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Gated Recurrent Units for Lithofacies 
Classification Based on Seismic Inversion 

Runhai Feng 

Abstract As a qualitative indicator, subsurface lithofacies is an important parameter 
that can characterize hydrocarbon reservoirs for the degree of compartmentalization. 
In order to account for the geological dependency between data samples along the 
vertical direction, the feed-backward Recurrent Neural Networks is applied to clas-
sify the sequential lithofacies in the subsurface. Particularly, Gated Recurrent Units 
(GRU) is used, which can be dedicated to learning how to update or reset hidden 
states (in this case, lithofacies), such that the information flow through the system 
is regulated. Operating on the output layer, the softmax function is able to map the 
probability values over various possible lithofacies, and the associated uncertainty 
could be analyzed subsequently. In addition, the statistical Hidden Markov Models 
(HMM) is applied to benchmark the performance of GRU, in which the embedded 
transition matrix could enforce the conditional probability between different litho-
facies. The designed GRU and HMM are applied to a synthetic model of the Book 
Cliffs and a real dataset from the Vienna Basin. Instead of using well logs, elastic 
rock properties from a non-linear inversion scheme are proposed as inputs for the 
classification purpose, which could help to overcome the location limitations of cored 
wells, and 2D sections of reservoir lithofacies are then obtained. 

Keywords Recurrent Neural Networks · Rock properties · Lithofacies 
classification · Seismic inversion 

1 Introduction 

During the process of reservoir characterization, different reservoir parameters are 
expected to be estimated, such as lithofacies, porosity, permeability, etc. As a qualita-
tive indicator, lithofacies is a very important reservoir parameter, which could imply 
the degree of reservoir compartmentalization, as well as the rock-physical behaviors
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(Bosch et al. 2002; Garland et al. 2012; Zhou et al. 2016; Gan et al. 2019). In order to 
distinguish between different lithofacies, various methods have been developed. For 
example, Mukerji et al. (2001) predicted reservoir lithofacies and fluid types based 
on a statistical relation between rock-physical properties and seismic information. 
Using rock-physical models, Bosch et al. (2010) provided a quantitative description 
of reservoir properties in joint and simultaneous workflows. 

Other than rock-physical templates being used, the non-linear relationship 
between rock properties and reservoir lithofacies could also be explored through 
advanced deep-learning methods. Qian et al. (2018) analyzed a seismic facies inter-
pretation by deep convolutional autoencoders. Pires de Lima et al. (2019) used deep 
Convolutional Neural Networks (CNN) to aid the core description, which can achieve 
a high level of classification accuracy (~90%). Wei et al. (2019) developed a data 
padding strategy in CNN to characterize various rock facies. 

However, these aforementioned methods can be regarded as pointwise, since every 
depth point that is fed into the classification system is treated as independent of each 
other. From a geological point of view, the intrinsic transitions of lithofacies along 
the vertical direction, such as the fining-upward trend in terms of grain size found 
in distributary channels, are missing (Feng et al. 2017). CNN uses convolutional 
filters to only consider the local information within the size of pre-defined filters, 
and thus it is more suitable for image segmentation at the pixel level (Goodfellow 
et al. 2016). Lithofacies are deposited according to geological rules, and the transition 
information in a long and short range cannot be accounted for by the convolutional 
filters in CNN. On the other hand, Recurrent Neural Networks (RNN) can employ 
the internal memory units to process series variables, and the connections between 
nodes form a directed graph (Goodfellow et al. 2016; Zhang et al. 2018). By means 
of a feedback loop, RNN allows information cycles, and both of the current state 
and what has learned from previous steps could be accounted for, which makes it 
suitable for time series analysis or tasks in the prediction of sequential variables, 
such as natural language processing. Imamverdiyev and Sukhostat (2019) developed 
effective deep-learning models for geological facies classification, in which 1D CNN, 
RNN, and support vector machine are compared with each other. Grana et al. (2020) 
proposed an RNN framework for the lithofacies classification. In this paper, the Gated 
Recurrent Units (GRU) (Cho et al. 2014), a gating mechanism in RNN, is applied to 
classify sequential lithofacies with temporal dependencies, and the data manipulation 
is processed at an intelligent level. Besides, Hidden Markov Models (HMM), that can 
implement the inherent orderings of lithofacies using a constructed transition matrix 
(Elfeki and Dekking 2001), is applied to benchmark the performance of the proposed 
deep learning method (Eidsvik et al. 2004; Lindberg and Grana 2015; Feng 2020a). 
In HMM, a Gaussian assumption is usually adopted to describe the relationship 
between rock properties and reservoir lithofacies, which might be insufficient when 
complex distributions exist. 

