
<Isomorphism is equality>
<A Coq formalisation of the proofs Isomorphism is equality by Coquand T. and Danielsson NA. >

<Tiago Greeve1>

Supervisor(s): <Benedikt Ahrens1>, <Kobe Wullaert1>

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: <Tiago Greeve>
Final project course: CSE3000 Research Project
Thesis committee: <Benedikt Ahrens>, <Kobe Wullaert>, <Neil Yorke-Smith>

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper will give a formalisation of proofs, given
in the paper ”isomorphism is equality”((Coquand
& Danielsson, 2013), in the proof assistant lan-
guage Coq. The formalisations will be added to
UniMath library. A library containing machine
readable proofs in the mathematical field of Ho-
motopy Type theory, a relatively new field which
combines Homotopy Theory and Martin-Löf Type
Theory. The proofs that have been formalised are
the equality pair lemma and the proof that isomor-
phism is equivalent to equality. We have also con-
structed a concrete universe on which we defined a
notion of isomorphism, as per the same paper.

1 Introduction
Homotopy Type Theory (followingly denoted as HoTT) is
a new field of mathematics, which is being considered as a
mathematical foundation instead of set theory. HoTT is based
on type theory as developed by Martin-Löf with an interpre-
tation based on homotopy theory, where types are spaces and
elements of types are points in a space.

HoTT is a particularly interesting field of mathematics, be-
cause the type-theoretic basis allows for machine readable
proofs, in contrast to other fields of mathematics where proofs
are written in plain English and need to be verified by other
humans for correctness. The development of HoTT mathe-
matics is thus particularly interesting, because machine read-
able proofs allow for definitive correctness, machine readable
proofs also opens up possibilities for verifying functionality
of computer programs and allows proofs to be easily used as
lemmas or theorems in other proofs, like one would use a
function in a regular computer program.

The foundations for HoTT were laid by Vladimir Voevod-
sky in his work univalent foundations, which were accom-
panied by a library of formalisations in the proof assistant
coq, namely UNIVALENT FOUNDATIONS. Later, the li-
brary named UniMath was set up, with Voevodsky as one of
members of the committee overseeing the library. The Uni-
Math library consists of mathematical proofs in HoTT and
is based on the univalent foundations of Vladimir Voevod-
sky, which distinguishes itself by the univalent axiom, which
states that there is a function from equality between types to
equivalence between types and that this function is itself an
equivalence.

For this research project We have selected a paper on the
HoTT topic of ”Isomorphism is equality”, followingly called
”the isomorphism paper”(Coquand & Danielsson, 2013), and
we will be aiming to formalize the results of this paper in the
UniMath library, such that is available for anyone to directly
use the lemma’s and theorems as part of their own proofs.
My research will thus answer the following question: Can we
formalise the results of the paper ”isomorphism is equality”
into code to extend the UniMath library?

1.1 The basis of HoTT
The main concepts of HoTT include, dependent function
types, dependent pair types and identity types.

Dependent function types or
∏

−types, are types which
elements are functions, where the type of the applied function
depends on the input. Alternatively, this can be interpreted as
”for all x of type A we get an element of B(x). We denote
them as: ∏

x : A,B(x)

or as ∏
(x : A), B(x)

.
Dependent pair types or

∑
−types, are types which ele-

ments are pairs, where the type of the second element of the
pair is dependent on the first element. Pairs can be decon-
structed into their corresponding elements, by taking a pro-
jection of the pair. For s :

∑
(x : A), B(x), the first projec-

tion, denoted (pr1 s), is an element of type A, and the second
projection, denoted (pr2 s), is an element of type B(x). Alter-
natively one can interpret this as ”there exists an x of type A
such that we get an element of type B(x). We denote them as:∑

x : A, B(x)

or as ∑
(x : A), B(x)

An element of such a type can be written in the form: (x, , y
where the x is of type a and y is of type B(x).

