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Latrophilin’s Social Protein Network
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Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider’s
toxin receptors, but are now known to be involved in brain development and linked to
several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other
cell adhesion molecules and may play a leading role in its network organization. Here,
we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and
contactins and summarize their respective temporal and spatial expression patterns,
links to neurodevelopmental disorders as well as their structural characteristics. We
discuss how more recent insights into the separate cell biological functions of these
proteins shed light on the central role of latrophilins in this network. We postulate that
latrophilins control the refinement of synaptic properties of specific subtypes of neurons,
requiring discrete combinations of proteins.

Keywords: latrophilin, synapse biology, developmental neuroscience, neurodevelopmental disorders,
interaction networks

INTRODUCTION

Brain circuits function by virtue of precise connections between nerve cells. These connections are
the ultimate result of coordinated developmental processes, involving direct interactions between
cells for correct positioning and organization of cell layers in the brain, guidance of outgrowing
axons, and the formation and shaping of synaptic contacts between them. Central to these processes
are cell adhesion molecules which serve the communication and interaction between cells and thus
have a key role in creating and tuning precisely-wired neural circuits.

During evolution, cell adhesion molecules have been instrumental in organizing multicellularity,
thereby undergoing extreme diversifications (Abedin and King, 2008). These diversifications have
been established through extensive variation of a limited number of structural amino acid motifs
and protein domains. Based on structural characteristics, cell adhesion molecules have been
accordingly classified in vast superfamilies such as cadherins and Ig domain cell adhesion molecules
(IgCAMs). Besides these, families with fewer members and atypical adhesion domains have also
been recognized, often serving more refined functions in specifying precise connections between
nerve cells in specialized circuits, latrophilins (LPHNs) being one of them.

In cell adhesion, specificity is based on the nature of at least two partnering cell adhesion
molecules. There is an extensive repertoire of interactions between cell adhesion molecules that
forms the basis of interaction networks. Cell adhesion molecules can reside on contacting cells and
interact in trans, or form a complex in cis on a single cell before partnering in trans. Furthermore,
cell adhesion molecules can act in combination with an identical partner (homophilic complex),
a different partner (heterophilic complex) or with multiple partners (multiprotein complex).
While some cell adhesion molecules display strict specificity toward partners, others are more
promiscuous. These properties together with the extensive diversity of cell adhesion molecules
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provide a shear endless combinatorial potential. It has been
postulated by Thomas Südhof that the diverse and multifold
protein-protein interactions constitute molecular codes that
drive formation, stability and dynamics of synaptic contacts
which are required for the precision of neural circuitry formation
(Sudhof, 2017, 2018).

In this context, we will explore principles of neuronal
cell adhesion by focusing on the family of latrophilins that
display multimodal interactions. The family of latrophilins
itself has already been reviewed extensively (Meza-Aguilar and
Boucard, 2014). Instead, we zoom in on well-established partners
of the latrophilins, particularly teneurins, fibronectin leucine-
rich repeat transmembrane proteins (FLRTs) and contactins.
We synopsize temporal and spatial expression profiles in
combination with structural characteristics that together allow
these interactions, and we discuss their functional consequences.

INTRODUCING LATROPHILINS

Latrophilin has initially been discovered as the Ca2++-
independent receptor for alpha-latrotoxin, which is one of the
toxic substances in the widow spiders’ venom (Krasnoperov et al.,
1997; Lelianova et al., 1997; Sugita et al., 1998). Fast-forwarding
to two decades later, the latrophilin family is now known to
contain three family members (LPHN1-3), of which all three
are classified as adhesion G-protein coupled receptors (GPCRs)
and linked to neuronal and non-neuronal disorders including
ADHD and cancer (reviewed in Meza-Aguilar and Boucard,
2014). Furthermore, it has been shown that LPHN2 and LPHN3
are highly expressed in specific brain areas, whereas LPHN1
is detected at lower levels but more ubiquitously distributed
throughout the brain (Sugita et al., 1998; Kreienkamp et al.,
2000). Interestingly, in rodent brain LPHN1 levels are low during
early postnatal development and increase with age, whereas
LPHN2 shows the opposite pattern (Kreienkamp et al., 2000;
Boucard et al., 2014). Recent data for LPHN3 show that protein
expression peaks at approximately P12, when synaptogenesis
is taking place (Sando et al., 2019). In contrast, peaks in
LPHN3 mRNA levels were seen very early during rat postnatal
development (Kreienkamp et al., 2000) as well as at later stages
in the developing mouse brain (Boucard et al., 2014). Finally,
the repertoire of endogenous ligands/interacting partners of
latrophilins has been expanded to four different families, namely
neurexins, teneurins, FLRTs and contactins (see Figure 2A). In
this review we will focus on well-described interactions with
teneurins and FLRTs, and its most recently discovered interacting
partner Contactin6 (CNTN6). Neurexins are not considered here,
since their interaction with latrophilins has been questioned and
downplayed (O’Sullivan et al., 2014; Sudhof, 2018).

INTERACTION WITH TENEURINS

In the search for ligands of latrophilins, members of the
type II transmembrane teneurin family of cell adhesion
molecules were the first latrophilin-interacting proteins to be

identified (Silva et al., 2011). Teneurins are non-classical cell
adhesion molecules that may well have functions beyond
simple cell adhesion.

