulence models are compared on the coarsest mesh M1.
The wetted vortex and the surrounding streamlines are visualized in Figure 4.1 and already indicate differences between the

45
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results of the three models regarding the prediction of the vortex size as well as showing the vortex instabilities in IDDES
and EARSM simulations. The vortices are visualized using the non-dimensionalized Q-criterion (see Section 2.2.4), so the
isocontours only represent connected areas of vorticity and do not give a direct indication of the viscous core size of the
wetted vortex.

Figure 4.1: Vorticity isocontours (Qcrit = 5) and velocity streamlines for the wetted flow vortices on M1 at t = 0.694 s, colored by axial velocity (yellow is
higher). From left to right: IDDES, EARSM and SST.

4.1.1. Convergence behavior
The SST simulation converged to the convergence criterion of L∞ = 1×10−6 for all flow variables within the fewest number
of iterations, followed by the EARSM and IDDES models. This behavior was expected due to the increased amount of model
complexity from SST to EARSM and IDDES as well as the scale-resolving properties of the latter. The iterative convergence
plots of the simulations for this coarse mesh comparison study can be found in Appendix D.1.1. A sudden increase of pressure
(≈ 5%) occurred in the course of the simulation, without affecting the other flow variables. This effect was caused by the
vortex becoming instable in the diverging nozzle. The vortex of which the end (in the diverging nozzle) started to rotate about
the vortex axis in the throat led to a considerable start-up effect in the EARSM and IDDES simulations. The SST simulation
did not show such unsteady behavior, and the vortex remained axisymmetric throughout the domain. The unsteady periodic
phenomenon which occurs, is analyzed more thoroughly in Section 4.1.5 due to its prevalence in all simulations in this thesis
(except the SST one). The Transient Scanning Technique (TST)-B plots used to determine the time-averaging period can be
found in Appendix D.1.2. The runtime, averaging period and corresponding statistical uncertainty are given in Table 4.2.

Table 4.2: Time-averaging information and statistical uncertainty for the coarse mesh comparative study of the wetted vortex. Ttotal indicates total runtime,
Tavg indicates period used for time-averaging.

Simulation Ttotal/s Tavg/s Ustat(uθ)/ % Ustat(ux )/ % Ustat(p)/ %

M1 SST 0.816 0.616 5×10−3 7×10−4 2×10−3

M1 EARSM 1.224 0.424 1×10−2 9×10−3 3×10−2

M1 IDDES 1.224 0.620 2×10−2 4×10−3 2×10−1

M2 IDDES 0.606 0.192 7×10−3 1×10−3 2×10−1

4.1.2. Flow field results
Velocity angles
The angle of the velocity vector, β, was compared at plane A, which is where the velocity angle was also measured for
the reference experimental data [8]. As can be seen in Figure 4.2, the different models agree from a radius of approximately
0.65r /rinlet onwards, both with each other as with the experimentally measured flow angle. There are differences visible closer
towards the centerline, where especially the IDDES model predicts a larger velocity angle and a more narrow vortex core.
Even though this could not be avoided by tuning the inflow condition in Section 3.4, the difference (caused by the stronger
viscous decay of the vortex in the Reynolds-Averaged Navier-Stokes (RANS) models) is expected to influence the velocity
field further downstream. The difference in the growth/ decay of modeled turbulence is apparent from Figure 4.3. This figure
shows that turbulent kinetic energy increases from the inflow boundary towards the Venturi section in SST and EARSM
simulations, but quickly decreases for the IDDES. The modeled turbulent kinetic energy in the IDDES starts decreasing as
soon as the local cell size is small enough to make the model switch to the Large Eddy Simulation (LES) turbulence length
scale. Given the similar trend of ω for the three models, the specific dissipation rate remains mostly unaffected by the change
in length scale. The effect is further investigated in Section 4.1.3.

Analyzed variables in Venturi throat
The normalized tangential and axial velocity are presented in Figure 4.4a and Figure 4.4b. Regarding the tangential velocity,
similar behavior can be noted for the EARSM and SST simulations, which both underpredict the tangential velocity in the
viscous core. The velocity gradient in the core is slightly higher for EARSM model, but then decreases and both RANS
models predict a similar viscous core size. The IDDES model matches the experimental measurement more closely, but still
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Figure 4.2: Angle of velocity vector measured at plane A for wetted vortex simulations on M1.
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Figure 4.3: Decay of turbulence in the inlet section for wetted vortex simulations on M1. Data was obtained from PARAVIEW at t = 0.816 s. Modeled
turbulent kinetic energy (left) and specific dissipation rate (right) are spatially averaged using slices with a radius of 0.57rinlet. Differences at x = 0 are due
to interpolation in PARAVIEW between the inlet patch and the first cell center in the field.

overpredicts the viscous core size, combined with a too low value of uθ at the viscous core edge.
Looking at the axial velocity, the IDDES shows a jet-like profile, i.e. an increase of axial velocity at the centerline, which was
not measured in the experiments. The EARSM and SST models show identical axial velocity profiles. The pressure coefficient
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Figure 4.4: Normalized tangential and axial velocity measured at plane C for the comparison study on M1 of the wetted vortex.

the reference location C is presented for M1 in Figure 4.5a. As both EARSM and SST models had similar predictions of
tangential and axial velocity, their pressure distributions are similar. The larger velocity gradient of the EARSM simulation
close to the centerline leads to a larger pressure gradient in the same region, but overall both profiles are almost parallel.
The IDDES predicts a stronger radial pressure gradient, as the tangential velocity is less diffuse. The larger velocity gradient
and higher maximum of tangential velocity lead to a more defined pressure-dip, with a lower minimum at the centerline.
Both EARSM and SST models slightly overpredict the tangential velocity at larger radii due to the diffusion, and the low
tangential velocity peak for the EARSM translates into the highest pressure coefficient. From r /rmax > 0.7 onwards, the
pressure coefficient profiles are parallel for all three models as the velocity profiles (and gradients) also match. The pressure
at the wall is clearly determined by a combination of the maximal tangential velocity, defining the minimum pressure, and
the velocity gradient, defining the pressure gradient in the radial direction.

The normalized modeled kinetic energy is shown in Figure 4.5b. As expected, the IDDES model hardly predicts any
modeled turbulence in the vortex core, whereas the SST model predicts a slightly decreasing but substantial amount of
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turbulent kinetic energy throughout the vortex core. The EARSM behaves somewhere in between: a larger turbulent kinetic
energy for most of the domain, but a strong reduction (although not to zero) close to the centerline. As highlighted by
Liebrand [5], the reduction is linked to the space-dependent value of Cµ, which through the relations in Equations (2.27),
(2.29) and (A.25) Cµ = f (1/ω2) instead of f (1/ω) for the SST model. The increased dissipation ω inside the viscous core
therefore leads to a larger reduction of νt and modeled turbulent kinetic energy kmod.
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Figure 4.5: Pressure and turbulent kinetic energy measured at plane C for the comparison study on M1 of the wetted vortex.

The relation between pressure and velocity for a Lamb-Oseen vortex was used to determine an approximate Cp curve for
the experimental results (even though they were not measured). A Lamb-Oseen velocity profile was first fitted through the
experimental results, and the pressure distribution was subsequently obtained from:

∂p

∂r
= ρ

u2
θ

r
, (4.1)

which in itself is derived from the conservation of momentum in the radial direction. The constant that accompanies the
integral of the Right-Hand Side (RHS) of Equation (4.1) was determined such that the pressure matches the IDDES value at
the wall. The fitted profile is therefore only an indication of the model performance and is only used for qualitative comparison
of the predicted pressure dip at the centerline. The fits were obtained by adapting the circulation Γ0 and the viscous core size
rv of which the respective values are provided in Table 4.3. The corresponding graphs are given in Figure 4.6. The specified
circulation for the experimental fit and the IDDES is almost equal, whereas the circulation of the SST simulation was increased
to make the profile match a Lamb-Oseen vortex within the core.

The wetted vortex simulated by the IDDES model resembles a Lamb-Oseen vortex at all radial positions, whereas the
SST model only does so within the vortex core. The strong velocity gradient of the vortex predicted by the EARSM close to
the centerline, followed by the viscous diffusion of the vortex viscous core, leads to a deviation from the Lamb-Oseen profile
already close to the centerline.

Outside the viscous core, the IDDES model and the experimentally-fitted Cp distribution show the same pressure gradient.
Nevertheless, the minimum pressure coefficient is still overpredicted as a result of the too slight velocity gradient in the
viscous core. The increased circulation for the SST, used to fit the theoretical profile to the simulation, is the reason for the
higher value of the tangential velocity outside the viscous core and vice versa for the EARSM fit.

The fitted vortices are free vortices; i.e. not confined by a wall, leading to the differences closer to the Venturi wall. The
shape of the tangential velocity profile outside the viscous core does not impact the shape of the radial distribution of the
pressure coefficient, as the fitted pressure profile and the SST solution almost match each other. The largest difference in this
case is expected to be due to the uθ profile having a smaller gradient and a lower maximum value than the fitted one inside
the vortex core.

Table 4.3: Fitting parameters (circulation Γ0 and viscous core radius rv ) used to obtain Lamb-Oseen tangential velocity and pressure profiles in Figure 4.6

Simulation rv /rthroat Γ0/10−2m2s−1 u∞/ms−1

experiment [8] 0.170 4.20 -
M1 SST 0.400 5.70 6.4511
M1 EARSM 0.220 3.60 6.4511
M1 IDDES 0.215 4.25 6.4511
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Figure 4.6: Fitting of Lamb-Oseen tangential velocity (left) and pressure profiles (right) to experimental and numerical results for the wetted vortex.

4.1.3. IDDES modeling performance
The IDDES model showed promising performance in the previous section, especially compared to the EARSM which requires
similar computational effort. In order to assess the behavior of IDDES on a more refined grid, the model was also run on
M2 and will be compared to the result on the coarser mesh. The LES region of the model should allow for the sustenance of
resolved velocity fluctuations and turbulence away from the walls. The LES regions are assessed in the second part of this
section, followed by the resolved part of the turbulent kinetic energy and the resolved Reynolds stresses.

Performance comparison between grids
The runtime and averaging period for the M2 IDDES simulation were shorter than on the M1 grid. The runtime, averaging
period and statistical uncertainty were presented in Table 4.2 and the statistical convergence plots according to the TST-B
method can again be found in Appendix D.1.2. The IDDES results in Figure 4.7 show that the model predicts the tangential
velocity profile in the core slightly better on the finer M2 grid. This translates into a pressure minimum which is also lower.

The pressure coefficient outside the core in Figure 4.7c seems to be shifted slightly upwards on the coarser grid. This
is due to the increased amplitude of the pressure fluctuations caused by an instability of the vortex. This instability is just
occurring on the finer grid as can be seen in Figure 4.8 and the pressure was still lower on average. The parallel shift was also
noticed for the EARSM model mentioned in the previous section. The increase in oscillation amplitude occurred suddenly
and at different time steps between grids and models. The pressure was already statistically converged and the event could not
be captured using the TST technique. Formally one should continue the simulation, but experience with the other simulation
learned that the only effect is the upward parallel shift in the Cp graph. As the other flow variables were not affected, the
runtime was not increased due to the additional computational expense this would entail. The oscillation frequency will be
more closely examined in Section 4.1.5.

Ability to resolve turbulence
The LES and RANS regions are defined by the local turbulence length scale. The LES regions are visualized inside the
contraction for M1 and M2 in Figure 4.9.

The velocity fluctuations in axial, radial and tangential directions (u′
x , u′

r , and u′
θ
) were obtained by subtracting the time-

averaged value of each of the velocity components. The Reynolds stress tensor was subsequently calculated as −τi j /ρ =
u′

i u′
j . This tensor was time-averaged to determine the time-averaged resolved part of the turbulent kinetic energy, as k̄res =

1/2u′2
i . The statistical convergence of the normal components of the Reynolds stress tensor can be found in Appendix D.1.2.

According to Pope [16], at least 80% of the turbulence spectrum (i.e. the turbulent kinetic energy) should be resolved in
good LES simulations. It is clear from Figure 4.10 that this is not the case for the IDDES simulations on both grids. The
normalized resolved turbulent kinetic energy is of O(10−6−10−7), showing that there is virtually no turbulent content present
in the flow at plane C. The assessment of the statistical uncertainty showed that the uncertainty of the normal components of
the Reynolds Stress lies between 10 and 10000% for the different directions (x, r, θ) for the simulation on M1, whereas the
statistical uncertainty on M2 is of O(10−1). The differences between both grids therefore fall within the statistical uncertainty.
This is expected to be due to the periodicity of the velocity signals following the unsteady behavior of the vortex. While this
did not affect the integral quantities (except p), it does influence the calculation of the fluctuations using u′ = u − ū. A better
method would filter out this periodic variation, but was not implemented given the very small magnitude of the fluctuations,
that indicates the absence of resolved turbulence. The negligible amount of resolved turbulence is therefore the main takeaway
from the IDDES comparison on M1 and M2. The absence of fluctuating quantities is due to the lack of turbulence upstream,
which could be sustained in the LES area. The definition of the (global) hybrid RANS-LES models does not allow for
communication/ transfer of modeled RANS turbulence into the LES zone as resolved turbulence. Thus, the IDDES model
has no turbulence to resolve in the free-stream. The definition of the LES model links the local turbulence length scale to
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Figure 4.7: IDDES results on M1 and M2 measured at plane C for the comparison study on M1 of the wetted vortex.
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Figure 4.8: Temporal evolution of the pressure signal at (r,θ) = (5.4×10−3 m,0.1795 rad) in plane C.

Figure 4.9: LES regions in the contraction on M1 (left) and M2 (right) at t = 0.5712s, white indicates fully RANS region and red/black indicates LES region.

the maximum cell length ∆l (see Equation (2.35)) instead of the ratio
p

k/(β∗ω). The length scale is incorporated into the
dissipation term of the k-equation of the SST model that models the Subgrid-Scale (SGS) turbulence in the LES region.
Recalling that the dissipation term is defined as:

Dk
SST = ρβ∗kω= ρ

k3/2

lk−ω
, (2.34 revisited)
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the amount of modeled turbulent kinetic energy needs to decrease with ∼ 1/lk−ω. As previously shown, the specific dissipa-
tion rate is not affected by this change in length scale. This reduction of modeled kinetic energy is not balanced by increased
production of modeled turbulence, considering the weak contribution of the strain-rate tensor through the Boussinesq hypoth-
esis in the SGSs. Subsequently, the eddy viscosity νt ∼ k/ω also decreases sharply.
In fact, the absence of velocity fluctuations combined with a very low value of the eddy viscosity is similar to solving an
almost completely laminar (turbulence-free) vortex. This is in line with the findings of Liebrand [5] for a wetted tip vortex
modeled by IDDES and Delayed Detached-Eddy Simulation (DDES). In simulations which use a modeled swirl generator to
generate the swirling flow, e.g. [41], the velocity fluctuations originate from the blades of the swirl generator as demonstrated
in the results of Saini et al. [41] which are then maintained throughout the LES region, ensuring a turbulent vortex. To
generate velocity fluctuations without a geometry, the inflow must already contain turbulent structures. This can be achieved
by synthetic turbulence generating methods. The work of Klapwijk [42] is expected to be a valuable contribution for these
kinds of cases where turbulence cannot be otherwise generated.
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Figure 4.10: Comparison of resolved and modeled turbulent kinetic energy at plane C by the IDDES model on M1 and M2 for the wetted vortex.

4.1.4. Comparison to previous numerical results from literature
Rudolf et al. presented numerical results for the same experimental test case in [9]. Their results were obtained using a mesh
of 5 million cells, clustered around the centerline. The velocity at the non-slip walls of the Venturi tube was treated using a
wall-modeled approach. LES (with Smagorinsky SGS model), a RSM and the realizable k −ε (see [99]) turbulence models
were used. Velocity fluctuations for the LES model were generated using a spectral synthesizer. The obtained results did not
agree well with the experimental measurements. Both LES and RSM models predicted a vortex core smaller than the one
measured in experiments, while the RANS realizable k−ε model overpredicted the size of the vortex, probably owing to a too
large viscous diffusion of the vortex. There was a significant overprediction of the circumferential velocity uθ in Figure 4.11a
for all numerical models at larger radii (i.e. from r/rthroat > 0.37). The axial velocity ux in Figure 4.11b was also overpredicted
by all models outside this radius, with significant differences in the vortex core between the two-equation realizable k − ε

model and the more complicated RSM and LES models. The origins of the overprediction were not addressed by the authors.
The results from [9] are subsequently compared to the numerical results on M1 in the present research.

