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a b s t r a c t

When identifying electrical, mechanical, or biological systems, parametric continuous-time identifica-
tion methods can lead to interpretable and parsimonious models when the model structure aligns
with the physical properties of the system. Traditional linear system identification may not consider
the most parsimonious model when relying solely on unfactored transfer functions, which typically
result from standard direct approaches. This paper presents a novel identification method that delivers
additive models for both open and closed-loop setups. The estimators that are derived are shown
to be generically consistent, and can admit the identification of marginally stable additive systems.
Numerical simulations show the efficacy of the proposed approach, and its performance in identifying
a modal representation of a flexible beam is verified using experimental data.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The goal in system identification is to obtain mathematical
descriptions of systems using input and output data. These mod-
els can play a critical role for prediction, analysis, and design
of control laws for electrical, mechanical, biological, or environ-
mental systems, among others (Ljung, 1999; Söderström & Stoica,
1989). A distinction can be made between discrete-time and
ontinuous-time system identification methods using sampled
ata. Identification algorithms for discrete-time systems provide
ifference equation models that give meaningful information only
t the sampling instants. In contrast, continuous-time system
dentification methods use sampled data to estimate differential
quation models that represent the system at any point in time.
Linear continuous-time system identification methods (Rao &

Unbehauen, 2006) are widely used and successful in a range
f practical applications (Garnier, Bitmead, & de Callafon, 2014;

Garnier & Young, 2014; Young, 2012), offering several advantages
ver the standard discrete-time algorithms. One advantage of
ontinuous-time methods is their ability to directly incorporate

✩ The material in this paper was not presented at any conference. This paper
as recommended for publication in revised form by Editor Alessandro Chiuso.
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E-mail addresses: r.a.gonzalez@tue.nl (R.A. González), k.h.j.classens@tue.nl
(K. Classens), crro@kth.se (C.R. Rojas), james.welsh@newcastle.edu.au
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a priori knowledge of the relative degree of the physical sys-
tems they model. This feature is particularly useful in estimating,
.g., mechanical systems, as they often exhibit no impulse re-

sponse discontinuities due to the double integration relationship
between force and position (Gawronski, 2004), leading to models
with relative degree equal to 2. In contrast, discrete-time meth-
ods must also account for sampling zeros that are not present in
the continuous-time system representation (Åström, Hagander, &
Sternby, 1984), requiring an additional optimization step if the
resulting discrete-time model is later converted to continuous
time (González, Rojas, & Welsh, 2018). Recent research has pro-
posed tailored variants of instrumental variables to address this
particular challenge (González, Rojas, Pan, & Welsh, 2023a).

When addressing the identification of physical systems, in-
reasingly stringent performance requirements necessitate the
use of parsimonious models, i.e., models with the fewest number
of parameters that can adequately describe the phenomenon
under investigation. From a statistical standpoint, it is well known
that parsimonious model structures that contain the true sys-
em within the model set result in reduced variance compared
o over-parameterized model sets (Stoica & Söderström, 1982).
Most linear continuous-time identification methods parameter-
ize the model structure as an unfactored transfer function, that
s, a quotient of polynomials in the Laplace transform variable
with numerator and denominator polynomial degrees indi-

ating the number of zeros and poles of the model, respec-
ively. Unfactored transfer function parametrizations may not
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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always offer the most parsimonious model structure, but due
to their simplicity they are widely adopted in the Simplified
Refined Instrumental Variable method for Continuous-time sys-
tems (SRIVC, Young and Jakeman (1980)), the Poisson moment
unctional approach (Saha & Rao, 1982), the Least-Squares State-
ariable Filter method (LSSVF, Young (1965)), and other linear
ilter and integral methods (Garnier, Mensler, & Richard, 2003).
The closed-loop variants of these estimators are also limited to
stimating unfactored transfer functions (Gilson & Garnier, 2003;

Gilson, Garnier, Young, & Van den Hof, 2008; Young, Garnier, &
Gilson, 2009). Although more general model structures can be in-
orporated using the prediction error method and maximum like-
ihood paradigm (Åström, 1979), typically one unfactored transfer
function is estimated in the linear and time-invariant continuous-
time identification problem (Ljung, 2009).

While unfactored transfer functions are standard choices for
he model structure in linear system identification, many practi-
al applications related to, e.g., flexible motion systems (Oomen,
2018) and vibration analysis (Gawronski, 2004), often involve
systems that are more easily interpreted as a sum of trans-
fer functions with distinct denominators, typically correspond-
ng to different resonant modes. In addition, modal parameter
stimation for structures subject to vibrations is essential for
esign and model validation, to guarantee safety and quality
ontrol (Reynders, 2012; Voorhoeve, de Rozario, Aangenent, &
Oomen, 2020). Additive model parametrizations have advantages
uch as leading to physically more insightful models for fault di-
gnosis (Classens, Mostard, Van De Wijdeven, Heemels, & Oomen,

2022; Classens, van de Wijdeven, Heemels, & Oomen, 2023) and
mproving the numerical conditioning of parameter estimation
or high-order or highly-resonant systems (Gilson, Welsh, & Gar-
ier, 2017). These model parametrizations, which have previ-

ously been considered in statistics (Hastie & Tibshirani, 1986) and
conometrics (Härdle, Huet, Mammen, & Sperlich, 2004), offer
ncreased model flexibility and the ability to decentralize the
nalysis of each additive component for optimization and control
urposes. Despite some contributions in nonlinear discrete-time

finite-impulse response and generalized Hammerstein model es-
timation (Bai, 2005; Bai & Chan, 2008), the application of addi-
ive model structures in the realm of system identification has
een limited. Recently, González, Rojas, Pan, and Welsh (2023b)

introduced a block coordinate algorithm to identify continuous-
ime systems under an additive model structure. However, this
pproach is confined to open-loop setups and can be computa-
ionally demanding due to the need for estimating each submodel
ith a tailored version of the SRIVC method at each iteration
f the descent algorithm (González, Classens, Rojas, Welsh, &

Oomen, 2024).
Another difficulty when estimating linear systems with an

additive model decomposition is that some systems are known
to have integral action, i.e., their transfer function descriptions
ontain integrators. Applications featuring such systems can be
ound in platooning (Ploeg, Scheepers, Van Nunen, Van de Wouw,
 Nijmeijer, 2011), hydraulics, mechanical systems (Gawronski,

2004; Preumont, 2018), among others. As an illustrative example,
echatronic positioning systems can often be represented as a
ombination of rigid-body and flexible modes, with the rigid-
ody modes modeled as double integrators (Oomen, 2018). Many

system identification methods are only suitable for asymptoti-
cally stable systems, since the predictors become ill-conditioned
hen the models are unstable. Although this problem has been
ackled for Box–Jenkins model structures in discrete-time and
ontinuous-time settings (Forssell & Ljung, 2000; González, Rojas,
an, & Welsh, 2022), these works do not consider additive model

parametrizations.
In this paper, we propose a comprehensive identification

method for modeling additive linear continuous-time systems
2

in both open and closed-loop settings. Our contributions can be
ummarized as follows:

C1 We derive the optimality conditions that the proposed esti-
mators for additive continuous-time system identification
must satisfy in both open and closed-loop scenarios in a
unified manner. To achieve this, we establish a connec-
tion between the first-order optimality condition of the
open-loop estimator in an output error setup and the in-
strumental variable approach in the closed-loop setting.
In the closed-loop case, we derive explicit expressions for
an instrument vector that ensures a consistent estimator
while also yielding a minimum asymptotic covariance ma-
trix in a positive definite sense. The closed-loop results
extend the ones found in Gilson et al. (2008) to a general
class of additive continuous-time models.

