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Abstract

The Hierarchical Subspace Iteration Method is a novel method used to compute
eigenpairs of the Laplace-Beltrami problem. It reduces the number of iterations re-
quired for convergence by restricting the problem to a smaller space and prolonging
the solution as a starting point. This method has shown great performance improve-
ments for Laplace-Beltrami eigenproblems. We propose an adaptation to the Hierar-
chical Subspace Iteration Method that allows for computing vibration modes of elastic
objects. We evaluate potential optimizations that can be made, as well as the perfor-
mance characteristics of the method. Our method was shown to be faster than SIM in
most cases while even beating Matlab’s Lanczos solver in some cases.
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Preface

I can fondly remember the start of my studies. I was thrilled, excited and healthily fearful of
all that would come. Computers have always been my ”thing” and this study continuously
confirmed that, but with each amount of ECTs I achieved I also felt that one task that scared
me most came closer: ”Writing a thesis”. I could hardly write a coherent 2 pager in high
school after staring at the wall for weeks which made this fear not fully grounded.

However, those fears have aged as of now and things have changed. Here I am typing
a document’s preface with a page count in the two-digit range. Something that would have
seemed impossible for me 6 years ago. I learned a lot during those years which made me
feel ready to tackle this project on day one, but I could not have guessed that I had so much
more to learn.

I fondly remember the first meeting with both Klaus and Elmar where I proposed the
topic I wanted to work on. Klaus proposed two possible research directions and I chose the
direction that looked the hardest for me. During the meeting, Elmar asked if this topic was
my choice to which I happily replied with: ”Yes”. Looking back at it now I understand the
question: Which master student starts working on an eigensolver voluntarily? This thought
sprung up more and more when I tried to explain my topic to my peers. The moment I said
”Eigen” they would tune out.

This choice of topic was a strategic one, however. I am quite competitive from character
and this research could show strong gains in compute time where we could beat the status
quo algorithms that are used today. I liked the idea of trying to optimise the implementation
for the specific problem and possibly winning from Lanczos’ algorithm. The matrices gen-
erated by the linear elasticity problem exposed some weaknesses in the HSIM code when
decreasing sparsity. I can attest that ironing those out one by one was a truly satisfying
experience.

Julian van Dijk
Delft, the Netherlands

November 17, 2023
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Chapter 1

Introduction

Engineers and artists have become more and more acquainted with digital modelling and
simulation within their work. Simulating real-world physics allows the computer to do the
heavy lifting while also preventing human mistakes. A known simulation problem is the
calculation of vibration modes. Vibration modes show the natural frequencies of objects.
These frequencies are of great importance when designing real-world structures. If the
structure resonates with a frequency in its vicinity, it might become unstable. A good exam-
ple of this behaviour is the Tacoma Narrows Bridge incident recorded by Gaal and Levine
[2016].

Vibration modes have a multitude of other applications, such as audio simulation, an-
tenna design and animation. Our work will focus on the calculation of low-frequency vibra-
tion modes of elastic objects. Calculating the vibration modes of a given volumetric mesh
requires us to dive into the Finite Element Method (FEM). The finite element method allows
us to perform a localized elasticity calculation on the tetrahedrons of the mesh. The results
of the calculation can then be used to build a large sparse stiffness matrix detailing the in-
teraction of the vertices of the mesh. We can then use this stiffness matrix in combination
with a mass matrix to find the vibration modes.

Our proposed solution applies the Hierarchical Subspace Iteration Method (HSIM) by
Nasikun and Hildebrandt [2022] to a volumetric mesh to speed up vibration mode calcu-
lation for the low to mid-frequency spectrum. the HSIM method has already been applied
to Laplace-Beltrami Eigenproblems on surfaces, showing significant performance improve-
ments. We researched the application and possible performance improvements for the vi-
bration modes eigenproblem of our solution.

The adaptation will also introduce a completely different problem to test on HSIM. The
global stiffness matrix will be more dense. The average vertex valence of a tetrahedral mesh
is higher than the average vertex valence of a triangle mesh [Gumhold et al., 1999]. The
other contribution to matrix density is the degrees of freedom per vertex. Our stiffness ma-
trix will have 3 degrees of freedom per vertex, where the degrees of freedom represent the 3
orthogonal axes of movement in 3D space. These two factors create a denser eigenproblem
with a different structure than Laplace-Beltrami Eigenproblems. The increased density will
require more operations for prolongation, hierarchy creation and factorization. Possibly
causing extra cost for the hierarchy approach.
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Another difference between Laplace-Beltrami eigenproblems and elasticity problems is
the distribution of the eigenvalues. Laplace-Beltrami eigenproblems have relatively more
closely distributed eigenvalues than elasticity problems. An example of the eigenvalue dis-
tribution of Laplace-Beltrami on a sphere can be seen in Figure 9 in [Nasikun and Hilde-
brandt, 2022]. The eigenvalues range between 0 and 250 for the lowest 250 eigenvalues.
A volumetric sphere mesh with 182k degrees of freedom has its 250 lowest eigenvalues
ranging between 1803 to 13.7∗10e9. This stark difference is also reflected in the condition
number, which is often significantly higher for elasticity problems.

It is possible that HSIM will provide a computational speedup compared to SIM for
the vibration modes problem. The computational speed of HSIM grew significantly when
calculating a larger amount of eigenpairs in the original paper. This gain in computational
speed might translate to our problem as well.

1.1 Research question(s)

The main research question investigated in this thesis is:
How can the HSIM be applied to solve generalized Eigenvalue problems for the vibration

modes of elastic meshes?

• How can the HSIM be applied to isotropic elasticity problems

• What adaptations can be made to the HSIM method to better fit the generalized Eigen-
value problem used for calculating vibration modes?

• What are the optimal parameters to use when applying the HSIM to elasticity prob-
lems?

2



Chapter 2

Related work

Solving large sparse eigenproblems is a well-explored domain in computer science, mathe-
matics and structural engineering. This chapter discusses the methods that are available at
the time of writing. In this chapter we will focus on eigensolvers that apply to our elasticity
problem.

2.1 Modal analysis

Modal analysis, also known as vibration analysis, is the study of vibration characteristics of
a structure. It is often used together with the finite element method to determine structural
characteristics, the natural frequencies and mode shapes of a system. These methods are
used within multiple engineering fields as shown in these examples: [Guo et al., 1992], [LU
and ABBOTT, 1996] and [Zheng and Kessissoglou, 2004]. Research on objects and their
materialistic properties has already been done and published, creating a large availability
of computed data. However, the need to compute more modes, using larger models or
entirely new simulation models, is still present. As can be seen in recent research about axial
vibration analysis of embedded love-bishop nanorods by Ömer Civalek and Numanoğlu
[2020] or the introduction of a new three-layer composite FEM model by Chi Tho et al.
[2023].

Vibration modes are applicable to a multitude of problems. They can be used to charac-
terize a model/structure, which can then be used as a comparison for real-life measurements
aiding in determining structural integrity. Another application is that of prevention. Using
simulated models, one can determine whether or not the modes would interfere with the
application of the model. Preventing the accident that occurred at Tacoma Narrows Bridge
incident recorded by Gaal and Levine [2016]. This application extends into aiding material
and structural design. A good example is the technical report of Dean and Crocker [2023],
where they use vibration analysis for designing new adhesives. Modal analysis is also used
in conjunction with harmonic analysis by computing the modes of a model and the possible
interactions with its surroundings as shown by Yan et al. [2023] or in this the work by Xu
et al. [2023] where they allow fast tonal noise predictions of multi-rotor setups using modal
analysis.
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2.2 Lanczos algorithm

The Lanczos algorithm is an effective solver for large symmetric eigenproblems. The Lanc-
zos algorithm is widely used for large symmetric eigenproblems. It is often used because
of its superior speed of convergence compared to SIM. The algorithm is prone to numerical
instability due to floating point rounding errors, resulting in a loss of orthogonality in its
basis vectors. The underlying issue is the Gram-Schmidt procedure Giraud et al. [2005]
that is being used for the orthogonalization of the basis vectors. Accumulations of accu-
racy errors due to matrix-vector multiplications eventually result in a linearly dependent
vector that causes instability. Implementations of the Lanczos algorithm often resolve this
issue by orthogonalizing the linearly dependent vectors and then restarting the current iter-
ation. A more detailed explanation of the Lanczos algorithm can be found in Cullum and
Willoughby [2002]. The C++ library Arpack Lehoucq et al. [1997] has implementations for
different variants of the Lanczos algorithm. Arpack offers an implementation of the Implic-
itly Restarted Lanczos method, which is used by Matlab1. However, the Lanczos method
does have limitations preventing an even wider adoption. The Lanczos method is intrin-
sically hard to run in parallel [Bathe and Ramaswamy, 1980b]. There is, however, recent
research available that suggests strong parallel performance improvements by Zbikowski
and Johnson [2023].

2.3 Subspace iteration method

The subspace iteration method originally developed by Bathe and Wilson [1973] aims to aid
computation for frequencies and mode shapes in structures. This method is numerically sta-
ble. Another interesting property is the subspace iteration itself. Every iteration performs an
inverse iteration, which evolves the starting vectors towards the closest eigenpairs. Choos-
ing starting vectors with a smaller distance to the desired eigenpairs results in less required
iterations for convergence. It is thus very important to select good starting vectors. There
has been a lot of research regarding the precomputation of starting vectors to use in the sub-
space iteration method. A few examples are composed in an article by Cheu et al. [1987a].
The subspace iteration method also profits from being able to be run in parallel with often
achieving approximate linear scaling as shown by Bathe and Ramaswamy [1980b]. Other
optimizations have been proposed, such as aggressive shift strategies Zhao et al. [2007] and
applying turning vectors that steer the subspace faster towards a solution introduced by Kim
and Bathe [2017] and extended by Wilkins [2019].

2.4 Turning vectors

During our search for optimization techniques, we were introduced to an extension of the
Subspace Iteration method. This extension adds a few steps for every iteration that are
meant to optimize the iteration vectors with turning vectors. This method is introduced by
Kim and Bathe [2017]. The forward-turning vectors allow a speed-up in convergence at

1A programming and numeric computing platform https://mathworks.com/products/matlab.html
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the cost of a slightly more intensive computation per iteration. The authors show that they
can achieve significant speedups up to 3 to 5 times by reducing the number of iterations
necessary for convergence compared to the SIM implementation specified by Bathe [2013].
However, all their testing has been done on a single-core laptop

Wilkins [2019] has proposed an extension of this method. The extension implements a
second routine that allows turning the already turned turning vectors. The authors show that
there is a small decrease in iterations compared to the previous enriched method in most
test cases. This comparison is again made on a single CPU core. The authors do, however,
address the sequential implementation in the conclusions part. Here, they state that the
algorithm could benefit from further research mainly focused on a parallel implementation
of the algorithm. The current execution order of the algorithm does not allow for a parallel
implementation due to the sequential dependencies introduced by the turning step. We
have implemented the enriched subspace iteration method next to our subspace iteration
method used in HSIM to allow for comparison. In our tests, we see that the implementation
does reduce the number of iterations. However, the implementation is heavily impacted by
the number of needed turning vectors. If an iteration requires a lot of turning vectors, it
will negatively impact the processor utilization of the algorithm as well as the real-world
computation time of the iteration, but it will reduce the number of required iterations.

2.5 Approximation Techniques

An approximation technique produces results within a certain tolerance. These techniques
are well suited for applications where strict accuracy is not always necessary. The subspace
construction idea originated from an approximation technique as well. The paper Fast Ap-
proximation of Laplace-Beltrami Eigenproblems by Nasikun et al. [2018] introduces this
method. The method is used to approximate Laplace-Beltrami eigenpairs by creating a
prolongation and restriction operator that restricts the problem to a smaller subspace. The
solution is then prolonged to the original size, resulting in an approximate solution with
little computation time.