The RANS simulations presented in this thesis show the same shortcoming in predicting uθ and the viscous core size as
the realizable k −ε of [9]. A noticeable exception is close to the wall, where the current simulations do agree with experi-
mental measurements. The improvement closer to the wall could be due to the wall-resolved approach used for the current
simulations instead of the wall-models used in [9]. One hypothesis regarding the overpredicted uθ is that the excessive pro-
duction of k and subsequent high νt in the core leads to turbulent (numerical) diffusion of the vortex, increasing the tangential
velocity outside the core for models based on the Boussinesq hypothesis. This simple explanation is contradicted by the LES
and RSM results of Rudolf et al. [9] (RSM not shown, as similar to LES result), which predicted a significantly smaller
vortex core, indicating low diffusivity, but overpredicted uθ just as much at the larger radii. Furthermore, the EARSM results
presented in this thesis do not follow the (linear) Boussinesq hypothesis, but show similar behavior as the Boussinesq-based
realizable k −ε and SST simulations.

There are similarities between the IDDES and LES model in the prediction of ux as they both predict an increase of the
axial velocity in the core of the vortex. This increase of ux is also present for the RSM (not shown), showing a correlation
between the narrow viscous core (with a high tangential velocity at the edge) and the axial velocity inside it. Batchelor [100]
analyzed an inviscid fluid rotating as a solid body passing through a contraction and noted an increase in the axial velocity
close to the vortex axis. This increase is due to a centripetal force induced by the contraction, forcing the vortex lines to move
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radially inward, which in turn increases the rotational velocity around the centerline for material elements on the vortex line.
The vortex line is also transformed into a spiral which leads to a negative value of ∂ux /∂r in the throat. This transformation
was assessed qualitatively by investigating the shape of the streamlines in the contraction. There is a clear difference visible
in Figure 4.12 between the axial streamline gradient of IDDES and RANS models. The latter are much more stretched in
streamwise direction and the streamlines predicted by the IDDES model indeed seem to be more affected by the vortex core,
potentially indicating the presence of a larger centripetal force that increases the axial velocity at the centerline .

The experimental measurements show no such increase, but this might be due to the relatively large (0.4Dinlet) hub of the
swirl generator, which was positioned just in front of the converging nozzle and may have prevented a centripetal effect.
The high and much overpredicted tangential velocities and small vortex cores predicted by the RSM and LES simulations by
Rudolf et al. [9] may have overcome this, therefore also showing the increase in axial velocity. The realizable k −ε model
in [9] predicted a decrease in axial velocity close to the vortex axis. This behavior was not visible in any of the simulations
run for this thesis. Liebrand [5] noticed a similar decrease in axial velocity in EARSM simulations of the tip vortex that was
caused by the one-dimensional (i.e. streamwise) character of the turbulence inside the core. The velocity deficit was claimed
to be a consequence of the dominance of the shear stress in the streamwise direction. The realizable k −ε model substitutes
the Sxx value in the calculation of the x-component of the normal stress by the largest eigenvalue of the strain-rate tensor Si j

to satisfy the realizability constraint (positive normal stresses). The usage of the largest eigenvalue of the strain-rate tensor is
similar to the approach used in the definition of the Explicit Algebraic Reynolds Stress Model, indicating the possibility that
also in the case of the realizable k −ε model, the one-dimensional dominance of the turbulence in streamwise direction leads
to a reduction in axial velocity. Without further information on the Reynolds stresses from Rudoalf et al. [9], this cannot be
further assessed.
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Figure 4.11: Comparison of normalized tangential and axial velocity with numerical results of Rudolf et al. [9] measured at plane C for the comparison
study on M1 of the wetted vortex

Figure 4.12: Comparison of streamline gradient originating from the inlet between IDDES (yellow), EARSM (blue) and SST (brown). Background is a
vortex isocontour of Qcrit = 5 from M1 IDDES.
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4.1.5. Vortex instability and breakdown
As mentioned in the previous sections, all wetted flow simulations with the exception of the SST model, experienced a
sudden rise in pressure without large effect on the other flow variables. The rise in pressure occurred at different times for the
different simulations, although in all cases the initially steady vortex started rotating in the diverging nozzle as can be seen in
Figure 4.13.

Figure 4.13: Oscillatory behavior of the vortex tail for the M1 EARSM simulation. Time sequence is indicated by dark to light coloring of vortex identified
by Qcrit = 5. View is from exit of diverging nozzle to the front.

(a) Radial section of a tube containing a Precessing Vortex
Core (PVC), looking from back to front. Image adapted from
[101].

(b) Sketch of longitudinal structure of a PVC. Image adapted from [102].

Figure 4.14: Sketches of a PVC.

Even though the flow quantities u and k did not shift upwards in the same way as the pressure coefficient Cp did, Section 4.1.3
highlighted the periodic character that is also introduced in the velocity signal and influences the estimate of the resolved
turbulence. It is therefore important to understand what the cause of this oscillation is, not in the least to minimize its impact
on the simulations for used in the verification study.

The geometry used for these simulations was based on a study in the field of hydraulics and fluid dynamics in pumps
[8]. Those cases are known for the unstable phenomenon called a Precessing Vortex Core (PVC); the circumferential motion
of a vortex around its initial centerline axis. The same breakdown phenomenon is recurrent in combustion dynamics where
flame stabilization can be an issue, due to the unstable and highly dynamic character of a PVC. A PVC occurs due to large
centrifugal forces, appearing for sufficiently high swirl numbers (Sn > 0.6−0.7) combined with a central recirculation zone
[101]. The vortex breakdown occurring at the end of the PVC leads to pressure pulses and a general pressure drop (draft
surge). The precession direction, indicated by the sketches in Figure 4.14, is the same as the rotation of the vortex (i.e.
direction of axial vorticity).

When comparing the characteristics of a PVC and what occurs in the present simulation, the following observations can
be made regarding the i) central recirculation zone, ii) swirl number, iii) precession direction and iv) pressure drop in the
venturi:
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i) no zone with reverse flow is present in the current simulations,

ii) the swirl number (Sn ≈ 0.12) is much lower in the present simulations than typical range of swirl numbers for PVCs,

iii) the precession direction in the current simulations was the same as the direction of axial vorticity and

iv) the unsteadiness in the current simulations increased the pressure instead of lowering it.

The observed unsteadiness of the wetted vortex might be related to, but is not caused by the PVC phenomenon, considering
the differences w.r.t. theoretical characteristics of a PVC on three out of four criteria. The frequency corresponding to the
instability was assessed by calculating the one-sided Fast Fourier Transform (FFT) of the pressure signal at plane D and
E1. The signals were detrended by subtracting the mean value before the calculation. The peak in Figure 4.15 occurs at
a frequency of 5-6 Hz, but is rather small. The small magnitude indicates that the effect only has a small amplitude and
that, apart from the time needed for vortex to start oscillating, no important transient effects need to be accounted for in the
verification study discussed in the next section.
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Figure 4.15: Analysis of dominant frequencies in the pressure signal at measurement planes D and E for the wetted vortex simulation.

4.2. EARSM verification study
Simulations were initially run with a time step corresponding to a maximum Courant number of 1. Due to time constraints and
the similar performance of the EARSM and SST models, the difference was assessed between a Courant number of 1 and 10.
There was a virtually no difference between both time steps, so that the simulations for the verification study were performed
using a Courant number of 10. The method used to assess the discretization uncertainty, i.e. to verify the independence of
the result on the grid and the time step, requires at least five different grids and time steps, leading to the simulation matrix
displayed in Table 4.4. The simulations for the verification study were started from an EARSM simulation on M1 that had
run for about one flow-through time of the entire domain (corresponding to t = 0.408 s) to speed up the convergence process.

4.2.1. Flow field results
The velocity in axial and tangential direction is presented in Figure 4.16, showing little difference between the different
resolutions. Close to the centerline the coarsest grid (M1) does deviate from the others, which is expected to be to the limited
number of cells in this area combined with the setting of the plane monitor (further addressed in Section 4.2.3). Considering
the clustering of M1 and M3 as well as M2 and M4 results in the rest of the domain, local uncertainties are expected to be
higher for those points. The results for the axial velocity are virtually identical for the different grids, and the velocity profile
is almost flat throughout the width of the channel.

The pressure coefficient in Figure 4.17a also exhibits much less variation between meshes than the tangential velocity,

1The data was obtained using from EARSM simulations for the verification study, as the measurement planes D and E were not present in the M1 comparison
simulations.
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Table 4.4: Matrix of simulations performed for the verification study of the wetted vortex.

t/ti

h/hi 1.00 1.25 1.56 1.96

1.00 M4 Co10
1.25 M4 Co12.5 M3 Co10
1.56 M4 Co15.6 M2 Co10
1.96 M4 Co19.5 M1 Co10

albeit slightly more than the axial velocity. The turbulent kinetic energy again displays strong clustering of solutions of the
same meshes (i.e. M1 and M3, and M2 and M4) between 0.5 and 0.65 r /rthroat as can be seen in Figure 4.17b. This is a
location of strong gradients, enlarging the consequences of interpolation issues. An important conclusion is that an increased
number of points in the vortex core and an increased resolution does not change the amount of turbulent kinetic energy inside
the vortex core. The eddy viscosity therefore remains large enough to diffuse the vortex, despite the curvature correction
which is part of the EARSM model in the REFRESCO implementation. The result also shows that applying the curvature
correction does not yield sufficiently accurate results for the flow inside the vortex core. No significant differences were found
in the simulations on M4 with a higher Courant number.
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Figure 4.16: Profiles of normalized tangential and axial velocity measured at plane C for the grid convergence study of the wetted vortex simulation using
the EARSM.
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Figure 4.17: Profiles of pressure coefficient and normalized modeled turbulent kinetic energy measured at plane C for the grid convergence study of the
wetted vortex simulation using the EARSM.
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4.2.2. Iterative & statistical uncertainty
The iterative uncertainty for the different simulations is discussed first, followed by the statistical uncertainty. The value of
the statistical uncertainty and the averaging period are provided for the simulations and the convergence behavior is briefly
discussed.

Iterative uncertainty
The iterative uncertainty was not calculated explicitly, but all flow variable residuals converged to below 1×10−6 in the entire
domain (L∞ norm) for each time step. The iterative uncertainty was not further assessed, but given these residual values is
not expected to be significant relative to the other uncertainties. The convergence of the global residual L∞ is plotted for the
simulations on M3 and M4 with Courant number 10 in Figure 4.18. The iterative convergence plots for the other simulations,
which showed similar behavior as the M4 Co10 simulation, can be found in Appendix D.2.1. The residual of the entire
velocity vector u=

√
u2

x +u2
y +u2

z was plotted instead of the components to improve the clarity of the graph. The magnitude
is slightly larger than 1×10−6, but the individual components are all below this value. The graphs are not intended for detailed
inspection of differences in convergence between the different simulations, but to highlight the difference in general behavior
of the residuals for the different components. The more unstable behavior of the M3 simulation is notable however and shows
a degree of periodicity in the pressure L∞ residual. It might be the case that there is a single or a few bad cells that form
the issue, however this could not be analyzed further. Additionally, residuals are still sufficiently low, such that the impact of
these fluctuations is limited.
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Figure 4.18: L∞ residual for wetted vortex EARSM verification study. Triangular marks are used for the simulation on M3 and square marks indicate the
M4 simulation with Co = 10.

Statistical uncertainty
The statistical uncertainty for the different simulations was determined using the TST, where the signal was analyzed from
the last to the first time step (TST-B). The flow quantities are said to be converged if their uncertainty decays with 1/log(t ) in
time, i.e. parallel with the dashed gray lines in the graphs. The criterion of statistical convergence was applied only to uθ, as
this is the most critical flow variable in predicting the viscous core of the vortex and as there are measurement data to validate
the numerical result. The TST-B plots for the analyzed flow variables ux , uθ, and p are provided in Figure 4.19, where the
continuous lines indicate the part of the signal used for time-averaging, and the colored dashed lines indicates the discarded
‘start-up’ part of the signal.
Significant differences are visible in the convergence behavior of M3 compared to the other grids, as well as in the absolute
value of the statistical uncertainty between all grids. The statistical uncertainty was calculated for all meshes on the same
monitor point in the plane, hence the difference cannot be due to a difference in interpolation. The M3 simulation in particular
seems to have difficulty converging in the statistical sense. The averaging period for the M3 grid should in fact be even smaller
than what has been chosen to declare the results statistically-converged, but this would mean only using a few dozen samples.
Therefore, a longer averaging period was chosen based on the convergence of the pressure. The difference of the M3 grid
was also noted in the residual convergence, but as the settings were the same for all grids, and all grids were constructed in
the same way, no explanation has been found for the pronounced unstable behavior. The differences in the duration of the
start-up effect between the different grids might be attributed to the instability described in Section 4.1.5. The simulations on
M4 with a higher Courant number all display the same convergence behavior for the tangential velocity, but larger differences
are noted for the axial velocity and the pressure. The larger time step does seem to lead to an increase in the statistical
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Figure 4.19: Statistical uncertainty plots for uθ (left), ux (middle) and p (right) measured at plane C for the EARSM verification study of the wetted vortex,
obtained using TST-B. Lighter, dashed versions of the dark solid lines indicate removed start-up effect.

uncertainty when a shorter averaging period is used. The final averaging periods and corresponding statistical uncertainties
are given in Table 4.5.

Table 4.5: Time-averaging periods and statistical uncertainty of convergence study simulations of the wetted vortex.

Simulation Ttotal/s Tavg/s Ustat(uθ)/ % Ustat(ux )/ % Ustat(p)/ %

M1 Co10 0.816 0.068 2×10−2 4×10−4 1×10−2

M2 Co10 0.816 0.208 8×10−3 1×10−3 5×10−2

M3 Co10 0.816 0.307 3×10−2 3×10−3 5×10−2

M4 Co10 0.816 0.400 6×10−3 4×10−3 3×10−2

M4 Co12.5 0.816 0.399 6×10−3 5×10−3 4×10−2

M4 Co15.6 0.816 0.346 8×10−3 5×10−3 4×10−2

M4 Co19.5 0.816 0.326 6×10−3 5×10−3 4×10−2

4.2.3. Discretization uncertainty
The discretization uncertainty was determined following the procedure by Eça and Hoekstra, as explained in Section 2.5.2.
This method is incorporated in the discretization uncertainty tool developed by MARIN2, which was used to determine the
uncertainty and level of (grid- and time step) convergence for the axial and circumferential velocities as well as the pressure on
the four meshes. The discretization uncertainty of the turbulent kinetic energy was not assessed as there were no experimental
results that could be used to validate the result. The discretization uncertainty was assessed for 51 points in radial direction.
As before, results were circumferentially averaged and time-averages were calculated according to the determination of the
statistical uncertainty. The absolute value of the discretization uncertainty for M4 Co10 (which has the highest resolution) is
plotted in Figure 4.20 per point as an error bar on top of the predicted value of ux , uθ and Cp .

The uncertainties are smallest for the axial velocity and the largest for the tangential velocity. This is unsurprising as the
uncertainties based on the grid discretization should generally be larger for larger gradients. The largest gradients are found
in the tangential velocity profile, more specifically in the vortex core, which is indeed where the uncertainties are the largest.
This does not take away that there are certain points with much larger uncertainties than the rest. The outliers in the plots
of axial velocity and pressure are due to the interpolation method used to determine the discretization uncertainty. For the
other locally large uncertainties, the origin can be found in the interpolation method for the disk (circular 2D plane) monitors
combined with the OH-topology of the grid, which is subsequently investigated.

