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Guaranteeing Stability in Structured
Input-Output Models: With Application

to System Identification
Johan Kon , Roland Tóth , Senior Member, IEEE, Jeroen van de Wijdeven, Marcel Heertjes,

and Tom Oomen , Senior Member, IEEE

Abstract—Identifying structured discrete-time linear
time/parameter-varying (LPV) input-output (IO) models with
global stability guarantees is a challenging problem since
stability for such models is only implicitly defined through
the solution of matrix inequalities (MI) in terms of the
model’s coefficient functions. In this letter, a structured
linear IO model class is developed that results in a quadrat-
ically stable model for any choice of coefficient functions,
enabling identification using standard optimization rou-
tines while guaranteeing stability. This is achieved through
transforming the MI-based stability constraints in a nec-
essary and sufficient manner, such that for any choice of
transformed coefficient functions the MIs are satisfied. The
developed stable LPV-IO model is employed in simulation to
estimate the parameter-varying damping of mass-damper-
spring system with stability guarantees, while a standard
LPV-IO model results in an unstable estimate.

Index Terms—System identification, stability, linear
parameter-varying systems, transfer functions.

I. INTRODUCTION

G IVEN a stable system, stability of models obtained
using system identification [1] is often desirable for their
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utilization in prediction, simulation, and control. However,
even if the underlying data-generating system is stable, the
model resulting from the identification process can be unstable
due to finite-time effects, modeling errors, or measurement
noise [2].

Ensuring stability of identified models has attracted interest
from the perspective of different model classes, ranging from
linear time-invariant (LTI) [2], [3], [4], [5], [6] through
linear time/parameter-varying (LTV/LPV) [7], [8], [9] to non-
linear models [10], [11], [12], [13]. These results have been
developed both in continuous time (CT) [13] and in discrete
time (DT), and for state-space (SS) [3], [5], [8], [12], [13] and
input-output (IO) representations [7], [9], [10].

To ensure stability of an identified model, three different
approaches are distinguished in the aforementioned litera-
ture. First, certain approaches involve projecting identified
parameters back onto the set of stable models post-
identification [3], [6]. However, this projection disregards the
measured data and may lead to a significant decline in
prediction performance [3]. Second, stability can be enforced
during optimization by introducing constraints on the model
parameters that, when satisfied, imply stability [2], [7], [10],
[11]. Nevertheless, these constraints typically take the form of
matrix inequalities (MI), which can significantly increase the
computational complexity of the optimization process.

The most recent and third approach, first described by [12],
reparameterizes these LMI conditions representing stability
in terms of transformed parameters in such a way that the
MI conditions are satisfied for any choice of these trans-
formed parameters, i.e., the model is always guaranteed to
be stable [5], [8], [9], [12], [13]. This allows for the use of
arbitrary functions in the models, such as neural networks or
polynomials, while still guaranteeing stability. Additionally,
this enables the use of unconstrained optimization methods.

Next to stability, it is often desired to embed structure into
the model used in identification. One example is grey-box
system identification [14], where models consist of physical
equations imposing structural relationships and model parame-
ters representing unknown physical functions. Other examples
include embedding prior knowledge, encoding dependence
of the model on only a specific subset of delayed inputs
and outputs, and in the LPV case, independence of certain
coefficient functions from the scheduling signal.

Guaranteeing stability through reparametrization in the
structured case is significantly more complex than in the
unstructured case [12]. Specifically, the imposed structure
results in a stability test in which some parts are fixed.
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Reparameterization of this stability test then has to adhere to
this imposed structure. Additionally, the structure also imposes
conditions on possible Lyapunov functions. In contrast, in an
unstructured setting all parts of the stability condition can be
freely reparametrized. Only in the DT LTI case [5] a scaling
argument can be employed to ensure that the eigenvalues of the
system are within the unit circle. However, such an approach
does not extend to LPV/LTV models, in which it is required
to adopt a Lyapunov approach.

The main contribution of this letter is a linear IO model
class where the model coefficient functions are constrained
within a lower dimensional linear subspace and stability of the
model is ensured for any choice of coefficient functions. This
is achieved through the following subcontributions.
C1) A criterion based on coupled matrix inequalities to

characterize stability of a linear IO model (Section III).
C2) A reparameterization of the coefficient functions such

that the above criterion is satisfied for any choice of the
transformed coefficient functions (Section IV).

C3) A simulation example in which a neural network is
employed to learn a position-dependent damping with
stability guarantees (Section V).

