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GeoMicro3D: A novel numerical model for simulating the reaction 1 

process and microstructure formation of alkali-activated slag2 

3 

*4 

5 

6 

7 

8 

9 

10 

Abstract: For the first time, this study developed a novel model, named GeoMicro3D, to 11 

simulate the reaction process and microstructure formation of alkali-activated slag. The 12 

13 

initial spatial distribution of real-14 

slag and diffusion of ions via the transition state theory and lattice Boltzmann method, 15 

eation probability 16 

17 

GeoMicro3D model was implemented and verified. The simulation results were discussed and 18 

compared with the relevant experimental data and thermodynamic calculation results using 19 

GEMS. A good agreement was found in the comparisons, showing the strong simulation 20 

capability of GeoMicro3D.21 

22 

23 

24 

* Corresponding author: zuoyibing@hust.edu.cn

, this study developed a novel model, named GeoMicro3D, to, this study developed a novel model, named GeoMicro3D, to

simulate the reaction process and microstructure formation of alkalisimulate the reaction process and microstructure formation of alkali--activated slag. The

al distribution of real-

slag and diffusion of ions via the transition state theory slag and diffusion of ions via the transition state theory andand lattice Boltzmann method,

GeoMicro3D model was implemented and verified. The simulation results were discussed andGeoMicro3D model was implemented and verified. The simulation results were discussed and

compared with the relevant experimental data and thermodynamic ccompared with the relevant experimental data and thermodynamic c19

GEMS. A good agreement was found in the comparisons, showing the strong simulationGEMS. A good agreement was found in the comparisons, showing the strong simulation20

capability of GeoMicro3D.capability of GeoMicro3D.2121
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50 

CEMHYD3D DuCOM HYMOSTRUC
Particle size 
distribution

1 6 mono-size particles no limitation

Particle shape real-shape sphere sphere sphere
Composition of 

cement
C3S,C2S,C3A, 
C4AF,gypsum

C3S C3S C3S, C2S

Type of cement
OPC, blended 

cement
×

OPC, medium heat 
cement, high belite cement

OPC, blended 
cement

Mixture 
proportion

×

Kinetics ×
Curing 

condition
temperature, 

moisture
× temperature temperature

Mineral 
admixture

filler filler (mono-size) filler filler

Dimensions 3D 3D 3D 3D
Pore scale capillary pore capillary pore capillary pore, gel pore capillary pore
Reference [13] [14, 22] [16] [15]

51 

52 

53 

54 

55 

56 

57 

58 

Modelling the chemistry and structure of the C-(N-)A-S-H gels. The alkali 59 

calcium-aluminosilicate hydrate, i.e. the C-(N-)A-S-H gel, is the primary reaction product 60 

in AAS [18]. Puertas et al. defined a tobermorite structure based model for describing the 61 

C-(N-)A-S-H gels and found that the structure of the C-(N-)A-S-H gels largely depended 62 

on the nature of the alkaline activator [19]. In another study, a generalized model named 63 

the cross-linked substituted tobermorite model (CSTM) was derived [20]. In this model a 64 

blend of cross-linked and non-cross-linked tobermorite-based structures were employed to 65 

simulate the C-(N-)A-S-H gels. Compared with the models that were based on the 66 

non-cross-linked tobermorite-based structure, the CSTM model was found to be more 67 

phere

C3S, CS, C22SS

cement, high belite cement
OPC, blended blended 

cementcement

emperature temperatureemperature

ffillerillerfff fillerf

3D 3D
capillary pore, gel porecapillary pore, gel pore capillary porecapillary pore

[16][16] [15][15]

Modelling the chemistry and structure of the CModelling the chemistry and structure of the C

calciumcalcium--aluminosilicate hydrate, i.e. aluminosilicate hydrate, i.e. the C-(N

in AAS in AAS [18][18]. Puertas et al. defined a tobermorite structure based model for describing the . Puertas et al. defined a tobermorite structure based model for describing the 61

CC--(N(N--)A)A-SS--H gels and found that the structure of the CH gels and found that the structure of the C62

on the nature of the alkaon the nature of the alkaline activator 6363

the crossthe cross--linked substituted tobermorite model (CSTM) was derived linked substituted tobermorite model (CSTM) was derived 

blend of crossblend of cross-linked and non

simulate the Csimulate the C
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capable of simulating the composition and structure of the C-(N-)A-S-H gels. By coupling 68 

the numerical simulation and experimental study, the Al in cross-linking of the 69 