C2 We develop open and closed-loop estimators based on the
derived optimality conditions, extending the SRIVC and
CLSRIVC estimators for additive continuous-time models.
We also consider the identification of marginally stable ad-
ditive systems, and provide a thorough consistency analysis
for our estimators, demonstrating their generic consistency
under mild conditions.

C3 We evaluate the proposed method through extensive Monte
Carlo simulations, and we show its efficacy using data from
an experimental flexible beam setup.

The remainder of this paper is structured as follows. Section 2
introduces the problem setup for both open and closed-loop
settings. Section 3 describes the optimality conditions for the
additive model structures of both settings. Section 4 contains
the proposed unified iterative procedure for additive continuous-
time system identification with its asymptotic analysis. Extensive
simulations can be found in Section 5, while Section 6 con-
tains experimental setup results. Concluding remarks are pre-
sented in Section 7. A technical lemma used for proving the main
heoretical results can be found in the Appendix.

2. System and model setup

Consider the single-input single-output, linear and time-
invariant (LTI), continuous-time system in additive form

x(t) =

K∑
i=1

G∗

i (p)u(t), (1)

where p is the Heaviside or derivative operator (i.e., pu(t) =
d
dt u(t)) and u(t) is the input signal. Each subsystem G∗

i (p) has ni
poles and mi zeros, and can be expressed as B∗

i (p)/A
∗

i (p), where
the numerator and denominator polynomials are assumed co-
prime, i.e., they do not share roots. These polynomials are given
by
A∗

i (p) = a∗

i,nip
ni + a∗

i,ni−1p
ni−1

+ · · · + a∗

i,1p + 1,

B∗

i (p) = b∗

i,mi
pmi + b∗

i,m+i−1p
mi−1

+ · · · + b∗

i,1p + b∗

i,0,
(2)

with a∗
ni ̸ = 0 and mi ≤ ni. We assume, without loss of generality,

hat the A∗

i (p) polynomials do not share roots and that they are
nti-monic, i.e., their constant coefficient is fixed to 1. In addition,

to obtain a unique characterization of {G∗

i (p)}
K
i=1, we assume that

t most one subsystem G∗

i (p) has the same number of poles and
eros. The polynomials A∗

i (p) and B∗

i (p) are jointly described by
he parameter vector

θ∗

i =
[
a∗

i,1, a∗

i,2, . . . , a∗

i,ni
, b∗

i,0, b∗

i,1, . . . , b∗

i,mi

]⊤
. (3)

A noisy measurement of the output is retrieved at every time
instant t = t , k = 1, . . . ,N , where {t }

N are evenly spaced
k k k=1
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Fig. 1. Block diagrams for the open (a) and closed-loop (b) settings studied in
his paper.

in time.1 That is,

y(tk) = x(tk) + v(tk), (4)

where v(tk) is assumed to be a zero-mean stationary random
rocess of finite variance σ 2. Two frameworks are considered in
his work: open and closed-loop identification. Block diagrams
hat describe these setups are presented in Fig. 1. The output
noise v(tk) is assumed to be uncorrelated with the input samples
(tk) for the open-loop case, and uncorrelated with the refer-

ence signal r(tk) for the closed-loop case. For both settings, we
assume for simplicity that the input signal u(t) is known to be
onstant between samples, i.e., it has a zero-order hold (ZOH)
ehavior. Other known intersample behaviors, such as first-order
old or band-limited, can also be addressed within the proposed
ramework at the expense of a more involved notation and ad-
oc prefiltering techniques (González, Rojas, Pan, & Welsh, 2021).

The closed-loop setting considers an input signal generated from
a known discrete-time LTI controller Cd(q), with q being the
forward-shift operator. Formally, we can describe the input u(tk)
in terms of the reference and output noise as follows:

u(tk) = r̃(tk) − ṽ(tk), (5)

where

r̃(tk) := S∗

uo(q)r(tk), ṽ(tk) := S∗

uo(q)v(tk), (6)

with S∗
uo(q) being the sensitivity function S∗

uo(q) = Cd(q)/[1 +
∗

d(q)Cd(q)]−1, and G∗

d(q) being the ZOH-equivalent discrete-time
ystem of G∗(p) =

∑K
i=1 G

∗

i (p).
We are concerned with developing data-driven methods to

btain estimates of the parameter vector

β∗
:=
[
θ∗⊤

1 , θ∗⊤

2 , . . . , θ∗⊤

K

]⊤
.

To this end, we consider as given the input and output data
u(tk), y(tk)}Nk=1 for the open-loop scenario, while {r(tk)}Nk=1 is also
nown in the closed-loop setting.

Remark 1. In Section 4 we also consider the identification of ad-
itive systems that are marginally stable. Since the denominator
olynomials related to these systems cannot be represented in an
nti-monic form as in (2), we provide the required system and

model assumptions for this case separately.

Remark 2. Throughout this paper we assume that the input (for
he open-loop case) and reference signals (for the closed-loop

1 Extensions of our proposed identification methods for irregularly sampled
signals are feasible by following similar steps to the ones found in Huselstein
and Garnier (2002).
3

case) are quasi-stationary. Consequently, we will use the standard
definition of expectation for quasi-stationary signals (Ljung, 1999,
. 34)

E{g(tk)} := lim
N→∞

1
N

N∑
k=1

E{g(tk)}.

3. Stationary points for additive continuous-time system iden-
tification

In this section, we present the optimality conditions that will
be exploited for designing the proposed additive system identifi-
cation method in Section 4.

3.1. Open-loop setting

In the open-loop case, we seek an estimator that minimizes
he output-error cost

β̂ = arg min
β∈Ω

1
2N

N∑
k=1

(
y(tk) −

K∑
i=1

Gi(p, θi)u(tk)

)2

, (7)

where each Gi(p, θi) is a transfer function parameterized as in
(2). Note that the notation G(p)u(tk) means that the sampled
input is interpolated with a zero-order hold, filtered through the
continuous-time system G(p), at later evaluated at t = tk. The
ptimizer of the cost function in (7) must satisfy the first-order

optimality condition

1
N

N∑
k=1

ϕ̂(tk, β̂)

(
y(tk) −

K∑
i=1

Gi(p, θ̂i)u(tk)

)
= 0, (8)

where β̂ is given by (7), and the gradient of the residual can be
written as

ˆ (tk, β̂) =
[
ϕ̂

⊤

1 (tk, β̂), . . . , ϕ̂
⊤

K (tk, β̂)
]⊤

, (9)

with each vector ϕ̂i(tk, β̂) being given by

ˆ i(tk, β̂) =

[
−pB̂i(p)

[Âi(p)]2
u(tk), . . . ,

−pni B̂i(p)

[Âi(p)]2
u(tk),

1

Âi(p)
u(tk), . . . ,

pmi

Âi(p)
u(tk)

]⊤

.

