
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Market Making in
Limit Order Books
using Reinforcement Learning

Aadam Wiggers

Market Making in Limit
Order Books

using Reinforcement Learning

by

Aadam Wiggers

Student Number: 5855063

Thesis Committee
Supervisor: Prof. Dr. Antonis Papapantoleon, TU Delft EEMCS
Co-supervisor: Assistant. Prof. Amin Kolarijani, TU Delft ME
Committee Member: Associate Prof. Joris Bierkens, TU Delft EEMCS

Abstract
Market making, the act of providing liquidity to the market by simultaneously buying and
selling, is a difficult problem to solve. The use of reinforcement learning to solve for market
making is increasing, as academics and practitioners alike look for novel ways to approximate for
optimal policies in increasingly complex markets. This thesis examines the use of reinforcement
learning to solve the market making problem in limit order books. To this end, we provide
the theoretical background on market making, modelling limit order books, and reinforcement
learning. Furthermore, we implement and compare ’classical’ algorithms, such as Q-learning
and value and policy iteration, and compare their policies with newer techniques involving deep
learning, namely deep Q-networks and double deep Q-networks. To train and compare these
models, we use two models to simulate the dynamics of an order book. Experiment results
and the ultimately learned policies are presented and discussed. We propose several ideas that
could be worked on in the future.

i

Acknowledgements
I would like to express my profound gratitude to Professor Antonis Papapantoleon for his
guidance and insightful commentary throughout the many update meetings that we had.
Furthermore, I deeply thank Assistant Professor Amin Kolarijani for the many fruitful (and
joyous) discussions we had and helping me figure out how to solve for the implementation
struggles I faced, you have taught me a lot on the field of MDPs and RL. I sincerely thank
Associate Professor Joris Bierkens for being willing to be a part of the thesis committee on
such short notice. I thank the colleagues that I have met for the many interesting discussions
on the practicalities of the financial markets, and how reinforcement learning fits in.

Thank you to all my family and friends for your unwavering support and encouragement
throughout the years. Lastly, I would like to thank my partner for being there, and for the
many times you have had to listen to my ramblings.

Aadam Wiggers
Amsterdam, October 2024

ii

Disclaimer
The content of this thesis is for informational purposes only. It is not intended as investment
research or investment advice, or a recommendation, offer, or solicitation for the purchase or
sale of any security, financial instrument, financial product, or service, or to be used in any
way for evaluating the merits of participating in any transaction. I, the author, do not accept
any liability for any investment decisions based on statements of this thesis.

iii

Contents

1 Introduction 1

2 Theory 3
2.1 Introduction . 3

2.1.1 Walrasian Auction . 3
2.1.2 Market-Makers . 4
2.1.3 Limit Order Books . 4
2.1.4 Models à la Avellaneda and Stoikov . 5

2.2 Modelling Limit Order Books . 6
2.2.1 Markov Chain Model . 6
2.2.2 Queue-Reactive Model . 9

2.3 Reinforcement Learning . 13
2.3.1 Markov Decision Processes . 14
2.3.2 Dynamic Programming . 20
2.3.3 Temporal-Difference Learning . 23
2.3.4 Deep Learning . 25

2.4 Reinforcement Learning in Limit Order Book Market Making 28
2.4.1 Optimal Trading Strategies . 28
2.4.2 Previous Work . 31
2.4.3 Experimental Setup . 34

3 Experiments and Results 37
3.1 Trading Environment . 37
3.2 Parameters . 37

3.2.1 Training Parameters . 37
3.2.2 Test Parameters . 40

3.3 Markov Chain Model . 40
3.3.1 Training . 40
3.3.2 Results . 48

3.4 Queue-Reactive Model . 52
3.4.1 Training . 52
3.4.2 Results . 57

4 Discussion 62

5 Conclusion 64
5.1 Future Work . 65

References 66

A Appendix 69

iv

1
Introduction

Market makers are market participants that simultaneously provide a buy and sell order to
provide liquidity to the market. They continuously do this and generate a profit by capturing
the difference between these two prices, ideally having a buyer and a seller at the exact same
time, i.e. a risk-free profit. The two main objectives of a market maker is to

1. Maximize profits.
2. Minimize inventory risk.

Earlier works to model and solve for an optimal solution started with Ho and Stoll [1]. They
used stochastic dynamic programming to derive optimal bid/ask prices, given a ’true’ price,
that maximize the dealer’s expected utility of wealth over a given time horizon. This was later
extended by Avellaneda and Stoikov [2], who assumed that the agent is but one player in the
market, and that the ’true’ price is given by the mid-price.

Advances in technology have led to the electronic order book, which has led to a rise in
algorithmic trading, notably written in the paper by Menkveld [3]. This has made it possible
to automate market making. Outside of the markets, and more recently, with the rise of
computational power, the world has seen a surge in the use of machine learning techniques to
solve complex problems, such as Mnih et al. [4] who used deep reinforcement learning to play
Atari games.

Specifically, the machine learning used is a class of algorithms called reinforcement learning
(RL). RL is a type of machine learning that is concerned with how agents ought to take actions
in an environment to maximize some notion of cumulative reward. The field stemmed from
Markov decision processes, and has since seen a rise in popularity with the advent of deep
learning.

Market making lends itself to be quite naturally modelled as a Markov decision process, and
thus using RL is a natural way to try and solve for an optimal policy. This is the main
motivation for this thesis. We aim to use RL to solve for the market making problem in limit
order books. More specifically, the research questions we aim to answer are:

1. Can reinforcement learning methods approximate/find optimal solutions to the market
making problem?

2. How do policies compare under different market dynamics?

1

2

3. How do different RL algorithms compare in terms of performance?

Naturally, the RL agent has to interact with the environment for it to learn, and is, unfortunately,
not possible with historical data, as these are records of what has already happened. As a
result, we simulate the limit order book. Several authors have proposed models to simulate
limit order books, and we use two of these models in this thesis. The first is the Markov chain
model from Hult and Kiessling [5], and the second is the queue-reactive model from Huang et
al. [6].

The remaining part of this thesis is structured as follows. In Chapter 2, we provide a theoretical
background on market making, modelling limit order books, and reinforcement learning. We
also delve into how these three can be combined to solve the market making problem. In
Chapter 3, we describe the experimental setup, the training of the agents, and present the
results. In Chapter 4, we discuss the results and in Chapter 5, we conclude the thesis and
propose directions for future work.

2
Theory

This chapter is divided into four sections and aims to introduce the reader to market-making,
limit order books, reinforcement learning, and how these three can be combined to solve
the market-making problem. The chapter starts with an introduction to market-making and
limit order books, followed by a discussion on how limit order books can be modelled. The
chapter then delves into the theory of reinforcement learning. Lastly, the chapter discusses
how reinforcement learning can be used in the context of solving for market making in limit
order books.

2.1. Introduction
In order to give context to this thesis, we first have to go over a brief history of the evolution
of markets. This follows from the introduction found in Bouchaud, et al. [7].

What is a market?

Markets are attempts to solve the seemingly impossible problem of allowing trades between
buyers, who want to buy at an ever-lower price, and sellers, who want to sell at an ever-higher
price.

2.1.1. Walrasian Auction
One possible way to solve the above problem is to force a trader to commit to a trade once
they have specified a price they are willing to buy at. This gives the setting for a market
organisation called a Walrasian auction. Traders place bids, a want to buy the asset, and
offers (also called asks), a want to sell the asset, at the maximum/minimum price that they
are willing to buy/sell. These bids/offers are firm commitments. Nowadays, this commitment
is called liquidity provision.

The auctioneer then collects these bids and offers into an order book. The order book describes
the quantities that are available for buying and selling at each price level, as declared by
the participants. In a Walrasian auction this order book is invisible to the traders. At some
point in time, the auctioneer will announce a transaction price p such that the total volume
exchanged at this price is maximized. What this means is that all the buyers above price p
will be matched with all the sellers below price p, leaving the buyers below price p and the
sellers above price p unmatched.

3

2.1. Introduction 4

2.1.2. Market-Makers
One can imagine that the above is not a practical way to run a market, as there is no
coordination between buyers and sellers. This leads to two scenarios one can end up in:

• All buyers and sellers are unreasonably greedy, so there is no overlap and no transaction
price p exists.

• One side is unreasonably greedy, and the other is not. This leads to a sudden jump in
the transaction price p, and a small transaction volume.

So, to fix this issue, markets adopted a special category of traders called market-makers.
Market-makers maintain a fair and orderly market, in exchange for some privileges. They
perform two main tasks:

• Quoting: At all times, a market-maker must provide a bid-price pb, with a bid-volume
Vb, and an ask-price pa, with an ask-volume Va (ask = offer). These may change, but in
between changes these quotes are legally binding.

• Clearing: Once buyers and sellers submit orders that specify a price and volume, the
market-maker decides on a transaction price p to maximise transaction volume.

This separates the market into two main participants: market-makers are liquidity providers,
and the rest are liquidity takers. This forms the basis of which electronic markets nowadays
operate, and this thesis will focus on the market-making aspect of trading.

2.1.3. Limit Order Books
Along with the rest of the world, markets too have moved into the electronic age. Instead of
using a designated market-maker, standing in a pit, shouting orders, we now have computers
that match orders. This is done using a continuous-time double auction mechanism through a
limit order book (LOB). This is a system where traders can submit orders to buy or sell at a
specified price. The order book is visible to all traders, and the exchange matches buyers and
sellers whenever they agree on a price. LOB’s do not require a Walrasian auctioneer, nor a
designated market-maker, as the market is self-clearing.

Features of Limit Order Books
In essence, a limit order book is an open record of all the different buy and sell orders in the
market. There is a price level for each price at which there is an order, and the minimum
allowed increments between these price levels are called the tick size.

There are different degrees of information that can be presented to traders. The most basic
form is a level 1 limit order book, where traders can only see the best bid and ask prices. A
level 2 limit order book shows the best bid and ask prices, as well as the volumes available
at these prices. An example of a level 2 limit order book is shown in Figure 2.1. Lastly, the
most granular, a level 3 limit order book shows all the orders in the order book, including the
volumes and prices of all orders, as well as their position in the price level. An example of a
level 3 limit order book is shown in Figure 2.2.

The rules by which the limit order book operates, i.e. who gets priority when orders are
matched, is determined by the matching engine of the exchange. This is a set of rules that
determine how orders are matched, and in what order. The most common matching engine

2.1. Introduction 5

is the price-time priority matching engine, where orders are matched based on the price of
the order, and the time at which the order was placed. This means that orders with the same
price are matched in the order they were placed. This is also known as a first in first out rule.
This thesis concerns itself with a level 3 limit order book, and the price-time priority matching
engine.

Types of Orders
For this thesis, we consider the three following types of orders:

• Limit order: An insertion of a new order in the limit order book. (A buy order strictly
less than the best ask price, or a sell order strictly higher than the best bid price).

• Market order: A buy or sell order at the best available price.
• Cancel order: A cancellation of an already existing order in the limit order book.

Figure 2.1: Example of a level 2 limit order book. Volumes per price level are aggregated.

Figure 2.2: Example of a level 3 limit order book. One can see the priority of the buyers/sellers in the queue.

2.1.4. Models à la Avellaneda and Stoikov
The main type of models one comes across when studying market-making are models that are
based on the seminal paper by Avellaneda and Stoikov [2]. The Avellaneda-Stoikov model is a
simple model that captures the essence of market making. The model is based on the following
assumptions:

• Mid prices are modelled by a stochastic process, exogenous to the market-maker’s
behaviour.

• The probability that the market maker buys/sell the bid/ask they are quoting depends
on the distance between the quoted price and the mid price.

The authors then optimise to a utility function. One is then able to derive an optimal solution
to how to skew the bid/ask prices a market-maker should quote around a midprice, depending
on inventory and time to expiry, as done by Gueant et. al [8].

Essentially, the authors solve for the following problem (in the eyes of a market-maker):

2.2. Modelling Limit Order Books 6

• Given a midprice, current inventory, and time to expiry: how far away do I place my
bid/ask prices?

The main difference, as highlighted by Gueant [9], between models à la Avellaneda and Stoikov
and limit order book modelling is that the Avellaneda and Stoikov models do not take into
account the discrete nature of prices. All limit order books have a minimal price increment
called a tick size, and this is not assumed in the model. Furthermore, the very nature of limit
order books as queuing systems are not taken into account. As discussed before, the trader
that submits the best price gets executed first. Also, there is a priority if two traders give the
same price, namely time. This is not something that Avellaneda and Stoikov take into account
in their seminal paper.

This does not mean that models that stem from the Avellaneda and Stoikov paper are not
used. They are mostly suitable to dealer based markets, where the limit order book queuing
dynamics do not matter. An example of a dealer based market is the over-the-counter bond
trading done by, for example, large banks.

2.2. Modelling Limit Order Books
There are countless ways to model limit order books. In this section, we will go over the theory
behind two models that have been proposed in the literature. The first model is that of a
continuous time Markov chain model, as proposed by Hult and Kiessling [5]. The second model
is the queue-reactive model proposed by Huang et al. [6]. Both models are based on the idea
that the order book can be represented by a Markov chain. The models differ mainly in the way
the order book is updated, i.e. the functions by which orders are sent, as the queue-reactive
model takes into account the queue size at each price level.

2.2.1. Markov Chain Model
Hult and Kiessling [5] present a model for a limit order book using a continuous time Markov
chain. We will now go over the theory presented in their paper.

Modelling Framework
A continuous time Markov chain X = (Xt) is used to model the limit order book. It is assumed
that there are d ∈ N possible price levels in the order book, denoted by π1 < · · · < πd. The
Markov chain Xt = (X1

t , . . . , Xd
t) represents the volume at time t > 0 of buy orders (negative

value) and sell orders (positive value) at each price level. Assume that Xj
t ∈ Z for each

j = 1, . . . , d. The state space of the Markov chain is denoted by S ⊂ Zd. The generator matrix
of X is denoted Q = (Qxy), where Qxy is the transition intensity from state x = (x1, . . . , xd) to
state y = (y1, . . . , yd). The matrix P = (Pxy) is the transition probability matrix of the jump
chain of X. Let X = (Xn)∞

n=0, where n is the number of transitions from time 0.

For each state x ∈ S let

jB = jB(x) = max{j : xj < 0} (highest bid level),
jA = jA(x) = min{j : xj > 0} (lowest ask level).

Assume that xd > 0 for all x ∈ S, i.e. there is always someone willing to sell at the highest
possible price, and that x1 < 0 for all x ∈ S, i.e. there is always someone willing to buy at the

2.2. Modelling Limit Order Books 7

lowest possible price. Also assume that jB < jA. The bid price is defined to be πB = πjB and
the ask price is defined to be πA = πjA . Note that there are no limit orders between the bid
and ask price, i.e. xj = 0 for all jB < j < jA. The spread is the distance jA − jB.