The stability criterion used in this letter is quadratic sta-
bility under a parameter-invariant Lyapunov function (QS).
Consequently, only systems that are QS can be represented
by the developed stable LPV-IO model. While this could be
conservative since not all stable LPV-IO systems are also
QS [15], the developed stable LPV-IO already represents a
significant improvement over current methods which consider
only deviations from a fixed QS model or incorporate QS as
a constraint during optimization [7].

II. PROBLEM FORMULATION

Consider the discrete-time linear system G : u → y with
input uk ∈ R and output yk ∈ R with y resulting from the
parameter-varying input-output difference equation

yk = −
na∑

i=1

ai(ρk)yk−i +
nb−1∑

i=0

bi(ρk)uk−i, (1)

with coefficients functions ai, bi : P → R describing the
dependence of the difference equation on a scheduling signal
ρ : Z≥0 → P ⊆ R

nρ at time index k ∈ Z≥0. Note that for
constant ρk = ρc ∀k, (1) is equivalent to the LTI transfer
function G(z) = β(z)/α(z) with β(z) = ∑nb−1

i=0 bi(ρc)z−i and
α(z) = 1 +∑na

i=1 ai(ρc)z−i. Thus, ai(ρk) can be interpreted
as describing the variation in poles of (1), and bi(ρk) as
the variation in zeros. For ρk = k ∀k, an LTV-IO model is
recovered. Define the collection of ai, bi as

A(ρk) =
[
a1(ρk) a2(ρk) . . . ana(ρk)

] ∈ R
1×na, (2)

B(ρk) =
[
b0(ρk) b1(ρk) . . . bnb−1(ρk)

] ∈ R
1×nb . (3)

Now consider that it is desired that both R1) the coefficient
functions A(ρ),B(ρ) are structured, and R2) the dynamics
represented by (1) are stable. With respect to R1, in this letter
the considered structure is of the form

A(ρ) = Ā(ρ)H, B(ρ) = B̄(ρ)Hb, (4)

with predefined full rank structure matrices H ∈ R
nz×na , nz <

na, Hb ∈ R
nl×nb , nl < nb and lower-dimensional coefficient

functions Ā : P→ R
1×nz , B̄ : P→ R

1×nl . In other words, A(ρ)
and B(ρ) are linearly constrained to some lower-dimensional
space of coefficient functions Ā(ρ) and B̄(ρ). Some examples
of this structure are as follows.

• Enforcing dependency of (1) on only specific
yk−i, uk−i, i.e., sparsity in A(ρ). For example, yk =
−a1(ρk)yk−1 − a3(ρk)yk−3 can be realized with

A(ρ) = [
a1(ρ) a3(ρ)

][1 0 0
0 0 1

]
.

• Grey-box models in which some physical coefficients are
known, and it is only of interest to estimate specific
coefficient functions, see Section V.

With respect to R2, to characterize stability, the standard
notion of quadratic Lyapunov stability (QS) is adapted to the
IO case using a state vector of delayed outputs.

Definition 1: Given coefficient functions A(ρ), (1) is said
to be quadratically stable if there exists a P ∈ S

na
�0 such that

x	k+1Pxk+1 < x	k Pxk ∀ρk ∈ P, uk = 0 ∀k, (5)

where xk =
[
yk−1 yk−2 . . . yk−na

]	 ∈ R
na evolves according

to (1) with uk = 0 ∀k for any initial x0 ∈ R
na .

Quadratic stability as in Definition 1 implies that y asymp-
totically approaches zero for all ρ if the input u is uniformly
zero after some time k̄, i.e., limk→∞ yk = 0 for any ρ, any
x0 and any u with uk = 0 ∀k > k̄ [16]. Note that QS is both
necessary and sufficient for stability in the LTI case, while it
is only sufficient for LPV/LTV IO representations.

Given a structure matrix H, the goal of this letter is to
parametrize all structured coefficient functions A(ρ) = Ā(ρ)H
such that the system (1) is QS as in Definition 1. In other
words, the goal is to describe the set of functions

Ā = {Ā(ρ) | A(ρ) = Ā(ρ)H, ∃P ∈ S
na
�0 s.t. (5)}. (6)

The approach in this letter is to develop a parametrization of
Ā(ρ) such that by construction of Ā(ρ) there always exists
a P � 0 for which (5) is satisfied over the whole domain
P, avoiding the need for testing (5) during identification.
Specifically, Ā(ρ) and P are jointly constructed from trans-
formed coefficient functions ξ(ρ) : P→ R

1×na and full rank
X5 ∈ R

na×na that can be chosen freely and an auxilary μ ∈
R(0,1] found through bisection.