Identity types are how we denote equality in HoTT, for two
elements x and y of a type A, we can construct the identity
type, denoted as x = y. This type can be interpreted as
a propositional equality between x and y. Elements of type
x = y, are witnesses to the equality of type x = y. In the ho-
motopy theory interpretation, elements of identity types are
so called paths between two points. There is one constructor
for identity types, namely idpath. For an element x, this con-
structor constructs an element of type x = x. This is possible
because there is always a path from a point to itself. (The
Univalent Foundations Program, 2013)

A concise explanation of univalence and the univalence ax-
iom is given by Escardó(Escardó, 2018). For us merely the
implications of the univalence axiom are important, which we
mention in the section explaining preliminary definitions.

1.2 What is isomorphism?
The paper ”Univalent foundations and the equivalence prin-
ciple” describes different notions of sameness: Equality, iso-
morphism, equivalence and how they relate to each. Each of
them state that two entities are the same when both of them
satisfy the same specific set of properties. What these prop-
erties are, depends on the domain in which these two entities
reside, the difference between these notions of sameness is
thus about the domain in which you want to specify same-
ness, that is what determines the properties that need to hold.
In the case of isomorphisms, the notion of sameness we are
especially interested in for this paper, they are usually used
when we are talking about objects that resort in a category.

In the case we are considering in this paper we do not only
want properties of these objects to be invariant under isomor-
phism, but we also want structures on these objects, as Ahrens
and North call it, to be invariant under isomorphism. In our

2

paper we will see that this corresponds to the following: Two
instances of codes are isomorphic if the type of a-structures
on the carrier type can be transported to another carrier type,
if there is an equivalence between the carrier types (Ahrens
& North, 2019).

2 Goal of research and preliminary definitions
The goal of this research is to prove that isomorphism is
equivalent to equality, in order to do this, we first have to
define what isomorphism is. We would also like to construct
a concrete universe for which we give a definition of isomor-
phism. For both these goals we first need to introduce prelim-
inary definitions and theorems in the field of HoTT. We use
notation that is similar to Coq and adhere to the style as used
in the UniMath library.

2.1 The transport function
We have previously introduced the identity type for propo-
sitional equality. The type of equality is substitive, mean-
ing if we have elements x, y : X and we have a property∏

(x : X), P (x), if we have an equality x = y, then we also
have P(x) = P(y). Thus if a property holds for x, it must also
hold for y. Another way to say this is if there is a path from x
to y, then we can transport P(x) along this path to P(y):

transportf : {X : UU} → (P : X → UU) → {x x′ :
X} → (e : x = x′) → P x → P x′

2.2 Contractibility
A type T is contractible if all it’s elements can be contracted
to a single point:

iscontr (T : UU) :
∑

(cntr : T),
∏

(t : T), t = cntr

2.3 isaprop
A type X is a proposition, if the equality between two ele-
ments of that type, is contractible:

isaprop (X : UU) :
∏

(x x′ : X), iscontr (x = x′)

2.4 Equality of sigma types
For two elements x y of (sigma type)

∑
z : A, B(z), the

equality x = y is equivalent to the pair of equalities, of the
first and second projections of x and y, where for the equality
between the second projections, we transport the left-hand-
side of the equality along the equality (path) between the first
projections:

sigma equality : x = y ≃
∑

p : pr1 x =
pr1 y, transportf A p (pr2 x) = pr2 y

For two elements x y of (sigma type)
∑

z : A, B(z),
where second components are propositionally typed, the
equality between x and y is merely the equality between their
first components: remove prop : x = y ≃ pr1 x = pr1 y

2.5 Univalence
As equality is a stricter definition of sameness than equiva-
lence, it is easy to see that a function from equality to equiv-
alence needs to exist. We will call it eqweqmap:

eqweqmap {T1 T2 : UU} : T1 = T2 → T1 ≃ T2

What univalence states is that this function is, in fact an
equivalence. Thus we also we get the inverse of eqweqmap,
we will call it weqtopaths:

weqtopaths {T1 T2 : UU} : T1 ≃ T2 → T1 = T2

2.6 The transport theorem
Say we have a predicate P : UU → UU and a function R that
says that for any two types X and X’, P respects equivalence
between X and X’ and a function r that says that R maps the
identity equivance of X to the identity function, then for all X
X’, if we have an equivalence between X and X’, we can use
univalence to get to the following:∏

