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Inversion of controlled-source electromagnetic reflection responses

Jürg Hunziker1, Jan Thorbecke2, Joeri Brackenhoff2, and Evert Slob2

ABSTRACT

Marine controlled-source electromagnetic reflection re-
sponses can be retrieved by interferometry. These reflection
responses are free of effects related to the water layer and the
air above it and do not suffer from uncertainties related to the
source position and orientation. Interferometry is a data-
driven process requiring proper sampling of the electromag-
netic field as well as knowledge of the material parameters at
the receiver level, i.e., the sediment just below the receivers.
We have inverted synthetic data sets using the reflection re-
sponses or the original electromagnetic fields with the goal
of extracting the conductivity model of the subsurface. For
the inversion, a genetic algorithm and a nonlinear conjugate-
gradient algorithm were used. Our results show that an in-
version of the reflection responses produces worse estimates
of the vertical conductivity but superior estimates of the
horizontal conductivity (especially for the reservoir) with re-
spect to the original electromagnetic fields.

INTRODUCTION

For this study, we consider frequency-domain marine controlled-
source electromagnetics (CSEM). In marine CSEM, a boat tows a
source that emits an electric signal. The resulting earth response is
recorded with electromagnetic receivers located at the ocean
bottom. In frequency-domain CSEM, the source signal is, in most
cases, a square wave with a base frequency and several harmonics.
However, only the peak frequency and sometimes also the higher
harmonics are used for the interpretation. In our numerical exam-
ples, we consider only the peak frequency of 0.5 Hz. For an over-
view of this method, we recommend the paper of Constable (2010).

Because the electromagnetic signal at those frequencies is a dif-
fusive field, interpretation is not straightforward. Usually, an inver-
sion of the data is carried out. This process searches for the
subsurface conductivity distribution that best explains the measured
data. This search is done by minimizing in some way the difference
between the measured and the forward modeled data based on the
latest guess of the subsurface conductivity distribution. Because this
is a major topic of CSEM research, a wide variety of papers have
been published on inversion (Christensen and Dodds, 2007; Plessix
and Mulder, 2008; Key, 2009; Brown et al., 2012; Ray et al., 2013;
Sasaki, 2013; Wiik et al., 2013; Grayver et al., 2014).
In this paper, we discuss the inversion of reflection responses in

contrast to the inversion of the full electromagnetic fields. The re-
flection responses used here, sometimes also called the scattered
Green’s function of the subsurface, are unitless and free of events
related to the water layer and the air above it. This means that the
direct field is suppressed. The same is true for the airwave, the sig-
nal that diffuses upward from the source and is refracted in the air
where it propagates as an almost undamped wave with the speed of
light. In standard CSEM data, these two events cover the subsurface
signal at short offsets (direct field) and in shallow marine situations
at large offsets (airwave). By suppressing these events, the data
more strongly depend on the subsurface than on the water and air
above it.
The reflection responses consist of signals traveling between

receivers (turning a receiver into a virtual source) and removing the
dependence on the actual source. Because the source is towed be-
hind a boat in marine CSEM measurements, the position and ori-
entation of the source can be influenced by factors that lie outside
the control of the source operator, such as, for example, water cur-
rents. Source position and orientation uncertainty causes errors in
the forward-modeling step of the inversion. Because the receivers
are usually stationary on the ocean bottom (Constable, 2010), this
issue can be mitigated by using the reflection responses instead of
the original electromagnetic fields in the inversion.
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The reflection responses can be retrieved from CSEM data by
applying interferometry. In seismics, interferometry is often applied
as a crosscorrelation process ( Bakulin and Calvert, 2006; Draganov
et al., 2006; Wapenaar and Fokkema, 2006). This method assumes
the medium to be lossless, which is not true for diffusive fields in
CSEM. Therefore, we apply interferometry by multidimensional
deconvolution (MDD), which is valid for media with losses (Wa-
penaar et al., 2008). Because interferometry uses the information
that is stored in the data to redatum the source, suppress the direct
field, and replace the overburden with a homogeneous half-space,
no information about the water layer or the source position and ori-
entation is required. However, interferometry by MDD works with
upward and downward decaying fields. This decomposition (see the
appendix of Slob, 2009) also separates the electromagnetic field
into the transverse magnetic (TM) mode and the transverse electric
(TE) mode at the receiver level. To perform this decomposition, the
material parameters at the receiver level need to be known. Because
the receivers are located at the ocean bottom, i.e., at the interface
between the water and the sediment, either the conductivity of the
water or that of the sediment can be used. Correspondingly, the
receivers are considered to be located just above the interface in
the water or just below the interface in the sediment. To suppress
any effect of the water on the data, it is crucial to use the conduc-
tivity of the sediment for this decomposition. Furthermore, to access
the information stored in the data, the electromagnetic field needs to
be sampled on a grid. The sampling is required to be dense enough
and without any gaps. The method also assumes that the ocean bot-
tom is flat. Hunziker et al. (2012) show that the data can be sampled
more sparsely if the synthetic-aperture-source concept (Fan et al.,
2010) is used, and that the method also works with noisy data, as is
the case under realistic conditions.
Interferometry by MDD basically consists of two steps (Hunziker