We now look at all the possible transitions of the Markov chain X (possible ways that the order
book can change). Let ej = (0, . . . , 0, 1, 0, . . . , 0) be the jth unit vector in Zd. The possible
transitions are:

• Limit buy order: A limit buy order of size k at level j is an order to buy k units at
price πj. The order is placed last in the queue of orders at price πj. The transition is
x→ x− kej , where j < jA and k ≥ 1. That is, a limit buy order can only be placed at a
level lower than the best ask level jA.

• Limit sell order: A limit sell order of size k at level j is an order to sell k units at
price πj. The order is placed last in the queue of orders at price πj. The transition is
x→ x + kej , where j > jB and k ≥ 1. That is, a limit sell order can only be placed at a
level higher than the best bid level jB.

• Market buy order: A market buy order of size k is an order to buy k units at the best
ask price. The transition is x→ x− kejA , where k ≥ 1. Note that if k ≥ xjA , then the
order will clear all the volume at that price level, resulting in a new lowest ask level.

• Market sell order: A market sell order of size k is an order to sell k units at the best
bid price. The transition is x→ x + kejB , where k ≥ 1. Note that if k ≥ |xjB |, then the
order will clear all the volume at that price level, resulting in a new highest bid level.

• Cancellation of buy order: A cancellation of a buy order of size k at a level j is
an order to instantly remove k limit buy orders at a level j from the order book. The
transition is x→ x + kej, where j ≤ jB and 1 ≤ k ≤ |xj|.

• Cancellation of sell order: A cancellation of a sell order of size k at a level j is
an order to instantly remove k limit sell orders at a level j from the order book. The
transition is x→ x− kej, where j ≥ jA and 1 ≤ k ≤ xj.

To summarise, the possible transitions are such that Qxy is non-zero if and only if state y is of
the form

y =

x + kej, j ≥ jB(x), k ≥ 1,

x + kej, j ≤ jB(x), 1 ≤ k ≤ |xj|.
x− kej, j ≤ jA(x), k ≥ 1,

x− kej, j ≥ jA(x), 1 ≤ k ≤ xj.

Now it remains to be seen how the model is parameterised.

Parameterisation
To ease calibration of the proposed model, the authors follow the framework of a zero intelligence
model. This is a model where the transition probabilities are only dependent on the location of
the best bid and ask, and is for the rest state independent. This is an extremely well studied
model, and is known for its simplicity and ease of calibration. A deeper dive into the dynamics
of such models, and how they can effectively capture the behaviour of real order books, can be
found in the work of Farmer et al.[10]

2.2. Modelling Limit Order Books 8

Given two different states x, y ∈ S, the transition intensity from x to y is denoted as Qxy.
The waiting time until the next transition is assumed to be exponentially distributed with
parameter

−Qx =
∑
y ̸=x

Qxy.

The transition matrix of the jump chain, P = (Pxy), denotes the probability of transitioning
from state x to state y in one jump. The transition matrix is obtained from Q by normalising
the rows, i.e.

Pxy = Qxy

−Qx

.

The model can now be completely determined by the initial state and the non-zero intensities
for the transition rates of the Markov chain. The authors propose a simple model, namely that
the limit, market, and cancellation orders arrive according to a Poisson distribution specified
by the following parameters:

• Limit buy (sell) orders arrive at distance i levels from best ask (bid) at rate λB
L (i) (λS

L(i)).
• Market buy (sell) orders arrive at rate λB

M (λS
M).

• The size of limit and market orders follow discrete exponential distributions with param-
eters αL and αM .

– The distributions of the sizes of limit orders (pk)k≥1 and market orders (qk)k≥1 are
given by

pk = (eαL − 1) e−αLk, qk = (eαm − 1) e−αM k.

• Cancellation rates are λB
C(i) and λS

C(i). It is assumed that the size of the cancellation
orders are 1.

One can calibrate the model to real data by estimating the parameters above, but we will
use the authors’ calibration for the sake of simplicity. The authors calibrate the model to a
EUR/USD exchange rate traded on a foreign exchange and get the following parameters:

Levels (i) 1 2 3 4 5
λl(buy) 0.1330 0.1811 0.2085 0.1477 0.0541
λl(sell) 0.1442 0.1734 0.2404 0.1391 0.0584
λc(buy) 0.1287 0.1057 0.0541 0.0493 0.0408
λc(sell) 0.1308 0.1154 0.0531 0.0492 0.0437

λm(buy) 0.0467 αl 0.5667
λm(sell) 0.0467 αm 0.4955

Table 2.1: Calibrated parameters found in Hult and Kiessling [5].

To illustrate the model, we simulate a limit order book using the parameters above. With a
starting price of 100, and tick size equal to 1, an example simulation run for a 1000 steps is
shown in Figure 2.3.

2.2. Modelling Limit Order Books 9

Figure 2.3: Simulation of a limit order book using the Markov chain model.

From what we can see, the model captures the dynamics of a price process in a limit order
book relatively well, where we see prices and volumes (not pictured) fluctuate like a real
market would. However, the model is quite simple and does not take into account several other
variables, such as the queue size at each price level. Furthermore, the calibration of the model
is done with a zero intelligence model. While being able to capture dynamics relatively well,
it is not able to capture all empirical relationships observed in limit order books, something
Farmer et al. [10] also mention in their work.

Thus, in order to study how well reinforcement learning algorithms will perform in more
complex situations, we will now move on to the theory of a slightly more complex model,
namely the queue-reactive model.

2.2.2. Queue-Reactive Model
The queue-reactive model was proposed by Huang et al. [6]. The model is based on analysis of
high frequency data and is able to accommodate empirical properties of order book dynamics.
The authors split the time interval of interest into periods in which a reference price remains
constant. Within these periods, the limit order book is viewed as a Markov queuing system.
The intensities of the order flows only depends on the current state of the order book. To take
into account the whole period of interest, the authors present a stochastic mechanism to switch
from one period of constant reference price to another.

Constant Reference Price
We will begin with outlining the dynamics of the LOB in a period of constant reference price.
Let δ be the tick value of the limit order book. The limit order book is seen as a 2K-dimensional
vector, where K denotes the number of limits on each side. In the Markov chain model, the
number of price levels was denoted as d. The reference price pref defines the center of the
2K-dimensional vector, dividing the limit order book into two parts:

2.2. Modelling Limit Order Books 10

• Bids: [Q−i = pref − (i− 0.5)δ]Ki=1,
• Asks: [Qi = pref + (i− 0.5)δ]Ki=1,

where Qj denotes the price level j. The number of orders at Qj is denoted by qj.

Furthermore, we assume that on both sides, the market sends limit, cancel, and market orders.
We further assume that there is a constant order size at each limit, but do allow for different
order sizes at different limits. The authors call this size at each limit Qi the average event size
(AESi for short).

As a result, we now have a 2K-dimensional process X(t) = (q−K(t), . . . , q−1(t), q1(t), . . . , qK(t))
that represents the limit order book. The limit order book is then modelled as a continuous-time
Markov jump process, with jump size equal to one.

Estimation of Reference Price
As mentioned above, the reference price defines the center of the 2K-dimensional vector. This
definition is relevant for the positioning of the limits Qi. Using the framework above, we must
have that

pref = p1 + p−1

2 ,

where p1 and p−1 denote the best bid and best ask prices respectively. When the bid-ask spread
is equal to one tick, pref is the midprice. However, when the bid-ask spread is larger than one
tick, we can take several choices. The authors propose the following choices for odd or even
spreads sizes (in ticks) larger than one:

• Odd spread:
pref = pmid = pbb + pba

2 ,

where pbb and pba denote the best bid and best ask prices respectively.
• Even spread:

pref = pmid + tick
2 or pref = pmid −

tick
2 ,

choosing one which is closes the the previous value of pref .

Model 1: Collection of Independent Queues
In the first iteration of the queue-reactive model, the authors assume independence between the
flows arriving at different limits in the limit order book. Flows is a term used in the industry
for the arrival of different types of orders. We assume that the intensities of the orders arriving
are only functions of the queue size available at the limit Qi. Furthermore, the different orders
are taken to have independent intensities. Thus, we have:

• Limit orders: λL
i (x),

• Market orders: λM
i (x),

• Cancel orders: λC
i (x).

We take the queue size at the limit qi to be the input x. We also assume symmetry in the bid
and ask sides, and thus we have that

λL
i (x) = λL

−i(x), λM
i (x) = λM

−i(x), λC
i (x) = λC

−i(x).

2.2. Modelling Limit Order Books 11

The methods the author uses for parameter estimation is outlined as follows:

1. Define an "event" ω, where an event is any modification of the queue size.
2. For queue Qi, record:

• The waiting time δti(ω) (in seconds) between ω and the preceding event at Qi.
• The type of event Ti(ω), where

– Ti(ω) ∈ E+ for a limit order insertion at Qi.
– Ti(ω) ∈ E− for a limit order cancellation at Qi.
– Ti(ω) ∈ EM for a market order at Qi.

• The queue size qi(ω) before the event, which is approximated by an integer greater
or equal to the volume at the queue divided by the AESi.

3. When the reference price changes, restart the recording process.

Once the data (∆ti(ω), Ti(ω), qi(ω)) is collected, the authors estimate the intensities λL
i (x), λM

i (x), λC
i (x)

by maximum likelihood estimation:
Λ̂i(n) = mean(∆ti(ω)|qi(ω) = n)−1,

Λ̂L
i (n) = Λ̂n

i

#{Ti(ω) ∈ E+, qi(ω) = n}
#{qi(ω) = n}

,

Λ̂M
i (n) = Λ̂n

i

#{Ti(ω) ∈ EM , qi(ω) = n}
#{qi(ω) = n}

,

Λ̂C
i (n) = Λ̂n

i

#{Ti(ω) ∈ E−, qi(ω) = n}
#{qi(ω) = n}

,

where ’mean’ denotes the empirical mean, and # denotes the number of events.

Figure 2.4 shows the authors’ estimated intensities for the stock France Telecom (now Orange),
which we will also use for the simulator in this thesis.

Figure 2.4: Intensities at Q±i, i = 1, 2, 3, France Telecom. Estimated by the authors in [6].

We quickly analyse the intensities that we observe. We see that in the limit order insertions,
that at the first limit, the intensity is almost constant with respect to the queue. However,

2.2. Modelling Limit Order Books 12

at the second and third limit, the intensity is a decreasing function of the queue size. This
indicates that agents post orders at the second and third limit more when the queue size is
small to seize order priority. For market orders, we observe a similar phenomenon in the first
limit. This is probably due to the market participants rushing to execute when there is a
lack of liquidity, but waiting for a better price when there is more orders resting. The second
and third limit are almost zero, natural, as market orders are executed at the best price. For
cancellations, we see that the intensity is a strongly increasing concave function with respect
to the queue size. This is a large contrast to the linear approximations previously used, such
as Cont et al. [11]. This could be due to market participants cancelling their orders when they
see that the queue size is large, as they are not likely to get executed, i.e. having a lower queue
priority. The second and third limit behave similarly, with even quicker rates of cancellations
as the queue size increases.

Queue-Reactive Model
The largest difference between the model outline so far, and the Markov chain model proposed
by Hult and Kiessling [5] is that the intensities for orders in the Huang et al. [6] paper is a
function of the queue sizes at the order limits. In the Markov chain model, the authors use
a zero-intelligence model, so there is no dependency on the state besides the distance of the
levels from the best bid-ask.

In order to increase complexity in this model, the authors introduce a dynamic reference
price. They assume that pref changes with some probability θ when some event modifies
the midprice pmid. Specifically, if pmid increases/decreases, pref increases/decreases by δ with
some probability θ, given that q±1 = 0 at that moment (the best bid-ask queues are empty).
Therefore, changes in pref are possibly triggered by:

• The insertion of a buy/sell limit order within the bid-ask spread when Q1/Q−1 is empty
at this moment.

– I.e. a limit order becoming the best bid/ask.
• A cancellation of the last remaining best bid/ask order.
• A market order that consumes the last remaining best bid/ask order.

As a result, when pref changes, the value of qi switches to the value of one of its neighbours
(either qi+1 or qi−1 if pref increases or decreases respectively). Thus, one has to be careful in
implementation, as the average event sizes are not the same for different queues.

Furthermore, to model exogenous information into the model, the authors assume that with a
probability θreinit, the limit order book state is redrawn from its invariant distribution around
the new reference price when pref changes. The authors justify this by considering that this
can be seen as a flurry of activity from market participants to readjust their order flows around
a new reference price.

Finally, we have that the market dynamics are now modelled by a (2K +1)-dimensional Markov
process X̃(t) := (X(t), pref (t)), where X(t) is the same as before.

Similar to the Markov chain model, an example simulation of 1000 steps for an order book is
outlined in Figure 2.5.

2.3. Reinforcement Learning 13

Figure 2.5: Simulation of a limit order book using the queue-reactive model.

Again, we see that the model captures the dynamics of a price process in a limit order book
well. It is difficult to really tell if a model actually works well with only one visualisation, but
we refer to the author’s paper for a more in depth analysis as to why the queue-reactive model
is a more realistic limit order book simulator. This is a sanity check that the price process at
least behaves like a real market would. While not illustrated, the volumes also fluctuate in a
realistic manner.

It is important to highlight that using the parameters from Huang et al. [6] results in a model
that is inherently more volatile compared to the Markov chain model’s parameters from Hult
and Kiessling [5]. This is due to the fact that the Queue-Reactive model was calibrated on
France Telecom, a stock listed on the French stock exchange, while the Markov chain model
was calibrated on the EUR/USD, which is significantly more stable. This distinction is a key
factor when comparing the outcomes of the two models. The parameters from Huang et al.
[6] were chosen to explore how agents perform in a more complex and volatile environment.
Additionally, the queue-reactive model is more realistic, as it reflects the structure of most
equity markets, which operate using a limit order book, making it a more relevant framework
for this analysis.

2.3. Reinforcement Learning
A natural framework used to model and solve for the market-making problem in limit order
books is the use of Markov decision processes, as done in Hult and Kiessling [5]. This stems
quite naturally due to how we modelled the limit order books so far, namely as Markov
chains. This will also be how this paper aims to solve the market-making problem in the two
environments outlined in the previous section. To do so, we need to delve into the theory
behind these methods.

2.3. Reinforcement Learning 14

In this section, we will outline the theory of Markov decision processes, dynamic programming
and go into temporal-difference learning, sourced mainly from Sutton and Barto [12]. This is
then finished with a dive into neural networks and deep reinforcement learning.

2.3.1. Markov Decision Processes
In this section, we introduce the theory of Markov decision processes, which is a framework used
to model sequential decision-making problems. We discuss the agent-environment interface,
how it relates to market making, and define goals and rewards. We then introduce the concept
of value functions and policies, and how they can be used to solve for optimal policies in
Markov decision processes.