The novelty of this paper is that both geological orderings and complex data 
distributions are considered by the designed neural system, which is expected to have 
a better classification performance, compared to traditional approaches. Additionally, 
the inverted rock properties from seismic data are proposed as the inputs, which
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typically cover larger extents of target reservoir in a 2D or 3D way (Feng et al. 
2018a) and can exclude the location limitation of borehole logs that are usually 
sparse in the field. 

2 Methodology 

Being able to recognize sequential patterns, RNN is a deep-learning algorithm appli-
cable for serial data analysis, such as speech and handwriting recognitions (Good-
fellow et al. 2016). It considers time and sequential information and has a temporal 
dimension. The outputs of RNN are not only influenced by weights applied to the 
inputs but also by hidden state vectors that represent the context based on prior inputs 
(xt )/outputs (yt ) (Fig. 1) (Goodfellow et al. 2016; Grana et al. 2020). Therefore, RNN 
can maintain a class of states in memory cells, allowing it to perform jobs such as 
prediction of sequential data that are beyond the capability of feed-forward CNN. 

Theoretically, RNN is entitled to capture long-term dependencies. However, in 
practice, training such network may fail because of vanishing or divergent gradients 
from long products of operation matrices (Goodfellow et al. 2016). To address this 
problem, gating mechanisms are proposed such that hidden states in the system can 
be updated or reset to regulate the information flow. Compared to the long short-
term memory (LSTM) (Gers et al. 1999), Gated Recurrent Units (GRU) (Cho et al. 
2014) has fewer parameters, as no output gate is assigned (Fig. 2) and is selected for 
classification task of sequential lithofacies in this study.

With gating support, GRU can be dedicated to learn how to reset or update hidden 
states, or when to skip irrelevant temporal information. For a given input xt at time 
step t , the reset gate variable rt and update variable ut can control how much infor-
mation of the previous state ht−1 will be remembered or copied, and are computed 
as follows: 

rt = σ(Wxr xt + Whr ht−1 + br ) (1)

Fig. 1 Recurrent Neural 
Networks, with hidden state 
(ht ) that carries pertinent 
information at step t in the 
series. Wxh , Whh , and  Why 
are trainable weights 
associated with input 
(xt )-hidden (ht ), hidden 
(ht−1)-hidden (ht ), and 
hidden (ht )-output (yt ) 
connections, respectively 
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Fig. 2 Computational flow of Gated Recurrent Units 

Fig. 3 Schematic view of the proposed GRU model for the lithofacies classification

ut = σ(Wxuxt + Whuht−1 + bu) (2) 

where Wxr , Whr , Wxu , Whu and br , bu are trainable weights and biases within each 
specific gate. σ is the sigmoid function with an output interval between 0 and 1. 

By combining the reset gate with the effect of update gate, the new state ht can 
be determined as 

ht = ut × ht−1 + (1 − ut ) ×˜ht (3) 

and

˜ht = tanh(Wxhxt + Whh(rt × ht−1) + bh) (4)
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in which × represents an element-wise multiplication; Wxh , Whh and bh are trainable 
neural weights and biases for different states; tanh is the hyperbolic tangent activation 
function; and ˜ht can be considered as a candidate state, since the action of update 
gate has not been taken yet. 

In this proposed GRU approach, the input layer is the inverted rock properties 
from seismic data in terms of compressibility (κ) and shear compliance (M). The 
network architecture includes two GRU layers with ten units for each layer. One 
dense layer is then added with softmax as the activation function, relating to the 
target lithofacies (Fig. 3). As a multiclass generalization/extension of the discrete 
Bernoulli distribution (Evans et al. 2000), softmax function can map the probability 
distributions over various possible labels after normalization (Eq. 5): 

si = ezi
∑K 

j=1e
z j 

(5) 

in which, ezi is an exponential function for input vector zi ; K stands for the number 
of lithofacies; and si denotes the output probability that relates to state i (Good-
fellow et al. 2016). Initial weights in these layers are randomly assigned using the 
Xavier initialization (Glorot and Bengio 2020), and initial biases are set to 0 before 
the network training. Nadam (Nesterov-accelerated Adaptive Moment Estimation) 
(Dozat 2016) is applied to update neural weights and biases to minimize the loss 
function that is a categorical cross-entropy. 