Influence of monitor interpolation method
The two first points (r = 0.02; 0.04× rthroat) having a very high uncertainty (250 and 77 % respectively) are strongly affected
by the circular distribution of monitor points on a square grid in the vortex core. This is combined with the inability of the
disk monitor to update the specified monitor coordinates to the coordinates of the (nearest) cell used for interpolation. The
effect of this is visualized in Figure 4.21. These illustrations, which are a sketched representation of the actual grid cells

2Tool can be downloaded here: (http://www.refresco.org/verification-validation/utilitiesvv-tools/).

http://www.refresco.org/verification-validation/utilitiesvv-tools/
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Figure 4.20: Error bars of the uncertainty of the flow variables assessed in the verification study of the wetted vortex. Profiles and uncertainties were obtained
on M4 Co10 and measured at plane C.

inside the vortex core as well as the exact monitor locations, demonstrate two important points. Firstly, the interpolation
of the circular distribution of monitor points inside the orthogonal (H-) grid led to significant oversampling in the tangential
direction close to the centerline, but not enough circumferential sampling points further outwards. The oversampling was dealt
with automatically by the spatial averaging. If the coordinates of the monitor points would be updated to the interpolated cell
centers, the accuracy should improve as a result of interpolation between the cell centers in the H-type grid area. The second,
more important issue that is highlighted, concerns the significant difference between the grids regarding the selection of the
nearest cell centers. The vortex core is the region with the largest gradients for uθ, which means that a small difference in the
location of the selected cell center has large implications for the value of uθ. The nearest cell centers used for interpolation on
the various grids were overlaid to show the relative difference in radial position in Figure 4.22a. The numerical consequences
(i.e. the predicted tangential velocity at the monitor points) is quantified in Figures 4.22b and 4.22c, where the horizontal
axis is the grid spacing w.r.t. the finest grid so that the grid results are displayed from left to right: M4, M3, M2 and M1. The
difference in the location of the monitor points shown in the sketches and the ones used for the uncertainty assessment is due
to the final step in the post-processing, which linearly interpolates the values from the monitor points to the radial positions
used to compare values between grids. The significant differences between the uθ values shown in Figures 4.22b and 4.22c
is clearly the main contributor to the large uncertainty at these locations. Similar issues occur also at locations further away
from the vortex core (0.68, 0.70, and 0.80 r /rthroat). The uncertainties for all points can be found in in Table D.4.
The uncertainty increase linked solely to the coordinates in the disk monitor not being updated, was quantified by comparing
the uncertainty at the same location (C) between a disk and a line monitor, which only differ in the updating of the coordinates
for the line monitor, and an increase in the number of points in radial direction for the line monitor (50 vs. 40). The
simulations with a higher Courant number were not taken into account for this assessment as no line monitors were written
for these simulations. The uncertainties for the disk monitor to which the line monitor values are compared, were also obtained
without taking the higher Courant number simulations into account. Therefore, these uncertainties are only based on grid
convergence and do not take into account the time step. The results obtained on the line monitor were averaged over the same
period in time and averaged at the same radial position for positive and negative values of y . The difference in uncertainty
between the disk and the line monitor for the three assessed flow variables is presented in Figure 4.23a, where a negative
value indicates a reduction of uncertainty w.r.t. the disk monitor. A point-by-point comparison of the calculated uncertainties
for both monitor types can be found in Table D.4. The line monitor has significantly smaller uncertainties for uθ at the first
two points (−205 and −36 %) and generally lower uncertainties than the disk monitor. The same is true for the other flow
variables, although the difference is again smaller. There are still locally large uncertainties present for the tangential velocity,
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Figure 4.21: Interpolation on disk monitor for monitor points at normalized radial positions r /rthroat = 0.026 (blue) and 0.051 (red) for the wetted flow
vortex. Cells are colored based on nearest monitor point.
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Figure 4.22: Cause and effect of non-updated nearest cell interpolation in the high-gradient vortex core region.

which may be due to the limitation of first-order nearest-cell interpolation. Within the time-frame of this research there was
no room to assess the possible uncertainty reduction using higher-order interpolation methods. Considering the implications
of not using updated coordinates, higher-order interpolation methods were used for the cavitating vortex simulations.
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Figure 4.23: Influence of updating monitor locations (line vs. disk monitor) on M4.

4.2.4. Validation with experimental results
Following the validation procedure by [82], the multivariate metric (see Section 2.5.2) can be used to determine the validation
uncertainty for the velocity profile. The large difference between the experimentally measured tangential velocity profile and
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the numerical solution already indicates that the result cannot be validated. Furthermore, the velocity profile described by the
EARSM simulations is not a valid Lamb-Oseen vortex, whereas a Lamb-Oseen profile could be fitted to the results of the SST
and IDDES simulations in Section 4.1.2. If a multivariate metric were to be applied to the entire velocity profile, there might
even be a relatively small value of uncertainty due to numerical values being closer to the experimental measurement of the
tangential velocity profile for r /rthroat > 0.5. This may lead to an incorrect interpolation as the vortex core is the important
part of the flow field, which is located in a limited region of the domain.

It was therefore decided to not apply the multivariate metric and conclude that the validation of the data is not possible
given the large difference with experimental results.

4.3. Conclusions
All wetted vortex simulations within the present study were characterized by an onset of vortex instability at a certain point,
except for the SST model. For the other turbulence models, the vortex started rotating inside the diverging nozzle, which led
to an increase of the pressure coefficient but did not affect other flow variables. It did however increase the computational
time necessary to obtain a statistically converged average for the flow variables. The vortex instability was shown to be not the
same as a PVC as its key features were different. The IDDES model predicted the tangential velocity in the vortex core better
than the SST and EARSM models as the viscous diffusion of the vortex was lower, leading to a smaller viscous core radius
and higher tangential velocity. Nevertheless, the predicted tangential velocity and pressure drop in the viscous core still fell
short of experimental measurements. The reduction of viscous diffusion for the IDDES could be traced back to the absence
of resolved turbulence combined with the dissipation of modeled turbulent kinetic energy, making the flow field essentially
laminar. The space-dependent coefficient Cµ in the EARSM successfully reduced the eddy viscosity and turbulence kinetic
energy close to the centerline, though not enough to prevent excessive diffusion of the vortex.
The results for the EARSM demonstrated a discretization uncertainty for the tangential velocity in most of the domain of
less than 10 %. Monotonic convergence was reached for all points, with second-order convergence for 14/51 points. Larger
local uncertainties were attributed to the non-updated monitor coordinates of the used disk monitor and shown to decrease for
results obtained by a line monitor with updated monitor coordinates. The discretization uncertainties for axial velocity and
pressure were respectively one and half an order smaller than for the tangential velocity. The statistical uncertainty was two
orders of magnitude smaller and the magnitude of the iterative uncertainty was not determined, but is expected to be even
smaller as the local residual L∞ ≤ 10−6 for all simulations and flow variables. Considering the above results, the solution ob-
tained with the EARSM model is not expected to improve on finer meshes or with smaller time steps regarding the prediction
of the viscous core size and the tangential velocity distribution within the vortex core. Given the large difference between
numerical and experimental tangential velocity in the viscous core, the results from the EARSM simulations could not be
validated. The convergence of the results for the EARSM does show that there are enough cells inside the viscous core, but
that the overprediction of turbulence makes this model unsuitable to simulate a wetted line vortex.

The results on the coarse mesh showed that the flow field of the wetted line vortex is best predicted by the IDDES model. The
flow field predicted by this model was almost laminar and the viscous diffusion subsequently lower. The EARSM solution
was verified and showed that the model was unable to reduce the production of turbulent kinetic energy inside the vortex core
also on the finest grid. Chapter 5 will demonstrate whether these finding also hold for the cavitating vortex simulations and
determine differences in the predicted cavity dynamics of both models using a spectral approach.



5
Results of cavitating vortex simulations

The aim of this chapter is to determine to what extent the conclusions drawn about the turbulence models in the wetted
flow case hold ground for cavitation and to what extent cavitation influences the differences between both models. Another
important goal of this chapter is to determine whether it is possible to capture the cavity deformations in a similar way as
Bosschers [2] did, provided that the cavity in this case also deforms in one or more of the deformation modes. This would
mean that Kelvin waves on top of the cavity interface can be identified by the post-processing code using analytical dispersion
lines plotted on top of the power density and phase difference spectra (see also Section 2.4.2). Given the identification of
deformation modes, the differences in the prediction of cavity dynamics of both Explicit Algebraic Reynolds Stress Model
(EARSM) and Improved Delayed Detached-Eddy Simulation (IDDES) turbulence models can be assessed. Fluctuations of
the cavity interface occur on small length scales, so that only the finest grids M3 and M4 were used. Both grids were used to
also get an indication of the grid-dependence of the flow field and the spectral results.

The iterative and statistical convergence behavior is briefly laid out first, followed by the discussion of the averaged flow
field at measurement location C for both turbulence models and meshes. The last part of this chapter contains the analysis
of cavity dynamics from a spectral point of view, by first identifying possible external sources of periodic excitation and
subsequently focusing purely on the cavity inside the vortex.

An overview of the simulation parameters for the cavitating vortex is provided in Table 5.1. The value of the cavitation
number was chosen based on another numerical study by Rudolf et al. using similar geometry [103] after consulting with
the author (P. Rudolf, personal communication, January 25, 2019), which indicated a cavitation number σ≈ 0.5 for this flow
rate. This was increased to σ= 0.65 to improve the convergence behavior and reduce the size of the sheet cavities originating
from the sharp edges of the Venturi throat. The cavitation number was controlled in the simulations by modifying the vapor
pressure of the liquid. The time step follows from a balance of the Courant number criterion Co ≤ 1 and computational
expense. Cavitating simulations used the flow field from a wetted flow solution as an initial condition, that had run at the
same flow rate for approximately one flow-through-time of the entire domain, corresponding to 0.186 s. The convergence
behavior of the cavitating simulations was improved by limiting the value of the dissipation rate ω (see Appendix A.1.3), as
this variable leads to convergence issues in cavitating simulations when the k −ω -based models are used.
An initial impression of the difference in the flow field predicted by both turbulence models is given in Figure 5.1. This figure
also shows some of the characteristic features of this case regarding the sheet cavities and the shedding of the attached cavity
in the diverging nozzle.

Table 5.1: Overview of cavitating vortex simulation parameters, where SS=Schnerr-Sauer cavitation model. Equal color indicates that the same parameter
value is shared across simulations.

Simulation ∆t /10−5s Q̇ /ls−1 u∞ /ms−1 Rethroat /105 I νt /ν σ max (Co)

M3 IDDES SS
M3 EARSM SS 0.8

M4 IDDES SS
M4 EARSM SS 0.64

10.0 14.147 7.5 1.0 1.0 0.65 1.2

5.1. Convergence behavior
5.1.1. Iterative convergence
The iterative convergence in the form of the L∞ and L2 normalized residuals is provided in Figure 5.2 and Figure 5.3 re-
spectively for the simulations on M3. Since both models and grids showed the same iterative convergence behavior, the M4
residual plots can be found in Appendix E.1. The highest residuals belong to the velocity vector u and the specific dissipation
rate ω. The former also showed to be the most difficult to convergence in the wetted flow simulations. The high value of
the ω residual is a common issue with k −ω -based models and multiphase flows, caused by the boundary value of ω close

61



62 5. Results of cavitating vortex simulations

Figure 5.1: Representation of the vortex (Qcrit = 5) and the vortex cavity, including sheet cavities in the Venturi throat, for IDDES (left) and EARSM (right)
simulations in combination with the Schnerr-Sauer model on M3, at t = 0.0928 s. Vortex and streamlines are colored by axial velocity (white/yellow is
higher than black/red).

to the vapor interface (acting as a slip wall). The value of the L∞ residuals could not be reduced further and the residuals
stagnated when lower relaxation values were used and diverged when they were increased. The L∞ norm is a local measure
and the largest residual values were found to be concentrated around the end of the cavity. At this location, violent collapse
dynamics occur on such a small timescale that an even smaller time step is required to accurately resolve the flow in these
cells. This was not feasible due to the increased computational effort this would entail. The root-mean-square residual L2 is
around 1×10−4 for the velocity, and slightly larger for the specific dissipation rate.
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Figure 5.2: L∞ residual for cavitating vortex simulations on M3, where triangular marks are used for the IDDES and square marks indicate the EARSM
simulation.

5.1.2. Statistical convergence
The statistical convergence for the tangential and axial velocity as well as the pressure is provided in Figure 5.4 for the
simulations on M3 and M4. The statistical convergence behavior does not differ much between both turbulence models on
the same mesh. The finer mesh does display uncertainties that are one order of magnitude smaller. This may indicate that
the results are grid-dependent as the flow field behaves differently on both meshes. The averaging periods and corresponding
statistical uncertainties for the three flow variables are given in Table 5.2.
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Figure 5.3: L2 residual for cavitating vortex simulations on M3, where triangular marks are used for the IDDES and square marks indicate the EARSM
simulation.

Table 5.2: Time-averaging periods and statistical uncertainty of cavitating vortex simulations. Ttotal indicates total runtime, Tavg indicates period used for
time-averaging.

Simulation Ttotal/s Tavg/s Ustat(uθ)/% Ustat(ux )/% Ustat(p)/%

M3 IDDES SS 0.186 0.102 3×10−2 1×10−2 5×10−2

M3 EARSM SS 0.186 0.082 3×10−2 3×10−2 3×10−2

M4 IDDES SS 0.293 0.141 2×10−3 1×10−3 5×10−3

M4 EARSM SS 0.262 0.141 3×10−3 7×10−4 3×10−3
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Figure 5.4: Statistical uncertainty plots for uθ (left), ux (middle) and p (right) measured at plane C for the simulations of the cavitating vortex using on M3,
obtained using TST-B. Lighter, dashed versions of the dark solid lines indicate removed start-up effect.
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5.2. Flow field results
The vapor core size plays an important role in the presented results and was defined as the radius where αvap = 0.5. As
Figure 5.5a shows, however, the production of vapor starts at the same time for IDDES and EARSM simulations, but the
latter has a more diffuse interface characterized by a lower slope in the graph. This leads to a smaller core when defining
the core by a certain amount of vapor. The diffusion of the vapor core interface is also linked to the shape of the cavity, as
shown in Figure 5.5b, where the cavity of the IDDES model builds up faster, leading to a larger cross section at plane C (in
the middle of the Venturi throat) and earlier (i.e. more upstream) formation of the vortex cavity in the Venturi throat. The
front end of the vortex cavity additionally seems to be linked to the extent of the sheet cavity, which is shorter for the IDDES
simulation. The streamwise location of cavitation inception for the vortex cavity did not change between grids M3 and M4.
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(a) Vapor fraction comparison on M3 for the cavitating vortex.

(b) Comparison of longitudinal shape of the cavity on M3 between IDDES (blue) and
EARSM (green) αvap = 0.5, t = 0.0928 s. Flow is from left to right.

Figure 5.5: Identification of differences between IDDES and EARSM simulations regarding vapor core size.

The velocity in tangential, axial and radial direction is shown in Figure 5.6. All three velocity profiles are affected by the
cavitating line vortex in the core of the Venturi; the tangential profile shows an inflection point, the axial velocity is not flat and
the radial velocity is significant. The tangential velocity also shows the largest difference between both turbulence models.
As there are no reliable experimental measurements for this flow case, the results for the tangential velocity are compared to
that of a theoretical cavitating Lamb-Oseen velocity profile. Recalling that the tangential velocity profile uθ is defined by the
viscous and vapor core radii rv , rc and the circulation Γ [2]:

uθ(r ) = Γ

2πr

[
1−βR exp

(
−αR

r 2

r 2
v

)]
, (2.96 revisited)

and the βR parameter by

βR = r 2
v

r 2
v +αR r 2

c
exp

(
αR

r 2
c

r 2
v

)
, (2.97 revisited)

the following fitting parameters were used for the M4 EARSM and IDDES SS results at plane C; Figure 5.6a:

Table 5.3: Lamb-Oseen fitting parameters for the cavitating vortex simulations

Simulation rv /rthroat rc /rthroat Γ/10−2m2s−1 u∞/ms−1

M4 IDDES 0.295 0.21 11.2 14.147
M4 EARSM 0.412 0.14 12.2 14.147

The theoretical velocity profiles are only plotted for the wetted part of the vortex. As for the wetted vortex, the IDDES model
is able to predict larger gradients and a higher tangential velocity. The effect of viscosity is reduced, leading to a smaller
viscous core. The vapor core is larger for the EARSM simulation, which suffers from the viscous diffusion of the vortex
outward and predicts a larger vortex core size. The tangential velocity profile inside the vapor core strongly resembles that
of a Rankine vortex, which subsequently transitions into a Lamb-Oseen-like profile. This is in line with the derivation of
the cavitating vortex model in [104], where the vapor core rotates like a solid body. The comparison with the theoretical
cavitating Lamb-Oseen velocity profile in Figure 5.6a, demonstrates that the magnitude of the tangential velocity in the vapor
core is underpredicted by the IDDES model and that the EARSM matches better with the theoretical profile inside the viscous
core. The IDDES model does not match the fitted profile except at the edge of the viscous core (which is how the fit was
obtained). The EARSM matches the fitted Lamb-Oseen profile until just after the viscous core, after which the blockage due
to the proximity to the wall causes the deviation from the fitted profile of the free vortex.