This parametrization without constraints on the coefficient
functions can subsequently be employed in system identifica-
tion, in which now any bounded functional parametrization for
ξ(ρ) can be chosen, e.g., a linear function or a neural network,
while stability is guaranteed by construction.

III. QUADRATICALLY STABLE LINEAR IO SYSTEMS

To obtain a parameterization of all structured coefficients
Ā(ρ)H such that by construction (1) is QS, first further
conditions on Ā(ρ) and P are required to determine if (1) is
QS. This section provides necessary and sufficient conditions
for QS of (1) in terms of matrix inequalities for the Lyapunov
certificate P given H, constituting Contribution C1.

Before developing the main equivalence result, first define

F =
[

0 0
Ina 0

]
∈ R

na+1×na+1, G =
[

1
0

]
∈ R

na+1. (7)

Additionally, given full row rank H ∈ R
nz×na , define V2 ∈

R
na×na−nz as an orthonormal basis for ker H, i.e., V	2 V2 =

Ina−nz and HV2 = 0, and define V1 ∈ R
na×nz as an orthonormal

basis for Im H	, i.e., V	1 V1 = Inz with HV1 ∈ R
nz×nz full

rank. Matrices Vi can be obtained from, e.g., a singular value
decomposition of H. With the provided definitions, the main
result of this section can now be stated.

Theorem 1: Given a structure matrix H, associated V1,V2
and structured coefficient functions A(ρ) = Ā(ρ)H, (1) is QS
as in Definition 1 if and only if there exists a P ∈ S

na
�0 and
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M : P→ R
1×nz with ‖M(ρ)‖2 < 1 ∀ρ ∈ P such that

F	PF − P− F	PG
(

G	PG
)−1

G	PF ≺ 0, (8)

V	2
(

F	PF − P
)

V2 ≺ 0, (9)

and M(ρ) is related to Ā(ρ) as

M̄	1 (ρ) = X−1
4 M	(ρ)X3 (10)

+
(

V	1 Q−1V1

)−1
V	1 Q−1V2V	2 F	PGX−1

2 ,

Ā(ρ) =
(
X−1

2 M̄1(ρ)+ (G	PG)−1G	PFV1

)
(HV1)

−1, (11)

with Cholesky decompositions X	1 X1 = Q, X	2 X2 = G	PG,
X	3 X3 = Q̂ and X	4 X4 = V	1 Q−1V1, where (8)–(9) guarantee
that Q � 0, Q̂ � 0 with

Q = −F	PF + P+ F	PG
(

G	PG
)−1

G	PF, (12)

Q̂ = I − X−	2 G	PFV2

(
V	2 QV2

)−1
V	2 F	PGX−1

2 . (13)

The proof of Theorem 1 is provided in Section VII and
is based on embedding (1) as xk+1 = (F − GĀ(ρ)H)xk with
state xk as in Definition 1 and proving that V(x) = x	Px
is a Lyapunov function. Theorem 1 states that if (1) is QS,
then there exists a P that satisfies (8)–(9), which are necessary
conditions for P to be a Lyapunov function. Given such a P,
transforming coefficient functions Ā(ρ) according to (10)–(11)
results in transformed coefficient functions M(ρ), which have
to reside in the unit ball if (1) is QS. The other way around,
which is more interesting for system identification, Theorem 1
states that if a P can be found which satisfies (8)–(9), then
all coefficient functions Ā(ρ) that satisfy (5) with this P,
i.e., all Ā(ρ) for which this P proves QS, can be constructed
from functions M(ρ) contained in the unit ball. This set
of functions constrained to the unit ball is easy to describe
in an unconstrained fashion, which is exploited for system
identification purposes in the next section, coupled with a
method to construct a P that satisfies (8)–(9).

IV. TRANSLATION TO A STABLE IO MODEL CLASS

Given the equivalence result of Theorem 1 characteriz-
ing all coefficient functions Ā(ρ) such that (1) is QS, in
this section, a model parameterization is developed that by
construction satisfies the conditions of Theorem 1, i.e., a
model that is guaranteed to be QS without constraints on the
coefficient functions, constituting Contribution C2. This model
parametrization can then be used in system identification to
ensure stability of the identified model.