(10)

3.2. Closed-loop setting

In contrast to the open-loop analysis, an output-error loss
function of the form in (7) applied to closed-loop system iden-
tification can result in an asymptotically biased estimator. This
phenomenon is due to the correlation of the output noise with
the input u(t) through the closed-loop interconnection (González,
Pan, Rojas, & Welsh, 2024; Van den Hof, 1998). The bias in closed
loop can be mitigated or reduced completely as N tends to infinity
if an instrumental variable approach is considered, as in Gilson,
Garnier, Young, and Van den Hof (2011) for the unfactored trans-
fer function case. Thus, instead of (7), for the closed-loop setting
we are interested in computing the instrumental variable solution

β̂ ∈ sol
β∈Ω

{
1
N

N∑
k=1

ζ(tk)

(
y(tk) −

K∑
i=1

Gi(p, θi)u(tk)

)
= 0

}
, (11)

where ζ(tk) ∈ RK+
∑K

i=1(ni+mi) is an instrument vector that is
assumed to be uncorrelated with the output noise v(tk). Such
assumption is not restrictive in practice, since the instrument
vector is typically formed by filtered versions of the reference
signal, which are designed by the user.
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A crucial aspect of the estimator in (11) is how the instrument
vector is chosen for yielding consistent estimates of minimum
covariance. Conditions on the instrument vector under which the
estimator is generically consistent are provided in Lemma 1.

Lemma 1. Assume that the instrument vector ζ(tk) is uncor-
related with the output noise v(tk), and that r(tk) and v(tl) are
quasi-stationary and mutually independent for all integers k and l.
Then, the estimator (11) is generically consistent if E

{
ζ(tk)ϕ̃r⊤(tk)

}
s generically nonsingular2 with respect to the system and model
denominator parameters, where ϕ̃r (tk) is formed by stacking the
vectors {ϕ̃r

i (tk)}
K
i=1, where

ϕ̃r
i (tk) =

[
−pB∗

i (p)
Ai(p)A∗

i (p)
r̃(tk), . . . ,

−pniB∗

i (p)
Ai(p)A∗

i (p)
r̃(tk),

1
Ai(p)

r̃(tk), . . . ,
pmi

Ai(p)
r̃(tk)

]⊤

.

(12)

Proof. As the sample size tends to infinity, the sum in k in (11)
converges to an expected value due to the quasi-stationarity as-
umptions on the reference and noise signals (Söderström, 1975),
hich leads to θ̄i = limN→∞ θ̂i satisfying

E

{
ζ(tk)

(
y(tk) −

K∑
i=1

Gi(p, θ̄i)u(tk)

)}
= 0

⇐⇒

K∑
i=1

E
{
ζ(tk)

[
G∗

i (p) − Gi(p, θ̄i)
]
u(tk)

}
= 0

⇐⇒

K∑
i=1

E
{
ζ(tk)

[
G∗

i (p) − Gi(p, θ̄i)
]
r̃(tk)

}
= 0, (13)

where we have used the fact that the instrument vector is uncor-
elated with the output noise v(tk) in both steps (recall that r̃(tk)
s given by (6)). Furthermore, we have[
G∗

i (p) − Gi(p, θ̄i)
]
r̃(tk) =

1
A∗

i (p)Āi(p)
[1, p, . . . , pni+mi ]ηi,

where ηi ∈ Rni+mi+1 is the vector that contains the coefficients of
∗

i (p)B̄i(p)−Āi(p)B∗

i (p) in descending order of degree. By following
he derivation of Eq. (15) of Pan, González, Welsh, and Rojas
(2020), we find that

1
A∗

i (p)Āi(p)
S(−B∗

i , A
∗

i )[1, p, . . . , p
ni+mi ]

⊤ r̃(tk) = ϕ̃r
i (tk),

where ϕ̃r
i (tk) is given in (12), and S(−B∗

i , A
∗

i ) is a Sylvester matrix
hat is nonsingular for i = 1, . . . , K due to the coprimeness
f the polynomials A∗

i (p) and B∗

i (p) (Söderström & Stoica, 1983,
emma A3.1). If the vectors ϕ̃r (tk) and η are formed by stacking
he vectors ϕ̃r

i (tk) and ηi respectively, then (13) reduces to the
ondition

E
{
ζ(tk)ϕ̃r⊤(tk)

}⎡⎢⎣S(−B∗

1, A
∗

1) 0
. . .

0 S(−B∗

K , A∗

K )

⎤⎥⎦
−⊤

η = 0,

which implies that η is generically the zero vector (i.e., Gi(p, θ̄i) =
∗

i (p) for all i = 1, . . . , K ) if the matrix E{ζ(tk)ϕ̃r⊤(tk)} is generi-
ally nonsingular. □

2 In this context, a statement s, which depends on the elements ρ of some
pen set Ω ⊆ Rn , is generically true with respect to Ω (Söderström & Stoica,

1983) if the set M = {ρ ∈ Ω|s(ρ) is not true} has Lebesgue measure zero in Ω .
4

Remark 3. The nonsingularity condition in Lemma 1 suggests
that the instrument vector should be correlated with filtered
versions of the derivatives of the noiseless model output and
input. Such interpretation is ubiquitous in instrumental variable
estimation, and has been thoroughly studied for the unfactored
transfer function case (Boeren, Blanken, Bruijnen, & Oomen, 2018;
Garnier & Wang, 2008; Mooren, Witvoet, & Oomen, 2023; Pan,
Welsh, González, & Rojas, 2020). Lemma 1 presents the first
extension of these analyses to the additive system identification
framework.

In accordance to Lemma 1, we will focus solely on instrument
vectors that meet the nonsingularity requirement, which defines
a family of generically consistent estimators. Among these, we
aim to characterize the one that obtains the least asymptotic
covariance. In cases where the transfer function is unfactored, it is
established in both discrete-time (Söderström, Stoica, & Trulsson,
1987; Stoica & Söderström, 1983) and continuous-time (Gilson
& Van den Hof, 2005) formulations that the instrument vector
chieving the lower bound of the asymptotic covariance matrix
or the parameter estimator is given by the noise-free compo-
nent of the regressor vector. However, for the additive model
description, the computation of β̂ cannot be carried out in a
straightforward analytical manner, and the model output cannot
be expressed using just one regressor vector. Despite these dif-
ficulties, Theorem 1 confirms that the asymptotic distribution of
β̂ in Eq. (11) follows a normal distribution, and the asymptotic
covariance can be explicitly computed.

Theorem 1. Consider the estimator (11). Assume that r(tk) and
(tl) are quasi-stationary and mutually independent for all integers

k and l, and that the instrument vector ζ(tk) is constructed such that
β̂ is a consistent estimator of β∗. Then, β̂ is asymptotically Gaussian
distributed, i.e.,
√
N(β̂ − β∗)

dist.
−−→ N (0, PIV), (14)

where the asymptotic covariance matrix PIV is given by

PIV = σ 2E
{
ζ(tk)ψ⊤(tk)

}−1

× E
{
ζ(tk)ζ⊤(tk)

}
E
{
ψ(tk)ζ⊤(tk)

}−1
,

where

ψ(tk) =

[
∂G1(p, θ1)

∂θ⊤

1

, . . . ,
∂GK (p, θK )

∂θ⊤

K

]⊤
⏐⏐⏐⏐
β=β∗

r̃(tk). (15)

Proof. A first-order Taylor expansion of the left hand side of (11)
gives

1
√
N

N∑
k=1

ζ(tk)

(
y(tk) −

K∑
i=1

G∗

i (p)u(tk)

)

−
1

√
N

N∑
k=1

ζ(tk)ψ⊤(tk)(β̂ − β∗) # 0,

where the # symbol means that the left-hand side and the right-
hand side differ by a quantity converging to zero in probability,
and where ψ(tk) is defined in (15). Hence,

√
N(β̂ − β∗)#

[
1
N

N∑
k=1

ζ(tk)ψ⊤(tk)

]−1
1

√
N

N∑
k=1

ζ(tk)v(tk)

#E
{
ζ(tk)ψ⊤(tk)

}−1 1
√

N∑
ζ(tk)v(tk). (16)
N k=1
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It follows from Lemma A4.1 of Söderström and Stoica (1983) that

1
√
N

N∑
k=1

ζ(tk)v(tk)
dist.
−−→ N (0, P), (17)

where, following Eq. (22) of Pan, Welsh, et al. (2020) and exploit-
ng the fact that ζ(tk) and v(tk) are uncorrelated, we have

P = lim
N→∞

1
N

N∑
k=1

N∑
s=1

E
{
[ζ(tk)v(tk)][ζ(ts)v(ts)]⊤

}
= σ 2E

{
ζ(tk)ζ⊤(tk)

}
.

