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Abstract: The accurate prediction of hazardous gas dispersion process is essential to air quality
monitoring and the emergency management of contaminant gas leakage incidents in a chemical
cluster. Conventional Gaussian-based dispersion models can seldom give accurate predictions due to
inaccurate input parameters and the computational errors. In order to improve the prediction accuracy
of a dispersion model, a data-driven air dispersion modeling method based on data assimilation is
proposed by applying particle filter to Gaussian-based dispersion model. The core of the method is
continually updating dispersion coefficients by assimilating observed data into the model during
the calculation process. Another contribution of this paper is that error propagation detection rules
are proposed to evaluate their effects since the measured and computational errors are inevitable.
So environmental protection authorities can be informed to what extent the model output is of
high confidence. To test the feasibility of our method, a numerical experiment utilizing the SF6

concentration data sampled from an Indianapolis field study is conducted. Results of accuracy
analysis and error inspection imply that Gaussian dispersion models based on particle filtering and
error propagation detection have better performance than traditional dispersion models in practice
though sacrificing some computational efficiency.

Keywords: atmospheric dispersion; data-driven modeling; error propagation; particle filter; Gaussian
dispersion model

1. Introduction

Air contaminant emissions and contaminant gas leakage incidents in a chemical cluster pose a
potential threat to public health and surrounding environment. Therefore, modeling atmospheric
dispersion is a popular issue these years since it plays an important role in evaluating the impact of
hazardous gas leak accidents [1,2]. Traditional methods (e.g., Gaussian-based dispersion models and
Lagrangian dispersion models) usually use static model, wherein model parameters are pre-determined
and invariant. However, due to the dynamic and stochastic nature of atmospheric dispersion, it is
impractical to measure these model parameters precisely, especially the meteorological data (e.g., the
wind field) [3]. Further, the computational error of static model may be accumulated with time during
the calculation process. To address this problem, a data-driven modeling method is proposed in this
paper for updating model parameters to generate the simulation results being as close as possible to
the real data. However, some errors cannot be avoided, such as measurement errors and floating-point
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errors. Since these errors are inevitable, people have to know whether the predicted result is computed
in an acceptable scope. Error propagation detection is a quite useful approach for error analysis during
the computation. Consequently, it is necessary to develop an atmospheric dispersion modeling method
that supports both data-driven modeling and error propagation detection.

Data-driven modeling methods based on data assimilation (DA) provide an approach of
dynamically estimating model parameters and effectively improving the accuracy of model predictions.
This approach assimilates the observations into the model to produce a time sequence of estimates
of system states [4]. With the model parameters adjusted, the accuracy of the model prediction is
consequently improved. Therefore, data-driven modeling methods based on DA have been widely
used in various fields, especially in numerical weather forecasting and meteorological pre-processing.
Some studies implemented data-driven modeling into short-range atmospheric dispersion [5,6].
They used Gaussian diffusion model and optimization method for minimizing the cost function
to support parameter real time updating. A previous study used a particle filter and the European
Tracer Experiment (ETEX) dataset to assimilate observations into an atmospheric transport model [7].
Data-driven modeling can also be used in atmospheric dispersion model to assess the impact of
nuclear accidents [8]. Furthermore, Kalman filter and its extended methods are also extensively used
in data-driven modeling due to its extensive framework [9,10]. A modified ensemble Kalman filter
for nuclear accident prediction was proposed [11,12]. Reddy et al. utilized particle filter to improve
diffusion model based on Gaussian multi-puff equation [13]. Among these methods, particle filter is
one of the most suitable approaches for highly nonlinear and non-Gaussian models [14]. Using a series
of weighted random sampling particles to approximate the posterior probability density function of
the system state, particle filter is able to estimate arbitrary probability densities with few assumption
constraints. Therefore, particle filter is applied as the data assimilation method in the air contaminant
dispersion in this paper.

Error propagation is a troubling and common problem in numerical computation. The problem
in atmospheric dispersion simulation is no exception. Many methods were proposed in previous
studies to find how the computational error propagates [15–17]. Thus, researchers can then modify
the model to reduce computational error according to error propagation detection results. In 1980,
Ginsberg proposed a method to monitor floating-point error propagation in scientific computation [18].
Some researchers analyzed static program to find the floating-point accuracy problems [19–23].
Bao et al. developed an on-the-fly floating-point error propagation monitoring method to find the
potential floating-point unstable errors [24]. A point system based on significance arithmetic was
described in Sofroniou’s research [17]. Previous studies only gave analysis results marked as Boolean
tag and just analyzed several common operations and statements. However, atmospheric dispersion
modeling needs some advanced operations such as exponential and square root. Therefore, the
error propagation detection applied in this paper is developed to support more operations and give
multi-level results instead of Boolean tags.

The rest of this paper is organized as follows: Section 2 briefly introduces the data-driven modeling
based on particle filter, Gaussian-PF model, error propagation detection and relative error exponent.
In Section 3, a field study was utilized to illustrate the feasibility of our proposed method. Results and
discussion are concluded in Section 4. Section 5 summarizes the conclusions.