Expression
The teneurin transmembrane proteins (TENM) family
members display specific developmental and topographical
expression patterns in the mammalian brain. During embryonic
development of the mouse central nervous system (CNS),
TENM3 and TENM4 are expressed as early as E7.5, followed
by expression of TENM2 around E10.5. TENM1 expression
starts later, at E15.5 (Zhou et al., 2003). At that embryonic
timepoint, all four teneurins are expressed in the telencephalon
and diencephalon with partial overlapping expression (Bibollet-
Bahena et al., 2017). Later during embryonic development,
TENM2 is additionally expressed in the midbrain, as well as
in the nasal cavity and TENM3 shows prominent expression
in the developing whisker pad (Zhou et al., 2003; Young et al.,
2013). In the adult mouse brain, this diverging – but partially
overlapping – expression pattern is maintained. For instance,
all four teneurins are highly expressed in the CA1 region of the
hippocampus, but the CA2 region expresses TENM2, TENM3,
and TENM4 at very low levels, while CA3 expresses only
TENM2 and TENM4 at appreciable levels, and the dentate gyrus
(DG) expresses TENM1 and TENM2, as based on single-cell
transcriptomics (see Figure 1; Habib et al., 2016). Earlier papers
have reported variations on this pattern (Ben-Zur et al., 2000;
Zhou et al., 2003; Berns et al., 2018).

Function
Early observations in fly already demonstrated that teneurins
play a functional role in circuitry formation, specifically between
olfactory receptors neurons and projection neurons in the
olfactory circuitry, and also in formation of the neuromuscular
junction (Hong et al., 2012; Mosca et al., 2012). Intriguingly, a
mutation in TENM1 has now indeed been associated with the
neurological disorder congenital general anosmia, characterized
by the loss of olfaction (Alkelai et al., 2016). A more detailed
understanding of teneurin functions in the developing and
adult CNS is steadily emerging with the overarching concept
that teneurins are required for specific targeted projections in
multiple brain circuits. Currently, no functional studies have been
published on the role of TENM1 in the CNS, and only one
group has reported functional experiments on TENM4 (Suzuki
et al., 2012). This study demonstrates that oligodendrocyte
differentiation is stalled in the absence of TENM4, which results
in a tremor-like phenotype in TENM4-null mice. Notably, Hor
et al. identified three missense mutations in the human TENM4
gene (also called ODZ4) that are associated with patient families
displaying Essential Tremor movement disorder (see Table 1;
Hor et al., 2015).

Considerably more functional work has been published on the
role of TENM2 and TENM3 in the striatum, the visual cortex,
and the hippocampus. TENM3-null mice have been reported
to show defects in the thalamostriatal pathway, the retinal
ganglial cell (RGC) to superior colliculus (SC) connections and
retina to dorsal lateral geniculate nucleus (dLGN) connections
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FIGURE 1 | Overview of expression of latrophilins and cell-adhesion proteins of the FLRT, teneurin and contactin families in the adult mouse hippocampus. Data are
from single-cell RNA sequencing and presented by dot plots using the Single Cell Portal (https://portals.broadinstitute.org/single_cell) (Habib et al., 2016).
Expression levels are color-coded according to a red-blue scale (red: highest; blue: lowest). The size of dots indicates the proportion of cells that express the
indicated transcript. It should be noted that single-cell RNA sequencing studies as summarized here are an excellent source for generating hypotheses, but that
follow-up studies, involving for instance directed qPCR, are required when pursuing such hypotheses.

(Leamey et al., 2007; Dharmaratne et al., 2012; Tran et al., 2015).
Similar abnormalities were noted in the TENM2-null animals,
where a reduced number of RGCs project to the SC and dLGN
(Young et al., 2013). Antinucci et al. have demonstrated that
TENM3 is also essential for connections between RGCs and
the optic tectum (homologous to the mammalian SC) in fish
(Antinucci et al., 2013). In fact, in absence of TENM3, the
animals were less able to detect shapes or position stimuli, known
as orientation-selectivity. A function for TENM3 in wiring
the visual system is substantiated by human genetics research
in microphthalmia disease. Patients with microphthalmia have
abnormally small eyes that are functionally impaired. Thus far,
two patients have been identified with homozygous mutations
in the TENM3 gene. These mutations result in a premature
stop codon such that TENM3 is only partially translated
(T695Nfs∗5 and V990Cfs∗13, see Table 1; Aldahmesh et al., 2012;
Chassaing et al., 2013; Singh et al., 2019).

Most recently, an important role for TENM3 in the
hippocampus has been reported (Berns et al., 2018). Berns and
coworkers showed that TENM3 expression in the CA1 region and
in the distal subiculum is required for connectivity between these
two hippocampal regions. Using advanced mouse genetics they
showed that axonal as well as dendritic teneurin is required in
the connecting synapse to establish correctly-wired hippocampal
circuitry. It should be noted that the much broader expression
of teneurin proteins in the embryonic and adult CNS, and
association with a variety of disorders (see Table 1), warrants
additional functionality in other brain areas yet to be discovered.

Structure
The amino acid sequence of the extracellular region of teneurins
is 59–71% identical between teneurins, and also the predicted
domain organization is highly comparable. Structures of human
and chick TENM2 and mouse TENM3 show that the extracellular
region is folded into a large barrel-shaped structure, termed

YD-shell, adorned with a beta-propeller perpendicular to the YD-
shell (see Figure 2B; Jackson et al., 2018; Li et al., 2018). The barrel
is sealed by a so-called fibronectin plug domain and capped by
its own inward spiraling C-terminal. This C-terminal end aligns
with the barrel wall and threads out through a gap in the barrel to
form two additional domains, the ABD and Tox-GHH domains.
So far, only the beta-propeller and the C-terminal domains have
been implicated in protein-protein interactions. The barrel itself
shows striking similarities with the bacterial toxin system TcB,
TcC of Y. enteromophaga and P. luminscencens, and teneurin-
like protein-coding genes have been identified in several other
bacteria as well (Tucker et al., 2012; Jackson et al., 2018). In these
bacterial systems, the barrel-containing protein is part of a much
larger protein complex important for toxin injection. Although
the similarity to bacterial toxin systems might lead to tempting
speculations, the practical implications of the structurally similar
YD-shell in mammalian teneurins remain unknown. A notable
difference between the bacterial and mammalian teneurins is that
in the case of mammalian teneurins, covalent dimerization is
induced by a non-traditional EGF-repeat domain, that has not
been observed in bacterial teneurins.