C-(N-)A-S-H gel was investigated in [21]. The numerical simulation was carried out by 70 

using the CSTM model and in the experimental study the 29Si and 27Al NMR spectroscopy 71 

was used. It was found that a longer reaction time resulted in a reduction of the Al/Si ratio 72 

in the C-(N-)A-S-H gels.73 

74 

Thermodynamic modelling of the chemical reactions: Myers et al. derived a calcium-alkali 75 

aluminosilicate hydrate ideal solid solution model, named CNASH_ss, and simulated the 76 

chemical reactions in AAS [23] (more details on the CNASH_ss model can be referred to 77 

Section 2.4). The simulation results showed that the calculated C-(N-)A-S-H gel densities 78 

and molar volumes agreed with their corresponding experimental values reported in the 79 

literature [24]. With the CNASH_ss model, the solid phase assemblage of AAS was 80 

simulated and a good consistency was found between the simulation results and the 81 

experimental data [25]. Based on the thermodynamic modelling results, Myers et al. 82 

determined the phase diagrams of AAS [26]. In another study, the CNASH_ss model was 83 

employed to simulate the solid phase composition and chemical shrinkage of AAS [27].84 

85 

86 

87 

88 

89 

90 

91 

92 

. The numerical simulation was carried out by 

Al NMR spectroscopy Al NMR spectroscopy 

hat a longer reaction time resulted in a reduction of the Al/Si ratio hat a longer reaction time resulted in a reduction of the Al/Si ratio 

Thermodynamic modelling of the chemical reactions: Myers et al. derived a calciumMyers et al. derived a calcium-alkali alkali 

aluminosilicate hydrate ideal solid solution model, named CNASH_ss, andaluminosilicate hydrate ideal solid solution model, named CNASH_ss, and simulatesimulated the 

(more details on the CNASH_ss model can be referred to (more details on the CNASH_ss model can be referred to 

Section 2.4). The simulation results showed that the calculated CSection 2.4). The simulation results showed that the calculated C--(N(N-)A-S-H gel densities 

and molar volumes agreed with their corresponding experimental vaand molar volumes agreed with their corresponding experimental values reported in the 

With the CNASH_ssWith the CNASH_ss modelmodel, the solid phase assemblage of AAS was , the solid phase assemblage of AAS was 

simulated and a good consistency was found between the simulation results and the simulated and a good consistency was found between the simulation results and the 

experimental data [25][25].. Based on the thermodynamic modelling results, MyeBased on the thermodynamic modelling results, Mye

determined the phase diagrams of AAS determined the phase diagrams of AAS [26]. In another study, 

employed to simulate the solid phase composition and chemical shrinkage of AAS employed to simulate the solid phase composition and chemical shrinkage of AAS 

86

87

8888
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Fig. 1. Modules of the GeoMicro3D model. LBM represents lattice Boltzmann method.
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Modules of the GeoMicro3D model. LBM represents lattice Boltzmann method.Modules of the GeoMicro3D model. LBM represents lattice Boltzmann method.
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131 

132 

r( , ) the distance from the particle center of mass to the surface point133 

134 

Ynm( , ) the spherical harmonic function135 

136 

the polar angle137 

138 

the azimuthal angle139 

140 

n, m the indices (-n m n)141 

142 

Pnm(cos ) the associated Legendre polynomial [29]143 

144 

i the square root of -1145 

146 

147 

148 

149 

150 

151 

the associated Legendre polynomial the associated Legendre polynomial [29]

the square root of -11

149

150

151151
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Fig. 2. A real-shape particle of slag described by the spherical harmonic coefficients. The particle width is 15.56 

µm. (In this study, the particle width was used as the measure of particle size, see details in the text)
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169 

170 

171 
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173 
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175 

176 

Fig. 3. Simulated initial spatial distribution of real-shape slag particles in sodium hydroxide solution using the 

Anm material model. The size of the simulation box was 125 × 125 × 125

was 0.59. More information can be found in [36].

