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Abstract
Multi-material problems often exhibit complex geometries along with physical responses presenting large spatial gradients or
discontinuities. In these cases, providing high-quality body-fitted finite element analysis meshes and obtaining accurate solu-
tions remain challenging. Immersed boundary techniques provide elegant solutions for such problems. Enrichment methods
alleviate the need for generating conforming analysis grids by capturing discontinuities within mesh elements. Additionally,
increased accuracy of physical responses and geometry description can be achieved with higher-order approximation bases.
In particular, using B-splines has become popular with the development of IsoGeometric Analysis. In this work, an eXtended
IsoGeometric Analysis (XIGA) approach is proposed for multi-material problems. The computational domain geometry is
described implicitly by level set functions. A novel generalized Heaviside enrichment strategy is employed to accommodate
an arbitrary number of materials without artificially stiffening the physical response. Higher-order B-spline functions are used
for both geometry representation and analysis. Boundary and interface conditions are enforced weakly via Nitsche’s method,
and a new face-oriented ghost stabilization methodology is used to mitigate numerical instabilities arising from small material
integration subdomains. Two- and three-dimensional heat transfer and elasticity problems are solved to validate the approach.
Numerical studies provide insight into the ability to handle multiple materials considering sharp-edged and curved interfaces,
as well as the impact of higher-order bases and stabilization on the solution accuracy and conditioning.

Keywords XIGA · Immersed Boundary Technique · Enrichment · B-splines · Multi-material Problems · Ghost Stabilization

1 Introduction

Multi-material problems play an important role for a wide
range of applications in engineering, such as problems
involving composite or functionally graded materials, mul-
tiple phase interactions, or contact between components.
However, efficiently and accurately predicting the physical
response described by partial differential equations of multi-
material problems remains challenging. Such problems often
exhibit complex geometries, intricatematerial arrangements,
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or small features along with physical responses presenting
large spatial gradients or discontinuities. Therefore, provid-
ing an accurate resolution for both the geometry and the
physics around material interfaces is crucial. When perform-
ing analysis with traditional finite element methods (FEM),
this can only be achieved by generating highly-refined body-
fitted approximation meshes, which is a tedious task and is
known to represent a substantial part of the analysis time, see
Bazilevs et al. [5]. This is especially the case when the num-
ber of materials increases and when boundaries and material
interfaces change in time due to physical phenomena, e.g.,
time evolving interfaces, see Kamensky et al. [40], or numer-
ical processes, e.g., topology optimization, see Noël et al.
[52].

Over the past decades, immersed boundary techniques
have gained in popularity, providing an elegant solution
for the multi-material problems characterized above. These
methods can accommodate complex domain boundaries
and interfaces without the need to construct a conforming
body-fitted mesh. The first immersed boundary method was
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formally introduced by Peskin [56]. Since this first occur-
rence, several immersed finite element approaches have been
presented in the literature. Fictitious domain methods, also
known as embedded domain methods, circumvent the need
to generate conforming analysis meshes by embedding the
computational domain in a larger one and applying specific
integration techniques. Variants of the method are based on
different approaches to impose boundary and interface con-
ditions with penalty methods by Ramière et al. [57], with
Lagrange multipliers by Glowinski et al. [29], Glowinski
and Kuznetsov [28], or Burman and Hansbo [9], or with
Nitsche’s method by Hansbo and Hansbo [31], Dolbow and
Harari [20], Burman and Hansbo [10], and Burman et al.
[12]. Conversely, enrichment methods alleviate the need for
generating conforming approximation meshes by capturing
a priori known discontinuous behaviors within the mesh
elements. Originally developed to represent moving fronts
and crack propagation, enrichment based approaches have
been extended to tackle various types of interface problems
with strong and weak discontinuities. Among these tech-
niques, a few noticeable ones are the Partition of Unity
Method (PUM) proposed by Babuška and Melenk [3], the
Generalized Extended Finite Element Method (GFEM) as
introduced in Strouboulis et al. [68,69], the eXtended Finite
Element Method (XFEM) as proposed by Moës et al. [49]
and Belytschko and Black [6], and the Interface enriched
Generalized Finite Element Method (IGFEM) introduced by
Soghrati et al. [65].

In most of the aforementioned papers, the implementa-
tion of immersed boundary techniques relies on low order
approximation functions, in particular linear Lagrange basis
functions, to represent both the geometry and the physics.
Such a choice of basis functions suffers from several short-
comings in terms of geometry resolution, and accuracy of
physical responses. Using p-version FEM, see Babuška [2]
for FEM based on hierarchical basis functions or Patera [55]
andKarniadakis and Sherwin [41] for spectral FEMbased on
higher-order spectral basis functions, enables improved accu-
racy of physical responses per degree of freedom (DOF) and
leads to higher convergence rates with mesh refinement, i.e.,
h-refinement. Additionally, using higher-order functions for
the geometry representation improves accuracy in the pres-
ence of curved interfaces and boundaries.

Several papers in the literature use higher-order bases,
such as Lagrange or spectral ones, in combination with
immersed boundary techniques. Parvizian et al. [54] and
Düster et al. [22] introduced the Finite Cell Method (FCM).
Similar to other fictitious domain approaches, the method
extends the analysis domain to embed the physical one but
makes use of higher-order Ansatz functions to approximate
the extended variables. Numerous contributions focused on
enrichment methods to accurately represent the geometry of
and the physics around curved cracks.Wells et al. [73] studied

the propagation of displacement discontinuities in strain-
softening media with second order Lagrange bases. Working
on crack propagation, Stazi et al. [67] used second order
Lagrange bases for the finite element approximations, while
Zi and Belytschko [75] extended this approach to higher-
order enrichment functions. Tackling both strong and weak
discontinuities, Cheng and Fries [15] resolved curved bound-
aries and interfaces by generating integration subcells with
one curved side and by applying corrections to the enrich-
ment formulation. Focusing on material interfaces, Dréau
et al. [21] exploited the XFEM with a corrected enrichment
and represented the geometry on sub-meshes finer than the
one used for the mechanical fields. A similar approach was
proposed in Legrain et al. [45]. Haasemann et al. [30] pro-
posed a numerical integration strategy based on NURBS
surfaces for higher-order XFEM and weak discontinuities.
Lehrenfeld [46] used parametric mappings of the integration
cells to reduce the interface representation error and the asso-
ciated integration error. More recently, Saxby and Hazel [59]
proposed a higher-order modified XFEM based on corrected
basis functions for weak discontinuity problems. Working
with higher-order spectral basis functions, Legay et al. [44]
and more recently Chin and Sukumar [16] proposed a spec-
tral XFEM approach to tackle weak discontinuity problems
with curved interfaces.

Along with the development of IsoGeometric Analysis
(IGA), using B-splines or NURBS as basis functions has
become an increasingly popular approach, see Hughes et al.
[37] and Cottrell et al. [17]. In IGA, both the geometry of
a structure and its physical behavior are described using
splines. From a geometry point of view, using B-splines
and NURBS facilitates compatibility with Computer Aided
Design (CAD) software. From an analysis point of view,
using smooth and higher-order bases, such as quadratic and
cubic B-splines, leads to more accurate physical responses
per DOF than traditional C0 finite element approaches, see
Hughes et al. [35]; Evans et al. [25]; Hughes et al. [36].

Over the years, several research works have aimed at
combining the advantages of immersed boundary techniques
and smooth higher-order basis functions, such as B-splines,
NURBS, and other variants. Based on fictitious domain
approaches, Schillinger et al. [61] proposed a B-spline ver-
sion of FCM. Kamensky et al. [40] further extended the con-
cept to tackle fluid-solid interaction problems and introduced
the term immersogeometric analysis. Höllig et al. [33] intro-
duced the web-method using weighted extended B-splines as
basis functions to solve Dirichlet problems. Modeling weak
discontinuities and in particular material interfaces, Sanches
et al. [58] developed an immersed boundary technique based
on B-spline bases and a modified basis to locally interpolate
the Dirichlet boundary conditions. Focusing on enrichment
methods, Jiang et al. [39] proposed a robust Nitsche’smethod
to tackle interface problems with the XFEM based on B-
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spline basis functions. They used a separate locally refined
mesh to improve the geometry representation. Jia et al.
[38] solved curved material interface problems with XFEM
based on NURBS and used curved integration elements for
increased accuracy. To further resolve the interface geometry,
Chen et al. [13] implemented the XFEMwith locally refined
B-splines to allow for adaptive local refinement around the
interfaces. Recently, Elfverson et al. [23,24] proposed a so-
called cutIGA approach and a symmetric Nitsche’s method
for imposing boundary conditions, as well as a drop of basis
functions for improved stability.

To date, the scope and the applications of immersed
boundary techniques with higher-order basis functions are
rather limited in terms of the number of phases or materials,
but also in terms of the geometric complexity considered.
Tools to handle the geometric representation were investi-
gated in numerous publications. Tran et al. [71] used several
Level Set Functions (LSF) to accurately represent com-
plex microstructures with multiple spatially close inclusions
and avoid numerical artefacts using the XFEM. Moumnassi
et al. [50] also used several LSFs to accurately represent
sharp features and curved interface without mesh refinement.
Xia et al. [74] proposed a matched interface and boundary
method to tackle multi-material and triple junctions. Hou
et al. [34] built specific approximations for interface elements
presenting multiple material and triple-junctions. A similar
approach has recently been proposed by Chen et al. [14],
who treated triple-junction points with an immersed bound-
ary technique through the construction of specific functions
on interface elements. Soghrati [64] extended the IGFEM
to handle multi-material interfaces by constructing special
enrichment functions. However, most proposed frameworks
lack versatility and do not offer a systematic approach to
tackle multi-material problems in two and three dimensions.