The authors discuss multiple applications where approximations of Laplace-Beltrami
eigenpairs are useful, such as shape DNA Reuter et al. [2006] and the simulation of elastic
deformables. Where they show a small average relative error during simulation. Approxi-
mate solutions are often used for visual applications where speed is preferred over accuracy
within a specified tolerance. Another example of this application is the Vivace paper by
Fratarcangeli et al. [2016], where they introduce a method of simulating stable soft body
dynamics within frame time. Approximate solutions are well fitted to applications where
memory, computing, or both are limited, and accuracy is not the main focus. An approx-
imation method can also be used to precondition the subspace for the subspace iteration
method where a well-conditioned subspace can speed up convergence as seen in [Bramble
et al., 1996]
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Chapter 3

Background

In the following section, we will provide the mathematical basis that is required for our
problem statement. We start with the definition of linear elasticity and build up to our
generalized eigenproblem, on which we will apply our method in the next chapter.

3.1 Linear elasticity

This section makes use of the course notes of Sifakis and Barbic [2012] as a basis for its
introduction to this topic and the associated formulas. The course notes do not introduce
any new methods or theories.

3.1.1 Deformation

Mesh deformation is a concept in the area of computer graphics. It is applied in a wide
range of 3D media. Deforming a mesh is, however, not easily done by hand. Elastic defor-
mations can be useful for geometric modelling tasks. A way to achieve these deformations
is through simulation. Elastic objects want to return to their original shape with a certain
amount of force. This force is often non-uniformly continuously divided over the object.
For our purposes, we will have to localize the forces to each vertex of the mesh. This is
where the classical FEM method comes in.
We can define the object to be in a coordinate-based space where we denote Ω as the vol-
umetric domain occupied by the object. A deformation gradient tensor can be created for
this domain F ∈ R3x3. Where

−→
X = (X1,X2,X3)

T and
−→
φ (
−→
X ) = (φ1(

−→
X ),φ2(

−→
X ),φ3(

−→
X ))T .

Where
−→
φ (
−→
X ) is the deformation function of the given deformation and

−→
X is the initial

position.

F =
∂φ

∂X
=


∂φ1
∂X1

∂φ1
∂X2

∂φ1
∂X3

∂φ2
∂X1

∂φ2
∂X2

∂φ2
∂X3

∂φ3
∂X1

∂φ3
∂X2

∂φ3
∂X3


An elastic mesh is capable of storing energy in the form of strain energy. This energy is

aimed at returning the mesh to its original shape. When working with hyperelastic material,
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Figure 3.1: An Illustration of the deformation function for a bending bar.

one can derive energy from the original shape and the deformed shape. This does not work
for other material types, such as viscoelastic materials, where the path of the deformation
plays a role in the resulting forces.

The course notes of Sifakis and Barbic [2012] discuss that it is possible to derive an
energy density function that takes the local deformation gradient as input and returns the
energy density. These transformations require a few steps.

3.1.2 Strain measure

The Green strain tensor:

E =
1
2
(FT F− I) (3.1)

This tensor defines the strain energy in the system defined by the deformation gradient.
If the system is in its rest state F = I, it results in E = 0. The same would hold true for
pure rotations. In that case FT F = I, which would result in E = 0. Sifakis and Barbic
[2012] argue that one can decompose the deformation gradient into a rotation matrix and
a symmetric matrix: F = RS. The rotation matrix is equal to the identity matrix when
multiplied with its transpose. This allows us to write down the green strain tensor as:

E =
1
2
(S2− I) (3.2)

This, however, shows a property of the green strain tensor. It is a quadratic function of
deformation. A quadratic function will result in nonlinear functions. Therefore, Sifakis
and Barbic [2012] discuss another tensor derived through a Taylor expansion around the
undeformed configuration:

ε =
1
2
(F +FT )− I (3.3)

Called the small strain tensor. This tensor allows for a lightweight model: Linear elasticity.
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3.1.3 Energy density function

An energy density function describes the properties of the material and its internal depen-
dencies. For our solution, we will make use of the Linear Elasticity Model since we look
at small vibrations around the rest configuration where the linear component is dominant.
This model takes the small strain tensor (derived from the deformation gradient) as input
together with two inputs λ, µ called the Lamé coefficients. These coefficients are derived
from the two material properties: Young’s modulus1 k and Poisson’s ratio2 v. Which results
in the strain energy density function:

λ =
Eν

(1+ν)(1−2ν)
µ =

E
2(1+ν)

(3.4)

Ψ(F) = µε : ε+
λ

2
tr2(ε) (3.5)

3.2 Finite Element Methods

It is now possible for us to calculate the strain energy for a given body and its deformation
by integrating the energy density function over the entire body Ω:

E[φ] :=
∫

Ω

Ψ(F)d
−→
X (3.6)

However, that still gives us the sum of the strain energy in the body. We do not know
the direction and location of the forces in the body. This prevents us from identifying
deformations that achieve the necessary balance to satisfy the requirements for vibration
modes. It also requires an extensive deformation mapping of the body. That is easy to get
for simple shapes but mathematically intensive when our test objects get more complex.
These problems can be solved by employing discretization.

3.2.1 Discretization

In simulations, the body is defined as the union of tetrahedra. We do not consider all pos-
sible deformations of the tetrahedra but restrict to deformations that are continuous and
are given as an affine map in each tetrahedron. These deformations can then be mapped
to the corresponding vertices of the tetrahedral mesh in space:

−→
X 1,
−→
X 2, ...,

−→
X N . We can

define the deformation as the deformed vertex position, also known as degrees of freedom
x = (−→x 1,

−→x 2, ...,
−→x N) where−→x i = φ(

−→
X i). We can then define an energy function that takes

the degrees of freedom as input, returning the total amount of strain energy.

E(x) := E[φ] =
∫

Ω

Ψ(F)d
−→
X (3.7)

1A mechanical property of the tension of a material https://en.wikipedia.org/wiki/Young’s_
modulus

2A mechanical property of the deformation of a material https://en.wikipedia.org/wiki/Poisson’
s_ratio
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Figure 3.2: The first 10 eigenmodes of the armadillo mesh

Our function’s input is now discrete, while our function requires a continuous answer.
As mentioned before, it is possible to interpolate between the points and compute complex
mathematical functions that would define the interpolation, but that is computationally ex-
pensive. It is, therefore, better to find a definition for the deformation map that is based on
the vertices of our simulated body.

Simulating the body requires a digital model that allows easy volume calculation. We
will be using a tetrahedral mesh. The total volume is then calculated by summing the vol-
umes of each tetrahedron together. The tetrahedron is also a great shape for reconstructing
the deformation map φ. It is possible to define an affine map for each tetrahedron Ti.

φ(
−→
X ) = Ai

−→
X +
−→
b i for all

−→
X ∈ Ti (3.8)

3.3 Modal Analysis

Modal analysis is used when one is analyzing a spectrum of frequencies or related quanti-
ties. An extension of modal analysis is spectral theory. In spectral theory, one uses eigen-
values and eigenvectors as operators to analyse frequencies. We use this theory as the basis
for finding eigenmodes

Eigenmodes, also known as vibration modes, are distinct patterns of vibration that a
structure or object can exhibit. Every eigenmode corresponds to a specific frequency and
respective shape of vibration.

Computing eigenmodes is done by solving for eigenpairs. In our case, we solve for
eigenpairs in large sparse matrices. Solving for eigenpairs in a large sparse matrix requires
methods specifically tailored for large sparse problems. Here, we will introduce the sub-
space iteration method, one of these methods.

3.4 The Subspace Iteration method

The subspace iteration method found in the article by Bathe and Wilson [1973] in 1972
aimed to solve for frequencies and mode shapes of structures with a particular focus on
buildings and bridges. The subspace iteration method solves generalized eigenproblems
of the form shown in equation (3.9), where S and M are the respective stiffness and mass
matrices of size n×n. Φ is equal to the set of eigenvectors of size n× p, where p is equal
to the amount of smallest eigenpairs to be calculated. Accompanied by Ω of size p× p, a
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diagonal matrix with the resulting eigenvalues on diagonal. The Subspace Iteration Method
(SIM) will solve for the p smallest eigenvalues λi and their respective eigenvectors φi where
i = 1,2, .., p. The final result will be ordered in the form: 0 < λ1 ≤ λ2 ≤ ...≤ λp

SΦ = MΦΩ (3.9)

SIM works by slowly iterating to the solution starting from the initial iteration vectors.
The vectors are column entries in an n by q matrix Φ. Where q is larger than p. How
much larger is often determined by testing multiple values. A term between 1.5p and 2p
is considered normal. Iterations generally follow the pattern shown in the equations below:
(for iteration k = 1,2, ...)

After each iteration, the resulting iteration vectors are tested for convergence. In our
test setup, we use the convergence test shown in Nasikun and Hildebrandt [2022]:

||SΦi−λiMΦi||M−1

||SΦi||M−1
< ε (3.10)

Algorithm 1 Subspace Iteration Method from Nasikun and Hildebrandt [2022]
Input: Stiffness matrix S∈ℜn×n, mass matrix M ∈ℜn×n, initial vectors Φ∈ℜn×q, number

of eigenpairs p, tolerance ε, shifting value µ
Output: Matrix ∆ with lowest eigenvalues of (3.9) on diagonal and Φ listing eigenvectors

as columns. First p pairs converged.
1: function SIM(S, M, Φ, p, ε, µ)
2: Compute sparse factorization: LDLT = S−µM
3: repeat
4: Solve using factorization: (S−µM)Ψ = MΦ

5: Compute reduced stiffness matrix S̄←ΨT SΨ

6: Compute reduced mass matrix M̄←ΨT MΨ

7: Solve dense eigenproblem: S̄Φ̄ = M̄Φ̄∆̄

8: Update vectors Φ←ΨΦ̄

9: until pairs (∆̄ii,Φi) pass convergence test (3.10) for all i≤ p return: ∆̄ and Φ

10: end function

SIM benefits from good initial input vectors. The distance of the input directly correlates
to the number of iterations that are required to solve the eigenproblem within the specified
tolerance. A lot of research on SIM puts the focus on improving the initial input. Bathe
and Ramaswamy [1980a] tested initial vectors initialized with random content as well as
initial vectors produced by the Lanczos process, Cheu et al. [1987b] investigated the effects
of selecting initial vectors on computation speed and Wang and Zhou [1999] eventually
proposed a best over-relaxation factor for each individual vector to be used for initialization.

Another optimization method for SIM is the use of shifting. Shifting can be applied to
the stiffness matrix to shift the search space for the eigenpairs favourably. SIM solves for
p eigenpairs where the first solved pair is equal to λ1 and the last solved pair is equal to
λp. Shifting the search space allows SIM to more quickly solve for the first pair. A method
proposed by Zhao et al. [2007] shows the results of a good shifting strategy.
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3.5 The Hierarchical Subspace Iteration method

The Hierarchical Subspace Iteration Method (HSIM) by Nasikun and Hildebrandt [2022] is
another optimization method. HSIM creates multiple levels with the use of vertex sampling
and a prolongation operator. It then solves the coarsest level densely, of which the output
is then used as input for the next level where it uses SIM. It continues to do this until it
solves the finest level with the output of the previous level as its input. This method takes
advantage of the available context of the problem.

We will explain all the required steps for HSIM to work in more detail in this section
since our work applies HSIM to our problem.

3.5.1 Hierarchy construction

We start off with constructing a vertex hierarchy to be used for our sampling. It is important
that the hierarchy covers the mesh as well as uniformly as possible in order to promote
overlapping regions. HSIM uses farthest point sampling as its sampling algorithm.

Sampling is, however, only part of the construction. Another important factor is the
level of size. The size of the levels corresponds directly to the size of the finest level and the
amount of levels. The levels T range from 0 to T −1. Where the coarsest level is defined in
equation (3.11).

nT−1 = max[1.5p],1000 (3.11)

Nasikun and Hildebrandt [2022] define a growth rate µ (3.13) to use between levels.

nT = µnT+1 (3.12)

Where µ is given by the Tth order square root of the ratio of the finest level divided by the
coarsest level.

µ =
T

√
n0

nT−1 (3.13)

3.5.2 Prolongation and restriction

Defining the levels is an important step, but not the only one. Next Nasikun and Hildebrandt
[2022] define prolongation and restriction operators that allow us to restrict and scale the
problems and the solution from one level to another. These operators are each other’s trans-
pose and define the influence of a sample on their neighbours.