177 

178 

179 

180 

181 

182 

Fig. 3. Simulated initial spatial distribution of realSimulated initial spatial distribution of real-shape slag particles in sodium hydroxide solution using the 
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was 0.59. More information can be found in was 0.59. More information can be found in [36].
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190 

Fig. 4. Progressing dissolution of one real-shape slag particle in alkaline solution. LBS refers to lattice Boltzmann 

simulation.
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Fig. 4. Progressing dissolution of one realProgressing dissolution of one real--shape slag particle in alkaline solution. LBS refers to lattice Boltzmann shape slag particle in alkaline solution. LBS refers to lattice Boltzmann 

simulation.
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198 

199 

Fig. 5. Schematic illustration of the dissolution of slag (after [41]). For clarity, additional bonds between Si and O 

as well as between Al and O are not shown.

200 

(i) First, the modifying elements are initially released through the metal/proton exchange 201 

reactions, as shown in Fig. 5(A).202 

203 

(ii) Then, hydrolysis of the bonds between Al and O starts, as shown in Fig. 5(B).204 

205 

(iii) Afterwards, the bonds between Si and O start to break, as shown in Fig. 5(C).206 

207 

(iv)Finally, Al and Si are released, as a result of which the framework is gradually dissolved, 208 

as shown in Fig. 5(D).209 

210 

211 

llustration of the dissolution of slag (after llustration of the dissolution of slag (after [41][41]). For clarity, additional bonds between Si and O ). For clarity, additional bonds between Si and O 

as well as between Al and O are not shown.as well as between Al and O are not shown.

First, the modifying elements are initially released through the metal/proton exchange First, the modifying elements are initially released through the metal/proton exchange 

reactions, as shown in reactions, as shown in Fig. 5(A).Fig. 5(A).

(ii) Then, hydrolysis of the bonds between Al and O starts, as shown in Fig. 5(B).Then, hydrolysis of the bonds between Al and O starts, as shown in Fig. 5(B).

205

(iii)(iii) Afterwards, the bonds between Si and O start to break, as shown in Fig. 5(C).Afterwards, the bonds between Si and O start to break, as shown in Fig. 5(C).206

207207

(iv)(iv)Finally, Al and Si are released, as a result of which the framework is gradually Finally, Al and Si are released, as a result of which the framework is gradually 

as shown in Fig. 5(D).as shown in Fig. 5(D).
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fi the non-equilibrium particle distribution function306 
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fi
eq the equilibrium particle distribution function308 

309 

x the location310 

311 

t the time312 

313 

i the velocity i (in this study i = 0, 1, 2, 3, 4, 5, 6)314 

315 

the relaxation time316 

317 

t the time step318 

319 

ei the microscopic velocity320 

321 

wi the weighting factor322 

323 

S the source term324 

325 

326 

327 

328 

329 

330 

331 

332 

the microscopic velocity

the weighting factorthe weighting factor

the source termthe source term
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328328
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333 

334 

335 

336 

337 

338 

339 

340 

341 

Fig. 6. Flow diagram of LB simulation of the dissolution of slag.
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345 

Fig. 6.Fig. 6. Flow diagram of LB simulation of the dissolution of slag.Flow diagram of LB simulation of the dissolution of slag.
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nY,i the released amount of element Y on interface i370 
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371 

NY the released amount of element Y on six interfaces372 

373 

t0 one LB step time374 

375 

Y an element that can be Si, Al, Ca, Mg, S or K376 

377 

rY,i the dissolution rate of element Y on the interface i378 

379 

l0 the side length of voxel380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

on the interface i

389

390

391391
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396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

c 1/3 for spheres and 6 for cubes)407 

408 

v the molecular volume of the phase409 

410 

kB the Boltzmann constant411 

412 

T the absolute temperature413 

414 

ef the effective interfacial energy, where ef = with interfacial energy and activity 415 

factor 0 < < 1, and = 1 for homogeneous nucleation416 

417 

418 

419 

for spheres and 6 for cubes)for spheres and 6 for cubes)

the molecular volume of the phasethe molecular volume of the phase

the Boltzmann constantthe Boltzmann constant

T the absolute temperaturethe absolute temperature413

414

ef the effective interfacial energy, where the effective interfacial energy, where 415415

factor 0 < 0 < < 1, and 
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420 

421 

422 

423 

424 

In a voxel without reaction products, it is possible for each reaction product to precipitate. In 425 

other words the nucleation probability should be calculated for each reaction product via Eq. 426 

(22) and the corresponding reaction should be simulated if the reaction product is predicted to 427 

precipitate. This, however, would result in a huge rise of the computation efforts and inevitably 428 

and dramatically reduce the computation efficiency. In fact the reaction products are actually 429 

finely mixed up with each other at the micro level according to experimental observation from 430 

the scanning electron microscopy (SEM) images [52-54]. Therefore it is not wise and necessary 431 

to simulate the precipitation and reaction of each reaction product separately at the micro level. 432 