(p : PX), R X X ′ w p =
transportf P (weqtopaths w) p

2.7 Associativity of
∑

type

Nested
∑

types have an associative property. If we have a
nested pair (x,, y,, z), by associativity we can write this as
((x,, y),, z). In other words, for a type X and a type family P
on X, and a type family Q on (

∑
y, P y) we get:

(
∑

y, Q y) ≃ (
∑

(x : X) (p : P x), Q (x, , p))

3 Coq formalisation of isomorphism is
equality

The following coq formalisations of the proofs ”equality-
pair-lemma” and ”isomorphism-is-equality” in ”isomorphism
is equality” (Coquand & Danielsson, 2013), are written in
Coq version 8.15.2 (released Jun 2022) with the first package
pick from Apr 2022, also know as 8.15 2022.04, and added
to the UniMath library. The configuration of coq in the Uni-
Math library can be found in the repo (Voevodsky et al., n.d.).
One notable setting is the disabling of a type hierarchy, which
adds inconsistency (one can prove false). This was necessary
in order implement Voevodsky’s resizing rules. Further re-
search is being done in order to solve this problem . The
isomorphism paper does utilize a type hierarchy for the agda
formalisations, thus we deviate from the isomorphism paper
in that aspect, we use UU everywhere to denote a universe.

As we specified previously we will define a notion of iso-
morphism between structures on objects that reside in cat-
egories, going forwards these objects will be called codes,
and the structures on these objects will be called a-structures
on codes. We will define what it means to be a code and
what it means for two codes to be isomorphic, then we will
prove that this notion of isomorphism is equivalent to the no-
tion of equality. Lastly, we will define a concrete universe,
to give meaning to the vague term ’a-structures’, and define
an alternative, more intuitive, notion of isomorphism for this
concrete universe, and we prove that this new definition is
equivalent to our original definition of isomorphism.

3.1 Parametrizations
Our work is parametrized by the following:

• A type of codes U.

• A decoding function El : U → UU → UU

3

• The requirement that El a, when seen as a property for
a type B : UU, respects equivalences, which we express
by the following function:
resp :

∏
(a : U),

∏
(B C : UU), B ≃ C →

El a B → El a C

• The resp function should map the identity equivalence
to the identity function:
resp id :

∏
a B,

∏
(x :

El a B), resp a B B (idweq B) x = x

3.2 Constructions
Codes consist of two parts, a code, that is an element of the
universe, and a family of propositions:

Code :=
∑

(a : U),
∏

(C : UU), El a C →∑
P, isaprop P

Instances of codes consist of a carrier type, an element, and
a number of propositional laws that define what it means to
be an instance of a code. For example a mathematical group
has a propositional law that state that every element has an
inverse:

instance (code : Code) :=
∑

(C : UU),
∑

(x :
(El (pr1 code) C)), pr1 ((pr2 code) C x)

In order to prove isomorphism is equivalent to equality we
need to define isomorphism. We define a predicate which
states when a given equivalence is an isomorphism from one
element to another:

isIsomorphism (a : U) {B C} (eq : B ≃ C) (x :
El a B) (y : El a C) := (resp a B C eq x) = y

Isomorphism between two instance of code x and y can be
defined by stating that there is in fact such an equivalence:

Isomorphic :=
∑

eq : (pr1 x) ≃ (pr1 y),
isIsomorphism (pr1 code) eq (pr1 (pr2 x)) (pr1

(pr2 y))

The carrier is the type on which we define a family of
types: Carrier (code : Code) (inst : instance code) :=
(pr1 inst)

The element is then a type of a-structure on the carrier type:
element (code : Code) (inst : instance code) :=
pr1 (pr2 inst)