In this paper, we propose a versatile XIGA approach to
tackle multi-material problems in two and three dimensions.
The geometry of the computational domain is represented
implicitly by one or multiple LSFs. The LSFs are used to
determine subregions of the computational domain that are
associated to different phases and materials. This approach
allows for handling of straight-edged and curved interfaces,
aswell asN-material junctions, in a systematicway. The gov-
erning equations are integrated separately on each material
subdomain, and elements where multiple materials coexist
are decomposed into single material integration subdomains.
The finite element approximations for both the geometry
and the mechanical fields use multi-variate B-splines. They
are smooth higher-order basis functions and provide higher
accuracy per DOF and higher convergence rates than tra-
ditional C0 finite element bases. In this paper, a novel
generalized Heaviside enrichment strategy is used with mul-
tiple enrichment levels to capture discontinuities at external
boundaries and material interfaces. Boundary and interface

conditions are weakly enforced using Nitsche’s method.
Numerical instabilities associated with small material inte-
gration subdomains are mitigated by an adapted version of
the face-oriented ghost stabilization. The combination of
these ingredients results in a versatile and robust approach to
tackle multi-material problems.

In most enrichment approaches, the approximation space
is extended using different enrichments for each material
domain. However, this approach can lead to an artificially
stiffened physical response when one or more material
domains are disconnected. To alleviate this issue, the approx-
imation space was extended using different enrichments for
each connected material subdomain in Terada et al. [70],
and Hansbo and Hansbo [32]. Nonetheless, this approach
can still lead to an artificially stiffened physical response
when the intersection of a connected material subdomain
with the support of a particular basis background function is
disconnected, seeMakhija andMaute [48]. This situation fre-
quently arises when B-spline basis functions are employed
rather than classical finite element basis functions. This is
because B-spline basis functions have larger support regions
than classical finite element basis functions. To tackle this
issue, we build on previouswork onLagrange basis functions
(see Makhija and Maute [48]) and enrich each individual
basis function separately based on the topology of the mate-
rial layout within the basis function support.

For multi-material problems, ghost stabilization proce-
dures typically rely on the polynomial extension of function
values within a material region of an element adjacent to
a ghost facet to the ghost facet itself, see Burman and
Hansbo [11]. However, with the enrichment strategy pro-
posed in this work, such an extension is not well-defined
when amaterial regionwithin the element is disconnected. In
particular, the polynomial extensions associated with differ-
ent connected material subregions may differ. To overcome
this issue, we introduce a ghost stabilization strategy that
explicitly accounts for the topology of the material layout of
elements adjacent to ghost facets.

The remainder of the paper is organized as follows. Sect.
2 focuses on the use of one or multiple LSFs to represent
the geometry of external boundaries and material inter-
faces. The proposed XIGA formulation is detailed in Sect.
3. First, a brief discussion of B-splines as basis functions
for finite element analysis is provided. Then, the immersed
boundary technique, i.e., here the XFEM, is detailed in
terms of enrichment strategy, creation of the model, for-
mulation of the governing equations, stabilization via an
adapted face-oriented ghost stabilization, and integration.
Sect. 4 illustrates the capabilities and the robustness of the
proposed XIGA approach by solving canonical two- and
three-dimensional problems focusing on heat conduction
and elasticity. Finally, Sect. 5 draws conclusions about the
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developedXIGA approach and proposes directions for future
work.

2 Geometry representation

Although the proposed XIGA approach is not restricted to
any particular geometry description method, the geometry
of a computational domain is represented by one or multi-
ple LSFs in this paper. This specific geometry representation
was chosen to ease future work on evolving interfaces, in
particular for design through topology optimization.

The Level Set Method (LSM) was developed by Osher
and Sethian [53] to efficiently track front propagation. The
method allows for the implicit representation of a geometry
by a LSF. An iso-level φt of the LSF, generally chosen equal
to 0, describes the interface Γ± between two regionsΩ+ and
Ω− of the analysis domain Ω via:

φ(x) < φt , ∀ x ∈ Ω+,

φ(x) > φt , ∀ x ∈ Ω−,

φ(x) = φt , ∀ x ∈ Γ±.

(1)

An example of the type of multi-material problems
addressed in this work is given in Fig. 1, where a computa-
tional domain Ω , made of three material domains Ω I , Ω I I ,
and Ω I I I , is described using two LSFs, φ1 and φ2. In this
paper,multipleLSFsφi (x), i = 1, . . . , n, are used todescribe
the external boundaries of and the material interfaces within
the computational domain Ω . A multi-phase level set model
is exploited, as introduced by Vese and Chan [72]. With n
LSFs, a maximum of 2n phases can be represented. In this
paper, a phase represents a subregion of the analysis domain
associated with a unique combination of positive or negative
valued LSFs. A phase index P is assigned to each subregion
based on the LSF signs. The phase assignment procedure
is sequenced as follows. First, characteristic functions fi (x),
i = 1, . . . , n, are used to characterize the point xwith respect
to an iso-level φt of the LSF φi (x), i.e., whether x is inside,
outside, or on the iso-level contour, as:

fi (x) =
⎧
⎨

⎩

0, φi (x) < φt

1, φi (x) > φt

on interface, φi (x) = φt

(2)

These characteristic functions fi (x) are used to assign a
unique index P(x) to the point x:

P(x) =
n∑

j=1

2 j−1 f j (x). (3)

Finally, a material describing the constitutive behavior is
assigned to eachphase.Thephase indicesP(x) are associated

with the correspondingmaterial indicesM(x) through amap
m following:

M(x) = m(P(x)). (4)

The phase andmaterial assignment procedure is illustrated
with the three-material problem in Fig. 2. First, the character-
istic functions fi (x) are evaluated based on the LSFs signs.
In this picture, the minus sign indicates that φi (x) < φt and
thus, fi (x) = 0. Then, the phase indices P(x) are computed
by Eq.(3) based on the characteristic functions fi (x). Finally,
a material is assigned to each phase, by associating amaterial
index M to each phase index.

Each LSF φi (x) is discretized on a mesh using basis func-
tions Bk(x) as:

φh
i (x) =

∑

k

Bk(x) φk
i , (5)

where φk
i are the coefficients associated to the LSF φi (x). In

this work, B-spline basis functions are chosen. The coeffi-
cients and corresponding basis functions are used to evaluate
nodal level set values on the background mesh generated for
analysis, see Sect. 3. The LSF is interpolated linearly along
the element edges to determine the intersection of the φ = φt

iso-contour with the element edges, see Subsect. 3.6. Using
a linear interpolation inherently leads to a low order approx-
imation of geometry, which might limit the accuracy of the
physical response analysis. This issue can be alleviated by
first refining the background mesh and then interpolating the
LSF on this refined mesh.

3 XIGA formulation

This section focuses on the XIGA approach proposed in this
paper. First, B-spline basis functions are briefly reviewed in
Subsect. 3.1. Then, our novel enrichment strategy based on
generalized Heaviside functions, used to accommodate mul-
tiple materials within a basis function support, is explained
in Subsect. 3.2. Subsect. 3.3 summarizes the formulation of
the governing equations considered in this work for heat con-
duction and elasticity. The techniques to enforce boundary
and interface conditions and to stabilize the XIGA formu-
lation are detailed in Subsects. 3.4 and 3.5 respectively. As
several materials may coexist within the same element, spe-
cial attention is required to perform numerical integration.
This integration procedure is described in Subsect. 3.6.

3.1 B-splines for finite element analysis

In this paper, B-splines are used to approximate the level set
and physics variable fields. This subsection briefly recalls
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Fig. 1 Geometry description of a computational domain, made of three material domains Ω I , Ω I I , and Ω I I I , using two LSFs, φ1 and φ2

Fig. 2 Phase and material assignment procedure for a three-material problem described by two LSFs, φ1 and φ2

basic concepts of constructing B-splines in one and multiple
dimensions.

Considering a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, for
which ξ ∈ R and ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1, a univariate
B-spline basis function Ni,p(ξ) of degree p is constructed
recursively starting from the piecewise constant basis func-
tion:

Ni,0(ξ) =
{
1, if ξi ≤ ξ ≤ ξi+1,

0, otherwise.
(6)

TheCox deBoor recursion formula is used to obtain the basis
functions for higher degrees p > 0, see de Boor [18]:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (7)

A knot is said to have a multiplicity k if it is repeated k times
in the knot vector. The corresponding B-spline basis exhibits
a C p−k continuity at that specific knot, while it is C∞ in
between unique knots.