et al., 2012, 2013). In the first step, the diffusive fields are decom-
posed in upward and downward decaying TM- and TE-modes. The
second step consists of the actual MDD. Thereby, any upward
decaying component (either TM- or TE-mode) is deconvolved over
space and time with any downward decaying component to retrieve
the reflection response of the subsurface. If an upward decaying
TM-mode component is deconvolved with a downward decaying
TM-mode component, the TM-mode reflection response is re-
trieved. Correspondingly, the TE-mode reflection response can be
retrieved. Reflection responses, containing conversions from one
mode to the other, are also possible by deconvolving the compo-
nents accordingly. However, in a layered medium, as it is used in
this study, no conversions between the TM- and the TE-mode hap-
pen (see, e.g., the appendix of Hunziker et al., 2013). Thus, we con-
sider here only pure TM- and TE-mode reflection responses.
The above-outlined properties of reflection responses motivated

us to investigate the performance of inversions of the CSEM reflec-
tion response compared with inversions of the corresponding origi-
nal CSEM data. For this study, we apply two different inversion
algorithms to the two types of data sets. First, we use a genetic al-
gorithm, which is a global optimization routine, to find the conduc-
tivity of a layered medium that features vertical transverse isotropic
(VTI) anisotropy. Second, we use a nonlinear conjugate-gradient
algorithm, which is a local optimization routine, to invert for a lay-
ered isotropic medium. The second algorithm is included in this
paper because it is not straightforwardly implemented, as explained
below. In the next section, we explain the two algorithms. Then, the

results for the genetic algorithm are presented followed by those for
the conjugate-gradient algorithm. At the end of the paper, a short
discussion of the results is presented and our conclusions are drawn.

METHODS

Genetic algorithm

This algorithm mimics evolution theory to find the conductivity
distribution of the subsurface that explains the data best. The algo-
rithm starts with a set of random guesses in which each guess is a
complete subsurface model. In this algorithm, belonging to the
group of stochastic algorithms, some events occur in a random fash-
ion as outlined below. Therefore, each run of this algorithm with the
same parameter values ends at slightly different solutions. In the
framework of evolution theory, we consider each guess an indepen-
dent individual of the population including all guesses. The genome
of an individual is a string of characters that encode the guess. For
each individual with the conductivities m, the misfit function F is
computed:

F¼
XN

i¼1

½Rðdobsi Þ−Rðdmod
i ðmÞÞ�2þ½Iðdobsi Þ−Iðdmod

i ðmÞÞ�2
½Rðdobsi Þ�2þ½Iðdobsi Þ�2þε

;

(1)

where dobsi is the ith element of the observed data set and dmod
i ðmÞ is

the ith element of the forward modeled data set. Here, R and I

designate the real and the imaginary parts, respectively. Equation 1
is a locally normalized least-squares misfit function. We chose to
normalize the misfit function to make the misfit of the different
components comparable. In addition, the local normalization en-
sures that all data points have a similar weight independent of
the field’s amplitude at that location. The normalization is stabilized
with ε ¼ 10−20. With a dipole strength of 1 Am, the stabilization is
below the typical noise floor for marine CSEM data given by Con-
stable (2010). For a real or a synthetic data set with noise, no sta-
bilization would be required because the data would never be zero.
For forward modeling, we use our publicly available modeling code
(Hunziker et al., 2015). A smaller misfit F means that the individual
is fitter than another individual with a larger misfit F. As in evo-
lution theory, the fitter the individual, the larger the chances that this
guess is able to transmit its properties to the next generation. Note
also that individuals with a high misfit are able to pass on their prop-
erties to an individual of the next generation, but its chances to do so
are smaller.
If an individual is selected for the next generation, there is a cer-

tain chance that it undergoes the process of crossover. During this
process, two different individuals are cut at the same random loca-
tion and their tails are interchanged. In this way, two good guesses
are recombined. In addition, it is possible that a mutation occurs. In
that case, one digit that encodes the guess is exchanged with a ran-
dom number. This alters one parameter of the guess randomly, and
thus it allows the process to jump out of a local minimum.
Our algorithm also contains the processes of eliting and migra-

tion. Eliting means that the properties of the best guesses are given
to the next generation unaltered to ensure that a good guess is not
lost. Similar to mutation, migration also allows the process to jump
out of a local minimum by introducing some new, randomly gen-
erated individuals to the population. Goldberg (1989) gives a good
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introduction to genetic algorithms. Sen and Stoffa (1995) discuss,
among other global optimization routines, genetic algorithms spe-
cifically for geophysical problems.
For this study, conductivity values are allowed to range between

10−4 and 10 S∕m, and a constant population size is used. The latter
implies that each run of the algorithm starts with a fixed amount of
random guesses, which are evolved during the runtime of the algo-
rithm. For each of these guesses, the forward problem needs to be
solved at each iteration. In our implementation of the algorithm, this
happens in parallel. Ideally, the population size is a multiple of the
number of cores to be used, which is 28 in our case. The smallest
multiple of 28 for which the algorithm converged to a stable sol-
ution within 100 iterations in most of the runs, turned out to be
560. For the same experiment, we run the program 15 times with
a different random starting population consisting of 560 individuals.
More runs are always better because that results in more solutions,
but more runs cost computational time. We decided to use 15 runs.
Judging from convergence history, it seemed likely that in that case
at least one run per experiment converged to the global minimum.
From the resulting 8400 solutions (15 runs times 560 individuals),
we use the best 10% for the analysis.