Agent-Environment Interface
Markov decision processes (MDPs) are a framing of the problem of learning from interaction
to achieve a goal. The learner/decision-maker is called the agent. The agent interacts with the
environment, which comprises everything outside of the agent. These two interact continually,
with the agent selecting actions and the environment responding to these actions and presenting
new situations to the agent. The agent receives rewards as feedback from the environment,
which is the basis for the agent’s learning. Below, an illustration of this agent-environment
interaction 2.6.

Figure 2.6: The agent-environment interaction in a Markov decision process. Taken from Sutton and Barto
[12].

More specifically, the agent and environment interact at discrete time steps t = 0, 1, 2, At
each time step t, the system is in the state St ∈ S, on which the decision maker can choose an
action At ∈ A(s), where A(s) is the set of actions available in state St. The agent receives a
reward Rt+1 ∈ R ⊂ R, and the system then moves to a new state St+1.

This gives rise to a sequence or trajectory that looks as follows:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, . . . (2.1)

We concern ourselves with finite discrete MDPs, which is when the state and action spaces
are finite and discrete. In this scenario, the random variables St and Rt have well defined
probability distributions dependent only on the preceding state and action. That is, at a time t,
for states s, s′ ∈ S, reward r ∈ R, action a ∈ A, there is a probability of those values occurring,
given the preceding state and action:

p(s′, r|s, a) := P (St+1 = s′, Rt+1 = r|St = s, At = a) , (2.2)

2.3. Reinforcement Learning 15

for all s, s′ ∈ S, r ∈ R, a ∈ A. This function p defines the dynamics of the Markov decision
process. Note that as a result p satisfies the following property, as it is the sum of conditional
probabilities: ∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A. (2.3)

In a Markov decision process, the probabilities given by p completely characterizes the environ-
ment’s dynamics. This implies that the values each state St and reward Rt depends only on
the preceding state St−1 and action At−1. This is the Markov property, which states that the
future is independent of the past given the present.

As a result, we can define the state transition probabilities p : S × S ×A 7→ [0, 1] as follows
(this abuses notation slightly):

p(s′|s, a) := P (St+1 = s′|St = s, At = a) =
∑
r∈R

p(s′, r|s, a). (2.4)

We can also compute the expected rewards for a state-action pair (s, a) as a function r :
S ×A 7→ R:

r(s, a) := E [Rt+1|St = s, At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), (2.5)

and finally the expected rewards for a state-action-next state triplet (s, a, s′) as a function
r : S ×A× S 7→ R:

r(s, a, s′) := E [Rt+1|St = s, At = a, St+1 = s′] =
∑

r∈R rp(s′, r|s, a)
p(s′|s, a) . (2.6)

This framework is abstract and very flexible. It can be used to model a wide range of sequential
decision-making problems, and naturally can be applied to the market-making problem in
limit order books. The market-maker becomes the agent, the simulated limit order book its
environment, and the actions the market-maker can take are the different types of orders it
can place. The rewards are then functions of profits or losses the market-maker incurs from
these actions.

Goals, Rewards, Returns and Episodes
Now that we have defined the framework, we can introduce the concept of goals and rewards.
The reward is simple, as it is the feedback from the environment to the agent. As mentioned,
at each time step t, the reward is a number Rt ∈ R.

The goal is more complex, as it is the objective the agent is trying to achieve. Informally, the
goal is to maximize the rewards the agent receives. Thus, not maximising immediate reward,
but cumulative reward in the long run. Sutton and Barto [12] states this informal idea as the
reward hypothesis, which states that all goals can be described by the maximization of the
expected cumulative reward. In the context of market-making, the goal could be to maximize
profits, minimize losses, or some other objective over the trading day.

2.3. Reinforcement Learning 16

Formally, the sequence of rewards after time step t is denoted as

Rt+1, Rt+2, Rt+3, (2.7)

In general, we seek to maximize the expected return, denoted Gt, which is a function of the
rewards sequence. In its simplest case, we can define the return as the sum of rewards after
time step t:

Gt := Rt+1 + Rt+2 + Rt+3 + · · ·+ RT , (2.8)

where T is the final time step. This approach of a final time step makes sense in our application,
where there is a natural notion of the final time step, i.e. the end of the trading day. Thus,
the agent-environment interaction can be divided into subsequences called episodes. These
episodes can be anything, a trading day, a trading week or in another setting a round of a
game. These episodes end in a special state called the terminal state, where it is then followed
by a reset to the initial state, independent of what happened in the previous episode.

We define a discount factor γ ∈ [0, 1] to weigh the importance of future rewards. This gives
rise to the discounted return:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT −t−1RT =
T∑

k=t+1
γk−t−1Rk. (2.9)

This approach makes the agent select actions so that the sum of discounted rewards is maximized.
The discount factor γ determines the importance of future rewards. A γ = 0 makes the agent
myopic, only caring about the immediate reward. A γ = 1 makes the agent care about all
future rewards equally.

Important to note, we rewrite the goal in a more compact form, using recursion:

Gt := Rt+1 + γGt+1

= Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + . . .)
= Rt+1 + γGt+1.

(2.10)

We utilise this to in the following sections to define value functions and policies.

Policies and Value Functions
In many reinforcement learning algorithms, the central objective is to estimate value functions,
which are a measure of how good it is for the agent to occupy a particular state (or to take a
specific action in a given state). The concept of ’good’ here is inherently tied to the goal that
we defined previously. Naturally, the rewards an agent anticipates are dependent on its future
actions, and thus these value functions are dependent on the agent’s way of choosing actions,
called a policy.

A policy is defined as a mapping from states to probabilities of choosing each action.

2.3. Reinforcement Learning 17

Definition 1 (Policy) Suppose we have a Markov decision process with state space S,
action space A, and transition probabilities p. We define a policy π as a mapping from
states to probabilities of selecting each action:

π(a|s) := P (At = a|St = s) , (2.11)

for all s ∈ S and a ∈ A(s).

The policy π can be deterministic or stochastic. A deterministic policy is one where the agent
always chooses the same action in a given state. A stochastic policy is one where the agent
chooses actions randomly, according to some probability distribution.

The value function of a state s under a policy π is the expected return when starting in state s
and following policy π thereafter. We denote this as vπ(s):

Definition 2 (State-Value Function) For a Markov decision process with state space S,
action space A, transition probabilities p, and policy π, the value function vπ(s) is defined
as

vπ(s) := Eπ[Gt|St = s] = Eπ

[
T∑

k=0
γkRt+k+1

∣∣∣∣∣ St = s

]
, ∀s ∈ S, (2.12)

where Eπ denotes the expectation under policy π.

Similarly, the value of taking action a in state s under a policy π, is the expected return starting
in state s, taking action a, and following policy π thereafter. We denote this as qπ(s, a):

Definition 3 (Action-Value Function) For a Markov decision process with state space
S, action space A, transition probabilities p, and policy π, the action-value function qπ(s, a)
is defined as

qπ(s, a) := Eπ[Gt|St = s, At = a] = Eπ

[
T∑

k=0
γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
, ∀s ∈ S, a ∈ A,

(2.13)

where Eπ denotes the expectation under policy π.

Now, we utilise the recursive relationship again in these definitions to define the value functions
in terms of each other. For any policy π and any state s, we can get the relationship between

2.3. Reinforcement Learning 18

the value s and the value of the next state s′,

vπ(s) := Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
=

∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] , (2.14)

for all s ∈ S, a ∈ A(s), r ∈ R. The last equality is called the Bellman equation for vπ, and it
expresses a relationship between the value of a state and the value of its successor states. Why
do these recursive definitions, one might ask. The simple answer, to simplify formulas. One
can now easily read the Bellman equation as a sum of rewards and the value of the next state,
weighted by the probability of transitioning to that state, i.e. the expected value of the next
state. More importantly, however, is that this recursive relationship can be used to actually
solve for the value functions, as we will see in the next sections, specifically under dynamic
programming. Note that the full derivation can be found in Appendix A.

Optimal Policies and Optimal Value Functions
We have now seen that solving a reinforcement learning problem is equivalent to finding the
policy that maximises the reward in the long run. Since we are working with finite MDPs, we
can define the optimal policy as follows. A policy π is better than or equal to a policy π′ if its
expected return is greater than or equal to that of π′ for all states, i.e.

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s ∈ S. (2.15)

There always exists at least one policy that is better than or equal to all other policies. It may
not be necessarily unique, and all the these policies are called the optimal policy, denoted π∗.

Definition 4 (Optimal Policy) For a Markov decision process with state space S, action
space A, transition probabilities p, and discount factor γ, the optimal policy π∗ is the policy
that maximizes the value function for all states:

π∗ := arg max
π

vπ(s), ∀s ∈ S. (2.16)

By the relationship in 2.15, these optimal policies all share the same value function, called the
optimal value function, denoted v∗:

Definition 5 (Optimal Value Function) For a Markov decision process with state
space S, action space A, transition probabilities p, and discount factor γ, the optimal
value function v∗ is the value function that maximizes the expected return for all states:

v∗(s) := max
π

vπ(s), ∀s ∈ S. (2.17)

2.3. Reinforcement Learning 19

Similarly, optimal policies also share the same optimal action-value function q∗:

Definition 6 (Optimal Action-Value Function) For a Markov decision process with
state space S, action space A, transition probabilities p, and discount factor γ, the optimal
action-value function q∗ is the action-value function that maximizes the expected return for
all states and actions:

q∗(s, a) := max
π

qπ(s, a), ∀s ∈ S, a ∈ A. (2.18)

Thus, for the state-action pair (s, a), we can derive q∗(s, a) in terms of the optimal value
function v∗:

q∗(s, a) = max
π

qπ(s, a)

= max
π

Eπ[Gt|St = s, At = a]

= max
π

Eπ[Rt+1 + γGt+1|St = s, At = a] (by 2.10)

=
∑
r,s′

p(s′, r|s, a)
[
r + γ max

π
Eπ[Gt+1|St+1 = s′]

]
=

∑
r,s′

p(s′, r|s, a) [r + γv∗(s′)]

= E[Rt+1 + γv∗(St+1)|St = s, At = a]. (2.19)

Since v∗ is still a value function for a policy, it must satisfy the Bellman equation in 2.14.
The difference is now that since v∗ is the optimal value function, we can write the Bellman
equation without a reference to any policy, i.e. the Bellman optimality equation. Intuitively,
this equation states that the value of a state under the optimal policy must equal the expected
return for the best action from that state:

v∗(s) = max
a∈A

qπ∗(s, a) (2.20)

= max
a∈A

Eπ∗ [Gt|St = s, At = a]

= max
a∈A

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] (by 2.10)

= max
a∈A

E[Rt+1 + γv∗(St+1)|St = s, At = a] (2.21)

= max
a∈A

∑
r,s′

p(s′, r|s, a) [r + γv∗(s′)] . (2.22)

The last two equations are the two forms of the Bellman optimality equation for v∗. As a
result, substituting Equation 2.20 into Equation 2.19, the Bellman optimality equation for q∗ is

q∗(s, a) = E[Rt+1 + γ max
a′

q∗(St+1, a′)|St = s, At = a] (2.23)

=
∑
r,s′

p(s′, r|s, a)
[
r + γ max

a′
q∗(s′, a′)

]
. (2.24)

2.3. Reinforcement Learning 20

Once the optimal value function v∗ is known, determining an optimal policy becomes straight-
forward. For each state, optimal actions are those that maximize the Bellman optimality
equation, and any policy assigning non-zero probability only to these actions is optimal. When
using the optimal action-value function q∗, choosing optimal actions is even easier, as it directly
provides the best action for each state.

Explicitly solving the Bellman optimality equation offers one way to find an optimal policy, but
this approach is not practical. This is because you have to do an exhaustive search, requiring
complete knowledge of the environment’s dynamics, a lot of computational resources, and
that the Markov property holds. In real-world problems, these assumptions are often not
true. For instance, some tasks involve an enormous number of states, like chess, making it
computationally infeasible to solve for v∗ or q∗ exactly. As a result, reinforcement learning
typically relies on approximate solutions.

2.3.2. Dynamic Programming
Dynamic programming (DP) is a method to solve for optimal policies in Markov decision
processes. We continue with our assumption of having a finite MDP, as this is the problem
statement we are interested in. DP methods is to use the value function to organise and
structure the search for good policies. The general idea of DP is to turn Bellman equations
into update rules for improving approximations of the value function.

Policy Evaluation and Improvement
We begin with how to compute the state-value function vπ for an arbitrary policy π. This
is called policy evaluation. If we know all of the environment’s dynamics, then the Bellman
equation in 2.14 can be solved directly, as they become a simultaneous linear equations in |S|
unknowns. However, in practice, iterative approximations are used.

Let v0 be an initial estimate of vπ, chosen arbitrarily. Then, using the Bellman equation for vπ,
we can derive an update rule for vπ, namely,

vk+1(s) :=
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s′)] , ∀s ∈ S. (2.25)

Sutton and Barto [12] shows that this update rule converges to vπ as k →∞ under the same
conditions that guarantee the existence of vπ. This is called the iterative policy evaluation
algorithm.

The reason to compute the value function of a policy is to find better policies. Suppose we
have now the value function vπ for an arbitrary deterministic policy π. For some state s, we
know how good it is to follow the current policy, but we ask ourselves if it might be better or
worse to change the policy deterministically to an action a ̸= π(s). One way of doing so is
to select a in s and then follow π thereafter. The value of behaving this way is given by the
state-action value function qπ(s, a), which is the expected return for taking action a in state s
and then following policy π:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] .

To evaluate a change in policy, we introduce the policy improvement theorem.

2.3. Reinforcement Learning 21

Theorem 1 (Policy Improvement Theorem) Let π and π′ be deterministic policies
for a Markov decision process with state space S and action space A. If for all s ∈ S,

qπ(s, π′(s)) ≥ vπ(s),

then the policy π′ is better than or equal to π. That is,

vπ′(s) ≥ vπ(s),∀s ∈ S.

If the inequality is strict for at least one state s in the first condition, then the inequality is
strict for that state in the second condition.

Proof:
Proof found on page 78 in Sutton and Barto [12]. □

So, given a policy and its value function, we can now, with this theorem, evaluate a change in
policy at a given state. We extend this to the entire state space, selecting at each state the
action that appears best according to qπ(s, a). This is called the greedy policy, given by

π′(s) := arg max
a∈A

qπ(s, a) (2.26)

= arg max
a∈A

E [Rt+1 + γvπ(St+1)|St = s, At = a] , (2.27)

= arg max
a∈A

∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] . (2.28)

The process of making a new policy that improves on the current policy is called policy
improvement. Suppose that the new greedy policy π′ is equal to the old policy π. Then,
vπ′ = vπ, and from 2.26, it follows that for all s ∈ S:

vπ′(s) = max
a∈A

E [Rt+1 + γvπ′(St+1)|St = s, At = a] (2.29)

= max
a∈A

∑
s′,r

p(s′, r|s, a) [r + γvπ′(s′)] . (2.30)

But, this is the same as the Bellman optimality equation for vπ′ , and thus vπ′ = v∗, the optimal
value function. So, both π and π′ are optimal policies. Policy improvement thus must give us
a strictly better policy, except for when the original policy is already optimal.