To determine the factor of influence Nasikun and Hildebrandt [2022] use the geodesic
distance of a vertex from the selected sample. They scale this distance linearly between 0
and the max distance pT defined in equation (3.14).

pT =

√
σA
nT π

(3.14)

Where A is the area of the surface and σ is a control parameter. The reasoning behind
equation (3.14) is that the control parameter σ specifies the overlap between geodesic disks.
Where σ stands for the amount of times the geodesic disks can cover the entire object
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area. The vertices within the area of influence of a geodesic disk are then entered in the
prolongation operator at their respective entry. The prolongation operator is then normalized
row-wise to end up with our final prolongation operator. The stiffness- and mass matrices
are then computed for each level by using the restriction operator.

3.6 Turning vectors

Our algorithm table of the Enriched Subspace Iteration Method proposed by Kim and Bathe
[2017] can be seen in algorithm 2.

Algorithm 2 Enriched Subspace Iteration Method from Kim and Bathe [2017]
Input: Stiffness matrix S∈ℜn×n, mass matrix M ∈ℜn×n, initial vectors Φ∈ℜn×q, number

of eigenpairs p, tolerance ε, shifting value µ
Output: Matrix ∆ with lowest eigenvalues of (3.9) on diagonal and Φ listing eigenvectors

as columns. First p pairs converged.
1: function ENRICHED SIM(S, M, Φ, p, ε, µ)
2: Compute sparse factorization: LDLT = S−µM
3: Initialize orthonormal starting iteration vectors with 1 iteration SIM(S,M,Φ, p,ε,µ)
4: repeat
5: Partition iteration vectors Φk = [Φpk,Ψ

a
k ,Ψ

b
k ] ▷ Φpk: converged vectors

6: Solve with factorization SΨ̄a
k+1 = MΨa

k
7: Construct Yk according to Kim and Bathe [2017](2.1.3)
8: Solve with factorization SȲ a

k+1 = MY a
k

9: Construct Ψ̄k+1 = [Φpk,Ψ̄a
k+1,Ȳk+1]

10: Compute reduced stiffness matrix S̄k+1← Ψ̄T
k+1SΨ̄k+1

11: Compute reduced mass matrix M̄k+1← Ψ̄T
k+1MΨ̄k+1

12: Solve dense eigenproblem: S̄k+1Φ̄k+1 = M̄k+1Φ̄k+1∆̄k+1
13: Update vectors Φk+1← Ψ̄k+1Φ̄k+1
14: until pairs (∆̄ii,Φi) pass convergence test (3.10) for all i≤ p return: ∆̄ and Φ

15: end function

The steps of the Enriched subspace iteration method are similar to those of the original
subspace iteration method. The difference is the addition of steps 5-9. We will give a
brief description of all the steps in the algorithm. Step 2 computes the sparse factorization
for the shifted stiffness matrix. This factorization can then be used by both Enriched SIM
and the initial SIM call. In step 3, the original SIM algorithm described in 1 will be run
for 1 iteration. This creates a set of orthonormal starting iteration vectors for enhanced
SIM. In steps 4-14, we repeatedly execute enriched sim iterations until. In step 5, the
iteration vectors are split into 3 partitions. The first partition Φpk is equal to the subset of pk
converged vectors. The other two sets are order n x rk where rk = (q− pk)/2. This gives us
two equal sets of unconverted vectors. In step 6, we solve the linear system for all vectors
in Φa

k . The results are then used to generate and apply turning vectors in step 7. A further
explanation of the math is provided in Kim and Bathe [2017](2.1.3). The turned vectors
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are then used to solve the linear system. After which, we construct our set of iteration
vectors Ψ̄k+1. We then start a normal SIM iteration in steps 10-13, after which we check for
convergence and repeat the iteration if not all p eigenpairs have converged.

14



Chapter 4

Method

In this chapter, we discuss the approach and the respective considerations for the research
questions. We first describe the basic changes that had to be made to fit HSIM onto our
problem. We then discuss changes in parameters which will better fit the algorithm to our
problem, as well as introduce a few novel ideas that aid the speed of SIM iterations for our
problem.

4.1 Baseline Hierarchy Performance

Since our goal is to adapt HSIM to the elasticity problem, it is important to establish a
baseline performance reading comparing HSIM to SIM. However, before we can evaluate
the baseline performance of HSIM on our problem, we have to adapt HSIM to work with
our problem specification. Adapting HSIM to work requires multiple changes. Firstly, we
have to adapt working metrics. HSIM uses the total surface area as a parameter for the size
of the radius of influence used in formula (3.14). For our adaptation, we will continue to
use the surface area, which requires us to supply the surface triangles for the meshes that we
do not tetrahedralize ourselves. Another necessary adaption is the degrees of freedom per
sample as well as general indexing within the hierarchy. Every vertex represents 3 degrees
of freedom now, which requires extensive changes to code to accommodate for that. We
decided to continue sampling per vertex instead of per degree of freedom. Apart from these
changes, we implemented the hessian matrix generation as well as an extensive clamping
library to prevent eigenvalues equal to 0. This allowed us to collect a baseline performance
reading.

The baseline can be established by using the parameters defined in the original HSIM
paper. We do have to adapt the algorithm to accept meshes where each vertex corresponds
to 3 degrees of freedom. After that, we disable all the SIM-specific optimizations: dou-
ble solve step, excluding converged iteration vectors and shifting. Comparing HSIM and
SIM without any other optimizations except for the hierarchy for HSIM allows for a good
performance indication that the hierarchy brings.

This experiment for testing the hierarchy performance might give negative results or
even not converge at all if the hierarchy returns linearly dependent iteration vectors. The

15



experiment is meant to serve as a starting point for experimentation and parameter deter-
mination. Furthermore, it will aid as a point of comparison for additional optimization or
adaptations to the method. We might encounter scenarios where parameters improve per-
formance when only certain conditions are met. In that case, we can compare the overall
performance to the results of this experiment.

Our results will include the iteration count of both SIM and HSIM, as well as their
respective real-world timings. The timings of HSIM will be split out between hierarchy
timing and the total solve time. The results will be accompanied by an analysis of the
relative difference between both algorithms produced within their specified tolerance. A
plot of the Fourier coefficients of the eigenfunctions of the coarse level in the eigenbasis of
the finest level will be included as well. Plotting the Fourier coefficients, seen in a paper
by Nasikun et al. [2018] in Figure 7, gives a good insight into how well the solution of the
coarser levels translates to the finest level.

4.2 Basis Functions

The construction of the prolongation and restriction operators depends on multiple param-
eters and design decisions. In this section, we will focus on a few of those parameters and
design decisions. We will explain why they are important as well as hypothesise why the
optimal value or strategy might be different for our application of HSIM compared to the
original application of the Laplace-Beltrami problem.

4.2.1 Support Region

When constructing the basis, HSIM makes use of a radius of influence for each sample.
This radius is used to translate the influence of the selected vertex onto all vertices within
the radius. The length of the radius differs per level and is computed with the equation
shown in 3.14. The variable σ was determined on 7 in the HSIM paper through heuristics.
The authors theorize that this value agrees with the average valence in a triangle mesh.
The value should be set to the average expected number of non-zero entries per row in the
prolongation operator.

Our problem requires constructing a hierarchy of a volumetric mesh instead of a surface
mesh. This comes with a higher expected average valence. Another possible factor at play
here can be the amount of degrees of freedom for each vertex. This results in 3 entries per
vertex in the prolongation operator instead of 1 entry per vertex for the Laplace-Beltrami
operator.

Exploring the effects of different support values on our problem might result in a better
value tailored to our problem. We can determine this value by heuristics. In our imple-
mentation, we enter 3 entries per vertex instead of 1. Since this step happens after the max
distance determination, it does not impact the support value. The average valence, however,
still does.
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Figure 4.1: A graph showing the different basis functions we will test for basis construction.

4.2.2 Functions for basis construction

The prolongation and restriction operators of the hierarchy are constructed by mapping the
influence of the sampled vertices of the lower level to the vertices at the higher level. While
the degrees of freedom per vertex differ, in our case, the method remains the same. To
determine the influence of one vertex on a sampled vertex, we use a mapping function that
maps Dijkstra’s distance between a value of 0 to 1, depending on the maximal distance.

HSIM makes use of linear mapping. There is, however, a previous paper from the
authors Nasikun et al. [2018] that makes use of a third-order polynomial to map influence.
The authors discuss a selection of basis functions in a supplementary document Nasikun
et al.. They discuss a few other basis functions. We will test these basis functions for our
application together with an optional Gaussian function. This function is more aggressive
in its drop in influence.

Our testing methodology will differ from the methodology of the supplementary docu-
ment by Nasikun et al.. The document shows testing done with Laplace-Beltrami problems
while we aim to use it for the elasticity problem. The fast approximation paper aims to
achieve good approximations by immediately prolongation the coarse level. Our aim dif-
fers partially. We aim for a good translation between levels in order to improve convergence
speed on the finest level.
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4.2.3 Euclidean Distance

HSIM uses an approximation of the geodesic distance between vertices by using Dijkstra’s
algorithm. This distance calculation is used for farthest point sampling when creating the
vertex hierarchy. It is also used for the basis construction, where the influence of a vertex on
another is defined by the distance between them. It would be interesting to see if the usage
of Euclidean distance improves the basis construction. The geodesic distance works well on
surface meshes since it allows for a large sphere of influence without including vertices that
have no direct connection to the selected vertex within the sphere of influence. However,
we are working with volumetric meshes. That should mostly prevent these far-away yet
included vertices when using the Euclidean distance, except in certain cases.

We can test this hypothesis by testing the Euclidean distance implementation against
the original implementation.

Using the Euclidean distance might have little impact on the performance of the algo-
rithm. If that is the case, it might be a logical option to explore this problem since it would
allow for a cheaper hierarchy construction. For these tests, we will look at the performance
of the algorithm by comparing the number of iterations, solve time and hierarchy construc-
tion time.

Another possible benefit of using the Euclidean distance is the possibility of parallel
hierarchy generation. This could prevent bottlenecks for high vertex count models. It would
also provide a simpler implementation path where one could quickly construct hierarchies
with little to no abstractions. We combine the availability of Euclidean distance with a
multitude of distance functions that allow us to map the influence of a vertex to another in
a non-linear way.

Figure 4.2: An 2D example showing the air-gapping that can occur when using Euclidean
distance. The vertex on the bottom of the mesh has no path to the sampled vertex within the
circle of influence.
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4.3 Degrees of Freedom per Level

The size of the submatrices for each level is decided by equation 3.12. This equation bases
the size of the intermediate levels on the size of the coarsest and finest levels. The coarsest
level size is user-defined. In the original HSIM paper, they set this level at max(1.5p,1000).
Our coarse level size should allow efficient dense solving while allowing for a good solution
that performs well on iteration vectors on the level above.

Our implementation maintains the sampling per vertex methodology of the original
HSIM implementation. The only change we make is that we now include three degrees
of freedom per sampled vertex instead of only one. Another possible method of sampling
is discussed in Section 6.3.3. The method discussed in that Section is not applicable to our
current focus on isotropic materials.

To test for the optimal amount of degrees of freedom, we will look at the performance
of the coarse level solve together with the effects on the number of iterations on the finest
level. We will also graph the norm of the difference of the prolongated coarse level results
projected onto the reference solution of the finest level. This plot will show the effects of
coarse level size on the correctness of the prolonged solution. Our goal is to find a proper
size that gives the lowest difference while allowing for efficient dense solving.

4.3.1 Number of levels

The optimal number of levels used for solving depends on a few factors. Every level requires
a new matrix factorization, which is computationally expensive. The benefit, however, is a
possible reduction in iterations for the finest level. Computation steps on the finest level are
more expensive due to the size of the matrices. If an extra level is capable of reducing the
compute time on the finest level by a larger amount than the required compute time for the
extra level, then we can consider it a worthy trade-off. The original HSIM paper found that
for their application, there were no benefits when the number of levels grew beyond 3. They
also found that 2 levels were enough for a small number of eigenvalues p < 200, and 3 were
better for larger numbers. The tests will be run on 2 different objects differing in vertex
count. The authors of HSIM, Nasikun and Hildebrandt [2022], tested different tolerances
as well but found that the optimal number of levels does not change for different tolerances.
We decided to only test with the tolerance 1e−2 since we expect HSIM to perform best for
large tolerances.