Conjugate-gradient algorithm

The second algorithm is a nonlinear conjugate-gradient algorithm.
In contrast to the genetic algorithm, which belongs to the group of
stochastic algorithms, this algorithm is a deterministic algorithm.
Thus, no random component is involved. This algorithm begins with
one user-specified starting model and it will always end up with the
same solution if the same starting model is provided and the same
parameter values are supplied.
We use the same analytical code to compute the forward model as

for the genetic algorithm. For this inversion algorithm, not only the
forward problem but also the gradient of the forward problem needs
to be computed. This is done analytically by using a modified version
of the before-mentioned forward-modeling code (Hunziker et al.,
2015). As developing such a code with analytical gradients is rather
time-consuming, we include the complete conjugate-gradient inver-
sion scheme implemented in C and Fortran in this paper as an open-
source package. The next paragraphs do not only describe the algo-
rithm but also the code.
Note that a numerical forward simulation of the reflection response

would allow lateral variations in the model, but requires the use of a
decomposition operator in the frequency-wavenumber domain in the
course of the forward-modeling step. A numerical scheme such as,
for example, finite-difference averages the electromagnetic field over
a cell. Our experience has shown that this averaging introduces a sys-
tematic error that disrupts the application of the decomposition op-
erator unless the cells are very small. For a successful application to a
3D data set, the grid needs to be extremely dense. Therefore, we use
this analytical formulation.
The misfit function M is similar to the one used in the previous

algorithm:

M ¼
XN

i¼1

w2
i f½Rðdobsi Þ −Rðdmod

i ðmÞÞ�2

þ ½Iðdobsi Þ − Iðdmod
i ðmÞÞ�2g; (2)

where w is a weighting function that allows to give a different
weight to data at different offsets from the source. This compensates
the absence of the local normalization in the misfit function of the
genetic algorithm. We omitted this normalization to make sure that
the analytical computation of the gradient of the misfit function with
respect to the material parameters is as simple as possible. This mis-
fit function is implemented in the code in the C-function compmisfit
contained in the file iemmod.c.
Our implementation of this nonlinear conjugate-gradient algo-

rithm follows the paper of Shewchuk (1994). The file iemmod.c
is the main file containing the basic structure of the inversion algo-
rithm as well as the input-output operations. After the initialization,
the forward model and the gradient of the starting model are com-
puted. This is done by calling the C-function emmod stored in the
file emmod.c. This function does two things. First, it is checked if
the medium is a homogeneous full space. Second, the layer in which
the source and the receivers are located are determined. Then, the
function kxwmod in the file kxwmod.c is called. Depending on
which component needs to be modeled, a different part of this func-
tion separated by an if statement is executed. This function is very
similar to the corresponding function used in the electromagnetic
forward-modeling package mentioned earlier (Hunziker et al.,
2015) with the exception that the so-called Fortran routines not only
compute the electromagnetic fields but also the gradient of them.
Variables starting with the letter d represent variables related to
derivatives, and thus related to the computation of the gradient.
After the reflection response or the electromagnetic field is com-
puted in the wavenumber domain, the space-domain representation
is computed using a Hankel transformation. For an efficient calcu-
lation, this Hankel transformation is only carried out for a selective
amount of points in the space domain. This Hankel transformation
is located in a while loop, which allows to adaptively compute the
transformation for more points wherever precision requires it. The
response in the space domain is obtained by an interpolation over
the transformed points. Because all this is only done for one quad-
rant of the data set, the remaining quadrants need to be filled in by
copying the first quadrant using the corresponding symmetry. Sub-
sequently, the computed field and its gradient are given back to the
main program iemmod.
The gradient gives the direction of the update, but it does not

specify the size of the step that needs to be taken in this direction.
This step length is computed at this point and stored in the variable
alpha. The step length can either be determined by fitting a parabola
to three points of the misfit function or by a line search. The former
requires only two additional evaluations of the forward problem,
whereas the latter may require many more. Because the parabola
fitting has a relatively high chance of not finding an appropriate
step length, the algorithm switches automatically to the line search
if that is the case (i.e., if the misfit of the new solution is larger than
the misfit of the previous solution). After the step length is deter-
mined, the model is updated and the forward problem is solved and
the gradient computed for the current model. These steps are re-
peated until the stopping criteria are fulfilled or the maximum
amount of iterations is reached. At every iteration, the latest model
is written to the hard drive.
A performance profile of the code indicated that 95% of the com-

pute time is spent in the Hankel transformation back to the space-
frequency domain. Therefore, fast Bessel functions could help to
improve the performance.
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RESULTS

For the experiments discussed here, we created synthetic data
based on the model shown in Figure 1. The VTI medium defined
by horizontal conductivities σH and vertical conductivities σV is
used for the experiments with the genetic algorithm, whereas the
isotropic medium defined by the conductivities σ given in brackets
is used for the experiments with the conjugate-gradient algorithm.
The data are computed on a dense grid of receivers at the ocean

bottom consisting of 512 times 512 stations separated by 80 m. We
have chosen such a dense grid to avoid artifacts in the inversion due
to sparse sampling. The source is located at the center and 50 m
above this grid. The data are shown as contour plots in Figure 2.
Note the radial symmetry and the unitlessness of the reflection re-

sponses.