2. Methods

2.1. Data-Driven Modeling Based on Particle Filter

Previously, Kalman Filter (KF) based methods work successfully in linear systems. However, when
KF and its variations are used in a non-linear system, the system must be linearized. For most practical
systems, the work of linearization is hard to complete. Fortunately, Particle Filter (PF), a suitable
filtering method for non-linear system, can be extensively applied in data-driven modeling. PF uses a
set of particles to update the system parameters via a Monte Carlo method [25]. Therefore, it can be
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used in complex systems that are difficult to linearize. Generally, the expression of a non-linear system
is as shown as Equation (1): {

Xk+1 = F(Xk) + nk
Zk+1 = H(Xk) + vk

, (1)

where Xk represents the state condition at time step k, and Zk represents the observation at time step
k, F and H are state transition function and observation function respectively. nk and vk are noises
following Gaussian distribution, being added in state condition and observation respectively. When PF
is applied in an atmospheric dispersion process, state condition Xk means the combination of system
parameters that can represent the current state of dispersion process. One of the common practices
is dividing the area of dispersion into numerous grids and choosing the concentrations by grid as
the state condition. This choice directly describes the atmospheric dispersion. However, the vast
region of the chemical cluster means a high dimension of the state parameters, which results in a high
computation cost. Observation Zk means the concentration dataset measured from monitoring stations.
At each step of particle filtering, an expected state of dispersion process is estimated for forecasting the
concentration distribution in next step. Furthermore, the state transition function H should be fast due
to the real-time requirement of the dynamic data-driven modeling, so Gaussian dispersion model is a
quite appropriate option.

2.2. Gaussian-PF Model

In Gaussian dispersion model, most parameters (e.g., wind speed, wind direction, source term and
etc.) can be obtained by monitoring data (i.e., observations or measurements in this paper). However,
the diffusion coefficients are very difficult to be directly measured, which are affected by environmental
conditions (e.g., diffusion terrain, atmospheric stability, and sunlight). Generally, diffusion coefficients
can be expressed by the function of downwind distance and atmospheric stability class. Therefore, the
diffusion coefficients are chosen as the system states to realize data-driven modeling.

Gaussian plume model is utilized for atmospheric dispersion modeling with constant release rate
and static wind field. To obtain the expression, the following assumptions are proposed: the location of
gas release source is at (0, 0, H); wind direction is the forward direction of x-axis; wind speed is v m/s;
release rate of the source is q kg/s; and atmospheric condition is stable. Under these assumptions, the
Gaussian plume model is expressed as follows:

c(x, y, z, t) =
D(t)q

2πvσyσz
exp

(
− y2

2σy2

)[
exp

(
− (z− H)2

2σz2

)
+ exp

(
− (z + H)2

2σz2

)]
, (2)

where c(x, y, z) represents the concentration at location (x, y, z). D(t) is the decay factor containing
radioactive decay and deposition. It is an exponential function of time t. When the wind direction is θ,
set the release source as the rotation center and then clockwise rotate the concentration distribution
c(x, y, z) with degree (90

◦ − θ). If the release source is not at (0, 0, H) but (xs, ys, H), the concentration
distribution c(x, y, z) needs translation transformation.

In the Gaussian plume model, the air contaminant concentration in axis y and z is considered to
follow the Gaussian distribution. Therefore, the key parameters of the model are σy and σz, which
represent the standard deviations that describe the crosswind and vertical mixing of air contaminants
and satisfy following relation [26,27]: {

σy = a1·xb1

σz = a2·xb2
, (3)

where x means the downwind distance, and a1, a2, b1, and b2 depend on the diffusion environment
(i.e., it refers to diffusion terrain and other parameters, like atmospheric stability, cloud cover,
sunlight and wind). In Gaussian plume model, source term (i.e., release rate and source location)
and meteorological data (wind speed and wind direction) can be easily measured. But diffusion
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coefficients are quite difficult to estimate because they are influenced by various environmental factors.
Therefore, the key of data-driven modeling is to update diffusion coefficients. The selection of the state
parameters is also the key to the construction of the state transition model. In this paper, system state
is expressed by the formula Xk = {a1, b1, a2, b2}.

When applying a particle filter in atmospheric dispersion modeling, it is assumed that F(X) = X,
i.e., Xk+1 = Xk + nk. Moreover, H(X) can be computed according to Equation (2). After using particle
filter and observation to update model parameters, the probability distribution of concentration at
each step can be therefore obtained.

In terms of the Gaussian puff model, it is utilized for atmospheric dispersion modeling wherein
source releases are instantaneous like an explosion. The advantage of the Gaussian puff model is
that it is able to support time-variant wind fields though it cannot model the continuous release.
Assuming the release source is located at (xs, ys, H) and the center of puff has moved to (xc, yc, yc) at
time t in wind field W, the equation of Gaussian puff model is shown as follows:

c(x, y, z, t) =
D(t)q

(2π)3/2σxσyσz
e
− (x−xc)2

2σ2
x e

− (y−yc)2

2σ2
y

[
e
− (z−zc)2

2σ2
z + e

− (z+zc)2

2σ2
z

]
, (4)

where q is the instantaneous release quantity and c(x, y, z, t) represents the concentration at (x, y, z)
and at time t. D(t) is the radioactive decay and deposition factor. σx, σy and σz are diffusion coefficients
at x-axis, y-axis and z-axis respectively. They can be computed by the following equations:{

σx = σy = a1·db1

σz = a2·db2
, (5)

In the Gaussian puff model, diffusion coefficients are the function of total distance d that the puff
center has moved. The expression of d is:

d =
∫ t

0
v(τ)dτ, (6)

where v(τ) is the wind speed at time τ. The combination of diffusion coefficients is also utilized as
system state in Gaussian puff model Xk = {a1, b1, a2, b2}. State function F(X) also satisfies F(X) = X,
while the observation function H(X) can be computed by multi-puff merging.