The desired result is then obtained from Lemma A4.2 of Söderström
nd Stoica (1983) applied to (16). □

Corollary 1. The asymptotic covariance matrix of β̂ in (11) is
minimized in a positive definite sense when ζ(tk) = ψ(tk).

Proof. Since any covariance matrix is positive semi-definite, we
ave

E

{[
ζ(tk)
ψ(tk)

] [
ζ(tk)
ψ(tk)

]⊤
}

⪰ 0. (18)

The nonsingularity of E
{
ζ(tk)ψ⊤(tk)

}
implies that the matrix

E
{
ζ(tk)ζ⊤(tk)

}
is positive definite. Thus, (18) is equivalent to the

chur complement
E
{
ψ(tk)ψ⊤(tk)

}
− E

{
ψ(tk)ζ⊤(tk)

}
× E

{
ζ(tk)ζ⊤(tk)

}−1 E
{
ζ(tk)ψ⊤(tk)

}
⪰ 0.

(19)

Provided that the matrices above are nonsingular, (19) is equiva-
ent to

E
{
ψ(tk)ψ⊤(tk)

}−1
⪯ E

{
ζ(tk)ψ⊤(tk)

}−1

× E
{
ζ(tk)ζ⊤(tk)

}
E
{
ψ(tk)ζ⊤(tk)

}−1
.

Equality holds when ζ(tk) = Mψ(tk), with M being a nonsingular
constant matrix. Since M can be canceled out from (11), we set
M equal to the identity matrix without loss of generality, which
eads to the desired result. □

Corollary 1 indicates that the optimal instrument vector is
given by a filtered version of the reference signal that depends
on the true system parameters, as seen in (15). Since the true
arameters are not known, the solution for the unfactored trans-
er function case adopted in, e.g., the closed-loop SRIVC estimator
CLSRIVC, Gilson et al. (2008)), is to let ζ(tk) depend on β as well.
n the additive identification case, we let the instrument vector
ake the form (9), but where, for i = 1, . . . , K ,

ζi(tk,β) =

[
−pBi(p)
[Ai(p)]2

, . . . ,
−pniBi(p)
[Ai(p)]2

,

1
Ai(p)

, . . . ,
pmi

Ai(p)

]⊤

Suo(q)r(tk),
(20)

where Suo(q) = Cd(q)/[1 + Gd(q)Cd(q)]−1.
In summary, the open-loop and closed-loop identification

roblems can be solved using the optimality condition (8) and
he (refined) instrumental variable expression (11), respectively.
n the closed-loop scenario, the instrument ζ(tk) depends on the
odel, as indicated in (20).

Remark 4. To unify the notations pertaining to the open and
losed loop cases, from now on we denote the instrument vector
omposed by stacking the vectors (20) for i = 1, . . . , K as ϕ̂(tk,β).
The difference between this vector and the one described by (10)
will be clear from the context.
 f

5

4. Additive system identification: An instrumental variable so-
ution

This section presents the proposed instrumental variable-
ased method for identifying additive continuous-time systems
n open or closed loop settings, and its consistency analysis.

4.1. Derivation of the instrumental variable solution

When computing β̂ that satisfies (8) or (11), the difference
etween the measured and predicted outputs cannot be written
s a unique pseudolinear regression when K > 1 due to the ad-
itive structure of the model. Then, to estimate additive models,
e write the residual in K different ways:

y(tk) −

K∑
i=1

Gi(p, θ̂i)u(tk) = yf ,i(tk, θ̂i) − ϕ⊤

i (tk, θ̂i)θ̂i, (21)

where i = 1, . . . , K . Here, yf ,i(tk, β̂) represents a filtered residual
output of the form

yf ,i(tk, β̂) =
1

Âi(p)
ỹi(tk), (22)

where the residual output pertaining to the ith additive submodel
is given by

ỹi(tk) = y(tk) −

∑
l=1,...,K ,

l̸ =i

Gl(p, θ̂l)u(tk), (23)

and the regressor vector associated with the ith additive sub-
odel, denoted by ϕi(tk, θ̂i), is expressed as

ϕi(tk, θ̂i) =

[
−p

Âi(p)
ỹi(tk), . . . ,

−pni

Âi(p)
ỹi(tk),

1

Âi(p)
u(tk), . . . ,

pmi

Âi(p)
u(tk)

]⊤

.

(24)

Thus, if we define the following signals and matrix

ϕ(tk, β̂) = [ϕ⊤

1 (tk, θ̂1), . . . ,ϕ
⊤

K (tk, θ̂K )]
⊤, (25)

(tk, β̂) = [yf ,1(tk, β̂), . . . , yf ,K (tk, β̂)]⊤, (26)

B̂ =

⎡⎢⎣θ̂1 0
. . .

0 θ̂K

⎤⎥⎦ , (27)

the conditions in (8) and (11) can be written in K different ways
sing (21), which leads to the following equivalent equation that

the optimal estimate must satisfy:

1
N

N∑
k=1

ϕ̂(tk, β̂)
(
Υ⊤(tk, β̂) − ϕ⊤(tk, β̂)B̂

)
= 0. (28)

Thus, by fixing β̂ = β̂
j
in ϕ̂(tk, β̂), Υ⊤(tk, β̂) and ϕ⊤(tk, β̂), we

obtain the jth iteration of the proposed estimator for both open
and closed loop settings by solving for B̂ as follows:

Bj+1
=

[
1
N

N∑
k=1

ϕ̂(tk,βj)ϕ⊤(tk,βj)

]−1

×

[
1
N

N∑
k=1

ϕ̂(tk,βj)Υ⊤(tk,βj)

]
,

(29)

where the next iteration βj+1 is extracted from the block diag-
onal coefficients of Bj+1 as in (27), and the instrument vector is
described by (10) or (20) for the open or closed loop setups, re-
spectively. The iterations in (29) are computed until convergence
or (8) or (11) to be satisfied.
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Remark 5. The iterations in (29) can be viewed as an extension
f the open-loop and closed-loop refined instrumental variable
stimators to the additive model case. When we consider K = 1,
.e., the unfactored transfer function case, the iterations in (29)
reduce to

θ
j+1
1 =

[
1
N

N∑
k=1

ϕ̂1(tk, θ
j
1)ϕ

⊤

1 (tk, θ
j
1)

]−1

×

[
1
N

N∑
k=1

ϕ̂1(tk, θ
j
1)yf ,1(tk, θ

j
1)

]
,

(30)

where the instrument vector ϕ̂1(tk, θ
j
1) is given by (10) for the

pen-loop case, and (20) for the closed-loop setting. These iter-
tions correspond to the standard SRIVC and CLSRIVC methods,
espectively (Gilson et al., 2008; Young & Jakeman, 1980). The
RIVC and CLSRIVC estimators have recently been proven to be

generically consistent under mild conditions (González, Pan, et al.,
2024; Pan, González, et al., 2020), and the asymptotic efficiency of
the SRIVC estimator has been proven in Pan, Welsh, et al. (2020).