3.3 Equality pair lemma
In order to prove that isomorphism is equality, we need a
lemma which states that the equality of two instances of code
is the same as the pair of equalities between their carrier types
and their elements, with the first element transported along
the equality from the carrier type of X, to the the carrier type
of Y. We state this ”equality-pair-lemm as follows:∏

(c : Code) (X Y : instance c), X =
Y ≃ (

∑
eq : Carrier c X =

Carrier c Y, transportf (El (pr1 c)) eq (element c X) =
element c Y)

Because Codes and instances of codes are elements of sigma
types, we can split them up in pairs, namely: c = (a,, p), X
= (C, x, p) and Y = (D, y, q). Where a is an element of the
universe U and P is the family of propositions, and where C
is the carrier type of X, x is the element of X and p is the
propositional laws for X, Y follows a similar pattern. We
unfold these definitions as well as the definitions of Carrier
and element, we get: (C, , x, , p) = (D, , y, , q) ≃

∑
eq :

C = D, transportf (El a) eq x = y

We apply the associative quality of sigma types:
(C, , x), , p = (D, , y), , q ≃

∑
eq : C =

D, transportf(El a) eq x = y

Now we know that p and q are propositionally typed. This
means we can drop them:
(C, , x) = (D, , y) ≃

∑
eq : C =

D, transportf(El a) eq x = y

As we can see we are left with the definition of equal-
ity of sigma types. The statement is thus proven.

3.4 Isomorphism is equality

Now that we have proven the equality-pair-lemma we move
on to the main theorem. Again we assume c = (a,, P), X =
(C,, x,, p) and Y = (D,, y,, q).∏

(c : Code) (X Y : instance c), Isomorphic c X Y ≃
X = Y

First we unfold the definitions of Code and instance and
isomorphic, giving us the following equivalence:

∑
eq : C ≃ D, resp a C D eq x = y ≃ (C, , x, , p) =

(D, , y, , q)

We apply the transport theorem, instantiated with resp and
resp-id as R and r:∑

eq : C ≃ D, transportf (El a) (weqtopaths eq) x =
y ≃ (C, , x, , p) = (D, , y, , q)

Now we apply univalence:∑
eq : C = D, transportf (El a) eq x = y ≃

(C, , x, , p) = (D, , y, , q)

Lastly we apply our previously defined equality pair lemma
and see that we indeed have an equivalence between isomor-
phism and equality.

4

3.5 Concrete universes
In order to define a concrete universe, we aim to give a con-
crete type U, decoding function El, as well as concrete defi-
nitions for the functions resp and resp id.
The concrete type U is defined as follows:

Inductive U : UU :=
| id : U
| type : U
| k : UU -> U
| arrow : U -> U -> U
| cartesian : U -> U -> U
| binary : U -> U -> U.

The decoding function is defined as follows:

Fixpoint El (u : U) (C : UU) : UU :=
match u with
| id => C
| type => Type
| k A => A
| (arrow a b) => (El a C) -> (El b C)
| (cartesian a b) => (El a C) × (El b C)
| (binary a b) => (El a C) (El b C)
end.

U is defined as an inductive type with the six constructors
id, type, k etc. and the decoding function El a is defined by
recursion on the strucutre of a.
In order to define resp, we first define a cast operator which
shows that El preserves equivalence.
We define the cast operator by recursion on the structure of a
(where func = arrow, cart = cartesian and bin = binary):

Fixpoint cast (a : U) {B C : UU} (eq : B C)
: (El a B) (El a C)

:=
match a with
| id => (eq : (El id B) (El id C))
| type => (idweq Type)
| (k A) => (idweq A)
| (func l r) => func_eq (cast l eq) (cast r eq)
| (cart l r) => cart_eq (cast l eq) (cast r eq)
| (bin l r) => bin_eq (cast l eq) (cast r eq)
end.