A single puff cannot calculate the function H(X) because a Gaussian puff model cannot simulate
the dispersion process of a continuous release. Fortunately, the gas plume can be regarded as the
combination of gas puffs that are released from a source with an infinitely little temporal interval,
which is named multi-puff merging. Therefore, a series of puffs can be merged to approximately
substitute a plume. When the release rate q is time-variant, q(t) can be discretized by substituting
the plume by a series of puffs with different release quantities. Let p = {xs, ys, zs, q, tstart} represent
a single puff containing all essential parameters for atmospheric dispersion modeling, where p can
be described as a puff released from (xs, ys, zs) at time tstart with instantaneous release quantity q.
The corresponding function cp(x, y, z, t, p) represents the concentration of location (x, y, z) at time t of
puff p. Thus, the whole dispersion process can be expressed as:

c(x, y, z, t) ≈
n

∑
i=1

cp(x, y, z, t, pi), (7)

where pi means the ith puff divided from the plume. By substituting the plume by puffs, it is feasible
to model the atmospheric dispersion whose release rate is varying or whose wind field is dynamic.
Thus, the observation function H(X) can be easily derived via this approach.
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The structure and workflow of the particle filter as well as the detailed procedure of data
assimilation are included in an independent section of our previous studies. For simplicity, these
contents will not be introduced again and interested readers are referred to those references [3,28].

2.3. Error Propagation Detection

In numerical computing, error propagation would lead to devastating results. For example, a
Patriot missile failed to intercept its target, and this caused many casualties during the Gulf War
because of a floating-point computational error. In this paper, errors of atmospheric dispersion
modeling and simulation are classified into two categories: measurement error ε and floating-point
error ε. Measurement errors usually represent the errors generated by monitoring devices. They usually
include errors in source term information (release rate and WGS84 coordinate), meteorological data
(wind speed and wind direction), concentration data, etc. Nevertheless, floating-point errors are
generated during the numerical computation due to the limits of memory and the expression of
floating-point numbers. Since most real numbers cannot be expressed precisely in a computer,
floating-point errors may appear in any places of the atmospheric dispersion simulation, like wind
field generation, dispersion equation calculation and particle filtering iteration. In this paper, an error
propagation detection method based on the relative error exponent is developed. The exponent of
relative error e can be calculated by r = blog2 ec. Consequently, this method can find the potential
floating-point instability problems during the computation, which can assist environmental protection
authorities to evaluate whether the results are of high-confidence.

In this paper, the floating-point errors and measurement errors are combined in the source term
parameters, wind field and concentration data. To fit the concentration measurements, the integration
of particle filtering and error propagation detection is then used to update the system state of the
atmospheric dispersion process. The estimated concentration distribution and error analysis are
finally computed.

Errors are highly possible to seriously affect the accuracy of results and they are inevitable because
of the limitations of sensors and computers. Therefore, any atmospheric dispersion modeling results
without a high-confidence error analysis are not convincing. The proposed error detection method
is able to verify that to what extent the results are seriously influenced by errors. In order to explain
the error propagation detection, several definitions should be introduced firstly [24]. For a variable,
x means “computational value”, which is the value stored in the computer memory. Computational
value is limited by measurement error and floating-point error. “Actual value” x̂ means the value
of the variable in reality with no error (infinite precision). Absolute error ∆̂x = x̂− x represents the
difference between actual value and computational value with infinite precision, which can also be
expressed as ∆̂x = εx + εx (i.e., sum of measurement error and floating-point error). Relative error ∆x

is computed as ∆x = |∆̂x/x|. Obviously, when computational value is close to zero, it is possible to
generate high relative error. For example, consider the addition operation:

x̂ + ŷ = x + ∆̂x + y + ∆̂y = (x + y) + (∆̂x + ∆̂y), (8)

The computational result of this expression is x + y, and the absolute error is ∆̂x + ∆̂y. Therefore,
the relative error can be computed by equation

∣∣(∆̂x + ∆̂y)/(x + y)
∣∣. When x = 10, 000, ∆̂x = 1,

y = −9999.9 and ∆̂y = 1, both ∆x and ∆y are relatively little (close to 10−4). However, the relative error
of the sum ∆x+y reaches 20, which means the relative error is 105 times greater than the original ones.

In atmospheric dispersion modeling and simulation, errors usually contain measurement errors
and floating-point errors. Measurement errors exist in all the sampled data from monitoring devices.
Therefore, all the input measurements have initial errors. In terms of floating-point errors, most real
numbers cannot be expressed precisely in a computer because they are limited by the floating-point
format. When a program runs, the floating-point errors will propagate gradually. As concluded in
the example, addition operations may cause huge relative error. Furthermore, errors could also be
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propagated because of multiplication, division, exponential, operations, etc. As a result, a detailed
list of error propagation rules for relative error inspection is important in atmospheric dispersion
modeling and simulation.