The axial velocity profiles of both models seem to contradict each other. For the EARSM simulation, the axial velocity
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decreases slightly towards the center, whereas IDDES predicts an increase towards the vapor core, followed by a decrease
towards the centerline. The axial velocity for the EARSM is also larger. Both differences are caused by the presence of the
sheet cavity at the measurement location C, making the effective area through which liquid can flow smaller for the EARSM.
The radial gradient of axial velocity violates an assumption made by Bosschers [2] in deriving the theoretical form of a cavi-
tating Lamb-Oseen vortex. Furthermore, it is clear that the presence of a vapor core has made the radial velocity significant
and of the same order of magnitude as the tangential velocity. This also contradicts the assumption made in the derivation
of the analytical vortex model of Bosschers [104], as the flow inside the vapor core now cannot rotate like a solid body. The
distribution of the radial velocity looks quite similar to that of a Rankine vortex’ tangential velocity, with a linear increase of
velocity towards the edge. No velocity measurements inside a vortex core were performed due to limitations of Laser-Doppler
Velocimetry (LDV) and Particle-Image Velocimetry (PIV) techniques, so there is no information regarding the radial velocity
distribution inside a cavitating tip vortex. The current distribution could, however, follow from the formation of the vapor
core, which directs all liquid outwards outwards until it finds an equilibrium based on the local pressure and the cavity diam-
eter oscillates around this equilibrium. The fact that the cavity is still developing, would lead to a radial acceleration towards
the edge of the vortex core. The distribution after the peak looks remarkably similar to the tangential velocity distribution of
a free inviscid vortex.
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Figure 5.6: Profiles of normalized velocity components measured at plane C for cavitating vortex simulations.

The pressure coefficient, as well as the modeled and resolved turbulent kinetic energy are presented in Figure 5.8.
Even though the pressure profiles in radial direction are radically different for both turbulence models, the minimum pres-

sure remains the same and is slightly below the vapor pressure. The actual pressure is slightly lower than the vapor pressure
but cannot decrease further until the core contains pure vapor (αvap = 1) as it is balanced by cavity growth. Until then, the
pressure difference p −pvap < 0 leads to a production of vapor and growth of the cavity until the local pressure exceeds the
vapor pressure; p −pvap ≥ 0. The maximum vapor volume fraction is 10 % higher for the IDDES model, but remains below
90 %, as can be seen in Figure 5.5a. The larger vapor fraction indicates a more developed cavity with a larger vapor core for
the IDDES model.

Despite the differences in the vapor core size apparent from the results of the velocity vector, the pressure coefficients as
predicted by both models match until r /rthroat ≈ 0.2, which is the defined size of the vapor core in the IDDES result. The
pressure at the wall is equal to the vapor pressure for the EARSM simulation, contrary to the IDDES result which shows a
positive radial pressure gradient. The low pressure for the EARSM simulation is caused by the longer extension of the sheet
cavities originating from the hard edge at the entrance of the Venturi throat. This strongly influences the rest of the radial
pressure profile.

The modeled turbulent kinetic energy kmod is, as in the case of the wetted vortex, close to zero for the IDDES due to the
extent of the Large Eddy Simulation (LES) region, given in Figure 5.7, which reduces the amount of kmod. The bumps around
r /rthroat = 0.25 and 0.45 are due to the increased local length scale (l ≈ lRANS) as part of cavity interface is seen as a slip wall
and the liquid flow around it is identified as an attached shear layer. Although the effect seems more pronounced on M3,
Figure 5.7 only provides a snapshot in time and the Reynolds-Averaged Navier-Stokes (RANS) area on the cavity interface
also occurs on M4. This observation might represent a possible shortcoming of applying the IDDES model to such a case,
as the repeated transition from one mode into the other increases the non-physical gray area in between the formulations.
Another important observation is the LES area inside the stable attached sheet cavity at the front (see Section 5.3.1), which
possibly contributes to the shorter extent of the sheet cavity compared to the EARSM simulation. The EARSM predicts a
zero k∗

mod right at the center of the vortex, which may be the reason for the higher value of the tangential velocity in the vapor
core compared to the IDDES simulations.

The resolved turbulent kinetic energy kres is still more than two orders of magnitude smaller than the modeled k, again
indicating that the flow field as simulated by the IDDES model is almost laminar. The statistical convergence and uncertainty
of the normal components of the Reynolds stress tensor can be found in Appendix E.2. Uncertainties for the M3 IDDES are
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Figure 5.7: LES regions in the contraction on M3 (left) and M4 (right) for the cavitating vortex at t = 0.0928s, white indicates fully RANS region and
red/black indicates LES region.

of O(101), whereas they are of O(10−1) on M4. The large uncertainties are, as in the wetted vortex simulations, expected to
be due to periodic non-turbulent fluctuations of the velocity signal. Ideally, a high-pass filter would be applied to these signals
to remove the low-frequency fluctuations and thereby hopefully improve convergence as the presented value of the resolved
kinetic energy is currently inaccurate (especially on M3). However, the main point of Figure 5.8c is to show that the resolved
kinetic energy is negligible compared to the modeled value and that statement is not affected by applying a high-pass filter or
not.
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Figure 5.8: Profiles of normalized pressure and modeled and resolved turbulent kinetic energy measured at plane C for cavitating vortex simulations.

5.3. Analysis of cavity dynamics
This section will discuss the performance of the EARSM and IDDES turbulence models from a cavity dynamics point of
view. The previously identified sheet cavities seem to influence the flow field and the streamwise inception of the vortex in
a static way, but their dynamics are also expected to have an effect of the unsteady behavior of the cavitating vortex. The
influence of the shedding of the sheet cavities originating at location B and D is therefore assessed first, followed by the
spectral analysis of the isolated cavitating line vortex.

5.3.1. Influence of sheet cavity shedding
The sharp edges of the Venturi geometry lead to local low pressure regions at the beginning and at the end of the Venturi
throat. Unsurprisingly these low pressure regions lead to cavitation inception and the formation of attached sheet cavities.
The sheet cavity forming at the front of the Venturi throat is stable and does not show shedding behavior. The cavity formed
at the end of the Venturi throat does display periodic shedding of vapor clouds that collapse due to the increase of pressure
above the vapor pressure. Cavity collapse mechanisms will not be treated in detail in this thesis. The numerical prediction
of sheet cavity shedding in a Venturi with axial flow was the topic of the MSc thesis of Cointe [69], who used an inviscid
approach to determine the shedding frequencies and characteristics of the re-entrant jet and the bubbly-shock mechanisms.
First a short outline of both mechanisms will be given, followed by the assessment of the dominant frequencies of the cavity
shedding to be taken into account when analyzing the cavity dynamics inside the venturi. The behavior of the sheet cavity at
the end of the throat and the vortex cavity is shown in a sequence of instantaneous isocontours of the vapor fraction αvap = 0.5
in Figure 5.10. This chronological series of images shows the impact of the collapse mechanism on the vortex cavity dynamics
upstream. Possible cavity collapse mechanisms are discussed next.
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Cavity collapse mechanisms
The re-entrant jet can be understood by considering the local velocity field at the location of the sheet cavity. The re-entrant
jet is a characterized by a reverse flow which wraps around and underneath the vapor cavity that is being advected by the
flow. Franc & Michel [44] explained that this jet is caused by the inward directed curvature of the low-pressure region
that is the cavity, leading the free streamlines to wrap around the cavity and join again at the front. The re-entrant jet is
sketched in Figure 5.9a. It is the least violent of the two mechanisms, occurring at larger values of the cavitation number
σ and is characterized by a higher shedding frequency as demonstrated by Cointe [69] and experimental investigations by
Hogendoorn [105].

(a) Sketch of the re-entrant jet phenomenon.

(b) Sketch of the bubbly shock phenomenon.

Figure 5.9: Attached cavity shedding mechanisms

The bubbly-shock mechanism, sketched in Figure 5.9b is a result of collapsing bubbles inside cloud cavitation. The cloud
of bubbles originates from the attached sheet cavity and is convected by the mean flow until the increased pressure leads to
the collapse of the bubbles. As the collapse of individual bubbles leads to very high pressures, an omnidirectional shock
wave is formed. In the incompressible approach a shock wave (characterized by a pressure discontinuity) cannot exist. A
pressure wave, however, which is not characterized by a discontinuity, can exist and travel upstream. There it leads to the
detachment of the sheet cavity as it reaches the attachment point. In incompressible single-phase flows, this pressure wave
occurs instantaneously in the domain. Cointe [69] showed that in a multi-phase flow the propagation velocity of the pressure
wave can be calculated from the shape of the volume fraction plotted in a two-dimensional T-s (time-space) diagram, further
elaborated upon later in this section. The bubbly-shock mechanism is thus characterized by an discontinuity of the vapor
fraction traveling upstream that spans the entire height of the cavity [69, 106].

Assessment of dominant frequencies
The frequencies associated with the cavity shedding are analyzed using four different methods; by i) analyzing the frequency
spectrum (using Fast Fourier Transform (FFT)) of pressure oscillations at planes B and C for the shedding at the throat
entrance, and C and D for the throat exit, ii) inspecting the behavior of the total vapor volume in the domain, iii) assessing
the dominant frequency in the FFT of the cavity diameter and finally iv) qualitative comparison with spatio-temporal plots of
liquid fraction from [69].

The frequency analysis using the monitor lines at locations B, C and D is presented in Figure 5.11. Only the EARSM
simulations show a significant power density at location B, which is linked to the shorter sheet cavities in the case of IDDES.
Peaks in the detrended spectra are visible at all measurement locations around the fundamental frequency of 60 Hz and
its harmonics at integer multiples of this frequency, except for the M3 EARSM simulation which shows the fundamental
frequency peak at 50 Hz. The origin of the discrepancy between the M3 EARSM simulation and the others was not found.

The temporal evolution of the total volume of vapor in the domain and the corresponding frequency spectrum are presented
in Figure 5.12. The total vapor volume is characterized by two different periodic motions; i) a low frequency periodic
oscillation of the vapor volume fraction in the entire domain with a frequency of 10/15 Hz and ii) the earlier identified periodic
phenomenon occurring at f = 50/60 Hz. The presence of the same frequency in the vapor fraction frequency spectrum as in
Figure 5.11 indicates that the periodic phenomenon is related to cavitation. The low frequency component might be the same
kind of unsteady behavior identified for the wetted vortex simulations in Section 4.1.5, since the oscillation frequency of a
Precessing Vortex Core (PVC) increases with an increase in velocity [101].

The spatially-averaged variation and the frequency spectrum of the cavity diameter (z-normal observation plane) are presented
in Figure 5.13. The periodic motion with a frequency of approximately 60 Hz can be recognized in Figure 5.13a and strongly
affects the time-averaged diameter of the cavity. Figure 5.13a also shows that the contraction of the cavity is irregular and
does not occur simultaneously across different simulations. Peaks at integer multiples of the fundamental frequency are
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Figure 5.10: Shedding sequence of the sheet cavity at the end of the Venturi throat, showing the contraction of the vortex cavity as the attached sheet cavity
collapses. Images obtained on M3 using the IDDES model in combination with the Schnerr-Sauer cavitation model, with αvap = 0.5 isocontours. Sequence
is chronological from left to right and top to bottom, with 1.98×10−3 s between presented events. Flow direction is from left to right.
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Figure 5.11: Assessment of dominant frequencies using the line monitors. Frequency spectra were calculated for each point from the detrended pressure
signal using the FFT algorithm in MATLAB and subsequently averaged.
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Figure 5.12: Assessment of dominant frequencies using the time-series and corresponding frequency spectra of the vapor fraction. Frequency spectra were
obtained with the FFT algorithm in MATLAB from the detrended vapor volume signal.

distinguishable in Figure 5.13b.
The following conclusions can be made based on results for the above three criteria showing a periodic phenomenon occurring
with a fundamental frequency of 50/60 Hz:

i) Given that the pressure exhibits a periodic motion at various measurement locations, the phenomenon causes a periodic
global rise in pressure. The amplitude of the pressure oscillation also becomes larger towards the end of the Venturi
throat (location D).

ii) Considering the peaks in the total amount of vapor inside the domain, the global rise in pressure is accompanied by a
reduction of vapor volume as the vapor pressure is periodically exceeded. This again confirms that the effects of the
phenomenon are acting globally.

iii) Taking into account that the cavity diameter is significantly affected by the phenomenon, the effect cannot simply be
discarded on the grounds that only the cavity dynamics are of interest. Furthermore, the time-series of the cavity diameter
is characterized by rather flat peaks and sharp troughs, indicating that the phenomenon acts on a short timescale.

These separate conclusions hint towards the periodic occurrence of a pressure wave, which (as mentioned before) is instan-
taneous for a single-phase incompressible flow but can be identified in incompressible multiphase flows as demonstrated by



70 5. Results of cavitating vortex simulations

Cointe [69]. Such a pressure wave could be the result of the violent collapse of a cloud of bubbles shed from the sharp edge
at the end of the parallel section, referred to commonly as the bubbly-shock mechanism. The qualitative comparison between
the spatio-temporal evolution of the cavity diameter and the liquid volume fraction for the bubbly-shock mechanism obtained
from [69] is presented in Figure 5.14. The clean triangular shapes (normally plotted in a pressure diagram) were found to be
typical for the bubbly-shock mechanism [105]. The pressure was not measured in such a way that similar diagrams could be
made for the present simulations, but the cavity diameter in the present simulation is directly dependent on the vapor/liquid
volume fraction, which in turn depends on the pressure. Hence, it is expected that in the present simulation, the bubbly-shock
mechanism is responsible for the shedding of the cavity at the end of the Venturi throats. The velocity of the pressure wave
was not calculated as it does not contribute to the research regarding the cavitating line vortex dynamics and deeper analysis
of the dynamics of sheet cavity shedding is outside of the scope of this work.
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Figure 5.13: Assessment of dominant frequencies in cavity diameter using the co-processing capability of PARAVIEW and the written PYTHON script.
Results for the z-normal observation plane.

(a) T-s diagram of cavity diameter from z-normal observation plane, M3 IDDES sim-
ulation. (b) T-s diagram of liquid fraction, reproduced with permission from [69].

Figure 5.14: Side-by-side qualitative comparison of spatio-temporal evolution of cavity diameter in present research and liquid volume fraction from [69].

5.3.2. Spectral analysis of the cavitating vortex
The spectral methods described in Sections 2.4.2 and 3.2.4 were applied to the vortex cavity in order to assess whether the
different oscillatory modes visible in the experiments of [15, 77] could also be reproduced numerically and to quantify the
differences between the IDDES and EARSM turbulence models. The spatio-temporal evolution of the cavity diameter and
cavitating vortex centerline are considered first, followed by the two-dimensional Cross-power Spectral Density (CPSD) and
phase difference results.
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Spatio-temporal evolution and one-dimensional spectra
The analyzed length of the signal in space and time was determined based on the development length of the vortex cavity
and how long it took for the cavity to stabilize. The signal lengths and spectral resolutions are provided in Table 5.4. The
table shows that the analyzed length of the cavity for the EARSM simulations is 33 % shorter than for the IDDES cases due
to the larger diffusion of the cavity interface in the former. The resolution of the wavenumber and frequency is defined as
the sampling frequency divided by the number of samples; fs, time/space/Nsamples. The resolution is a measure for the size
of the wavenumber and frequency bins, so that the lower the value, the more accurate the estimate of both parameters. The
simulations on M4 were run for a longer period1 to get the lowest value for the resolution of wavenumber and frequency.
The M3 EARSM SS simulation has the least accurate estimate. It is noticeable that the analyzable length of the cavity grew
with a decreasing cell size, showing that a grid-/time step converged solution has not yet been reached. When compared to
the resolutions in Bosschers’ work [2], with resolutions of 0.15 s−1 and 31.6 m−1, it is apparent that the resolution of both
parameters in the present numerical simulations is lower. Bosschers highlighted that his frequency resolution was more than
required, whereas the wavenumber resolution was still insufficient (J. Bosschers, personal communication, June 2019).

Table 5.4: Spatio-temporal domains and resolutions of cavitating vortex simulations. Time t∗ is nondimensionalized as tu∞/Lthroat and the location x∗ is
measured as x′/Lthroat, where x′ is measured from the front of the throat of the venturi.