Remark 6. The proposed approach can be extended to the
stimation of marginally stable systems as follows. Consider the
ystem (1), but where the first submodel has ℓ poles at the origin.
In other words, let G∗

1(p) = B∗

1(p)/[p
ℓA∗

1(p)], where A∗

1(p) and B∗

1(p)
re coprime polynomials, and have the same form as in (2). For
ither open or closed-loop variants of the proposed approach,
e require the computation of the gradient of each submodel
ith respect to their respective parameter vector. For G1(p), this
omputation leads to the following instrument vector:

ϕ̂1(tk,β) =

[
−pB1(p)
pℓ[A1(p)]2

, . . . ,
−pn1B1(p)
pℓ[A1(p)]2

,

1
pℓA1(p)

, . . . ,
pm1

pℓA1(p)

]⊤

z(tk),
(31)

where z(tk) = u(tk) for the open-loop algorithm, and z(tk) =

Suo(q)r(tk) for the closed-loop variant. On the other hand, the
odel residual retains the same form as in (21), with the filtered

residual output given by (22), but with the regressor vector now
xpressed as

ϕ1(tk, θ̂1) =

[
−p

Â1(p)
ỹ1(tk), . . . ,

−pn1

Â1(p)
ỹ1(tk),

1

pℓÂ1(p)
u(tk), . . . ,

pm1

pℓÂ1(p)
u(tk)

]⊤

.

(32)

By computing the iterations in (29) with the first block of the
nstrument and regressor vectors given by (31) and (32) respec-
ively, we obtain a direct extension of the proposed method for
dentifying marginally stable systems in additive form. This solu-
ion extends the one proposed in Solution 6.2 of González et al.
(2022), which is only applicable to unfactored transfer functions
n closed loop. We note that the user’s choice of including an
ntegral action term in the model can be motivated by physical
ntuition, or by model order selection methods (Ljung, 1999).

Note that a block diagonal structure for Bj+1 is not achieved in
general at each iteration (29), but it is guaranteed if the iterations
onverge to a stationary point that satisfies the pseudolinear
egression equations in (28). This result is presented in Lemma 2.

Lemma 2. Consider the iterative procedure in (29) for finite N
with ϕ(t ,βj) and Υ (t ,βj) given by (25) and (26) respectively,
k k

6

while ϕ̂(tk,βj) is formed by (10) or (20) in the open and closed-loop
setups, respectively. Denote β̄ as the converging point of the iterative
procedure, with B̄ = limj→∞ Bj, and assume that the matrix[

1
N

N∑
k=1

ϕ̂(tk, β̄)ϕ⊤(tk, β̄)

]
(33)

is nonsingular. Then, the converging point of the iterative procedure
satisfies (8) or (11) if and only if the matrix B̄ is block-diagonal.

Proof. The straight implication part of the result is direct from
he derivation leading to (28) and (29). For the converse, we note
that the converging point of the iterative procedure in (29) must
atisfy

¯ =

[
N∑

k=1

ϕ̂(tk, β̄)ϕ⊤(tk, β̄)

]−1 [ N∑
k=1

ϕ̂(tk, β̄)Υ⊤(tk, β̄)

]
.

Equivalently,
N∑

k=1

ϕ̂(tk, β̄)
[
Υ⊤(tk, β̄) − ϕ⊤(tk, β̄)B̄

]
= 0.

Define B̃ = diag(θ̄1, . . . , θ̄K ). This matrix satisfies

Υ⊤(tk, β̄) − ϕ⊤(tk, β̄)B̃

=

(
y(tk) −

K∑
i=1

Gi(p, θ̄i)u(tk)

)
[1, . . . , 1],

which shows that the matrix formed by the off-diagonal elements
of B̄, denoted as E = B̄ − B̃, must satisfy
N∑

k=1

ϕ̂(tk, β̄)ϕ⊤(tk, β̄)E

=

N∑
k=1

ϕ̂(tk, β̄)

(
y(tk) −

K∑
i=1

Gi(p, θ̄i)u(tk)

)
[1, . . . , 1]

=0,

where the last equality is due to the assumption that the limiting
oint β̄ satisfies the optimality condition (8) or (11) in the open
r closed-loop setting, respectively. Since the modified normal
atrix (33) is assumed to be nonsingular, we reach E = 0, which

concludes the proof. □

As seen in Lemma 2, the nonsingularity of the matrix (29) is
essential for the method to be well posed. This aspect, as well as
the convergence of the iterations, will be studied extensively in
the next subsection.

4.2. Consistency analysis

Before presenting the main theorem on the generic consis-
tency of the proposed method for open and closed loop, we shall
introduce some signals of interest. By substituting (4) into (24),
we can express the regressor vector ϕ(tk,β) as the block vector
ormed by

ϕi(tk,β) = ϕ̃u
i (tk,β) + ∆u

i (tk,β) − vui (tk,β),
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where ϕ̃u
i (tk,β) has the same form as ϕ̃r

i (tk,β) in (12) but with
r̃(tk) replaced by u(tk). That is,

ϕ̃u
i (tk,β) =

[
−pB∗

i (p)
Ai(p)A∗

i (p)
u(tk), . . . ,

−pniB∗

i (p)
Ai(p)A∗

i (p)
u(tk),

1
Ai(p)

u(tk), . . . ,
pmi

Ai(p)
u(tk)

]⊤

. (34)

The vector ∆u(tk,β) contains the interpolation errors that arise
rom constructing the filtered disturbance-free derivatives of
he output, as well as the residual model bias. The entries of
u
i (tk,β), denoted ∆u

i,j(tk,β), are zero for j > ni and

∆u
i,j(tk,β) =

pjB∗

i (p)
Ai(p)A∗

i (p)
u(tk) −

pj

Ai(p)

{
B∗

i (p)
A∗

i (p)
u(t)

}
t=tk

−

∑
l=1,...,K ,

l̸ =i

pj

Ai(p)

{
(G∗

l (p) − Gl(p))u(t)
}
t=tk

(35)

for j = 1, . . . , ni. The direct contribution of the noise to the
egressor is given by

vui (tk,β) =

[
p

Ai(p)
v(tk), . . . ,

pni

Ai(p)
v(tk), 0, . . . , 0

]⊤

.

In the closed-loop case, the input also contains filtered out-
ut noise that must be rewritten for the analysis. By exploiting
5), the regressor vector in the closed-loop setting can also be
xpressed as

ϕi(tk,β) = ϕ̃r
i (tk,β) + ∆r

i (tk,β) − vri (tk,β),

where ϕ̃r
i (tk,β) is given by (12), and ∆r

i (tk,β) has the same form
s (35) but with r̃(tk) instead of u(tk), and vri (tk,β) solely contains
iltered versions of the output noise v(tk).

For the main result of this section, we require the following
assumptions, some of which are divided into open or closed-loop
assumptions depending on the setting we consider.

Assumption 1 (Persistency of Excitation). Open loop: The input
u(tk) is persistently exciting of order no less than 2n. Closed
loop: The input r(tk) is persistently exciting of order no less than
2n + nc , where nc is the order of the discrete-time LTI controller
Cd(q).

Assumption 2 (Stationarity and Independence). Open loop: The in-
ut u(tk) and disturbance v(ts) are quasi-stationary and mutually
ndependent for all k and s. Closed loop: The reference r(tk) and
isturbance v(ts) are quasi-stationary and mutually independent
or all k and s.