2.4. Relative Error Exponent

For one thing, the computer needs huge resources to record the actual values with no error.
For another thing, some irrational numbers are impossible to be recorded in memory. Thus, the
precise error of each variable cannot be calculated in a normal program. To address this problem, a
method of estimating the exponent of relative error r is proposed to classify the error of each variable.
Firstly, according to the property of monitoring device and its floating-point value, the exponent
ex of variable x (calculated by equation blog2 xc) and its relative error exponent rx (calculated by
equation blog2 ∆c) are determined. Moreover, exponent of relative measurement error rε

x can be easily
calculated, and initial exponent of relative floating-point error rε

x can also be estimated precisely.
However, it may take too much time for error estimation. Thus, it is assumed that the initial exponent
of relative floating-point error rε

x of a “float” variable is −20, and that of a “double” variable is −50.
The initial exponent of relative error is the maximum of rε

x and rε
x. Furthermore, error propagation rules

of operations appearing in data-driven atmospheric dispersion modeling (addition, multiplication,
inversion, exponential, square root, and sine) are shown in Table 1. Addition and multiplication can
be found anywhere during computation, while inversion, exponential and square root are used in
Gaussian models and radioactive decay factors. Sine functions are essential in wind field generation.

Table 1. Error propagation rules of each operation.

Operation Expression Exponent of Relative Error

Addition x + y rx+y = max(ex + rx, ey + ry)− ex+y
Multiplication xy rxy = max(rx, ry, rx + ry)

Inversion 1/x r1/x = rx
Exponential exp(x) rexp(x) = ex + rx

Square root
√

x r√x = rx − 1
Sine sin(x) rsin(x) = ecos(x)x/ sin(x) + rx

In terms of addition, the relative error of addition has also been analyzed before. Consequently,
the relative error ∆x+y can be obtained by following equation:

∆x+y =

∣∣∣∣∣ ∆̂x + ∆̂y

x + y

∣∣∣∣∣ ≤
∣∣∆̂x
∣∣+ ∣∣∆̂y

∣∣
|x + y| =

|x∆x|+
∣∣y∆y

∣∣
|x + y| , (9)

As shown in this equation, the value of relative error exponent rx+y depends on the values of
|x∆x| and

∣∣y∆y
∣∣. Thus, the exponent can be estimated by rx+y = max(ex + rx, ey + ry)− ex+y. As for

multiplication, the derivation process is similar to addition. Relative error ∆xy can be calculated first:

∆xy =

∣∣∣∣∣ (x + ∆̂x)(y + ∆̂y)− xy
xy

∣∣∣∣∣ =
∣∣∣∣∣y∆̂x + x∆̂y + ∆̂x∆̂y

xy

∣∣∣∣∣ ≤
∣∣y∆̂x

∣∣+ ∣∣x∆̂y
∣∣+ ∣∣∆̂x∆̂y

∣∣
|xy| , (10)

Because
∣∣∆̂x
∣∣ = x∆x and

∣∣∆̂y
∣∣ = y∆y, we have:

∆xy ≤
|yx∆x|+

∣∣xy∆y
∣∣+ ∣∣x∆xy∆y

∣∣
|xy| = |∆x|+

∣∣∆y
∣∣+ ∣∣∆x∆y

∣∣, (11)
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Thus, the relative error exponent of multiplication is rxy = max(rx, ry, rx + ry). Division can be
decomposed into multiplication and inversion operations. In terms of the inversion 1/x, the derivation
equation of ∆1/x is:

∆1/x =

∣∣∣∣∣dx−1

dx
∆̂x

x−1

∣∣∣∣∣ =
∣∣∣∣ 1
x2

x∆x

x−1

∣∣∣∣ = |∆x|, (12)

Therefore, the relative error exponent of inversion operation is r1/x = rx. The calculation
of exponential operation needs approximation. The relative error ∆exp(x) can be expressed by the
following equation:

∆exp(x) =

∣∣∣∣∣ ∆̂exp(x)

exp(x)

∣∣∣∣∣ ≈
∣∣∣∣∣d exp(x)

dx
∆̂x

exp(x)

∣∣∣∣∣ = |x∆x|, (13)

Then, the expression of relative error exponent rexp(x) of exponential operation rexp(x) = ex + rx

can be obtained. In terms of square root operation, its relative error ∆√x can be calculated by:

∆√x =

∣∣∣∣∣ ∆̂√x√
x

∣∣∣∣∣ ≈
∣∣∣∣∣d
√

x
dx

∆̂x√
x

∣∣∣∣∣ =
∣∣∣∣ 1
2
√

x
x∆x√

x

∣∣∣∣ = ∣∣∣∣∆x

2

∣∣∣∣, (14)

so the exponent of relative error is r√x = rx − 1. In order to estimate the relative error exponent of sine
function, the relative error also needs some transformation so that it can be expressed by x and ∆x.
The derivation equation is:

∆sin(x) =

∣∣∣∣∣ ∆̂sin(x)

sin(x)

∣∣∣∣∣ ≈
∣∣∣∣∣d sin(x)

dx
∆̂x

sin(x)

∣∣∣∣∣ =
∣∣∣∣cos(x)x∆x

sin(x)

∣∣∣∣, (15)

Therefore, the relative error exponent of sine function is rsin(x) = ecos(x)x/ sin(x) + rx. These rules
cover all operations used in this study. They are written inside the program to trace the error
propagation and give the final analysis. In summary, the error propagation rules of all necessary
operations are shown in Table 1.