To tackle n-dimensional problems, multi-variate B-spline
basis functions Bi,p(ξ) are obtained by the tensor prod-
uct of univariate B-spline basis functions. Denoting the
parametric space dimension by dp, a tensor-product B-
spline basis is constructed starting from dp knot vectors
Ξm = {ξm1 , ξm2 , . . . , ξmnm+pm+1} with pm being the poly-
nomial degree and nm the number of basis functions in
the parametric direction m = 1, . . . , dp . A tensor-product
B-spline basis function is generated from dp univariate B-
splines Nm

im ,pm
(ξm) in each parametric direction m using the

formula:

Bi,p(ξ) =
dp∏

m=1

Nm
im ,pm (ξm), (8)

where the position in the tensor product structure is given
by the index i = {i1, . . . , idp }, and the polynomial degree is
denoted by p = {p1, . . . , pdp }.

In this paper, Lagrange extraction, as introduced by
Schillinger et al. [63], is used to facilitate a classical finite
element implementation of the integration of the govern-
ing equations over the mesh of background elements, here
defined as the tensor product of nonempty knot spans. This
approach avoids the need to consider the non-elemental-
locality of B-splines and simplifies the integration procedure
for elements occupied by multiple materials.

3.2 Enrichment strategy

The XFEM was introduced by Moës et al. [49] and
Belytschko andBlack [6] tomodel crack propagationwithout
remeshing. The method enables the prediction of discon-
tinuous or singular behaviors within an element by adding
specific enrichment functions to the classical finite element
approximation. In this paper, we follow the work by Terada
et al. [70], Hansbo and Hansbo [32], and Makhija and Maute
[48], and use a generalized Heaviside enrichment strategy
to introduce discontinuities along geometries and material
interfaces. We further generalize the approach and enrich
each basis function separately based on the material lay-
out within the basis function support to ensure independent
approximation on each connected material subregion.
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The enrichment level selection procedure proposed in this
paper is illustrated for a three-material problem in Fig. 3 for
a basis function Bk spanning the three material subdomains.
The basis function support is delimited by a red dashed line.
Within this support, supp(Bk), four separate connectedmate-
rial subregions Ω�

k exist, each occupied by one and only one

material, such that supp(Bk) = ⋃4
�=1 Ω�

k . Two subregions
Ω�=1

k and Ω�=2
k are occupied by the same material I . Only

one subregionΩ�=3
k is occupied bymaterial I I andoneΩ�=4

k
is occupied by material I I I . As four material subregionsΩ�

k
exist within the basis support, four enrichment levels Lk = 4
are necessary.

Formally, considering amulti-material problem, a physics
variable field u(x) is approximated as:

uh(x) =
K∑

k=1

Lk∑

�=1

ϕ�
k (x)Bk(x) u�

k, (9)

where K is the number of background basis functions, and
Lk is the number of separate connected material subregions
{Ω�

k }Lk
�=1 in the support of background basis function Bk for

k = 1, . . . , K . The coefficient u�
k is the DOF associated with

background basis function Bk and material subregionΩ�
k for

k = 1, . . . , K and � = 1, . . . , Lk . The function ϕ�
k (x) is an

indicator function that determines whether a point x belongs
to a material subregion Ω�

k :

ϕ�
k (x) = IΩ�

k
(x) =

{
1 if x ∈ Ω�

k ,

0 otherwise.
(10)

The set of functions

B :=
{
ϕ�
k Bk : k ∈ {1, . . . , K } and � ∈ {1, . . . , Lk}

}

possesses several useful properties. First, note that for each
x ∈ supp(Nk), there is one and only one � for which ϕ�

k (x) �=
0. Thus,

∑

�
ϕ�
k (x)Bk(x) = Bk(x),

and as the background basis {Bk}Kk=1 forms a partition of
unity, it follows that the functions in B do as well. The func-
tions in B are also pointwise non-negative. Finally, as the

background basis functions are locally linearly independent,
so are the functions in B. This indicates the functions in B
form a basis. We refer to this basis as the enriched basis as it
derives from the enrichment strategy.

3.3 Governing equations in discretized form

The proposed XIGA approach is not limited to any partic-
ular type of partial differential equation. However, in this
paper, we restrict our attention to elliptic problems, namely
multi-material linear elasticity and heat conduction prob-
lems. Either a linear elastic or linear diffusive material is
assumed for each non-void domain.

In this work, the total residual R, i.e., the discrete form
of the governing equations, consists of four terms which are
discussed subsequently. We solve for static equilibrium to
enforce balance of linear momentum within each material
domain Ω I , where I is the material index:

R(u, δu) = Ru
Lin + Ru

D + Ru
I t f + Ru

Ghost = 0, (11)

where u and δu are the displacement field and the test func-
tion, respectively.

We solve for static equilibrium to enforce heat balance
within each material domain Ω I , where I is the material
index:

R(θ, δθ) = Rθ
Lin + Rθ

D + Rθ
I t f + Rθ

Ghost = 0, (12)

where θ and δθ are the temperature field and the test function,
respectively.

The first residual term Ru
Lin for linear elasticity reads:

Ru
Lin =

∑

I

[

+
∫

Ω I
δε : σ dΩ

+
∫

Ω I
δu · b dΩ

−
∫

Γ I
N

δu · tN dΓ

]

,

(13)

where body loads, b, are acting on the domain Ω I and trac-
tion forces, tN , are applied on the Neumann boundary, Γ I

N .

Fig. 3 Enrichment strategy for a basis function Bk spanning the three material subdomains in a three-material problem
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The Cauchy stress tensor is denoted by σ = D ε and is
obtained by multiplication of the infinitesimal strain tensor
ε = 1

2

(∇u + ∇uT
)
with the fourth order constitutive tensor

D, here for isotropic linear elasticity, expressed as a function
of the Young’s modulus E and the Poisson ratio ν in Voigt
notation in 2D as:

D = Ẽ

⎡

⎣
1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤

⎦ , (14)

and in 3D as:

D = Ẽ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

with Ẽ = E

(1 + ν)(1 − 2ν)
.

The first residual term Rθ
Lin for heat conduction reads:

Rθ
Lin =

∑

I

[

−
∫

Ω I
δ∇θ · q dΩ

+
∫

Ω I
δθ qB dΩ

−
∫

Γ I
N

δθ qN dΓ

]

,

(16)

where body heat loads, qB , are acting on the domain Ω I and
heat fluxes, qN , are applied on the Neumann boundary, Γ I

N .
The heat flux, q = − (κ · ∇θ), is obtained by multiplying
the conductivity tensor κ = κI, here considering isotropic
diffusion, by the temperature gradient ∇θ .

3.4 Weak enforcement of boundary and interface
conditions

Boundary and interface conditions are imposed weakly via
Nitsche’s formulation, see Nitsche [51]. To enforce pre-
scribed displacements on Dirichlet boundaries, the static
equilibrium in Eq. (13) is augmented with:

Ru
D =

∑

I

[

−
∫

Γ I
D

δu · (σ · nΓ ) dΓ

+
∫

Γ I
D

δ (σ · nΓ ) · (u − uD) dΓ

+
∫

Γ I
D

γ u
N δu · (u − uD) dΓ

]

,

(17)

where a non-symmetric Nitsche formulation is considered,
see for example Burman [8] and Schillinger et al. [62], and
uD is the displacement imposed on the Dirichlet boundary
Γ I
D . The parameter γ u

N is chosen to achieve a desired accu-
racy in satisfying the boundary conditions and is a multiple
of the ratio E/h, where E is the Young’s modulus of the con-
sidered material and h is the edge length of the intersected
background element.

The same formulation is used to impose temperature
on Dirichlet boundaries by augmenting the equilibrium in
Eq. (16) with:

Rθ
D =

∑

I

[

−
∫

Γ I
D

δθ (q · nΓ ) dΓ

+
∫

Γ I
D

δ (q · nΓ ) (θ − θD) dΓ

+
∫

Γ I
D

γ θ
N δθ (θ − θD) dΓ

]

,

(18)

where a non-symmetric Nitsche formulation is again con-
sidered and θD is the imposed temperature on the Dirichlet
boundary Γ I

D . The parameter γ θ
N is defined similarly to γ u

N
as a multiple of the ratio κ/h, where κ is the conductivity of
the considered material.

Interface conditions between the displacements of mate-
rials I and J on Γ I J = ∂Ω I ∩ ∂Ω J are imposed similarly
using the non-symmetric formulation:

Ru
I t f =

∑

I ,J
I �=J

[

−
∫

Γ I J
δu · {σ · nΓ } dΓ

+
∫

Γ I J
δ (σ · nΓ ) · �u� dΓ

+
∫

Γ I J
γ u
I t f δu · �u� dΓ

]

,

(19)

where the jump operator �•� computes the difference in the
considered quantity between material domains I and J as
�•� = •I − •J . The mean operator {•} computes a weighted
sum of the considered quantity over the materials I and J as
{•} = w I •I +w J •J . The weights, following Dolbow and
Harari [20] and Annavarapu et al. [1], are defined as:

w I = meas(Ω I )/E I

meas(Ω I )/E I + meas(Ω J )/E J
, (20)

and:

w J = meas(Ω J )/E J

meas(Ω I )/E I + meas(Ω J )/E J
, (21)

123



1288 Computational Mechanics (2022) 70:1281–1308

where meas(Ω I ) and meas(Ω J ) are the volume or the sur-
face area of materials I and J within the intersected element
in two and three dimensions respectively. The properties E I

and E J are the Young’s moduli of materials I and J . The
penalty parameter γ u

I t f is evaluated as:

γ u
I t f = 2 E I meas(Γ I J )

meas(Ω I )/E I + meas(Ω J )/E J
, (22)

where meas(Γ I J ) is the surface area or the length of the
interface within the intersected element in two or three
dimensions, respectively.