Molecular Mechanisms: Teneurin –
Latrophilin Interactions
Latrophilins are adhesion GPCRs and consist of a small
intracellular domain, seven-pass transmembrane helices and a
larger extracellular domain (ECD) with multiple protein motifs.
The extracellular domain can be cleaved by autoproteolysis,
possibly resulting in a conformational change (Hamann et al.,
2015; Arac et al., 2016). The extracellular region contains
the proteolytic GAIN domain and a hormone-binding (HRM)
domain, followed by a glycosylated linker region and the
olfactomedin-like domain as well as a rhamnose-binding
lectin domain (see Figures 2B,C; Vakonakis et al., 2008;
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FIGURE 2 | Latrophilin and its interacting protein partners (A) Latrophilin potentially interacts with proteins of the teneurin family, FLRTs, contactins and neurexins.
The question mark (yellow) represent yet unknown interacting proteins. (B) Schematics of domain architecture of human latrophilin and its protein partners.
(C) Known structures of latrophilin and interacting partners. PDB codes: 5AFB (LPHN3), 4DLQ (LPHN1), 6FB3 (TENM2), 5E55 (CNTN6), 5E5U (CNTN6), 5CMN
(FLRT3), 3QCW (NRXN1). LEC, lectin domain; OLF, olfactomedin domain; HRM, hormone receptor motif; GAIN, GPCR autoproteolysis inducing; 7TM, 7
transmembrane domain; EGF, epidermal growth factor-like; FN, fibronectin; NHL, NCL-1, HT2A, and Lin-41 repeat; YD, tyrosine and aspartate-rich repeat; ABD,
Antibiotic-binding domain; Ig, Immunoglobulin; LRR, leucine-rich repeat; LNS, laminin, neurexin, sex-hormone binding globulin domain.

Arac et al., 2012; O’Sullivan et al., 2014). The lectin domain
specifically interacts with the extracellular domain of teneurin.
Although this domain is sufficient and necessary for binding, the
full length ECD of latrophilin has a higher binding affinity for
teneurin than lectin alone (Silva et al., 2011; Boucard et al., 2012).

Which domain on teneurin is required for the formation
of this complex? Silva et al. demonstrated that the C-terminal
fragment of teneurin containing only the ABD and Tox-GHH
domains was able to bind full-length latrophilin. Furthermore,
a deletion construct of TENM2 that is missing the ABD and
Tox-GHH domains (referred to as Tox-like domain in Li et al.,
2018) abrogated its capability to interact with latrophilin. Thus,
the latrophilin – teneurin interaction might be mediated by the
lectin and ABD with Tox-GHH domains, respectively.

Latrophilin is somewhat promiscuous in its teneurin partner
choice. Whereas LPHN1 binds TENM2 as its highest affinity
ligand (Silva et al., 2011; Boucard et al., 2012; Vysokov et al.,
2016; Li et al., 2018), and vice versa (Silva et al., 2011), cellular
binding assays reveal additional interactions between LPHN1 and
TENM4 (Boucard). Furthermore, LPHN2 interacts with TENM2
and TENM4 (Boucard et al., 2014; Jackson et al., 2018), and

LPHN3 can interact with all members of the TENM family
(O’Sullivan et al., 2012; Boucard et al., 2014; Berns et al., 2018;
Li et al., 2018; Sando et al., 2019). Notably, a splice insert
in all three LPHNs (for mouse LPHN1, KVEQK – following
Y131) as well as two splice inserts in TENM2 and TENM3 (for
mouse TENM3, AHYLDKIVK following I,740 and RNKDFRH,
following L1218) might both decrease binding affinity of one
for another (Boucard et al., 2014; Berns et al., 2018; Li et al.,
2018). The latrophilin splice insert does not affect binding
to FLRT3 (this interaction is discussed in more detail below)
(Boucard et al., 2014). Detailed structural information derived
from X-ray crystallography and cryo-electron microscopy (cryo-
EM) has provided some insight into the structural consequences
of these splicing events. The splice insert in latrophilin is
situated between the lectin and olfactmedin domain (Boucard
et al., 2014; Jackson et al., 2015). In teneurins, the second
splice insert is located in between the first and the second
blade of the NHL domain, a 6 bladed beta-propeller. This
insert promotes homophilic TENM2 and TENM3 interactions,
with the splice insert itself forming a potential dimerization
interface (Jackson et al., 2018; Li et al., 2018). Conversely, the
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TABLE 1 | Genetic mutations impinging upon the structure of latrophilins, teneurins, FLRTs and CNTN6 associated with human disorders.

Gene Protein Mutation Domain Disorder References

LPHN2 LPHN2 L1262H ICD Microcephaly Vezain et al., 2018

LPHN3 LPHN3 A247S OLF ADHD Arcos-Burgos et al., 2010

LPHN3 LPHN3 R465S HRM ADHD Arcos-Burgos et al., 2010; Domene et al., 2011

LPHN3 LPHN3 D615N GAIN ADHD Arcos-Burgos et al., 2010

LPHN3 LPHN3 T783M GAIN ADHD Arcos-Burgos et al., 2010

LPHN3 LPHN3 L928V TM ADHD Arcos-Burgos et al., 2010; Domene et al., 2011

TENM1 TENM1 W1882X YD-shell ASD Yuen et al., 2015

TENM1 TENM1 P1610L YD shell Anosmia Alkelai et al., 2016

TENM1 TENM1 G2533S ABD Cerebral Palsy McMichael et al., 2015

TENM3 TENM3 T695Nfs∗5 EGF-repeat Microphtalmia Aldahmesh et al., 2012

TENM3 TENM3 V990Cfs∗13 FN-plug Microphtalmia Chassaing et al., 2013

TENM3 TENM3 A1349G + R2563W NHL, ABD Microphtalmia and Intellectual Disability Singh et al., 2019