A. Reparametrizing All QS Linear IO Systems
To satisfy the conditions of Theorem 1 by construction, it

is required to parametrize both an M(ρ) contained in the unit
ball as well as a P that satisfies (8)–(9).

First, M(ρ) is reparametrized to be inside the unit ball.
Lemma 1: Given M(ρ) : P→ R

1×na , ‖M(ρ)‖2 < 1 ∀ρ ∈ P

if and only if there exist bounded matrix functions D(ρ) : P→
R, Z(ρ) : P→ R

na−1 such that

N(ρ) = D	(ρ)D(ρ)+ Z	(ρ)Z(ρ)+ εI, (14)

M	(ρ) =
[
(I − N(ρ))(I + N(ρ))−1

−2Z(ρ)(I + N(ρ))−1

]
. (15)

with 0 < ε � 1 a small positive constant.

For a proof, see [8, Lemma 1]. By Lemma 1, any M(ρ)
contained in the unit ball can be represented by unconstrained
D(ρ),Z(ρ). Consequently, D(ρ),Z(ρ) can be chosen as any
bounded function, e.g., radial basis functions, a neural network
or a Fourier expansion, and M(ρ) constructed as (14)–(15) is
guaranteed to be in the unit ball.

Second, it is required to parametrize all P that sat-
isfy (8)–(9). Current methods to obtain P solve (8)–(9) or
equivalent conditions in an alternating fashion, but provide no
convergence guarantees and are computationally complex [17].
Instead, here all P are parameterized by tracing rays and
exploiting that at least one P0 is known that satisfies (8)–(9).

Define � = �1 ∩�2 as the set of P satisfying (8)–(9) with

�1 = {P � 0 | F	PF − P− F	PG
(

G	PG
)−1

G	PF ≺ 0},
�2 = {P � 0 | V	2

(
F	PF − P

)
V2 ≺ 0}, (16)

�3 = {P � 0 | F	PF − P ≺ 0}.
Lemma 2: �3 ⊂ �1 and �3 ⊂ �2, giving that �3 ⊂ �.

Moreover, there exists a P0 ∈ �3, thus � is not empty.
Proof: Follows as −F	PG(G	PG)−1G	PF � 0 and V2 is

full rank. F is stable (λi(F) = 0 ∀i), i.e., ∃P0 ∈ �3.
In other words, the non-empty set �3 of Lyapunov functions

for F is a subset of all P satisfying (8)–(9). Now, denote by
R†(Q) the solution P ∈ S

na
�0 to Riccati equation (12). Then the

following lemma holds.
Lemma 3: Given a P ∈ S

na
�0, P ∈ �1 if and only if there

exists a Q_ ∈ S
na
�0 such that P = R†(Q_).

Proof: (F,G) is controllable, thus for any Q_ ∈ S
na
�0, (12)

has a unique solution P ∈ S
na
�0 [18], and P ∈ �1 as Q_ � 0.

Conversely, if P ∈ �1, Q_ ∈ S
na
�0 by definition.

By Lemma 3, any P ∈ �1 can be implicitly represented
by some Q_ ∈ S

na
�0 through solving (12), which allows for

eliminating constraint (8). However, not all Q_ ensure that
R†(Q_) ∈ �2. Yet, a point Q0 for which P0 = R†(Q0) ∈ �
is available by Lemma 2, such that any Q_ ∈ S

na
�0 can be

projected back into the direction of Q0 to eventually obtain a
Q for which R†(Q) ∈ �2, as detailed next.

Lemma 4: Given a Q0 with R†(Q0) ∈ �, then for any Q_ ∈
S

na
�0 there exists a μ ∈ R(0,1] such that R†(Q) ∈ � with

Q = μQ_ + (1− μ)Q0. (17)

Proof: If R†(Q_) ∈ �2, simply set μ = 1, Q = Q_.
If R†(Q_) /∈ �2, continuity ensures that there exists a
small enough μ > 0 such that R†(μQ_ + (1 − μ)Q0) ∈
�. Specifically, by continuity of the solution R†(Q) [19],
continuity of eigenvalues and strictness of F	R†(Q0)F −
R†(Q0) ≺ 0, there exists a ball Bε = {Q0 + 	 | ‖	‖2 <
ε} such that for any Q ∈ Bε , also R†(Q) ∈ �. Then any
μ > 0 such that ‖μ(Q_ − Q0)‖2 < ε results in R†(μQ_ +
(1− μ)Q0) ∈ �.