Genetic algorithm

With the genetic algorithm, we estimate four
parameters: These are the vertical and horizontal
conductivities of the overburden and reservoir
layers, respectively. This is of course a small
and simple inversion problem. If something does
not work on such a simple model, it will also not
work in a more complex situation. Naturally, the
reverse is not true. Thus, if the inversion of the
reflection response does give good results on our
simple model, it does not necessarily work on a
complex model either. However, this paper is a
first tryout of inverting reflection responses with
the goal of excluding the approaches that do not
work and determine the parameters that cannot
be resolved. In this sense, we are convinced that
the conclusions drawn from these experiments
are also valid for more complicated experiments.
Furthermore, we believe that such simple experi-
ments are more instructive than complex experi-
ments because it is much easier to trace what is
happening. In a complex experiment, a whole va-
riety of effects are present, making it difficult to
figure out what is precisely happening during the
processes under investigation.
Note that we estimate the overburden conduc-

tivity in this inversion, but that we actually re-
quire the conductivity just below the receivers,
which is part of the overburden, to retrieve the
reflection response by interferometry to begin
with. However, this does not influence the inver-
sion process. In theory, the conductivity at the
receiver level that we need to know could be
an infinitesimally small layer. Thus, the conduc-
tivity of the complete overburden is still unknown
and still needs to be estimated. It is also important
to realize that the reflection at the ocean bottom,
which contains information about the overburden
layer, is absent in the reflection response, making
it more difficult to estimate the overburden con-
ductivity using the reflection response. Also note
that the reflection responses used for the inversion
are modeled and not retrieved through the interfer-

0 m

200 m

1220 m

1200 m

air: σ  = σVH  = 0 S/m (σ = 0 S/m)

water: σH = σV = 3 S/m (σ = 3 S/m)

overburden: σH = 2 S/m, σV = 0.5 S/m (σ = 1 S/m)

underburden: σH = 2 S/m, σV = 0.5 S/m (σ = 1 S/m)

reservoir: σH = 0.04 S/m, σV = 0.01 S/m (σ = 0.02 S/m)

150 m

Receiver
Source

Figure 1. Subsurface model with details about the various layers:
Conductivities σH and σV refer to the VTI medium used for the exper-
iments with the genetic algorithm and conductivities σ given in brack-
ets and without a superscript refer to the isotropic medium used for the
experiments with the conjugate-gradient algorithm. Not to scale.

Figure 2. The data sets that are fed to the inversion algorithms: (a) the TM-mode re-
flection response, (b) the TE-mode reflection response, (c) the inline oriented electric
field, (d) the crossline oriented electric field, (e) the inline oriented magnetic field, and
(f) the crossline oriented magnetic field. The horizontal axis is thereby parallel to the
inline direction and the vertical axis to the crossline direction.
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ometry process. In this way, they are free of artifacts. Again, this is in
line with the philosophy outlined in the previous paragraph. If some-
thing does not work with the perfect data set, it will certainly also not
work if artifacts are present.
Before discussing the actual inversion results, we look at the con-

vergence history of separate inversions of the TM- and the TE-mode
reflection responses. Figure 3 shows the misfit of the best solution
of each generation for each of the 15 runs. The misfit of the TM-
mode inversion decreases six to nine orders of magnitude, and the
misfit of the TE-mode inversion decreases four to 15 orders of mag-
nitude. The fact that for the TE-mode many runs decrease over more
orders of magnitude than for the TM-mode suggests that the TE-
mode inversion was able to find a model that explains the data better
than the TM-mode inversion could.
We can also see from Figure 3 that all runs reach a stable misfit,

which no longer decreases, before the program ended. This means
that the algorithm has converged to a local or a global minimum.
Note that each run gives 560 solutions because 560 individuals were
evolved in each run. From these 15 times 560 solutions, only the
10% which have the smallest misfit are selected for the analysis.
This reduces the chance that solutions that ended in a local mini-
mum are included in the final interpretation.
The final results for the inversions with the genetic algorithm are

a group of 840 (15 × 560 × 0.1) solutions per experiment. They are
presented in Figure 4 in the form of boxplots. Each parameter es-
timate of each experiment is represented by one boxplot consisting
of several elements. The circle with the black dot represents the
median and the box defines the first and the third quartile of all
considered solutions. The antennas outline the range that includes
all solutions that are less than 1.5 times the interquartile range away
from the box (Tukey, 1977).
Using the TM-mode reflection response, all conductivities are

estimated with an acceptable resolution (relatively narrow boxplot)
except the horizontal conductivity of the reservoir. However, the
true solution is not covered by the extension of the boxplots, making
it a wrong estimate. Things are different for the inversion using the
TE-mode reflection response. This inversion is unable to make an

estimate of acceptable resolution for the vertical conductivity, but
gives a very good estimate of the horizontal conductivity (the box-
plot is so narrow that it collapsed to a line). This is in line with the
observation of, for example, Ramananjaona et al. (2011), who state
that the TE-mode is primarily sensitive to the horizontal conduc-
tivity.
A joint inversion of the two reflection responses allows us to find