For the purpose of limiting the computational load and respecting the experimental insights, a 433 

novel strategy was conceived and implemented in this study. The details of this novel strategy 434 

are described as follows.435 

436 

The reaction products in AAS are classified into primary reaction products (C-(N-)A-S-H gel)437 

and secondary reaction products (see details in Section 2.4). The deposit of reaction products is 438 

controlled to take place only when at least one of the eight CNASH_ss end-members and at 439 

least one of secondary reaction products are simulated to precipitate. For the voxels where 440 

reaction products will deposit, the thermodynamic modelling module is applied to simulate the 441 

reactions and calculate the amount of reaction products. The full procedure consists of four 442 

steps below and is displayed in Fig. 7.443 

444 

In a voxel without reaction products, it is possible for each reaction product to precipitate. In In a voxel without reaction products, it is possible for each reaction product to precipitate. In 

other words the nucleation probability should be calculated for each reaction product via Eq. other words the nucleation probability should be calculated for each reaction product via Eq. 

22) and the corresponding reaction should be simulated if the reaction product is predicted to 22) and the corresponding reaction should be simulated if the reaction product is predicted to 

precipitate. This, however, would result in a huge rise of the computation efforts and inevitably precipitate. This, however, would result in a huge rise of the computation efforts and inevitably 

and dramatically reduce the computation efficiency. In fact theand dramatically reduce the computation efficiency. In fact the reaction products are actually reaction products are actually 

finely mixed up with each other at the micro level according to experimental observation from finely mixed up with each other at the micro level according to experimental observation from 

the scanning electron microscopy (SEM) images the scanning electron microscopy (SEM) images [52[52-54]. Therefore it is not wise and necessary . Therefore it is not wise and necessary 

to simulate the precipitation and reto simulate the precipitation and reaction of each reaction product separately at the micro level. action of each reaction product separately at the micro level. 

For the purpose of limiting the computational load and respecting the experimental insights, a For the purpose of limiting the computational load and respecting the experimental insights, a 

novel strategy was conceived and implemented in this study. The details of this novel strategy novel strategy was conceived and implemented in this study. The details of this novel strategy 

described as follows.described as follows.

The reaction products in AAS are classified into primary reaction products (The reaction products in AAS are classified into primary reaction products (

and secondary reaction products (see details in Section 2.4). The deposit of reaction products is and secondary reaction products (see details in Section 2.4). The deposit of reaction products is 438

controlled to take place only when at leacontrolled to take place only when at lea439

least one of secondary reaction products are simulated to precipitate. For the voxels where least one of secondary reaction products are simulated to precipitate. For the voxels where 440440

reaction products will deposit, the reaction products will deposit, the 

reactions and calculate the amount of reaction products. The full procedure consists of four reactions and calculate the amount of reaction products. The full procedure consists of four 

steps below and is displayed in Fig. 7.steps below and is displayed in Fig. 7.
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a. Calculate the nucleation probabilities, PX, PY and PZ for primary reaction products and PA,445 

PB and PC for secondary reaction products, using Eq. (22).446 

447 

b. Prandom448 

449 

c. Calculate the numbers (i.e. Np and Ns) of primary reaction products and secondary reaction 450 

products that are predicted to nucleate, respectively.451 

452 

d. If Np Ns thermodynamic modelling module (Section 2.4) is called.453 

454 

455 

456 

457 

) of primary reaction products and secondary reaction ) of primary reaction products and secondary reaction 

thermodynamic modelling modulethermodynamic modelling module (Section 2.4) is called.(Section 2.4) is called.
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517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

j the activity coefficient527 

528 

zj the charge529 

530 

j the aqueous species531 

532 

A , B the electrostatic parameters533 

534 

I the ionic strength535 

536 

xjw the mole quantity of water537 

538 

Xw the total mole amount of the aqueous phase539 

540 

the average ion size541 

the aqueous speciesthe aqueous species

A , B thethe electrostatic parameterselectrostatic parameters

II the ionic strengththe ionic strength535

536

xjwx the mole quantity of waterthe mole quantity of water537537

XX the total mole amount of the aqueous phasethe total mole amount of the aqueous phase
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542 

b the parameter for common short-range interactions of the charged species543 
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546 
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567 

