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Abstract
Automatic Speech Recognition (ASR) systems are
becoming increasingly popular in this day and age.
Unfortunately, due to inherent biases within these
systems, performance disparities exist among spe-
cific demographic groups. Bias metrics can be used
to measure this bias. Within ASR they represent
a niche area that has not yet been thoroughly ex-
plored. The few bias metrics that exist in litera-
ture mainly centre around the performance differ-
ences between speaker groups. This paper pro-
poses two new bias metrics that focus not only
on performance differences, but also take the base
performance into account: Weighted Performance
Bias (WPB) and Intergroup Weighted Performance
Bias (IWPB). Although the lack of ground truth
makes the results less easily interpretable, the re-
sults show similar trends within the new metrics as
those defined in literature: bias is greatest among
non-native Dutch speech.

Index terms: speech recognition, bias measurement, per-
formance evaluation

1 Introduction
Performance evaluation is a critical aspect of various
domains, such as natural language processing, machine
learning and Automatic Speech Recognition (ASR). The
performance of an ASR system across different groups or
contexts can vary due to inherent biases [11]. In the context
of automatic speech recognition, it has been shown that these
biases also exist, with ASR systems particularly exhibiting
gender, age, non-native speech and regional accent bias [3].
Differing performance due to these characteristics can lead
to a situation where certain groups of people are not able to
use the system as successfully as other groups. For a system
to remain fair and unbiased, the aim is to build systems such
that all users can use it just as effectively as one another. This
makes it essential to have an effective way of quantifying
bias in ASR systems.

ASR systems are designed to convert spoken language into
text. These models are typically developed using machine
learning techniques, especially deep learning. The training
process of an ASR system involves feeding the model large
datasets of paired audio recordings and their corresponding
text transcriptions [6]. The model then learns to map audio
signals to textual representations by identifying patterns
and features within the data [12]. Key components of ASR
models include acoustic models, which interpret speech
signals, and language models, which in turn predict words.
Once trained, ASR models can be deployed in various
applications, such as virtual assistants, transcription services,
and voice-controlled interfaces. These models process
real-time or recorded audio, convert it to text, and deliver
transcriptions.

Bias is a significant concern in machine learning as it can
lead to unfair and incorrect outcomes. This often arises from
training data where certain groups may be underrepresented
[1]. This can cause machine learning models to produce
inaccurate output that can disproportionately affect those
underrepresented groups [7]. Addressing bias requires
diverse and representative datasets, careful monitoring of
model performance across demographics, and implementing
fairness-aware algorithms [1]. Due to ASR models being
trained on traditionally ’standard’ (minimal accent, well
articulated) data, bias poses a challenge for these types of
models as well [16].

To address the issue of bias, bias metrics can be used to
quantify bias in performance assessments. Feng et al. at-
tempted to capture bias by using the difference in Word Error
Rate (WER) between different demographic groups [4]. This
performance metric evaluates ASR performance, which can
then be used in bias metrics to quantify the bias. Other
performance metrics exist, which will be further explained
in appendix A, but for this study, the industry-standard WER
was used.

Performance difference refers to the gap or variation in
performance between different demographic groups. For
instance, if one demographic group has a WER of 5%
and another group has a WER of 10%, the performance
difference would be 5%. This difference indicates disparities
in the ASR system’s performance for each group. Base
performance refers to the absolute WER values, regardless
of the demographic group. It represents the accuracy of the
ASR system for each specific group.

Currently, there is no universally agreed upon definition for
bias in ASR, but the first attempts at creating bias metrics
utilised the difference in performance [4]. The main issue
with a metric that only examines the WER performance dif-
ference between speaker groups without considering the base
performance for that group, is that it may obscure significant
details about the overall performance of the ASR system.
While focusing solely on the differences between groups can
highlight relative disparities, it does not provide insight into
the absolute effectiveness of the system. For example, if an
ASR system has uniformly high WER across all groups, the
differences between groups might be small, indicating low
bias. However, the system’s overall performance would still
be poor, affecting all users negatively. Thus, a metric that
only considers the differences between speaker groups could
fail to capture the absolute performance and could potentially
misrepresent the bias of the ASR system.