the vertical conductivity of the overburden with high resolution,
although none of the individual components was able to do so.
The estimate of the horizontal conductivity of the overburden is
much better than for the TM-mode alone, but worse than for the
TE-mode alone. The joint inversion also improves the estimate of
the vertical conductivity of the reservoir. The correct value is now
included in the spread of the boxplot, which was not the case for the
inversion of the TM-mode reflection response, and the resolution of
the estimate has been increased compared with the inversion of the
TE-mode reflection response. However, the estimate of the horizon-
tal conductivity of the reservoir is much worse than for the inversion
of the TE-mode reflection response alone. Thus, although the joint
inversion brings an improvement to the estimates of the vertical
conductivity, it deteriorates the estimates of the horizontal conduc-
tivity. By giving more weight to the TE-mode reflection response, a
slight improvement of this result might be possible.
As a comparison, we also run the genetic inversion algorithm for

an inversion of full electromagnetic fields. Two inversion experi-
ments are carried out: One using the inline electric field only, which
we assume is the most acquired component, and one using the four
horizontal electromagnetic components, which are all required to
obtain the reflection response using interferometry by MDD. For
the vertical conductivity of the overburden, an inversion of the full
electromagnetic fields gives results similar to the joint inversion of
the two reflection responses. For the horizontal conductivity of the
overburden layer, the same results are achieved as for the inversion
of the TE-mode reflection response only. Although for the vertical
conductivity of the reservoir, an inversion of the electromagnetic
fields is superior compared with an inversion of any of the reflection
responses, for the horizontal conductivity of the reservoir, the in-

0 20 40 60 80 100

10
0

10
5

10
10

10
15

10
20

Generation

a) 

0 20 40 60 80 100

10
0

10
5

10
10

10
15

10
20

Generation

b) 
Misfit TM-mode reflection response Misfit TE-mode reflection response

Figure 3. Convergence history of the inversion using the genetic algorithm for (a) the TM-mode and (b) the TE-mode reflection responses.
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version of the TE-mode reflection response provides the best es-
timate.
These results show that an inversion of TE-mode reflection

response is useful for finding the horizontal conductivity of the
subsurface, especially of the reservoir. However, for the vertical
conductivity, the full electromagnetic fields give similar or better
results. Thus, inverting reflection responses can only help in getting
better estimates of the horizontal conductivity. Interestingly,
although the TM-mode reflection response shows a higher sensitiv-
ity to the conductivity of the reservoir than the TE-mode reflection
response (Hunziker et al., 2013), the TE-mode reflection response
produces better results in the inversion. We speculate that this might
be because the shape of the solution space is more favorable for
the TE-mode reflection response than for the TM-mode reflection
response.

Conjugate-gradient algorithm

To test if the results obtained with the genetic algorithm are in-
dependent of the choice of algorithm, we invert the data also with a
nonlinear conjugate-gradient algorithm. As mentioned earlier, this
algorithm is included in this paper. We hope that other researchers
continue to experiment with the inversion of the reflection response
using their own models. For our experiments, we use the same sub-
surface model as for the genetic algorithm, but because our conju-
gate-gradient algorithm cannot handle anisotropy, we use isotropic
medium parameters given in brackets in Figure 1.
We invert the TM- and TE-mode reflection responses, as well as

the inline electric field separately using two different weighting
functions w (equation 2). The first weighting function is one every-
where, which is in fact an inversion process without any weight.
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Figure 4. Boxplots for the parameter estimates of (a) vertical conductivity of the overburden layer, (b) horizontal conductivity of the over-
burden layer, (c) vertical conductivity of the reservoir layer, and (d) horizontal conductivity of the reservoir layer. Boxplots are shown for the
following five experiments: (1) Inversion of the TM-mode reflection response only (RTM), (2) TE-mode reflection response only (RTE), (3) joint
inversion of the TM-mode and the TE-mode reflection responses (RTM þ RTE), (4) inversion of the inline oriented electric field (Ex), and
(5) inversion of all four horizontal electromagnetic components (Ex þ Ey þHx þHy). An explanation of the boxplots is given in the text. The
triangle at the edges of each figure indicates the true value of the parameter.
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The second weighting function is a 2D exponential function, whose
exponential factors are chosen such that the data have similar am-
plitude at all offsets. This increases the relative importance of data at
larger offsets in the misfit function. We denote this second option as
“with weights.”
Also for these experiments, we first have a look at the conver-

gence history (Figure 5) before presenting the actual results. The
algorithm starts with an initial guess of the subsurface parameters
and optimizes this guess until the update of the model parameters is
for several iterations smaller than 10−7S∕m or until the 500th iter-
ation has been computed. The inversion of the TM-mode reflection
response stops in our case after 12 (without weights) or 10 (with
weights) iterations, whereas the inversion of the TE-mode reflection
response runs until the maximum amount of 500 iterations is
reached. However, for most of the later iterations, the decrease in
misfit is very small. Obviously, the stopping condition chosen was
too strict. Therefore, for our analysis we do not use the results of the
last iteration that was computed, but the results of the last iteration
that brought a relevant change of the model. The results shown be-
low correspond to the last iteration depicted in Figure 5. Contrary to
the genetic algorithm, the misfit of the TE-mode reflection response
decays over fewer orders of magnitude than the misfit of the TM-
mode reflection response.
The inversion results for the conjugate-gradient algorithm are