Policy Iteration
Suppose we have a policy π. We improve π using vπ to yield a better policy π′. We then
evaluate π′ to get vπ′ . We can then improve π′ to get π′′, and so on. Each policy is guaranteed
to be a strict improvement over the previous one, unless already optimal, and since we work
with finite MDPs, it must converge to an optimal policy in a finite number of steps. This
process of iteratively evaluating the policy and then improving the policy is called policy
iteration. We write a computerised version of the algorithm in Algorithm 1.

2.3. Reinforcement Learning 22

Algorithm 1 Policy Iteration
Input: Tolerance TOL, transition matrix P , state space S, action space A, discount factor γ,
max iterations N .
Output: Nearly optimal value function V∗ and nearly optimal policy π∗.

1: Let V0(s) ∈ R arbitrary for all s ∈ S.
2: Let π0(s) ∈ A arbitrary for all s ∈ S.
3: Let n = 1, d > TOL, and stable_policy == True.
4: while stable_policy == True do
5: Policy Evaluation:
6: while d > TOL or n > N do
7: Set

Vn(s) =
∑
s′,r

p(s′, r|s, π(s)) [r + γVn−1(s′)] , ∀s ∈ S.

8: Let d = maxs∈S |Vn−1(s)− Vn(s)|
9: n = n + 1.

10: end while
11: Policy Improvement:

πn(s) = arg max
a∈A

∑
s′,r

p(s′, r|s, a) [r + γVn(s′)] , ∀s ∈ S.

12: if πn(s) ̸= πn−1(s) then
13: stable_policy == False
14: end if
15: end while
16: return πn and Vn.

Sutton and Barto [12] mention that in practice, policy iteration often converges in surprisingly
few iterations. Notably, this is something that we also see in our implementation of the
algorithm for our use case.

Value Iteration
A major drawback to policy iteration is that it requires a full policy evaluation at every iteration.
This can be computationally expensive, especially when the state space is large. What if we
only did policy evaluation iteratively? Then, convergence exactly to the vπ only occurs in
the limit, and we might be able to stop short of that. The policy evaluation step of policy
iteration can be truncated after just one update through the state space, and this is called
value iteration. The simple update operation in value iteration is given by

Vn+1(s) := max
a

∑
s′,r

p(s′, r|s, a) [r + γVn(s′)] , ∀s ∈ S. (2.31)

We rewrite the full algorithm for computer implementation in Algorithm 2.

2.3. Reinforcement Learning 23

Algorithm 2 Value Iteration
Input: Tolerance TOL, transition matrix P , state space S, action space A, initial value V0.
Output: Nearly optimal policy π.

1: Let π0(s) ∈ A arbitrary for all s ∈ S.
2: Let n = 1 and d > TOL.
3: while d > TOL do
4: Set

Vn(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γVn−1(s′)] .

5: Let d = maxs∈S |Vn−1(s)− Vn(s)|
6: n = n + 1.
7: end while
8: Define π : S 7→ A as a maximizer to∑

s′,r

p(s′, r|s, a) [r + γVn(s′)] .

As we can see the algorithm is much simpler than policy iteration, and it is more computationally
efficient in one iteration. We will see in our implementation that value iteration still converges
to the same policy as policy iteration, but does so in more iterations, albeit at a lower
computational cost per iteration.

2.3.3. Temporal-Difference Learning
A large drawback to dynamic programming methods is that they require a model of the
environment, i.e. the transition probabilities p. In many cases, such as ours, this is not
available, and we must rely on experience to learn the value function. Temporal-difference
(TD) learning is a model-free method that learns from experience, and it is a combination of
Monte Carlo methods and dynamic programming methods. TD learning differs over Monte
Carlo methods in not requiring the full episode to complete before updating the value function.
Instead, it updates the value function after each time step. This makes it more efficient
than Monte Carlo methods, as it can learn online, and it does not require the full episode to
complete.

We do not go into the full details of TD learning, but we will introduce and explain the
Q-learning algorithm as it is the most widely used TD learning algorithm, and the one we will
use in our implementation.

Q-Learning
One of the major breakthroughs in reinforcement learning was the development by Watkins in
1989 [13] of an off-policy TD control algorithm called Q-learning. Q-learning is a model-free
algorithm that learns the optimal action-value function q∗ directly, without requiring a model
of the environment and independent of the policy being followed. It is defined by

Q(St, At)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
, (2.32)

2.3. Reinforcement Learning 24

where α is the step-size parameter, and the update is done after each transition (St, At, Rt+1, St+1).

The Q-learning algorithm is shown in Algorithm 3.

Algorithm 3 Q-Learning
Input: Step-size parameter α, discount factor γ, initial state S0.
Output: Nearly optimal action-value function Q∗.

1: Let Q(s, a) be an array indexed by state and action, arbitrarily initialized.
2: while episode not terminated do
3: Choose A from S using policy derived from Q (e.g. ϵ-greedy).
4: Take action A, observe R, S ′.
5: Q(S, A)← Q(S, A) + α [R + γ maxa Q(S ′, a)−Q(S, A)].
6: S ← S ′.
7: end while

Notable, the Q-learning algorithm is incredibly simple. It is able to be applied online, with
minimal computation, and through experience generated from an interaction with an environ-
ment, it learns a close approximation to the optimal action-value function, without requiring a
model of the environment.

While powerful, Q-learning is not without its own flaws. Namely, due to using a maximum
operator in the update rule, it can be prone to overestimation of action values. This is called
maximization bias.

We quickly show the double Q-learning algorithm as it is a simple extension to Q-learning that
can reduce the overestimation bias by using two Q values to estimate each other’s Q value,
more detail is found in van Hasselt [14]. The algorithm is shown in Algorithm 4.

Algorithm 4 Double Q-Learning
Input: Step-size parameter α, discount factor γ, initial state S0.
Output: Nearly optimal action-value function Q∗.

1: Let Q1(s, a) and Q2(s, a) be arrays indexed by state and action, arbitrarily initialized.
2: while episode not terminated do
3: Choose A from S using policy derived from Q1 + Q2 (e.g. ϵ-greedy).
4: Take action A, observe R, S ′.
5: With 0.5 probability, update Q1:

Q1(S, A)← Q1(S, A) + α
[
R + γQ2(S ′, arg max

a
Q1(S ′, a))−Q1(S, A)

]
.

6: With 0.5 probability, update Q2:

Q2(S, A)← Q2(S, A) + α
[
R + γQ1(S ′, arg max

a
Q2(S ′, a))−Q2(S, A)

]
.

7: S ← S ′.
8: end while

2.3. Reinforcement Learning 25

2.3.4. Deep Learning
With the rise in computational power, we have seen artificial neural networks (NNs) become a
popular tool in many applications. They are widely used for nonlinear function approximation,
in part supported by universal approximation theorems, with the arbitrary width and sigmoid
activation function case proven by Cybenko [15] and the multilayer feed-forward network case
by Hornik, et al. [16].

Following Hastie, et al. [17], we dive a bit deeper into the most widely used ’vanilla’ neural
net, also called the single hidden layer back-propagation network or single layer perceptron.
For a further in-depth understanding of neural networks and the different architectures one
can utilise, we refer to Hastie, et al. [17] and Goodfellow, et al. [18].

A neural network is a parameterised family of functions f : Rd 7→ R. Typically, they are
represented by a network diagram, such as the one in Figure 2.7. The output layer has k target
measurements Yk, k = 1, . . . , K. The input layer has p input measurements Xp, p = 1, . . . , P .
Derived features Zm, m = 1, . . . , M are created from linear combinations of the inputs Xp, and
then the target Yk is modeled as a function of linear combinations of Zm,

Yk =
M∑

m=1
w

(2)
kmZm + b

(2)
k

Zm = σ

 P∑
p=1

w(1)
mpXp + b(1)

m

 ,

(2.33)

where σ(·) is called the activation function, and w
(l)
ij and b

(l)
j are the weights and biases of the

network. The weights and biases are usually notationally collected in a parameter vector

θ =
(
w

(1)
11 , . . . , w

(1)
1P , b

(1)
1 , . . . , w

(1)
1M , . . . , w

(2)
1M , . . . , b

(2)
K

)
.

We do this for ease of notation.

The activation function σ is typically a non-linear and monotonically non-decreasing function.
Examples include

• Sigmoid: σ(x) = 1
1+e−x ,

• Hyperbolic tangent: σ(x) = tanh(x),
• Rectified linear unit (ReLU): σ(x) = max(0, x).

The weights and biases are learned through a process called backpropagation, where the error
of the network is calculated and propagated back through the network to update the weights
and biases. The error is measured by a loss function, such as the mean squared error, and the
weights and biases are updated typically through stochastic gradient descent.

This thesis uses a ReLu activation function, mean squared error loss as its loss function, and
optimises with the well known adaptive moment estimation (Adam) algorithm, a form of a
stochastic gradient descent algorithm developed by Kingma and Ba [19]. We will re-iterate
this in the implementation section.

2.3. Reinforcement Learning 26

X1

X2

...

XP

Z1

Z2

...

ZM

Y1

Y2

...

YK

Figure 2.7: Schematic of a single hidden layer, feed-forward neural network. This network has P input nodes,
M hidden nodes, and K output nodes.

Deep Reinforcement Learning
Most problems are too large to learn all the action values in all states separately, in a table à la
classical Q-learning. Thus, we can represent an approximate value function as a parametrized
form with weight vectors θ ∈ Rd. We write, v̂(s, θ) ≈ vπ(s), and Q(s, a; θ) ≈ Q∗(s, a). There are
a multitude of ways to approximate the value function, such as linear function approximation,
kernel-based function approximation, and neural networks. The latter has become a popular
method, and is the subject of this section, deep reinforcement learning.

Deep Q-Networks
We start with parameterised Q learning. By parameterising Q(s, a; θt), the standard Q-learning
update rule after taking action At in state St and observing reward Rt+1 resulting in state St+1
in Equation 2.32 becomes

θt+1 = θt + α
[
Y Q

t −Q(St, At; θt)
]
∇θQ(St, At; θt), (2.34)

where α is the scalar step size, and the target Y Q
t is defined as

Y Q
t = Rt+1 + γ max

a′
Q(St+1, a′; θt). (2.35)

Now, a deep Q-network (DQN), developed by Mnih, et al. [4] is when a multi-layered neural
network with parameters θ is used to approximate the action-value function Q(s, a; θ). For
an n dimensional state space, and an m dimensional action space, the network is a function
f : Rn 7→ Rm. The Q network is trained by minimising a sequence of loss functions Lt(θt) that
changes at each iteration t,

Lt(θt) = Es,a,r,s′

[(
Y Q

i −Q(s, a; θt)
)2

]
, (2.36)

where Y Q
t is the target network. Unlike the target network defined in Equation 2.35, Mnih

et al. [4] use a separate target network with parameters θ−, which is the same as the online
network, except that its parameters are updated only every τ steps, where θ−

t = θt. The target
network by DQN is then

Y Q
t = Rt+1 + γ max

a′
Q(St+1, a′; θ−

t). (2.37)

2.3. Reinforcement Learning 27

The second major innovation of DQN is the use of an experience replay buffer, first developed by
L. Lin [20]. The experience replay buffer is a large memory of past experiences D = e1, . . . , eN ,
where et = (st, at, rt, st+1). During the inner loop of the algorithm, the agent samples a random
minibatch from this memory D. The randomization of sampling from this experience replay
buffer breaks the correlation between consecutive samples, and therefore reduces variance of
the updates.

The DQN algorithm is shown in Algorithm 5.

Algorithm 5 Deep Q-Network
Input: Step-size parameter α, discount factor γ, initial state S0, replay memory (D) capacity
N , target network update frequency τ .
Output: Nearly optimal action-value function Q∗.

1: Let θ and θ− be the parameters of the online and target networks, respectively, arbitrarily
initialized.

2: for episode in episodes do
3: Initialize S.
4: while episode not terminated do
5: Choose A from S using policy derived from Q (e.g. ϵ-greedy).
6: Take action A, observe R, S ′.
7: Store (S, A, R, S ′) in D.
8: Sample a random minibatch of transitions (si, ai, ri, si+1) from D.
9: Set

Y Q
i =

Ri if episode terminates at step i + 1,

Ri + γ maxa′ Q(si+1, a′; θ−) otherwise.

10: Perform a gradient descent step on (Y Q
i −Q(si, ai; θ))2 with respect to the network

parameters θ.
11: Every τ steps, update the target network parameters θ− = θ.
12: S ← S ′.
13: end while
14: end for

Double Deep Q-Networks
Similar to the problem of Q-learning, deep Q-networks can also suffer from overestimation bias.
van Hasselt, et al. [21] showed that DQN suffers from substantial overestimations in some
games in the Atari 2600 domain. This led to the development of the double DQN algorithm,
which is a simple extension to DQN that can reduce the overestimation bias.

The idea behind double Q-learning initially is to reduce overestimations by decomposing the
max operation in the target into action selection and action evaluation. The parameterised
version of the target in Q-learning is rewritten as

Y Q
t = Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θt); θt).

2.4. Reinforcement Learning in Limit Order Book Market Making 28

The double Q-learning error can then be written as

Y DQ
t = Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θt); θ′

t). (2.38)

Note that the selection of the action is still done with the online network, through the parameters
θt. However, we use a second set of weights θ′

t to fairly evaluate the value of this policy.

We now combine the concepts of double Q-learning and DQN to get double DQN. The target
network in DQN (Y Q

t) provides a natural candidate for the second value function, despite
not being fully decoupled. Therefore, the authors propose to use evaluate the greedy policy
according to the online network, but use the target network to evaluate estimate its value. The
update rule is the same as DQN (see Equation 2.34), but with the target network defined as

Y DDQN
t = Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θt); θ−

t). (2.39)

The difference between DQN and the double Q-learning Equation 2.38 is that the weights
of the second network θ′

t are replaced with the weights of the target network θ−
t . The target

network stays unchanged from DQN, and remains a periodic copy of the online network, a
subtle difference.

2.4. Reinforcement Learning in Limit Order Book
Market Making

With the core principles of reinforcement learning and limit order books established, we now
explore the application of RL in the context of market making. In this setting, agents learn
to optimize market making strategies by interacting with the LOB, dynamically adjusting
their orders to maximize long-term profits while minimizing risks. We will cover the problem
of optimal market making in the MDP framework, discuss previous work on RL in market
making, and end off with the design choices for our experiments.

2.4.1. Optimal Trading Strategies
Using the theory of Markov decision processes, we can construct optimal strategies for trading
strategies. We use two examples covered in Hult and Kiessling [5] of optimal strategies that can
be constructed using the theory of Markov decision processes. The first example is a strategy
for buying one unit, and the second example is a strategy for market making.