Designing a measurement approach in the form of a bias met-
ric that considers not only the disparities in performance be-
tween groups, but also the overall accuracy level of the ASR
system could be a better way to measure bias. This approach
ensures that an ASR system is not only equitable across dif-
ferent speaker groups but also meets a high standard of per-
formance for all users, providing a more comprehensive as-
sessment of bias.
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1.1 Related work
This research is closely related to the work by Patel et al. in
’How to Evaluate Automatic Speech Recognition: Compar-
ing Different Performance and Bias Measures’ [14]. The out-
put of the trained models from this research was used as the
input to this research. Therefore, this section will first clarify
the experiment performed by T. Patel.

Related paper explanation
In the paper, Patel et al. conducted an in-depth analysis
to evaluate bias in ASR systems by assessing bias across
different speaker groups, based on WER.

The models were trained on data from the Corpus Gesproken
Nederlands (CGN) [15], consisting mainly of native Dutch
adult speech. The JASMIN Corpus1 was used to test the ASR
systems. This corpus includes speech from native Dutch
children (DC), Dutch teenagers (DT), and Dutch seniors
(DOA), as well as non-native teenagers (NnT) and adults
(NnA). These speech inputs are then categorised into Read
speech and Human Machine Interaction (HMI) speech [2].

Based on the methodology outlined in [14], performance
and bias metrics were evaluated using the JASMIN dataset
across five distinct ASR models. The first three models
are conformer models trained without any data augmen-
tation (NoAug), enhanced with additional training on
speed-perturbed speech (SpAug) and a combination of
speed-perturbated and spectral augmented speech (Sp-
SpecAug). The final two models are OpenAI Whisper
models, one trained on normal data (Whisper) and the other
trained on fine-tuned data (FT-Wpr).

Multiple bias measures were used to compare different
speaker groups relative to a reference group, including
Group-to-min and Group-to-norm. Both compare each group
based on WER difference to a specific baseline group: the
best performing group (Group-to-min) or the norm speaker
group (Group-to-norm). Both measures have absolute and
relative variants. The equations for the bias metrics used by
Patel et al. [14] are as follows:

Group-to-min Absolute Difference (G2m,a):

Biasabs,i = Basei − Basemin (1)

where Basei is the base performance for group i and Basemin

is the group with the minimum error rate.

Group-to-norm Absolute Difference (G2n,a):

Biasabs,i = Basei − Basenorm (2)

where Basenorm is the base performance for the norm group.

Group-to-min Relative Difference (G2m,r):

Biasrel,i =
Basei − Basemin

Basemin
(3)

1https://taalmaterialen.ivdnt.org/download/tstc-jasmin-
spraakcorpus-c/

Group-to-norm Relative Difference (G2n,r):

Biasrel,i =
Basei − Basenorm

Basenorm
(4)

By calculating the absolute and relative differences between
the groups and a reference (either the minimum WER ob-
served or a norm speaker group), base performance metrics
across different speaker groups can be compared. Bias can
then be measured to be employed as comparison material for
a new bias metric for this research.

It is imperative that bias can be properly measured and as
such this research aims to create a new method of calculating
bias. Patel et al. concluded that while error rates are
fundamental to performance evaluation in ASR, it ‘does not
reflect the performance and bias within and across speaker
groups well’ [14]. While data augmentation techniques
can somewhat mitigate bias, substantial disparities in ASR
performance across different speaker groups persist. This
shows the necessity for ongoing advancements in bias
metrics for ASR to ensure accurate recognition for all users.

This paper aims to solve this issue by creating a new bias
metric that includes the overall accuracy of the system as well
as the differences between groups. In particular, the output of
the ASR models trained in [14] was utilised to implement the
new metrics, with the shape of the data explained in 4.1. An
explanation of how the data was used can be found in section
2: Methodology.

1.2 Research Question
The research conducted for this paper aims to provide insight
into the following proposed research question:

“How to incorporate both the performance difference
and base performance in a bias metric?”

An experiment was conducted to explore how to effectively
integrate both the ’performance difference’ and ’base perfor-
mance’ aspects of an ASR system into a single unified metric.
By exploring different methods to integrate these components
of an ASR system, the research could identify how capable
the proposed bias metrics are in recognising bias.