shown in Figure 6. As for the genetic algorithm, we fix the conduc-
tivity of the air and the water layer (as indicated in Figure 6 with a
light-gray area) and invert only for the three remaining conductiv-
ities assuming the layer thicknesses are known. As we pointed out
for the genetic algorithm, this is a small and simple problem de-
signed to find the limitations of this method. Besides that, these
experiments serve as illustrative examples, but are not intended to
represent a real data set. As a starting model, we use a homogeneous
half-space below the receivers with a conductivity of 0.5 S∕m. The
inversion of the TM-mode reflection response finds the conductivity
of the overburden very well, no matter if weights are applied or not.
However, for the reservoir and the underburden, the solution found
by the algorithm stays at the starting model. If the TE-mode reflec-
tion response is inverted, the algorithm finds the reservoir layer, but
leaves the conductivity of the reservoir in the neighborhood of the

conductivity of the starting model. The inversion of the inline
electric field gives a result slightly inferior than the inversion of
the TE-mode reflection response. As for the genetic algorithm,
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Figure 5. Convergence history of the inversion using the conjugate-gradient algorithm: TM-mode reflection response (a) without and (b) with
weights, TE-mode reflection response (c) without and (d) with weights and inline electric field (e) without and (f) with weights.
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Figure 6. Inversion results for the conjugate-gradient algorithm for
(a) TM-mode reflection response, (b) TE-mode reflection response,
and (c) inline electric field. The true model is given in each plot as a
thick dark-gray line. The starting model is drawn with a dashed
green line. The inversion results without weights are depicted with
a dashed red line and the inversion results with weights with blue
dots. The light-gray shaded area covering the top 200 m indicates
the area where the material parameters are fixed and, thus, not esti-
mated by the inversion algorithm.
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the TE-mode inversion gives better results than the TM-mode in-
version. This confirms our findings obtained by the inversion using
the genetic algorithm.
Interestingly, the inversion of the TE-mode reflection response

provides a better estimate without weights, whereas the inversion
of the inline electric field provides a better estimate if weights
are used. To understand the reasons for this behavior, we have
to look at the data error (Figure 7), which is the relative difference
between the original data and the data modeled based on the model
retrieved by inversion. First, we compare the relative error for the
inversion of the inline electric field without weights (Figure 7c) and
with weights (Figure 7d). The scale of these two plots is identical.
At intermediate and large offsets, the data error is plotted with a
light gray color for the case without weights, but it becomes almost
white for the case with weights indicating a lower data error. This
shows that the weights help to fit the data better at intermediate and
large offsets. Because these offsets feature more information about
the subsurface than smaller offsets, fitting the larger offsets well
improves the subsurface model. Why is that not the case for the
inversion of the TE-mode reflection response?
The data error for the inversion of the TE-mode reflection re-

sponse without weights is plotted in Figure 7a. Looking at the scale,
we immediately see that the data error is much larger for the TE-
mode reflection response than for the inline electric field. The rea-
son is that the TE-mode reflection response decays to smaller values

with offset much faster than the inline electric field. That means, by
computing the relative error, we are dividing by much smaller
values at large offsets blowing up even small errors to large values.
This can clearly be seen in Figure 7a, where the error is relatively
small for the area where the data have a large amplitude but grows
very big for the large offsets, where the data have a smaller am-
plitude.
The reason why weights do help the inversion process for the

inline electric field, but do not improve the result for the inversion
of the TE-mode reflection response, lies in the structure of the two
data sets. The inline electric field is at short offsets dominated by the
direct field, whereas the subsurface response is only dominant at
intermediate offsets. Thus, using offset-dependent weights forces
the algorithm to find a better fit for the data at larger offsets. Be-
cause at those offsets the information about the subsurface is ac-
tually stored, a better subsurface model is retrieved, as we have
seen above for the inline electric field. However, the reflection re-
sponse is free of the direct field and free of the airwave. Therefore,
the subsurface information is dominant at all offsets. Adding
weights does not force the algorithm in this case to find a better
subsurface model, it just alters the shape of the solution space. Such
an alteration can also be for the worse. This is obviously the case in
this situation. The algorithm converges less well, ending with a
worse model and, thus, with a worse data error (Figure 7b).

DISCUSSION

It is important to realize that in the experi-
ments presented here, the source position and
orientation as well as the conductivity of the
water were perfectly known. If there is an error
in these parameters, the reflection responses will
be unaffected (Wapenaar et al., 2008) because
they do not depend on these parameters at all.
Thus, for strong variations in water conductivity
or high-source position and orientation uncer-
tainties, an inversion of the reflection responses
might produce better results than an inversion us-
ing the full electromagnetic fields. On the other
hand, retrieving the reflection responses requires
the conductivity of the sediment at the ocean bot-
tom. If there is an error in this parameter, the re-
trieved reflection responses will not be correct
and lead to faulty estimates of the conductivity
through inversion of these incorrect reflection re-
sponses.
The retrieval of the reflection responses by

interferometry may also introduce artifacts if
some of its assumptions are not fulfilled or the
data are insufficiently sampled. For example, re-
trieving the reflection responses with interferom-
etry assumes that the conductivity at the receiver
level is laterally constant (Slob, 2009). In this
case, an inversion of the full electromagnetic
fields will lead to better estimates of the subsur-
face conductivities than an inversion of the re-
flection responses. Furthermore, if data are
only available on a line, it is not possible to re-
trieve the reflection responses as interferometry
requires grid data. We did not include experi-
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Figure 7. Relative error between the true and the modeled data based on the inversion
results shown in Figure 6 for (a) TE-mode reflection response without weights, (b) TE-
mode reflection response with weights, (c) inline electric field without weights, and
(d) inline electric field with weights.