568 

569 

570 

571 

572 

573 

574 

Dnew the new diffusion coefficient575 

576 

Dref the reference diffusion coefficient577 

578 

rD,new the new rate of dissolution579 

580 

rD,ref the reference rate of dissolution581 

582 

Tnew the new Kelvin temperature583 

584 

Tref the reference Kelvin temperature585 

586 

R the gas constant587 

588 

Ediff the activation energy of diffusion589 

590 

the reference diffusion coefficient

the new rate of dissolutionthe new rate of dissolution

the reference rate of dissolutionthe reference rate of dissolution

TnewT the new Kelvin temperaturethe new Kelvin temperature

584

TTrefrefTTT the reference Kelvin temperaturethe reference Kelvin temperature585

586586

R the gas constantthe gas constant

the activation energy of diffusionthe activation energy of diffusion
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Ea the activation energy591 

592 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 
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604 

605 

606 

607 

608 
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2.6.1 Adsorbed water609 

610 

For considering the adsorbed water, 0.3 moles of water is added to each mole of C-(N-)A-S-H611 

gels in GeoMicro3D. The density of the added water is 1.1 g/cm3. It is noted that this method 612 

has been already employed in calculation of the chemical shrinkage of alkali-activated slag [24].613 

The density of the absorbed water is slightly larger than that of the bulk water (1.0 g/cm3). This 614 

is because the absorbed water increases its effective density during the reaction of AAS.615 

616 

2.6.2 Gel pore water617 

618 

In the literature there is a death of information regarding the amount of gel pore water retained 619 

in C-(N-)A-S- el pore water retained in 620 

C-(N-)A-S-H is still unknown. On the contrary, Thomas et al. used H2O/SiO2 = 4 to consider 621 

the water that is retained in the gel pores of C-S-H during the hydration of C3S or C2S [75]. In 622 

the C(N)ASH_ss model, the molar H2O/SiO2 ratio of the C(N)ASH_ss end-members in Table 623 

2 varies from 0.792 to 2.5, which is much smaller than 4. In order to make the GeoMicro3D 624 

model implementable, additional water is added to make the C-(N-)A-S-H gel meet the 625 

condition H2O/SiO2 = 4. The density of the added water is 1 g/cm3. This amount of additional 626 

water represents the gel pore water retained by the C-(N-)A-S-H gel in GeoMicro3D. This 627 

method is sensible because the C-(N-)A-S-H gel is structurally similar to the C-S-H gel [20],628 

indicating comparable amounts of gel pore water. In the future, the GeoMicro3D model can be 629 

improved in view of the amount of gel pore water retained in the C-(N-)A-S-H gel, once more 630 

information is known about the gel pore water in the C-(N-)A-S-H gel.631 

632 

633 

(N )A

. It is noted that this method . It is noted that this method 

has been already employed in calculation of the chemical shrinkage of alkali-activated slag activated slag [24][24]..

The density of the absorbed water is slightly larger than that of the bulk water (1.0The density of the absorbed water is slightly larger than that of the bulk water (1.0 g/cmg/cm33). This ). This 

the absorbed water increases its effective density during the reaction of AAS.the absorbed water increases its effective density during the reaction of AAS.

In the literature there is a death of information regarding the amount of gel pore water retained In the literature there is a death of information regarding the amount of gel pore water retained 

el pore water retained in el pore water retained in 

H is still unknown. On the contrary, Thomas et al. used HH is still unknown. On the contrary, Thomas et al. used H2O/SiO2

the water that is retained in the gel pores of Cthe water that is retained in the gel pores of C-S-H during the hydration of CH during the hydration of C

the C(N)ASH_ss model, the molar Hthe C(N)ASH_ss model, the molar H2O/SiOO/SiO22 rratio of the C(N)ASH_ss endatio of the C(N)ASH_ss end

2 varies from 0.792 to 2.5, which is much smaller than 4. In order to make the GeoMicro3D 2 varies from 0.792 to 2.5, which is much smaller than 4. In order to make the GeoMicro3D 

model implementablemodel implementable,, additional water is added to make the additional water is added to make the 

condition Hcondition H22O/SiOO/SiO2 = 4. The density of4. The density of the added water is 1

water represents the gel pore water retained by the Cwater represents the gel pore water retained by the C627

method is sensible method is sensible because the Cbecause the C-(N-)A628

indicating comparabindicating comparable amounts of gel pore water. In the future, the GeoMicro3D model can be 629629

improved in view of the amount of gel pore water retained in the Cimproved in view of the amount of gel pore water retained in the C

information is known about the gel pore water in the Cinformation is known about the gel pore water in the C
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680 