2 Methodology
In this section, the rationale behind the new bias metrics will
be introduced. Subsequently, the tools used in this research
will be explained.

2.1 Bias Metrics
To combine performance difference and base performance,
the Weighted Performance Bias (WPB) and Intergroup
Weighted Performance Bias (IWPB) were created. WPB
iterates over all groups and takes the weighted average of the
relevant aspects: the performance difference and the base
performance. Weights w1 and w2 are used to determine the
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ratio of importance for the performance difference and the
base performance, leading to an adjustable metric by varying
the weight values. IWPB works similarly by computing the
weighted average but differs in the performance difference
calculation. Rather than making use of the predefined
performance differences (min and norm), IWPB computes
the performance difference between one group and every
other group, then takes the average of that to be the total
performance difference. This was done in an attempt to
capture bias in a different way to the G2 variants. The
equations for both WPB and IWPB can be found in section
3.1.

The output of the models from Patel et al. [14] was used to
create these new bias metrics. Evaluation of the new bias met-
rics is possible by comparison with a defined reference bias
metric. The found bias values for all metrics could be com-
pared by applying the same input for the new metrics. While
not ideal, this evaluation method is currently the most logical
approach due to the absence of a defined ground truth for bias
in this context. This will be further discussed in section 5.

2.2 Tools
To conduct the experiments of this research, a range of tools
and libraries were used. The processing and visualisation of
the data were handled using Python 3.10, which provides a
robust and versatile environment for data analysis.

Data Processing
The data was processed using multiple libraries, including
Pandas [18], NumPy [9], Seaborn [17] and Matplotlib.pyplot
[10]. These libraries were used in conjunction and aided in
data processing and visualisation, allowing the complex data
to be read, stored and presented in a useful manner.

Since the data used in this study is licensed for research pur-
poses only, it cannot simply be stored within the research
repository, as that repository becomes public data on the TU
Delft repository. Therefore, all processing was done on the
DelftBlue supercomputer2. This ensured that processing was
efficient as this computer was more than capable of running
the program in a small amount of time. It also meant that
the input data was kept within the university’s secured en-
vironment, since none of the licensed data was stored in the
Github repository and was only run from within the DelftBlue
system.

Custom Scripts
Custom scripts were written to calculate the error rates and
bias metrics. These scripts automated the process of extract-
ing relevant data, performing the necessary calculations, and
generating visualisations. By developing these scripts, it was
ensured that the calculations were tailored to the specific re-
quirements of this research and could be adapted as needed.
Finally, the calculated error rates and bias metrics were anal-
ysed to see if the data showed a combination of the perfor-
mance difference and base performance to be effective.

2https://www.tudelft.nl/dhpc/system

3 Weighted Bias Metrics
In this chapter, two approaches for measuring bias are intro-
duced: the weighted bias metric and the extended weighted
bias metric. First, the equations themselves are explained,
with an explanation and justification of the metrics following
after.

3.1 Equations
For readability, the bias metric equations from section 1.1
have been renamed such that they are easier to utilize in the
new metrics:

Baseline Performance (BP):

BP = x ∈ [Basemin,Basenorm] (5)

such that the baseline performance reference can be chosen
from either of the known options: either the minimum WER
observed or a norm speaker group.

Performance Difference (PD):

PDi = Basei −BP (6)

The new metrics mentioned in section 2.1, WPB and IWBP,
are defined as follows:

Weighted Performance Bias (WPB):

WPB =
1

n

n∑
i=1

(
w1 ·

PDi

BP
+ w2 · Basei

)
(7)

Performance Difference (PD) between two speaker
groups:

PDij = Basei − Basej (8)

where Basei and Basej are the base performance for group i
and group j.

Intergroup Weighted Performance Bias (IWPB) between
each speaker group:

IWPB =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

(
w1 ·

PDij

BP
+ w2 · Basei

)
(9)

where PDij is the performance difference between groups i
and j.