To test the performance of different numbers of levels, we can create a table of different
runs with varying numbers of levels ranging from 2 to 4. In this table, we can list the
run-time and iterations used per level. It will also be useful to include the maximum norm
difference of the solution of every sub-level to the reference solution. We should use the
first p vectors for this comparison since we only converge the first p eigenpairs on each
level. A secondary visualisation can be used to compare the variance in norm difference per
level for 4 levels against 2. The timings for the factorization and solve time per level will
also be put in a stacked bar chart where we can visualize the execution timings vertically.
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4.4 Shifting

Subtracting the mass matrix times a shift value µ of the stiffness matrix before factorization
is called shifting. The shift accelerates convergence near eigenvalues close to the shift value
µ that is being used. The shift value is intended to be used multiple times during solving,
where it would be the average of the last converged eigenvalue and the next eigenvalue to
converge.

There is, however, another method that proposed an aggressive shift into the uncon-
verged eigenvalue range by Zhao et al. [2007]. The shift value is set to an unconverged
eigenvalue at index α where alpha is user-configurable. The original authors of the shifting
strategy settled on α = 0.4. The recommended value in the HSIM paper is α = 1/3. HSIM
makes use of this value in a different manner. The shift is only applied once per level, and
the value µ is calculated by using the resulting eigenvalues of the previous level. The eigen-
values should be approximately the same between levels, which allows for a good shifting
selection.

An optimal shifting value can be found by benchmarking the number of iterations and
timings of a test problem for different numbers of eigenvalues. We can then highlight the
best timing for each parameter per test run as well as the greatest reduction in iterations
at the finest level. These should correspond since the shift parameter does not affect the
computation speed of the factorization by much. We can then select the optimal shift value
for our problem by choosing the value that guarantees the best overall performance.

4.5 Subspace Size

SIM makes use of a subspace to project the stiffness and mass matrices. The projected
matrices are then densely solved, and the results are then lifted up from the subspace and
used as input for the next generation. Increasing the subspace size can reduce the required
number of iterations, but it also makes the iterations more costly. Making the subspace too
small could slow down convergence significantly. It is, therefore, important to choose an
appropriate subspace size that provides a good balance.

However, it would also be interesting to see if we can find a subspace size where we
are able to reduce the number of required iterations down to 1. Exploring the effects of
different subspace sizes while using the hierarchy might result in a strong enough reduction
of iterations to justify the additional computational cost per iteration.

To test the effects of subspace size, we will measure the timings and number of iter-
ations for differing subspace sizes and differing number of eigenvalues. Our parameters
will be set to the resulting values from the previous experiments. We can support possible
values by comparing the Fourier coefficients of the last eigenvector φp in the finest level
on the prolongated solution of the coarse level. We can take the absolute of these of these
coefficients and sum them from start to i, where i is an index of the subspace. Plotting
these values results in a plot that converges to 0 at the index of the subspace where all the
coefficients necessary for convergence are found 4.1.
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The increase in subspace size does require the usage of additional memory for storing
all the vectors. A combination of many requested eigenpairs with a large subspace size and
a large model might result in system limitations. In those cases, we might leave out that spe-
cific entry while indicating that we were ¡memory bound¿ for that specific test. The model
selection for the tests will be specified in the experiments where the initial experiments
might indicate the possibility of including a larger model.

4.6 Tolerance

Another parameter that should be tested is the specified tolerance of the desired result.
The authors of the HSIM paper specify a tolerance of 1e-2 for their problem and show the
results of running HSIM with a tolerance of 1e-4. The results show better scaling for Lanc-
zos’ method compared to the SIM-based methods. We should test the effects of increasing
tolerance for our problem as well.

We can make the hypothesis that the results will be equal to the ones shown in the HSIM
paper. Computing a smaller tolerance would require more SIM iterations for both SIM and
HSIM to satisfy the tolerance requirements for each eigenpair. It is, however, interesting to
compare the results with Matlab Lanczos’ algorithm as well.

Our results can be shown in a small table that compares HSIM’s and SIM’s performance
with each other for a tolerance of 1e-2 and a tolerance of 1e-4.

4.7 Materials

Material parameters are used to build stiffness and mass matrices that reflect the materials
of the real world with the same material parameters. These material parameters can change
the condition of the matrices by increasing the number ranges or distributing energies more
broadly within each tetrahedron. It is, therefore, important to test a few materials and their
possible impact.

For our testing, we can test the relative performance of both rubber and steel for the
material parameters in terms of timing. An interesting addition can be a graph where we
change the parameters in an unrealistic manner where we list the iteration counts for both.
We can use the values v = ε,0.10,0.20,0.30,0.40,0.50− ε as Poisson’s value. We can use
the values k = 0.01,0.1,1,10,100,1000 in GPa for Young’s modulus.

4.8 Turning Vectors

In this section, we will discuss our considerations concerning the acceleration method of
turning vectors by Kim and Bathe [2017]. Turning vectors aims to improve the quality of
the iteration vectors during every iteration by turning the iteration vectors in a way that aids
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faster convergence. This method showed a reduction of iterations and solve time when in-
troduced, however, it was run in a sequential manner. This does not invalidate the reduction
in iterations, but it might result in a slowdown compared to SIM when both are run with
multiple cores available.

The algorithm requires extra sequential steps during every iteration, dependent on the
amount of turning that is required for that iteration. The benefit of this step is the reduc-
tion in iterations. Our implementation applies parallel processing to the algorithm where
it seemed possible, but we were unable to make it fully parallel. The algorithm also intro-
duces the requirement to first run a normal SIM iteration before starting the enhanced SIM
iterations to prevent iteration vectors from becoming linearly dependent when turning.

These extra requirements create conflicts with other optimizations that HSIM uses, such
as the double-solve step per iteration, as well as the optimization where we do not solve for
already converged vectors within a stricter tolerance. Enhanced SIM does ignore the already
converged vectors as well, but it does not make use of a sort-like multi-solve step.

4.8.1 With Hierarchy

We think it is important to test the performance of enhanced SIM within the hierarchy. It
can result in a reduction in iterations or show that the method does not contribute much to
the hierarchy. It is possible to look at the total number of turns that the algorithm uses for a
run. This can give an indication of its use. A low number of turning vectors indicates that
the iteration vectors are already near the optimal state.

The requirement of a normal SIM step before it uses the turning vectors does limit its
applications. We should compare the use of enhanced SIM for both the finest level and the
intermediate levels. We can evaluate performance through known means such as timings
and iterations, but we should also list the total amount of turning vectors used during every
level.

Enhanced SIM introduces a new algorithm to test. We will compare the performance of
HSIM against three different implementations of HSIM with turning vectors:

1. HSIM with turning vectors on the finest level

2. HSIM with turning vectors on all levels

3. HSIM with turning vectors on intermediate levels

Our motivation for the first and second implementations stems from our considerations
above. We think it might improve the finest level convergence but hinder intermediate levels
in iteration count. To test this hypothesis, we should, therefore, test both implementations
1 and 2. The last implementation stems from a hypothesis that can partially be proven by
the second implementation. Since SIM with turning optimizes all the iteration vectors with
turning. We think that it might be possible to introduce this optimization on the iteration
vectors on an intermediate level and then prolong them to the finest level. This would
significantly reduce the performance penalties of the turning vectors while possibly keeping
the speed up in convergence.
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4.8.2 Against Hierarchy

It is important to test enhanced SIM as a stand-alone SIM implementation as well. The
results of the previous experiment in section 4.8.1 might indicate that the hierarchy and the
turning vectors compete for subspace optimization. If that is the case, we should consider
them as competitors during our final experiment. Getting a baseline reading to see the per-
formance of enhanced SIM compared to HSIM and normal SIM is, therefore, an important
insight.

We can make use of the existing implementation and run enhanced SIM with the same
parameters as our SIM runs. We can then note down timings for both as well as the total
amount of turning vectors used for enhanced SIM. We can present the result in a table
and discuss whether or not to include enhanced SIM in our benchmarks as a competing
algorithm.

4.9 Scaling

One of SIM’s advantages is scale-ability. It is capable of using all available threads scaling
appropriately, as shown by Bathe and Ramaswamy [1980b]. The algorithm also has an ad-
vantage when the number of searched eigenvalues increases. This stems from the use of the
subspace. Every iteration improves the entire subspace. When the subspace is bigger due
to a higher number of requested eigenvalues, it does not directly result in more iterations.
Instead, the iterations can become more expensive.

4.9.1 Number of EigenValues

HSIM for Laplace-Beltrami problems shows strong scaling improvements when focusing
on the number of eigenvalues when comparing it to the original SIM algorithm. It is im-
portant to verify if this scaling is also present in our application. It will provide insight
into the applicability of HSIM for vibration modes and perhaps find use cases where it is
always more beneficial to use HSIM for a certain number of eigenvalues and up. We can
test the absolute and relative performance increase of HSIM, SIM and Lanczos based on the
number of eigenvalues to compute by testing at least 2 different models where the amount
of requested eigenvalues is varied. The results will include a table where the timings and
iteration counts are listed for both SIM and HSIM, with Lanczos only having timings listed.
A graph of the timings per algorithm will also be included to visualize the scaling.

4.9.2 Parallel Scaling

For these tests, we will compare the performance per number of cores of HSIM and SIM
in order to determine HSIM relative scaling when the number of cores is increased and to
compare it to SIM. The original SIM algorithm scales well when increasing the number of
cores, as shown in Bathe and Ramaswamy [1980b]. It is important to establish if this holds
up for HSIM as well. And how well it compares to SIM. The test gives guidance as to when
one should prefer one over the other. If HSIM scales better than SIM, one might prefer
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running HSIM on a cluster, but if it seems to have a worse scaling factor than SIM, there
might be a certain number of cores that define the border condition on choosing SIM over
HSIM.

To test this, we will disable the cores within the bios itself. The tests will still be
run on Windows 11, where an operating system is present. This might result in strange
performance numbers when testing low core counts. The experimentation will show if
the data is comparable to the graphs shown in Bathe and Ramaswamy [1980b]. It might
be possible that the OS will increase its background usage when the number of cores is
increased again.

To ease testing time, we can make use of a small model with a small amount of degrees
of freedom. This would allow us to test for a small amount of eigenvalues as well as a some-
what bigger amount to compare the scaling factors of both. Testing two different numbers
of eigenvalues will allow us to see if the increase in parallel performance is dependent on
the amount of the eigenvalues and to what extent. Our hypothesis would be that an increase
in the number of eigenvalues increases the parallel scaling factor of the algorithm. Since
most parallel steps execute on a number of subspace columns often equal to q/core count.

The results will include a table with timings for SIM and HSIM accompanied by a plot
containing the interpolated time measurements per algorithm per core count. The computer
that will be used for testing has an 8-core processor available. Which allows for 8 data
points when excluding multi-threading.
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Chapter 5

Experimentation

5.1 Experiment setup

In this chapter, we specify our experimentation setup and clarify implementation details
that might impact the experiments in one way or another. All our experiments are run on an
8-core Ryzen 7 3700X with 64GB of RAM combined with an RTX 2060 super with 8GB
VRAM. The implementation makes use of Eigen [Guennebaud et al., 2010] for linear al-
gebra computation combined with LibIGL [Jacobson and Panozzo, 2017] for its geometric
implementations and integration with tetGen [Si, 2015]. The implementation includes inte-
grating with Intel’s Pardiso solver [Schenk and Gärtner, 2011]. The parallel computations
are done with OpenMP.

5.2 Test models and problem generation

For our testing setup, we decided to generate our volumetric models and their respective
stiffness and mass matrices during runtime or by retrieving them from the cache. This
allows us to modify the material parameters of a model, and it allows us to test a wide
range of publicly available models. Most of our experiments are run with the same material
parameters unless specified otherwise. The default parameters are: k = 200GPa, v = 0.27,
density = 7750kg/m3 which are the parameters used for steel.