Assumption 3 (Stability and Coprimeness). All the zeros of the jth
iteration of the model denominator estimate Ai,j(p) have strictly
egative real parts, with Ai,j(p) and Bi,j(p) being coprime. Closed
oop: Additionally, the discrete-time equivalent model estimates
t each iteration are asymptotically stabilized by the controller
d(q).

Assumption 4 (Sampling Rate). The sampling frequency is more
than twice that of the largest imaginary part of the zeros of

K
j=1 Aj(p)A∗

j (p).

Assumption 1 to 4 are the same ones that have been consid-
red in recent consistency analyses of open-loop and closed-loop

refined instrumental variable estimators (González, Pan, et al.,
2024; Pan, González, et al., 2020). Assumptions 1 and 2 can be
readily satisfied if the input is white noise or a periodic signal
of sufficient number of frequency lines. The stability condition in
7

Assumption 3 is not restrictive, since the poles of the model at
each iteration are typically reflected to the left half-plane if they
are unstable. Cancelling the unstable poles using all-pass filters
also circumvents this problem (González et al., 2022). Finally,
Assumption 4 avoids aliasing issues associated with the discrete-
time implementation of the prefiltering steps, and is satisfied in
practice if the sampling period is chosen small compared to the
rise time of the system.

Theorem 2 shows that the proposed method in generically
consistent for both open and closed-loop settings.

Theorem 2. Consider the proposed estimator (29) for the open and
losed-loop settings in Fig. 1, and suppose Assumption 1 to 4 hold.
Then, the following statements are true:

1. The modified normal matrix E
{
ϕ̂(tk,β)ϕ⊤(tk,β)

}
is generi-

cally nonsingular with respect to the system and model de-
nominator polynomials, provided that the following condition
holds for each respective setting:

(a) Open loop:E {ϕ̂(tk,β)∆u⊤(tk,β)
} 

2

< σmin
(
E
{
ϕ̂(tk,β)ϕ̃u⊤(tk,β)

})
,

(36)

where σmin(·) represents the minimum singular value
of a matrix, and ϕ̂(tk,β), ϕ̃u(tk,β) and ∆u(tk,β) are
formed by stacking the vectors described by (10), (34)
and (35), respectively.

(b) Closed loop:E {ϕ̂(tk,β)∆r⊤(tk,β)
} 

2

< σmin
(
E
{
ϕ̂(tk,β)ϕ̃r⊤(tk,β)

})
,

(37)

where ϕ̂(tk,β), ϕ̃r (tk,β) are formed by stacking the
vectors described by (12) and (20), respectively, and
∆r (tk,β) has the same form as (35) but with r̃(tk)
instead of u(tk).

2. Assume that (36) for open loop or (37) for closed loop is
satisfied, and the iterations of the estimator converge for all
N sufficiently large to say, B̄, with B̄ being a block-diagonal
matrix formed by β̄i. Then, the true parameter vector β∗ is
the unique converging point of β̄ as the sample size tends to
infinity.

Remark 7. The expressions in (36) and (37) give sufficient
ut not necessary conditions for the generic nonsingularity of

E
{
ϕ̂(tk,β)ϕ⊤(tk,β)

}
. They are satisfied in practice when the re-

spective interpolation error ∆u(tk,β) or ∆r (tk,β) arising from
constructing the filtered output derivatives is not significant,
which typically occurs when the sampling period is chosen ap-
propriately.

Proof of Statement 1, Part (a): Since the input is uncorrelated
with the output noise, the expectation of interest is given by

E
{
ϕ̂(tk,β)ϕ⊤(tk,β)

}
= E

{
ϕ̂(tk,β)[ϕ̃u(tk,β) + ∆u(tk,β)]⊤

}
.

Provided the condition (36) holds, due to Theorem 5.1 of Dahleh,
Dahleh, and Verghese (2002), the perturbation matrix E{
ϕ̂(tk,β)∆u⊤(tk,β)

}
is small enough (in 2-norm) to not affect the

nonsingularity of the matrix E
{
ϕ̂(tk,β)ϕ⊤(tk,β)

}
. Thus, we study

the generic nonsingularity of the matrix E
{
ϕ̂(tk,β)ϕ̃u⊤(tk,β)

}
nstead.

By following standard operations (see, e.g., González, Pan,
et al., 2024), the noise-free, interpolation-error-free regressor
vector and the instrument vector can be rewritten using the
identities
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ϕ̃u
i (tk,β) = S(−B∗

i , A
∗

i )
1

Ai(p)A∗

i (p)
ui(tk), (38)

ϕ̂i(tk,β) = S(−Bi, Ai)
1

A2
i (p)

ui(tk), (39)

where S(−B∗

i , A
∗

i ) and S(−Bi, Ai) are Sylvester matrices that are
nonsingular due to the coprimeness of the polynomials of the
true system G∗

i (p) and the coprimeness assumption on the model
Gi(p) (Söderström & Stoica, 1983, Lemma A3.1). The vector ui(tk)
is formed by input derivatives, i.e.,

ui(tk) =
[
pni+mi , pni+mi−1, . . . , 1

]⊤ u(tk). (40)

Hence,

E
{
ϕ̂(tk,β)ϕ̃u⊤(tk,β)

}
= SΦuS⊤

∗
, (41)

where

Φu = E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1

A21(p)
u1(tk)

1
A22(p)

u2(tk)
...

1
A2K (p)

uK (tk)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1
A∗
1(p)A1(p)

u1(tk)
1

A∗
2(p)A2(p)

u2(tk)
...

1
A∗
K (p)AK (p)

uK (tk)

⎤⎥⎥⎥⎥⎦
⊤
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (42)

and where S and S∗ are block diagonal matrices formed by
S(−Bi, Ai) and S(−B∗

i , A
∗

i ), respectively. Since these block Sylvester
matrices are nonsingular, in order for (41) to be generically non-
singular, we must show that Φ is generically nonsingular. Pro-
vided Assumption 1, 2 and 4 hold, the generic nonsingularity of
uch matrix follows from taking S(q) = 1 and zi(tk) = ui(tk) in
Lemma 3 in the Appendix, which concludes the proof. □

Proof of Statement 1, Part (b): The proof follows the same lines
s the proof of Part (a) of Statement 1 with regards to the pertur-
ation analysis, with u(tk) replaced by r̃(tk) in the expressions. In
his case, the noise-free regressor and instrument vectors can be
ewritten by considering

ϕ̃u
i (tk,β) = S(−B∗

i , A
∗

i )S
∗

uo(q)
1

Ai(p)A∗

i (p)
ri(tk), (43)

ϕ̂i(tk,β) = S(−Bi, Ai)Suo(q)
1

A2
i (p)

ri(tk), (44)

where ri(tk), i = 1, . . . , K , have the same structure as (40). Hence,
e obtain

E
{
ϕ̂(tk,β)ϕ̃r⊤(tk,β)

}
= SΦrS⊤

∗
,

where Φr has the same form as (A.1) in the Appendix, but with
(q) and zi(tk) replaced by Suo(q) and ri(tk), respectively. The
eneric nonsingularity of this matrix follows from Lemma 3.
Proof of Statement 2: As N → ∞, (29) implies that

E
{
ϕ̂(tk, β̄)ϕ⊤(tk, β̄)

}−1

× E
{
ϕ̂(tk, β̄)

(
Υ⊤(tk, β̄) − ϕ⊤(tk, β̄)B̄

)}
= 0.