Simulation t∗start t∗end x∗
start t∗end res. frequency /Hz res. wavenumber / m−1

M3 IDDES SS 13.31 43.72 0.6 0.9 7.33 55.80
M3 EARSM SS 15.16 43.72 0.7 0.9 8.23 84.32
M4 IDDES SS 15.16 68.95 0.6 1.05 4.37 36.96
M4 EARSM SS 16.65 61.66 0.75 1.05 5.23 55.25

The calculation of the dB-valued spectra is repeated below for convenience:

CPSD(kz , f ) = 120+10log10

(Gtop(kz , f )G∗
side(kz , f )

d 2
c

)
, (3.7 revisited)

where G(kz , f ) refers to the two-dimensional FFT of r ′ and G∗(kz , f ) is the complex conjugate. The dB-valued Power Spectral
Density (PSD) was obtained similarly:

PSD(kz / f ) = 120+10log10

(
S(kz / f )S∗(kz / f )

d 2
c

)
, (3.8 revisited)

where S and is the single-sided spectrum amplitude and its conjugate S∗. The phase difference was calculated from the cross-
spectrum G(kz , f )x y as the angle between the real and imaginary parts of the spectrum. Figure 5.15 contains the time-averaged
signals and one-dimensional spectra of the cavity diameter dc and centerline location cline. Even though a significant part of
the domain is not taken into account for the analysis, Figure 5.15a shows that the cavity isocontours are not yet parallel when
averaged in time. This is caused by the conical shape of the vapor core as mentioned earlier. Part of the cavity development
length therefore had to be included in the analysis. The analytical model by Bosschers [2] is based on an infinitely long,
parallel cavitating vortex; an assumption violated by incorporating part of the cavity development length into the solution.
The effect on the spectral results was limited by removing a linearly increasing trend from the solution (i.e. linear detrending).
The wavenumber spectrum in Figure 5.15c identified no non-zero wavenumber component that was above the noise level, and
the time-averaged diameter of the cavity is smooth. It can therefore be concluded that there are no standing waves present on
the cavity interface. The simulations on the finer mesh demonstrate that the cavity size grows further in the radial direction
with increasing grid resolution, hence the solution is grid dependent.

Assessing the time-averaged centerline location in the normalized form presented in Figure 5.15b, it appears that the
cavity centerline deviates significantly from the geometrical centerline. These static deviations and all measured fluctuations
are of O(10−5) m, which is one order smaller than the cell size. PARAVIEW interpolates cell-centered values to point-values
with a point spacing of approximately half the cell spacing, which is still larger than the static and dynamic deviations of
the centerline. The grid size yields an estimate for the uncertainty of the measurements, which therefore is of O(10−4)
m. Considering that the uncertainty of the measurements exceeds the measured centerline positions, the one- and two-
dimensional spectra of centerline (fluctuations) are only given for completeness and the graphs should be interpreted with
caution. The power spectra of both measurement planes are more spread-out and are not as similar as for the cavity diameter
measurement, probably resulting from the measurement noise and the large uncertainty.

The spatially-averaged evolution of cavity and centerline along with their respective frequency spectra are provided in
Figure 5.16. The spatially-averaged cavity diameter in Figure 5.16a and its corresponding frequency spectrum in Figure 5.16c

1The computational cost for each simulation on M4 is over 300000 CPUhours
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Figure 5.15: Time-averaged evolution and one-sided spectra of the vortex cavity diameter and cavitating vortex centerline. Solid lines indicate z-normal
plane, dashed lines indicate y-normal plane.

were previously presented in dimensional form in Section 5.3.1 to highlight the periodic oscillation of the cavity diameter in
time. The fundamental frequency of shedding and its higher harmonics can be distinguished in Figure 5.16c. The peaks do
not align exactly as they did in Figure 5.13, which is due to the normalization with the spatially-averaged cavity diameter dc

which differs slightly between and simulations. Nevertheless, peaks are clustered together for the same mesh, indicating that
the cavity response is almost the same for both turbulence models.

The average centerline position in Figure 5.16b is close to zero, with large peaks occurring when the sheet cavity at the
end of the Venturi collapses and the cavity contracts. The peaks of the centerline oscillation are more narrow, pointing out
that the deviation is more instantaneous than the contraction of the cavity. The larger power density at low wavenumbers in
Figure 5.16d suggests that the centerline variation occurs over the entire length of the cavity. The deviation is about as large
as the measurement uncertainty, however, so that this statement is made with caution. Just as for the time-averaged centerline
spectrum in Figure 5.15d, the spectra of both measurement planes are further apart than for cavity diameter.
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Figure 5.16: Space-averaged evolution and one-sided spectra of the vortex cavity diameter and cavitating vortex centerline. Solid lines indicate z-normal
plane, dashed lines indicate y-normal plane.
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Cross-spectra and phase differences
The two-dimensional wavenumber-frequency diagrams, using the results of both measurement planes, are given for the
diameter and centerline fluctuations in Figure 5.17 and Figure 5.18 respectively. The result of two-dimensional Fourier-
transforms is divided over four quadrants; for both positive and negative wavenumbers and frequencies. The deformations of
the cavity are real (i.e. do not contain imaginary components), making the resulting full spectrum symmetrical, thus only two
quadrants are needed to represent the solution in wavenumber-frequency space. The waves are assumed to be only traveling
forwards in time and in both directions in space, hence only positive frequencies and both positive and negative wavenumbers
are plotted, following the reasoning of Bosschers [2]. The results for the phase difference are only displayed if the coherence
of the data between both measurement planes is larger than 0.2. Bosschers [2] only plotted results for coherence> 0.4, which
was too restrictive for the results presented in this work. The coherence is a measure of the amount of noise between two
measurements, whereby a coherence equal to 1 indicates no noise. Bosschers chose the value of 0.4 by determining the highest
value at which the dispersion lines were still visible (J. Bosschers, personal communication, September 5, 2019). Hence, the
amount of numerical noise is larger for the present simulations than for the experimental measurements by Pennings et al.
[13].

As expected from the one-dimensional spatially-averaged diameter spectrum, the two-dimensional CPSD shows clear
horizontal lines at the fundamental shedding/ collapse frequency and higher harmonics of the sheet cavity at the end of the
throat. This is the case for both turbulence models and on M3 and M4. The energy of the spectrum is concentrated around
the zero-wavenumber, indicating that the diameter variation occurs simultaneously over the length of the vortex cavity. When
increasing the mesh resolution, a longer part of the cavity can be analyzed and the runtime was increased to improve the
frequency resolution. Consequently, the M4 spectra show a clearer separation between peaks in the frequency domain. There
are no diagonal lines visible in the spectrum, indicating that there is no identifiable group velocity of waves and that no
wave-like structures can be identified on the cavity interface.

Looking at the CPSD of the centerline oscillations, the number of oscillations is clearly lower than for the diameter (which
was already highlighted by the one-dimensional spectral analysis). Most of the energy is found around the zero wave-number,
but the fundamental shedding frequency and harmonics are less visible than for the diameter. The absence of diagonal lines
indicates that wave-like deformations of the cavity centerline, demonstrating the presence of a n = 1 mode, are not found.
As mentioned previously, the spatial resolution is be too low to capture oscillations of the cavity centerline accurately. For
this test case there was no any out-of-plane disturbance of the vortex, i.e. the vortex remains centered around the geometrical
centerline. Subsequently, a ‘serpentine mode’ (n = 1) deformation of the cavity is not likely to occur for this flow case. The
tip vortex originating from a wing tip is generated by a lifting surface (which already introduces more unsteadiness), and
follows a certain trajectory, therefore increasing the likelihood of finding such a modal deformation for those cases.

The absolute values of the phase differences are plotted in Figure 5.18. The results show that for the diameter, a phase
difference of 30 to 60 degrees accompanies the contraction of the cavity at the shedding frequency and the harmonics thereof.
This indicates that the cavity did periodically deform into an noncircular shape as a result of the contraction. However,
this amount of phase difference does not correspond to the phase difference required for the ‘double-helix mode’ (n = 2)
deformation, which is the only other mode where the cross-section becomes noncircular. The M3 EARSM SS spectrum does
not display the same features as the other simulations due to a coarser wavenumber distribution (i.e. a resolution of 84 m−1

vs. 55 m−1 on M4, see Table 5.4). The coarser grid possibly also influences the lack of phase angles that are identified.
The lack of reliable (coherence> 0.2) data in the phase difference spectrum for the centerline oscillations complicates the

analysis of results for the coarser M3 mesh simulations. The IDDES results show a lower coherence, which is likely caused
by an increased amount of small-scale fluctuations that are not resolved by the EARSM model. Comparing results between
meshes shows that the higher mesh resolution generally increases coherence. This confirms the hypothesis that part of the
numerical noise can be attributed to the coarse mesh resolution. The phase difference of 30 to 50 degrees might indicate an
out-of-plane movement of the cavity, but given the large uncertainty this is unlikely.
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(a) M3 IDDES SS, diameter oscillations
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(c) M3 EARSM SS, diameter oscillations
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(e) M4 IDDES SS, diameter oscillations
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(g) M4 EARSM SS, diameter oscillations
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(h) M4 EARSM SS, centerline oscillations

Figure 5.17: Cross-power spectral densities of cavity diameter fluctuations and fluctuations of the cavity centerline position.
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Figure 5.18: phase difference between measurement planes of cavity diameter fluctuations and fluctuations of the cavity centerline position, coherence > 0.2.
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5.4. Conclusions
The simulations of the cavitating vortex were characterized by troublesome convergence, caused by high local residuals
L∞ =O(10−1) for the axial velocity and specific turbulent dissipation rate at the end of the cavity. The largest RMS residual
L2 =O(10−4) was acceptable. A further reduction in time step and increased refinement of the grid are expected to improve
convergence, but were not feasible due to the already large computational cost.
The flow field for the cavitating vortex differed from the wetted case in all three velocity components. The tangential velocity
profile within the vapor core was linearly increasing and followed a Lamb-Oseen-like profile in the rest of the vortex. The
axial velocity profile was no longer flat. The radial velocity increased linearly towards the edge of the vapor core and was no
longer negligible. The sheet cavity extending from the front of the Venturi throat was still present at the measurement loca-
tion in the EARSM simulations on both grids. Furthermore, the EARSM demonstrated a more diffuse vapor core interface.
The diffusive interface and presence of the sheet cavity influenced the flow field at the measurement location as well as the
development length of the cavity.

The shedding of the cavity originating from the end of the Venturi caused a periodic contraction of the vortex cavity in
streamwise and radial direction. A noncircular deformation of the cavity was found to accompany the contraction, but the
phase of the deformation did not correspond to the double-helix (n = 2) mode identified by Bosschers [2]. Both temporal
and spatial resolutions were lower than the ones reported by Bosschers [2], owing to the high runtime required and the short
length of the cavity that could be analyzed given the geometry. The fundamental collapse frequency of the sheet cavity at the
end of the Venturi throat and its higher harmonics were dominant features in the two-dimensional spectral analysis of cavity
diameter oscillations and the one-dimensional frequency spectrum of the spatially-averaged cavity diameter. The centerline
fluctuations were in the most part smaller than the grid spacing (i.e. the measurement uncertainty), making the results unre-
liable. The coherence between measurement planes was, particularly for the centerline phase difference, considerably lower
than from the experimental measurements by Pennings et al. [13]. Furthermore, the average cavity diameter increased on
finer grids, indicating strong grid dependency. The grid resolution in the region of interest was therefore concluded to be still
too coarse to accurately determine the cavity dynamics.

No traveling or standing waves were captured using the spectral analysis method and the cavity deformations did not
correspond to any of the modal shapes characterizing a cavitating tip vortex. Despite the aforementioned issues regarding the
resolution and measurement noise, the conical shape of the vortex cavity may also have influenced the absence of identifiable
surface waves. The dispersion relation was derived by Bosschers [14] for an infinitely long parallel cavity and described by
(a cavitating formulation of) a Lamb-Oseen vortex. Both these assumptions are violated in the present simulations, therefore
it is not unthinkable that the simulated line vortex does not experience the same kinds of modal deformations as a cavitating
tip vortex

The next chapter will provide the overall conclusions and additional recommendations for this work. This will include
both answers to the research questions from the introduction in Chapter 1 as well as a discussion on the applicability of this
geometry for the simulation of a cavitating line vortex.





6
Conclusions & recommendations

This thesis has discussed the numerical modeling of a wetted and cavitating line vortex in a converging-diverging nozzle in
detail. Chapter 2 provided a broad overview of the theory and numerical concepts used for this research. The simulation
set-up, including the studies of the domain length and the inflow boundary condition, was discussed in Chapter 3. This was
followed by the results obtained for the wetted vortex case in Chapter 4. This chapter discussed both the time-averaged flow
field as well as the Verification and Validation (V&V) study performed with the EARSM model. Cavitating vortex results
were presented in Chapter 5, where both the flow field and the vortex cavity dynamics were analyzed in detail.

The conclusions in this chapter are formed around answering the research questions formulated in the introduction. More
detailed information regarding conclusions about the wetted and cavitating flow cases can be found in Chapter 4 and Chap-
ter 5 respectively. The first section will start off with the research question, followed by the conclusions from the simulations
answering the particular question. The second section contains the conclusions with respect to the flow case; i.e. whether
simulating a cavitating line vortex in this geometry is a useful abstraction of the cavitating tip vortex. The final section
contains recommendations for further research.

6.1. Conclusions with respect to the research questions
6.1.1. Inflow conditions
The first research questions concerns both the selection of a suitable inflow condition as well as a discussion of its validity as
a representation of the vortex generated by a swirl generator in [8].
The Lamb-Oseen vortex model was used as an inlet condition based on previous studies [6, 7] and since it represented the
flow field in the reference measurements [8]. After the tuning of the inflow condition in Chapter 3, the velocity angles at
measurement plane A, obtained using the Shear Stress Transport (SST) model matched the reference angles at radial posi-
tions 0.6 ≤ r /rmax ≤ 0.92, whereby no experimental data was available for r /rmax < 0.4 due to the presence of the hub of the
swirl generator. The SST and EARSM showed the same angles at these radial positions, whereas the IDDES model matched
the reference angles from r /rmax = 0.6 until the wall. The reason for the deviation close to the wall was not found. Large
differences were found in the area r /rmax < 0.4, where the vortices predicted by the RANS models experienced larger viscous
diffusion (i.e. lower peak tangential velocity and larger viscous core radius) from the inlet towards the measurement section.
The lower of diffusion of the IDDES model is due to the lack of modeled and resolved turbulence in the regions solved using
the LES form of the equations, i.e. using a smaller turbulence length scale. As the region of interest is in the middle of
Venturi throat, upstream differences in the flow field could be interpreted as having different inflow conditions for the three
turbulence models and is an unwanted consequence of specifying the vortex at the inlet.

6.1.2. SRS performance in wetted line vortex prediction
The results of all models were compared to experimental measurements [8] in the middle of the Venturi throat (measurement
plane C). As in the inlet section, most of the domain for the IDDES was solved in LES mode, reducing the modeled turbulence
to almost zero. The lack of velocity fluctuations also led to negligible amounts of resolved turbulence. The result from
the IDDES model is therefore an almost laminar flow field, whereas the solutions for the RANS models k −ω SST and
EARSM are characterized by increased viscous diffusion due to the high eddy viscosity predicted by both models. The
computationally more expensive EARSM was not able to predict a tangential velocity profile that fit the experiments better
than the SST model, both simulating an excessively large viscous core size and too low tangential velocity. The IDDES
predicted the experimentally measured Lamb-Oseen more closely, but still underpredicted the peak tangential velocity and
pressure decrease in the core and slightly overpredicted the viscous core size. The simulated vortex of the IDDES model was
the only one to correspond to an actual Lamb-Oseen vortex, which can be explained by the almost entirely laminar flow field
for this model and the laminar nature of the Lamb-Oseen vortex. The results of the EARSM were verified to be grid- and time
step independent, making this particular EARSM (the Hellsten model for this thesis) unsuitable for the prediction of a wetted
line vortex in this geometry. Results of the IDDES model improved slightly on the finer M2 grid due to a further decrease in
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modeled turbulence, but the lack of resolved turbulence makes the comparison with the (modeled) turbulent flow fields of the
RANS models somewhat biased.

6.1.3. Influence of turbulence models on cavitating line vortex structure
The cavitating results were characterized by two sheet cavities originating from the sharp edges at the front and end of the
Venturi throat. The front sheet cavity was shown to influence the development of the vortex cavity, which developed more
downstream for the EARSM simulations due to a longer sheet cavity. All data was compared by defining the vapor core
as the region in the vortex defined by a vapor volume fraction greater than 0.5. Viscous diffusion of the cavity interface,
combined with the less developed vapor core and the presence of sheet cavities at the measurement plane C for the EARSM
simulations led to pronounced differences in the radial profiles of axial velocity and pressure coefficient. Both EARSM and
IDDES models predicted a solid-body rotation for the vapor core, followed by a tangetial velocity distribution similar to that
of a Lamb-Oseen vortex outside the vortex, which is in line with the theory for cavitating vortices. The radial velocity was
in all simulations of the same order of magnitude as the tangential velocity, and resulted in a conical shape of the vapor core
inside the cavitating vortex. This means that the cavitating line vortex simulated in this Venturi geometry using the current
simulation set-up was not representative for the cavitating tip vortex originating from a propeller or foil, since those vortices
are characterized by a (cavitating form of the) Lamb-Oseen velocity distribution (where the radial velocity is negligible).