5.2.1 Problem generation

It is also important to establish a workflow for problem generation. Our application requires
not only the stiffness- and mass matrices but also the associated mesh. Finding tetrahedral-
ized meshes with the correct stiffness- and mass matrices for the linear elasticity structure
is hard, and creating a proper testing set out of the rare finds without being able to validate
the correctness of the matrices would yield unusable results. Therefore, we decided to im-
plement the problem generation as well as the tetrahedralization of surface models without
boundaries ourselves.
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5.2.2 Test models

Most extensive testing has been done with two models: The Rocker arm model and the
Armadillo model. Other models are used in the experiments as well. All used models can
be seen in Figure 5.1. For a complete list of the models, including the vertex count and
sources, we refer to Appendix B.

Figure 5.1: All the models used for testing. Naming (left to right): Armadillo, Fandisk,
Blade smooth, Rocker arm, Sphere, Spot, Stepper body

5.2.3 Measurements

Timings are measured using a singleton class using the std::chrono library to calculate the
duration between two measurement points in microseconds. All experiments were run on
a Windows 11 with all non-windows applications and background processes killed. The
resulting measurements were appended to a CSV file together with the given parameters for
the calculation.

The source code is compiled with Intel® oneAPI DPC++/C++ Compiler version 2023.2
as release distribution with the following flags:
-march=core-avx2 -O3 -qopenmp -W -Wall -pedantic -fma
The benchmarks were run with a Windows Batch file that would call the executable with the
parameter flags for every run. Starting the executable for every run terminates the possibility
of run time differences for sequential runs. Our code makes use of Open MP thread pools
and extensive amounts of memory. Both are hard to reset within our code since they also
depend on the resource allocation of the operating system. Starting a new process for every
run ensures that our code can not make any claims on still-existing resources.

This method has not been applied to Matlab’s Lanczos solver. There, we make use of
loops to run the algorithm together with tic and toc. The algorithm will be run 5 times, and
the average will be taken. During our exploratory research, we saw no direct improvement
or decrease in performance when consecutively running the same function.

5.2.4 Notation

Our experiments show the number of iterations required for HSIM to complete in tables.
Our notation for the number of iterations follows the notation shown in the original HSIM
paper [Nasikun and Hildebrandt, 2022]. The paper uses the letter F to denote the coarse
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level computation followed by the number of iterations per level separated with |. An ex-
ample of a 3-level computation where the finest level took 5 iterations and the intermediate
level took 3 iterations would be written like this: F |3|5.

5.3 Baseline Hierarchy Performance

In this experiment, we test the performance of HSIM, SIM and Matlab Lanczos’ solver. The
parameters for HSIM are set equal to the recommended parameters specified in the HSIM
paper. We disabled the shifting for SIM since our implementation’s shift depends on the
eigenvalues of the previous coarser level. Table 5.1 shows that HSIM is faster than SIM

Object Eigvals
HSIM SIM Matlab

Hierarchy Its Total solve time Its Solve time Solve time

Rockerarm (∼56k DoF)
50 0.8 F |3 13.0 9 18.7 2.3
250 1.5 F |3|4 38.4 11 55.7 12.1
500 1.4 F |4|6 72.7 12 103.3 41.2

Armadillo (∼693k DoF)
50 12.6 F |3 86.2 8 367.2 41.0
250 17.8 F |4|5 473.8 13 1366.1 200.9
500 17.1 F |11|6 1057.1 14 2868.6 500.9

Table 5.1: A table showing the performance of HSIM, SIM and Matlab on the test system
time in seconds

for runs in the table. HSIM has half the amount of required iterations on the finest level
compared to the iterations for SIM. HSIM is, however, still slower than the Lanczos solver
from Matlab.

5.4 Basis construction

5.4.1 Support Region

In this experiment, we test the relative performance of HSIM for different support region
values σ as seen in Equation (3.14). However, during our testing, we configured another
distance function than originally planned. We decided to re-run the benchmark with the
correct distance function while also including the results of the other distance function.

Figure 5.2: A Figure showing the effect of increasing the support region value on the ver-
tices within the radius of influence. A larger number results in a larger radius of influence.
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Linear
basis function

Support σ = 5 σ = 7 σ = 9 σ = 11 σ = 13 σ = 15

Object Eigvals its time its time its time its time its time its time

Rockerarm (∼56k DoF)
50 F |4 10.0 F |3 8.8 F |3 8.9 F |3 9.2 F |3 9.5 F |3 9.8
250 F |3|5 32.3 F |3|5 35.1 F |3|4 35.1 F |3|4 37.9 F |3|4 41.0 F |3|4 43.9
500 F |4|6 60.3 F |4|6 66.3 F |4|5 69.3 F |4|5 75.2 F |4|5 83.5 F |4|5 89.1

Armadillo (∼693k DoF)
50 F |3 76.0 F |3 76.9 F |3 79.3 F |3 83.1 F |3 87.4 F |3 94.9
250 F |4|5 405.1 F |5|5 450.6 F |5|4 375.0 F |5|4 396.0 F |5|4 416.6 F |5|4 433.4

Table 5.2: Comparison of required iterations and solving time for different support param-
eters using a linear function as a distance function.

Cubic polynomial
basis function

Support σ = 5 σ = 7 σ = 9 σ = 11 σ = 13 σ = 15

Object Eigvals its time its time its time its time its time its time

Rockerarm (∼56k DoF)
50 F |4 9.9 F |3 8.6 F |3 8.8 F |3 9.0 F |3 9.2 F |3 9.6
250 F |3|5 32.4 F |3|4 31.9 F |3|4 34.4 F |3|4 37.1 F |3|4 40.2 F |4|4 48.2
500 F |5|6 64.7 F |4|6 65.7 F |4|5 68.8 F |4|5 75.2 F |4|5 81.2 F |4|5 88.0

Armadillo (∼693k DoF)
50 F |3 74.7 F |3 76.7 F |2 64.8 F |3 84.6 F |3 88.2 F |3 93.1
250 F |4|6 465.5 F |4|5 428.7 F |5|4 377.8 F |5|4 397.6 F |5|4 417.4 F |5|4 438.3

Table 5.3: Comparison of required iterations and solve time for different support parameters
using the cubic polynomial as a distance function.

This section includes two tables where table 5.2 compares the impact of different sup-
port region values while using linear distance mapping for the sphere of influence when
constructing the prolongation operator. Table 5.3 compares the impact of different support
region values while using the cubic polynomial from Nasikun et al. as a mapping func-
tion. Table 5.2 shows a decrease in required iterations on the finest level when σ = 9 and
the number of eigenpairs to calculate is higher than 50. However, the rocker arm problem
converged faster for lower values of σ.

Table 5.3 shows a decrease in the number of required iterations on the finest level for σ=
9 for the armadillo as well as the rockerarm when calculating 500 eigenpairs. A reduction
in timings is still strongly present in the rockerarm runs where σ = 5|7. The Armadillo runs
do show a significant time reduction for σ = 9.

An interesting observation can be made when looking at the results of the support pa-
rameter benchmark in Table 5.3. Where we can see the effects of the support value differ
for both meshes. The Armadillo object benefits from a support value of σ = 9, reducing
the number of required iterations on the finest level. The same effect is present for the
rocker arm object where a reduction in the number of required iterations on the finest level
is present for all runs at σ = 9. However, the optimal timings are present for lower support
values. This can be attributed to lower hierarchy construction costs associated with decreas-
ing the support value. The same effect can be seen in Table 4 in [Nasikun and Hildebrandt,
2022].
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5.4.2 Functions for basis construction

cubic polynomial Linear polynomial
Object Eigvals Hierarchy Its Total solve time Hierarchy Its Total solve time

Rockerarm (∼56k DoF)

50 0.9 F |3 8.8 0.9 F |3 9.1
250 0.9 F |3|4 34.4 1.7 F |3|4 34.9
500 1.6 F |4|5 68.8 1.5 F |4|5 69.7
1000 1.6 F |6|9 195.4 1.8 F |6|8 190.0

Armadillo (∼693k DoF)
50 14.3 F |2 64.8 14.9 F |3 81.8
250 18.3 F |5|4 377.8 19.2 F |5|4 385.9

Table 5.4: A table showing the performance difference between the cubic polynomial and
the linear polynomial. The Gaussian and Sigmoid basis functions are omitted since they
introduced instability.

In this section, we compare the performance of various basis functions for HSIM as dis-
cussed in section 4.2.2. The basis function is used to map the influence of a vertex within
the radius of influence of the sampled vertex between a value of 0 to 1 based on the dis-
tance of the sampled vertex. The differences in timing and iterations for the Rocker arm are
small. The differences for the armadillo mesh are larger. The cubic polynomial reduces the
number of required iterations on the finest level for the 50 eigenpairs run compared to the
linear function. It also improves the total solve time for both runs. The results show that
the hierarchy construction benefits from using the cubic polynomial as the basis function
instead of the Linear function used in HSIM for Laplace-Beltrami problems.

5.4.3 Euclidean distance

Geodesic distance Euclidean
Object Eigvals Hierarchy Its total solve time Hierarchy Its Total solve time

Rockerarm (∼56k DoF)
50 0.9 F |3 8.8 1.1 F |3 9.1
250 0.9 F |3|4 34.4 2.0 F |4|4 40.7
500 1.6 F |4|5 68.8 2.1 F |5|5 78.8

Armadillo (∼693k DoF)
50 14.3 F |2 64.8 16.5 F |3 81.3
250 18.3 F |5|4 377.8 20.2 F |6|4 388.5
500 18.9 F |4|5 831.0 20.1 F |5|5 862.3

Table 5.5: A table shows the hierarchy construction time (seconds), the amount of required
iterations, and the total solve time (seconds).

In this section, we compare the performance of using the geodesic distance compared to
using the Euclidean distance. We compare hierarchy construction time, iteration counts
and the total solve time. Table 5.5 shows that the Euclidean distance requires more time
to construct the hierarchy while also increasing the total solve time of the algorithm for all
runs. The runs with more than two levels show an increase in the number of iterations for
the intermediate levels when using the Euclidean distance.

The use of Euclidean distance instead of geodesic distance has shown to be hurting
performance in general. Our implementation for Euclidean distance use was not as opti-

29



mized as the approximated geodesic distance implementation, which hurts the hierarchy
construction. However, comparing the differences in convergence time while disregarding
the hierarchy construction time allows us to see that the Euclidean distance hurts the speed
of convergence. This can also be seen in the iteration counts for all but the first row in table
5.5.

5.5 Degrees of freedom per Level

DoF on coarsest level 1500 3000 4500 6000 7500 9000
Object Eigvals Its Time Its Time Its Time Its Time Its Time Its Time

Rockerarm (∼56k DoF)
50 F |4 9.6 F |3 8.7 F |3 11.4 F |3 14.9 F |3 21.2 F |3 34.2
500 F |5|6 66.2 F |4|5 66.5 F |4|5 74.8 F |4|5 82.3 F |4|5 92.6 F |4|5 109.8

Armadillo (∼693k DoF)
50 F |3 81.3 F |3 80.3 F |2 95.1 F |3 84.6 F |3 90.8 F |3 102.6
250 F |4|4 356.1 F |4|4 367.5 F |4|4 385.3 F |5|4 410.9 F |4|5 463.4 F |4|4 437.4

Table 5.6: A table showing the performance of HSIM when changing the minimum coarse
level size. Solve time is in seconds.