Hult and Kiessling’s Theory
We first need to dive a bit deeper into the way Hult and Kiessling write out their theory on
optimal trading strategies. They also use Markov decision processes, but the biggest difference
is that the split the action state A into two, a set of continuation actions C and a set of
termination actions T .

Let (Xn)∞
n=0 be a Markov chain in discrete time on a countable state space S with transition

matrix P . Let A be the finite set of possible actions. Every action can be divided into two
sets, the set of continuation actions C and the set of termination actions T . The action space
is then defined as

A = C ∪ T , C ∩ T = ∅.

2.4. Reinforcement Learning in Limit Order Book Market Making 29

The Markov chain terminates when a termination action is taken.

Every action is not necessarily available in every state. Let A(s) be the set of actions available
in state s. The set of continuation actions is denoted C(s) = A(s)∩C and the set of termination
actions is denoted T (s) = A(s) ∩ T .

As a result, there are values of continuation vC(s, a) and termination vT (s, a) for each state-
action pair (s, a). Hult and Kiessling [5] prove that under this framework, that policies under
this framework still have existing optimal policies and have that the optimal expected value
function is the unique solution to the Bellman equation.

This does not change much of the actual underlying theory of Markov decision processes, but it
does make the notation a bit more complex. The authors still use the value iteration algorithm
to find the optimal value function.

Keep or Cancel Strategy for Buying One Unit
We aim to buy a single unit at price j0 < jA(X0), where X0 is the initial state of the order
book Xn. After each market transition, the agent can choose to either keep the limit order or
cancel it and submit a market buy order at the best ask level jA(Xn). We also assume that the
agent has decided upon a maximum price level J > jA(X0) they are willing to pay. If jA(Xi),
for some time i, reaches J before the agent’s order is executed, the agent cancels the bid order
and places a market order at J to fulfill the trade. It is assumed there is always volume at J .

We assume J for two reasons, one is that the agent does not want to pay more than J for
the asset as it is then comparatively overpriced. The second reason is that by introducing an
upper bound, we can ensure that the numerical computation of a solution is made simpler, as
we shrink the state space.

Denote Yn the position of the limit order of the agent in the queue at level j0. This represents
the number of limit orders in front of the agent’s order, including the agent’s order, after n
transitions. Then, Y0 = Xj0

0 − 1 (Yn is negative) and Yn can only move up towards 0 whenever
there is either a market order at level j0 or a limit order at level j0 is cancelled. The agent’s
order is executed when Yn = 0.

The pair (Xn, Yn) is a Markov chain with state space S ⊂ Zd×{. . . ,−2,−1, 0}, i.e. the volume
at the levels × the queue size. The transition matrix of the jump chain is denoted P = Pss′ .
Let s = (x, y) ∈ S. There are three possible cases:

• y < 0 and jA(x) < J , i.e. the agent’s order has not been executed and the stop-loss has
not been reached. Then, the possible continuation action is waiting for the next market
transition, denoted by C(s) = {0}. The possible termination action an agent can take is
to cancel the order and submitting a market order at jA(x), denoted by T (s) = {−1}.

• y < 0 and jA(x) = J , i.e. the agent’s order has not been executed and the stop-loss has
been reached. Then, the possible continuation action is C(s) = ∅, as we hit our stop loss.
The possible termination action is T (s) = {−1}, representing cancelling the limit order
and submitting a market order at J .

• y = 0. The Markov chain is terminated, as the agent’s order has been executed. The
continuation action is C(s) = ∅ and the termination action is denoted by T (s) = {−2}.

2.4. Reinforcement Learning in Limit Order Book Market Making 30

As a result, the termination costs are

vT (s,−1) = πjA(x),

vT (s,−2) = πj0 .

We note that this notation differs from the π in the RL section, where π denoted a policy, and
here we go back to the notation before where π is the price of the asset at level j.

In a state s = (x, y), when jA(x) < J , and following a stationary policy α, it is given by Lemma
4.1 in Hult and Kiessling [5] (found in Appendix A) that the expected value of the agent’s
order is given by

V∞(s, α) =

∑

s′∈S Pss′V∞(s′, α), α(s) = 0
πJ − πjA(x), α(s) = −1
πJ − πj0 , α(s) = −2.

The waiting value is zero, as the agent does not pay any fees for waiting. The value function
iteration becomes

Vn+1(s) = max
 max

a∈C(s)
vC(s, a) +

∑
s′∈S

Pss′(a)Vn−1(s′), max
a∈T (s)

vT (s, a)

=

max

(
0 + ∑

s′∈S Pss′(0)Vn−1(s′), πjA(x)
)

, for y > −, jA < J

πJ − πjA(x), for y > 0, jA = J

πJ − πj0 , for y = 0.

One can then use value iteration to solve numerically for a value function V∞(s) and a policy
α(s) that maximizes the expected value of the agent’s order. We have now shown how to use
the flexible Markov decision process framework to construct an optimal strategy for buying
one unit in the limit order book.

Optimal Market Making Strategy
We now find the optimal strategy for the instance that the agent places two limit orders (one
ask one bid) and attempts to make the spread, i.e. market make. Let the bid be placed at
level j0

n with queue position Y 0
n and the ask be placed at level j1

n with queue position Y 1
n . Our

extended Markov chain is now redefined as (Xn, Y 0
n , Y 1

n , j0
n, j1

n). It follows that Y 0
0 = X

j0
n

0 − 1
and Y 1

0 = X
j1

n
0 + 1, where Y 0

n is non-decreasing and Y 1
n is non-increasing. Again, the agent’s

individual orders are executed if Y 0
n = 0 or Y 1

n = 0.

Furthermore, the agent has decided on a best buy level JB0
< jA(X0), a worst buy level

JB1
> jA(X0), a best sell level JA1

> jB(X0) and a worst sell level JA0
< jB(X0). The state

space is thus S ⊂ Zd×{. . . ,−2,−1, 0}×{0, 1, 2, . . . }×{JB0
, . . . , JB1−1}×{JA0 +1, . . . , JA1}.

The possible actions in this strategy are defined as:

1. Before any of the orders are executed, the market maker can choose from

• Waiting for the next transition.

2.4. Reinforcement Learning in Limit Order Book Market Making 31

• Cancel both orders and resubmit at new levels k0 and k1.
• Cancel one order and resubmit at new level k0 or k1.

2. After one of the orders is executed, the outstanding limit order is proceeded according to
the buy(sell)-one-unit strategy. And the price level is also renewable after each market
transition.

Let V B
∞ (x, y, j) denote the optimal expected buy price in state (x, y, j), with best buy level

JB0 and worst buy level JB1 . Let V A
∞(x, y, j) denote the optimal expected sell price in state

(x, y, j), with best sell level JA0 and worst sell level JA1 . The optimal expected value is then
given by

V∞(s) =

max (∑

s′∈S Pss′V∞(s′), max V∞(sk0k1), 0) , for y0 > 0, y1 > 0
πj1 − V B

∞ (x, y0, j0), for y0 > 0, y1 = 0
V A

∞(x, y1, j1)− πj0
, for y0 = 0, y1 > 0

where sk0k1 is the state where the agent has cancelled both orders and resubmitted at levels k0

and k1.

Again, this can be solved for numerically using value iteration to find the optimal value function
V∞(s) and the optimal policy α(s) that maximizes the expected value of the agent’s orders.
We have now shown how to use the flexible Markov decision process framework to construct
an optimal strategy for market making in the limit order book.

The state and action space that we end up using in this thesis differs from the one above, where
inherently the order book is part in the state space. Furthermore, we simplify the action space.
This is done to make the problem computationally feasible to solve, and will be discussed in
the next section.

2.4.2. Previous Work
This section covers previous work on reinforcement learning in the market making problem.
Most of the next section is based on Gašperov et al. [22], as they have done an extensive
literature review on the topic, as well as the Master’s thesis of KTH students Carlsson and
Regnell [23].

State Space Representation
The design of the state space is one of the most important aspects of RL. It can determine
how well the agent can learn the optimal policy. The state space can be represented in many
ways, such as the order book, the queue position, the spread, the mid price, the volume, and
the volatility. The state space can be continuous or discrete, and the choice of representation
can have a significant impact on the performance of the RL agent.

Inventory
Inventory-based models are the most common approach to base the state space, with 91% of
the articles Gašperov et al. [22] reviewed using this approach. The inventory is the number of
shares the agent holds, and inherently market making boils down to an inventory management
problem, and so it is not surprising that this is the most common approach. Why? As the
agent’s inventory increases, the agent’s risk increases, and the agent inherently starts to take a
larger and longer term position in the asset, the opposite of what a market maker wants to do.

2.4. Reinforcement Learning in Limit Order Book Market Making 32

The inventory can be represented in multiple ways. Chan and Shelton [24] let inventory at
time t be qt ∈ {q−, . . . , q+}, where q− is the maximum short inventory and q+ is the maximum
long inventory allowed. The inventory can also be binned, to ease computation complexity
by reducing the state space. An example is done by Lim et al. [25], where the inventory is
binned into seven states: small, medium, large inventories, in either long or short, and a zero
inventory state.

Time
Another notable state space variable is time, which also plays an important part in Avellaneda
and Stoikov’s paper [2]. Carlsson and Regnell [23] point out to numerous papers that use
either the time remaining or the time passed as a variable.

Price
A natural candidate is the price of the asset, as this is what the agent ultimately ends up
trading. The price can be represented in many ways, such as the mid price, the spread, the best
bid and ask, the volume at the best bid and ask, and the volatility, which is usually derived
from the price. Spooner et al. [26] point out numerous measures.

LOB Data
Another common approach is to use the limit order book itself as part of the state space. This
is the approach that Hult and Kiessling [5] have implicitly been using when solving for optimal
market making. There are many features that one can pull from the LOB, such as the volume
at each level and the queue position. One can also calculate the imbalances in volumes on
bid/asks, which Spooner et al. [26] uses as a state variable.

Action Space Representation
The action space is also important, as here we can capture the dynamic of how we want the
agent to react. Most of what we are concerned with, namely market making in a limit order
book, has to do with where the agent actually ends up placing the best bid/asks at that time t.

Price Level
Naturally, the price level itself is a common action space variable. But, implementing all the
minimum price increments could mean an action space of up to several thousand different
actions for some assets. Thus, Hult and Kiessling [5] choose to have their actions at a bid
depth (db) and ask depth (da) away from the best ask and bid respectively.

To explain again, taking db = 1 would be the first tick away from the best ask, db = 2 the
second tick away from the best ask, and so on. The same goes for the ask side. This is a bit
unintuitive, but is a simple way to allow for the agent to improve upon the already existing best
bid/ask. An example would be if the best bid is at level 1, the best ask at level 3. Now, the
agent can place a new bid at db = 1, implying that the agent places a bid at level 2, becoming
the new best bid.

Naturally, this also has its drawbacks. If we had a book depth of 10, this will imply 10×10 = 100
different actions the agent can take, as we place both a bid and ask, with some orders being
completely unrealistic, i.e. a bid and ask at depth 10. This is computationally infeasible, and
so a popular approach is to select an action to be chosen among a predetermined set of bid
and ask pairs. Spooner et al. [26] use a set of 10 actions, namely

2.4. Reinforcement Learning in Limit Order Book Market Making 33

Action ID 0 1 2 3 4 5 6 7 8
Bid 1 2 3 4 5 1 3 2 5
Ask 1 2 3 4 5 3 1 5 2

Action ID 9 Market Order with Size −q

Table 2.2: Action space of 10 actions, used in Spooner et al. [26]. The bid and ask number represent the level
in the limit order book. The last action is to clear the inventory with a market order.

Commonly, the volume that is placed at these levels are fixed, which is the approach we resort
to using to make the problem computationally feasible.

Market Order
As shown above, Spooner et al. [26] also include a market order action, which is to clear the
inventory. This is a common approach, as it is a way to ensure that the agent can clear the
inventory if it is too large.

Reward Function
Reward functions are always some form of profit and loss, whether adjusted to inventory (and
other factors) or not. This is logical, as the ultimate aim of the market maker is to make a
profit. However, there are numerous ways to formulate PnL, and we go over two of them.

Markt-to-Market PnL
Mark to market PnL is the most common approach, where the agent’s PnL is calculated at
each time step, i.e. the agents previous inventory is multiplied by the change in where the
previous price was and is now. This is one of the approaches taken by Spooner et al. [26],
where the PnL is calculated as the difference between the agent’s inventory and the mid price.
Namely, the mark to maker PnL is defined as

rpnl
t = (mt − pt−1) · qt−1,

where mt is the mid price at time t, pt−1 is the mid price at time t − 1, qt−1 is the agent’s
inventory at time t− 1, and rpnl

0 = 0.

A problem with this is that there is no penalty for inventory holding, the agent could theoretically
be incentivised to hold a large inventory and take risk in where the price is moving. This is
why the next approach is was developed.

Asymmetrically Dampened PnL
Spooner et al. [26] show in their paper that the basic formulation of mark to market PnL
ignores the specific objective of a market maker. They propose a new reward function that is
asymmetrically dampened, where the agent is penalized for holding inventory. The reward
function is defined as

rpnlA
t = rpnl

t −max{0, η · |qt|∆mt},

where η is a parameter that determines the penalty for holding inventory, qt is the agent’s
inventory at time t, and ∆mt is the change in the mid price from time t−1 to time t. Intuitively,
this reduces the reward the agent can gain from pure speculation.

2.4. Reinforcement Learning in Limit Order Book Market Making 34

2.4.3. Experimental Setup
We now turn our attention to which algorithms we decide to test, how this thesis chooses its
environment choices from the selection above, and also why we chose them.

Algorithms
The ultimate list of algorithms used and considered in each environment is listed in the table
below.

Value-iteration Policy-iteration Q-learning DQN DDQN
Markov chain model ✓ ✓ ✓ ✓ ✓

Queue-reactive model ✗ ✗ ✓ ✗ ✓

Table 2.3: Algorithms used in experiments.

We do not consider value and policy iteration, and DQN for the queue-reactive model. Mostly
because computation time is valuable, and we want to focus on the algorithms that are most
likely to perform well in the environment.

State Space Representation
In this thesis, we take the state space as a mixture of inventory and time, namely S = T ×Q.
The inventory is binned into 3 intervals, q ∈ Q = {−1, 0, 1}, where if the agent is long the
asset, q = 1, if the agent is short the asset, q = −1, and if the agent is flat, q = 0. This is
done to reduce the state space, but also to have some form of indication whether the agent is
generally long or short the asset.

In our experiments, an episode lasts T = 1000 where each time step dt = 1. The time is binned
into 5 intervals of length 200, namely t ∈ T = {1, 2, 3, 4, 5}, with 1 being the first bucket of
time, and 5 being the last time bucket of the episode. Intuitively, this was done to have some
form of indication of how long the agent has to offload its risk before the end of the trading
day.