Now, by varying Q_ over S
na
�0, all Q ∈ {Q � 0 | R†(Q) ∈

�2} ⊂ S
na
�0 can be covered, as the latter is simply a subset of

S
na
�0. Specifically, if already R†(Q_) ∈ �2 simply set μ = 1 to

obtain Q = Q_. If R†(Q_) /∈ �2, Lemma 4 guarantees that a
μ can be obtained such that R†(μQ+ (1− μ)Q0) ∈ �.

In summary, the above lemmas guarantee that any P ∈ �,
i.e., any P satisfying (8)–(9), can be represented through a
Q_ ∈ S

na
�0, Q0 and μ ∈ R(0,1]. Translating this to system

identification, these lemmas enable optimization over Q_ ∈
S

na
�0 combined with a simple bisection which is guaranteed

to converge, as opposed to solving (8)–(9) in an alternating
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Algorithm 1 Stable Structured LPV-IO Model
1: inputs: Structure matrices H,Hb, full rank matrix X5 ∈

R
na×na , a Q0 ∈ S

na
�0 such that F	R†(Q0)F − R†(Q0) ≺ 0,

and functions D : P→ R, Z : P→ R
na−1, B̄(ρk) : P→

R
1×nl , and data {uk, ρk}Nk=1.

2: calculate Q_ = X	5 X5 ∈ S
na
�0.

3: if P_ = R†(Q_) ∈ S
na
�0 satisfies (9), set P← P_.

4: else bisect μ ∈ R(0,1] such that P_ = R†(μQ_+(1−μ)Q0)
satisfies (9) and set P← P_.

5: calculate X1,X2,X3,X4 according to Theorem 1.
6: for k ∈ Z[1,N] do
7: calculate M(ρk) according to (14)–(15).
8: calculate Ā(ρk) according to (10)–(11).
9: calculate A(ρk) = Ā(ρk)H, B(ρk) = B̄(ρk)Hb.

10: calculate yk according to (1).
11: end for

fashion. Last, Q_ ∈ S
na
�0 is ensured by parameterizing Q_ =

X	5 X5 with X5 full rank.

B. A Stable Linear IO Model Class
Above lemmas enable the use of Theorem 1 in system

identification. Specifically, they allow for representing Ā(ρ)
in terms of free bounded functions D(ρ),Z(ρ) and full
rank X5 that construct Ā(ρ),P such that (5) is satisfied,
i.e., such that (1) with Ā(ρ) is guaranteed to be stable. This
construction is summarized in Algorithm 1. The functional
parameterizations for D,Z, B̄ in Algorithm 1 are intentionally
left free, and can be chosen arbitrarily, e.g., as a neural
network, while QS of the model is guaranteed by Theorem 1.
Any structured QS IO system can then be represented up to the
approximation capabilities of the functional parametrization of
D,Z, B̄. Naturally, a too limited functional parameterization
can introduce structural bias in the representation of a specific
system.

Since all these transformations have well-defined gradients,
this reparameterization can be used both in curve fitting
algorithms using frequency domain data [20] as well as in
prediction error methods using time domain data [1].

V. SYSTEM IDENTIFICATION EXAMPLE

In this section, the developed stable structured LPV-IO
model is used to identify the parameter-varying damping of
a mass-damper-spring system with known mass and stiffness,
resulting in a structured identification setting. This system
is illustrative of, e.g., varying damping due to configuration-
dependent contact forces. Whereas the developed model is
guaranteed to be stable, a baseline model results in unstable
estimates due to the effects of measurement noise.1

The data-generating system G is given by (1) with

A(ρk) =
[−2 1+ km−1T2

s

]+ d(ρk)m
−1Ts

[
1 − 1

]

B(ρk) =
[
0 0 m−1T2

s

]
(18)

ỹk = yk + vk,

with k = 103, m = 0.2, Ts = 0.05, ρ ∈ R[0,1] = P and
d(ρ) = 6+4e−10ρ2

, resulting in frozen LTI dynamics as shown

1The code for this example and other more
general LTI/LPV examples are available at
https://gitlab.tue.nl/kon/stable-io-identification/-/tree/main/Structured.