3.2 Explanation and Justification
The proposed bias metrics were designed to incorporate both
the performance differences between demographic groups
and the baseline performance of a separate group. First, the
base performance metric is calculated per speaker group.
It serves as a benchmark to compare the performance of
the ASR system across different demographic groups. For
the new metrics, the relative difference is used from these
metrics (as can be seen from equations 7 and 9), since Patel
et al. recommend ‘using a relative measure that considers all
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speaker groups’ [14], such that it represents the performance
difference between the speaker groups relative to the baseline
performance.

The base metrics per speaker group have already been
previously defined, but now need to be included. A weighted
average of the two components of equation 7 (base per-
formance and performance difference) has been taken to
combine their aspects so that different weights can be tested
to find an optimal value for the data.

Two options for a new bias metric were experimented with:
the weighted bias metric and the intergroup weighted bias
metric. Both options require weights w1 and w2 to determine
the ratio of which the base performance is deemed more im-
portant than the performance differences or vice versa. The
main difference between the two metrics is that WPB uses a
defined baseline performance to compare individual groups,
while IWPB averages over comparing the current group with
every other group. This distinction was used to test what type
of comparison performed best.

4 Experimental Setup and Results
4.1 Experimental Setup
The objective of this experiment was to evaluate the pro-
posed bias metrics, WPB and IWPB, in the context of ASR
systems. Specifically, the experiment aims to determine how
well the metrics measure bias across different demographic
groups while combining performance difference and base
performance. The data used in this experiment is derived
from the JASMIN corpus, after being used in the models
provided in [14].

The data is separated by model type, leading to the following
categories: NoAug, SpAug, SpSpecAug, Whisper and
FTWpr. These directories are then split into both Read
and HMI speech categories. Finally, for every speaker
group, there is a separate output file containing the following
required data for this research: the number of words, correct
words, substitutions, deletions and insertions.

The performance differences are calculated after reading the
data. Specifically for the new metrics, simulations are run
with a uniform distribution of the weights with a size of 100,
retrieving the optimal weights for the metrics.

To ensure reproducibility, all code and functions used for pro-
cessing data, visualising data and calculating metrics have
been provided in the project repository.

4.2 Results
In this section, the outcomes of evaluating the proposed WPB
and IWPB metrics are presented across the various models
and speaker groups. The values of WPB and IWPB were
compared with the known bias values for G2m,a, G2n,a,
G2m,r and G2n,r. The simulations of WBP and IWBP met-
rics to find optimal weights are discussed, as well as the bias

values for each model. This analysis demonstrates the poten-
tial effectiveness of the new metrics in capturing performance
disparities.

Bias Metrics Results
Optimal weights had to be found in order to properly eval-
uate the bias metrics. Thus, a simulation was done by at-
tempting 100 different weights distributed uniformly between
[0,1]. Figures 1 and 2 show plots of these simulations for each
model.

Figure 1: Weighted Performance Bias Metric simulation.

The graph in figure 1 shows WPB across five ASR models
(SpAug, NoAug, SpSpecAug, Whisper, FTWpr) for
100 different weight distributions. It can be seen that
WPB values increase with the weight (w1) for all models.
Whisper consistently shows the lowest WPB across all
weight distributions, indicating minimal bias of the models.
SpSpecAug exhibits the highest WPB, particularly as w1

approaches 1, indicating significant bias. NoAug, SpAug,
and FT-Wpr have intermediate WPB values, with NoAug
being the lowest among them. WPB is lowest when w1 is 0.0.

The graph in figure 2 presents the IWPB for the five ASR
models, again across 100 different weight distributions.
IWPB values increase with the weight (w1) for all models,
similarly to WPB. Whisper once again exhibits the lowest
IWPB, indicating reduced bias. SpSpecAug shows the
highest IWPB as w1 increases, highlighting bias, with
similar values for FT-Wpr. The models SpAug and NoAug
fall between these two extremes, with NoAug and FT-Wpr
displaying similar trends. At a w1 value of 0.0, all models
produce a comparably low amount of bias.
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Figure 2: Intergroup Weighted Performance Bias Metric simulation.