(45)

Since the matrix inverse above is generically nonsingular by
tatement 1, we only need to analyze the second expectation.
y following the derivation of the proposed estimator in (29), we
ind that

Υ⊤(tk, β̄) − ϕ⊤(tk, β̄)B̄

=

(
y(tk) −

K∑
i=1

Gi(p, θ̄i)u(tk)

)
[1, . . . , 1],

which, when inserted in (45), leads to the condition

E

{
ϕ̂(tk, β̄)

(
K∑

i=1

[Gi(p, θ∗

i ) − Gi(p, θ̄i)]u(tk)

)}
= 0.

The rest of the proof follows from the derivations made in the
proof in Lemma 1 and is therefore omitted. □
8

Fig. 2. Bode plot of the open-loop continuous-time system under study.

5. Simulations

In this section, Monte Carlo experiments are performed to
est the asymptotic properties of the proposed estimator, and to
ompare them with other direct continuous-time identification
methods.

5.1. Open-loop experiment

Consider the following 8th order system

G∗(p) =

4∑
i=1

b∗

i,0

a∗

i,2p2 + a∗

i,1p + 1
,

where the DC-gains are given by [b∗

1,0, b
∗

2,0, b
∗

3,0, b
∗

4,0] = [3, 0.4,
0.2, 0.05], and their associated poles are, respectively, −0.25 ±

1.39i, −0.15 ± 3.16i, −0.17 ± 5.77i, and −0.5 ± 9.99i. The
frequency response of this system is shown in Fig. 2. The input is
chosen to be a zero-mean Gaussian noise with unitary variance,
nd the output is being sampled every h = 0.05[s]. The noise
(tk) in (4) is given by

v(tk) =
q + 0.5
q − 0.85

e(tk),

where e(tk) is a zero-mean Gaussian white noise of variance 0.02,
yielding a signal-to-noise ratio of approximately 9 [dB]. Thirty
ifferent sample sizes are considered, ranging logarithmically

from N = 2 · 103 to N = 105. For each sample size, we
conduct 300 Monte Carlo runs with varying input and noise
realizations. The goal is to compare the performance of the pro-
posed estimator with the SRIVC estimator, which is the algorithm
behind the tfest command in the MATLAB System Identification
Toolbox (Ljung & Singh, 2012). To this end, we report the mean-
square error of the DC gains bi,0 related to each submodel. Both
estimators initialize at a random system that satisfies βi = β∗

i (1+

(−0.05, 0.05)), where U(a, b) denotes the uniform distribution
ith lower and upper limits a and b, respectively. The maximum
umber of iterations of the algorithms is set to 100, and the
elative error bound that is used as a termination rule for both
iterative procedures is set to 10−10.

In Fig. 3 we present the MSE of each DC gain estimate as a
function of the sample size. Both methods exhibit a linear decay
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Fig. 3. Mean square error of the DC gain estimates with respect to the sample
size N , open-loop identification. The proposed method delivers parameter
estimates with less MSE for b2,0 and b3,0 , while having similar performance
to the SRIVC estimator in the other parameters.

in terms of the MSE of each parameter, which indicates that
hey are consistent in this scenario. This aligns with Theorem 2.
urthermore, we note a substantial decrease in the MSE for both
2,0 and b3,0 when comparing the proposed method to the SRIVC
ethod, while remaining competitive with respect to the other
arameters. The proposed estimator requires 12 parameters to
escribe the system, whereas the standard SRIVC estimator con-
iders 8 poles and 6 zeros, leading to a total of 15 parameters to
e estimated. The parsimony of the additive structure results in
ore accurate estimates.

5.2. Closed-loop experiment

Consider the following 4th order system

G∗(p) =
3

0.25p2 + 0.25p + 1
+

1
0.025p2 + 0.01p + 1

, (46)

which is controlled by a feedback PID controller of the form

Cd(q) = 0.0115 +
0.00725q
q − 1

+
0.00454(q − 1)

q
,

with sampling period h = 0.05[s]. The parameters of interest
re β∗

= [0.25, 0.25, 3, 0.01, 0.025, 1]⊤. The reference is
hosen to be a zero-mean Gaussian white noise signal of unitary
ariance, and the noise v(tk) is a zero-mean white noise Gaus-
ian of variance 0.01. Fifty different sample sizes are considered,
anging logarithmically from N = 500 to N = 123036, each
ith 300 Monte Carlo runs with varying reference and noise
ealizations. Three estimators are tested: the SRIVC estimator
(i.e., the direct closed-loop approach, Forssell & Ljung, 1999),
he CLSRIVC estimator (Gilson et al., 2008), and the proposed
stimator for closed-loop identification, i.e., (29) with instrument

vector described by (20). The estimators are all initialized by the
ame mechanism detailed in Section 5.1, and the relative error
ound for the termination rule of each algorithm is set to 10−7.

The SRIVC and CLSRIVC estimators consider a model structure
consisting of 4 poles and 2 zeros, and the proposed method
9

Fig. 4. Mean square error of the system parameter estimates with respect
to the sample size N , closed-loop identification. All estimators give consistent
estimates, and the proposed method gives the least mean-square error for every
arameter.

exploits the parametrization in (46), which gives 6 parameters
to be computed in total.

Our goal is to compare the parameter vectors of the resulting
additive form of each estimator. For this, after computing the
estimates using the SRIVC and CLSRIVC methods, we factor the
resulting transfer function and obtain their associated additive
parameter vector estimate. In Fig. 4, we have plotted the mean
square error of each parameter for all the sample sizes considered
in this study. All three estimators are known to be generically
consistent in this setup due to Theorems 11 and 15 of González,
Pan, et al. (2024), and Theorem 2 of this work. However, the
proposed method attains lower MSEs compared to the SRIVC and
CLSRIVC methods. Similar to Section 5.1, this improvement is due
to a more parsimonious model structure that is imposed: the
roposed additive estimator only requires 6 parameters to exactly
escribe the system in (46), as opposed to the unfactored transfer

function model descriptions provided by the standard SRIVC and
CLSRIVC estimators, which require 7.

6. Experimental validation

In this section, the proposed identification method is vali-
dated using experimental data. Consider the setup depicted in
Fig. 5. The system consists of a slender and flexible steel beam of
500 × 20 × 2[mm]. It is equipped with five contactless fiberoptic
ensors and three voice-coil actuators and is suspended by wire
flexures, leaving one rotational and one translational direction
unconstrained. The system is operating at a sampling frequency
of 4096[Hz], and the middle actuator and sensor are used for
conducting the experiments. Lightly-damped systems such as the
one under study can be described in a modal representation of the
form

G∗(p) =

K∑ b∗

i,0
2 2 ,
i=1
p /ωi + 2(ξi/ωi)p + 1
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Fig. 5. Prototype experimental flexible beam setup. The moving part is indicated
by a⃝ and is suspended by wire flexures b⃝. The deflection is measured with five
contactless fiber optic sensors, of which middle sensor is used c⃝ and the setup
is actuated with three current-driven voice coils of which the middle actuator
used d⃝.

where ξi and ωi represent the relative damping and natural
frequencies of the flexible modes, see Gawronski (2004) for more
etails.
An open-loop experiment is conducted with a random-phase

ultisine input of 2[s] with a flat spectrum between 0.5[Hz] to
00[Hz]. We test the performance of the proposed method for

the open-loop scenario, i.e., (29) with instrument vector given by
10). Considering the input and output data {u(tk), y(tk)}8192k=1 , the
first four modes of the system are estimated (i.e., four second-
order systems without zeros), and the result is depicted in Fig. 6.
he iterations in (29) are initialized with the submodel estimates

θ11 = [0.001, 0.025, 10]⊤, θ12 = [5e−5, 1.5e−4, 0.2]⊤,

1
3 = [8.5e−7, 2e−5, 0.001]⊤, θ14 = [7.5e−7, 5e−6, 0.01]⊤.