The logical combinators, arrow eq, cartesian eq and bi-
nary eq, have the following type signatures (we define them
in our coq formalisation):
arrow eq : {A B C D : UU} (x : A ≃ B) (y : C ≃ D) :
(A → C) ≃ (B → D)

cartesian eq : {A B C D : UU} (x : A ≃ B) (y : C ≃
D) : (A× C) ≃ (B ×D)

binary eq : {A B C D : UU} (x : A ≃ B) (y : C ≃ D) :
(A

∐
C) ≃ (B

∐
D)

Using cast we can define resp. We have not been able to prove
that cast maps identity equivalence to identity equivalence.
Assuming we have proven this, we can define resp id. Thus
we have given all parameters.

Next, now that we have a concrete universe, we define an
alternative notion on the struture of a. We do this as we feel it
is a more intuitive definition (where, a = arrow, c = cartesian,
b = binary, isIso = isIsomorphism:

Fixpoint isIsomorphism’ (a : U) {B C : UU}
(eq : B C) : (x : El a B) (y : El a C), UU

:=
match a with
| id => x y, ((pr1weq eq) (x : El id B))

= (y : El id C)
| type => X Y, X Y
| (k A) => x y, (x = y)
| (a l r) => a_rel (isIso’ l eq) (isIso’ r eq)
| (c l r) => c_rel (isIso’ l eq) (isIso’ r eq)
| (b l r) => b_rel (isIso’ l eq) (isIso’ r eq)
end.

With the relational combinators above defined as follows:

arrow rel P Q l r :=
∏

x y, P x y → Q (f x) (g y)

cartesian rel P Q l r := (P (pr1 l) (pr1 r)) ×
(Q (pr2 l) (pr2 r))

binary rel P Q (ii1 x) (ii1 y) := P x y
binary rel P Q (ii1 x) (ii2 y) := ∅
binary rel P Q (ii2 x) (ii1 y) := ∅
binary rel P Q (ii2 x) (ii2 y) := Q x y

What is left is to prove that this notion of isomorphism is
equivalent to our original notion. As when we do, we can
define what it means for concrete instances of codes, like
monoids and posets, to be isomorphic, using our definitions.

4 Challenges and responsible research
During the course of this research there were some challenges
we encountered, on which we will reflect in this section, we
will also reflect upon how we conducted our research and if
we were responsible in our research.

4.1 Challenges during formalisation in UniMath
Some UniMath theorems that we used in the proofs, needed
to be adapted to better suit the proofs, as the agda formali-
sations (Coquand & Danielsson, 2013) sometimes used dif-
ferent conventions or used similar theorems to the ones in
UniMath but with a different type signature.

In particular the proof weqtransportf in our formalisation,
is an adaption of the proof weqtransportbUAH from Uni-
Math/Foundations/UnivalenceAxiom.v, where the function R
(which corresponds to resp) is slightly different and the theo-
rem uses transporb instead of transportf, thus we rewrote the
theorem to use transportf, also using the univalence axiomas
instead of the hypotheses because they were not usuable in
the current context (outside of the UnivalenceAxiom.v file),
the implications of this are not clear but my assumption is that
if these are significant, there is a way to prove weqtransportf
using weqtransportbUAH and possibly other already proven
theorems.

5

Another issue that arose was that the steps used in the
proofs at first seemed not to translate to theorems that were
present in UniMath, requiring me to find other theorems that
did seem to allow me to take the steps neccesary to prove
certain statements, however upon later reflection on my for-
malisations, combining certain theorems already present in
UniMath did allow me to follow the same order of steps as
present in the isomorphism paper.

4.2 Responsible Research
As this research can be considered the study of pure math-
ematics, no ethical implications of this research have been
considered. Instead laying responsibility for any ethical im-
plications of those who apply mathematics. While realizing
there are other views(Ernest, 2021), we find this justified as
the possible applications of pure mathematics are usually not
in any way obvious, thus not allowing for rigorous evaluation
of ethical implications.

The reproducibility of this research project mainly depends
on the understanding of the mathematics, but also, to a lesser
degree, on the setup of the code, we think this research paper
provides enough information on both, to be considered repro-
ducible. The intuition behind most mathematical reasoning
is given, as well as extended resources, in the form of refer-
ences, to read more about the topic of HoTT such that it is
possible to understand. The versions for both the Coq lan-
guage and the unimath library, on which the formalisations
depend, have been described in the third chapter of this pa-
per.