Figure 3 shows the WPB metric values after applying the
weights found during the simulation in figure 1: w1 = 0.0
and w2 = 1.0. It can be seen that the bias values remain
relatively high for the non-native speakers in comparison to
the native speakers, agreeing with the results of Patel et al
[14]. Bias is lowest for the DT group. For WPB, SpAug
and SpSpecAug generally produce a similar amount of bias
in comparison to NoAug. When looking at the Whisper
output in particular, FTWpr produces slightly less bias than
Whisper for native speakers, with the opposite holding true
for non-native speakers.

Figure 3: Weighted Performance Bias Metric.

Figure 4 shows the IWPB metric, also with weights from the
simulation in figure 2: w1 = 0.0 and w2 = 1.0. Similarly
to WPB, DC, DOA and DT have the lowest bias values,
indicating that native speech might produce less bias.

Figure 4: Intergroup Weighted Performance Bias Metric.

When comparing figures 3 and 4, it is evident that both met-
rics made use of a high w2 value (1.0), with a low w1 value
(0.0), which will be further discussed in section 5. The shapes
of both plots are very similar, with IWPB producing slightly
less bias in general. The general performance of the metrics
in identifying bias is alike.

Table 1: WPM and IWPM Bias Values per Speaker Group

Metric Group NoAug SpAug SpSpecAug Whisper Ft-
Wpr

WPB

DC 37.6 33.7 33.0 33.9 34.3
DT 22.6 21.3 18.5 23.7 19.5
DOA 25.9 25.2 23.4 30.6 24.0
NnA 62.7 64.5 60.1 52.3 61.3
NnT 52.9 54.8 51.1 47.1 56.1

IWPB

DC 24.4 26.8 33.9 21.1 26.9
DT 15.9 18.3 20.7 14.7 17.2
DOA 17.5 20.9 26.0 17.9 20.4
NnA 77.2 92.5 103.0 59.1 84.5
NnT 57.4 73.5 77.4 45.4 76.1

For the WPB values in table 1, Whisper has a relatively
lower IWPB compared to SpSpecAug and SpAug, for DC
and NnT. NoAug and Ft-Wpr show similar IWPB values,
with NoAug being slightly higher in some cases. SpAug
has consistently higher values than Whisper but lower than
SpSpecAug, indicating moderate bias levels.

For the IWPB values in table 1, SpSpecAug consistently
shows the highest bias values across all groups, with notable
values for DC and NnA. In contrast, Whisper has the lowest
WPB values for all metrics, indicating the least bias. SpAug
and Ft-Wpr show moderate bias values, with Ft-Wpr having
slightly higher bias than SpAug in most cases. NoAug
exhibits the least bias variability, suggesting it maintains a
relatively consistent bias level across different metrics.
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Table 2: Overall Difference Bias per model for different bias metrics.

ASR Model JASMIN Read Speech JASMIN HMI
G2m,a G2n,a G2m,r G2n,r WPB IWPB G2m,a G2n,a G2m,r G2n,r WPB IWPB

NoAug 23.18 30.54 1.08 3.21 47.96 40.33 13.20 25.46 0.34 1.08 46.54 51.99
SpAug 23.18 31.70 1.17 4.59 49.38 39.90 16.13 24.00 0.49 1.10 47.57 50.40
SpSpecAug 23.55 30.34 1.28 4.40 49.98 37.22 18.73 21.48 0.71 1.08 46.04 45.38
Whisper 21.08 25.26 0.83 1.48 51.17 37.51 18.85 1.58 0.46 0.03 45.76 54.97
FT-Wpr 24.50 24.90 1.10 4.38 41.67 39.07 13.73 25.88 0.37 1.14 49.55 51.41

Table 2 shows the bias values for each metric used in the
paper, divided among Read and HMI speech. The values
for Read speech are larger than for HMI for the G2m,a,
G2n,a, G2m,r and G2n,r metrics, while the opposite is true
for IWBP. WBP shows higher bias values for HMI FTWpr
speech, while the rest of the models for this metric follow the
same trend as the G2 metrics. The IWPB metric produces
lower values for read speech than HMI speech, while WPB
produces similar values regardless of the speech type.

In general, IWPB has slightly lower values most of the time,
but the general distribution of the bias is similar between
WPB and IWPB. This will be further discussed in section 5.