Thus, the state space is then

S = T × Q = {1, 2, 3, 4, 5} × {−1, 0, 1}.

As a small experiment, I decided to include a second state space representation only for DDQN.
We call this DDQN full, as now the state space includes the 10 levels of the order book. This
is done to see if the agent can learn a more optimal policy with more information. The state
space becomes

• Time: T = {1, 2, 3, 4, 5}.
• Inventory: Q = {−5,−4, . . . , 0, . . . , 4, 5}.
• 10 levels of the order book.

Unfortunately, we could not consider the above state space representation for all the algorithms,
as the computational complexity would be too high. Training the DDQN on the full state
space took around 2 days, and so we left the most complicated state space representation for
the relatively most complicated model. However, as we will show, this did not necessarily lead
to better performance.

2.4. Reinforcement Learning in Limit Order Book Market Making 35

Action Space Representation
Unlike Spooner et al. [26], we do not consider a market order action and also do not consider
a predetermined set of actions. I wanted to experiment with the agent’s ability to learn the
optimal policy by itself, and so we only limit the agent to placing a bid and ask at the best 3
levels on each side, i.e.

A = Db ×Da = {1, 2, 3} × {1, 2, 3},

where Db and Da are the set of order depths. We only take three possible levels to reduce the
action space. Furthermore, I chose not to include a market order to clear its inventory, as I
wanted to push the agent to rely on controlling inventory through the placements of bid and
asks.

Another thing to note, is that the agent has to constantly place new bid and asks at each time
step. This is partly realistic, as in the real world the agent would have to constantly update its
orders, but also not as this takes away the value of having a resting order in the queue, which
increases as the queue position increases behind the agent’s order. This is a simplification that
was made to make the problem computationally feasible.

Reward Function
The reward function used in the training of the numerical methods above is the asymmetrically
dampened PnL, as defined above.

Benchmark Strategies
For a baseline policy, we will use what is called at-the-touch market making, taken from Cartea
et al. [27]. This is a simple strategy where the agent continuously places a bid and ask at the
best bid and ask levels, respectively. If the max inventory is reached, it will only place orders
on the opposite side of its inventory, i.e. if it is max long, only place sell orders (asks). We call
this agent "Follow BBO".

Do note that this is a bit of an unfair comparison, as the at-the-touch strategy has a different
action space than the RL agents. However, this is a strategy used in the literature and is a
good benchmark to compare the RL agents to. Unfortunately, we could not get to actually
visualising this policy in this thesis, as we would have to average out the actions over many
samples, which takes a lot of time.

Performance Criteria
To ultimately evaluate the performance of the agents, we use multiple measures. We examine
how long it takes for the agent to converge to a policy, the mean absolute inventory over time,
the different policies the agent has learned, and the mean mark to market PnL over time.

Why use mark to market PnL? Because in the ’real world’, this is ultimately what the agent,
or an actual market maker, is trying to optimize. The asymmetrically dampened PnL is used
in training to ensure that the agent learns not take on too much risk, but the mark to market
PnL is used to evaluate the agent’s performance.

Value Iteration and Policy Iteration
Using value and policy iteration inherently implies that one knows the probability transition
matrix. I could not find the probability transition matrix from the Markov chain model. Thus,

2.4. Reinforcement Learning in Limit Order Book Market Making 36

I resorted to empirically approximating the probability transition matrix from the environment.
This is done by taking an agent who would do a random action from the above action space
and counting how many times the state transitions from on to another based on this. This is
done for a large number of episodes, and then the probability transition matrix is calculated
by dividing the number of times a transition happens by the total number of transitions. This
is then put into the value iteration and policy iteration algorithms, and the optimal policy for
that probability matrix found.

This is a form of a hybrid model-based reinforcement learning, as we are using the model of
the environment to find the optimal policy, but not quite using the analytical formula for the
probability transition matrix (if it exists).

3
Experiments and Results

With the foundational concepts of reinforcement learning and the mechanics of limit order
books established, as well as how we will approach our version of solving the market making
problem, we now turn our attention to the practical implementation of the trading environment.
In this section, we will detail the process of building a simulated trading environment tailored
to our experiments. We will then show the hyperparameters used. Finally, we will present
and discuss the results of these experiments, namely under the Markov chain model and the
queue-reactive model, analyzing the agent’s performance and the impact of various factors on
the market making policies.

3.1. Trading Environment
The implementation of the whole trading framework was done in Python. The level 3 limit
order book was implemented from scratch, and uses a sorted dictionary of dictionaries to
keep tabs on price levels and orders. The self made trading environment was built on top of
the popular Gymnasium library [28], a maintained fork of OpenAI’s Gym library, which is a
toolkit for developing and comparing reinforcement learning algorithms. The machine learning
package used for the deep reinforcement learning aspect was the PyTorch package [29].

The computer used for the experiments was a personal computer with an AMD Ryzen 5 5600x
CPU, 32GB of RAM, and an NVIDIA RTX 980Ti GPU. Note that despite sounding impressive,
the computer specifications used were not necessarily the greatest hardware for training deep
reinforcement learning models, but it was borderline sufficient for the purposes of this research.

3.2. Parameters
We will now discuss the model’s parameters used in the experiments. We will first discuss
the trading environment parameters, followed by the training parameters for the agents, and
finally the test parameters used to evaluate the agents’ performance.

3.2.1. Training Parameters
We reveal the parameters chosen for training. This was chosen based on a mixture of computa-
tional time, previous work, and experimentation.

37

3.2. Parameters 38

Environment
The training parameters used in the experiments are listed in the table below. The training
parameters are consistent across all experiments, and these are the environment variables that
the agents interact with.

Parameter Value
n_episodes 10000

T 1000
dt 1

Tick size 1
S0 100
q0 0

Reward function Asymmetrically Dampened PnL

Table 3.1: Training parameters used in experiments.

The dampening factor η used was equal to 0.5.

Agents
We outline the parameters used in each agent’s training process. Many of these parameters
were chosen based on ad-hoc experimentation and are not necessarily optimal. Some of these
things, such as the learning rate of the optimizer in the neural network, are difficult to tune.
We note that this is something that could be improved upon in future work.

Value Iteration
As noted before, the implemented value and policy iteration uses a probability transition
matrix simulated from the environment. We use 100000 episodes with 1000 steps to calibrate
the transition matrix.

The parameters used in the value iteration agent’s training process are listed in the table below.

Parameter Value
γ 0.9
ϵ 1e− 6

Table 3.2: Value Iteration training parameters.

Policy Iteration
The parameters used in the policy iteration agent is the same as the value iteration agent.

Q-Learning
The parameters used in the Q-Learning agent’s training process are listed in the table below.

Parameter Value
γ 1

Learning rate 0.01
Exploration Rate 1→ 0.05 with a decay of 1

5000

Table 3.3: Q-Learning training parameters.

3.2. Parameters 39

DQN
For DQN agents, we use a neural network with the following architecture:

• Input layer: 2 nodes
• Hidden layer 1: 8 nodes
• Activation function: ReLU
• Hidden layer 2: 16 nodes
• Activation function: ReLU
• Output layer: 9 nodes

One might be surprised at how small the neural network is. However, the state space is
relatively small, and the action space is also small. Out of some ad-hoc experimentation, I
noticed that larger neural networks did not necessarily perform better, and took longer to
train.

The parameters used in the DQN agent’s training process are listed in the table below.

Parameter Value
Buffer size 1000

Gradient clip 1
Gradient repeat 1

γ 1
Learning rate 0.01

Batch size 64
Optimizer Adam

Exploration Rate 1→ 0.05 with a decay of 1
5000

Table 3.4: DQN training parameters.

DDQN
For DDQN agents, we use a neural network with the same architecture as the DQN agent, the
target network also has the same architecture. The parameters used in the DDQN agent’s
training process are listed in the table below.

Parameter Value
Buffer size 1000

Gradient clip 1
Gradient repeat 1

γ 1
Learning rate 0.001

Batch size 64
Optimizer Adam

Exploration Rate 1→ 0.05 with a decay of 1
5000

Target update interval 200
Target update type Copy

Table 3.5: DDQN training parameters.

3.3. Markov Chain Model 40

3.2.2. Test Parameters
To evaluate the performance of the agents, we use the test parameters listed in the table below.
The test parameters are consistent across all experiments.

Parameter Value
n_episodes 1000

T 1000
dt 1

Tick size 1
S0 100
q0 0

Reward function Mark to Market PnL

Table 3.6: Test parameters used in experiments.

3.3. Markov Chain Model
The first experiment uses the Markov chain model that we discussed in Section 2.2.1. We have
already discussed the training parameters in Section 3.2. We will now present the results of
the experiments.

3.3.1. Training
We begin with the training of the agents in the Markov chain model. We will first present the
results of the value iteration and policy iteration, followed by the Q-learning, DQN, DDQN
and finish with DDQN Full.

Value Iteration
Beginning with value iteration, we use the empirical transition probability matrix and then
run the value iteration algorithm. We first present the Bellman error below with respect to the
number of iterations, found in Figure 3.1.

Figure 3.1: Bellman error for value iteration in the Markov chain model setting.

3.3. Markov Chain Model 41

As we can see, the convergence happens after 12 iterations, and the error is less than 1e− 6.
The policy that we obtain from this value iteration is shown below in Figure 3.2.

Figure 3.2: Final policy for value iteration in the Markov chain model setting.

We see that the bid depth and the ask depth are unidentical, not something that we initially
would have expected, due to the symmetry of the model itself. However, this could be a
problem that stems from using an empirical transition matrix. Another noticeable thing is
the lack of diversity in actions, namely that in almost all states the agent prefers to take the
action with db = 1 and da = 1, save for a few states where the ask depth taken is two. This is
not what I initially expected, as the policy implies that the agent maximizes its reward and
minimizes inventory by constantly trying to improve or join the best bid/ask. This stems likely
due to the fact that the actual trading is maximized at the best bid/ask due to the dynamics
of the limit order book. This, plus the fact that the orders come in symmetrically imply that
being the best bid/ask at all times allows the agent to constantly capture the spread and as a
result also minimise inventory.

Policy Iteration
We now present the results of the policy iteration algorithm. Again, we first present the
Bellman error below (Figure 3.3).

3.3. Markov Chain Model 42

Figure 3.3: Bellman error for policy iteration in the Markov chain model setting.

Noticeably, the policy iteration converges after only a single iteration, compared to the 12
it took in value iteration. This is an observation that Sutton and Barto [12] mention, that
policy iteration often converges remarkably quickly. The policy that we obtain from this policy
iteration is shown below in Figure 3.4.

Figure 3.4: Final policy for policy iteration in the Markov chain model setting.

The policy is identical to the one obtained from value iteration, which is roughly expected as
in theory the two algorithms should converge to the same policy. The same observations made
for the value iteration policy apply here as well.

Q-Learning
We now begin with our first model free approach, Q-learning. We present the rewards against
episode, a histogram of the mean absolute position, and the frequency of actions taken obtained
by the agent in Figure 3.5.

3.3. Markov Chain Model 43

Figure 3.5: Rewards for Q-learning in the Markov chain model setting.

Initially, the rewards are slightly negative, but after episode 4000, it seems that the agent is
learning to improve its policy as the rewards start to trend upwards. The histogram of the
mean absolute position shows that the agent is able to maintain a position mostly under 5,
which is a good sign. However, it does seem to have a relatively high frequency to shoot its
position above 10, a sign that there is still a high number of cases the agent is not able to
manage its inventory.

Below, we present the Q-values of the agent after 1 episode and 10000 episodes in Figures 3.6
and 3.7 respectively.

Figure 3.6: Policy Q-learning in the Markov chain model setting after 1 episode.

3.3. Markov Chain Model 44

Figure 3.7: Policy Q-learning in the Markov chain model setting after 10000 episodes.

A positive note is that the policy seems to be changing as the agent steps through the episodes.
We do now see that the asymmetry in bid and ask depths is more pronounced than the
value/policy iteration policies. The bid depths seem to indicate that the agent rarely takes the
action db = 1 and thus we can conclude that there in an imbalance, namely that this policy is
more keen on selling than it is on buying the asset. We will discuss this more in depth in the
discussion section, but the Q-learning reward graph is a particularly interesting oddity that
seems to also come up in the queue reactive model setting.

Deep Q-Network
We now present the results of the DQN agent. We present the rewards against episode, a
histogram of the mean absolute position, and the frequency of actions taken obtained by the
agent in Figure 3.8.

Figure 3.8: Rewards for DQN in the Markov chain model setting.

We first notice that almost all of the rewards are negative, this is something we will expand on
in Chapter 4. At first, the rewards are particularly noisy, and it seems that over time the agent
is able to reduce the variance of its rewards. Secondly, the histogram of the mean absolute
position indicated that the agent is able to maintain a frequently low position of around 2,
with outliers only gapping up to 7. This is a good sign that the agent is able to manage its

3.3. Markov Chain Model 45

inventory well. Lastly, the frequency of actions taken shows that the agent takes a liking to
one particular action, namely where the agent places its orders at bid depth and ask depth
equal to two. We show the policies of the agent after 1 episode and 10000 episodes in Figures
3.9 and 3.10 respectively.

Figure 3.9: Policy DQN in the Markov chain model setting after 1 episode.

Figure 3.10: Policy DQN in the Markov chain model setting after 10000 episodes.

Here, we see that the policies do not change much from the first policy the agent comes up
with. It does improve the bid depth to 2, from only posting a bid depth at 3. Furthermore,
we see that the agent takes the same action in all states, namely posting a bid depth and ask
depth at 2. We can conclude from the fact that the agent quickly settling on one policy and
only doing that one onwards indicates that we are experiencing the very problem we were
discussing with DQN in the theory section, namely that DQN has an overestimation bias of its
action values.

3.3. Markov Chain Model 46

Double Deep Q-Network
The overestimation bias in DQN is the very reason why we decide to implement the Double
Deep Q-Network, of which we present the results below. We present the rewards against
episode, a histogram of the mean absolute position, and the frequency of actions taken obtained
by the agent in Figure 3.11.

Figure 3.11: Rewards for DDQN in the Markov chain model setting.

The rewards, mean absolute position are comparable to DQN, but the frequency of actions
indicate that the agent now settles on the 0th action, placing orders at a depth of 1 on both
sides. We show the policies of the agent after 1 episode and 10000 episodes in Figures 3.12 and
3.13 respectively.

Figure 3.12: Policy DDQN in the Markov chain model setting after 1 episode.

3.3. Markov Chain Model 47

Figure 3.13: Policy DDQN in the Markov chain model setting after 10000 episodes.

We see that the final policy that the agent settles on is vastly different from its initial policy.
The agent now prefers to place orders at a depth of 1 on both sides, which is comparable to
the results of the value/policy iteration agents.