TENM4 TENM4 V1138M FN-plug Essential Tremor Hor et al., 2015

TENM4 TENM4 T1367N NHL Essential Tremor Hor et al., 2015

TENM4 TENM4 A1442T NHL Essential Tremor Hor et al., 2015; Chao et al., 2016

FLRT3 FLRT3 Q69K LRR Kallman Syndrome Miraoui et al., 2013

FLRT3 FLRT3 E97G + S441I LRR Kallman Syndrome Miraoui et al., 2013

FLRT3 FLRT3 K339R LRR Kallman Syndrome Miraoui et al., 2013

CNTN6 CNTN6 E954V FN4 Amyotropic Lateral Sclerosis Daoud et al., 2011

CNTN6 CNTN6 G310S Ig3-Ig4 ASD Murdoch et al., 2015; Mercati et al., 2017

CNTN6 CNTN6 I529L Ig6 ASD Murdoch et al., 2015; Mercati et al., 2017

CNTN6 CNTN6 P770L FN3 ASD, Hyperacusis Murdoch et al., 2015; Mercati et al., 2017

CNTN6 CNTN6 W923X FN4 ASD, Hyperacusis Murdoch et al., 2015; Mercati et al., 2017

Only those mutations with structural consequences (stop, missense, nonsense) are listed, excluding copy number variations and polymorphisms. In case of CNTN6
and ASD, only mutations that are identified in more than 1 patient are listed. X, nonsense mutation; +, compound heterozygous patients; ICD, intracellular domain; TM,
transmembrane domain; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder. References in round brackets demonstrate lack of association
between gene and disorder.

absence of this splice insert may increase the affinity of teneurin
for latrophilin.

What about the functional consequences of latrophilin –
teneurin complex formation? As noted previously, both
latrophilin and teneurin contain transmembrane segments and
complex formation has indeed been shown to occur on the
membrane in NB2A cells and in HEK293T cells (Silva et al.,
2011; Beckmann et al., 2013; Vysokov et al., 2016; Li et al., 2018).
Furthermore, when the full-length proteins are expressed in
two different cell populations, mixing and aggregation of these
populations is induced, indicating that this interaction occurs
in trans (Silva et al., 2011; Boucard et al., 2014; Berns et al.,
2018; Li et al., 2018). In neurons, teneurin and latrophilin family
members are both localized to the synaptic compartments.
Their pre- and/or postsynaptic localization remains a topic
of discussion (see Figure 3A). For instance, LPHN1 is mostly
documented as pre-synaptic (Silva et al., 2011; Vysokov et al.,
2016, 2018), however it is also part of the postsynaptic proteome
of murine CNS (Collins et al., 2006). In addition, LPHN2 has
been identified as a postsynaptic protein (Kreienkamp et al.,
2000; Tobaben et al., 2000; Anderson et al., 2017), whereas
LPHN3 has been observed in both compartments (Collins
et al., 2006; Nozumi et al., 2009; O’Sullivan et al., 2012; Sando
et al., 2019). Likewise, TENM2 and TENM3 have both been
identified in presynaptic terminals (Nozumi et al., 2009;
Berns et al., 2018; Li et al., 2018) as well as postsynapticcaly

(Silva et al., 2011; Berns et al., 2018). Trans-synaptic interactions
have already been demonstrated for the high-affinity pair
Latrophilin1 and Teneurin2 (Silva et al., 2011), as well as for
homophilic Teneurin3 interactions (with the splice inserts)
(Berns et al., 2018). Such interactions might be instrumental
for neuronal outgrowth and synapse formation, as well as
synapse maintenance.

Beside the well-documented intercellular effects on cell
adhesion, complex formation has also been suggested to induce
intracellular signaling events. Cells that express latrophilin
respond to its natural ligand alpha-latrotoxin with an increase
in intracellular Ca2+ levels. Silva et al. have demonstrated
that this response is enhanced when latrophilin-expressing
cells are incubated with the ABD and Tox-GHH region of
TENM2, using neuroblastoma cells (Silva et al., 2011). Also,
in primary hippocampal neurons this C-terminal fragment of
TENM2 induced calcium signaling (Silva et al., 2011). The
relative contribution of the latrophilin – teneurin complex
compared to TENM2 by itself remains to be tested. Furthermore,
Li et al. (2018) show that the co-expression of LPHN1 and
TENM2 tempers the levels of another second messenger,
namely cAMP, both in experiments that mimic a cis-interaction
as well as in a trans configuration set-up, using HEK293
cells. In these experiments, latrophilin1 by itself reduced
cAMP levels slightly, whereas teneurin2 alone did not affect
cAMP levels at all.
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FIGURE 3 | (A) Overview of the literature of synaptic localization of latrophilin
and its interacting partners. (B) Model of latrophilin and its interacting partners
in the synapse, not constrained by temporal or spatial expression patterns.

Most recently, in vivo evidence for the functional relevance
of the LPHN3-TENM2 interaction has been provided by
Sando et al. (2019). These authors demonstrate that a LPHN3-
mutant that cannot bind TENM2, is unable to rescue a reduction
in Schaffer collateral synaptic strength induced by LPHN3-
deficient CA1 neurons in the hippocampus (Sando et al., 2019).
Notably, a FLRT3-binding mutant of LPHN3 is also unable to
rescue this phenotype (see also section Molecular Mechanisms:
FLRT – Latrophilin Interactions and Discussion), indicating that
TENM2 and FLRT3 binding are together required for LPHN3
function (Sando et al., 2019).