3. Application: Indianapolis Field Study

3.1. Scenario Introduction

The Indianapolis experiment was implemented from 16 September to 12 October in 1985 [29].
Researchers used sulfur hexafluoride (SF6) to trace the dispersion plume emitted from an 83.8-m height
stack. SF6 is a kind of artificial inert gas that is colorless, odorless, non-flammable, and non-toxic.
Furthermore, the concentration of SF6 is negligible in the atmosphere because it is only synthesized
in the laboratory. Therefore, background concentrations can be ignored in the environment, which is
similar to the hazardous gas accidently leaked from the chemical industry park or nuclear power plant.
These features make SF6 a perfect gas for dispersion tracing, and it is a safe substitute of hazardous gas
trace experiments. SF6 was released from the stack built at the Perry K power plant in Indianapolis,
Indiana, United States. The WGS84 coordinate of the release source is (39.8 E latitude, 86.2 E longitude),
and its UTM coordinates are (N4401.59 km, E571.40 km). The elevation of this power plant is 214 m.
From 16 September to 12 October, monitoring stations collected sampled data for about 170 h. Eight or
nine hours of SF6 concentration data were available on each day. Meteorological data were sampled
from a 94 m height monitoring tower in a bank and three other 10 m height monitoring towers at
urban, suburban, and rural locations, respectively. About 160 ground-level concentration monitoring
stations were established in arcs at distances ranging from 0.25 to 12.0 km from the release source.
Observation data include the concentration measurements, meteorological observations, locations of
all meteorological monitoring towers and ground-level monitoring sensors. Distribution of all sensors
can be viewed in Figure 1.
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The Indianapolis case is one of the most complete gas trace experiments available since the
measurements of this experiment are sufficient and SF6 is an appropriate low-risk hazardous gas
substitute. Therefore, this experiment was applied in our study to test the performance of the
proposed method. The sampled SF6 concentration datasets are used for data-driven modeling.
Because the measurement errors of Indianapolis experiment were not given, some assumptions
concerning measurement error are made and then the performance of error propagation is analyzed.

3.2. Parameters Configuration

The experiment implemented in this paper uses the sampled data of the Indianapolis field
experiment collected on 20 September in 1985 for data-driven modeling and error detection analysis.
Four test cases are set to test the performance of the Gaussian plume model, Gaussian multi-puff
model, and the corresponding two PF models. Concentration data from 10:00 to 18:00 were available.
Wind speed and wind direction were sampled each hour, and the wind field was quite stable that
day. Further, the release rate of the stack in Perry K power plant remained constant at 4.65 g/s.
These conditions imply that the Gaussian plume model is also quite suitable in this case.

A total of 1326 records were sampled by these monitoring sensors in this day (see Figure 2a).
The label of x-axis ‘data number’ in Figure 2a means the measurement sequence in the 1326 records.
The distribution of monitoring sensors that were operating on 20 September in 1985 is shown in
Figure 2b. In this figure, it can be seen that the available ground-level sensors are arranged as an arc
to the north of the release source (83.8 m stack at the Perry K power plant). Concentration data are
sampled each hour during this day. Figure 2b also demonstrates the concentration distribution at 10:00,
where the size and darkness of the point represent the value of concentration. The bigger point size
represents higher concentration value at the corresponding monitoring sensor. Similarly, the darker
points also represent a higher concentration value. Obviously, the concentration values sampled from
the northeast direction to the release source are relatively high, which has an acceptable agreement
with the measured wind direction (i.e., the averaged wind direction is 210◦ and the averaged wind
speed is 1.85 m/s).
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Gaussian plume model, Gaussian multi-puff model, Gaussian-PF plume model and Gaussian-PF
multi-puff model are used in experiments to reconstruct the process of SF6 atmospheric dispersion.
While Gaussian plume and puff models are traditional approaches whose diffusion coefficients
are constant, Gaussian-PF plume and Gaussian-PF multi-puff models are data-driven modeling
approaches. Error propagation detection is applied to analyze whether the results are seriously
influenced by errors. The diffusion coefficients of two traditional approaches are determined according
to the atmospheric stability class, to recover the whole dispersion process. In terms of Gaussian-PF
models, the diffusion coefficients keep changing in order to fit the observation data. The ranges of
diffusion coefficients in Gaussian-PF models are listed in Table 2.

Table 2. Ranges of diffusion coefficients in Gaussian-PF models.

