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Abstract

The energy demand in current times has increased greatly in last few years. This in-
creasing demand calls for a sustainable and clean energy resource that would reduce
the load on non-renewable resources. Wind energy is a renewable resource which is
harnessed by mankind from an ancient era. So as to meet this increasing energy de-
mands, innovation in field of wind energy is required.
A wind turbine generates electricity but achieving optimal power is a difficult task. In
this case the optimal power is defined as maximum power produced but at the con-
straints that the fatigue loading of the wind turbine structure should be as minimum
as possible. Also, the wind turbine parameters such as rotor speed and pitch activity
should be in a safe operational region. The problem in controlling wind turbines is
that they work in a highly uncertain environment where managing so many factors at
the same time is difficult. Optimal control of wind turbine has helped in achieving
maximum power with-in safe working limits. Due to high uncertainty in the operating
conditions of a wind turbine it is quite a daunting task to find optimal gains for a wind
turbine controller.
This thesis focuses on achieving optimal gain parameters for wind turbine controller
by using a algorithm from machine learning community. In this thesis the problem is
formulated as a supervised learning problem where input-output mapping has to be
predicted. For this purpose, Gaussian Process Regression Technique (GPRT) is used.
The reason behind using GPRT is it takes fewer number of measurements to give good
prediction compared to others. The property of GPRT where it deals with uncertain
and non linear data with ease, making it a good choice for predicting wind turbine
controller gains.
The second part of this thesis contains optimisation of the surrogate model achieved
by performing regression. The optimisation is done by Monte Carlo Maximum distri-
bution and improved results were generated by applying sequential sampling to this
algorithm. This helps us to get a likelihood of optimal gains where the wind turbine
gives out rated power with minimal fatigue loads, pitch activity and least deviation of
rotor speed from rated.
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The results obtained from the likelihood was tested for different operational wind speed
and also tested for Extreme Operating Gusts as part of disturbance rejection and com-
pared to current parameter used.
The comparison shows considerable improvement in the fatigue loads and pitch activity
with having improvement in power production. In second case study, more parameters
were predicted and optimised using the same algorithm so that the potential of this
algorithm can be estimated. This was also performed successfully which proves that
this technique can successfully be used to solve higher dimensional problems of wind
turbine control.
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Chapter 1

Introduction

1-1 Wind Energy

Energy plays a crucial role in development of humanity. From wood to coal and to
renewable energy man has made transitions according to its needs. Growth in popu-
lation and technological advancements created a huge energy demand. To solve this,
wind energy caught an eye as its a clean and sustainable solution. Wind energy was
historically used for various purposes like grinding grain, pumping water, pumps to
drain polders. But nowadays wind energy is rapidly growing as a source of energy
which has led to advancements in research in this field. By the end of 2016 the total
installed wind power capacity world wide was around 4.86×105 MW and to give an
idea of increase in wind power, the rise is almost 13% from 2015 [2].

Figure 1-1: Year wise cumulative Growth of Wind energy [1]

This increase in power generation has also put up challenges such as designing more

Master of Science Thesis Sabyasachi Neogi



2 Introduction

efficient wind turbines, safe operation of wind turbines, efficient transmission and much
more. In last three decades, the wind turbine power production capacity has increased
from 0.45 MW to 10 MW. Innovative ideas such as blade-less wind turbines, optimised
blade designs, offshore vertical axis turbines and application of machine learning are
some of the latest ideas which are currently being researched upon.

1-2 Offshore Wind Energy

An offshore wind energy is on an exponential rise. Only in EU a total of 43 GW is
expected to be installed by 2020. The reason behind its growth is abundance of space,
consistent wind resource and almost no opposition from the population. But offshore
wind turbines are expensive due to complex logistics for installation, large structures
and difficult grid connections [3].
Offshore wind turbine operates under very harsh conditions so their designs are kept
relatively simple. Designing an optimal control scheme will help to reduce the fatigue
loads along with an increase in power production which collectively will reduce the
overall cost.