LATROPHILIN – FLRT INTERACTION

Members of the fibronectin leucine-rich transmembrane (FLRT)
family of cell adhesion proteins are a second class of binding
partners of latrophilins. This subfamily consists of three
members, sharing the fibronectin III domain, and are part of
a much larger group of proteins that all have the leucine-
rich repeat, including AMIGOs, LINGOs, LLRTMs, NLLRs, and
others (Chen et al., 2006).

Neurobiological and Developmental
Functions
The original identification of the FLRTs stems from a screen
for extracellular matrix proteins expressed in muscle cells
(Lacy et al., 1999). Early expression and essential defects
in mouse embryos indicated the important role of these
proteins (Maretto et al., 2008). A defined neural role was
readily assigned to FLRT2 and FLRT3. These proteins
were found to be shed and to act in soluble form as
repulsive cues for Unc5D-positive neurons in the mouse
cortex (Yamagishi et al., 2011). Specifically, FLRT2-Unc5D
interactions were further shown to direct radial migration
of cortical neurons, whereas the homophilic FLRT3-FLRT3
interaction controlled tangential migration of these neurons
(Seiradake et al., 2014). This dual role in corticogenesis
may be a key mechanism of FLRTs in cortical folding.
This is supported by the findings that accessory sulci are
formed in the cortex of FLRT1/3-null mice, where also
cortical migration defects were observed (Del Toro et al.,
2017). Interestingly, species with low cortical expression of
FLRT2 and FLRT3, such as man and ferret, develop folded
cortices, further supporting this hypothesis. The finding
that FLRTs are ligands of latrophilin and that they together
instruct the development of excitatory synapses added a
new dimension to the insight in the functions of FLRTs
(O’Sullivan et al., 2012).

Characteristics and Expression Profiles
Examining FLRT expression profiles in the mouse hippocampus
through single-cell transcriptomics and anatomical localization
databases shows that all FLRTs are expressed in the hippocampus,
but with different characteristics (see Figure 1; Habib et al.,
2016). FLRT1 is expressed highest in the CA1 region, less
in the CA3 region and not in the CA2 and DG, while
FLRT2 is expressed in the CA1 and CA2 region as well as
in GABAergic interneurons (see Figure 1; Schroeder et al.,
2018). FLRT3 has the most restricted hippocampal expression
as it is predominantly expressed by DG and CA3 neurons
(O’Sullivan et al., 2012). These patterns show that all neurons
in the hippocampus express at least one type of FLRT protein.
Moreover, examination of single-cell transcriptomics based on
data from Habib et al. shows that co-expression of different
combinations of FLRTs occurs in specific neuronal cell types
(Habib et al., 2016). In the mouse cerebral cortex, the expression
of FLRTs is low compared to the hippocampus. In fact, single-
cell RNA seq studies indicate that FLRT1 and FLRT2 mRNAs
are virtually absent in the cortex, while expression of FLRT3 is
particularly expressed in a subset of GABAergic interneurons
(Tasic et al., 2016).

Structure
The amino acid sequences of all three FLRTs is quite
similar, with FLRT1 and FLRT3 being the most divergent
with 59% overall identity. All three FLRTs are type I
single pass transmembrane proteins with a ∼100 amino
acid long intracellular region and an extracellular region
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that compasses 10 leucine rich repeats (LRR) followed by a
single fibronectin (FN) type III domain (see Figures 2B,C).
The LRR domain is folded into an elongated, incurvated
structure with inward facing beta strands and outwardly-
extending loops (Seiradake et al., 2014). Links between FLRTs
and diseases are virtually lacking as yet; there is one genome-
wide association study for Kallman Syndrom (with anosmia
as its most distinguishing feature) identifying three patients
with mutations in FLRT3, all located in the LRR domain
(see Table 1).

Molecular Mechanisms: FLRT –
Latrophilin Interactions
FLRT3 was first identified as the postsynaptic interaction
partners of presynaptic LPHN3 using affinity chromatography
followed by mass spectrometry (O’Sullivan et al., 2012). However,
in light of the debated latrophilin localization (see section
Molecular Mechanisms: Teneurin – Latrophilin Interactions),
there is also some uncertainty about the trans-orientation of
this protein interaction pair (Lu et al., 2015; see Figure 3A).
On a structural level, a number of crystal structures of the
FLRT – latrophilin complex reveal how the β-propeller-shaped
olfactomedin domain of latrophilin is tightly bound to the
incurvated surface of the LRR domain of FLRT (Lu et al.,
2015; Ranaivoson et al., 2015; Jackson et al., 2016). Interestingly,
in the tertiary FLRT2 – LPHN3 – Unc5D complex, a direct
interaction is observed between the lectin domain of LPHN2
and Unc5D, mediated by a salt bridge between residue E105
in LPHN2 and R156 in Unc5D (Jackson et al., 2016). FLRTs
interact with LPHNs with some specificity for certain family
members: FLRT1 and FLRT3 interact with all three LPHNs,
while FLRT2 interacts with LPHN3 (O’Sullivan et al., 2012;
Jackson et al., 2015, 2016).