6.1.4. Influence of turbulence models on line vortex cavity dynamics
The IDDES model showed more noise between measurement signals leading to a lower coherence between the diameter
measurements of both planes. The increased amount of noise is attributed to the partial resolution of turbulence by IDDES,
which is modeled in EARSM simulations. The coherence was significantly lower than for the experimental results by [13],
whereby especially M3 demonstrated large amounts of numerical noise. Additionally considering that most measurements
of centerline deviations were smaller than the uncertainty, the phase difference spectra did not allow for a reliable analysis.
As coherence improved when increasing grid resolution, a finer mesh than M4 is required to increase the accuracy of the
analysis, also for the diameter oscillations. The grid-dependence of the solution was also demonstrated by the larger cavity
diameter on the finer M4 grid.

The dominant feature visible in the one- and two-dimensional spectra was the contraction of the vortex cavity following
the shedding of the sheet cavity at the end of the venturi. This contraction was, based on the analysis, accompanied by an
oval-shaped cavity cross-section not corresponding to any of the deformation modes identified by Bosschers [2]. this cross-
sectional deformation is still unclear and might be measurement noise given the previously mentioned low coherence.

No wave-like disturbances of the cavity interface could be found, which may have various origins: i) the violation of the
assumption of a cavitating tip vortex due to the high radial velocity, ii) the periodic contraction of the cavity is so large in
amplitude that it possibly prohibits the vapor core to evolve to a ‘quasi-steady’ self-oscillatory state before it is contracted
again, iii) the lack of resolution even on the finest M4 grid and iv) the diffusivity of the interface caused either by the Volume-
of-Fluid (VOF) method or eddy viscosity (for the EARSM simulations). Based on the results it seems as if the IDDES model
would be better suited to assess cavity dynamics of a cavitating tip vortex using the spectral approach as the interface dif-
fusivity is lower and the length of the cavity that could be analyzed was larger than for the EARSM model. Nonetheless, it
needs to be taken into account that the solution from the IDDES model was again almost laminar, so that only IDDES with
added velocity fluctuations to compensate the lack of resolved wall-generated turbulence and inflow turbulence would yield
an unbiased comparison to the EARSM simulations for this flow case.
The answers to the sub-questions above can be combined to answer the general research question:

Which turbulence model is most suitable to be used for the accurate simulation of an isolated cavitating tip vortex in
a converging-diverging nozzle?

Considering the above results, the IDDES model, combined with the stable Schnerr-Sauer model is a more suitable can-
didate than the RANS models to which it was compared. It needs to be taken into account, however, that the IDDES model
predicts an almost fully laminar flow field. No turbulence that would normally be generated by the shear at the wall or be
present at the inlet, was resolved in the LES region which contained the wetted and cavitating vortices. Generally speaking,
it was shown that the vortex simulated in this work was not representative of a cavitating tip vortex originating from a wing
or propeller tip. This leads to the following conclusions regarding the use of this geometry of a converging-diverging nozzle
and simulation parameters to simulate an isolated cavitating tip vortex.

6.2. Conclusions with respect to the flow case
The wetted flow simulations were more expensive than expected due to a vortex instability which increased the required
runtime to obtain statistically-converged results. Furthermore, the upstream differences at measurement plane A between
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turbulence models are due to viscous diffusion of the vortex specified at the inlet. This difference in the flow field before the
actual converging-diverging nozzle is unwanted as it could be interpreted as a difference in inflow condition for all models.
Thirdly, it is unclear to what extent this flow case benefits from resolving the flow up to the wall, as walls are modeled in
RANS mode for the IDDES model and turbulent fluctuations would have to be specified as resolved inflow turbulence for this
model. The loss in accuracy given the usage of wall models is not expected to significantly affect the generation of modeled
turbulence inside the vortex core for the RANS models, as this is predominantly caused by the magnitude of the strain-rate
tensor at the edge of the viscous core (where the tangential velocity is largest).

The sharp edges at the front and end of the Venturi throat led to the development of sheet cavities with a dominating effect
on the flow field at measurement plane C and the cavity development and dynamics, possibly suppressing the development
of smaller wave-like deformations of the cavity. It can therefore be concluded that the chosen geometry is not suitable for
the simulation of an isolated cavitating tip vortex and to assess its dynamics. Possible improvements and recommendations
regarding the flow case and simulation set-up will be provided in the next section.

6.3. Recommendations for further research
In order to make sure that the velocity field upstream of the converging nozzle is as similar as possible for all simulations, the
swirl generator could be modeled. If a rotating swirl generator would be modeled, the computational expense would increase,
but then velocity fluctuations leading to resolved turbulence for the IDDES model would be introduced into the flow field,
similar as in simulations by Saini et al. [41]. This would help to confirm or reject the conclusions regarding the performance
of the IDDES model.

Secondly, the specification of the Lamb-Oseen vortex at the inflow did not take into account that the profiles of eddy viscosity
and turbulence intensity are not uniform due to the presence of the vortex. In future research that specifies a vortex at the in-
flow in combination with RANS models, more attention may be devoted to assessing the influence of specifying non-uniform
turbulent inflow parameters.

Furthermore, a different geometry with rounded edges and a longer parallel section would decrease or remove the external
(sheet cavity) influence on the flow field and cavity dynamics as well as improve the spatial resolution. The parallel section
should be made as long as possible based on the decay of the vortex and computational power. Adaptive grid refinement could
be used to further improve the grid resolution in the analyzed section without incurring unnecessary computational costs. Ad-
ditionally, the increase in cavity size when increasing grid resolution showed that the result was not yet grid-independent,
requiring further investigation. Given that the required spatial and temporal sampling frequency are linked to the cavity size
and axial and tangential velocity at the vapor core interface, it would be useful to determine clearer criteria to select the
appropriate sampling frequency.

For research into the numerical assessment of cavity dynamics using a spectral approach, the post-processing script could be
improved by using the entire available three-dimensional geometry instead of just two measurement planes. It would also
be interesting to apply the script to a tip vortex generated by a wing, which is sure to display more dynamics, as the vortex
roll-up process from the wing tip into the tip vortex is then preserved, in contrast to the present flow case.

Simulations with another cavitation model (the Ahuja model) were attempted within the time frame for this work. The
simulations did not converge, despite numerous attempts. This highlights the difficulty in setting appropriate values, both
for model constants (i.e. the mass transfer terms) as for the solver (i.e. the relaxation and discretization). The influence of
cavitation models and the interplay with turbulence (models) remains an open issue, requiring further studies with multiple
cavitation models. Furthermore, the setting of cavitation model limiters and constants should be addressed in future work, as
e.g. the maximal bubble size and number of nuclei for the Schnerr-Sauer model may influence cavity dynamics.
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A
Turbulence modeling

This appendix provides additional equations, definitions and values of the constants used in the turbulence models.

A.1. k-omega SST 2003
A.1.1. Blending functions
The blending function F1 is defined by Equation (A.1)

F1 = tanh
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F2 is a second blending function defined by:

F2 = tanh
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A.1.2. Production limiter
The definition of the production term Pk is derived from the Boussinesq hypothesis, and is given by:
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For incompressible flows, the velocity field is divergence-free: ∇·u= 0 ⇐⇒
(
∂Uk
∂xk

)
= 0, therefore reducing the expression for

Pk to the usual formulation of Pk =µt S2. For cavitating flows, which are not divergence free and
(
∂Uk
∂xk

)
= Svap, the additional

terms should be incorporated.

A.1.3. Omega limiter
The limiter for ω used in the cavitating flow simulations was originally proposed by Zheng & Liu in 1995 (as cited in [107])
to reduce the dependency on far-field values of ω and to account for transport effects of the total turbulent shear-stress. An
upper bound was introduced for the sum of the Reynolds stresses [107]:√∑

τi j ≤ 2ρk. (A.6)

This limit is essentially a limit on the fraction of deviant turbulent stress and can be rewritten into the form that is implemented
in REFRESCO:

ω≥ϕα∗
0

√
2

(
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3

∂uk
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δi j

)
∂ui

∂x j
, (A.7)

ω= max
(
ω0, ϕα∗√

Pd

)
, (A.8)

where: (A.9)

α∗ = α∗
0 +ReT /Rω

1+ReT /Rω
. (A.10)
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The constant values are α∗
0 = β/3, β= 3/40, ϕ= p

3/2, ReT = ρk/ωµ, Rω = 2.7. The value for ϕ represents the least requirement
from the turbulence model realizability [107].

A.1.4. Model constants
The Shear Stress Transport (SST) model constants are obtained by blending the k−ε and k−ω constants; α=α1F +α2(1−F ),
etc.

σk1 = 0.85

σk2 = 1.0

σω1 = 0.5

σω2 = 0.856

β1 = 0.075

β2 = 0.0828

β∗ = 0.09

α1 = 5/9

α2 = 0.44

a1 = 0.31

b1 = 1.0

c1 = 10.0

A.2. Reynolds Stress Modeling
This section adds additional background regarding the modeling of the redistributive, dissipative and turbulent transport terms
in the transport equation. Secondly, it provides the basis for Algebraic Reynolds Stress Model (ARSM).

A.2.1. Reynolds Stress transport equation
Modeling the redistributive and dissipative terms
The approach by Hellsten [19] lumps all anisotropic elements together by subtracting the deviatoric part of the dissipation
tensor:

Πi j =Φi j −
(
εi j −εδi j

)︸ ︷︷ ︸
dissipation anisotropy

. (A.11)

The ε is introduced here, and therefore requires modeling similar to standard two-equation models also involving k and ε.
Except close to the walls, the dissipation anisotropy is generally relatively small, so that Πi j =Φi j is a common assumption
also present in the constitutive model used for the simulations discussed in this thesis [32].

The redistribution tensor Φi j is a traceless and symmetrical tensor function Fi j of the anisotropy tensor ai j (i.e. the
deviatoric part of the Reynolds stresses), the mean-velocity gradient and k and ε Equation (A.12). The velocity-gradient
tensor can be split in a symmetric and skew-symmetric part using respectively the strain-rate and the vorticity tensor Si j and
Ωi j . This is mainly a numerical step to make the involved tensors less more sparse and thereby easier to solve. All tensors
are non-dimensionalized using a timescale defined by τ= k/ε.

Πi j = εFi j
(
ai j , Si j , Ωi j ,δi j

)
, (A.12)

where

ai j =
u′

i u′
j

k
− 2

3
δi j , (A.13)

Si j = 1

2
τ

(
∂Ui

∂xi
+ ∂U j

∂x j

)
, (A.14)

Ωi j = 1
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The Poisson equation for fluctuating pressure is used to model the pressure-strain relation:

∇2p ′ =−2ρ
∂Uk

∂xl

∂u′
l

∂xk
−ρ

∂2

∂xk∂xl
(u′

k u′
l −u′

k u′
l ). (A.16)

There are three solutions to this equation: a harmonic one satisfying the Laplace equation ∆p ′ = 0 and two particular solutions;
called slow and rapid. The correlation between the velocity and the pressure gradient is therefore also split into these three
parts. The harmonic part is zero for homogeneous turbulence and negligible for inhomogeneous turbulence except very close
to the wall. The slow part does not depend on the mean velocity gradient and is the cause of the return-to-isotropy process
when the mean-velocity gradient is zero for initially anisotropic turbulence. The absence of a velocity gradient means that
there is no directional forcing of turbulence in that situation. The slow term Φ(s) is modeled using the Rotta model, and only
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a function of the anisotropy ai j . The rapid term Φ(r ) is more complex, and a quasi-linear model (regarding the dependence
of the coefficients on the anisotropy tensor) is used based on the curvature-corrected model by Wallin & Johansson [33].

Φ(s)
i j =−C1ai jε (A.17)

Φ(r )
i j =C2kSi j + C3

2
k

(
ai k Sk j +Si k ak j −

2

3
akl Slkδi j

)
− C4

2
k

(
ai kΩk j −Ωi k ak j

)
(A.18)

The values of the coefficients C1 through C4 depend on the parameter A0, which is typical only for the algebraic modeling
approach that is introduced in Section 2.1.4. In the derivation of the rapid term Φ(r ) the assumption of homogeneous turbu-
lence was made, limiting the application of these quasi-homogeneous models to flows in which the turbulent quantities only
vary slowly in space. Generally speaking, this causes no issues away from walls.

Modeling of the turbulent fluxes
The fluctuating velocity field is random, leading to the reasoning that turbulent transport can be modeled as diffusion. A
gradient-diffusion model is therefore used for the turbulent transport and pressure diffusion terms. The model used for the
simulations discussed in this thesis applies a very simple scalar diffusion model equaling the eddy viscosity concept:

Ti j k ≈σK νt

∂u′
i u′

j

∂xk
, (A.19)

where σk is the model constant present in the transport equation for the kinetic energy in the SST model.

A.2.2. Algebraic Reynolds Stress Models
The quasi-linear transport equation for the anisotropy tensor ai j is defined as:

τ

(Dai j

Dt
−Φi j

)
= A0

[(
A3 + A4

P
ε

)
ai j + A1Si j − (ai kΩk j −Ωi k ak j )

+ A2

(
ai k Sk j +Si k ak j −

2

3
akl Slkδi j

)]
.

(A.20)

The A. coefficients stem from the original Reynolds Stress Model (RSM) coefficients. The integrity basis for ai j is given by:

ai j =β1Si j

+β2(Si k Sk j − IIδi j /3)+β3(Ωi kΩk j − IIΩδi j /3)+β4(Si kΩk j −Ωi k Sk j )

+β5(Si k SklΩl j −Ωi k Skl Sl j )+β6(Si kΩklΩl j +Ωi kΩkl Sl j − IVδi j /3)

+β7(Si k SklΩl pΩp j +Ωi kΩkl Sl p Sp j −2Vδi j /3)

+β8(Si kΩkl Sl p Sp j −Si k SklΩl p Sp j )+β9(Ωi k SklΩl pΩp j −Ωi kΩkl Sl pΩp j )

+β10(Ωi k Skl Sl pΩpqΩq j −Ωi kΩkl Sl p SpqΩq j ).

(A.21)

A linear system can be written to solve for the β coefficients. The five independent scalar invariants are defined as

IIS = Skl Slk , IIΩ =ΩklΩlk ,

IIIS = Skl SlmSmk , IV= SklΩlmΩmk , V= Skl SlmΩmnΩnk .
(A.22)

A.3. Hellsten’s Explicit Algebraic Stress Model
The following definitions are specific for the Hellsten Explicit Algebraic Reynolds Stress Model (EARSM) used for the
simulations in this thesis.

A.3.1. Constitutive model
The curvature correction for the vorticity tensor is given by:
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where:
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in which ϵi j k is the third-order permutation tensor. Its component values are 1 if their indices form a positive permutation
of (1,2,3) and −1 in case of a negative permutation. Components with repeated indices are zero [19]. The same applies for
ϵpqm . The β functions are redefined using the modified timescale

τ= max

(
1

β∗ω
; Cτ

√
ν

β∗kω

)
(A.25)

, and Equation (A.23):
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klΩ
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The value of the denominator Q is determined by:

Q = 5

6
(N 2 −2IIΩ)(2N 2 − IIΩ). (A.28)

The solution for the N function only has an explicit solution in two-dimensional flows. In three-dimensional flows, the
approach from [32] is used. This method uses the explicit solution of the cubic equation for the two-dimensional case, Nc ,
and adds a correcting term which is zero when the flow is two-dimensional. The solution for the cubic equation is:
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A
′2
3

27
+ 9

20
IIS − 2

3
IIΩ

)
A′

3, (A.30)

P2 = P 2
1 −

(
A2′

3

9
+ 9

10
IIS + 2

3
IIΩ

)3

. (A.31)

The approximation for N then becomes:

N ≈ Nc +
162

[
IV2 + (

V − 1
2 IISIIΩ

)
N 2

c

]
20N 4

c
(
Nc − 1/2A′

3

)− IIΩ(10N 3
c +15A′

3N 2
c )+10A′

3II2
Ω

. (A.32)

The A′
3 function is required to model the ignored diffusion of the anisotropy by choosing the algebraic approximation and is

defined as:

A′
3 =

9

5
+ 5

4
CDiff max

(
1+β

(eq)
1 IIS ; 0

)
. (A.33)

9
5 is the original value of the A3 coefficient. A new parameter β(eq)

1 was introduced, which has the value of:

β
(eq)
1 =−6

5

N (eq)

(N (eq))2 −2IIΩ
, (A.34)

where the coefficients N (eq) and CDiff are given by

N (eq) = A3 + A4 = 81

20
and CDiff = 2.2. (A.35)
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The A-coefficients for the quasi-linear transport equation for ai j in Equation (A.20) are defined as:

A0 = C4

2
−1,

A1 = 3C2 −4

3A0
,

A2 = C3 −2

2A0
,

A3 =−C (0)
1 −2

2A0
,

A4 =−C (1)
1 +2

2A0
.