Figure 1-2: Year wise cumulative growth of Wind energy [1]

1-3 Motivation

To meet this increase in demand, production capability has to be increased. For this,
size of wind turbines have increased rapidly as energy output is proportional to area of
actuator disc [2].
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1-4 State of the art 3

Figure 1-3: Different operational regions of a wind turbine

Levelized Cost of Electricity (LCOE) which is defined as sum of cost incurred over life
time of the generating asset by sum of electrical energy generated in life time. For a
wind turbine it is important to know about this factor as only generating maximum
power is not the primary target, fatigue load reduction which plays important role in
longevity of wind is crucial.
Wind turbine control is essential in reducing LCOE and better ways are to be looked
out for so that power and load balance can be attained optimally.
Wind turbine is inherently a non-linear system which is constantly subjected to chang-
ing wind speeds. When the case is about offshore wind turbines then the conditions are
harsher. A general guide to design a wind turbine control is to linearise the non-linear
wind turbine model at a varying operating point and create a linear parameter varying
model [4]. Then a parameter varying control is used using gain scheduling principles,
sometimes along with H∞ control principles to keep off the uncertainty LPV systems
has [5].

1-4 State of the art

Control of wind turbine is a hard challenge because operation of wind turbine is depen-
dent on the wind conditions, which is uncertain in behaviour. This change in operation
with varying wind speeds bring us to different operation modes of a wind turbine.
Various operational regions for wind turbines are above cut-in speed, at rated speed
and above rated speed (Figure 1-3). Each operational region has different control goals
to achieve, so has different control actions. For example primary goal in above cut-in is
maximising power production which is done by controlling generator torque, where as
in above rated the goal is load reduction with using pitch manoeuvre techniques. These
variations and large uncertainty in wind make it difficult to design a robust controller.
Some popular model based methods to design wind turbine controller are by using

gain scheduling algorithm, by application of a robust controller or a pole placement
technique.
In gain scheduling based controller, non-linear model is linearised around each operating
point and then linear controller is designed for the linear system [5]. Gain scheduling
is mostly applied in combination with Linear Parameter Varying (LPV) systems. LPV
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systems are obtained by reformulating non-linear system as a linear system around the
set of disturbances to the model [6]. For calculating optimal gain scheduling param-
eters, the problem is formulated as convex optimisation problem with help of Linear
matrix inequalities (LMIs) [5].
For robust control grey box modelling is done where rigid body modelling followed by
parametric identification for each components is done. Thereafter a H∞ controller is
applied to tackle the uncertainties and non-linear dynamics [5].
In pole placement, poles are forced in closed loop system so as to stabilise the system
response. Here also non-linear model is linearised and gains of pitch and torque are
tuned by pole placement method looking at the robustness of the design [7].
Data driven approach is also used to design controller. Where the first step is to per-
form system identification of wind turbine which is done by exciting the pitch system
and the torque degrees of freedom, then an adaptive system identification of model is
done to consider the case of constant variation of the system. An adaptive closed loop
control algorithm is applied to the model to get the control parameter with varying
system [8]. This technique does not require any kind of linearisation which makes the
algorithm more reliable.
For optimal tuning, numerical optimisation techniques and Iterative feedback tuning
methods are also used. In numerical optimisation technique a cost function is designed
containing various parameters along with controller gain which is later optimised using
a gradient based algorithm [9].
In iterative feedback control the control parameters are obtained iteratively by a gradi-
ent based method. The iterative optimisation is done by multiple closed loop systems
which helps to estimate gradient with respect to a control parameter. This iterative
updating of controller helps to minimise the user defined cost function [10]. The ad-
vantage of Iterative feedback tuning (IFT) is an in-depth knowledge of the system is
not required but knowledge of internal stability of closed loop system is important [10].

1-5 Problem Formulation

So it can be observed from previous section that optimising a non linear cost function is
a tough challenge. This brings us to a point where a new approach to achieve optimal
gain needs to be formulated.
This brings us to an idea of data based tuning where prediction and optimisation is
done in a model free manner which saves us from problems caused due to uncertainties
in a wind turbine system.
The first step to perform this is to create data based cost function which is non linear in
behaviour, due to the components such as damage equivalent loads, pitch activity and
power produced which varying non-linearly. To mitigate this problem a self learning
algorithm is sought for, which would learn the cost for different control parameters.
The following parameters are obtained by performing aero-elastic simulation of wind
turbine against different control parameters. Another reason to use a self learning it
will predict uncertainties based on the uncertainty in current measurements.
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1-6 Thesis Framework 5

We have a non linear cost function that varies with varying control parameters which
are known to us, this motivates us to use supervised learning algorithm. In a supervised
learning algorithm prediction of input-output mapping can be done based on a set of
training data.
To perform this successfully, the ultimate goal has been broken down into smaller parts
which collectively helps us to achieve the final goal :