Interface conditions on the temperature between material
domains I and J are imposed as follows:

Rθ
I t f =

∑

I ,J
I �=J

[

−
∫

Γ I J
δθ {q · nΓ } dΓ

+
∫

Γ I J
δ (q · nΓ ) �θ� dΓ

+
∫

Γ I J
γ θ
I t f δθ �θ� dΓ

]

,

(23)

where the weightsw I ,w J and the penalty parameter γ θ
I t f are

evaluated similarly to the linear elastic case as described in
Eqs. (20), (21), and (22), but by substituting the conductivity
κ for the Young’s modulus E of the considered material.

3.5 Face-oriented ghost stabilization

Numerical instabilitiesmight arisewhenusing enrichedfinite
element techniques. This is the case when the contributions
to the residual of one or several basis functions approx-
imating the physics variable field vanish or when these
contributions become linearly dependent. These issues typi-
cally occur when the level set field intersects elements such
that small material subdomains emerge. This results in an
ill-conditioning of the equation system and inaccurate pre-
diction of solution field gradients along the interface.

Aside from mesh modification and update strategies, dif-
ferent techniques are available in the literature to mitigate
this issue. Preconditioning schemes can be used to improve
the condition number, e.g., geometric preconditioning (see
Lang et al. [43] for the case of XFEM) and algebraic pre-
conditioning (see de Prenter et al. [19] for the case of FCM).
Other strategies focus on augmenting the weak form of the
equations to promote awell-conditioned system, for example
ghost stabilization (see Burman [7]), basis function removal
(see Elfverson et al. [23] for the specific case of B-spline
interpolation), and basis function aggregation (see Badia
et al. [4]).

In this work, a generalized version of the face-oriented
ghost stabilization, proposed by Burman and Hansbo [11],
is used to fit the proposed enrichment strategy based on the
basis functions supports. Despite an increase in the com-
plexity of the implementation, this stabilization is selected
as it is generally more robust than other strategies such
as preconditioning, especially when working with higher-
order approximation and nonlinear problems. Additionally,
the ghost stabilization improves the prediction of heat flux
and stress around the boundaries and interfaces when con-
sidering diffusion and elasticity problems, respectively. The
proposed approach is described hereunder.

The domainΩ , made of the union of all material domains
Ω I , is immersed in a background mesh. The set of all back-
ground elements in the mesh is denoted K and KΩ is the
subset of background elements that have a non-empty inter-
section with Ω:

KΩ := {K ∈ K : K ∩ Ω �= ∅} , (24)

The set of interior facets of KΩ is denotedFint . Each interior
facet F ∈ Fint is shared between two elements Ω+

F and
Ω−

F of KΩ . Finally Γ̃ is defined as the union of all material
interfaces and geometric boundaries. The set of ghost facets
is then taken to be:

Fghost :=
{
F ∈ Fint : Ω+

F ∩ Γ̃ �= ∅,

or Ω−
F ∩ Γ̃ �= ∅

}
. (25)

The set of interior facets Fint and the set of ghost facets
Fghost are illustrated on a three-material problem in Fig. 4.
A three-material domain Ω is immersed in a background
mesh. The set KΩ of background elements with non-empty
intersection with Ω are hatched in grey. The facets that lie
within KΩ form the set Fint and are drawn in red. Finally,
the set of ghost facets is shown in yellow.

Consider ghost facet F ∈ Fghost shared between two
adjacent background elements Ω+

F and Ω−
F as illustrated in

Fig. 5. The outward facing normals to Ω+
F and Ω−

F along
F are defined as n+

F and n−
F , such that nF = n+

F = −n−
F .

Thematerial layout subdivides the elementΩ+
F into N+

F con-

nected subdomains {Ω+
F,i }

N+
F

i=1 and the element Ω−
F into N−

F

connected subdomains {Ω−
F }N

−
F

j=1 such that each subdomain
is occupied by one and only one material.

The material index associated to Ω+
F,i for each i =

1, . . . , N+
F is denoted M+

F,i = M(Ω+
F,i ) and the mate-

rial index associated to Ω−
F, j for each j = 1, . . . , N−

F is

M−
F, j = M(Ω−

F, j ). Finally, the polynomial extension of the

field u|Ω+
F,i

to all of Rd for each i = 1, . . . , N+
F is defined as

u+
F,i and the polynomial extension of the field u|Ω−

F, j
to all
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Fig. 4 Set of interior facets Fint and set of ghost facets Fghost used for the face-oriented ghost stabilization for a three-material problem

Fig. 5 Description of ghost
facet F shared between two
adjacent background elements
Ω+

F and Ω−
F for the

face-oriented ghost stabilization
for a three-material problem

of Rd for each j = 1, . . . , N−
F as u−

F, j . The ghost stabiliza-
tion Gu

F for facet F , penalizing the jumps in the displacement
gradients across the facet, is then taken to be:

Gu
F (u, δu) =
N+
F∑

i=1

∑

j∈JF,i

[ p∑

k=1

∫

F
γ u
G hk̃

�
∂kn δu

�
·
�
∂kn u

�
dΓ

]

, (26)

where the set JF,i is defined so that:

JF,i :=
{
j ∈ {1, . . . , N−

F } : M+
F,i = M−

F, j �= 0,

and |∂Ω+
F,i ∩ ∂Ω−

F, j | �= 0
}
. (27)

The parameter k̃ = 2(k − 1) + 1 and �•� is a jump operator
such that:

�
∂kn δu

�
=

(
∂kn δu+

F,i − ∂kn δu−
F, j

)
, (28)

and:

�
∂kn u

�
=

(
∂knu

+
F,i − ∂knu

−
F, j

)
. (29)

The operator ∂kn (•) is the kth order normal derivative operator
and ∂n(•) = ∇(•) · nF with ∇(•) the spatial derivative. The
parameter p is the degree of the considered approximation.
It should be noted that only the pth contribution is non-zero

for maximally smooth splines, i.e., splines without repeating
knots. Theghost penalty parameterγ u

G is defined as amultiple
of the Young’s modulus E of the considered material.

The formulation in Eq. (27) requires that:

M+
F,i = M−

F, j �= 0,

assuming that the material index for void is zero, so that the
ghost stabilization is only applied between u+

F,i and u−
F, j

when Ω+
F,i and Ω−

F, j are occupied by the same non-void
material. Additionally, the formulation requires that:

|∂Ω+
F,i ∩ ∂Ω−

F, j | �= 0,

and the ghost stabilization is only applied between u+
F,i and

u−
F, j when the boundaries of Ω+

F,i and Ω−
F, j , ∂Ω+

F,i and

∂Ω−
F, j , respectively, meet along a portion of the facet F with

a non-zero measure, e.g., the boundaries meet along more
than a point in two dimensions and along more than a line in
three dimensions.

The subdivision of Ω+
F and Ω−

F into connected subdo-
mains Ω+

F,i and Ω−
F, j and the associated material indices

M+
F,i and M−

F, j is shown in Fig. 6 for two different mate-
rial configurations. In the first case, marked by a red box,
the background element Ω−

F is occupied by two connected
material subdomains Ω−

F,1 and Ω−
F,2, while the background

element Ω+
F is divided into three connected material sub-

domains Ω+
F,1, Ω+

F,2, and Ω+
F,3. As Ω−

F,1 and Ω+
F,2 have
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the same material index M−
F,1 = M+

F,2 and meet along the
facet, the jump in the associated field gradients is penalized
across the facet. The same holds for Ω−

F,2 and Ω+
F,1.

In the second case, marked by a yellow box, a different sit-
uation arises.While the backgroundelementΩ−

F is filledwith
only two different materials, the greymaterial lies within two
connected subdomains within the element. The background
element Ω−

F is thus divided into three connected material
subdomains Ω−

F,1, Ω−
F,2, and Ω−

F,3, while the background

element Ω+
F is divided into two connected material subdo-

mains Ω+
F,1 and Ω+

F,2. As Ω−
F,1 and Ω+

F,2 have the same

material index, M−
F,1 = M+

F,2, and meet along the facet,
the jump in the associated field gradients is penalized across
the facet. The same holds for the pairs Ω−

F,3 and Ω+
F,2, and

Ω−
F,2 and Ω+

F,1.
The full contribution of the ghost stabilization to the resid-

ual equations is attained by summing over all ghost facets:

Ru
Ghost =

∑

F∈Fghost

Gu
F (u, δu). (30)

The ghost penalization for the temperature field is defined
similarly as:

Rθ
Ghost =

∑

F∈Fghost

Gθ
F (θ, δθ), (31)

where the ghost stabilization Gθ
F for facet F is:

Gθ
F (θ, δθ) =
N+
F∑

i=1

∑

j∈JF,i

[ p∑

k=1

∫

F
γ θ
G hk̃

�
∂kn δθ

�
·
�
∂kn θ

�
dΓ

]

, (32)

with the ghost penalty parameter, γ θ
G , being defined as a mul-

tiple of the conductivity κ for the considered material.