5 Conclusions and Future Work
In this paper, we set out to prove that the notion of isomor-
phism, as characterized in the isomorphism paper and again
in this paper, is equivalent to the notion of equality. Further-
more we set out to provide a concrete universe and provide a
new, more intuitive notion of isomorphism between elements
created from this universe, and prove that this notion of iso-
morphism is equivalent to our original notion.

In order to prove the equivalence of isomorphism and
equality, we first created a definition for codes and a notion
of isomorphism between instances of these codes, then we
proved the equality pair lemma lemma, allowing us to drop
the propositional laws of the instances of code, and used this
lemma to prove isomorphism, in fact, equivalent to equality.
As such, the main research question ”Can we formalise the
results of the paper ”isomorphism is equality” into code to
extend the UniMath library?” has been answered succesfully.

We have defined a concrete universe U, an inductive data
type, and a decoding function El for the concrete universe.
We have also defined a cast function, to show that (El a) pre-
serves equivalence between carrier types. We then use the
cast function to define resp and using the fact that cast maps
the identity to the identity, we define resp id. We then define
a notion if isomorphism for this concrete universe.

5.1 Future work
The proof that this notion of isomorphism is equivalent to our
original notion, is a subject for future work, as we were not

able to fully prove this. More precisely, we were not able to
prove the cases for the function space and binary sum. Addi-
tionally, we have assumed the fact that cast maps the identity
to the identity. This fact can however be proven by defining
a function cast id. Which we have used to define our resp id
function.

To prove the usefulness of our construction, one could de-
fine examples of codes (e.g. monoids, posets etc.) using our
concrete universe, and then show what isomorphism between
instances of these codes would mean using our definitions of
isomorphism.

References
Ahrens, B., & North, P. R. (2019). Univalent foundations and

the equivalence principle. https://doi.org/10.48550/
arXiv.2202.01892

Coquand, T., & Danielsson, N. A. (2013). Isomorphism
is equality [In memory of N.G. (Dick) de Bruijn
(1918–2012)]. Indagationes Mathematicae, 24(4),
1105–1120. https : / / doi . org / https : / / doi . org / 10 .
1016/j.indag.2013.09.002

Ernest, P. (2021). Mathematics, ethics and purism: An appli-
cation of macintyre’s virtue theory. Synthese, 199,
3137–3167. https://doi.org/10.1007/s11229- 020-
02928-1

Escardó, M. H. (2018). A self-contained, brief and complete
formulation of voevodsky’s univalence axiom. https:
//doi.org/10.48550/arXiv.1803.02294

The Univalent Foundations Program. (2013). Homotopy type
theory: Univalent foundations of mathematics (tech.
rep.). Institute for Advanced Study.

Voevodsky, V., Ahrens, B., Grayson, D., et al. (n.d.). Unimath
— a computer-checked library of univalent mathe-
matics. available at http://unimath.org. https://doi.
org/10.5281/zenodo.7848572

6

https://doi.org/10.48550/arXiv.2202.01892
https://doi.org/10.48550/arXiv.2202.01892
https://doi.org/https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1007/s11229-020-02928-1
https://doi.org/10.1007/s11229-020-02928-1
https://doi.org/10.48550/arXiv.1803.02294
https://doi.org/10.48550/arXiv.1803.02294
http://unimath.org
https://doi.org/10.5281/zenodo.7848572
https://doi.org/10.5281/zenodo.7848572

	Introduction
	The basis of HoTT
	What is isomorphism?

	Goal of research and preliminary definitions
	The transport function
	Contractibility
	isaprop
	Equality of sigma types
	Univalence
	The transport theorem
	Associativity of type

	Coq formalisation of isomorphism is equality
	Parametrizations
	Constructions
	Equality pair lemma
	Isomorphism is equality
	Concrete universes

	Challenges and responsible research
	Challenges during formalisation in UniMath
	Responsible Research

	Conclusions and Future Work
	Future work

	References