Diffusion Coefficient Range (Gaussian-PF Multi-Puff and Gaussian-PF Plume)

a1 (0.1, 0.5)
b1 (0.8, 1.0)
a2 (0.9, 1.1)
b2 (0.4, 0.6)

As for initial errors, according to the experimental description of the Indianapolis case, the resolution
of concentration monitoring stations is 1 ppt. However, the measurement error is not given in the
corresponding reports. Thus, it is assumed that the monitoring devices have quite high accuracies.
Consequently, the error of concentration monitoring stations is assumed to be 1 ppt (equal to the sensor
resolution). Similarly, the measurement error of wind direction is assumed to be 1 degree and the error
of wind speed is 0.01 m/s. Notice that the wind direction is a relative value so that the relative error of
wind direction d is a constant value 1/360 but not 1/d (exponent of its relative error is −9).

4. Results and Discussion

The concentration generated in the same monitoring station declines with time (see Figure 2a).
This seems unreasonable because the meteorological measurements show that the wind direction only
showed a little fluctuation during this period and the wind speed only increased slightly. Moreover, the
release rate measured by the monitoring sensor installed on the stack also shows that it remained at
the same level. Therefore, the reason that causes the decrease of concentration is the environmental
conditions, which is affected largely by atmospheric stability, cloud cover, sunlight and other complex
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factors [27]. The factors of atmospheric stability, cloud cover, sunlight would generate an effect of plume
rise [30]. It is worth noting that the plume rise is beneficial to reduce the concentration of pollutants on
the ground. Moreover, atmospheric stability, sunlight and terrain greatly influence the determination of
dispersion coefficients [31–33]. Dispersion coefficients are of vital importance to dispersion simulation.
The disadvantage of traditional plume models is that diffusion coefficients cannot be directly calculated.

The results of using the traditional Gaussian plume model without data-driven modeling to
recover the SF6 atmospheric dispersion are shown in Figure 3a and Table 3. The mean squared error
(MSE) of the traditional Gaussian plume model is 6.95× 10−19. Meanwhile, the correlation coefficient
(r) between observations and model predictions is 0.5409. The mean value of real measurements, mean
value of model predictions, standard deviation value of real measurements and standard deviation
value of model predictions are 2.0139 × 10−10, 4.3313 × 10−10, 5.3745 × 10−10 and 9.6761 × 10−10

respectively. Figure 4a illustrates the concentration error (absolute difference between measured
concentration and modeled concentration) distribution at 10:00. Obviously, the Gaussian plume model
shows quite high error at some sensors.

Table 3. Correlation coefficients, the mean values and standard deviations corresponding to Figure 3.
(r means correlation coefficients between observations and model predictions; Mean_real and
Mean_model represent mean value for real observations and model respectively; similarly, Std_real
and Std_model represent standard deviation for real observations and model.).

r Mean_Real Mean_Model Std_Real Std_Model

(a) 0.5409 2.0139× 10−10 4.3313× 10−10 5.3745× 10−10 9.6761× 10−10

(b) 0.6046 2.0139× 10−10 5.0905× 10−10 5.3745× 10−10 1.0072× 10−9

(c) 0.4577 2.0139× 10−10 2.1963× 10−10 5.3745× 10−10 4.1629× 10−10

(d) 0.5211 2.0139× 10−10 2.5882× 10−10 5.3745× 10−10 3.7687× 10−10
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Figure 3b and Table 3 display the results of the traditional Gaussian multi-puff model without
particle filtering. In this figure, the modeling results of traditional Gaussian plume and puff models are
quite similar, which means merging a series of puffs to substitute a plume is a feasible approach.
However, both traditional Gaussian plume and multi-puff models cannot change the diffusion
coefficients during the simulation process. The MSE of Gaussian multi-puff model is 7.43× 10−19, even
higher than plume model. Meanwhile, the correlation coefficient (r) between observations and model
predictions is 0.6046, which outperforms the value of Gaussian plume model. The mean value of real
measurements, mean value of model predictions, standard deviation value of real measurements and
standard deviation value of model predictions are 2.0139× 10−10, 5.0905× 10−10, 5.3745× 10−10 and
1.0072× 10−9 respectively. Seen from Figure 4b, traditional Gaussian puff model shows high error at
some sensors, which is similar to the traditional Gaussian plume model.

In terms of PF-based methods, Figure 3c and Table 3 illustrate the results of Gaussian-PF plume.
Obviously, data-driven modeling based on particle filtering has played an important role during
computing. The accuracy of modeled concentrations improves markedly. The MSE of the final result is
2.47× 10−19, which is significantly less than the MSEs of traditional Gaussian models. Meanwhile, the
correlation coefficient (r) between observations and model predictions is 0.4577, which experiences
an obvious decrease compared to that of traditional Gaussian plume model. The mean value of real
measurements, mean value of model predictions, standard deviation value of real measurements and
standard deviation value of model predictions are 2.0139× 10−10, 2.1963× 10−10, 5.3745× 10−10 and
4.1629× 10−10, respectively. Figure 4c shows that the concentration error at 10:00, which has been
reduced significantly comparing to traditional models.
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As shown in Figure 3d and Table 3, the results of Gaussian-PF multi-puff model is also satisfactory.
The MSE of this model is only 2.23× 10−19. Therefore, Gaussian-PF multi-puff model has the optimal
fit to the actual measurements. Meanwhile, the correlation coefficient (r) between observations and
model predictions is 0.5211, which also experiences an obvious decrease compared to that of traditional
Gaussian multi-puff model. The mean value of real measurements, mean value of model predictions,
standard deviation value of real measurements and standard deviation value of model predictions are
2.0139× 10−10, 2.5882× 10−10, 5.3745× 10−10 and 3.7687× 10−10 respectively. However, as shown
in Table 4, the Gaussian-PF multi-puff model needs quite a long execution time. Therefore, when
meteorological conditions are relatively stable, Gaussian-PF plume model is appropriate since it
performs well in both fitness and execution time. However, if wind direction and wind speed are
unstable and dynamic, Gaussian-PF multi-puff model is the only choice that is able to fit measurements
well [34].