3.6 Numerical integration

Working with immersed boundary techniques and using the
Heaviside enrichment, the weak form of the governing equa-
tions is integrated separately on each material subdomain.
Elements occupied by more than one material are decom-
posed into conforming integration subdomains. In two (three)
dimensions, a quadrangle (a hexahedron) is subdivided into
a triangular (tetrahedral) integration mesh that conforms to
the material interfaces. Gauss quadrature rules are used on
the generated integration elements.

The subdivision strategy is illustrated with a two dimen-
sional three-material problem in Fig. 7. First, to increase the
accuracy of the interface detection, a primary subdivision is
performed, and the background element is divided in four
subtriangles. Then, a secondary subdivision is performed

to construct a triangular mesh that conforms to the inter-
faces created by the LSFs. The LSFs are linearly interpolated
along the element edges using φ̃1 and φ̃2. The intersections
between the approximated LSFs and the element edges are
determined, see black circles on the figure, and triangular
integration elements are created. It should be noted that addi-
tional refinement of the background mesh can be carried out
before constructing the integration mesh from the LSFs to
achieve reduced geometric error, see Subsect. 4.4.

4 Numerical examples

In this section, the versatility of the proposedXIGAapproach
and its ability to systematically and accurately address multi-
material problems is demonstrated. First, the accuracy of the
numerical predictions is investigated in Subsect. 4.1. The
influence of the minimum size of material integration subdo-
mains within a basis function and of the choice of the ghost
penalty parameter on the conditioning of the system of equa-
tions is studied. Subsect. 4.2 focuses on the robustness of the
approach with respect to the creation of small material inte-
gration subdomains by varying the location of the analysis
domain within a fixed background mesh. In Subsect. 4.3, the
approach is used to solve N-phase junction problems, and
the convergence rates attained with h-refinement consider-
ing linear, quadratic, and cubic B-spline basis functions are
investigated.The ability of theXIGAapproach tohandle non-
planar interface configurations is assessed in Subsect. 4.4.
Finally, a N-material problem is tackled in Subsect. 4.5.

In the following examples, the performances of the pro-
posed XIGA approach are studied and characterized using
three criteria: the system condition number, the relative
L2 error norm, and the relative H1 error semi-norm. Ill-
conditioning can affect the convergence of the solver of the
system of equations. The condition number is used to assess
the conditioning of the system of equations and is evaluated
as:

cond(A) = ||A−1|| · ||A||, (33)

where A is a matrix describing the system of equations to
solve and || • || is the Frobenius norm.

For a generic physics variable field a, the relative L2 error
norm is defined as:

L2 =
√
√
√
√

∫

Ω

(
ah − a

)T (
ah − a

)
dΩ

∫

Ω
aT a dΩ

, (34)

where a is a reference solution, here chosen as either an
analytical solution or a numerical solution computed on a
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Fig. 6 Subdivision of Ω+
F and Ω+

F into connected subdomains Ω+
F,i , i = 1, . . . , N+

F and Ω−
F, j , j = 1, . . . , N−

F for the face-oriented ghost
stabilization for a three-material problem

(a) (b) (c)

Fig. 7 Generation of conforming numerical integration mesh using a primary and a secondary subdivision for a three-material problem

sufficiently refined mesh, and ah is the numerical solution
evaluated with the XIGA approach.

For a generic physics variable field a, the relative H1 error
semi-norm is evaluated as:

H1 =
√
√
√
√

∫

Ω

(∇ah − ∇a
)T (∇ah − ∇a

)
dΩ

∫

Ω
∇aT ∇a dΩ

, (35)

where∇a is the gradient of a reference solution, here chosen
as either an analytical solution or a numerical solution com-
puted on a sufficiently refined mesh, and ∇ah is the gradient
of the numerical solution evaluated with the XIGA approach.

In all the following examples, the set of discretized gov-
erning equations is integrated using Gauss quadrature rules

on each integration subelement depending on the order of
the basis functions. In two dimensions, 2×2-, 3×3-, and
4×4-point integration rules are used for quadrangular inte-
gration elements and 7-, 12-, or 25-point integration rules are
used for triangular integration elements for linear, quadratic,
and cubic basis functions respectively. In three dimensions,
2×2×2-, 3×3×3-, and 4×4×4-point integration rules are
used for hexahedral integration elements and 11-, 35-, and
56-point integration rules are used for tetrahedral integra-
tion elements for linear, quadratic, and cubic basis functions
respectively. The systems of discretized governing equations
are built using an implementation of the XIGA approach
within an in-house fully parallelized C++ code. They are
solved by the direct solver PARDISO for 2D problems (see
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Kourounis et al. [42]), and by a GMRES algorithm for 3D
problems, preconditioned by an algebraic multi-grid solver
(see Gee et al. [27]). The choice of an iterative solver for
3D problems is guided by the larger number of equations
and unknowns, and the increase in memory requirement, not
by the nature of the considered problems. In some of the
numerical examples, the systems of equations are poorly con-
ditioned and condition numbers exceeding 1025 are observed.
Despite these large condition numbers, the linear solve con-
verged for all presented results.

4.1 Stability study with respect tomaterial
subdomains size and ghost penalty parameter

In this subsection, the accuracy of the XIGA approach is
demonstrated by showing that low errors with respect to the
analytical solution can be achieved. The conditioning of the
system of equations with respect to the size of the created
material integration subdomains and the value of the ghost
penalty parameter is studied.

For this purpose, a single material bar is considered in
three dimensions, with dimensions L = 3 + δm, l = 1m,
and a cross-section area A = l2 = 1m2. We consider a
linear elastic problem defined on this geometry. The setup
and boundary conditions are illustrated in Fig. 8. Consider-
ing linear elasticity, the material Young’s modulus is set to
E = 10.0 N/m2 and the Poisson ration is set to ν = 0.0 to
avoid any three-dimensional effect. The left side of the bar
is clamped, i.e., uD = [uDx uDy uDz]T = [0.0 0.0 0.0]T m,
and the Nitsche’s penalty parameter is set to γN = 100.0.
Three loading scenarios are considered: (i) a traction at
the bar tip tN = [tNx tNy tNz]T = [5.0 0.0 0.0]N/m2,
(ii) a constant body load b = b0[1.0 0.0 0.0]N/m3 with
b0 = 2.0 within the material, and (iii) a linear body load
b = b0[x 0.0 0.0]N/m3 with b0 = 2.0 within the material.
These three loading scenarios result in a one-dimensional
linear elasticity problem and lead respectively to a linear, a
quadratic, or a cubic displacement solution in x , that is the
position in the horizontal direction:

ux (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uDx + tNx

E A
x,

for tNx �= 0.0, bx = 0.0,

uDx + b0
2E A

(
2Lx − x2

)
,

for tNx = 0.0, bx = b0,

uDx + b0
6E A

(
3L2x − x3

)
,

for tNx = 0.0, bx = b0x,

uy = 0,

uz = 0. (36)

Different locations of the end of the bar are considered
generating different sliver sizes δ over the last element. The

following sliver sizes are investigated:

δ = [
0.001 0.002 0.0035 0.005 0.007 0.01 0.015 0.025

0.04 0.06 0.08 0.1 0.15 0.25 0.4 0.6 0.8 0.9
] × h,

where h is the background element size and is set to h =
1m. Additionally, the following values are considered for
the ghost penalty parameter:

γG =
[
0.0 10−9 10−5 10−4 10−3 10−2 10−1 1.0

]
.

Thedisplacementfields are interpolatedusing linear, quadratic,
and cubic B-spline basis functions.

The relative L2 error norm and the relative H1 error semi-
normare shown inFig. 9 for the linear solution case, in Fig. 10
for the quadratic solution case, and in Fig. 11 for the cubic
solution case. In these figures, each column presents a dif-
ferent interpolation order for the B-spline basis functions:
linear, quadratic, and cubic. The rows display the relative L2

error norm and the relative H1 error semi-norm. Each ghost
penalty value γG is associated with a colored curve. Focus-
ing on Fig. 9, the L2 error norm and the H1 error semi-norm
values show that high accuracy can be achieved regardless of
the B-spline order. This is expected as the exact solution is
linear in x . In this case, the finite element solution is insensi-
tive to the ghost penalty parameter choice or to the sliver size.
Two additional observations are worth to be noted. A slight
degradation of the L2 and H1 error occurs when the ghost
penalty parameter is chosen too large, i.e., γG ≥ 1e − 2. In
this case, the ghost stabilization acts as a coarsening opera-
tor and using high penalty values leads to errors similar to
a coarsening of the mesh. When the ghost stabilization is
turned off, i.e., γG = 0, or for small values of the penalty
parameter, i.e.,γG ≤ 1e − 5, a slight effect of the sliver size
is observed on the L2 and H1 errors, namely it increases
as the sliver vanishes as expected. Low ghost penalty leads
to poorly conditioned systems, as further observed with the
condition number in Fig. 12, and in turn to lower accuracy
of the solution.