To design a cost function which creates a trade off between wind turbine parameters
that are essential for wind turbine control The measurement data is obtained from
aero-elastic simulation an offshore wind turbine model of the ‘D4Rel’ turbine at a set
of controller parameters. The controller is a closed loop negative feedback controller.
The data collected against a set of controller parameters after an aero-elastic simulation
consists of parameters such as power generated, rotor speed, pitch angle and activity
of all the three blades, fatigue loading of tower and blade, bending moments of blade
and tower. The results also contain the standard deviation and mean values of these
parameters. So, the first challenge that comes up is to design a cost function. The
cost function should capture all the important factors of a wind turbine that are looked
upon while designing a control algorithm and create a suitable trade off between them.

To apply learning algorithm to extrapolate number of control parameters from the mea-
surements and predict the cost at these control parameters In the current system it is
suggested that the model should be simulated for atleast 600 seconds for each set of
controller parameters so as to get appropriate values for all the parameters. This is a
considerably large time and limits the number of measurements.
So, for investigating gains and cost value it is required to have a set of large number
control parameters. A learning algorithm is required that can interpolate or extrapolate
the limited number of training data we have.

To create a suitable likelihood and achieve an optimal gain After obtaining a set of
predicted gains and cost values corresponding to them, the task is to find the optimal
gains for the designed cost function. For this, an optimisation scheme is required. The
optimisation should be in two parts, first it should give out a likelihood of optimal gains
and in the second part optimisation of likelihood is to be done to get the optimum out
of the likelihood.

1-6 Thesis Framework

Chapter 2: Model Description To know and understand more about the model of wind
turbine on which the experiment is performed. Details about the controller specifica-
tions and design that is being currently used to control this model. To know about the
current tuning algorithm and the tuning parameters.
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6 Introduction

Chapter 3: Theoretical Framework This section contains description of the algorithm
that is applied to reach our goal of achieving optimal gains without any manual inter-
ference. This section contains all the bits of theoretical aspects used to perform the
automated tuning, interpolation and optimisation techniques.

Chapter 4: Implementation This section gives step by step pathway about how the
algorithm has been applied to the model, what are the difficulties faced while apply-
ing the algorithm, intermediate results and how they were incorporated into the final
results.

Chapter 5: Results In this chapter results are presented and its in-depth analysis is
done.

Chapter6: Conclusions and Recommendations In the final chapter a conclusion is
drawn from the results on the whole thesis work done. Also, some recommendations
for future work is suggested.
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Chapter 2

Model Description

The goal of this project is to automate wind turbine controller tuning. This experiment
is performed on the ‘Advanced Control Tool (ACT)’ which is used for design and im-
plementation of controller for wind turbines at Energy Centre Netherlands (ECN). The
wind turbine used for simulation is a ‘D4Rel turbine’ whose specifications can be seen
in appendix B. The controller consists of a baseline controller and a non linear model
predictive controller that performs online optimisation of the baseline controller. The
motive of this tool is to achieve some additional objective besides achieving baseline
rotor speed and pitch angle, such as reduction fatigue loads in tower, active drive-train
damping, fatigue load reduction on blades and optimal shutdown control minimising
the tower loads during shut down [11].
The components in Advanced Control Tool (ACT) that facilitate it to get to the afore-
mentioned goals

• A non-linear wind turbine model with control related wind turbine dynamics, for
controller design and testing it.

• Observer for estimating states of wind turbine and stochastic nature of wind speed,

• A feedback based baseline controller which has trade offs to optimise rotor speed,
power production and loads.d

Lets move on to discuss these components in details.

2-1 Wind turbine Model

The wind turbine model used in ACT is a non linear wind turbine model. The modelling
has three parts structural, aerodynamic and wind modelling.
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8 Model Description

2-1-1 Aerodynamic modelling

Aerodynamic modelling is done in accordance with effects on each blade so that indi-
vidual pitch action can be done with ease when required. The force and aerodynamic
torques are defined as

F (i)
ax (uiax) = Fdyn(uiax) · CT (λ(i), θi)/B

T (i)
a (uiax) = R · Fdyn(uiax) · CT (λ(i), θi)/B

(2-1)

where Fdyn is force exerted on wind turbine, θ is pitch angle, λ is tip speed ratio, T ia
is the generator torque, R is radius of wind turbine, uiax is wind speed where i is each
blade, B Number of blades. The wind turbine experiences forces and moments due to
incoming wind are expressed as