Insight into the neurobiological significance of the
LPHN-FLRT interaction has been limited so far to one
particular high-affinity partnership, namely FLRT3-LPHN3
(O’Sullivan et al., 2012). In neuronal cultures, reduction
in FLRT or LPHN3 expression, or interference with the
FLRT-LPHN interactions resulted in a decrease of the
density of glutamatergic synapses (O’Sullivan et al., 2012).
In a similar fashion, reduction of FLRT expression in vivo
reduced the number of perforant-path synapses and the
strength of glutamatergic transmission (O’Sullivan et al.,
2012). Moreover, Sando and coworkers have demonstrated
that a reduced number of Schaffer collateral synapses in
LPHN3 transgenic mice is not rescued by FLRT3 or TENM2
binding-mutants of LPHN (Sando et al., 2019). Instead, they
postulate that LPHN3 requires simultaneous FLRT3 and
TENM2 interactions for its synaptogenic functions (Sando
et al., 2019). Together, these findings may be prototypical
for the neurobiological potential of FLRT interactions,
however, more extended studies on these functions have
not been published yet. An argument to suspect that FLRT
interactions play a more generic role in shaping morphology
and function of brain circuits comes from the work of de Wit
group, showing that an array of cell adhesion proteins of the

Leucine-rich repeat (LRR) family, including FLRT2, regulates
synapse structure and function of CA1 pyramidal neurons
(Schroeder et al., 2018).

LATROPHILIN – CONTACTIN6
INTERACTION

The most recent protein found to interact with LPHNs is
Contactin6 (CNTN6). CNTN6 is classified as an IgCAM and
belongs together with its five paralogs to the mammalian
contactin IgCAM subfamily. In CNTN6 pull-down experiments,
latrophilin-family member LPHN1 appeared as one of the most
prominent proteins bound to CNTN6 (Zuko, 2015, 2016a). This
interaction was demonstrated to occur in cis, using cell-binding
and cell-aggregation assays. In view of the identified CNTN6 –
LPHN1 interaction, we here focus on CNTN6 and only discuss
other CNTN members in that context.

Expression
CNTN6 expression is strongly regulated during mouse
development with peak expression in early postnatal stages,
as revealed by expression of a LacZ gene inserted in the mouse
CNTN6 locus (Takeda et al., 2003). Brain regions with strong
X-Gal staining were the accessory olfactory bulb, the anterodorsal
thalamus, layer V of the cerebral cortex, inferior colliculus and
the cerebellum. Further analyses based on in situ hybridization
of CNTN6 mRNA confirmed CNTN6 expression in these areas,
but also indicated a wider expression involving other areas,
in particular the hippocampus and multiple cortical layers.
Regarding the hippocampal area, CNTN6 expression is found in
the CA1 and the hilus of the dentate gyrus (Zuko et al., 2016b).
Sakurai et al. also observed CNTN6-immunoreactivity in the
subiculum, the stratum lacunosum–moleculare of the CA1
region and confirmed the expression of CNTN6 in the hilus of
the dentate gyrus (Sakurai et al., 2010). Examining data from
single-cell RNA sequencing partly confirms these observations
and indicates that the CNTN6-positive cells in the hilus may
be interneurons (see Figure 1; Habib et al., 2016). Analyses
of the mouse cortex showed presence of CNTN6 mRNA and
protein in layers II/III and confirmed expression in layer V
(Zuko et al., 2016b), with single-cell RNA sequencing revealing
CNTN6 expression in multiple cell types (Tasic et al., 2016).
Specifically, highest levels of CNTN6 transcripts were found in
layer V pyramidal neurons, and vasointestinal peptide (VIP)-
and somatostatin (Sst)-expressing interneurons in the motor
cortex (Tasic et al., 2016).

CNTN6 is highly expressed in the cerebellum and displays
differential expression over lobules in the adult brain. For
instance, CNTN6 is highly expressed in subpopulations of
granule cells and in the molecular layer of lobule 1 to the rostral
half of lobule 9, but expression in the distal region of lobules 9
and 10 is weak (Takeda et al., 2003). During the development of
the cerebellum, the CNTN6 gene is first expressed in the Purkinje
cells of lobules 9 and 10 and is followed by expression in the
internal granule cells of all lobules. At P5 and thereafter, CNTN6
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immunoreactivity was observed in the developing molecular
layer and granule cell layer but not in Purkinje cells in lobule 23.

Function
CNTN1 and CNTN2 are the prototypical members of the CNTN
family. For over 20 years these proteins are known as important
components in neuron-glia interactions and formation of the
nodes of Ranvier (Peles and Salzer, 2000; Ascano et al., 2012).
CNTN1 and CNTN2 have been demonstrated to regulate
neuronal migration, axon guidance and the organization of
specific subdomains in the nodes of Ranvier through cis-
and trans-interactions with distinct cell adhesion molecules
(Mohebiany et al., 2014). CNTN1 and CNTN2 have been taken
as examples of the principal functions and mechanisms of
action for the other members of this family. However, the other
members lack the essential functions in neuron-glia interactions
in myelination. Although much less well characterized, these
CNTN family members have prominently come forward in
genetic studies on neuropsychiatric developmental disorders (see
Table 1; Guo et al., 2012; Nava et al., 2014; Huang et al., 2017;
Oguro-Ando et al., 2017). Further, phenotypes in null mutant
mice have indicated functions of these CNTNs in the developing
and mature brain (Shimoda and Watanabe, 2009).

Specifically CNTN6 has been recognized as a potential player
in a number of neurobiological processes, mostly through human
genetics, loss-of-function studies in mice and gain-of-function
studies in vitro. Human genetics has shown the association
of CNTN6 variants, mostly copy number variations, with
neuropsychiatric conditions including autism spectrum disorder,
hyperacusis, anorexia nervosa and Tourette syndrome (Huang
et al., 2017; Oguro-Ando et al., 2017). In animal models, there is
only a single study available at the behavioral level, reporting mild
phenotypes in CNTN6-null mice (Takeda et al., 2003). These mice
exhibited impaired motor coordination indicating cerebellar
deficits. This finding may well relate to the neuroanatomical
observations of developmental cerebellar expression of CNTN6
(see section Expression).