The results associated with the second and third loading
cases leading to a quadratic and a cubic displacement solution
are presented in Fig. 10 and 11, respectively. The results
support the observations made for the linear solution case.
It should be noted that for the second case, linear B-splines
are not sufficient to accurately represent the exact solution
that is quadratic in x . For the third case, both the linear and
quadratic B-splines are not able to capture accurately the
exact solution that is cubic in x . These results suggest that
our XIGA approach is accurate and leads to low errors with
respect to the analytical solution if the basis function order
is sufficient to represent the analytical solution.

The condition number cond(A) is the same for all loading
scenarios. The condition numbers are displayed in Fig. 12
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Fig. 8 Single material linear elastic bar with varying sliver size and ghost penalty parameter: problem setup, boundary conditions and solution for
quadratic displacement solution using quadratic B-splines

Fig. 9 Single material linear elastic bar undergoing a constant load at its tip, leading to a linear displacement solution

for different interface configurations and values of the ghost
penalty parameterγG . Figure 12 shows an increase in the con-
dition number when higher-order bases are used. This is due
to the increased number of basis functions that are supported
on intersected elements, see de Prenter et al. [19]. Using
ghost stabilization, the condition number can be significantly
improved by using a penalty parameter value γG ≥ 1e − 5.
This effect is particularly visible when using higher-order
B-spline basis functions, i.e., quadratic and cubic.

4.2 Robustness study with respect to the creation of
arbitrary integration subelements

To study the robustness of themethod and the effectiveness of
the stabilization with respect to different intersection config-

urations, a straight bar is immersed and rotated in a fixed
background mesh. The problem is solved for linear elas-
ticity with an imposed body load that is quadratic in x0,
the distance along the bar. The problem setup and bound-
ary conditions are illustrated in Fig. 13 with L = 1.0m,
l = 0.5m, and a cross-section area A = l2 = 0.25m2. The
bar is made of a single linear elastic material with a Young’s
modulus E = 10.0N/m2 and a Poisson ratio set to ν = 0.0 to
avoid three-dimensional effects. The bar is clamped at its left
extremity, and uD = [uDx0 uDy0 uDz0 ]T = [0.0 0.0 0.0]m.
For all simulations, the Nitsche’s penalty parameter is set
to γN = 100.0. When applying the ghost stabilization, the
penalty parameter is fixed to γG = 0.001. A quadratic
body load b = [bx0 by0 bz0 ]T = b0 [x20 0.0 0.0]N/m3 with
bx0 = 2.0 is applied along the bar. This loading case yields
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Fig. 10 Single material linear elastic bar undergoing a constant body load, leading to a quadratic displacement solution

Fig. 11 Single material linear elastic bar undergoing a linear body load, leading to a cubic displacement solution
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Fig. 12 Single material linear elastic bar undergoing a constant load at its tip, leading to a linear displacement solution along the bar

a quartic displacement solution over the bar:

ux0(x) = uDx0 + b0
12E A

(
4L3x0 − x40

)
,

with bx0 = b0x
2
0 ,

uy0 = 0,

uz0 = 0. (37)

The bar is rotated by an angle φy around the y-axis and
φz around the z-axis. The following angles with respect
to the orientation of the background mesh are considered
φy = φz = [ 10o 20o 30o 40o 50o 60o 70o 80o ], as
illustrated in Fig. 14. The background mesh size is succes-
sively refined, and the following mesh sizes are considered:
h = [0.5 0.25 0.125 0.0625]m. Each setup is solved with
linear, quadratic, and cubic B-splines. The system condition
number, as defined in Eq. (33), is monitored. The accuracy
of the evaluated physical responses is compared against the
analytical solution given in Eq. (37) using the relative L2

error norm and the relative H1 error semi-norm, as defined
in Eqs. (34, 35).

For the configurations defined above, the condition num-
ber, the L2 error norm, and the H1 error semi-norm are given
in Fig. 15. The first graph shows the evolution of the mean
condition number averaged over the eight rotation angles in
terms of the background mesh size. The second and third
graphs present the mean relative L2 error norm and the mean
relative H1 error semi-norm over the eight rotation angles
with respect to the background mesh size. For each perfor-
mance measure, the solid and dashed lines correspond to the
application or the absence of the ghost penalty stabilization
respectively. The error bars illustrate the range of L2 and H1

values when using the ghost penalty. The range is defined
by the minimum and maximum values of the relative L2 and
H1 errors. The use of linear, quadratic, or cubic B-splines is
indicated by circle, triangle, or square marks.

When no stabilization is used (dashed lines in Fig. 15),
an increase of the condition number is observed when using
higher-order basis functions, and when using finer meshes.
Introducing ghost penalty stabilization (solid lines in Fig.

15), the condition number can be significantly improved,
especially when using higher-order basis functions, and the
effect of the mesh refinement is mitigated. A higher accuracy
is achieved when using higher order B-splines, as expected
since the exact solution is quartic along the bar. The relative
L2 error norm and the relative H1 error semi-norm values
are similar with and without ghost stabilization. It should be
noted that for cubic B-splines, ghost stabilization leads to a
drastic improvement of the condition number at the price of a
slight increase of the L2 and H1 errors. The error bars show
that, using ghost stabilization, the finite element predictions
are insensitive to the rotation of the bar. This suggests that the
proposed XIGA approach exhibits robustness with respect to
intersection configurations. Finally, the graphs show that the
optimal convergence rates with respect to mesh refinement
are recovered for all B-spline orders p, i.e., p + 1 in the L2

error norm and p in the H1 error semi-norm.

4.3 Accuracy study for N-phase problems

In this section, the ability of the XIGA approach to han-
dle N-phase junctions is investigated. Again, we consider
a linear elastic problem with an imposed body load. The
problem setup and boundary conditions are illustrated in
Fig. 16 with L = 1.0m, l = 0.5m, and a cross-section
area A = l2 = 0.25m2. The bar problem presented in
Subsect. 4.2 is reused, but with the geometric configura-
tions illustrated in Fig. 16. The bar is made of four different
phases filled with the same material, so that the numerical
solution can be easily compared to an analytical one. The
Young’s modulus of the material is set to E = 10.0N/m2

and a Poisson ratio ν = 0.0 is chosen to avoid three-
dimensional effects. The bar is clamped at its left extremity,
uD = [uDx uDy uDz]T = [0.0 0.0 0.0]m. For all simula-
tions, the Nitsche’s penalty parameter is set to γN = 100.0
and the ghost penalty parameter is set to γG = 0.001. A
quadratic body load b = b0 [x2 0.0 0.0]N/m3 with b0 = 2.0
is imposed, leading to a quartic displacement solution over
the bar, as described hereunder:
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Fig. 13 An immersed single elastic material bar rotated in a fixed 3D background mesh: problem setup, boundary conditions and solution using
quadratic B-spline with rotation angles φy = 20o, φz = 20o and a mesh size h = 0.125m

Fig. 14 Immersed bar rotated
with an angle φy around the
y-axis and an angle φz around
the z-axis in a fixed three
dimensional background mesh

Fig. 15 Robustness study on an immersed elastic bar in a fixed 3D background mesh: mean performance and error over eight rotation angles

ux (x) = uDx + b0
12E A

(
4L3x − x4

)
,

with bx = b0x2,
uy = 0,
uz = 0.

(38)

As illustrated in Fig. 16, four different configurations
are considered: (1) a two-phase junction with the interface
aligned with the y-axis, (2) a three-phase junction with the
interfaces aligned with the x- and y-axes, (3) a four-phase
junction with the interfaces aligned the x- and y-axes, and
(4) a four-phase junction with the interfaces rotated by 45
degrees against the x- and y-axes. An h-refinement study

is performed to investigate the convergence rates of linear,
quadratic, and cubicB-spline basis functions. Fivemesh sizes
are considered, h = [0.5 0.25 0.125 0.0625 0.03125]m.

The problem is solved for the four geometric configura-
tions depicted in Fig. 16, successively refining the mesh. The
performance in terms of system conditioning and solution
accuracy is provided in Fig. 17. The graphs show the vari-
ations of the condition number, the relative L2 error norm,
and the relative H1 error semi-norm for different mesh sizes.
For each performance measure, the use of linear, quadratic,
or cubic B-splines is indicated by circle, triangle, or square
marks.
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Fig. 16 Problem setup, boundary conditions, and configurations for a linear elastic single material bar with N-phase junction

For all configurations, similar performance is observed in
terms of condition number, L2, and H1 errors. This demon-
strates the ability of the approach to handleN-phase junctions
accurately. As expected, an increase in the condition number
is observed for higher-order B-splines. In terms of accuracy,
optimal convergence rates are recovered for both the L2 and
the H1 error norms for all basis function orders. It should
be noted that a slight increase in the condition number and
in the errors is observed as the complexity of the geometric
configurations is increased. Additionally, an increase in the
condition number is observed for low refinement, due to the
creation of small material integration subdomains with low
volume ratio with respect to the background elements.