Flapwise moment(M (i)
fl ) = −2

3 ·R · F
(i)
ax

Tilt moment(M (i)
tilt) = 2

3 ·R · F
(i)
ax sin(ψ(i))

Tilt moment(M (i)
yaw) = −2

3 ·R · F
(i)
ax cos(ψ(i))

Sideward force(F (i)
sd ) = −2T ia

R
sin(ψ(i))

(2-2)

The direction of the forces follow right hand co-ordinate rule where the x-axis points
down-wards, z-axis points downwards, ψ(i) denote azimuth position for ith blade. To
understand better a pictorial representation has been given in (Figure 2-1). The effect
of abrupt change in pitch angle or wind is modelled by a simplified dynamic inflow
model. In dynamic inflow model, effect of pitch angle variation on axial force per blade
and aerodynamic torque per blade is modelled. Also, the pre-filtering of collective
pitch angle using lag-lead filters is done to get filtered collective blade pitch angles.
The coefficient of filters depend upon mean wind speed [11].
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2-1 Wind turbine Model 9

Figure 2-1: Representation of forces and their direction on wind turbine

2-1-2 Structural modelling

The structural dynamics of wind turbine is consists of three major components drive
train dynamics, tower dynamics and wind. Each of them are modelled separately for
ACT and then their impact on wind turbine is analysed.

Drive train modelling The slow shaft is modelled by assuming it as flexible, having
torsional stiffness sdt and damping ddt to know it’s frequency and damping. The gear-
box is connected rigidly to nacelle, with transmission ratio (itr) which is positive when
direction of the fast shaft rotor is same as slow shaft rotor else negative. The diagram-
matic representation in figure (2-2) shows direction of torques and rotations acting on
a drive train. The equations involved in drive train modelling

JgΩ̇g = 1
itr

(Tsh − Tloss)− Tgen.sign(itr)

JrΩ̇r = Ta − Tsh
Tsh = sdtγ − ddtγ̇

Tloss = Tc + Tv
1
iitr

Ωg + TtTsh

(2-3)

where Jr is the rotor inertia, Jg is generator inertia, Ωg is the generator speed, Ωr is
rotor speed, Tsh is the shaft torque, γ is torsion angle, Tloss is model conversion losses,
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10 Model Description

Figure 2-2: drive train dynamics

Tgen is generator torque, Tc and Tv are Coulomb and viscous forces respectively.

Tower top motion The tower top dynamics has two direction of dynamics fore-aft and
sideways. Second order mass-spring-damper system model is used for modelling. The
equation for tower fore-aft motion is

mtẍfa + dtẋfa + stxfa =
B∑
i=1

(F (i)
ax −

3
2HM

(i)
tilt) (2-4)

where mt is tower mass, dt is damping and st is stiffness (these parameters are same for
both the motions), xfa is tower top position at fore-aft motion, M i

tilt is tilting moment
of tower, the force applied at the tower top is 3

2HM
i
tilt. For side-ways motion

mtẍsd + dtẋsd + stxsd =
B∑
i=1

(F (i)
sd + 3

2HTnac) (2-5)

where sum of F i
sd side ways force that excites the dynamics, Fax is the axial force, xsd

is tower top position at sideways motion and Tnac is the effective torque acting on the
nacelle.

Wind modelling The wind model used in ACT is takes a single wind signal that pa-
rameterizes the corresponding axial force and torque. The model consists stochastic
wind speed signal containing slowly varying average wind and periodic components with
frequency equal to multiples of rotors rotational frequency. It also has deterministic
effects such as wind shear, tower shadow and tower fore-aft motion.

2-2 Baseline Controller Model

2-2-1 State Estimator

For achieving a feedback control, state estimation of the dynamics is required. The
state estimation in ACT is done by observers. For estimating the states of linearised
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2-2 Baseline Controller Model 11

model of tower, drive train and blade effective wind speed is used. A state estimation
of linear structural dynamics is done using a Kalman filter, for this to be possible the
available measurements of generator speed, pitch angle of each blade, tower aft and
side ways acceleration are used to estimate axial force and torque.
The estimation has following steps, first the estimation of aerodynamic torque and drive
train states are done, then wind speed is constructed and at last tower model states
are estimated [11].