F56 Hunziker et al.

D
ow

nl
oa

de
d 

02
/0

2/
17

 to
 1

31
.1

80
.1

30
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



ments that demonstrate these effects because, depending on how
large the errors or uncertainties are chosen, either the inversion
of the reflection responses or the inversion of the original electro-
magnetic fields will produce better results.

CONCLUSIONS

We showed that the reflection responses retrieved by interferom-
etry can be inverted for the subsurface conductivity distribution.
The TM-mode reflection response shows a much higher sensitivity
to the resistive reservoir than the TE-mode reflection response. Yet,
inversion of the TE-mode reflection response using either the ge-
netic algorithm or the conjugate-gradient algorithm produces a bet-
ter estimate of the subsurface including a resistive reservoir. Thus,
we can conclude that an inversion of only the TM-mode reflection
response is not beneficial.
The estimates of the subsurface conductivity obtained with an

inversion of the reflection responses are worse compared with an
inversion of the original electromagnetic fields with respect to
the vertical conductivity. Thus, we determined that the vertical con-
ductivity cannot be resolved by inverting the reflection responses.
However, we were able to get a better estimate of the horizontal
conductivity, especially for the reservoir, by inverting the TE-mode
reflection response compared with inverting the original electro-
magnetic fields. This hints at the potential of inversion of reflection
responses, justifying further investigations.
Thus, if the position and orientation of the source, as well as the

conductivity of the water are known with high precision, the added
value of inverting the reflection responses lies only in a superior
estimate of the horizontal conductivity compared with an inversion
of the original electromagnetic fields. Additionally, this study
showed that not only the TM-mode, but also the TE-mode contains
useful information for an inversion.

ACKNOWLEDGMENTS

This work is supported by the Netherlands Research Center for
Integrated Solid Earth Science. We thank Cray, the supercomputing
company, for allowing us to run our genetic algorithm on one of
their computers for preliminary results. We thank SURFsara
(www.surfsara.nl) for support in using the Cartesius Compute Clus-
ter for computing the final results. We thank the four anonymous
reviewers and the associate editor J. Dellinger for their comments.

REFERENCES

Bakulin, A., and R. Calvert, 2006, The virtual source method: Theory and
case study: Geophysics, 71, no. 4, SI139–SI150, doi: 10.1190/1.2216190.

Brown, V., K. Key, and S. Singh, 2012, Seismically regularized controlled-
source electromagnetic inversion: Geophysics, 77, no. 1, E57–E65, doi:
10.1190/geo2011-0081.1.

Christensen, N., and K. Dodds, 2007, 1D inversion and resolution analysis
of marine CSEM data: Geophysics, 72, no. 2, WA27–WA38, doi: 10
.1190/1.2437092.

Constable, S., 2010, Ten years of marine CSEM for hydrocarbon explora-
tion: Geophysics, 75, no. 5, 75A67–75A81, doi: 10.1190/1.3483451.

Draganov, D., K. Wapenaar, and J. Thorbecke, 2006, Seismic interferom-
etry: Reconstructing the earth’s reflection response: Geophysics, 71,
no. 4, SI61–SI70, doi: 10.1190/1.2209947.

Fan, Y., R. Snieder, E. Slob, J. Hunziker, J. Singer, J. Sheiman, and M.
Rosenquist, 2010, Synthetic aperture controlled source electromagnetics:
Geophysical Research Letters, 37, L13305, doi: 10.1029/2010GL043981.

Goldberg, D. E., 1989, Genetic algorithms in search, optimization, and ma-
chine learning: Addison Wesley.

Grayver, A., R. Streich, and O. Ritter, 2014, 3D inversion and resolution
analysis of land-based CSEM data from the Ketzin storage formation:
Geophysics, 79, no. 2, E101–E114, doi: 10.1190/geo2013-0184.1.

Hunziker, J., E. Slob, Y. Fan, R. Snieder, and K. Wapenaar, 2012, Two-di-
mensional controlled-source electromagnetic interferometry by multidi-
mensional deconvolution: Spatial sampling aspects: Geophysical
Prospecting, 60, 974–994, doi: 10.1111/j.1365-2478.2011.01019.x.

Hunziker, J., E. Slob, Y. Fan, R. Snieder, and K. Wapenaar, 2013, Electro-
magnetic interferometry in wavenumber and space domains in a layered
earth: Geophysics, 78, no. 3, E137–E148, doi: 10.1190/geo2011-0510.1.

Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response
in a layered VTI medium: A new look at an old problem: Geophysics, 80,
no. 1, F1–F18, doi: 10.1190/geo2013-0411.1.