(a) 

(b) 

Fig. 4 True (a) and  inverted  (b) rock properties in terms of κ and M . The true rock properties 
at CMP 100 (red line in (a)) are used for the training of GRU system, and lithofacies are to be 
classified based on the input of seismic inversion results across the whole section. The unit for κ 
and M is square meter per newton (m2/N)
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3 Examples 

3.1 Synthetic Case 

The proposed methodology is first applied to a synthetic model of the Book Cliffs 
created by Feng et al. (2017). This geological and petrophysical model is based on 
the fluvio-deltaic Book Cliffs outcrops in Utah, USA, and has been added with more 
details by Feng et al. (2017) to emphasize the potential reservoir units. Elastic rock 
properties have been assigned within each lithofacies, which are generated using 
empirical rock equations based on different reservoir parameters, such as porosity 
and clay content (Feng et al. 2017). As a test, only a subset of the original 2D section 
has been selected, and Fig. 4 shows the true and inverted rock properties in terms 
of compressibility κ (κ = 1/K , with K being the bulk modulus) (Eq. 6), and shear 
compliance M (M = 1/μ, with μ being the shear modulus) (Eq. 7): 

κ = 3 

3V 2 P ρ − 4V 2 S ρ 
(6) 

M = 1 

V 2 S ρ 
(7) 

in which, VP , VS are the P- and S-wave velocities, respectively; ρ is the bulk density. 
κ and M are considered to be more closely related to different rock types, such that 
the sandstone has a large κ and a small M , since it is more easily to be compressed 
because of the higher porosity often found. In contrast, the shale could have a small κ 
and a large M , due to its weak rigidity. Moreover, κ and M can also indicate property 
changes in the time-lapse seismic inversion owing to their complementary property 
behaviors (Feng et al. 2017). 

The seismic inversion approach used is a full-waveform scheme that is capable 
to fully explore the non-linear relationship between rock properties and seismic data 
(Feng et al. 2017). Compared to the truth (Fig. 4a), property values and geometrical 
structures in the inverted results (Fig. 4b) have been recovered quite well, which 
makes them as suitable inputs for lithofacies classification. For more details on the 
non-linear inversion scheme, please refer to Gisolf and Verschuur (2010) and Feng 
(2020b). 

True rock properties at CMP 100 (Fig. 4a)  are used to train  the GRU  network  
(Fig. 3). In total, there are four lithofacies identified at this well: Fine-grained sand-
stone (FS), Very fine-grained sandstone (VFS), Siltstone (SS), and Clay (Fig. 5a). 
Figure 5b shows the 90% confidence region of the Gaussian likelihood model in 
terms of κ and M , given each lithofacies. It can be seen that there is a large overlap 
between SS and VFS, and Clay could be easily separated from other lithofacies.

After training of the pre-designed GRU system shown in Fig. 3, the inversion 
results at CMP 100 (red lines in Fig. 4b) are used for the lithofacies classification 
(Fig. 6). Both inverted κ and M match the truth quite well, especially for M (Fig. 6a),
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(a) 

(b) 

Fig. 5 a True rock properties and lithofacies at CMP 100 (red line in Fig. 4a) for training GRU. 
b 90% confidence region of bivariate Gaussian likelihood model given each lithofacies. Scattered 
points are the sample data, as colored by each lithofacies

since the PP (pressure-to-pressure) and PS (pressure-to-shear) seismic data have been 
used for the inversion. Compared to the reference, almost all lithofacies layers have 
been correctly classified by GRU, especially for the SS layer at 180 m (Fig. 6b). 
However, VFS is misclassified as SS between 355 and 370 m, due to the large overlap 
of their rock properties (Fig. 5b). The probabilities of each classified lithofacies 
calculated by the softmax function are also shown to assess the associated uncertainty,
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and most of the values are close to the bounds of probability interval, 0 or 1. Notice 
that the true rock properties and reference lithofacies profile in Fig. 6 are obtained 
after upscaling of the ones in Fig. 5a to match the seismic resolution. 