5 Discussion
In section 5.1, it will be explained why the weights might not
be as optimal as they seem, but for the discussion of these
results, it is assumed that they are optimal. As mentioned in
section 4.2, simulations of weights for both WPB and IWPB
led to optimal weights of w1 = 0.0 and w2 = 1.0. A high w1

value means that the performance difference aspect of both
WPB and IWPB is deemed more important, with a value
of 1.0 indicating that the final value is 100% dependent on
this part of the equation. The same holds for w2, with the
optimal value being 1.0 for w2, showing that only the base
performance component is fully used, while the performance
difference is not used at all. Although the weight distribution
is not uniform and the performance difference is not properly
incorporated, the outputted values in figures 3 and 4 show
a similar distribution of the bias in comparison to [14]. In
particular, these weights lead to a high bias for non-natives,
while having relatively lower bias values for the native
Dutch speakers, with DT showing the least bias. This is
logical since this group ‘has the closest acoustic match to the
training data’ [14].

The results show that when comparing the tables and the
figures, the WPB and IWPB values differ. The main reason
for this is because the tables make use of a speech type
split of Read vs HMI data. The figures, on the other hand,
combine both speech types as one, since the figures are more
focused on the overall picture of bias between the speaker
groups. This likely led to disparities between these values,
but both interpretations of the data can be used to draw
different conclusions.

When comparing the WPB and IWPB values, the amount of
recognised bias is alike. Both metrics measure consistently
high bias for SpSpecAug, suggesting that the augmentation
method may introduce bias, particularly for certain groups
like NnA. Regardless of whether or not the amount of bias
is correct (which will be further discussed in section 5.1), the
results show that the ability to measure bias is similar for both
metrics. Table 1 indicates that WBP and IWBP both measure
more bias in relation to the non-native speakers than the na-
tive speakers, which is to be expected according to Feng et
al. [3]. This table also reveals that at speaker group level,
regardless of speech type, the Whisper and FTWpr mod-
els originating from OpenAI have around as much bias as the
other models. Table 2 shows that when comparing the WPB
and IWPB values with the G2 variants, although there is a
resemblance between the distance between groups, the abso-
lute values are much higher, in some cases double that of G2.
This suggests that should the new metrics be correct, more
bias is present in the speech models than previously shown
by [14].

5.1 Limitations
Although the proposed metrics seem to perform relatively
similarly to Patel et al.’s metrics [14], the fact that the value
of w2 is 1.0 means that the performance difference itself
goes against the entire idea of combining both metrics.
This likely means that the determination of best weights
needs to be updated such that the parts are both properly
contributing to the overall output. However, in the case
that the weights indeed are optional, it is clear that the edge
cases of one weight being 1.0 should be included. If the
part of the equation being affected by w2 also incorporated
the performance difference, then the situation of w2 = 1.0
would be less of a problem, as the performance difference
would still be taken into account.

The main reason that it is difficult to determine which weights
are optimal, is the lack of a ground truth table. This means
there is no way of knowing whether an outputted bias value
is correct. The current implementation chooses the weights
for which the bias values are minimal, but arguments can be
made for choosing other bias values. In truth, there is not cur-
rently a simple answer for determining true amounts of bias,
since there is no predetermined known bias. Thus, this paper
compared the metrics with the values from [14] and attempted
to find a similar distribution of bias among the groups. With
figures 3 and 4 showing similar bias for specific groups, this
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implementation can indeed recognise apparent bias. How-
ever, the true limitation of the system is that the apparent bias
is not definite due to a lack of control values for bias.

5.2 Future Work
Recommendations for further research include searching for
a better way to combine performance difference and base
performance. This paper shows that the proposed metrics are
not incapable of measuring bias, however, work still needs to
be done to optimise the metrics. For this research, a weighted
average was chosen to answer the main research question,
yet more possible solutions exist. Future studies should
look into weighted averages with the absolute performance
difference, rather than the relative performance difference
in WPB. Also, other combinations or aggregations without
using weighted averages could exist, although that was out
of the scope of this project.