Fig. 1. Bode plot of the frozen LPV dynamics, i.e., the frequency
response of the LPV dynamics for constant scheduling ρ.

in Fig. 1. These parameters have been chosen such that the
system is at the boundary of stability. Furthermore, ỹk ∈ R is
a measurement of the true output yk ∈ R perturbed by zero-
mean i.i.d. white noise vk with E(v2

k) = σ 2
v , resulting in an

output-error (OE) identification setup.
Note that, instead of a linear constraint as in (4), the true

system (18) contains an affine structural constraint A(ρ) =
h+d(ρ)H with h = [−2 1+km−1T2

s ] and H = m−1Ts[1 −1].
To convert this constraint to a linear one, F is redefined as
F ← F + G(h + d0H), such that it again holds that xk+1 =
Fxk + Gds(ρk)H with ds(ρk) = d(ρk) − d0. For d0 > 5, F is
stable, giving that Lemma 2-4 are applicable.

A dataset D = {uk, ρk, ỹk}Nk=1 of length N = 1000 is
generated with uk =∑10

i=� sin(2π �
20 t) and ρk = 1−kN−1+wk,

where wk is zero-mean white noise with E(w2
k) = 10−2. The

noise variance is set to σ 2
v = 3.185, resulting in a signal-to-

noise ratio of 10 log10 ‖y‖2�2
/‖v‖2�2

= 6 dB.
Given this data, two models M1 and M2 are identified.

M1 is a standard structured LPV-IO model that directly
parametrizes Ā(ρ) = ∑5

i=0 θiρ
i, i.e., as a 5th order poly-

nomial [21] with parameters θ = [θ0, . . . , θ5]. M2 is the
developed stable structured LPV-IO model with D(ρ) =∑5

i=0 ψiρ
i and X5 ∈ R

2×2 as an upper triangular matrix,
resulting in parameters ψ = [ψ0, . . . , ψ5, vec(X5)] ∈ R

9. Both
models have full knowledge of k,m,Ts, such that H is fully
known. For M2, Q0 ∈ S

na
�0 is initialized by evaluating (12)

for P0 ∈ S
na
�0 satisfying F	P0F − P0 = −I. Note that M2

does not need Z(ρ) as Ā(ρk) ∈ R.
Both models are identified using prediction-error based

minimization based on gradient-based optimization [1], which
in the OE setting corresponds to minimizing the �2 loss of the
simulation error, i.e., for M2 according to

VN(ψ) = 1

N

N∑

k=1

(yk −M2(uk;ψ))2, (19)

with M2(uk;ψ) the simulated model response of M2 to
uk, and similarly for M1. Criterion (19) is minimized in
MATLAB using the Levenberg-Marquardt algorithm [22].

Fig. 2 shows the true and estimated parameter-varying
damping for both models, together with the boundary for
d that results in stable frozen LTI dynamics. Note that this
boundary is not at d = 0 due to the Euler discretization.
It is observed that for p ∈ [0, 0.03] ⊂ P, M1 results in
unstable frozen LTI dynamics, even though the true system is
quadratically stable. This is a consequence of the measurement
noise and finite-data effects. In contrast, M2 is guaranteed to
be quadratically stable, and consequently it results in stable
frozen LTI dynamics for any choice of ρ. In terms of cost
function, the models achieve VN(θ

∗) = 3.218 and VN(ψ
∗) =

3.199 on the training dataset, which is very close to the noise
variance σ 2

v = 3.185. However, on a validation dataset, M1
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Fig. 2. The true parameter-varying damping d(ρ) is accurately
described by the stable LPV-IO model while stability is guaranteed
by construction. As a consequence, its coefficient function is guaranteed
to result in a stable LTI system for each constant ρ, i.e., it stays outside
the region for which d(ρ) results in an unstable LTI model . In
contrast, due to the effects of measurement noise, the standard LPV-
IO model is unstable: for constant ρ ∈ [0, 0.03] ⊂ P it results in
unstable LTI models.

Fig. 3. Coefficient set AP = {A =
[
a1 a2

] | (F−GA)	P(F−GA) −P ≺
0}, i.e., the set of unstructured coefficients for which P proves stability
at step 1 , 10 and 23 of the optimization. At every step,
the intersection of AP with the affine structure set is not empty,
i.e., the structured coefficient set ĀP = {Ā = d | (F−G(h+ĀH))	P(F−
G(h + ĀH)) − P ≺ 0} is not empty. During identification, P is optimized
in such a way that the true system with A(ρ) as in (18) is contained
in AP. Each AP is contained within A , i.e., the set of unstructured
coefficients that result in a stable system in the LTI case.

only obtains VN(θ
∗) = 55.78 as its predictions diverge for the

validation scheduling trajectory due to the instability, while
M2 still achieves VN(ψ

∗) = 3.220.
Taking a closer look into the stability set, Fig. 3 shows

all unstructured coefficients a1, a2 for which P at the current
iteration of the optimization of (19) proves stability. By
varying P, the complete set of structured coefficients that result
in a QS IO model can be represented.