These parameters describe a model which deviates on purpose
rom the expected outcome to illustrate the converging nature of
he algorithm and its robustness against poor initialization. The
delay is estimated to be four samples and the converged estimate
f the parametric model has parameters

ˆ1 = [0.0024, 0.023, 11.81]⊤,

ˆ2 = [2.33e−5, 1.65e−4, 0.159]⊤,

ˆ3 = [8.59e−7, 1.03e−5, 3.19e−4]⊤,

ˆ4 = [7.55e−7, 3.55e−6, 1.27e−4]⊤.

These parameters describe a continuous-time model that is close
to the nonparametric estimate obtained using the same data
sequence, verifying the validity of the model obtained.

7. Conclusions

In this paper, we have presented a unified method for iden-
tifying continuous-time models in an additive form, applicable
o both open and closed-loop settings. This method is derived
rom the optimality conditions established for both scenarios and
xtends the properties of well-known refined instrumental vari-
ble algorithms to address the identification of systems requiring
ore flexible model parameterizations. Our open and closed-loop
stimators have been rigorously demonstrated to be generically
onsistent, and extensive simulations were conducted to vali-
ate this property. Moreover, our proposed additive identification
ethod has been successfully tested using experimental data.
he approach in this paper not only provides accurate models
ut also offers insights beyond standard unfactored transfer func-
ion estimation, as it is capable of directly retrieving the system
arameters in its additive form.
10
Fig. 6. Estimation of the frequency response function of the flexible beam
system. A nonparametric estimate ( ) and the parametric modal estimate with
a 4-sample delay ( ) are indicated as well as the initial condition ( ) of
the algorithm. The proposed method converges to a parametric model closely
aligned with the first four modes of the system.
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Appendix. Technical lemma

Lemma 3 (Generic Nonsingularity). Consider the ni-th order, asymp-
otically stable continuous-time transfer functions 1/Ai(p), i =

, . . . , K, which depend on some parameters νi, and define A∗

i (p)
s the polynomial Ai(p) evaluated at νi = ν∗

i . The polynomials A∗

i (p),
= 1, . . . , K , are assumed to be coprime. Furthermore, consider

he asymptotically stable discrete-time transfer function S(q), which
epends on some parameters ξ, and define S∗(q) as the transfer
unction S(q) evaluated at ξ = ξ∗. Assume that S(q) has at most
s nonminimum phase zeros, and that Assumption 4 holds. If the

signal z(tk) is quasi-stationary and persistently exciting of order no
less than 2

∑K
i=1 ni + ms, then the following matrix is generically

nonsingular with respect to {νi}
K
i=1 and ξ:

Φ = E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
S(q) 1

A21(p)
z1(tk)

S(q) 1
A22(p)

z2(tk)
...

S(q) 1
A2K (p)

zK (tk)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
S∗(q) 1

A∗
1(p)A1(p)

z1(tk)
S∗(q) 1

A∗
2(p)A2(p)

z2(tk)
...

S∗(q) 1
A∗
K (p)AK (p)

zK (tk)

⎤⎥⎥⎥⎥⎦
⊤
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (A.1)

where zi(tk) = [pni+mi , pni+mi−1, . . . , 1]⊤z(tk), with mi < ni for all
but at most one i, at which mi = ni.

Proof. We need to show that the two statements needed for
applying the genericity result in Lemma A2.3 of Söderström and
Stoica (1983) are true, which are that

1. all the entries of Φ are real analytic functions of the coef-
ficients of Ai(p) and S(q), and

2. there exist {νi}
K
i=1 and ξ vectors that lead to Φ being

nonsingular.
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The first statement follows from applying the same logic as in
Lemma 9 of Pan, González, et al. (2020) and is therefore omitted.
As for the second statement, we will show that setting S(q) =

∗(q) and Ti(p) = T ∗

i (p) for all i = 1, 2, . . . , K , leads to a
onsingular matrix Φ. To this end, we define

Φ∗
= E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
S∗(q) 1

[A∗
1(p)]

2 z1(tk)
S∗(q) 1

[A∗
2(p)]

2 z2(tk)
...

S∗(q) 1
[A∗

K (p)]
2 zK (tk)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
S∗(q) 1

[A∗
1(p)]

2 z1(tk)
S∗(q) 1

[A∗
2(p)]

2 z2(tk)
...

S∗(q) 1
[A∗

K (p)]
2 zK (tk)

⎤⎥⎥⎥⎥⎥⎦
⊤
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Take x ∈ RK+
∑K

i=1(ni+mi). The following inequality is direct:

x⊤Φ∗x = E

⎧⎨⎩
(

Bx(p)∏K
i=1[A

∗

i (p)]2
z̃(tk)

)2
⎫⎬⎭ ≥ 0, (A.2)

where z̃(tk) = S∗(q)z(tk) is a persistently exciting signal of order
o less than 2

∑K
i=1 ni, and Bx(p) is a polynomial of degree at most∑K

i=1 ni − maxk(nk − mk) of the form

Bx(p) =

K∑
i=1

Qi(p)
∏

j=1,...,K ,
j̸ =i

[A∗

j (p)]
2,

with Qi (i = 1, . . . , K ) being an arbitrary polynomial of degree
ni + mi, described by the entries of the vector x. By following
the same arguments as in Eqs. (38)–(40) of Pan, González, et al.
(2020) (which require the persistence of excitation and sampling
requency assumptions), we find that x⊤Φ∗x = 0 implies that
Bx(p) ≡ 0.

Now our goal is to show that Bx(p) ≡ 0 implies that Qi(p) ≡ 0
for all i = 1, . . . , K , which means that x = 0. First, it is clear
that at least two Q polynomials must be nonzero in case the
statement were to be disproven. To tackle this case, we argue
by contradiction. Suppose that there are at least two polynomials
Qk,Ql that are nonzero, and without loss of generality3 assume
that deg(Qk) < 2nk. Since Bx(p) ≡ 0, the following relations
between polynomials hold true:

Qk(p)
∏

j=1,...,K ,
j̸ =k

[A∗

j (p)]
2 (A.3)

= −[A∗

k(p)]
2
∑

i=1,...,K ,
i̸ =k

Qi(p)
∏

j=1,...,K ,
j̸ =i,k

[A∗

j (p)]
2

̸ = 0.

Thus, the polynomial in (A.3) must have the same zeros as
A∗

k(p)]
2, counting their multiplicity. These zeros cannot be ac-

ounted for in
∏

j=1,...,K ,
j̸ =k

[A∗

j (p)]
2 since the A∗

j polynomials are

ointly coprime, and neither in Qk(p), since deg(Qk) < deg([A∗

k(p)]
2)

2nk. We conclude that such Qk,Ql nonzero polynomials that
atisfy the equality in (A.3) cannot exist. Hence, by contradiction,
we have found that all Q polynomials must be zero for Bz(p) ≡ 0
o be true, and therefore, Φ∗ is nonsingular.

Since both statements (1) and (2) are true, the result in
Lemma 3 follows from Lemma A2.3 of Söderström and Stoica
(1983). □
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