2-2-2 Controller design

Now the estimated states of wind turbine dynamics and wind will be used to design
a baseline controller. This baseline controller will fulfils the objectives defined in the
beginning of this chapter with help of several state feedback loops:

Power and rotor speed regulation loop The first control loop in the model is power and
rotor speed regulation loop, the objective of this loop is to generate as much as power
at below rated speed, limit power to rated power and to limit the fluctuation of rotor
speed at above rated speed. To achieve maximum power capture below rated, λ and
θ (collective) are set to optimum and Ωr is kept controlled by generator torque. This
is done by a non linear feedback law. The strategy used in power/rotor speed control
loops are

• At a below rated condition when the Ω>Ωr,min, the generator torque tries to
control the rotor speed at Ωr,min by means of PI control action on the error
signal (Ω̂r −Ωr,min). The generator torque is kept limited to Tgen(Ω̂r) that makes
generator torque saturated at at very high wind speeds, where Ω̂r is estimated
rotor speed.

• At the transition state, Ω̂r increase to 1
2(Ω̂r,rat+Ωr,min), the set point of PI torque

controller is set to rated rotor speed and the upper limit of the torque is set to
rated torque. When the Ω>Ωr,min, Tgen will try to control rotor speed along with
a proportional action on pitch to keep the pitch constant. But when the generator
torque equals T ratgen then PI-pitch control is activated.

• The full load condition uses PI pitch action keeping the generator torque set at
Trat
gen

Closed loop for active reduction of tower fore-aft moment Reduction of tower fore aft
moment is by means of collective pitch action control acting on the observer estimates
of the tower-top position and speed in fore-aft directions. The estimation of tower top
position and speed in foreaft and sidewards direction is done using Kalman filter. The
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12 Model Description

linearised model of the tower fore-aft dynamics looks like[
δẋfa
δẍfa

]
=
 0 1

− st
mt
−dt+B∇uFax(1+ R2

2H2 )
mt

 [δxfa
δẋfa

]

+
[

0 0 0
B∇ΩFax

mt

B∇θFax
mt

−RB∇ΩFax
2Hmt

]  δΩr

δθcol
δθtilt


+
[

0 0
B∇uFax
mt

RB∇uFax
2Hmt

] [
δusto,col
δusto,tilt

]
(2-6)

Closed loop for active reduction of tower side-ways moment The active reduction of the
side-ways moment is done by generator torque control acting on the estimated tower
top sidewards position and speed. The linearised model for tower side-ways moment
look like [

δẋsd
δẍsd

]
=
[

0 1
− st
mt
− dt
mt

] [
δxsd
δẋsd

]
+
[

0
−B∇uTa

Hmt

]
δẋfa

+
[

0 0 0
−B∇θTa

Rmt

3sign(itr)
2Hmt −B∇uTa

Rmt

]  δθtilt
δTgen
δusto,tilt


+
[ 0 0 0

3sdt
2H

itr−1+Tt
mtitr

3ddt
2H

itr−1+Tt
mtitr

3
2H

Tν−ddt(itr−1+Tt)
mti2tr

]  δγδΩr

δΩg


(2-7)

This is more of a general model in the ACT, only the collective pitch action is applied
for this project rather than having both individual pitch action and collective pitch
action.

Current Tuning Process for Rotor speed and power regulation To achieve the gains of
both the pitch and torque controller, at first the linearised drive train model is further
modified so that PI controller can be designed by state feedback law. The optimum
criterion is decided by a quadratic cost function for all the three operating regions,
which brings LQR controllers into play. The linearised model to be used for the control
is [11] [

δΩ̇r

δΩ̇int
r

]
=
[ (1−Tt)B∇ΩTa(p̄)−Tv

Jeff
0

1 0

] [
δΩr

δΩint
r

]
+
[−|itr|
Jeff

0

]
δTgen

[ (1−Tt)B∇θTa(p̄)
Jeff

(1−Tt)B∇uTa(p̄)
Jeff

0 0

]  δθcol
δTgen

δusto,col − ẋfa

 (2-8)

where δΩint
r is the integrated rotor speed, δθcol is the change in collective pitch angle,

Jeff effective shaft dynamics, ∇θTa is the sensitivity of aerodynamic torque w.r.t pitch
angle and ∇ΩTa is the sensitivity of aerodynamic torque w.r.t rotor speed.
For each operational region different quadratic cost function formulation has been used
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2-2 Baseline Controller Model 13

• Near cut-in region, only the torque controller is working to regulate rotor speed
at rated rotor speed. As mentioned earlier, a LQR is designed on the model given
in equation (2-8) with equilibrium rotor speed and equilibrium collective pitch
angle with corresponding to the wind speed (ucutin). The LQR design to compute
PI-gains for feedback loop

δTgen =
[
Ktq
p (ucutin) Ktq

I (ucutin)
] [ δΩr

δΩint
r

]
(2-9)

As, this operation region is small so no gain scheduling was applied.