(A.36)

Constitutive model coefficients and the values of the A-coefficients for the standard model (as based on the Launder-Reece-
Rodi RSM model) are given in Tables A.1 and A.2. The coefficients for the curvature-corrected model after recalibration of
A0 =−0.72 are provided in Table A.3.

Table A.1: Redistribution model coefficients for the Hellsten EARSM.

C 1
0 C 1

1 C2 C3 C4

3.6 0 0.8 2 1.11

Table A.2: A-coefficients for the standard version of the Hellsten EARSM.

A0 A1 A2 A3 A4

-0.44 1.20 0 1.80 2.25

Table A.3: Redistribution model coefficients for the curvature-corrected version of the Hellsten EARSM.

C 0
1 C 1

1 C2 C3 C4

4.6 1.24 0.47 2 0.56

A.3.2. Scale-determining model
The coefficients in the k and ω transport equations of the EARSM are defined using the modified blending function fmix as:

γ

β

σk

σω

σd

= fmix



γ1

β1

σk1

σω1

σd1

+ (1− fmix)



γ2

β2

σk2

σω2

σd2

 . (A.37)

The new blending function is made up out of a variety of indicators, including the turbulent length scale, distance to the wall
dw (Γ1), viscosity (Γ2) and the local solutions for the turbulent quantities k and ω(Γ3) .
The three measures Γ1 through Γ3 are defined as:

Γ1 =
p

k

β∗ωdw
, (A.38)

Γ2 = 500ν

ωdw
, (A.39)

Γ3 = 20k

max
[
d 2

w (∇k ·∇ω)/ω, 200k∞
] , (A.40)
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where k∞ is a free-stream value of k to be specified by the user, not of importance for internal flows. The mixing is designed
to occur closer to the edge of the boundary layer compared to the SST model. The blending function fmix is then defined by:

fmix = tanh
(
CmixΓ

4) with Γ= min[max(Γ1, Γ2) , Γ3] . (A.41)

The coefficient Cmix = 1.5 to maintain fmix = 1 almost up to the boundary layer edge. The coefficient values for the SST
formulation used in [19] are listed in Table A.4.

Table A.4: Coefficient values for the SST model as implemented in the Hellsten EARSM.

γ β σk σω σd

Set 1 0.518 0.0747 1.1 0.53 0.4
Set 2 0.440 0.0828 1.1 1.00 0.4

There is a relation between the coefficients γ1, β1 and σω1 through the log-layer relation:

γ1 = β1

β∗ − κ2σω1√
β∗ , (A.42)

where β∗ assumes its standard value of 0.09 and the von Karman constant κ= 0.42.

A.4. Detached-Eddy Simulation
The SST-based Detached-Eddy Simulation (DES) model blends between k −ε and k −ω formulations, each with their own
CDES constant. For the k −ε and k −ω model they are respectively C k−ε

DES = 0.61 and C k−ω
DES = 0.78. The blended coefficient is

defined as:
C SST

DES = F1C k−ω
DES + (1−F1)C k−ε

DES. (A.43)

The k − ε branch is active in most of the region where the Large Eddy Simulation (LES) mode is activated so that the
importance of the k −ω coefficient of the SST-DES is limited.

A.5. Delayed Detached-Eddy Simulation
The constants Cd1 = 20 en Cd2 = 3 are tuned specifically for the SST model, see [38]. The shielding function involves a new
parameter rd , which is defined as [38]:

rd = ν+νt

κ2d 2
w

√
0.5(S2 +Ω2)

. (A.44)

where νt and ν are respectively the eddy and molecular viscosity. Ω and S are the vorticity and strain-rate tensor invariants,
and κ = 0.41 is the Von Karman constant. The quantity rd identifies a wall region (rd = 1 in the log-layer and rd = 0 in
free-shear flows). The inclusion of the strain-rate and vorticity tensors in the definition of the length scale lDDES means that
the length scale is both grid and solution dependent [38].

A.6. Improved Delayed Detached-Eddy Simulation
A.6.1. Modification of the subgrid length scale
If no explicit filter width for the subgrid scales is defined in the LES model, as is the case for these hybrid models, the relation
between the grid-spacing and the subgrid length scale is rather turbid. This becomes even more of an issue when the grid is
refined significantly more in a single (usually the wall-normal) direction. In Wall-modeled Large Eddy Simulation (WMLES)
the principle of subgrid eddies close to the wall extracting energy from the larger scales further away from the wall is violated
since spacing parallel to the wall (non-dimensionally expressed by x+ and z+) exceeds the distance to the wall. Larsson et
al. [40] also point out that there is only a limited exchange of information between both regions/models: i) the Reynolds-
Averaged Navier-Stokes (RANS) model receives velocity data from the LES model at the edge of the inner layer (y = hwm
and ii) the wall shear stress τw is fed to the LES model at y = 0. The filter/subgrid length scale was changed from the
previously common cube root of the cell volume towards a maximum of the cell dimensions in the development of DES [34].
The issue of using a correct value for the Smagorinsky constant in the LES sub-grid model still remains, however, as the value
differs significantly between wall-bounded and free turbulent flows. An alternative that does not require switching between
two different constants is therefore required for Improved Delayed Detached-Eddy Simulation (IDDES). The subgrid length
scale ∆ now includes the proximity to the wall dw and is defined as:

∆= f (hx ,hy ,hz ,dw ), (A.45)
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where ∆ is the subgrid length scale, hx , hy and hz are local cell sizes in streamwise, wall-normal and lateral direction ans dw

is the distance to the wall.
In the free-stream, small eddies behave in a statistically isotropic way, so that the subgrid length scale is set equal to the
maximum local grid spacing:

∆∞ = hmax ≡ max
{
hx ,hy ,hz

}
. (A.46)

Close to the wall, it should depend only on the wall-parallel grid dimensions to reduce the sensitivity introduced by the drastic
decrease of the wall-normal step and mitigating the violation of the energy cascade principle for the smaller eddies:

∆wall =∆(hx ,hz ). (A.47)

To blend both formulations into a single function ∆, it is assumed that ∆ is linearly dependent on dw and that it varies within
the range hmin ≤∆≤ hmax, at any distance from the wall.

The additional model constants for the SST-based IDDES model are given in Table A.5.

Table A.5: Additional model constants for the SST-based IDDES model.

Cw Cd t1 Cd t2 Cl Ct

0.15 20 3 5.0 1.87





B
Cavity dynamics

This appendix contains the derivation of the analytical dispersion relation as originally derived by Bosschers [2]. The nota-
tions from [13] are used.

B.1. Analytical dispersion relation
Assuming an irrotational disturbance ϕ′(x, t ) to the velocity potential ϕ0(x), with (bounded) mean velocity vector u=∇ϕo :

φ(x, t ) =φ0(x)+ φ̃(x, t ). (B.1)

The general non-linear equation that is satisfied by φ is then given by Equation (B.2) [108].

1

c2

∂2φ

∂t 2 + 1

c2

D
Dt

(
1

2
(∇φ)2

)
+ 1

c2

∂

∂t

(
1

2
(∇φ2)

)
−∇2φ= 0. (B.2)

This equation can be linearized to describe the propagation of small amplitude sound waves determined by φ̃(x, t ). If the
mean flow is assumed to be steady, the perturbation potential ϕ′ can be used instead of ϕ̇ so that Equation (B.3) can be
derived as the vortex sound equation, based on rewriting the Lighthill equation to a vortex sound equation, see [108] for more
details. {(

∂

∂t
+u ·∇

)[
1

c2

(
∂

∂t
+u ·∇

)]
− 1

ρ
· (ρ∇)

}
φ̃= 0, (B.3)

where c = c(x) and ρ = ρ(x) are the local sound speed and density. For incompressible and homogeneous flows, the density
term in Equation (B.3) drops out, and the following form is obtained:

∇2φ̃− 1

c2

(
∂

∂t
+u ·∇

)2

φ̃= 0. (B.4)

A harmonic variation of the disturbance is defined in cylindrical coordinates as

φ̃=ϕ(r )e i (kx x+nθ−ωt ), (B.5)

where ϕ(r ) is a potential that only depends on the radial position, kx is the axial wave number, n is the azimuthal wave number
and ω is the angular frequency. Considering only the axial component ux of the velocity u allows writing Equation (B.4) as

ϕ′′+ ϕ′

r
+

[
−k2

x −
n2

r 2 + 1

c2 (ω−ux kx )2
]
ϕ= 0, (B.6)

where ′ indicates a derivative with respect to r . The acoustic wave number is projected on the radial direction and the radial
wavenumber is subsequently defined as

k2
r = 1

c2 (ω−ux kx )2 −k2
x . (B.7)

Furthermore, sound is radiated away from the vortex core, so that the solution for the disturbance potential is given by a
Hankel function of the first kind:

φ̃= ϕ̂H 1
n(kr )e i (kx x+nθ−ωt ), (B.8)

where ϕ̂ is the amplitude of the disturbance potential. Modes n = 1,2 require the addition of the azimuthal velocity. This
complicates the solution procedure and for low frequencies and typical vortex strengths the additional terms can be neglected,
given that |u| ≪ c. Mode n = 0 does not require additional terms. The distortion r̃ of the cavity with average radius rc can
then be described by a number of modes, each with kx , n, ω and amplitude r̂ .

η= rc + r̃ = rc + r̂ e i (kx x+nθ−ωt ), (B.9)
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where η is the local cavity radius. The dispersion relation is subsequently obtained after determining the kinematic and
dynamic boundary conditions using a small-perturbation analysis [2]. Both boundary conditions yield a relation between
the perturbation amplitude ϕ̂ and the cavity radius variation amplitude r̂ . Combining the kinematic and dynamic boundary
condition then yields an expression of the frequency as a function of the wavenumber. The derivation of both boundary
conditions is described in [2]. The kinematic and dynamic boundary conditions are given by:

ϕ̂

r̂
=

i
(
Wc kz +Vc

n
rc
−ω

)
kr H (1)′

n (kr rc )
, (B.10)

ϕ̂

r̂
=

T
rc

(n2 +k2
z r 2

c +1)+2(p∞−pvap)∗

iρrc

(
ux,c kz +uθ,c

n
rc
−ω

)
H (1)

n (kr rc )
, (B.11)

where ux,c c and uθ,c are respectively the axial and azimuthal velocity at the cavity interface.



C
Discretization methods in ReFRESCO

This appendix chapter contains additional definitions and background for the discretization methods applied in REFRESCO.

C.1. Time discretization
The time-derivative for a control volume that remains unchanged in time, is defined by

∂

∂t

∫
V

(ρϕ)dV , (C.1)

and discretized by an implicit backward Euler scheme using three time levels n, n −1 and n −2:

∂

∂t

∫
V

(ρϕ)dV ≈ c1(ρϕc∆V )n + c2(ρϕc∆V )n−1 + c3(ρϕc∆V )n−2

∆t
, (C.2)

where n indicates the time level and ∆t the time step. For the second-order three-time level scheme used for the present
simulations, the coefficients are defined as:

c1 = 1.5; c2 =−2.0; c3 = 0.5. (C.3)

C.2. Finite-volume discretization
In finite volume codes the domain is divided into a finite number of non-overlapping control volumes where the integral
forms of the governing equations are solved for each cell. The discretization process will be outlined using a simple transport
equation for an arbitrary flow parameter ϕ, given below in differential conservative form:

∂ϕ

∂t
+∇· (ϕu) =∇· (D∇ϕ)+Qϕ, (C.4)

where D represents the diffusivity of ϕ and Qϕ is a source term. In the finite volume method this transport equation would be
solved in its integral form: ∫

V

∂ϕ

∂t
dV +

∫
S
ϕ(∇ϕ ·n)dS =

∫
S

D(∇ϕ ·n)dS +
∫

V
QϕdV , (C.5)

using the Gauss divergence theorem and with V , S denoting respectively the volume and surface area of the control volume.

C.3. Convective term discretization
The description of the Quadratic Upwind Interpolation for Convective Kinematics (QUICK) scheme below was based on
[89]. The downwind face value ϕ f for the QUICK scheme (κ= 1/2) is given by:

ϕ f =ϕC + ∆xC

2

[
1+κ

2

(
∂ϕ

∂x

)
f
+ 1−κ

2

(
∂ϕ

∂x

)
u

]
, (C.6)

where

∆xC = x f −xu ,

(
∂ϕ

∂x

)
f
= ϕD −ϕC

xD −xC
,

(
∂ϕ

∂x

)
u
= ϕC −ϕU

xC −xU
. (C.7)

Figure C.1 provides an illustration of the faces and gradients used in the interpolation. The formulation for the face value ϕ f

using the limited QUICK scheme converted to flux-limited form is given by:

ϕ f =ϕC + ∆x

2
λ

[
(1+κ)

(
∂ϕ

∂x

)
f
−2κ

(
∂ϕ

∂x

)
u

]
, (C.8)
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Figure C.1: Sketch indicating fluxes, cells and face values. Image adapted from [89].

where
λ= max

[
0, ϕ̄C (1− ϕ̄C )

]
. (C.9)

The normalized variable ϕ̄C is defined as [89]:

ϕ̄C = ϕC −ϕU

ϕD −ϕU
= 1

r +1
. (C.10)



D
Wetted line vortex simulations

This appendix chapter contains additional plots of the iterative and statistical convergence for the wetted line vortex simula-
tions on M1 and for the verification study. Furthermore, in contains the point-wise values of the discretization uncertainties

D.1. Comparison of turbulence models on M1
D.1.1. Iterative convergence
The plots of the residual convergence of the coarse mesh simulations of the wetted vortex are given in Figures D.1 and D.2.
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Figure D.1: L∞ residual for wetted vortex simulations on M1, where triangular marks are used for the SST and square marks indicate the EARSM simulation.
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Figure D.2: L∞ residual for wetted vortex simulations using the IDDES model, where triangular marks are used for the simulation on M1 and square marks
for M2.
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D.1.2. Statistical uncertainty
The statistical uncertainty plots for the coarse mesh simulations of the wetted vortex are given in Figure D.3. The statistical
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(ū

x
)/

ū
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Figure D.3: Statistical uncertainty plots for uθ (left), ux (middle) and p (right) measured at plane C for the turbulence model comparison in the wetted
vortex case, obtained using TST-B. Lighter, dashed versions of the dark solid lines indicate removed start-up effect.

convergence and uncertainty of the Reynolds stresses in normal direction u′
i u′

i are shown for the IDDES on M1 and M2 in
Figure D.4.
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Figure D.4: Statistical uncertainty plots for normal Reynolds stresses resolved by the IDDES model in axial, radial and tangential direction, measured at
plane C on M1 (left) and M2 (right). Results are for the wetted vortex case, obtained using TST-B.

D.2. Verification study
D.2.1. Iterative convergence
The residual plots for the simulations in the verification study are given in Figure D.5 for M1 and M2 and in Figure D.6 for
the high Courant simulations on M4.
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Figure D.5: L∞ residual for wetted vortex EARSM verification study. Triangular marks are used for the simulation on M1 and square marks indicate the
M2 simulation.
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Figure D.6: L∞ residual for wetted vortex simulations on M4 using higher Courant numbers. Triangular marks are used for M4 Co12.5, square marks
indicate the M4 Co15.6 simulation and diamond-shaped marks the M4 Co19.5 simulation.
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D.2.2. Discretization uncertainty
Disk monitor uncertainty values
The uncertainty and fitting parameter data (p and q) for the grid- and time step convergence study are given for the axial and
tangential velocity and the pressure coefficient in respectively Tables D.1 to D.3.