The number of degrees of freedom per level is decided by the function 3.12. The size of
intermediate levels is based on the coarse level size. The coarse level size in our test setup
is limited by our GPU’s video RAM. The results in table 5.6 show overall higher timings
for coarse level sizes with 4500 degrees of freedom or more. Increasing the degrees of
freedom on the coarsest level results in a decrease in the number of required iterations, but
the runtime suffers from the additional computational costs of solving the coarsest level.
This slowdown is mainly caused by the construction of the mass- and stiffness matrices for
the coarser levels.
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Figure 5.3: A graph showing the root sum square of the Fourier coefficients for the 500Th
mode for varying coarse level sizes for the rocker arm model
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Figure 5.4: Magnitude of Fourier coefficients of the prolongated coarse level solution pro-
jected onto the reference solution for the rocker arm model

The number of degrees of freedom on the coarsest level shows a reduction in the number
of iterations on the finest level but an increase in the amount of solve time. This can be
explained by the higher hierarchy construction and dense level solve cost associated with a
larger coarse level. This cost depends on the size of the problem as well as the characteristics
of the object. Taking a look at figure 5.3 shows the Fourier coefficients of the 500Th mode.
the graph shows that all Fourier coefficients are present for coarse level sizes above 3000.
However, when looking at figure 5.4 we can see continuous improvement for higher coarse
level sizes. We decided to settle on a minimum coarse level size of 3000 for our testing.
However, we suggest that one might be able to make the case to increase this size if they
can still efficiently solve the dense level when increasing its size.
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5.5.1 Number of Levels

Levels 2 3 4
Object Eigvals its Time Its Time Its Time

Rockerarm (∼56k DoF)
50 F |3 8.9 F |3|3 21.1 F |2|2|3 23.2
500 F |7 46.5 F |4|5 69.0 F |5|5|5 140.0

Armadillo (∼693k DoF)
50 F |3 80.3 F |2|2 81.9 F |2|2|2 117.5
250 F |5 392.2 F |4|4 367.5 F |3|3|5 527.6

Table 5.7: A table displaying the performance for different numbers of levels.

In this section, we compare the number of required iterations and the timings of the
HSIM algorithm for varying numbers of levels. Table 5.7 shows the performance of HSIM
for varying amounts of levels. The runs show a clear distinction between the armadillo
object and the rockerarm object. The armadillo object sees an increase in performance
when using 3 levels for 250 eigenpairs both in timing as well as iterations on the finest level.
This differs for the rockerarm object, where a higher number of levels does not necessarily
improve the timings. It does show an improvement in the number of iterations required on
the finest level.

The number of levels to use when solving for a number of eigenvalues depends on
the trade-off between a higher hierarchy construction cost as well as longer solve time for
intermediate levels and the reduction of iterations on the finest level. The results show
increased performance for a level count of 3 when the degrees of freedom of a model and
the number of eigenpairs to be computed are large enough to allow for a gain in solve time
when the number of iterations is reduced. Increasing the number of eigenvalues, as well
as the degrees of freedom, increases the computation time per iteration on the finest level.
Once this computation time is large enough to justify an extra level in order to reduce the
number of required iterations on the finest level, we see a gain in solve time. This is not
true to for the rockerarm model, where the degrees of freedom are small enough to justify
the extra iterations instead of the increased level count.

5.6 Shifting

In this section, we compare the performance of varying shifting values α. In section 4.4 we
state that an optimal shifting value should guarantee an overall optimal best performance.
Looking at the results in table 5.8 shows that optimal value α differs per object per number
of eigenpairs calculated. A value of α between 0.15 and 0.2 shows the best performance
for the rockerarm object. Where the value α = 0.15 guarantees the best performance in a
time-based manner while keeping the required number of iterations on the finest level as
low as possible.

The shifting value used by HSIM determines how far the stiffness matrix will be shifting
into the unconverged eigenvalue range. HSIM can use the results of the previous level to
determine the required shifting value. In our results, we can see different performances
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Shift value α = 0 α = 0.1 α = 0.15 α = 0.2 α = 1/3 α = 0.4
Object Eigvals Its Time Its Time Its Time Its Time Its Time Its Time

Rockerarm (∼56k DoF)
50 F |2 7.3 F |2 7.5 F |2 7.6 F |2 7.0 F |3 8.4 F |4 10.1
500 F |3 29.4 F |3 28.1 F |3 27.8 F |4 33.1 F |7 46.5 F |10 57.8

Armadillo (∼693k DoF)
50 F |3 79.8 F |3 80.3 F |3 83.9 F |3 87.0 F |3 83.0 F |3 80.6
250 F |7|5 456.1 F |7|5 451.9 F |6|5 442.5 F |6|5 445.0 F |6|4 410.2 F |5|5 446.8

Table 5.8: A table showing the performance differences for different shifting amounts α.

for different meshes. The rocker arm mesh has a low number of iterations for all shifting
values of α = 0.15 or lower. This is different for the armadillo mesh, where the optimal
performance can be seen at α = 1/3.

5.7 Subspace Size

In this section, we compare the performance of HSIM with varying subspace sizes. In this
experiment, we look at the iterations as well as the timings. In section 4.5 we discuss the
goal of reducing the number o,f required iterations on the finest level to 1. This experiment
will, therefore, highlight an optimal value for timing performance as well as for iteration
count. The data in table 5.9 shows a strong decrease in the number of required iterations for

Subspace size 1.5 2 2.5 3 3.5 4
Object Eigvals Its Time Its Time Its Time Its Time Its Time Its Time

Rockerarm (∼56k DoF)
50 F |2 7.1 F |2 7.4 F |2 7.9 F |2 8.5 F |2 9.1 F |2 9.4
500 F |3 27.6 F |3 36.0 F |3 45.9 F |5 55.4 F |3 67.2 F |4 78.2

Armadillo (∼693k DoF)
50 F |3 78.9 F |3 90.4 F |2 82.2 F |2 95.0 F |2 103.8 F |2 117.4
250 F |6|5 425.5 F |3|4 458.6 F |2|3 459.2 F |2|4 674.0 F |2|4 811.8 F |2|4 958.0

Table 5.9: A table showing the performance differences for different subspace size numbers.

the armadillo object for a subspace size of 2.5. This reduction is not seen for the rockerarm
object, where the values are optimal for all subspace sizes 1.5-2.5.

Increasing the subspace size increases the cost of each iteration of SIM, however, it
allows for a reduction in iterations on the finest level. A distinction can be made here when
determining an optimal value. If we target minimizing the number of iterations on the finest
level, we should use a subspace size of q = 2.5. However, if we aim to minimize compute
time, we should use a subspace size of q = 1.5.

5.8 Tolerance

In this section, we compare the iteration and timings for both HSIM and SIM for different
tolerances. Table 5.10 shows the results of these tests. Decreasing the tolerance shows a
general increase in computation time as well as the number of iterations for both HSIM and
SIM. Our previous runs with Matlab’s Lanczos showed no need to compare timings be-
tween differing tolerances. The algorithm produces tolerances around 1e−5 in most cases
where it converged to 1e− 2. Lanczos is, in general, better tailored when computing for
small tolerances. These results follow the statements made in the HSIM paper by Nasikun
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Object Tolerance Eigvals HSIM SIM

Armadillo (∼693k DoF)
1e-2

50 F |3 74.6 8 314.5
250 F |6|5 394.3 12 971.1

Rockerarm (∼56k DoF)
50 F |2 6.9 9 15.2
250 F |3|3 28.4 11 37.2

Armadillo (∼693k DoF)
1e-4

50 F |6 111.1 14 386.8
250 F |11|11 728.6 24 1742.0

Rockerarm (∼56k DoF)
50 F |6 12.7 18 27.2
250 F |6|6 49.5 23 73.4

Table 5.10: A table showing the difference in performance between HSIM and SIM for
different tolerance values.

and Hildebrandt [2022]. A larger table with more models is available in appendix A as
Table A.1.

5.9 Materials

In this section, we measure the potential impact that material parameters have on the per-
formance of HSIM. In this section, we test with multiple material parameters. The material
parameters used in this section are:

Steel k = 200GPa, v = 0.27, density = 7750kg/m3 (5.1)

Rubber k = 0.01GPa, v = 0.001, density = 1230kg/m3 (5.2)

For our first experiment, we compared the performance of HSIM and SIM for multiple
models for both Steel and Rubber. The results of this experiment can be seen in table 5.11.

Steel Rubber

Object Eigvals
HSIM SIM HSIM SIM

Its Solve time Its Solve time Its Solve time Its Solve time
Armadillo (∼693k DoF)

50

F |3 74.6 8 314.5 F |3 70.2 8 314.5
Fandisk (∼28k DoF) F |2 6.0 8 14.0 F |2 5.9 8 14.1
Rockerarm (∼56k DoF) F |2 6.9 9 15.2 F |2 6.8 9 15.5
Sphere (∼182k DoF) F |6 39.5 10 1202.8 F |6 38.5 10 1190.6
Spot (∼28k DoF) F |3 6.6 9 10.8 F |3 6.7 9 10.9
Stepper body (∼33k DoF) F |2 7.0 9 10.5 F |2 5.8 9 10.6

Table 5.11: A table showing the performance of HSIM and SIM for both steel and rubber
material parameters.

The table shows no difference in the number of required iterations. It did, however,
impact the timings of both algorithms. This can be explained by the change in matrix
condition that occurs for the stiffness- and mass matrices when constructing them with
other material parameters.

We also ran the experiment for a range of values for both Young’s modulus as well as
Poisson’s ratio. The density was set at density = 1000kg/m3 during the experiment as well.
The results can be seen in Table 5.12.
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Young’s modulus
Poisson’s ratio 0.01 GPa 0.1 Gpa 1 Gpa 10 Gpa 100 Gpa 1000 Gpa
0.0001 71.7 70.4 71.2 70.4 70.4 71.5
0.1 71.7 70.1 70.2 70.4 69.7 71.8
0.2 69.8 70.0 69.1 69.7 69.6 69.7
0.3 69.0 69.5 69.3 69.2 69.4 69.3
0.4 69.2 69.3 69.2 69.6 69.4 69.8
0.49 70.1 69.3 69.5 69.6 69.4 69.5

Table 5.12: A table showing the timings of computing 50 eigenpairs for the armadillo mesh
with varying material parameters.

The table shows a general trend towards lower compute timings for a Poisson’s ratio
larger than 0.1. However, the general difference in timing is small enough to consider it to
have little impact on testing results as long as the same parameters are used between tests.

5.10 Turning Vectors

In this section, we will discuss the data of the experiments discussed in section 4.8. In this
section, we discussed the position of the enhanced SIM algorithm. We discuss the option
to use the enhanced SIM algorithm as an enhancement method for HSIM, and we discuss
whether or not it should be considered as a competing algorithm, suggesting we should
benchmark against it.

The data in this section will first show the performance of HSIM when using the en-
hanced SIM algorithm in one of the three configurations discussed in 4.8. It will then
compare the performance of HSIM to the performance of enhanced SIM itself to establish
the performance between the two.

5.10.1 With Hierarchy

HSIM turning on finest HSIM turning on all levels HSIM turning on intermediate
Object Eigvals Its # Turns Solve time Its # Turns Solve time Its # Turns Solve time

Rockerarm (∼56k DoF)
50 F |1+1 0 8.0 F |1+1 0 7.9 F |1+1|2 0 13.1
250 F |1+3 0 26.3 F |1+3 0 28.1 F |1+1|2 0 33.5
500 F |1+4 0 65.5 F |1+4 0 64.6 F |1+2|3 0 83.5

Armadillo (∼693k DoF)
50 F |1+2 5 88.8 F |1+2 3 91.7 F |1+1|2 0 98.9
250 F |2|1+3 0 460.2 F |1+2|1+3 0|0 456.7 F |1+2|3 0 463.0
500 F |3|1+3 0 1257.4 F |1+2|1+4 0|1 1244.8 F |1+2|4 0 1232.6

Table 5.13: A table comparing the differences in performance when applying SIM with
turning vectors to certain levels in HSIM against HSIM and the enhanced SIM algorithm.
The ”1+” symbolises the required normal SIM step before using enhanced SIM.

In the table 5.13, we compare the performance of the three HSIM configurations dis-
cussed in section 4.8. Every configuration lists the required iterations for convergence, the
number of turns that enhanced SIM executed for the respective levels and the total solve
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time. We decided to put the minimum amount of levels for the third configuration, ”HSIM
turning on intermediate”, on 3 to ensure the presence of intermediate levels.