Table 4. Average computational time of each model.

Model Name
Computational Time (ms)

Native With Error Detection

Gaussian plume model 134.67 154.41
Gaussian multi-puff model 285.53 6162.30
Gaussian-PF plume model 1388.19 2453.13

Gaussian-PF multi-puff model 120,040.87 3,672,952.18

As seen in Figure 3, Tables 3 and 4, the Gaussian-PF models perform better in MSE while the
traditional Gaussian-based models have better correlation coefficients. The measured concentration
values obey the approximate Gaussian distribution and the concentration curve computed by
Gaussian-based models also conforms to the Gaussian distribution. Thus, the correlation coefficient
between real measurements and predictions of Gaussian-based models is higher. However, the
predicted error is larger because Gaussian-based models are simple. For the Gaussian-PF models,
in order to approximate the real concentration value, the Gaussian-PF models have to change the
original Gaussian distribution curve. So the correlation coefficient between real measurements and
predictions of Gaussian-PF models decreases. The purpose of the proposed method is to reduce the
prediction error, and therefore the proposed method is acceptable. As for computational time, the
computational efficiency is sacrificed for the improvement of prediction accuracy. The addition of
the particle filter and error propagation detection makes the proposed models very computational
expensive. However, it is noteworthy that the unit of computational time is ms and most of the
computational-time results (e.g., 1388.19, 2453.13 and 120,040.87 ms) are acceptable. Moreover, when
applied into practical utilization, it is better for users to consider the practical needs and purposes.
For example, if users require accurate prediction results in a limited time, Gaussian-PF plume model
would be the optimal choice. However, if the wind field is varying and the users do not care about the
calculation time, Gaussian-PF multi-puff model would be the better choice.

The results of error analysis are shown in Figure 5. After experiments, it is found that the final
relative error exponents of traditional models and their corresponding data-driven modeling methods
are same because randomly generating system states can eliminate the historical error at each step.
Therefore, data-driven modeling method based on particle filtering will not accumulate errors. In this
figure, it is noteworthy that values of relative error exponent are all integers. This is because the
definition of relative error exponent rx (calculated by equation blog2 ∆c and it is an integer) and its
operations (i.e., operations of plus and minus in third line of Table 1). Furthermore, both plume and
multi-puff model do not have large relative errors after computing. After comparing the final relative
error exponents of plume model and multi-puff model, it is obvious that Gaussian plume model
and its corresponding data-driven modeling method have less probability to cause floating-point
unstable problem.
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Figure 6a shows the distribution of concentration at 11:00 using Gaussian-PF plume model.
Figure 6b illustrates the corresponding relative error exponents of calculated concentrations.
Because the expression of Gaussian plume model is quite simple, the relative error exponent mostly
depends on the wind direction. As shown in this figure, the relative error exponents of calculated
concentrations at crosswind direction are low, while the relative error exponents at upwind direction
are quite high. The concentration at upwind direction is usually very close to zero, so it is reasonable
that its corresponding error exponent is high. Therefore, Gaussian plume model is stable because the
maximum relative error exponent is only −5 and it will not increase with time.

The error analysis results of Gaussian-PF multi-puff model and its corresponding data-driven
modeling method are also shown in Figure 6. Figure 6c demonstrates the concentration distribution
of Gaussian-PF multi-puff model at 11:00 and its relative error exponent distribution is shown in
Figure 6d. A significant difference between Gaussian plume and Gaussian multi-puff model is that the
error propagates with time in Gaussian multi-puff model while it does not increase in the Gaussian
plume model. Thus, in the Gaussian multi-puff model, it is obvious that points far from release source
generally have high relative errors because puffs need more time to reach these points. However, points
that are very close to the release point also have high relative errors because their downwind distances
are too short (very close to zero) to avoid errors.



Int. J. Environ. Res. Public Health 2018, 15, 1640 14 of 17

Int. J. Environ. Res. Public Health 2018, 15, x 14 of 17 

The error analysis results of Gaussian-PF multi-puff model and its corresponding data-driven 
modeling method are also shown in Figure 6. Figure 6c demonstrates the concentration distribution 
of Gaussian-PF multi-puff model at 11:00 and its relative error exponent distribution is shown in 
Figure 6d. A significant difference between Gaussian plume and Gaussian multi-puff model is that 
the error propagates with time in Gaussian multi-puff model while it does not increase in the 
Gaussian plume model. Thus, in the Gaussian multi-puff model, it is obvious that points far from 
release source generally have high relative errors because puffs need more time to reach these 
points. However, points that are very close to the release point also have high relative errors because 
their downwind distances are too short (very close to zero) to avoid errors. 