Table D.1: Discretization uncertainty values for the axial velocity at plane C, obtained with the disk monitor in the grid- and time step convergence study.
Last column is the result of M4 EARSM Co10, the 1,2 in p and q columns indicates the use of both first- and second-order exponents in the fitting process.

r /rthroat Udisc,abs(u∗
x ) Udisc,rel(u∗

x ) /% p q ϕnum,M4

0.02 0.01 1.06 1,2 1,2 1.04
0.04 0.01 0.92 1,2 1,2 1.04
0.06 0.01 0.57 2 1,2 1.04
0.08 0.01 0.49 2 1,2 1.04
0.10 0.00 0.21 2 1,2 1.04
0.12 0.00 0.35 2 1,2 1.03
0.14 0.00 0.37 1,2 1,2 1.03
0.16 0.03 3.19 1,2 1,2 1.03
0.18 0.00 0.11 2 1,2 1.03
0.20 0.00 0.12 2 1,2 1.03
0.22 0.00 0.28 1 1,2 1.03
0.24 0.00 0.26 1 1,2 1.03
0.26 0.01 0.52 2 1,2 1.03
0.28 0.00 0.28 1,2 1,2 1.03
0.30 0.02 1.47 1,2 1,2 1.03
0.32 0.00 0.11 2 1 1.03
0.34 0.01 0.51 1 1,2 1.03
0.36 0.00 0.07 2 2 1.03
0.38 0.01 0.59 1,2 1,2 1.03
0.40 0.00 0.44 1 1,2 1.03
0.42 0.00 0.36 2 1,2 1.03
0.44 0.01 0.53 1,2 1,2 1.03
0.46 0.00 0.27 1 1,2 1.03
0.48 0.00 0.25 2 1,2 1.03
0.50 0.00 0.25 2 1,2 1.03
0.52 0.00 0.26 2 1,2 1.03
0.54 0.00 0.09 1,2 1,2 1.03
0.56 0.00 0.05 2 1,2 1.03
0.58 0.00 0.18 1,2 1,2 1.03
0.60 0.68 66.57 1,2 1,2 1.03
0.62 0.00 0.02 2 1,2 1.03
0.64 0.00 0.08 1,2 1,2 1.03
0.66 0.00 0.45 1,2 1,2 1.03
0.68 0.00 0.23 1,2 1,2 1.03
0.70 0.00 0.08 1,2 1,2 1.03
0.72 0.00 0.12 1,2 1,2 1.03
0.74 0.00 0.05 2 1,2 1.03
0.76 0.00 0.10 2 2 1.03
0.78 0.01 0.60 1,2 1,2 1.03
0.80 0.00 0.12 1 1,2 1.03
0.82 0.01 0.63 1,2 1,2 1.03
0.84 0.00 0.13 2 2 1.02
0.86 0.00 0.04 1 1,2 1.02
0.88 0.00 0.10 1 1,2 1.02
0.90 0.01 1.12 1,2 1,2 1.01
0.92 0.01 0.92 1,2 1,2 1.01
0.94 0.02 2.43 1,2 1,2 0.99
0.96 0.01 1.62 2 1,2 0.91
0.98 0.02 3.02 2 1,2 0.64
1.00 0.06 2713.76 1,2 1,2 0.00
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Table D.2: Discretization uncertainty values for the tangential velocity at plane C, obtained with the disk monitor in the grid- and time step convergence
study of the EARSM for the wetted vortex case. Last column is the result of M4 EARSM Co10, the 1,2 in p and q columns indicates the use of both first-
and second-order exponents in the fitting process.

r /rthroat Udisc,abs(u∗
θ

) Udisc,rel(u∗
θ

) /% p q ϕnum,M4

0.02 0.07 249.16 1,2 1,2 0.03
0.04 0.12 224.06 1,2 1,2 0.06
0.06 0.00 2.83 2 1,2 0.08
0.08 0.03 27.25 1,2 1,2 0.10
0.10 0.01 11.78 1,2 1,2 0.11
0.12 0.02 19.32 1,2 1,2 0.12
0.14 0.02 20.03 1,2 1,2 0.12
0.16 0.02 13.22 1,2 1,2 0.13
0.18 0.00 3.67 1,2 1,2 0.13
0.20 0.01 7.46 1,2 1,2 0.14
0.22 0.02 14.13 1 1,2 0.14
0.24 0.03 17.28 2 1,2 0.15
0.26 0.02 15.61 2 1,2 0.15
0.28 0.02 13.25 1,2 1,2 0.15
0.30 0.02 11.33 1 1,2 0.15
0.32 0.02 11.58 2 1,2 0.15
0.34 0.02 12.09 2 1,2 0.15
0.36 0.02 9.92 2 1,2 0.16
0.38 0.01 6.63 1,2 1,2 0.16
0.40 0.01 3.34 1,2 1,2 0.16
0.42 0.01 4.36 1,2 1,2 0.16
0.44 0.01 8.16 1,2 1,2 0.16
0.46 0.01 4.97 1,2 1,2 0.15
0.48 0.00 2.56 2 2 0.15
0.50 0.00 2.70 2 2 0.15
0.52 0.01 7.56 1,2 1,2 0.15
0.54 0.03 18.12 1,2 1,2 0.14
0.56 0.03 21.40 1,2 1,2 0.14
0.58 0.01 4.62 1 1,2 0.13
0.60 0.01 4.17 1,2 1,2 0.12
0.62 0.00 3.97 1,2 1,2 0.11
0.64 0.00 4.08 1,2 1,2 0.11
0.66 0.02 20.84 1 1,2 0.10
0.68 0.01 10.08 2 1,2 0.09
0.70 0.04 40.85 1,2 1,2 0.09
0.72 0.01 15.89 1,2 1,2 0.08
0.74 0.02 21.12 1,2 1,2 0.08
0.76 0.01 12.27 1,2 1,2 0.08
0.78 0.00 1.62 2 2 0.07
0.80 0.00 2.20 2 1,2 0.07
0.82 0.01 9.54 1,2 1,2 0.07
0.84 0.00 3.48 1,2 1,2 0.06
0.86 0.00 0.14 2 1,2 0.06
0.88 0.00 2.09 1.5 1.5 0.06
0.90 0.01 8.93 1,2 1,2 0.06
0.92 0.00 0.43 2 2 0.06
0.94 0.00 5.22 1,2 1,2 0.05
0.96 0.01 15.36 1,2 1,2 0.05
0.98 0.00 5.23 1 1,2 0.03
1.00 0.00 2657.44 1,2 1,2 0.00

Quantification of uncertainty due to non-updated monitor coordinates
Table D.4 shows the point-wise difference in estimated discretization uncertainty between both monitors at measurement
plane C. This data was obtained without taking into account the time step refinement as line monitors were not used in higher
Courant number simulations on M4.
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Table D.3: Discretization uncertainty values for the pressure coefficient at plane C, obtained with the disk monitor in the grid- and time step convergence
study of the EARSM for the wetted vortex case. Last column is the result of M4 EARSM Co10, the 1,2 in p and q columns indicates the use of both first-
and second-order exponents in the fitting process.

r /rthroat Udisc,abs(Cp ) Udisc,rel(Cp ) /% p q ϕnum,M4

0.02 0.02 2.38 1,2 1,2 −0.73
0.04 0.02 2.25 1,2 1 −0.72
0.06 0.00 0.50 2 2 −0.72
0.08 0.00 0.43 1,2 1,2 −0.72
0.10 0.00 0.66 1,2 1,2 −0.71
0.12 0.00 0.39 2 1,2 −0.71
0.14 0.02 2.76 1 1,2 −0.70
0.16 0.00 0.26 2 2 −0.70
0.18 0.53 76.90 1,2 1,2 −0.70
0.20 0.00 0.22 1,2 1,2 −0.69
0.22 0.03 3.80 1 1,2 −0.69
0.24 0.01 2.14 1,2 1,2 −0.69
0.26 0.03 4.62 1,2 1,2 −0.68
0.28 0.02 2.41 2 1,2 −0.68
0.30 0.03 4.76 1 1,2 −0.68
0.32 0.02 2.58 1,2 1,2 −0.67
0.34 0.02 3.08 1,2 1,2 −0.67
0.36 0.03 4.08 1,2 1,2 −0.67
0.38 0.00 0.23 2 2 −0.67
0.40 0.03 4.49 1 1,2 −0.66
0.42 0.03 5.23 2 1,2 −0.66
0.44 0.00 0.53 1,2 1,2 −0.66
0.46 0.03 5.19 1 1,2 −0.66
0.48 0.03 4.20 1,2 1,2 −0.65
0.50 0.02 3.47 1,2 1,2 −0.65
0.52 0.02 2.57 1,2 1,2 −0.65
0.54 0.03 4.16 1 1,2 −0.65
0.56 0.02 3.33 1,2 1,2 −0.65
0.58 0.02 3.64 1,2 1,2 −0.65
0.60 0.02 3.48 1,2 1,2 −0.64
0.62 0.02 2.58 1,2 1,2 −0.64
0.64 0.01 1.67 1,2 1,2 −0.64
0.66 0.02 2.76 1,2 1,2 −0.64
0.68 0.02 2.38 1,2 1,2 −0.64
0.70 0.02 3.61 1,2 1,2 −0.64
0.72 0.02 2.58 1,2 1,2 −0.64
0.74 0.02 3.02 1,2 1,2 −0.64
0.76 0.01 2.33 1,2 1,2 −0.64
0.78 0.02 2.43 1,2 1,2 −0.64
0.80 0.02 3.80 1,2 1,2 −0.64
0.82 0.02 2.45 1,2 1,2 −0.64
0.84 0.02 2.43 1,2 1,2 −0.64
0.86 0.02 2.44 1,2 1,2 −0.64
0.88 0.02 2.47 1,2 1,2 −0.64
0.90 0.02 2.48 1,2 1,2 −0.64
0.92 0.01 2.35 1,2 1,2 −0.64
0.94 0.01 2.00 1,2 1,2 −0.64
0.96 0.01 2.24 1,2 1,2 −0.64
0.98 0.01 2.22 1,2 1,2 −0.64
1.00 0.02 2.42 1,2 1,2 −0.64
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Table D.4: Comparison of calculated discretization uncertainties at plane C, obtained only from the grid-convergence study of the EARSM for the wetted
vortex case. All uncertainties and differences (diff.) are relative to the mean value.

r /rmax Udisk(u∗
x )/% Uline(u∗

x )/% diff. /% Udisk(u∗
θ

)/% Uline(u∗
θ

)/% diff. /% Udisk(Cp )/% Uline(Cp )/% diff. /%

0.02 1.05 1.03 −0.02 250.46 45.15 −205.31 1.20 1.21 0.01
0.04 0.91 0.94 0.03 77.47 41.85 −35.62 1.25 0.36 −0.89
0.06 0.71 0.38 −0.33 9.60 33.14 23.54 1.22 0.90 −0.32
0.08 0.30 0.26 −0.04 16.38 22.98 6.60 0.45 0.39 −0.06
0.10 0.58 0.51 −0.07 2.23 1.87 −0.36 0.38 0.17 −0.21
0.12 0.42 0.47 0.05 14.55 13.76 −0.79 0.40 0.30 −0.10
0.14 0.37 0.37 0.00 12.70 12.54 −0.16 0.27 0.27 0.00
0.16 0.43 0.20 −0.23 3.84 10.20 6.36 0.19 0.95 0.76
0.18 0.55 0.46 −0.09 0.73 9.37 8.64 0.68 0.23 −0.45
0.20 0.48 0.22 −0.26 2.68 9.50 6.82 0.37 0.86 0.49
0.22 0.34 0.31 −0.03 8.09 9.27 1.18 1.27 0.24 −1.03
0.24 0.26 0.19 −0.07 8.64 7.80 −0.84 2.26 1.05 −1.21
0.26 0.26 0.33 0.07 9.23 8.06 −1.17 1.57 0.22 −1.35
0.28 0.28 0.30 0.02 7.90 2.94 −4.96 2.34 1.07 −1.27
0.30 0.32 0.36 0.04 6.40 7.34 0.94 1.03 1.09 0.06
0.32 0.27 0.29 0.02 6.89 6.65 −0.24 1.29 1.28 −0.01
0.34 0.22 0.41 0.19 11.75 2.64 −9.11 3.33 1.12 −2.21
0.36 0.30 0.24 −0.06 7.19 10.29 3.10 1.41 1.39 −0.02
0.38 0.44 0.34 −0.10 4.91 7.25 2.34 0.22 0.24 0.02
0.40 0.20 0.14 −0.06 1.98 8.28 6.30 4.37 1.34 −3.03
0.42 0.16 0.28 0.12 1.31 3.08 1.77 5.09 0.33 −4.76
0.44 0.36 0.15 −0.21 4.51 2.32 −2.19 0.52 1.36 0.84
0.46 0.26 0.31 0.05 1.77 0.00 −1.77 1.89 1.73 −0.16
0.48 0.15 0.15 0.00 3.84 3.92 0.08 2.37 1.50 −0.87
0.50 0.16 0.46 0.30 7.61 2.28 −5.33 2.66 0.38 −2.28
0.52 0.17 0.27 0.10 4.44 2.13 −2.31 0.65 0.41 −0.24
0.54 0.02 0.03 0.01 18.03 2.83 −15.20 4.03 1.34 −2.69
0.56 0.04 0.01 −0.03 5.48 4.04 −1.44 1.71 3.15 1.44
0.58 0.14 0.31 0.17 5.71 0.78 −4.93 2.27 0.31 −1.96
0.60 0.18 0.01 −0.17 3.61 0.06 −3.55 2.19 1.27 −0.92
0.62 0.03 0.13 0.10 1.21 1.01 −0.20 1.58 2.89 1.31
0.64 0.01 0.07 0.06 1.05 1.94 0.89 0.25 1.48 1.23
0.66 0.45 0.30 −0.15 1.16 9.84 8.68 1.74 0.22 −1.52
0.68 0.22 0.44 0.22 31.83 15.52 −16.31 1.42 0.26 −1.16
0.70 0.05 0.08 0.03 40.91 0.60 −40.31 1.22 1.51 0.29
0.72 0.05 0.22 0.17 15.90 6.11 −9.79 1.58 1.83 0.25
0.74 0.24 0.48 0.24 8.48 2.76 −5.72 1.42 1.36 −0.06
0.76 0.10 0.06 −0.04 12.24 11.28 −0.96 1.45 1.70 0.25
0.78 0.62 0.16 −0.46 2.14 3.02 0.88 1.55 1.28 −0.27
0.80 0.11 0.35 0.24 43.67 4.18 −39.49 1.60 1.69 0.09
0.82 0.63 0.30 −0.33 9.57 2.53 −7.04 1.47 1.35 −0.12
0.84 0.13 0.08 −0.05 0.41 2.16 1.75 1.47 1.86 0.39
0.86 0.14 0.10 −0.04 4.13 4.48 0.35 1.51 1.64 0.13
0.88 0.70 0.04 −0.66 7.41 1.06 −6.35 1.54 1.46 −0.08
0.90 1.12 0.05 −1.07 8.93 0.91 −8.02 1.52 1.25 −0.27
0.92 0.92 0.13 −0.79 0.55 9.08 8.53 1.50 1.76 0.26
0.94 1.30 1.47 0.17 2.71 1.31 −1.40 1.55 1.07 −0.48
0.96 11.61 6.44 −5.17 15.53 11.53 −4.00 1.54 2.37 0.83
0.98 22.61 12.26 −10.35 27.68 0.62 −27.06 1.49 0.10 −1.39
1.00 3007.37 310.45 −2696.92 2957.34 296.01 −2661.33 1.52 3.53 2.01





E
Cavitating line vortex simulations

This chapter contains additional plots of the iterative and statistical convergence of cavitating line vortex simulations.

E.1. Iterative convergence
The local L∞ and root-mean-square L2 residual plots for the cavitating vortex simulations on M4 are given in Figures E.1
and E.2 respectively. Monitor data for both M4 simulations was accidentally deleted for a period of 0.078s in the beginning
of the simulation and is therefore omitted in the graphs. The larger peaks in the residuals are due to restarts of the simulation.
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Figure E.1: L∞ residual for cavitating vortex simulations on M4, where triangular marks are used for the IDDES and square marks indicate the EARSM
simulation.
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Figure E.2: L2 residual for cavitating vortex simulations on M4, where triangular marks are used for the IDDES and square marks indicate the EARSM
simulation.
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E.2. Statistical convergence
The statistical convergence and uncertainty of the Reynolds stresses in normal directions u′

i u′
i are shown for the IDDES in

combination with the Schnerr-Sauer cavitation model on M3 and M4 in Figure E.3.
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Figure E.3: Statistical uncertainty plots for normal Reynolds stresses resolved by the IDDES model in axial, radial and tangential direction, measured at
plane C on M3 (left) and M4 (right). Results are for the cavitating vortex case, obtained using TST-B.
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