• In above rated region, the generator torque is kept at rated and Pitch PI-controller
is used to regulate the rotor speed at rated. The pitch PI-controller has large oper-
ational region and aerodynamic torque varies quite a lot, to keep that in mind gain
scheduling is done for wind speed (uhigh) above rated apart from having the state
feedback LQR. The equilibrium point for the LQR is p̄=θeqcol(uhigh),Ω

eq
col(uhigh), uhigh,

the control law is

δθcol =
[
Kθ
p(uhigh) Kθ

I (uhigh)
] [ δΩr

δΩint
r

]
(2-10)

• In near rated has both the pitch and torque controller are working. The collective
pitch action is done by a proportional controller. The torque controller gains are
designed in a similar manner as done in above rated region .i.e. by calculation of
Kp and Ki by solving a LQR design. The equation is same as equation (2-9) but
the wind speeds are at near rated.

Rotor speed Filtering The estimated rotor speed has Bp and 2Bp frequency compo-
nents from various components such as tower shadow, rotational sampling effects etc.
These frequencies will result in unnecessary pitch and torque activity, so the Ω̂r is to be
filtered before it goes into the Pitch and torque controller [11]. Bandstop filter around
Bp and 2Bp frequencies is used, also a bandstop filter is applied around tower shadow
and drive train frequency.

Gain Scheduling For above rated wind speed Gain scheduling is important, at con-
stantly varying wind speeds as it operates at a wide range of wind speeds. This causes
a high ∇θTa (sensitivity of aerodynamic torque to pitch angle) in (2-8), which means
that small pitch angle change takes a large change in generator torque, leading to poor
performance of pitch controller. To prevent this, a gain scheduling is done by calculat-
ing gain at a very high wind (uhigh) speed and the scheduling it by gain at an estimated
mean wind speed (umean). The gain factor is given by

gθ(umean) def= min

{
gmaxθ ,

∇θTa(peq(uhigh))
∇θTa(peq(umean))

}
peq(u) def= {θeqcol(u),Ωeq

r (u), u}
(2-11)
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14 Model Description

where the pueq denotes the equilibrium operation curve. If seen closely gθ(umean) is in-
versely proportional to sensitivity of aerodynamic torque to pitch angle, this suggest
that gain factor decreases with increasing mean wind speed. The gmaxθ is a factor kept
to prevent from gain scheduling factor to become very high at close rated wind speed.
The equilibrium operational curve in equation (2-11) is calculated assuming that the
controller under steady state has power Prat at high wind speeds, maximum power at
rated wind speed urat.

For tower fore-aft moment fatigue load reduction To design the gain of the feedback
controller, LQR design is applied to the linear top model (Equation 2-6). Some gain
scheduling is also applied to cover the whole operational region. The final feedback law
becomes

δθfacol = gfa(umean)Kfa(uhigh)
[
δx̂fa
δ ˆ̇xfa

]
(2-12)

The estimation of tower top position and speed has some frequency components like Bp
and 2BP. So, to avoid affects of these frequencies on pitch actuator bandstop filter is
used. In addition to bandstop filter, highpass filter with a cutoff frequency much lower
than the tower frequency is used to remove average from estimates of x̂fa and ˆ̇xfa.

For tower side-wards fatigue load reduction The state feedback gain is designed by LQR
optimisation in a similarly as done for fore-aft fatigue load reduction. The linearised
model (Equation 2-7) is used to design the controller.