Several studies have reported neuroanatomical phenotypes of
CNTN6-null mice. Sakurai and coworkers showed that in the
hippocampus of CNTN6-null mice CNTN6 appears to affect
glutamatergic but not GABAergic synapses based on reduced
expression of VGLUT1 and VGLUT2 and unaltered expression
of VGAT (Sakurai et al., 2010). Similarly, CNTN6 is involved
in the development of glutamatergic neurons in the cerebellum.
In particular, CNTN6 was shown to colocalize with presynaptic
marker VGLUT1 in parallel fibers that synapse on Purkinje cells
(Sakurai et al., 2009). In the cortex of the same mouse strain,
a modest shift in the numbers of subtype-specific projection
neurons and interneurons in the visual cortex was observed
(Zuko et al., 2016b). Furthermore, Ye et al. noted misorientation
of the apical dendrite of pyramidal neurons in the visual cortex,
particularly in layer V, in CNTN6-null mice (Ye et al., 2008).
Combined loss-of-function of CNTN6 and one of its interaction
partners CHL1, a neural IgCAM, dramatically aggrevated this
dendritic phenotype. Interestingly, it was demonstrated that both
CNTN6 and CHL1 interacted with protein tyrosine phosphatase
α (PTPα, PTPRA), which is highly abundant in the brain

(Kaplan et al., 1990; Ye et al., 2008). The authors proposed a
signaling complex in which PTPα is downstream of CHL1 and
CNTN6 and which regulates apical dendrite projections in the
developing cortex (Ye et al., 2008).

Additional data have supported a role of CNTN6 in neuronal
outgrowth and survival. For instance, the formation and terminal
branching of the corticospinal tract is delayed in CNTN6-null
mice, and neurite growth and neuronal survival is impaired in
CNTN6-null mice with cerebral ischemia, aggrevating ischemic
damage (Huang et al., 2011, 2012). Furthermore, a neuronal
outgrowth role was also revealed in another condition of
neurotrauma, namely spinal cord injury. In these mice, the
regrowth of corticospinal axons was stimulated in the absence of
CNTN6 protein or when CNTN6 was downregulated by shRNA
(Huang et al., 2016).

From a molecular perspective, CNTN6 protein has also
been characterized as a ligand for the receptor protein
NOTCH. CNTN6 binds to NOTCH1, induces the cleavage
and nuclear translocation of the NOTCH intracellular domain
and subsequently, drives the expression of NOTCH1 target
genes such as HES1 (Cui et al., 2004). CNTN6-mediated
Notch activation was proposed to serve the differentiation of
oligodendrocytes (Cui et al., 2004).

Structure
All CNTNs are composed of six Ig domains followed by four
fibronectin-III (FnIII) domains, anchored to the membrane
via a GPI-linker. Several of these domains have now been
solved structurally using X-ray crystallography, but no full-
length structure of the extracellular segment is yet available.
The structure of the first four Ig domains has been determined
for chicken CNTN2, human CNTN2 and mouse CNTN4. In
all three cases, the Ig domains fold into a typical horsehoe-
like configuration, in which the first Ig domain contacts the
fourth Ig domain, and the second Ig domain interacts with
the third Ig domain (see Figures 2B,C; Freigang et al., 2000;
Mortl et al., 2007; Bouyain and Watkins, 2010). More recently,
a structure of CNTN3 spanning the fifth Ig domain until the
second FnIII domain, as well as the structure of the first three
FnIII domains of all six contactins, was determined (Nikolaienko
et al., 2016). Together, these structures reveal how a sharp bend
between the second and third FnIII domain might induce a
parallel orientation of the extended Contactin structure toward
the cell surface. Mutations in the third and fourth FNIII domains
as well as in the Ig3-Ig4 and Ig6 domains have been found in
patients with ASD and hyperacusis, supporting the notion that all
these structural domains contribute essentially to the functional
properties of CNTN6 protein (see Table 1; Mercati et al., 2017).
While CNTN6 has no transmembrane or intracellular regions,
CNTN6 can still participate in synaptic signaling through
multiple protein interactions. From in vivo and in vitro studies,
a model for cis interactions of CNTN6 proteins has been put
forward (Ye et al., 2008; Ye et al., 2011). In this model, CNTN6
is part of an axonal complex with CHL1 and PTPσ (PTPRS),
a protein related to PTPα. The latter interaction is supported
by crystallographic studies providing the structural basis of the
interaction of CNTN6 with PTPγ (PTPRG), another member
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of the PTP family (Bouyain and Watkins, 2010; Nikolaienko
et al., 2016). In addition, CNTNs might also form homodimers
that could result in interactions in trans (Huang et al., 2016).
Thus, involvement of CNTN6 in neurobiological processes might
require multimodal cis and trans interactions, that we are now
only starting to unravel.

Molecular Mechanisms: Contactin –
Latrophilin Interactions
How can CNTN6 complex with latrophilins? Using cellular
aggregation assays, a cis-LPHN1-CNTN6 complex is more
strongly supported than a complex in trans (Zuko et al., 2016a).
Thus far, no experiments have been performed to map the
interacting domains or residues. As such, it is difficult to predict
the architecture of the complex. For a more distant family
member of the contactins, namely Neurofascin, it has been
show that its FN domain interacts with gliomedin, containing
multiple olfactomedin domains (Labasque et al., 2011). Thus, by
comparison we could speculate that the FN domains of CNTNs
are likely to interact with the olfactomedin domain of LPHN1.
On the other hand, FN domains can also interact with lectins,
which suggests the possibility of an interaction between the FN
domains of CNTNs with the lectin domain of LPHN1 (Praetorius
et al., 2001). In addition, the FN domains of CNTN5 have been
assigned as interaction sites with amyloid precursor-like protein-
1 (APLP1) (Shimoda et al., 2012). Clearly, additional data are
needed to understand the structural basis of this complex.