With the section inversion results as inputs (Fig. 4b), the classified lithofacies by 
GRU are shown in Fig. 7b, together with the reference (Fig. 7a). Almost all of the 
lithofacies units have been correctly predicted, and they are close to the truth, with 
some misclassified SS in the lower part. 

To analyze the classification uncertainty, probabilities of each lithofacies are 
displayed in Fig. 8, in which the variability is less fluctuated, since these values 
are either close to 0 (not likely) or 1 (likely).

For a comparison with GRU, the statistical HMM is used to classify lithofacies, 
in which the Viterbi path is utilized, and only a single highest probability value 
is computed (Rabiner 1989). The transition matrix in HMM that can describe the 
lithofacies successions is estimated from cored wells (Fig. 5a), and the emission 
function for the relationship between rock properties and reservoir lithofacies is 
Gaussian assumed (Fig. 5b). The classified lithofacies by HMM are shown in Fig. 9.

(a)                                                               (b) 

Fig. 6 a Inverted (blue curve) and true (red curve) rock properties at the well of CMP 100 (red 
lines in Fig. 4). b Classified lithofacies by GRU and their associated uncertainty 

(a)                                                                       (b) 

Fig. 7 Reference lithofacies (a) and classified results by GRU (b) of the whole cross section. The 
red line shows the CMP location for an inspection in Fig. 6b 
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(a)                                                                       (b) 

(c)                                                                       (d) 

Fig. 8 Probability values of FS (a), VFS (b), SS (c), and Clay (d)

At the well location (CMP 100), compared to the results by GRU (Fig. 6b), the thin 
SS layer has also been predicted correctly around 180 m. Between 270 and 360 m, 
the result in HMM is more uniform, and Clay has been misclassified as FS between 
460 and 520 m. To quantitatively analyze the categorical results by GRU and HMM 
at the well location, Matthews correlation coefficient (MCC) is computed, which is 
based on a multiclass confusion matrix, and its value range is between −1 (worst 
outcome) and 1 (perfect prediction) (Matthews 1975; Feng et al. 2018b). The MCC 
value is 0.7007 for GRU (Fig. 6b) and 0.6868 for HMM (Fig. 9a), which means that 
a higher accuracy by GRU has been achieved.

In the section result, the lateral continuity of SS layer around 180 m cannot be fully 
recovered by HMM, and there are some discontinuous VFS units being predicted 
(Fig. 9b). FS has been over-predicted by HMM, and the thin Clay layer in between 
FS is not classified around 300 m in depth (between CMP 0 and 140) (Figs. 7a and 
9b). This might be caused by the large overlap between their distributions (Fig. 5b), 
and they cannot be fully explained by the Gaussian assumption used in HMM. 

3.2 Field Case 

In order to further test the capability of the proposed GRU, a field dataset from the 
Vienna Basin for the exploration of clastic reservoirs is used. As an extensional basin 
between the Eastern Alps and the Western Carpathians, a major part of the basin fills 
are shallow water sediments of marine to limnic, and fluviatile origins deposited in 
the Early to Middle Miocene age (Strauss et al. 2006). The main reservoirs in this 
basin are from Sarmatian and Badenian times (Strauss et al. 2006). Vintages of 3D
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Fig. 9 Classified lithofacies 
by HMM at the well location 
(CMP 100) (a) and of the 
cross section (b). The red 
line shows the well location 
for training

(a) 

(b) 

seismic surveys acquired in different years have been merged into a single dataset, 
namely Vienna Basin Super Merge (VBSM). These pre-stack seismic gathers are 
used as inputs for the non-linear inversion scheme (Feng et al. 2017, 2018a), and a 
single cross section of inverted κ and M is shown in Fig. 10, where there is a logging 
well drilled in the middle (CMP 70). 