2-2-3 Shortcomings

When this controller was simulated at a mean wind speed of 15 m/s, a better power
yield is obtained with least fluctuation from rated rotor speed with a considerable
reduction in tower bottom moment. As an estimate, over lifetime of 20 years damage
equivalent load reduction of 6.5 % in fore-aft direction and 19% reduction in sidewards
direction is achieved with a significant improvement in power production quality.
But it increase the pitch activity and ultimately a high pitch activity will give higher
blade fatigue loads. It also uses a quadratic cost function to tune the controller gains
which is a complicated task to perform due to non linearity involved.
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Chapter 3

Theoretical Framework: Gaussian
Process Regression and it’s

Optimisation

In introduction, explanation has been given about the difficulties faced in control of
wind turbine and how capturing uncertainties is difficult while modelling wind turbine.
Control algorithms such as H∞, LQG and Gain scheduling which are being used pre-
dominantly in wind turbine cannot handle non-linear cost functions and require very
detailed models to handle the non-white noise disturbances. So, this calls for need of a
model free system of control where actual data from the model at varying conditions
can be taken into consideration.

Machine learning approach for controller tuning The problem faced in our case study
is an optimisation problem where we are trying to refrain from solving a non linear
cost function. Also, model uncertainties needs to be mitigated to some extent due to
stochastic behaviour of wind turbine.
To tackle this we try implement tools of machine learning which are quite popular as
an optimisation tool. As it is possible to have the values of important factors for wind
turbine control such as power produced, fatigue loads, rotor speed, pitch activity etc.
at specific controller gains via aero-elastic simulation. To benefit from this feature the
problem formulated in this thesis is a supervised learning problem, where prediction for
input-output mapping is done. So, the data is analysed and more data is produced by
inferring outputs from measured data points. The supervised learning consists of two
types of problem: regression and classification [12]. Regression is a kind of supervised
learning where prediction of continuous data is done from given training data [13]. The
need of the problem is to get a model free approach for an uncertain and nonlinear
system that self learns the non linearity and uncertainty to predict more data points
in further space.
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16 Theoretical Framework: Gaussian Process Regression and it’s Optimisation

The aero-elastic simulation takes some time to perform the simulation that gives out
the necessary values to be learned. This lead to look for an efficient method that can
solve a regression problem with lesser training data. One of the solution for his type of
problem is by ‘kernel methods’.
In machine learning community ‘kernel methods’ are widely popular for tackling prob-
lems which has uncertainties and posses non linear dynamics which makes this method
more useful in our case. Kernel methods are predominantly used in fields like geostatis-
tics, cheminformatics, bioinformatics and handwriting recognition. Kernel methods in-
clude techniques such as Gaussian Process regression, support vector machines, kernel
perceptron and many more. Kernel is a function of two arguments that are mapping a
pair of inputs xεX , x′εX into R [12].

3-1 Introduction to Gaussian Process

Regression models of Gaussian Processes are easy to implement, flexible and has
Bayesian basis and thus a powerful tool in many application [14].
A Gaussian Process is a set of random variables which have a Gaussian joint distribu-
tion for any set of input xn [15]

P (t|C, xn) = 1
Z
exp(−1

2(t− µ)TC−1(t− µ)) (3-1)

C is a covariance matrix defined by C(xn,xm;Θ) having Θ as hyperparameters and µ is
mean function.
A simple Gaussian Process regression has two parts, a prior and a posterior distribution
which are created by the joint distribution by predicted mean and variance [15].
The first step to perform Gaussian Process regression is to take measurements at ran-
dom data points (x) in a space with each of them having output ‘y’. These points can
be said as measurements points (xm) and consider that these measurements have noise
to certain extent. The second step is to use this measurement to predict the values at
random test data points in a space, this bit is called the regression.
The reason behind using GPRT is that it models the uncertainty present in the system
efficiently while prediction is done. This property helps us to model the uncertainty in
wind turbine behaviour. Also the ability of predicting non linear functions efficiently
makes it a good choice for this problem.
As, mentioned before about the prior and posterior distribution, a short discussion
about them is done.

Prior distribution Prior distribution is an assumption taken without performing any
measurements. It fixes the properties of function considered, for example initial mean
value or standard deviation or value region where measurements are going to be done
[12] [16]. This assumption of prior is very important for the Bayesian formalisation of a
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3-1 Introduction to Gaussian Process 17

GP regression. Prior distribution function of f is given as probability density function

f ∼ N (f |m,λ2
f ) (3-2)

where the Gaussian probability density function is given as

N (f |m,λ2
f ) = 1√

2πλ2
f

exp

(
−1

2
(f −m)2

λ2
f

)
(3-3)

Posterior distribution Before going to the posterior distribution, to show the expression
for the joint distribution of the measurement points and the test points is important.
This expression is basically mean and covariance between all the points (test and mea-
surement) in the space. The joint distribution with noisy observations is given in
Rasmussen et.al [12][

y
f
?