Double Deep Q-Network Full
To see if we can improve the performance of the agent by adding more state variables, we
implement the DDQN Full agent. We present the rewards against episode, a histogram of the
mean absolute position, and the frequency of actions taken obtained by the agent in Figure
3.14.

Figure 3.14: Rewards for DDQN Full in the Markov chain model setting.

Again, the rewards, mean absolute position are comparable to DQN and DDQN, with the
action frequency being very similar to DDQN. The histogram of mean absolute positions has
a slightly heavier tail than DDQN and DQN, but the mean is still around 2. We show the
policies of the agent after 1 episode and 10000 episodes in Figures 3.15 and 3.16 respectively.

3.3. Markov Chain Model 48

Figure 3.15: Policy DDQN Full in the Markov chain model setting after 1 episode.

Figure 3.16: Policy DDQN Full in the Markov chain model setting after 10000 episodes.

We see that despite the bigger state space, the agent still settles on a similar policy to DDQN,
namely having most of its actions at a depth of 1 on both sides. To note is that the as the
inventory becomes more and more negative, the agent starts placing orders at a depth of 3 on
both sides. This implies that the agent is placing orders far away from where the trading is
happening, a way for the agent to avoid more trading.

Do note that due to the DDQN Full also having the limit order book as a state variable,
visualising a policy is difficult, as which order book state do we choose to visualise the policy?
There is no clear answer to this, and as such, we just use a symmetric order book around the
mid price to visualise the policy.

3.3.2. Results
We now present the results of the agents in the Markov chain model. We present the rewards
and the mean absolute position of the agents in the form of violin plots and histograms. We

3.3. Markov Chain Model 49

also present the mean rewards and mean absolute positions of the agents in the form of tables.

Figure 3.17: Violin plot of rewards of different methods in the Markov chain model setting.

Agent Mean Reward Standard Deviation
Follow BBO 0.0011 0.0151

Value Iteration 0.0026 0.0127
Policy Iteration 0.0007 0.0155

Q-Learning 0.0028 0.0134
DQN 0.0055 0.0100

DDQN 0.0024 0.0122
DDQN Full 0.0024 0.0121

Table 3.7: Mean rewards and standard deviation of different agents in the Markov chain model setting,
rounded to 4 decimal places.

We see that going off Table 3.7, the DQN agent has the highest mean reward, followed by the
Q-learning agent. The DQN agent also has the lowest standard deviation, indicating that the
agent is able to consistently perform well. Strangely, the policy iteration agent has the lowest
mean reward, despite having the same policy as the value iteration. This probably stems from
the fact that the environment is inherently dynamic, a very small change in one order at the
start can have a cascading effect on the rest of the orders, leading to very different simulations
despite having the same seed. Noticeably, outside of policy iteration, all the other agents have
a better mean reward than the benchmark Follow BBO agent, with a lower standard deviation
as well. Out of all the non-benchmark policies, and the strange results of policy iteration,
Q-learning has the highest standard deviation. Using the violin plot of Figure 3.17, we can
see that the visualisation confirms what we see in the table, namely that the deep network
agents have a higher mean reward and lower standard deviation than their non-deep network
counterparts.

3.3. Markov Chain Model 50

We now look at how good the agents are able to manage their inventory.

Figure 3.18: Violin plot of Mean Absolute Position of different methods in the Markov chain model setting.

Agent Mean Position Standard Deviation
Follow BBO 2.68 1.48

Value Iteration 2.78 1.60
Policy Iteration 1.51 0.87

Q-Learning 2.60 1.50
DQN 1.43 0.96

DDQN 2.77 1.57
DDQN Full 2.77 1.57

Table 3.8: Mean absolute positions and standard deviation of different agents in the Markov chain model
setting, rounded to 2 decimal places.

Again, DQN outperforms, having the lowest mean position and second lowest standard
deviation, followed by the policy iteration agent where the policy iteration has the lowest
standard deviation. As mentioned before, the divergence in results of value iteration and policy
iteration is quite an oddity. Ignoring this, we see that most agents outside of DQN have a
slightly higher than average mean absolute position than the benchmark Follow BBO policy,
with a slightly higher standard deviation as well. Outside of DQN, Q-learning has a slightly
lower mean absolute position than the benchmark, but a higher standard deviation. There is
no big difference between the deep network agents and the non-deep network agents, as the
violin plot of Figure 3.18 shows, outside of DQN.

To finalise the results, we present the histograms of the rewards and mean absolute positions
of the agents.

3.3. Markov Chain Model 51

Figure 3.19: Histogram of rewards of different methods in the Markov chain model setting.

Figure 3.20: Histogram of Mean Absolute Position of different methods in the Markov chain model setting.

The histograms of the rewards and mean absolute positions show that the agents all have a
very comparable distribution of rewards and mean absolute position. The differences might
seem very marginal, but if we take into account the fact that in reality the agents might be
trading in much larger volumes, and a lot more often, these differences might be amplified.
Thus, the slightly lower mean of the mean absolute position in DQN, compared to the rest,
might be a sign that the agent is able to manage its inventory better. Besides this, the rewards
distribution is slightly heavier on the left tail. Most of these are caused by the benchmark

3.4. Queue-Reactive Model 52

strategy and the policy iteration agent.

With all of this in mind, these results can conclude that DQN seems to be the best performer
in the Markov chain model. The agent is able to consistently perform well, and manage its
inventory better than the rest of the agents. The policy iteration agent is a very close second,
but the strange results of the policy iteration agent make it hard to be assertive about this
statement. If we take policy iteration to have the same results at value iteration, we can say
that the model free approaches are marginally better than the model based approaches. The
deep learning counterparts are also marginally better in the sense of having lower standard
deviation in rewards, and with DQN also in the mean absolute position.

We can also conclude that adding more state variables to the agent does not necessarily improve
the performance of the agent. The DDQN Full agent has a very similar performance to the
DDQN agent, and the DQN agent. This is likely due to the fact that the state space is already
quite small, and the action space is also quite small. The agent is able to learn a relatively
good policy with the state space it has, and adding more state variables does not necessarily
improve the performance of the agent.

The agents are all noticeably better at solving the market making problem than the benchmark
Follow BBO agent.

3.4. Queue-Reactive Model
We now move onto the more complicated queue-reactive model that we discussed in Section
2.2.2. Again, we have already discussed the model’s parameters in Section 3.2. We will now
present the results of the experiments conducted in the queue-reactive model.

I would like to note down again that by using the parameters in the Huang et al. [6] paper, we
inherently have a model that will be more volatile than the Markov chain model’s parameters
from Hult and Kiessling [5]. This is because the queue-reactive model was calibrated on France
Telecom, a stock on the french stock exchange, and the Markov chain model was calibrated on
the EUR/USD. The EUR/USD is a lot more stable and this is a significant factor to consider
when comparing the results of the two models.

The reason why we chose to use the parameters from Huang et al. [6] is that we wanted to see
how the agents would perform in a more complicated, and also a more volatile environment.
Furthermore, the queue-reactive model is more realistic, as most equities are traded on exchanges
with a limit order book, and as such, it is a more relevant application.

3.4.1. Training
Beginning with the training of the agents, we will first present the results of the training
process of Q-learning, followed with DDQN, and ending with DDQN Full.

We jump straight into the DDQN from Q-learning as I initially hypothesised that DDQN would
perform better, and due to the time it takes to train these agents, namely days, I decided to
skip DQN.

3.4. Queue-Reactive Model 53

Q-Learning
We start with the results of the Q-learning agent in the Queue-Reactive model. We present
the rewards and the Q values of the agent after 6000 and 10000 episodes.

Figure 3.21: Rewards of Q-learning in the queue reactive setting after episode 6000.

Figure 3.22: Rewards of Q-learning in the queue reactive setting after episode 10000.

As we can see in Figure 3.21 the Q-learning agent seems to quite quickly improve upon its
policy, with a significant increase in episode rewards. But, as we see, the deviations in these
values also start to increase. Confirming the suspicion that the agent seems to be taking larger
risks, the histogram of the mean absolute position show that the agent takes a mean of around
17, which is the highest we have seen so far. Figure 3.22 shows that right after episode 6000,
there is a large correction, and the agent now seems to have very large deviations, albeit with
a lower mean absolute position.

Below, we present the Q values of the agent after 1 episode and 10000 episodes.

3.4. Queue-Reactive Model 54

Figure 3.23: Policy Q-learning in the queue reactive setting after 1 episode.

Figure 3.24: Policy Q-learning in the queue reactive setting after 10000 episodes.

The policy after 10000 episodes does not seem to have changed that much, outside of introduce
more asymmetry in bid/ask depths. This could be a result of the model being more volatile,
and thus the agent having difficult parameterising a policy that is both profitable and stable.

Double Deep Q-Network
We now move onto the results of the Double Deep Q Network agent in the Queue-Reactive
model. We start by presenting the rewards.

3.4. Queue-Reactive Model 55

Figure 3.25: Rewards for DDQN in the queue reactive setting.

Figure 3.25 shows that the DDQN agent seems to have learned a more stable policy than the
Q-learning agent. The rewards are more consistent, comparable almost to the Markov chain
model scenarios, and the mean absolute position is also much lower. This is a good sign, as it
shows that the agent is able to learn a policy that is stable.

Below, we present the Q values of the agent after 1 episode and 10000 episodes.

Figure 3.26: Policy DDQN in the queue reactive setting after 1 episode.

3.4. Queue-Reactive Model 56

Figure 3.27: Policy DDQN in the queue reactive setting after 10000 episodes.

The policy after 10000 episodes differ a lot from the initial policy it came up with after 1
episode. The agent seems to have learned a policy that is more stable, namely that it only
does one action in all states, placing an order only 1 depth away from the best-bid and ask.
This is similar to some of the policies that were learnt in the Markov chain setting.

Double Deep Q-Network Full
Finally, we present the results of the Double Deep Q-network.

Figure 3.28: Rewards for DDQN Full in the queue reactive setting.

Similar to before, the DDQN Full agent seems to slowly decrease its variance over episodes. It
is able to maintain a mean absolute position that is comparable to the DDQN agent, and the
rewards are also quite stable. This is a good sign, as it shows that the agent is able to learn a
policy that is stable.

Below, we present the Q values of the agent after 1 episode and 10000 episodes.

3.4. Queue-Reactive Model 57

Figure 3.29: Policy DDQN Full in the queue reactive setting after 1 episode.

Figure 3.30: Policy DDQN Full in the queue reactive setting after 10000 episodes.

The policy learnt after 10000 episodes is quite similar to the policy learnt after 1 episode. The
agent seems to not have been able to learn that much more about the environment than it
initially did, outside of taking more 1 depth actions in the ask depth. To note, due to the
relatively large state space, some of these states are very rarely visited, and as such, the agent
might not have been able to learn a good policy for these states.

Again, visualising DDQN Full is difficult, and making the choice of using a symmetric order
book around the mid price might result in taking conclusions from the wrong visualisations.

3.4.2. Results
We now present the results of the agents in the queue-reactive model. We will present the
rewards and the mean absolute position of the agents, and compare them to the Follow BBO
agent.

3.4. Queue-Reactive Model 58

Figure 3.31: Violin plot of rewards of different methods in the queue reactive setting.

Agent Mean Reward Standard Deviation
Follow BBO 0.0595 0.0489
Q-Learning 0.0949 0.0522

DDQN 0.0968 0.0424
DDQN Full 0.0968 0.0424

Table 3.9: Mean rewards and standard deviation of different agents in the queue reactive setting, rounded to
4 decimal places.

Table 3.9 shows that all the agents have a higher mean reward than the Q-learning agent. This
can also readily be seen in the violin plot in Figure 3.31. The DDQN and DDQN Full agents
even have a lower standard deviation than that of the Follow BBO agent and Q-learning.

We now present the mean absolute position of the agents.

3.4. Queue-Reactive Model 59

Figure 3.32: Violin plot of Mean Absolute Position of different methods in the queue reactive setting.

Agent Mean Position Standard Deviation
Follow BBO 4.78 1.36
Q-Learning 7.23 4.34

DDQN 7.64 4.39
DDQN Full 7.64 4.39

Table 3.10: Mean positions and standard deviation of different agents in the queue reactive setting, rounded
to 2 decimal places.

Table 3.10 show us that our agents all have a much higher mean absolute position and standard
deviation than Follow BBO. We see this very clearly in the violin plot in Figure 3.32. The
DDQN and DDQN Full agents also have a slightly higher mean absolute position than the
Q-learning agent, with a slightly higher standard deviation.

To dive deeper, we present the histograms of the rewards and the mean absolute position of
the agents.

3.4. Queue-Reactive Model 60

Figure 3.33: Histogram of rewards of different methods in the queue reactive setting.

Figure 3.34: Histogram of inventory of different methods in the queue reactive setting.

Figure 3.33 confirms that in general all the agents have a much more profitable distribution
compared to Follow BBO. The agent’s distribution is more symmetric, and has slightly less
heavier tails than the Follow BBO agent.

Interestingly, Figure 3.34 shows that the agents have a much heavier right tailed distribution
than the Follow BBO agent. The agents also have a much higher variance. We cannot say if
this is due to the model being more volatile, the action space not being diverse enough, or the
agents not being able to learn a good policy for the states that are rarely visited.

One thing we can conclude from these experiments are that the underlying environment matters
a lot in how well the agents learn a policy. The Queue-Reactive model is a lot more volatile
than the Markov chain model, and as such, the agents have a harder time learning a policy
that is both profitable and stable. This is evident in the higher mean absolute position and
standard deviation of the agents in the queue-reactive model compared to the Markov chain
model.

3.4. Queue-Reactive Model 61

It is odd that DDQN and DDQN Full have exactly the same mean rewards and standard
deviations. This is likely due to the fact that we do not use enough samples in evaluating the
final policy.

4
Discussion

The training phase of the experiments were interesting to say the least. Initially, I was quite
surprised by the results that value and policy iteration came up with, as it mostly took one
action. However, as I continued with the other models, we see that many of the results were of
this nature, save for a couple of different actions here and there. DQN took a depth of two for
both bid and asks, with DDQN and most of DDQN Full taking a depth of one.

If we put ourselves in the agent’s shoe, we can start to understand some of the decision making
process it has to go through. Firstly, the agent does not have the choice to do nothing, due to
the action space. As a result it places two limit orders somewhere in one of these depths of
choice. Suppose now that the agent’s orders gets hit or lifted, i.e. the market sells or buys from
the agent. The agent is now left with a position, and as the next time step unlikely creates
a large difference in price (at least in the Markov chain model setting), it immediately gets
penalized for holding this inventory, due to the nature of the reward function. As such the
agent is incentivized to get rid of this inventory as soon as possible, and to do so it constantly
tries to place an order at the top of the book. The agent now has to figure out the sweet spot
where it can get get a lot of two way trading, ideally a simultaneous buyer and seller of the
agent’s orders. This, to capture profit from the spread, while minimizing inventory risk. A
natural choice is indeed to always either improve the bid/ask or join the top of the book, i.e.
have a depth of one.