Figure 11a shows the rock properties and interpreted lithofacies at the well location 
(CMP 70) (Shale, Shaly Sand (SH_Sand), and Sand). Lithofacies are identified by 
petrophysicists based on different contents of clay minerals, as more clay minerals 
are found from the shale, while less clay minerals are contained in the sand. It can

(a)                                                                      (b) 

Fig. 10 Cross section of inverted rock properties in the Vienna Basin. a κ; b M . The logging 
properties at CMP 70 have been superposed on the inversions for a comparison 
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be seen from the confidence region and sample data in Fig. 11b that there are large 
overlaps between the three lithofacies, which would make the distinguish between 
them difficult. 

Figure 12 displays the true and inverted rock properties at the well location (CMP 
70). The quality of the inverted results is suboptimal, even though the match in the 
upper part is quite good. The lower part in the inversion matches the truth worse, 
which is attributed to the poorer seismic-to-well tie with an increase in depth. The 
inversion quality of M is worse than that of κ , since only PP data are available in the 
field.

After training based on the well-log data at CMP 70, the classified lithofacies with 
seismic inversions as inputs by HMM and GRU are shown in Fig. 13, in which the 
probability of each lithofacies is calculated by the softmax function in GRU. Both 
methods could recover the main Sand reservoir units in the upper part, while HMM 
predicts more Sand than GRU in the lower part. All the Shale layers have been over-
estimated by HMM and GRU. The MCC value is 0.1714 by GRU, which is higher 
than 0.0544 by HMM.

The confusion matrices showing the success and failure rates by classifiers for 
each lithofacies are displayed in Fig. 14. The correctly classified data samples and

Fig. 11 a Rock properties 
and interpreted lithofacies at 
the well location (CMP 70). 
b 90% confidence region of 
bivariate Gaussian likelihood 
function given each 
lithofacies. Colored points 
are the sample data 

(a) 

(b) 
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Fig. 12 True (red curve) and inverted (blue curve) rock properties at the well location (CMP 70). 
An upscaling is performed for rock properties shown in Fig. 11a to match the seismic scale

Fig. 13 Classified lithofacies by HMM and GRU at the well location (CMP 70). The reference 
profile is obtained by upscaling the true lithofacies at the well (Fig. 11a) to the seismic resolution

their related percentages are shown along the diagonal space, in which a score of 
100% means a perfect classification. A suboptimal classification is obtained, if the 
classified samples are close to the diagonal, such that Sand is predicted as SH_ 
Sand. The worst classification samples are those in the off-diagonal space, since the 
reservoir Sand has been misclassified as non-reservoir Shale or vice versa. GRU 
performs better than HMM for the classification of Sand and SH_Sand. For the 
classification of Shale, the same performance can be observed between them within 
the diagonal samples.

Based on the non-linear inverted rock properties of the cross-sectional seismic data 
(Fig. 10), the classified lithofacies by GRU are shown in Fig. 15, together with their 
corresponding probabilities. Most data samples have been classified as SH_Sand, 
which is also indicated by the reference lithofacies at the well location (Figs. 11a



Gated Recurrent Units for Lithofacies Classification Based on Seismic … 109

(a)                                                             (b)                                      

Fig. 14 Confusion matrices of HMM (a) and  GRU (b), in which the gray color is associated with 
the diagonal cells where the classification is correct

and 13). Small Sand reservoir units are distributed across the section, separated by the 
Shale layers, which are conformable with the depositional environments of shallow 
marine and limnic origins with sand sheets and impermeable shales in between the 
Vienna Basin (Strauss et al. 2006). 

(a)                                                                       (b) 

(c)                                                                       (d) 

Fig. 15 a Classified lithofacies by GRU with inverted rock properties of the cross section as inputs 
(Fig. 10). Probability as calculated by softmax function in GRU for Sand (b), SH_Sand (c), and 
Shale (d). The reference lithofacies and their probability values (0 or 1) at the well location (CMP 
70) are superposed on the sections
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4 Discussion 

In this paper, instead of using well logs, which have location limitations, the inversion 
results from seismic data are proposed as inputs for the classification purpose and a 
2D section of reservoir lithofacies is obtained. The non-linear inversion scheme used 
in this paper is based on an integral representation of the full-elastic equations (Gisolf 
and Verschuur 2010), in which all internal transmission effects and internal multiples 
are considered, as well as the wave-mode conversions. The number of iterations will 
determine the order of multiples used in the inversion procedure. A good recovery of 
subsurface properties and geometries could be guaranteed (Gisolf and Berg 2010a, 
2010b), which makes the inversion results as good candidate inputs for the lithofacies 
classification. The inverted κ (compressibility) and M (shear compliance) are deemed 
to relate more closely to lithofacies types (Feng et al. 2018a). 