4.4 Accuracy study for two-material problems with
curved interface

In the previous subsection, the surfaces and interfaces were
planar and could be represented exactly with our level set
approach, that inherently leads to a low order approximation
of geometry, see Subsect. 2. In this subsection, the ability
of the proposed XIGA approach to accurately resolve non-
planar surfaces and interfaces is studied. A heated inclusion
embedded in an infinite matrix problem is considered in two
and three dimensions. The problem setup is illustrated in
Fig. 18, where the dimensions are set to L = 2.0m and
a = 0.5m. The embedded inclusion is made of a material
I with a conductivity κ I = 1.0W/mK and is undergoing
a constant heat body load qB = 1.0W/m2 or W/m3. The
infinite medium is made of a material I I with a conductivity
κ I I = 0.125W/mK. The surrounding medium is not heated,
i.e, q I I

B = 0.0W/m2 or W/m3. For the 2D case, a cylinder
embedded in an infinite medium is considered. In cylindrical
coordinates, the strong form of the heat conduction equation

is given as:

1

r

d

dr

(

r
dθ(r)

dr

)

+ qB
κ

= 0, (39)

where r is the radius computed from the center of the cylinder
and has the general solution:

θ(r) = −qBr2

4κ
+ C1 ln(r) + C2, (40)

where C1 and C2 are integration constants that can be deter-
mined by considering the boundary conditions. A prescribed
temperature θD = 0.375K and a zero temperature gradient
are prescribed at the origin. At the material interface, conti-
nuity is enforced for the temperature field and the heat flux.
Finally, the temperature field over the computational domain
is given as:

θ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

θD − q I
Br

2

4κ I
, for r ≤ a,

θD − q I
Ba

2

4κ I
− q I

Ba
2

2κ I I
ln

( r

a

)
, for r > a.

(41)

For the 3D heat conduction problem, a sphere embedded in
an infinite medium is considered. In spherical coordinates,
the strong form of the heat conduction equation is given as:

1

r2
d

dr

(

r2
dθ(r)

dr

)

+ qB
κ

= 0, (42)

where r is the radial coordinate. The general solution of
Eq. (44) is:

θ(r) = −qBr2

6κ
+ C1

r
+ C2, (43)

where C1 and C2 are integration constants that can be deter-
mined by considering the boundary conditions. A prescribed
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Fig. 17 Accuracy study on a linear elastic single material bar with N-phase junction configurations in three dimensions
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temperature θD = 0.375K and a zero temperature gradient
are prescribed at the origin. At the material interface, conti-
nuity is enforced for the temperature field and the heat flux.
Finally, the temperature field over the computational domain
is given as:

θ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

θD − q I
Br

2

6κ I
, for r ≤ a,

θD − q I
Ba

2

6κ I
− q I

Ba
3

3κ I I

(1

a
− 1

r

)
, for r > a.

(44)

To simulate an infinite host domain, the analytical solu-
tions, presented in Eqs. (41, 44), are applied to the outer
faces of the host domain as a weak Dirichlet bound-
ary condition. The Nitsche’s penalty parameter is set to
γN = 100.0 for both the boundary and the interface con-
ditions; the ghost penalty parameter is set to γG = 0.001.
Simulations are performed for different mesh sizes h =
[0.5 0.25 0.125 0.06125 0.03125]m. The accuracy and con-
vergence of the physical responses with mesh refinement are
evaluated using the relative L2 error norm and the relative
H1 error semi-norm, as defined in Eqs. (34, 35).

The temperature solution obtained for the five different
mesh sizes with quadratic B-splines and a fixed integration
mesh of size h int = 0.03125m is shown in Fig. 19. Note that
the geometry and the temperature fields are refined indepen-
dently. The geometry is linearly interpolated and its accuracy
can be increased by refining the integration mesh. A geo-
metrical error, characterizing the accuracy of the cylinder or
sphere representation, is evaluated as follows:

e geo = V h − V

V
, (45)

where V is the reference volume or area in 2D or 3D, here
chosen as V = πa2 and V = 4πa3/3 in 2D and 3D respec-
tively, and V h , the numerical volume or area evaluated with
the XIGA approach.

The results obtained in two and three dimensions, are
shown inFigs. 20 and21. In thesefigures, the rowspresent the
relative L2 error norm and the relative H1 error semi-norm
with respect to the h-refinement. The columns correspond
to different levels of refinement of the integration mesh,
i.e., h int = 3.125e−2, 7.813e−3, and 1.953e−3 m, that yield
decreasing geometrical error e geo, as shown on top of each
graph. The highest level of refinement leads to a problem
with around 12,200 integration elements and around 1,300
DOFs in 2D and around 11,500,000 integration elements and
around 41,000 DOFs in 3D. Therefore, the cubic case with
the highest refinement of the integration mesh is omitted in
3D, as the computational resources to tackle such a problem
were not available.

Fig. 18 Problem setup and boundary conditions for a heated inclusion
in an infinite host medium in two and three dimensions

In 2D and in 3D, the relative L2 and H1 error plots show
that the ability of the proposed approach to represent the
curved two-material interface problem solutions increases
as the B-spline mesh is refined. However, optimal conver-
gence rates in L2 and H1 errors are not fully recovered
for all B-splines orders and geometry representations. When
the integration mesh is not sufficiently refined, using higher-
order bases provides only a slight improvement over using
a linear basis. In this case, the lack of a sufficient geometry
resolution limits the accuracy of the computed solution and
prevents the recovery of optimal convergence rates of the L2

and H1 errors with h-refinement. As the integration mesh is
further refined, the geometry error on the curved interface
of the circle or the sphere drops and this issue is mitigated.
Using an integration mesh size of h int = 1.953e−3 m, opti-
mal convergence rates in the relative L2 and H1 error norm
is fully recovered for the quadratic B-splines and partially
recovered for the cubic ones.

4.5 Accuracy study for N-material problems

The ability to accurately tackle multi-material problems in
two and three dimensions is addressed in this subsection.
In two dimensions, a square inclusion embedded in a four-
material host matrix is considered. In three dimensions, a
cubic inclusion is embedded in an eight-material matrix.
The setup of the problem is illustrated in Fig. 22, where
the dimensions are set to L = 2.0m and a = 0.5m.
A fixed temperature θ = 0 K is imposed on the outer
faces of the host domain as a weak Dirichlet boundary
condition. The ghost penalty parameter is set to γG =
0.001 and the Nitsche’s penalty parameter to γN = 50.0
for both the boundary and the interface conditions. The
entire domain, inclusion and matrix, is undergoing a vary-
ing heat body load qB = sin(2πx) sin(2π y)W/m2 in 2D
and sin(2πx) sin(2π y) sin(2π z)W/m3 in 3D. Two different
material configurations are considered: a single material one
and a multi-material one. In the multi-material setting, sin-
gularities arise at the sharp corners of the inclusion. As this is
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(a) (b) (c) (d) (e)

Fig. 19 Heated inclusion in an infinite medium, refinement of the temperature field with a fixed geometry field h int = 0.03125m, solution using
quadratic B-splines in three dimensions

Fig. 20 Heated cylindrical inclusion in an infinite medium, refinement of the temperature field for three different fixed geometry refinements
h int = 3.125e−2, 7.813e−3, and 1.953e−3 m

not the case with a single material problem, the two configu-
rations are considered to assess the effect of such singularities
on the accuracy of the numerical solution. In the single mate-
rial case, the inclusion and the four, in 2D, or eight, in 3D,
matrixmaterials share the same conductivity κ = 1.0W/mK.
In the multi-material case, the embedded inclusion is made
of a material I with a conductivity κ I = 1.0W/mK and the
host medium is made of four, in 2D, or eight, in 3D, different
materials with a conductivity κ i = i × 0.125W/mK.

Simulations are performed using linear, quadratic, and
cubic B-spline basis functions. The accuracy of the physi-
cal responses is evaluated by performing a h-refinement with
h = [0.5 0.25 0.125 0.0625 0.03125]m and comparing the
obtained results in terms of the relative L2 and H1 error

norms, as defined in Eqs. (34, 35), with the response evalu-
ated with a higher resolution h = 0.015625m.

The inclusion presents sharp corners which are within a
single background element. Using the same basis function to
approximate the temperature field around the corner might
degrade the accuracy of the solution. To investigate this sit-
uation, two schemes for the phase and material assignments
are considered for the two-dimensional case. Each region in
the matrix associated with identical material properties can
be divided into one or three connected subregions leading to
a total number of five or thirteen materials, as illustrated in
Fig. 23. As detailed in Subsect. 3.2, the two schemes lead
to different enrichment. When considering five materials, a
single enrichment level � = 1 is necessary to approximate
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Fig. 21 Heated spherical inclusion in an infinite medium, refinement of the temperature field for three different fixed geometry refinements
h int = 3.125e−2, 7.813e−3, and 1.953e−3 m

Fig. 22 Setup and boundary conditions for a heated multi-material
medium in two and three dimensions

the temperature field around the inclusion corner; while for
the thirteen-material case, three enrichment levels are used
� = 1, . . . , 3.

For the two-dimensional case, the simulations use linear,
quadratic, and cubic B-splines basis functions. The relative
L2 error norm and the relative H1 error semi-norm with
respect to the h-refinement are presented in Fig. 24. The
highest level of refinement leads to a problem with 30,500
integration elements and about 22,000 DOFs. In the figure,
the first column corresponds to the single material case and

the second column to the multi-material case. Additionally,
the results are presented for the five-material and the thirteen-
material settings in solid and dashed line respectively.