Key, K., 2009, 1D inversion of multicomponent, multifrequency marine
CSEM data: Methodology and synthetic studies for resolving thin resis-
tive layers: Geophysics, 74, no. 2, F9–F20, doi: 10.1190/1.3058434.

Plessix, R. É., and W. A. Mulder, 2008, Resistivity imaging with controlled-
source electromagnetic data: Depth and data weighting: Inverse Problems,
24, 034012–034022, doi: 10.1088/0266-5611/24/3/034012.

Ramananjaona, C., L. MacGregor, and D. Andreis, 2011, Sensitivity and
inversion of marine electromagnetic data in a vertically anisotropic strati-
fied earth: Geophysical Prospecting, 59, 341–360, doi: 10.1111/j
.1365-2478.2010.00919.x.

Ray, A., D. Alumbaugh, G. Hoversten, and K. Key, 2013, Robust and ac-
celerated Bayesian inversion of marine controlled-source electromagnetic
data using parallel tempering: Geophysics, 78, no. 6, E271–E280, doi: 10
.1190/geo2013-0128.1.

Sasaki, Y., 2013, 3D inversion of marine CSEM and MT data: An approach
to shallow-water problem: Geophysics, 78, no. 1, E59–E65, doi: 10.1190/
geo2012-0094.1.

Sen, M. K., and P. L. Stoffa, 1995, Global optimization methods in geo-
physical inversion: Elsevier Science.

Shewchuk, J. R., 1994, An introduction to the conjugate gradient method
without the agonizing pain: School of Computer Science Carnegie Mellon
University Pittsburgh, http://www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf, accessed 19 July 2010.

Slob, E., 2009, Interferometry by deconvolution of multicomponent multi-
offset GPR data: IEEE Transactions on Geoscience and Remote Sensing,
47, 828–838, doi: 10.1109/TGRS.2008.2005250.

Tukey, J. W., 1977, Exploratory data analysis: Addison Wesley.
Wapenaar, K., and J. Fokkema, 2006, Green’s function representations for
seismic interferometry: Geophysics, 71, no. 4, SI33–SI46, doi: 10.1190/1
.2213955.

Wapenaar, K., E. Slob, and R. Snieder, 2008, Seismic and electromagnetic
controlled-source interferometry in dissipative media: Geophysical Pro-
specting, 56, 419–434, doi: 10.1111/j.1365-2478.2007.00686.x.

Wiik, T., K. Hokstad, B. Ursin, and L. Mütschard, 2013, Joint contrast
source inversion of marine magnetotelluric and controlled-source electro-
magnetic data: Geophysics, 78, no. 6, E315–E327, doi: 10.1190/
geo2012-0477.1.

Inversion of CSEM reflection responses F57

D
ow

nl
oa

de
d 

02
/0

2/
17

 to
 1

31
.1

80
.1

30
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

www.surfsara.nl
www.surfsara.nl
www.surfsara.nl
http://dx.doi.org/10.1190/1.2216190
http://dx.doi.org/10.1190/1.2216190
http://dx.doi.org/10.1190/1.2216190
http://dx.doi.org/10.1190/geo2011-0081.1
http://dx.doi.org/10.1190/geo2011-0081.1
http://dx.doi.org/10.1190/geo2011-0081.1
http://dx.doi.org/10.1190/1.2437092
http://dx.doi.org/10.1190/1.2437092
http://dx.doi.org/10.1190/1.2437092
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.2209947
http://dx.doi.org/10.1190/1.2209947
http://dx.doi.org/10.1190/1.2209947
http://dx.doi.org/10.1029/2010GL043981
http://dx.doi.org/10.1029/2010GL043981
http://dx.doi.org/10.1190/geo2013-0184.1
http://dx.doi.org/10.1190/geo2013-0184.1
http://dx.doi.org/10.1190/geo2013-0184.1
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01019.x
http://dx.doi.org/10.1190/geo2011-0510.1
http://dx.doi.org/10.1190/geo2011-0510.1
http://dx.doi.org/10.1190/geo2011-0510.1
http://dx.doi.org/10.1190/geo2013-0411.1
http://dx.doi.org/10.1190/geo2013-0411.1
http://dx.doi.org/10.1190/geo2013-0411.1
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1088/0266-5611/24/3/034012
http://dx.doi.org/10.1088/0266-5611/24/3/034012
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00919.x
http://dx.doi.org/10.1190/geo2013-0128.1
http://dx.doi.org/10.1190/geo2013-0128.1
http://dx.doi.org/10.1190/geo2013-0128.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://dx.doi.org/10.1109/TGRS.2008.2005250
http://dx.doi.org/10.1109/TGRS.2008.2005250
http://dx.doi.org/10.1109/TGRS.2008.2005250
http://dx.doi.org/10.1109/TGRS.2008.2005250
http://dx.doi.org/10.1190/1.2213955
http://dx.doi.org/10.1190/1.2213955
http://dx.doi.org/10.1190/1.2213955
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1111/j.1365-2478.2007.00686.x
http://dx.doi.org/10.1190/geo2012-0477.1
http://dx.doi.org/10.1190/geo2012-0477.1
http://dx.doi.org/10.1190/geo2012-0477.1
http://dx.doi.org/10.1190/geo2012-0477.1