As mentioned in 5.1, including the performance dif-
ference in the base performance affected by w2 could lead
to the incorporation of performance differences in edge cases.

The main suggestion would be to search for a new method
of weight selection, such that the optimal weights truly are
the best choices. Although the absence of a ground truth
will pose a problem for future research, investing time into
experimenting with which bias values work better than oth-
ers could improve formulating proper base performance to
performance difference ratios. Better argumentation for why
specific weights perform better than others would greatly in-
crease the effectiveness of the research.

6 Responsible Research
In this chapter, the various aspects of responsible research
that underpin this study are discussed. The following subsec-
tions cover the key components of ensuring the reproducibil-
ity, accessibility, and ethical considerations of the research
process.

6.1 Reproducibility
Ensuring reproducibility is a crucial part of responsible re-
search. To this end, all code and scripts developed for this
study have been documented and will be made publicly avail-
able via the TU Delft Repository. This transparency allows
other researchers to replicate the experiments, verify results,
and build upon the work presented. By sharing the data pro-
cessing and analysis pipelines, the aim is to contribute to a ro-
bust and reproducible research culture. Given the correct in-
put data, the code should be capable of producing the results
provided in this paper. This commitment to reproducibility
enhances the reliability and impact of the research.

6.2 User-Friendly Figures
Accessibility in research is critical, particularly when pre-
senting data. In creating visualisations, special attention will
be paid to the selection of colours to ensure they are user-
friendly. This includes using colour palettes that are acces-
sible to individuals with colour blindness, ensuring that all
figures are easily interpretable by a broad audience.

6.3 Ethics in Speech Technology
The primary focus of this project is to address and measure
bias in ASR systems. This research is rooted in the ethical
imperative to improve technology for all users, especially
those currently underrepresented. Bias in ASR can lead
to significant disparities in how individuals are understood
by these systems, affecting older individuals, non-native
speakers, and others with diverse accents.

By developing and refining metrics to measure this bias,
the project aimed to highlight and quantify disparities in
ASR performance. The ultimate goal was to inform and
influence the development of more equitable and inclusive
ASR technologies. Ethically, this work is crucial as it strives
to ensure that advancements in speech technology do not
disproportionately benefit certain groups while disadvan-
taging others. By bringing these issues to the forefront, the
research contributes to the broader effort of creating fair and
just technology.

Thus, the ethical dimension of this research is not only about
identifying bias but also about advocating for solutions that
promote fairness and inclusivity in speech technology. Ad-
dressing these biases can help ensure that ASR systems serve
all users effectively, regardless of their background or char-
acteristics. This commitment to ethical research practices un-
derpins the project and aligns with the broader goals of pro-
moting equity and representation in technology.

7 Conclusions
This paper took the first steps towards integrating base
performance and performance difference in an Automatic
Speech Recognition (ASR) bias metric. It was shown
that the proposed Weighted Performance Bias (WPB) and
Intergroup Weighted Performance Bias (IWBP) metrics not
only produced relatively similar values to each other, but
the trends found by Patel et al. [14] also hold for these new
metrics, which indicate that the metrics are indeed capable
of measuring bias in an improved way. In general, the
non-native speakers still give rise to the most bias, while the
Dutch Teenager speaker group shows the least bias. This
shows room for improvement in the ASR systems.

Although the absence of a ground truth for bias continues to
pose a problem in bias measurement innovation for ASR, ex-
periments like the one conducted in this paper are imperative
to continuing the development of bias evaluation in this area.
Future research should focus on optimizing the weight selec-
tion for WPB and IWPB and exploring alternative options for
bias evaluation. This way, the development of novel methods
to recognise bias continues to promote fairness and inclusiv-
ity in ASR technologies.
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A Performance Metric Analysis
During this research, while conducting experiments it gradu-
ally became clear that the evaluation and comparison of dif-
ferent performance metrics deviated too much from the main
topic of this paper, namely combining performance difference
and base performance in a single bias metric. It was chosen
to halt the experiment in order to focus on the main subject,
yet there are results to be considered. In this section, the pre-
liminary results of the performance metric experiment will be
discussed.