Functionally, it has been shown that CNTN6 and LPHN1
indeed modulate each other’s activity. In neuronal cultures,
LPHN1 overexpression resulted in an increase of apoptosis,
which was blocked by co-expression of CNTN6 (Zuko et al.,
2016a). Notably, overexpression of CNTN6 by itself had no effect
on neuronal morphology or survival. In contrast, in cultured
neurons, as well as in cortical tissue derived from CNTN6-null
mice, enhanced apoptosis was observed (Zuko et al., 2016a).
This was counteracted by shRNA-mediated LPHN1 knockdown.
These results indicate a context-dependent functional interaction
between CNTN6 and LPHN1. Future work is needed to resolve in
greater detail how this interactions controls apoptosis in neuronal
cultures, as well as in the in vivo setting.

Future research might reveal functional interactions in
additional brain areas, since directed in situ hybridization
experiments with LPHN1 and CNTN6 revealed co-expression in
the thalamic nuclei, cortical layer V, hippocampal area CA1, and
in the granular cell axons of the molecular layer in the cerebellum,
pointing to the possibility that in these regions functional
interactions can occur (Malgaroli et al., 1989; Zuko et al., 2016a).

DISCUSSION

Trans-synaptic interactions between cell adhesion molecules have
been identified as essential elements for synapse formation and
plasticity. These processes are ruled by combinatorial codes of cell
adhesion molecules, which is illustrated by the complexity and
multifold interactions of proteins encoded by the neurexin genes
(Sudhof, 2017). The mechanisms uncovered for neurexins are

pivotal when considering functions of multimodal interactions of
latrophilin as reviewed here.

The neurexin family of cell-adhesion proteins consists of
thousands of isoforms of transmembrane proteins encoded
by three separate genes. Neurexins are expressed by neurons
all over the nervous system and their expression is already
initiated during brain development before synaptogenesis
occurs. Neurexins have a presynaptic localization and have
been extensively characterized for their central organizing
roles in synapse formation, maintenance and plasticity
(Sudhof, 2017, 2018).

We postulate here an analogous organizing role for
latrophilins, although the extent of this role is more limited than
that of neurexins in view of the more restricted expression of
LPHN2 and LPHN3. Furthermore, co-expression of latrophilins
with established partners suggests that specific combinations
exist in small subsets of neurons only, rather than in global
neuronal populations as is the case for neurexins. Some of these
combinations may be more widely occurring, like interactions
with teneurins, than with others. This argues against a general
role of latrophilin interaction networks, but rather points
toward a role in refining synaptic properties of specific subtypes
of neurons, requiring specific combinations of proteins. The
current data start to reveal what this refinement may imply and
what neuronal subtypes employ latrophilin interaction networks.

Here, we have reviewed temporal and spatial expression
patterns of its protein partners teneurins, FLRTs and CNTN6
(see Figure 3B). Discrete expression in time together with
cell-type specificity determines which interacting partners are
available for complex formation. For instance, during late
embryonic brain development, interactions with LPHN2 are
less likely to play an important role due to very low to absent
protein expression. Beyond temporal and spatial availability,
specificity of interactions is also generated by splicing events,
exemplified by the interaction between latrophilin and teneurin.
Furthermore, although no data are available yet on post-
translational modifications (PTMs) in latrophilins or its partners,
PTMs in general are well-known to determine binding specificity
and affinity of interactions. A type of PTM that is especially
of importance for extracellular interactions is modification by
glycans, also known as glycosylation. In fact, N-linked glycans
are now known to be highly abundant and particularly variable in
synaptic proteins (Trinidad et al., 2013). For instance, latrophilins
are predicted to be decorated with as many as 7 N-linked glycans
and harbor an O-linked sugar-rich region in between the HRM
and OLF domains (O’Sullivan et al., 2014). Future studies are
needed to test their importance in protein-protein interactions.
The exact location and identity of these glycans can be mapped
using a combination of mass spectrometry and structural biology
techniques. An elegant example of how N-glycans impact cell
adhesion complexes is the presence of three glycosylated residues
in SynCAM that regulate adhesion (Fogel et al., 2010).

What about the functional consequences of latrophilin
interactions? Evidence for a functional role of latrophilin-
centered protein networks comes from an in vivo transgenic
study, as well as cellular assays on the LPHN3 – FLRT3 – TENM2
network (Sando et al., 2019). Neither of the latrophilin mutants
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that are incapable of FLRT3 or TENM2 binding could rescue
the latrophilin-induced decrease in Schaffer collateral synaptic
strength in vivo (Sando et al., 2019). The requirement of
both binding sites for latrophilin function indicates that
multimodality might be essential in latrophilin-instructed
synaptogenesis. In addition, the finding that LPHN3 mutations
associate with ADHD indicates an important functional role
in humans (see Table 1). Also for teneurins, FLRTs and
CNTN6 human genetic data indicate specific defects to be
associated with these interactors. It will be essential to
determine which of these relate to partnering to latrophilins,
and what other, still unknown partners are involved in
these phenotypes.

OUTLOOK

For integration of spatial and temporal expression patterns,
splicing events and PTMs of latrophilin and its protein partners,
high-resolution imaging while maintaining temporal and spatial
information is desired. Whereas previous insights mostly
involved freeze substitution electron microscopic tomography,
techniques such as cryo-electron microscopy and cryo-electron
tomography are now expected to produce high resolution
structures in cellular contexts (Lucic et al., 2005; Zuber

et al., 2005; High et al., 2015; Perez de Arce et al., 2015).
The follow-up, understanding of the precise function of
such protein networks will still be an enormous endeavor,
but we may expect that on the way we will be able to
recognize novel neurobiological mechanisms that are inherent to
the latrophilins.
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