681 

Mixture Slag (g) Na2O (g) SiO2 (g) Water (g)
N4S0 100 4 0 40
N6S0 100 6 0 40
N6S5.4 100 6 5.4 40
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Mixture Slag (g) Na2O (g
N4S0 100 4
N6S0N6S0 100 6
N6S5.4N6S5.4 100100
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a. This value was taken from the diffusivity of H2SiO4
2-;708 

b. This value was taken from the diffusivity of Al3+;709 

c. This value was taken from the diffusivity of SO4
2-;710 

d. The activation energy of diffusion of aqueous ions were calculated based on [83-85].711 
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The activation energy of diffusion of aqueous ions were calculated based on The activation energy of diffusion of aqueous ions were calculated based on [83[83--85]85]..
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(A) N4S0, using GeoMicro3D (B) N4S0, using GEMS

(C) N6S0, using GeoMicro3D (D) N6S0, using GEMS

(E) N6S5.4, using GeoMicro3D (F) N6S5.4, using GEMS

Fig. 11. Simulated volume proportion of phases with GeoMicro3D in comparison with the calculation results using 

GEMS.

755 

(E) N6S5.4, using (E) N6S5.4, using 

Simulated volume proportion of phases with GeoMicro3D in comparison with the calculation results using Simulated volume proportion of phases with GeoMicro3D in comparison with the calculation results using 

(B) N4S0, using GEMS(B) N4S0, using GEMS

(C) N6S0, using GeoMicro3D(C) N6S0, using GeoMicro3D (D) N6S0, using GEMS
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      Liquid       Slag       Reaction front          /       Partially/completely filled products

Fig. 12. Simulated 3D microstructures of sample N4S0 at 0, 3 hours, 1 day and 7 days. The simulated 

microstructures for samples N6S0 and N6S5.4 can be found in Appendix B (see Figs. B.1 and B.2). The size of 

the simulation box is 125 × 125 × 125 × 1 × r voxel.

Liquid       Slag       Reaction front          /       Partially/completely filled productsLiquid       Slag       Reaction front          /       Partially/completely filled products

Simulated 3D microstructures of sample N4S0Simulated 3D microstructures of sample N4S0
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      Liquid       Slag       Reaction front          /       Partially/completely filled products

Fig. 13. Cross sections of samples N6S0 and N6S5.4 at similar degrees of reaction of slag.
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Fig. 13. Cross sections of samples N6S0 and N6S5.4 at similar degrees of reaction of slag.Cross sections of samples N6S0 and N6S5.4 at similar degrees of reaction of slag.
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781 

782 

783 

Fig. 14. Spatial distribution of the primary reaction products (including adsorbed water and gel pore water) for 

sample N4S0 at 3 hours, 1 day and 7 days. Volume fraction of nodes means the volume fraction of the primary 

reaction products in the node voxel. The results for samples N6S0 and N6S5.4 can be found in Appendix B (see 

Figs. C.3 and C.4). The size of the simulation box is 125 × 125 × 125

1 × 1 ×
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Fig. 14. Spatial distribution of the primary reaction products (including adsorbed water and gel pore water) for Spatial distribution of the primary reaction products (including adsorbed water and gel pore water) for 

sample N4S0 at 3 hours, 1sample N4S0 at 3 hours, 1 day and 7day and 7 days. Volume fraction of nodes means the volume fraction of the primary days. Volume fraction of nodes means the volume fraction of the primary 

reaction products in the node voxel. reaction products in the node voxel. The results for samples N6S0 and N6S5.4 can be found in Appendix B (see 

Figs. C.3 and C.4). Figs. C.3 and C.4). The size of the simulation box is 125The size of the simulation box is 125
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818 

819 

820 

821 

822 

Item GeoMicro3D Experiment
Degree of reaction 0.485 0.573(0.051)a

Capillary porosity 0.274 0.194b

Element concentration
(mmol/L)