In 2D for the single material setting, optimal convergence
rates in the relative L2 and H1 error norms are recovered
for linear, quadratic, and cubic B-spline basis functions.
For lower level of refinement, the solution obtained using
cubic B-splines is less accurate than for quadratic B-splines.
This lower accuracy results from the effective coarsening
introduced by the ghost stabilization. For the multi-material
setting, optimal convergence rates are only recovered for lin-
ear and quadraticB-splines basis functions.Using cubic basis
functions provides a slight improvement in terms of accu-
racy, but not in terms of convergence rates with respect to the
quadratic basis functions. This is due to singularities at the
sharp corners of the inclusion. Introducing auxiliary mate-
rial domains and enhancing the approximation around the
inclusion sharp corner allows for the recovery of optimal
convergence rates.

For the three-dimensional case, only the scheme with the
auxiliary material domains around the corners and edges is
considered.The resulting setuphas a total number of 57mate-
rials; each area in the host medium is made of seven material
domains with same properties. The simulations are carried
out for quadratic B-splines basis functions only. The temper-
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Fig. 23 Schemes for phase and
material assignment for a heated
single or multi-material medium

Fig. 24 Accuracy study on a
heated single or multi-material
medium in two dimensions

ature solution obtained for the multi-material case and for
the five different mesh sizes with quadratic B-spline is illus-
trated in Fig. 25. It should be noted that for a coarse mesh
size as shown in Fig. 25(a) with h = 0.5m, the nature of the
solution is not representable by the spline space.

The relative L2 error norm and the relative H1 error
semi-norm with respect to the h-refinement are presented
in Fig. 26. The highest level of refinement leads to a prob-
lemwith around 15,400,000 integration elements and around
3,000,000 DOFs. Similarly to the 2D results, optimal con-
vergence rates in the L2 and H1 error norms are recovered
for the singe material case and close to optimal ones for the

multi-material case, as singularities are present at the sharp
corners of the inclusion.

This study suggests that our XIGA approach can deal
with multi-material problems and provides the flexibility to
enhance the approximation near singularities.

4.6 Complex geometries with curved interfaces

Finally, the ability of the proposedXIGAapproach to analyze
engineering problems with complex geometries, including
multiple curved interfaces, is studied in this subsection. The
elastic response of a sample of a fiber-reinforced compos-
ite is investigated. The geometry of the composite sample
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(a) (b) (c) (d) (e)

Fig. 25 Multi-material heated medium with refinement of the temperature field solution using quadratic B-splines in three dimensions

Fig. 26 Accuracy study on a
heated single or multi-material
medium in three dimensions

is generated using TexGen, an open source software for
modeling the geometry of textile structures, see Long and
Brown [47]. The setup of the problem is illustrated in Fig. 27
and is generated from the polyester.tg3 example, provided
with TexGen v3.12.2. The outer dimensions of the sample
are set to L = 4.4mm and l = 8.5mm. The fiber yarns
have an elliptical cross-section with the semi-axes set to
a = 1.8mm and b = 0.4mm. The composite is made
of an epoxy matrix characterized by an elastic modulus
Em = 2.5×103 N/mm2 and a Poisson ratio νm = 0.3, and
is reinforced by woven yarns made of carbon fibers with an
elastic modulus E f = 250×103 N/mm2 and a Poisson ratio
ν f = 0.3. To demonstrate the analysis capabilities of the
XIGA approach, the following simple boundary conditions
are considered: the composite sample is clamped on its back
side with u = uD = 0 and a constant traction is applied on
its front side with tN = [2500 0 0] N/mm2. For this exam-
ple, the three-dimensional simulation is carried out with the

Nitsche’s penalty parameter set to γN = 10.0 and the ghost
penalty parameter set to γG = 0.01. The displacements are
approximated using quadratic B-spline basis functions.

As illustrated in Fig. 28, the geometry of the composite
sample presents multiple curved interfaces. The entire com-
posite sample consisting of six fiber yarns and a matrix is
immersed into a background mesh following the approach
presented in Sect. 2. The level set fields are constructed as
signed distance fields for each fiber. Close-ups on specific
areas of the sample display details of the three-dimensional
woven arrangement of the fibers and of the wrapping of the
fibers in thematrix. The sample ismadeoffivedifferentmate-
rials, including the matrix in grey and four groups of fibers in
red, blue, cyan, and yellow respectively. The same properties
are assigned to all the fibers. Similarly to Subsect. 4.5, the use
of distinct materials with identical properties allows model-
ing each fiber individually and prevents artificially merging
them when the fibers are in contact. The background mesh
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Fig. 27 Setup and boundary conditions for a carbon fiber-reinforced composite sample

Fig. 28 Geometry details and
integration mesh for a carbon
fiber-reinforced composite
sample

Fig. 29 Von Mises stress in the matrix and the fibers for a carbon fiber-reinforced composite sample

size is set to h = 0.05mm, leading to a model with around
1,800,000 integration elements and a system of equations
with around 862,000 DOFs.

The displacement solution obtained is provided in Fig. 27.
Figure 29 shows the resulting Von Mises stress contours in
the matrix and the fibers separately. It should be noted that
different color scales are used for thematrix and the fibers for
visualization purposes. In the epoxy matrix, higher stresses
are observed under the load as expected. For the fibers, larger
stress values occur when they are loaded in tension. It should
also be noted that local stress concentrations at the fiber sur-
faces are observed when the fibers are in contact. Note that
in this analysis prefect bonding is assumed.

This example shows that the XIGA approach is applicable
to engineering problemswithmultiplematerials and complex
interface geometries.

5 Conclusions

In this paper, an XIGA approach is proposed to simulate
multi-material problems. To achieve a high resolution of both
the geometry and the physical response around the material
interfaces, the proposed approach combines an immersed
boundary technique, namely the XFEM, and the use of
smooth and higher-order bases, here B-splines. Although
not restricted to this approach, the geometry of the com-
putational domains is defined using one or multiple LSFs
in this work. The iso-levels of the LSF define subregions
within the computational domain that are associated with
materials. To provide additional flexibility, the computational
domains are fully immersed in a background mesh. The
physical responses of the systems are evaluated with the pro-
posed XIGA approach using a novel generalized Heaviside
enrichment strategy, where each basis function is enriched
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separately based on the material layout within the basis func-
tion support. Boundary and interface conditions are imposed
weakly through Nitsche’s formulation. Instabilities related
to the creation of small material integration subdomains
are mitigated using a generalized formulation of the face-
oriented ghost penalty stabilization methodology adapted to
our enrichment strategy.

The performance and the versatility of the proposedXIGA
approach are studied through numerical experiments. In par-
ticular, canonical heat conduction and linear elastic problems
in two and three dimensions are considered. The stability, the
accuracy, and the robustness of the evaluated solutions are
measured with the relative L2 error norm, the relative H1

error semi-norm, and the condition number.
Numerical experiments show that accurate solutions with

optimal convergence rate with h-refinement can be recov-
ered. Additionally, the ghost penalty stabilization mitigates
the effect of small material subdomains on the conditioning
of the system, but also on the achieved accuracy of the solu-
tion. This remark holds regardless of the order of the B-spline
basis functions, i.e., linear, quadratic, and cubic. Addition-
ally, by studying the effect of the size of the created material
integration subdomains and of the value of the ghost penalty
parameter, a valid range for the ghost penalty parameter is
suggested for the considered types of problems.

Numerical examples study the application of our XIGA
approach to problems with planar and curved interfaces. A
slight degradation of the condition number and the solution
accuracy is observed when increasing the geometric com-
plexity. Optimal convergence rates with mesh refinement are
observed for the L2 and H1 errors using linear, quadratic,
and cubic B-splines. It should be noted that, when dealing
with curved interfaces, the resolution of the geometry limits
the accuracy of the evaluated physics variable field. Individ-
ual refinement of the geometry and solution field can be used
to mitigate this issue, see Dréau et al. [21] and Legrain et al.
[45]. Alternatively one can use a curved integration mesh,
see Cheng and Fries [15], Haasemann et al. [30], Lehren-
feld [46], and Stavrev et al. [66], or Green’s theorem based
integration schemes, see Saye [60].

Moreover, numerical simulations demonstrate that N-
phase and N-material problems can be resolved accurately.
The approach allows for a large flexibility in handling and
assigning phases and materials to different subregions of
the computational domain, even when dealing with complex
geometries exhibiting multiple curved interfaces. For both
multi-phase and multi-material problems, optimal conver-
gence rates with mesh refinement are recovered for the L2

and H1 errors using linear, quadratic, and cubic B-splines. It
should be noted that singularities arise at interfaces between
more than two materials, and suboptimal convergence rates
are observed. To tackle such singularities, the approximation
space could be extended with specific enrichment functions

if the explicit form of the singularity is known a priori, see
for example Hou et al. [34] and Chen et al. [14].

Several follow-up research developments are foreseen.
In particular, the XIGA approach can be studied for other
classes of problems, such as nonlinear and multi-physics
problems. Furthermore, hierarchical B-splines, LR-splines,
or T-splines can be used in place of B-splines to carry out
local mesh refinement, see Schillinger et al. [61] or Garau
andVàzquez [26]. This procedure allows for further enhance-
ment of the resolution of both the geometry and the physics
around the interface and the accurate modelling of systems
across several length scales.
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