We do see that this is not as clear cut as it seems, as in the Markov chain model, DQN ends up
performing the best out of the agent’s where its policy took a depth of two. Furthermore, in
the queue-reactive model, we see that such a policy is not able to always control its inventory
well, despite being able to get more rewards than the benchmark policy.

Q-learning in both scenarios ended up having some strange behaviour during the training
phase. In the Markov chain model, the agent takes the largest positions out of all the other
agents. In the queue-reactive model we saw the same happening initially, where it corrected
itself after episode 6000. The agent somehow learns something slightly different than all the
other agents, with its policies also being the most varied, and it is not clear why. We theorize
that this is perhaps due to not having enough episodes in the training phase, and thus the
agent has not been able to explore the state space enough.

While the results are generally positive with respect to the research questions we aimed to
answer, there are some limitations to the experiments. Firstly, hardware only allowed us to

62

63

train the agents on 10000 episodes, a relatively small training phase. Furthermore, it also seems
that not enough episodes were used to evaluate the final policies. Secondly, the simplification
of the state space and also the action space, while necessary, might have caused the agents
to learn suboptimal policies. Fundamentally, the limit order book dynamics allow for some
complex tactics to be used, such as having a resting order at a certain price level, that gets
more valuable over time if the price approaches it and more orders join the queue behind it,
an indication that there are many buyers/sellers at that price level. The way we have set up
the state and action space, the agent is not able to take advantage of this. Lastly, the reward
function might not be the best one to use. Inherently, each time step will have a very small
reward, as the midprice does not move much. It then gets a relatively large penalty term for
holding inventory, and as such most of the rewards are negative. An interesting thing that
could have been looked at is how much active trading these agents do, and how often they get
hit/lifted.

5
Conclusion

In conclusion, this thesis provides a review and implementation of reinforcement learning to
solve for market making in two simulations of limit order books. We motivate the problem
from the history of market making at the market’s inception to the now mostly electronic
markets. Traditionally, attempts to optimize market making have been done analytically,
usually involving stochastic differential equations. However, in this thesis, we argue why the use
of Markov decision processes are a more suitable way to solve for market making in limit order
books and show how reinforcement learning is a natural candidate to solve for the optimal
policy.

We recall the main research questions that we initially aimed to answer, namely

1. Can reinforcement learning methods approximate/find optimal solutions to the market
making problem?

2. How do policies compare under different market dynamics?
3. How do different RL algorithms compare in terms of performance?

To address these research questions, this thesis establishes an experimental setup that compares
trained policies with a well-known analytical benchmark, specifically the at-the-touch market-
making agent proposed by Cartea et al. [27]. The experiment simulates limit order books
using two models: the Markov chain model from Hult and Kiessling [5] and the queue-reactive
model from Huang et al. [6]. It evaluates both traditional methods, specifically value/policy
iteration and Q-learning, as well as more recent approaches involving deep reinforcement
learning, namely DQN and DDQN.

In summary, the results show that reinforcement learning methods can approximate optimal
policies to the market making problem, i.e. that reinforcement learning is a suitable way to
solve for market making. The trained agents that we consider are able to outperform the
benchmark both in terms of profitability as well as managing inventory risk. Furthermore, the
policies are also able to adapt to different market dynamics, albeit with a lot more difficulty
in getting suitable convergence, with our results showing that more samples are needed if a
stable policy is sought in the more complicated queue-reactive model. Lastly, the results also
show that deep reinforcement learning methods can indeed outperform traditional methods
in terms of performance. Specifically, we see DQN outperforming all other methods in the
Markov chain model. We caveat this by our argument that we believe more samples are needed

64

5.1. Future Work 65

to fully evaluate the true performance of the models. Also, it is important to note that deep
networks require significantly more hyperparameter tuning, a very time consuming process.

5.1. Future Work
We propose several directions for future work that was uncovered during the course of writing
and implementing this thesis.

First, a more comprehensive exploration of different parameters and hyperparameters is needed
to better understand the behavior of the models. This includes different neural network
architectures within the Deep RL algorithms, but also different RL algorithms as well, such as
more policy based approaches like PPO, developed by Schulman et al. [30]. Finally, the use of
an alternative reward function that could be more suitable by incorporating a reward signal
for ’winning’ a trade could be beneficial.

Another promising direction involves extending the state and action spaces to include multiple
types of orders and the entire limit order book, which would allow for more complex and realistic
trading strategies. One could then also consider the use of more advanced techniques such as
multi-agent reinforcement learning, where multiple agents are trained to interact with each
other in a competitive or cooperative manner. You could have RL style execution algorithms
interacting with multiple RL market making agents, for example. This could provide a more
realistic representation of the market, where agents are not only competing against the market,
but, also against each other.

Third, the use of a more diverse set of market simulators, and generalising the models to be
able to use the same parameter set in different market simulators, could yield deeper insights
into the models’ behavior and provide a more robust policy.

Finally, calibrating model parameters to real-world data is ultimately essential if one wants
to actually use the agents for financial gain. This could be achieved by training models on
parameterized simulators and subsequently testing their performance on real market data to
assess robustness and generaliseability.

We see that the field is still in its early stages, and there is a lot of potential for future research
in this area. We hope that this thesis has provided a good foundation for future work in this
area and that it has sparked interest into further exploration into the use of reinforcement
learning in solving financial problems.

References
[1] T. Ho and H. R. Stoll, “Optimal dealer pricing under transactions and return uncertainty,”

Journal of Financial Economics, vol. 9, no. 1, pp. 47–73, 1981, issn: 0304-405X. doi:
https://doi.org/10.1016/0304- 405X(81)90020- 9. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0304405X81900209.

[2] M. Avellaneda and S. Stoikov, “High-frequency trading in a limit order book,” Quantitative
Finance, vol. 8, no. 3, 2008.

[3] A. Menkveld, “High frequency trading and the new market makers,” Journal of Financial
Markets, vol. 16, no. 4, pp. 712–740, 2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, pp. 529–533, 2015. doi: https://doi.org/10.1038/
nature14236.

[5] H. Hult and J. Kiessling, “Algorithmic trading with markov chains,” 2010. [Online].
Available: https://api.semanticscholar.org/CorpusID:17535093.

[6] W. Huang, C.-A. Lehalle, and M. Rosenbaum, “Simulating and analyzing order book data:
The queue-reactive model,” Journal of the American Statistical Association, vol. 110,
no. 509, pp. 107–122, 2015. doi: 10.1080/01621459.2014.982278. eprint: https:
//doi.org/10.1080/01621459.2014.982278. [Online]. Available: https://doi.org/
10.1080/01621459.2014.982278.

[7] J.-P. Bouchaud, J. Bonart, J. Donier, and M. Gould, Trades, Quotes and Prices: Financial
Markets Under the Microscope. Cambridge University Press, 2018.

[8] O. Guéant, C.-A. Lehalle, and J. Fernandez-Tapia, “Dealing with the inventory risk a
solution to the market making problem,” arXiv, 2012.

[9] O. Guéant, “Optimal market making,” arXiv, 2017.
[10] J. D. Farmer, P. Patelli, and I. I. Zovko, “The predictive power of zero intelligence in

financial markets,” Proceedings of the National Academy of Sciences of the United States
of America, vol. 6, no. 102, pp. 2254–2259, 2005.

[11] R. Cont, S. Stoikov, and R. Talreja, “A stochastic model for order book dynamics,”
Operations Research, vol. 58, pp. 549–563, 2010.

[12] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press, 2018,
isbn: 9780262039246.

[13] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, University of Cam-
bridge, 1989.

[14] H. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Systems,
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., vol. 23, Curran
Associates, Inc., 2010. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

66

https://doi.org/https://doi.org/10.1016/0304-405X(81)90020-9
https://www.sciencedirect.com/science/article/pii/0304405X81900209
https://www.sciencedirect.com/science/article/pii/0304405X81900209
https://doi.org/https://doi.org/10.1038/nature14236
https://doi.org/https://doi.org/10.1038/nature14236
https://api.semanticscholar.org/CorpusID:17535093
https://doi.org/10.1080/01621459.2014.982278
https://doi.org/10.1080/01621459.2014.982278
https://doi.org/10.1080/01621459.2014.982278
https://doi.org/10.1080/01621459.2014.982278
https://doi.org/10.1080/01621459.2014.982278
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

References 67

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989, issn: 0932-4194. doi:
https://doi.org/10.1007/BF02551274. [Online]. Available: https://link.springer.
com/article/10.1007/BF02551274.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989, issn: 0893-6080. doi:
https://doi.org/10.1016/0893- 6080(89)90020- 8. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0893608089900208.

[17] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Springer series in statistics). Springer, 2009, isbn:
9780387848846. [Online]. Available: https://books.google.nl/books?id=eBSgoAEACA
AJ.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv, 2014.
[20] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning and

teaching,” Machine Learning, vol. 8, pp. 293–321, 1992. doi: https://doi.org/10.
1007/BF00992699.

[21] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-
learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,
Mar. 2016. doi: 10.1609/aaai.v30i1.10295. [Online]. Available: https://ojs.aaai.
org/index.php/AAAI/article/view/10295.

[22] B. Gašperov, S. Begušić, P. Posedel Šimović, and Z. Kostanjčar, “Reinforcement learning
approaches to optimal market making,” Mathematics, vol. 9, no. 21, 2021, issn: 2227-
7390. doi: 10.3390/math9212689. [Online]. Available: https://www.mdpi.com/2227-
7390/9/21/2689.

[23] S. Carlsson and A. Regnell, “Reinforcement learning for market making,” M.S. thesis,
KTH Royal Institute of Technology, 2022. [Online]. Available: https://kth.diva-
portal.org/smash/get/diva2:1695877/FULLTEXT01.pdf.

[24] N. T. Chan and C. Shelton, “An electronic market-maker,” MIT, 2001.
[25] Y.-S. Lim and D. Gorse, “Reinforcement learning for high-frequency market making,”

in The European Symposium on Artificial Neural Networks, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53244064.

[26] T. Spooner, J. Fearnley, R. Savani, and A. Koukorinis, “Market making via reinforcement
learning,” arXiv, 2018.

[27] Á. Cartea, S. Jaimungal, and J. Penalva, Algorithmic and High-Frequency Trading.
Cambridge University Press, 2015, isbn: 9781107091146.

[28] M. Towers, A. Kwiatkowski, J. K. Terry, et al., Gymnasium: A Standard Interface
for Reinforcement Learning Environments. [Online]. Available: https://github.com/
Farama-Foundation/Gymnasium.

https://doi.org/https://doi.org/10.1007/BF02551274
https://link.springer.com/article/10.1007/BF02551274
https://link.springer.com/article/10.1007/BF02551274
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://books.google.nl/books?id=eBSgoAEACAAJ
https://books.google.nl/books?id=eBSgoAEACAAJ
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1007/BF00992699
https://doi.org/https://doi.org/10.1007/BF00992699
https://doi.org/10.1609/aaai.v30i1.10295
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://doi.org/10.3390/math9212689
https://www.mdpi.com/2227-7390/9/21/2689
https://www.mdpi.com/2227-7390/9/21/2689
https://kth.diva-portal.org/smash/get/diva2:1695877/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1695877/FULLTEXT01.pdf
https://api.semanticscholar.org/CorpusID:53244064
https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium

References 68

[29] J. Ansel, E. Yang, H. He, et al., “PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation,” in 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’24), ACM, Apr. 2024. doi: 10.1145/3620665.3640366. [Online].
Available: https://pytorch.org/assets/pytorch2-2.pdf.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. arXiv: 1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347.

https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

A
Appendix

Bellman Equation Derivation
The Bellman equation for the state-value function vπ(s) is derived as follows:

vπ(s) := Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
= Eπ [Rt+1|St = s] + γEπ [Gt+1|St = s]
=

∑
r∈R

rp(r|s) + γ
∑
g∈G

gp(g|s) (*)

=
∑
r∈R

∑
s′∈S

∑
a∈A

rπ(a|s)p(s′, r|s, a) + γ
∑
g∈G

∑
r∈R

∑
s′∈S

∑
a∈A

gp(g|s′)π(a|s)p(s′, r|s, a) (**)

=
∑
r∈R

∑
s′∈S

∑
a∈A

rπ(a|s)p(s′, r|s, a) + γ
∑
r∈R

∑
s′∈S

∑
a∈A

Eπ [Gt+1|St+1 = s′] π(a|s)p(s′, r|s, a)

=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvπ(s′)] ,

where (*) follows by using the fact that p(r|s) is a marginal distribution also containing the
variables a, s′. We assume that Gt+1 is a random variable that takes on a finite number of
values, and thus we can do the same trick. More difficult, the right term in (**) is derived as
follows:

p(g|s) =
∑
s′∈S

∑
r∈R

∑
a∈A

p(s′, r, a, g|s)

=
∑
s′∈S

∑
r∈R

∑
a∈A

p(g|s′, r, a, s)p(s′, r, a|s)

=
∑
s′∈S

∑
r∈R

∑
a∈A

p(g|s′, r, a, s)p(s′, r|s, a)π(a|s)

=
∑
s′∈S

∑
r∈R

∑
a∈A

p(g|s′)p(s′, r|s, a)π(a|s),

where the last line follows from Markov’s property.

69

70

Hult and Kiessling Lemma 4.1

Lemma 1 Given a policy alpha = (α0, α1, . . .) and a state s ∈ S, let θsα = (α′
0, α′

1, . . .)
be the shifted policy where α′

0(s) : Sn 7→ A with α′
n(s0, . . . , sn−1) = αn(s, s0, . . . , sn−1).

The expected value of a policy α satisfies

V (s, α) = I{α0(s) ∈ C(s)}
vC(s, α0(s)) +

∑
s′∈S

Pss′(α0(s))V (s′, θsα0(s))

+ I{α0(s) ∈ T (s)}vT (s, α0(s)).

Proof:
Proof can be found in page 11 of Hult and Kiessling [5]. □

	Introduction
	Theory
	Introduction
	Walrasian Auction
	Market-Makers
	Limit Order Books
	Models à la Avellaneda and Stoikov

	Modelling Limit Order Books
	Markov Chain Model
	Queue-Reactive Model

	Reinforcement Learning
	Markov Decision Processes
	Dynamic Programming
	Temporal-Difference Learning
	Deep Learning

	Reinforcement Learning in Limit Order Book Market Making
	Optimal Trading Strategies
	Previous Work
	Experimental Setup

	Experiments and Results
	Trading Environment
	Parameters
	Training Parameters
	Test Parameters

	Markov Chain Model
	Training
	Results

	Queue-Reactive Model
	Training
	Results

	Discussion
	Conclusion
	Future Work

	References
	Appendix