[Si] 11.6 3.73c

[Al] 16.3 7.46
[Ca] 6.93 0.756
[K] 61.8 81.2
[Na] 1.52×103 1.75×103

[OH-] 1.21×103 1.29×103

a. Obtained by SEM-image analysis. The number in the bracket is the deviation [54].823 

b. Obtained by MIP [54].824 

c. The measured concentrations of Si, Al, Ca, K and Na were obtained by inductively coupled plasma optical 825 
emission spectroscopy (ICP-OES), while the measured concentration of OH- was obtained by titration against 826 
hydrochloride acid (0.1 mol/L) [86].827 
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829 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

ExperimentExperiment
0.573(0.051)0.573(0.051)aa

0.194b

3.733.73cc

7.467.46
0.756
81.2

1.52×103 1.75×103

1.21×103 1.29×101.29×103

image analysis. The number in the bracket is the deviation image analysis. The number in the bracket is the deviation [54][54].

The measured concentrations of Si, Al, Ca, K and Na were obtained by inductively coupled plasma optical The measured concentrations of Si, Al, Ca, K and Na were obtained by inductively coupled plasma optical 
OES), while the measurOES), while the measured concentration of OHed concentration of OH- was obtained by titration against 

mol/L) [86][86]..
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r the overall dissolution rate880 
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r+ the forward dissolution rate882 
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the ratio of the rate of dissolution of the activated complex relative to the overall 884 

reaction rate885 
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R the gas constant887 

888 

T the absolute temperature889 

890 

the overall dissolution ratethe overall dissolution rate

r+ the forward dissolution ratee forward dissolution rate

the ratio of the rate of dissolution of the activated complex relative to the overall the ratio of the rate of dissolution of the activated complex relative to the overall 884

reaction ratereaction rate885
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RR the gas constantthe gas constant
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A* the chemical affinity that can be calculated as:891 
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Fig. B.1. Simulated 3D microstructures of sample N6S0 at 0, 3 hours, 1 day and 7 days. The size of the simulation 

box is 125 × 125 × 125 × 1 ×

918 

Liquid       Slag       Reaction front          /       Partially/completely filled productsLiquid       Slag       Reaction front          /       Partially/completely filled products

Fig. B.1. Simulated 3D microstructures of sample N6S0 at 0, 3Simulated 3D microstructures of sample N6S0 at 0, 3

box is 125 ×× 125 × 125
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Fig. B.2. Simulated 3D microstructures of sample N6S5.4 at 0, 3 hours, 1 day and 7 days. The size of the 

simulation box is 125 × 125 × 125 itization resolution is 1 × 1 ×
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Liquid       Slag       Reaction front          /       Partially/completely filled productsLiquid       Slag       Reaction front          /       Partially/completely filled products

Simulated 3D microstructures of sample N6S5.4 at 0, 3Simulated 3D microstructures of sample N6S5.4 at 0, 3 hours, 1hours, 1 day and 7

simulation box is 125 × 125125 × 125 itization resolution is 1itization resolution is 1
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Fig. B.3. Distribution of the C-(N-)A-S-H gel (including adsorbed water and gel pore water) for sample N6S0 at 

3 hours, 1 day and 7 days. Volume fraction of nodes means the volume fraction of the C-(N-)A-S-H gel in the 

node voxel. The size of the simulation box is 125 × 125 × 125

1 × 1 ×
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925 

Distribution of the C-(N-)A-S-H gel (including adsorbed water and gel pore water) for sample N6S0 at H gel (including adsorbed water and gel pore water) for sample N6S0 at 

days. Volume days. Volume fraction of nodes means the volume fraction of the Cfraction of nodes means the volume fraction of the C

node voxel. The size of the simulation box is 125node voxel. The size of the simulation box is 125 ×× 125125 × 125125

×
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Fig. B.4. Distribution of the C-(N-)A-S-H gel (including adsorbed water and gel pore water) for sample N6S5.4 

at 3 hours, 1 day and 7 days. Volume fraction of nodes means the volume fraction of the C-(N-)A-S-H gel in the 

node voxel. The size of the simulation box is 125 × 125 × 125

1 × 1 ×
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Distribution of the C-(N-)A-S-H gel (including adsorbed water and gel pore water) for sample N6S5.4 H gel (including adsorbed water and gel pore water) for sample N6S5.4 

day and 7 days. Volume fraction of nodes means the volume fraction of the Cdays. Volume fraction of nodes means the volume fraction of the C

node voxel. The size of thenode voxel. The size of the simulation box is 125simulation box is 125 ×× 125125 × 125125
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