VI. CONCLUSION

In this letter, a linear IO model class is developed that is
both guaranteed to be stable by construction and allows for
a user-specified linear structure constraint on the coefficient
functions. This stable structured linear IO model class allows
for identifying stable models without enforcing LMI condi-
tions during optimization or projecting the identified model
onto the set of stable models afterwards. It can be used in
any gradient-based system identification procedure since all
operations in the model have well defined gradients, e.g., it
can be used to fit frequency response measurement data using
a curve-fitting algorithm or to fit time domain data using
prediction-error methods as is illustrated in this letter.

The results derived in this letter straightforwardly generalize
towards the multi-input-multi-output and state-space case as
long as the structure specification remains unchanged. An

important future direction is to extend the results towards less
conservative stability criteria [15].

VII. PROOF OF THEOREM 1
Before considering the proof, first note that the evolution

of (1) for uk = 0 ∀k ∈ Z≥0 can equivalently be expressed as

xk+1 =

⎡

⎢⎢⎣

−a1(ρk) . . . −ana−1(ρk) −ana(ρk)
1 0

. . . 0
1 0

⎤

⎥⎥⎦xk

= (F − GA(ρk))xk = (F − GĀ(ρk)H)xk, (20)

see also [9], with xk =
[
yk−1 yk−2 . . . yk−na

]	 ∈ R
na .

Consequently, (1) is QS, see Definition 1, if and only if

(F − GĀ(ρk)H)
	P(F − GĀ(ρk)H)− P ≺ 0 ∀ρk ∈ P. (21)

Necessity: Given an Ā(ρ)H = A(ρ) such that (1) is
QS, i.e., (21) holds, it is shown that 1) P satisfies (8)–(9),
2) that (8)–(9) imply that also Q, Q̂ in (12)–(13) are positive
definite, 3) that there exists an M̄1(ρ) related to Ā(ρ) as in (11),
and 4) that there exists an M(ρ) related to M̄1(ρ) as in (10).

1) Necessary Conditions on P: First, since H has a kernel,
simply projecting (21) onto the basis for this kernel V2
gives (9). Second, note that G is full rank and thus G	PG is
invertible. Then, completing the squares in (21) gives

(F − GĀ(ρk)H)
	P(F − GĀ(ρk)H)− P = F	PF − P

− F	PG(G	PG)−1G	PF + R	(ρk)G
	PGR(ρk), (22)

with R(ρk) = Ā(ρk)H − (G	PG)−1G	PF. Now note that
R(ρk)

	G	PGR(ρk) � 0, thus (8) must hold if (21) holds.
2) Positive Definiteness of Q,Q̂ in (12)–(13): Given a P

that satisfies (8)–(9), Q as defined in (12) is trivially positive
definite since P satisfies (8). To prove that Q̂ � 0, note that
V	2 (F	PF − P) V2 ≺ 0 and (8) imply that

V	2 QV2 − V	2 F	PG
(

G	PG
)−1

G	PFV2 � 0. (23)

Now, it holds that G	PG � 0 and V	2 QV2 � 0 such that
taking the Schur complement of (23) implies

G	PG− G	PFV2

(
V	2 QV2

)−1
V	2 F	PG � 0. (24)

Then a congruence with X−1
2 gives Q̂ � 0.

3) Relation Between Ā(ρ) and M̄1(ρ): Since Q � 0, it has
a factorization Q = X	1 X1. Similarly G	PG = X	2 X2. Then a
congruence of (22) with X−1

1 gives that

I − X−	1

(
Ā(ρk)H −

(
G	PG

)−1
G	PF

)	
X	2 X2

(
Ā(ρk)H −

(
G	PG

)−1
G	PF

)
X−1

1 � 0 ∀ρk ∈ P, (25)

or equivalently I − M̂	(ρk)M̂(ρk) � 0 ∀ρk ∈ P by defining

M̂(ρ) = X2

(
Ā(ρ)H −

(
G	PG

)−1
G	PF

)
X−1

1 . (26)

In other words, if (1) with A(ρ) = Ā(ρ)H is QS, there
exists an M̂(ρ) that is contained in the unit ball. Additionally,
M̂(ρ) is structured. Specifically, a multiplication of (26) with
X1