The notation of the number of iterations in table 5.13 is a small deviation from the
notation described in section 5.2.4. We decided to add a ”1+” to the number of iterations
for the levels where enhanced SIM was used. The method requires an initial SIM iteration
before the turning iterations can be started. This brings us to the number of turns. Making
use of enhanced SIM together with the hierarchy results in almost no turns. The rockerarm
model did not require any turns at all. While the armadillo mesh did require turning for
some runs, it did not result in significant performance improvements.

Looking at the performance of using enhanced SIM in conjunction with HSIM, we can
see no performance increase compared to normal HSIM. Enhanced SIM has little use within
the hierarchy when we look at the number of turns taken by the method. The algorithm
reverts to a normal SIM algorithm with some overhead when no turns are made. Explaining
the small dip in performance.

5.10.2 Without Hierarchy

Enhanced SIM HSIM
Object Eigvals Its # Turns Solve time Its Solve time

Rockerarm (∼56k DoF)
50 1+4 54 10.1 F |2 7.9
250 1+6 393 43.9 F |3 24.9
500 1+7 824 120.1 F |3 45.9

Armadillo (∼ 693k DoF)
50 1+4 40 95.6 F |2 82.22
250 1+6 365 687.8 F |2|3 459.2
500 1+7 759 2513.8 F |3|3 1064.4

Table 5.14: A table comparing the differences in performance between HSIM and the en-
hanced SIM algorithm. The ”1+” symbolises the required normal SIM step before using
enhanced SIM.

The data displayed in section 5.10.1 shows the performance for HSIM when applying
the enhanced SIM algorithm in varying configurations. In this section, we will compare the
performance of HSIM against enhanced SIM itself. Table 5.14 compares the performance
of enhanced SIM versus HSIM. The amount of turning vectors used by enhanced SIM differ
significantly compared to the numbers shown in table 5.13. Putting both algorithms side to
side we can see that HSIM beats enhanced SIM on the amount of required iterations on
the finest level as well as in total. This pattern is also visible in the timings as well. The
difference between HSIM and Enhanced SIM becomes clear when we look at table 5.13.
Enhanced SIM is using significantly more turns when used as a stand-alone method. These
turns result in a relatively fast solve time compared to normal SIM. This speed-up seems to
lose its effectiveness when computing a large amount of eigenpairs. Our implementation of
the algorithm tries to parallelize as much of the algorithm as possible, which differs from
the initial implementation shown by Kim and Bathe [2017]. The vector turning is partially
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single threaded, which might explain the poorer scaling when the number of eigenpairs
increases. This would require more research to say this with certainty.

5.11 Scaling

This section focuses on the relative scaling of HSIM, SIM and Matlab. We will evaluate the
scaling of the algorithms for two criteria:

• Number of eigenvalues

• Number of cores (parallel scaling)

It is important to note the differences between the SIM and HSIM implementation in this
section. The SIM algorithm makes use of Eigen’s SimplicialLDLT solver as HSIM makes
use of Intel’s Pardiso solver. Our testing shows that Intel’s Pardiso solver is faster during
factorization but at the cost of longer solve timings compared to Eigen’s SimplicialLDLT
solver. There was no clear source to confirm that this was expected behaviour apart from
some Github repositories that included benchmarks1. Using SIM together with Intel’s Par-
diso solver resulted in instabilities during benchmarking, which would prevent some bench-
marks from yielding results. Which is why we use Eigen’s SimplicialLDLT for SIM.

5.11.1 Number of Eigenvalues

In this section, we evaluate the performance scaling of HSIM, SIM and Matlab when in-
creasing the amount of eigenpairs to compute. For our testing, we decided to focus on
scaling the number of Eigenvalues for the rockerarm problem.

Object Eigvals
HSIM SIM Matlab
Its Solve time Its Solve time Solve time

Rockerarm (∼56k DoF)

50 F |2 7.6 5 12.0 2.3
250 F |3 16.8 7 39.0 12.1
500 F |3 32.1 8 99.0 41.2
1000 F |4 63.4 8 193.6 126.9
2000 F |4 178.4 7 441.5 430.6
3000 F |5 369.2 7 811.7 910.0
4000 F |5 514.2 7 1367.4 1522.0

Armadillo (∼693k DoF)
50 F |2 78.6 5 352.4 43.2
250 F |2|3 367.5 7 1208.2 212.0
500 F |3|3 917.5 8 2572.3 680.9

Table 5.15: A table showing the iterations and timings of HSIM, SIM and Matlab’s Lanczos
solver.

1Both repositories look at the performance and tolerance of different solvers:https://github.com/
alecjacobson/sparse-solver-benchmark, https://github.com/BeanLiu1994/solver_speed_test
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Table 5.15 shows the number of iterations and the timings for HSIM and SIM, as well
as the timings for Matlab’s Lanczos solver. The table shows both HSIM and SIM closing
the gap with the Lanczos solver. HSIM is able to outperform the Lanczos solver when the
eigenpair count rises above 500. SIM eventually beats the Lanczos solver when the number
of eigenpairs reaches 3000.

5.11.2 Parallel Scaling

In this section, we evaluate the relative parallel scaling performance of HSIM and SIM. We
aim to determine the performance characteristics when applying these methods on high-
core count computers. All tests were run on the test system described in section 5.1

Threads
HSIM SIM

50 250 500 50 250 500
Solve Time Solve Time Solve Time Solve Time Solve Time Solve Time

1 11.5 47.8 106.7 34.6 157.5 350.0
2 8.6 29.1 58.1 22.8 86.4 184.9
4 7.5 19.9 41.8 18.6 57.0 114.9
6 7.1 17.0 31.0 16.8 44.6 84.9
8 7.0 16.0 26.4 15.9 38.9 76.5
10 7.0 18.4 26.9 16.2 42.0 76.7
12 7.0 16.4 27.0 16.1 40.2 72.3
14 7.0 16.7 26.8 15.8 38.2 70.7
16 7.6 16.8 32.1 16.1 40.4 75.2

Table 5.16: A table containing the runtimes and iteration count of HSIM and SIM for the
rocker arm problem with varying core counts. The computer used for the benchmarks has
8 physical cores and simultaneous multi-threading.

Table 5.16 shows the performance of HSIM and SIM for different thread counts. Each
method is tested against the rocker arm problem 3 times, with each run increasing the num-
ber of computed eigenpairs. The table lists 16 threads. 8 of which are hardware threads,
and the other 8 are produced by the Simultaneous Multi-Threading2 implementation of our
processor. The operating system’s thread scheduling prioritizes hardware threads, which
means the runs with 8 or fewer threads have a physical CPU core available for each thread.
This changes when increasing the thread count to 9 or above. This information is important
since it highlights the difference between HSIM and SIM. Where HSIM reaches its fastest
timing on the 8Th thread. SIM does so on the 16Th thread. Although with a small gain.
HSIM does seem to show the same behaviour when increasing the number of eigenpairs to
calculate, leading us to believe that the iterations themselves benefit from virtual threads. Si-
multaneous Multi-Threading does not guarantee increased performance when both threads

2A technique for assigning multiple independent threads of execution to one CPU core: https://en.
wikipedia.org/wiki/Simultaneous_multithreading
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are working on the same resources, as shown by Qun et al. [2016]. It would be better to
evaluate performance scaling on strictly physical cores to get a better comparison.

Cores
HSIM SIM

50 250 500 50 250 500
Solve Time Solve Time Solve Time Solve Time Solve Time Solve Time

1 11.5 47.8 106.7 34.6 157.5 350.0
2 8.6 29.1 58.1 22.8 86.4 184.9
3 8.0 23.2 46.5 19.7 66.6 136.1
4 7.5 19.9 41.8 18.6 57.0 114.9
5 7.4 18.6 32.6 17.6 50.4 97.7
6 7.1 17.0 31.0 16.8 44.6 84.9
7 7.1 16.6 27.8 16.5 41.1 77.4
8 7.0 16.0 26.4 15.9 38.9 76.5

Table 5.17: A table containing the runtimes and iteration count of HSIM and SIM for the
rocker arm problem for varying amounts of physical cores.

Table 5.17 shows the performance of HSIM and SIM for all core counts between 1 and
8. This data allows us to graph the relative performance gain for each number of cores
compared to executing the methods sequentially. Graphing the performance in figure 5.5
shows a similar curve for both methods.
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Figure 5.5: A graph showing the factor of speedup compared to single core performance
per number of cores

HSIM does show a faster decrease in performance gain when increasing core count.
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This can be attributed to the extra computational steps that are taken by HSIM during hi-
erarchy construction and coarse-level solving. The addition of these steps causes poorer
scaling per number of cores for HSIM compared to SIM. Nevertheless, the scaling of both
SIM and HSIM show the same reduction in effectiveness when comparing both trends in
figure 5.5. In practice, we can say that HSIM is fast enough to mitigate this relative scaling
issue. Looking at the parallel performance of HSIM compared to SIM, we can see that
both algorithms scale well when increasing core count. The HSIM algorithm reaches its
optimal performance at 8 threads while the SIM algorithm keeps improving its solve time
up to 16 threads. This indicates that SIM enjoys more benefit from multi-threading com-
pared to HSIM. Multi-threading allows the processor to execute instructions from another
thread while it waits for instructions from the current thread. This can speed up calculations.
However, depending on the operations being executed, it might also negatively impact cal-
culation speed. Qun et al. [2016] show that hyper-threading has little effect on parallel
CPU-bound workflows.

This prompted us to look at the scaling of both algorithms on physical cores only. Looking
at figure 5.5 shows the speedup of HSIM per number of cores following the trend of SIM up
until a core count of 5. Where the incremental speedup of HSIM seems to decline compared
to SIM. The hierarchy construction of HSIM is done in parallel whenever possible however,
it does contain serial code. This contributes to a larger percentage of serial code for HSIM
compared to SIM. That does not indicate that SIM will be faster than HSIM when increas-
ing the number of cores. HSIM reduces the overall amount of solve time by a significantly
large margin that SIM would require a factor > 2 of better scaling performance before it
catches up to HSIM.
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5.12 Multiple models

This section includes a table with testing results for a multitude of models to demonstrate
the performance of HSIM compared to SIM and Matlab’s Lanczos solver on a larger set of
models. The table shows Matlab’s Lanczos solver being faster than HSIM in most cases.

HSIM SIM Matlab’s Lanczos
Object Eigvals Its Solve time Its Solve time Solve time

Armadillo (∼693k DoF)
50 F |3 74.6 8 314.5 42.7
250 F |6|5 394.3 12 971.1 201.5

Blade smooth (∼1.3M DoF)
50 F |4 197.0 DNF DNF 120.6
250 F |6|7 961.0 DNF DNF 519.6

Fandisk (∼28k DoF)
50 F |2 6.0 8 14.0 2.0
250 F |2|4 20.5 12 36.0 12.1

Rockerarm (∼56k DoF)
50 F |2 6.9 9 15.2 2.3
250 F |3|3 28.4 11 37.2 11.8

Sphere (∼182k DoF)
50 F |6 39.5 10 1202.8 53.4
250 F |2|12 167.9 12 1894.5 147.7

Spot (∼28k DoF)
50 F |3 6.6 9 10.8 1.2
250 F |3|3 17.8 13 25.2 8.1

Stepper mount (∼33k DoF)
50 F |2 7.0 9 10.5 1.4
250 F |2|3 16.5 10 19.7 6.2

Table 5.18: A table showing the performance of HSIM, SIM and Matlab’s Lanczos solver
for multiple models. The tolerance is set to 1e-2 for all algorithms. DNF stands for ”Did
Not Finish” where the algorithm did not converge.

HSIM does win in one case when computing 50 eigenpairs for the Sphere model. This can
be explained by the topology of the Sphere mesh, which is fully symmetric.

Below, we include an expansion on the results shown in Table 5.18 where we compare
HSIM, SIM and Matlab’s Lanczos solver against each other when computing 750 eigen-
pairs. These results are run on a slightly different system where the CPU in the system
is replaced by an AMD Ryzen 9 5950X 16-core processor. This is why we include these
results in a separate table. The results can be seen in Table 5.19.