A.1 Performance Metric Experiment
In order to quantify potential bias, first the performance of
the ASR system must be measured. The method in which
this is done can differ since the choice of performance metric
can influence the measured performance. ASR research often
relies on standard performance metrics like Word Error Rate
(WER), Character Error Rate (CER) and Phoneme Error Rate
(PER) [14]. These three metrics all measure the percentage
of errors found, each at a different level: WER measures
at word level, CER measures at character level and PER at
phoneme level. Therefore, these different metrics look at
different aspects of transcription, from single recognised
characters to a set of specific speech sounds perceived
(phonemes). However, these metrics may not capture the full
picture of ASR performance and may overlook disparities
[8]. Searching for a novel solution to evaluate these systems
could lead to a more accurate bias calculation.

The used metrics are calculated based on the concept of Lev-
enshtein distance, which indicates how different two given
strings are from one another [19]. It involves three types of
errors: substitutions, insertions, and deletions. Substitutions
occur when one element (character, phoneme, or word) is re-
placed by another. Insertions happen when extra elements are
added to the ASR output that do not exist in the reference text.
Deletions occur when elements present in the reference text
are missing in the ASR output. By measuring these errors,
WER, CER and PER can be calculated with the following
equation:

ErrorRate =
S + I +D

Total
· 100%

where S, I and D is respectively the total number of substi-
tutions, insertions and deletions. Total differs per error rate:

• For WER: Total = Total words in reference
• For CER: Total = Total characters in reference
• For PER: Total = Total phonemes in reference

To comprehensively evaluate the performance of ASR
systems, an experiment can be conducted to compare the
aforementioned metrics. Since this experiment was not the
main concern of the research, a smaller experiment was
conducted by incorporating the most standard performance
metric, WER, as well as another, less commonly used metric:
Match Error Rate (MER).

Match Error Rate (MER): MER is the proportion of incor-
rect word matches, which is the same as the probability of a
given match being incorrect [5]. It can be defined as:

MER =
S + I +D

S + I +D +H
· 100%

A.2 Preliminary Results
The comparison of WER and MER statistics across different
models and speaker groups shows the behaviour of these
metrics concerning the performance of the ASR systems. The
figures 5 and 6 show a breakdown of the median, standard
deviation, maximum, and minimum values for every group
within each model.

The comparison of WER and MER values across models
and speaker groups reveals significant trends in ASR per-
formance. Both metrics show the highest median error rates
for the NnA group across all models, indicating substantial
difficulty in recognising non-native speech. The median
MER values are generally lower than WER, suggesting better
performance in exact match scenarios, yet the similarity
between WER and MER values across groups and models
implies that MER may not offer significant additional
insights over WER in this context.

Standard deviation values for both WER and MER are low
across models, reflecting consistent performance within each
group. However, the NnA group exhibits slightly higher
variability, once more highlighting the challenges in accu-
rately recognising non-native accents. The range of values
(difference between max and min) shows that the NnA group
consistently has the highest maximum error rates, nearing
1.0 for WER in some cases, indicating poor recognition
performance. While the maximum MER values are also high,
they are generally lower than the WER maximum values,
suggesting slightly better performance regarding character
and phoneme recognition. The low minimum values for both
WER and MER across all groups suggest that ASR systems
can achieve low error rates under optimal conditions.

In conclusion, the comparison of WER and MER metrics
showed very similar values between WER and MER, which
suggests that although MER had slightly lower values in gen-
eral, it might not provide substantial additional benefits over
WER in this context. Both metrics appear to recognise similar
performance characteristics, similar to the research by Hamed
et al. [8]. In this study, while MER is a valuable metric, it may
not necessarily offer enough beneficial insights compared to
WER to warrant choosing MER over the more thoroughly re-
searched standard performance metric, WER.

A.3 Future Research
In future research, a full comparison of all mentioned metrics
might lead to more conclusive arguments for one metric over
another. With more time and metrics to work with, a more ex-
tensive analysis could prove useful. It could also prove inter-
esting to look into other performance metrics not previously
mentioned in this research, such as Word Information Lost
(WIL) [13].
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Figure 5: Histogram plot with statistics for WER.

Figure 6: Histogram plot with statistics for MER.
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