[
V1 V2

]
reveals

M̂(ρ)X1
[
V1 V2

] = X2
[
Ā(ρ)HV1 0

]
(27)

− X−	2 G	PF
[
V1 V2

]
.
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where it has been used that (G	PG)−1 = X−1
2 X−	2 . Now

express M̂(ρ) in new coordinates M̄(ρ) as

M̂(ρ) = [
M̄1(ρ) M̄2(ρ)

][
V1 V2

]	
X−1

1 , (28)

such that (27) results in

M̄2(ρ) = M̄2 = −X−	2 G	PFV2, (29)

M̄1(ρ) = X2Ā(ρ)HV1 − X−	2 G	PFV1. (30)

Now, since HV1 is invertible, (30) uniquely determines the
relationship between M̄1(ρ) and Ā(ρ), which is equivalent
to (11). Additionally, (29) states that M̄2(ρ) is ρ-independent
and only determined by P to adhere to the structure specifi-
cation H, and is thus denoted explicitly as M̄2.

4) Relation Between M̄1(ρ) and M(ρ): Now M̂(ρ) =
(M̄1(ρ)V1+ M̄2V2)X

−1
1 is structured with M̄2 fixed as in (29),

and M̂(ρ) satisfies I − M̂	(ρk)M̂(ρk) � 0 ∀ρk ∈ P, or I −
M̂(ρk)M̂	(ρk) � 0 ∀ρk ∈ P. Combining the two gives

I − (M̄1(ρk)V
	
1 + M̄2V	2 )X

−1
1

X−	1 (V1M̄	1 (ρk)+ V2M̄	2 ) � 0 ∀ρk ∈ P. (31)

Expanding this expression and completing the squares gives

I − M̄2V	2
(

Q−1 − Q−1V1(V
	
1 Q−1V1)

−1V	1 Q−1
)

V2M̄	2
− T	(ρk)V

	
1 Q−1V1T(ρ) � 0 ∀ρk ∈ P, (32)

T(ρ) = M̄	1 (ρ)+
(

V	1 Q−1V1

)−1
V	1 Q−1V2M̄	2 . (33)

Now first note that with Q = X	1 X1, it holds that

Q−1 − Q−1V1

(
V	1 Q−1V1

)−1
V	1 Q−1

= X−1
1

(
I − X−	1 V1(V

	
1 X−1

1 X−	1 V1)
−1V	1 X−1

1

)
X−	1

= X−1
1

(
X1V2(V

	
2 X	1 X1V2)

−1V	2 X	1
)

X−	1

= V2

(
V	2 QV2

)−1
V2, (34)

where the second identity follows by recognizing that I −
X−	1 V1(V	1 X−1

1 X−	1 V1)
−1V	1 X−1

1 is a projection operator onto
the space complementary to Im X−	1 V1, i.e., onto Im X1V2

since (X1V2)
	X−	1 V1 = 0. Now substitute (34) and (29)

into (32) and note that V	2 V2 = I to obtain

I − X−	2 G	PAV2

(
V	2 QV2

)−1
V	2 A	PGV2X−1

2

− T	(ρk)V
	
1 Q−1V1T(ρk) � 0 ∀ρk ∈ P, (35)

where the first line can be recognized as Q̂. Now
T	(ρk)V	1 Q−1V1T(ρk) � 0 ∀ρk ∈ P, such that Q̂ is positive
definite, which was already shown to be equivalent to (9)
under (8). Now decompose Q̂ = X	3 X3 and V	1 Q−1V1 =
X	4 X4. A congruence of (35) with X−1

3 results in

I −M(ρk)M
	(ρk) � 0 ∀ρk ∈ P, (36)

or ‖M(ρk)‖2 < 1 ∀ρk ∈ P where M(ρ) is given by

M	(ρ) = X4T(ρ)X−1
3 , (37)

which, with T(ρ) in (33) and M̄2 in (29), equals (10).
Sufficiency: follows by following the same arguments in

reverse order. Specifically, if P satisfies (8)–(9), then by
step 2) Q̂ � 0. If M(ρ) is such that ‖M(ρk)‖2 < 1 ∀ρk ∈
P, then by constructing M̄1(ρ) as in (10), or equivalently as
in (37), gives that (35) and thus (32) and (31) are satisfied.
Now construct Ā(ρ) according to (11), or equivalently

according to (30). Then, by construction of Ā(ρ) and since (31)
is satisfied, (25) is also satisfied, which implies (21). In other
words, P proves QS for the constructed Ā(ρ).
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