These results show the strength of HSIM when focusing on a larger number of eigen-
pairs.
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HSIM SIM Matlab’s Lanczos
Object Eigvals

Its Solve time Its Solve time Solve time
Armadillo (∼693k DoF) F |4|5 713.5 13 1403.2 739.6
Fandisk(∼28k DoF) F |3|4 35.6 13 53.1 50.3
Rockerarm (∼56k DoF) F |3|3 41.7 13 61.1 49.1
Sphere (∼182k DoF) F |3|12 324.8 12 1880.8 625.5
Stepper body (∼33k DoF)

750

F |5 33.9 13 36.4 46.0

Table 5.19: A table showing the results of HSIM, SIM and Matlab’s Lanczos solver for a
subset of the testing models computing 750 eigenpairs. These tests were run on a slightly
different system where the processor was replaced with an AMD Ryzen 9 5950X 16-core
processor. All other components remain the same. The tolerance was set to 1e-2.
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Chapter 6

Conclusion and future work

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and conclude. Finally, some ideas for future work will be discussed.

6.1 Discussion

The first goal of this work was to determine if it was possible to apply HSIM to vibration
mode problems. This required an adaptation to HSIM to work with volumetric meshes for
the hierarchy. The second goal was to find out if it was possible to increase the performance
by finding well-performing parameters and optimizing hierarchy construction for the prob-
lem specifically. As can be seen in this work, HSIM was adapted to the problem of vibration
modes, and a search for optimizations and parameters has been done.

Our results show a strong improvement in computation time when comparing HSIM and
SIM. HSIM manages to reduce the number of iterations required on the finest level for
every problem included in our experiment setup while reducing the compute time by a min-
imal factor of 1.5 while showing a median improvement of factor 2 compared to SIM. The
best improvement factor measured during our testing was a factor of 30 for computational
speed. Our sphere model caused some instability for SIM, where the factorization took sig-
nificantly longer. This issue did not impact HSIM, which can be explained by the shifting
that HSIM uses.

An important point to note when evaluating the results of our experiments is the approach to
parameter tuning. We decided to test the parameters in order of dependency on each other,
hoping that intermediate results would allow us to tune for the next test better. However, this
approach is limiting in terms of the exploration of total performance. It might, for example,
be possible that the results in Section would differ greatly when a different number of levels
would be used. This goes for other results as well, where testing all possible combinations
is considered too heavy on computing resources and time.

Another point of discussion is the selected models used during testing. testing a wide range
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of models is limiting in the number of parameters we could test for, which resulted in a lot
of two-model tables in the results. Every algorithm responds differently to different models
as well as different volumetric meshes made from the same model. This creates an entirely
different problem where one would have to grade the volumetric mesh that is used to test.
We think that separate research investigating the performance of HSIM when compared to
multiple meshes of differing conditions would be beneficial. This is why we recommend
that in the future work section6.3.1 Comparing the performance of HSIM against enhanced
SIM yields interesting results. Using enhanced SIM together with the hierarchy results in
little to no turns for the entire computation. Running enhanced SIM on the same problem
without the hierarchy shows the opposite, where a lot of turns are made during the compu-
tation. The difference in number suggests that HSIM and enhanced SIM both optimise the
same thing. They both optimise the iteration vectors, with the difference being that HSIM
optimizes the iteration vectors as a pre-computation in the form of a hierarchy. Enhanced
SIM optimizes the iteration vectors every iteration when the algorithm determines that turn-
ing is needed.

The relative performance improvement of HSIM compared to SIM in our experiments is
smaller than the improvement shown in the original HSIM paper by Nasikun and Hilde-
brandt [2022]. Both in timings as well as a number of iterations. A possible explanation
can be the density of the problem, which impacts the speed of factorization for the layers
as well as the solving step for each iteration. A faster factorization library for our spe-
cific problem might increase performance for both HSIM and SIM, bringing it closer to
Matlab’s Lanczos solver. This should be investigated further, which we recommend in the
future work section 6.3.2.

6.2 Conclusion

Our study presents an adaptation of the Hierarchical Subspace Iteration Method tailored for
volumetric mesh-based generalized eigenproblems, where we focus on computing vibration
modes. Our evaluation shows that HSIM performs significantly better than SIM in all cases
and even Matlab’s Lanczos solver in some cases. The effectiveness of the hierarchy has
been analyzed and shown to be capable of strongly reducing the number of required itera-
tions to converge HSIM.

In conclusion, our adaptation of the Hierarchical Subspace Iteration Method by Nasikun
and Hildebrandt [2022] shows a strong improvement over existing SIM-based methods for
computing vibration modes of elastic meshes where computation time is improved by a fac-
tor of 1.5-2.5 for all problems.

Our work shows that HSIM is a better choice overall than SIM when computing vibration
modes. It results in a faster computation with reduced iteration count while maintaining its
strong parallel scaling and stability. The hierarchy is capable of representing the problem
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on a coarser level, allowing for proper prolongation independent of material parameters and
matrix conditions. However, HSIM is still not the best choice when computing for a small
tolerance or small number of eigenpairs. Therefore, we propose a few directions for future
work on HSIM. Further research in these directions might allow for improvements to HSIM
that would allow it to outperform all existing methods.
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6.3 Future work

In this section, we discuss directions for future work that could, in our opinion, improve
HSIM.

6.3.1 Matrix conditioning

During our exploratory phase, we encountered varying performances of HSIM while run-
ning the same mesh. We would tetrahedralize the mesh for every run with tetgen, but we did
not configure any strong quality requirements, which resulted in matrices of varying con-
dition numbers. The condition number of a matrix is shown to influence the convergence
of iterative methods as shown by Pyzara et al. [2011]. The matrices associated with our
models had condition numbers between 105 to 107 where we could see the lower condition
number in better iteration reduction for HSIM.

6.3.2 Factorization performance

HSIM makes use of another factorization algorithm than the SIM algorithm. This was al-
ready mentioned in section 5.11. SIM is not stable when using the Pardiso solver. Finding a
proper source that is capable of answering why this is the case is next to impossible. How-
ever, the phenomenon is recorded in multiple Github repositories where multiple libraries
are pitted against each other1. The author of the repository states that the Eigens Simpli-
cialLDLT solver struggles with less sparse matrices. His example of a less sparse matrix
contains around 40 non-zero rows.

The repository also shows the error norm for the different benchmarks he executed on
his machine. It shows Intels Pardiso solver’s result having a 3 times greater L∞ norm than
Eigens SimplicialLDLT. This is all derived from this GitHub repository, which is why it
requires further research.

Researching this problem could help create a better understanding of which factoriza-
tion to use for HSIM. As mentioned before, SIM showed unstable behaviour when using
the Pardiso solver. The first iteration would crash the dense solver, suggesting that our
projected matrix was not positive semi-definite. The behaviour was sporadic, suggesting
that it partially depended on the random initialisation of the iteration vectors. The vectors
were checked on orthogonality. HSIM did not suffer from this instability and can make
use of both solvers. Suggesting that the hierarchy prevents this behaviour by providing
better-conditioned iteration vectors.

1A repository showing benchmarks of sparse solvers: https://github.com/alecjacobson/
sparse-solver-benchmark
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6.3.3 Material based basis construction

The current basis construction of HSIM for vibration modes does not use the material prop-
erties for the sampling of the vertices or determine the influence of vertices around the
sample. It might be worthwhile to research the possible impact of optimizing the basis con-
struction for vibration modes with the use of material properties. The basis construction can
be tailored for two different problem areas where the algorithm can be adapted in multiple
places.

The first problem area would focus on homogeneous materials where the parameters of
the basis construction are computed based on the material properties. This would require
extensive parameter searching for a multitude of models, but it might result in an easier-to-
use algorithm with fewer parameters to set for the user.

The second problem area would focus on composite materials where the material pa-
rameters differ along the mesh. These problems might benefit from material-based basis
construction more than the homogeneous approach. A model with strongly different mate-
rial parameters on both ends could possibly benefit from different sampling rates along the
mesh.

For the basis construction based on material properties, we should consider the dif-
ference between isotropic materials and anisotropic materials. An Isotropic material is a
direction invariant to its response to applied force, while an anisotropic material is not. A
common example of an isotropic material is rubber, and for an anisotropic material, it is
wood.

Isotropic materials could make use of a basis construction where we treat the 3 degrees
of freedom per vertex all equally. We can make use of the density, Poisson’s ratio and
Young’s modulus for both the sampling as well as determining the possible influence on its
neighbours.

Anisotropic materials could benefit from a different basis construction where we treat
every degree of freedom as possible standalone samples. Materials might be less elastic in
one axis compared to other axis’. The basis construction could account for that and sample
differently for each axis. Determining the effects of this method of sampling would require
extensive testing and exploration, in our opinion. Nevertheless, we think that anisotropic
materials might benefit the most from a tailored basis construction. Since it might allow
a reduction in the degrees of freedom on the coarse level deemed necessary for a good
translation to the finest level.

We think the basis construction of HSIM for vibration modes could benefit from spe-
cialization based on material properties. We can only theorize about the best method adap-
tations, which is why we listed a few in this section. The actual benefits should be explored
in a separate future research.
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Appendix A

Tables

Object Tolerance Eigvals HSIM SIM

Armadillo (∼693k DoF)

1e-2

50 F |3 74.6 8 314.5
250 F |6|5 394.3 12 971.1

Fandisk(∼28k DoF)
50 F |2 6.0 8 14.0
250 F |2|4 20.5 12 36.0

Rockerarm (∼56k DoF)
50 F |2 6.9 9 15.2
250 F |3|3 28.4 11 37.2

Sphere (∼182k DoF)
50 F |6 39.5 10 1202.8
250 F |2|12 167.9 12 1894.5

Spot (∼28k DoF)
50 F |3 6.6 9 10.8
250 F |3|3 17.8 13 25.2

Stepper body (∼33k DoF)
50 F |2 7.0 9 10.5
250 F |2|3 16.5 10 19.7

Armadillo (∼693k DoF)

1e-4

50 F |6 111.1 14 386.8
250 F |11|11 728.6 24 1742.0

Fandisk (∼28k DoF)
50 F |6 11.6 17 25.3
250 F |7|8 47.5 26 73.8

Rockerarm (∼56k DoF)
50 F |6 12.7 18 27.2
250 F |6|6 49.5 23 73.4

Sphere (∼182k DoF)
50 F |7 50.0 22 1351.9
250 F |7|15 251.8 26 2753.9

Spot (∼28k DoF)
50 F |6 10.1 18 20.6
250 F |9|9 42.7 28 53.5

Stepper body (∼33k DoF)
50 F |5 9.5 16 18.5
250 F |6|6 36.2 20 39.0

Table A.1: A table showing all the results of running SIM and HSIM with differing toler-
ances for multiple models.
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Appendix B

Models

Figure B.1: The armadillo mesh used as our
testing model

Name: Armadillo

Number of vertices: 230854

Degrees of freedom: 692562

Sourced from: Stanford University Com-
puter Graphics Laboratory
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Figure B.2: The blade cad mesh used as our
testing model

Name: Blade smooth

Number of vertices: 434815

Degrees of freedom: 1304466

Sourced from: Stanford University Com-
puter Graphics Laboratory

Figure B.3: The fandisk mesh used as our
testing model

Name: Fandisk

Number of vertices: 12444

Degrees of freedom: 28065

Sourced from: CAD part Pratt & Whit-
ney/Hughes Hoppe
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Figure B.4: The rockerarm mesh used as our
testing model

Name: Rockerarm

Number of vertices: 18492

Degrees of freedom: 55476

Sourced from: INRIA

Figure B.5: The sphere mesh used as our test-
ing model

Name: Sphere

Number of vertices: 60827

Degrees of freedom: 182481

Sourced from: Created with Gmsh
[Geuzaine, Christophe and Remacle,
Jean-Francois]
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Figure B.6: The spot mesh used as our testing
model

Name: Spot

Number of vertices: 9355

Degrees of freedom: 28065

Sourced from: Keenan Crane[Crane et al.,
2013]

Figure B.7: The stepper mount cad mesh used
as our testing model

Name: Stepper mount

Number of vertices: 11020

Degrees of freedom: 33060

Sourced from: GrabCADa user:
Mudzaqi,name: Bracket Motor
Stepper

ahttps://grabcad.com
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