 
Figure 6. Relative analysis results of Gaussian plume model, Gaussian multi-puff model and their PF 
variation. (a) Modeled concentration distribution at 11:00; (b) Relative error exponent distribution 
matches to modeled concentration distribution; (c) Modeled concentration distribution at 11:00; (d) 
Relative error exponent distribution matches to modeled concentration distribution). 

As can be seen in Table 4, after using error detection, the computational times of the Gaussian 
multi-puff and Gaussian-PF multi-puff models become very long, while error detection has 
relatively little influence on Gaussian plume model. The computational time of Gaussian-PF plume 
model is shorter than the Gaussian multi-puff model. Thus, Gaussian-PF plume model is an 
appropriate choice when the wind field is stable. The Gaussian-PF multi-puff model has the highest 
accuracy, quite low error and long computational time, so it might be a better option when the time 
requirement is not so strict. More importantly, the utilization of Equation (3) for the diffusion 
coefficient is usually applied in the case of the open terrain, while the Indianapolis experiment was 
performed in urban terrain [35]. Actually, the focus of this paper is to improve the prediction 
performance of atmospheric dispersion simulation. As seen from experimental results, it is 
concluded that the data-driven method based on particle filter can improve the prediction ability of 
Gaussian-based models and error propagation detection can inform users whether or not the 
prediction results are of high confidence. Thus, the results imply that our proposed method is 
feasible in actual experiments. For further improving the fitting results in Figure 3 and Table 3, the 

Figure 6. Relative analysis results of Gaussian plume model, Gaussian multi-puff model and their
PF variation. (a) Modeled concentration distribution at 11:00; (b) Relative error exponent distribution
matches to modeled concentration distribution; (c) Modeled concentration distribution at 11:00;
(d) Relative error exponent distribution matches to modeled concentration distribution).

As can be seen in Table 4, after using error detection, the computational times of the Gaussian
multi-puff and Gaussian-PF multi-puff models become very long, while error detection has relatively
little influence on Gaussian plume model. The computational time of Gaussian-PF plume model is
shorter than the Gaussian multi-puff model. Thus, Gaussian-PF plume model is an appropriate choice
when the wind field is stable. The Gaussian-PF multi-puff model has the highest accuracy, quite low
error and long computational time, so it might be a better option when the time requirement is not so
strict. More importantly, the utilization of Equation (3) for the diffusion coefficient is usually applied
in the case of the open terrain, while the Indianapolis experiment was performed in urban terrain [35].
Actually, the focus of this paper is to improve the prediction performance of atmospheric dispersion
simulation. As seen from experimental results, it is concluded that the data-driven method based
on particle filter can improve the prediction ability of Gaussian-based models and error propagation
detection can inform users whether or not the prediction results are of high confidence. Thus, the
results imply that our proposed method is feasible in actual experiments. For further improving the
fitting results in Figure 3 and Table 3, the diffusion coefficients applied in urban terrain should be used.
Interested readers can refer to our future work.

5. Conclusions

In this paper, a data-driven method using a particle filter is developed to improve the accuracy of
air contaminant dispersion predictions based on Gaussian-based models. In order to judge whether
the predicted results are convincing, an error propagation detection method is also proposed in
this paper to analyze the influence of measured or computational errors. In terms of data-driven
modeling, diffusion coefficients are regarded as the system states, and particle filtering is then used
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to update diffusion coefficients during each-step calculation. As for error propagation detection, six
rules are listed to inspect the error propagation of essential operations during numerical computing.
Then, a series of experiments are designed based on Indianapolis Field Study to test the performances
of the proposed data-driven modeling method. Compared to traditional Gaussian-based models (the
MSEs of Gaussian plume model and Gaussian multi-puff model are 6.95× 10−19 and 7.43× 10−19

respectively), the proposed methods based on PF and error propagation detection witness a significant
improvement in prediction accuracy and provide convincing results (the MSEs of Gaussian-PF plume
model and Gaussian-PF multi-puff model are 2.47× 10−19 and 2.23× 10−19 respectively) though
requiring more computational time (1.39 s for Gaussian-PF plume model; 2.45 s for Gaussian-PF plume
model with error detection; 120.04 s for Gaussian-PF multi-puff model; 3672.95 s for Gaussian-PF
multi-puff model with error detection). In conclusion, data-driven modeling methods have higher
accuracy but longer computational time. However, when error detection is applied in the program,
the Gaussian-PF plume is still faster than the traditional puff model, while the computational time
of Gaussian-PF multi-puff model becomes extremely long. The results reveal that when applied into
practical utilization, it is better for users to consider the practical needs and purposes. If users require
accurate prediction results in a limited time, Gaussian-PF plume model would be the optimal choice.
However, if the wind field is varying and the users do not care about the calculation time, Gaussian-PF
multi-puff model would be the better choice. Therefore, the proposed methods provide strong support
for the prediction of air contaminant dispersion and emergency management in chemical clusters.

Future works should include implementing the field experiment in a chemical cluster to verify
the data-driven method in real situations, improving the computational efficiency of the proposed
methods and dynamic modeling of the wind field for a more accurate prediction of the atmospheric
dispersion model.
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