In the synthetic study, both PP and PS seismic data are used as inputs for the non-
linear inversion scheme, which makes that the quality of κ and M are almost equally 
good (Figs. 4 and 6a). When only PP data are available such as in the field example, 
κ is determined better than M (Fig. 12). Another rock property—bulk density has 
strong connections with lithofacies and is only accessible when high-quality and 
wide-angle seismic gathers are available. 

A comparison is made between GRU and HMM for the lithofacies classification 
since both methods could account for the data dependency along the vertical direction. 
In HMM, there is a Gaussian assumption used to draw the relationship between 
rock properties and reservoir lithofacies (Figs. 5b and 11b), which is not able to 
explain complex data distributions. Differently, the non-parametric GRU could relax 
the strong assumption of Gaussianity in HMM by fitting the non-linear relations 
between rock properties and reservoir lithofacies with the aid of synaptic neurons. 
Compared to the results by HMM, GRU can achieve a higher classification accuracy 
(larger MCC values), especially in the synthetic study for its ability to predict the SS 
layer around 180 m across the whole section (Fig. 7b). 

To train the GRU system, logging data at the well location are used (CMP 100 
in Fig. 5a and  CMP 70 in Fig.  11a), and the seismic inversion results have been 
kept untouched during the training process, which can be considered as a blind test 
set. The training of GRU for 5000 epochs took ~2 min and ~6 min for synthetic 
and real studies, respectively, on a Xeon 3.70 GHz CPU (central processing unit). 
Afterward, the implementation of trained GRU on the remaining trace locations is 
very fast, which can greatly improve the computational efficiency, especially when a 
large volume of seismic inversion results is available, compared to other traditional 
rock physics-based methods. 

Softmax function is applied to calculate the probability values of lithofacies, given 
the input rock properties. In the synthetic study, in total, there are 1300 data samples, 
which may not be representative enough for data distributions, especially for SS. 
Thus, the so-obtained probability values are less varied (Figs. 6b and 8), compared 
to the ones in the real case study (Figs. 13 and 15b–d). In the field example, there are 
3417 data samples at the selected well location for the GRU training. It is important
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to note that the same training data in GRU are used for the estimation of parameters 
in HMM. 

Design of network architecture and hyper-parameters tuning are important steps 
for a successful retrieval of reservoir lithofacies. A trial-and-error approach is usually 
adopted to select the hyper-parameters in GRU system for the classification task. In 
this research, a simple network architecture is used that can already provide a high 
accuracy, especially in the synthetic study. Other complex network structures could 
also be applied, which are still under investigation. To prevent the overfitting problem, 
a regularization technique combining batch-normalization and dropout is employed 
(Srivastava et al. 2014; Ioffe and Szegedy 2015). Moreover, since the proposed neural 
model is supervised, which means that a perfect classification performance can only 
be expected when lots of labelled examples are available, and the rock-physical 
features given lithofacies should be well-defined such that the intra-state variance is 
as low as possible, and the extra-state variance is wide enough. 

As a regression process, reservoir porosity is to be predicted in the future, which 
could help to quantify the storage potential of hydrocarbon reservoirs. Furthermore, 
the implemented GRU system could be modified in order to account for the horizontal 
correlation between lithofacies (Feng et al. 2018a; Tan et al. 2019), which is missed 
in this study, since the current classification process is implemented trace-by-trace. 

5 Conclusion 

Gated Recurrent Units (GRU), a special form of Recurrent Neural Networks, was 
applied for the lithofacies classification, which is a qualitative indicator for hydro-
carbon reservoirs. The designed GRU network could account for the spatial coupling 
between data points along the vertical direction. Therefore, the classification process 
could implicitly honor the geologically depositional rules. Meanwhile, the data 
manipulation has been taken to an intelligent level, instead of common Gaussian 
assumption being adopted, such as in Hidden Markov Models. Rather than using 
well-log data, which are only available at sparse locations in the field, results from a 
non-linear inversion scheme on seismic data are used as inputs in the classification 
process, and 2D sections are produced. 
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