]
∼ N

([
m(X)
m(X?)

]
,

[
K(X,X) + σ2I K(X,X?)
K(X,X?) K(X?, X?)

])
(3-4)

where Y is the output of the measurements, X? is set of trail data points, f
?
is output

of the test points, K is the covariance matrix, σ is the noise covariance matrix, m is
the mean of the both sets of data points values. For a non-noisy measurement the σ2

value is set to zero and for a zero initial mean condition the prior mean functions are
set as zero.
The σ2 gives the uncertainty of the measurements giving the likelihood in the proba-
bility distribution [12]. The prior and the likelihood with the marginal likelihood, alto-
gether can be combined using Bayesian formalism to give out the posterior distribution.

posterior = likelihood× prior
marginal likelihood , p(f? | y,X) = p(y|X, f?)p(f?)

p(y | f?)
(3-5)

The expression for the posterior distribution for noisy measurements is given byN (µ?,Σ?)
which is expressed as:

µ? = K(X?, X)[K(X,X) + σ2I]−1y

Σ? = K(X?, X?)−K(X?, X)[K(X,X) + σ2I]−1K(X,X?)
(3-6)

These terms are valid for zero mean initial condition, for non zero initial mean term y is
replaced by (y−m(Xm)). The posterior distribution gives us an estimate of distribution
of the test set x?. This helps us to create a regression in the space where the desired
test data points are chosen from. The complete GP regression which is obtained by
merging prior distribution eq. (3-7) and the distribution of measurements will be[

y
f
?

]
∼ N

([
µ(X)
µ(X?)

]
,

[
Σ(X,X) + σ2I Σ(X,X?)

Σ(X,X?) Σ(X?, X?)

])
(3-7)

where[
Σ(X,X) + σ2I Σ(X,X?)

Σ(X,X?) Σ(X?, X?)

]
is the posterior covariance matrix which contains pre-
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18 Theoretical Framework: Gaussian Process Regression and it’s Optimisation

Gaussian Process Regression with 20 Measurements
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(a) Posterior distribution with 20 measurements

Gaussian Process Regression With 40 measurement Points
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(b) Posterior distribution with 40 measurements

Figure 3-1: Gaussian Process regression with different number of measurements

dicted variance between test and measurement points.
[
µ(X)
µ(X?)

]
is the posterior mean

matrix containing predicted means of measurement and test points. So, by having this
formulation we can calculate the posterior distribution of the test data points.
It is important to have the noises because it helps us to know the amount of uncertainty
our posterior distribution will have, giving clarity about the process. For our project it’s
important to consider uncertainty, without considering it the uncertainty in posterior
distribution won’t be there. So, not considering uncertainty while calculation posterior
distribution will miss out on quite some amount of data that would lead to failure in
learning uncertainty along with non-linear variation in data will not be possible.
For improving a posterior distribution, more and more measurement points should be
involved, by doing that the estimate of real function would be better refer to (Figure
3-1).

Example Simulations To show how this algorithm works, an example non linear func-
tion is taken for measurements and then further regression is performed for it. The
function chosen is

f(x) = sin(4x)− x3

10 + 2x
5 (3-8)

Some degree of noise is also added to the measurements. All the figures in this chapter
are obtained by the measurements done using this function.

Covariance function Covariance function helps to mimic the kind of process which one
wants to learn or create a model off. To large extent, they determine how the distri-
bution will be, for example a stationary and smooth distribution can be achieved by
using stationary covariance function.
In GP regression while performing the prior distribution term ‘K’ was introduced which
is a covariance matrix. This is also called a kernel which helps to create relation be-
tween points in the space. This makes covariance function a very important component
of Gaussian Process regression.
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3-1 Introduction to Gaussian Process 19

There are number of covariance functions and each have their own merits and demerits.
So, being an important factor in creating a correct posterior distribution the choosing
correct covariance function is crucial. In this project the kernel chosen is squared expo-
nential as it is infinitely differentiable and widely used. It also gives very satisfactory
results in our case. It is expressed as

k(x, x′) = λ2
fexp

(
−1

2
(x− x′)2

λ2
x

)
(3-9)

where λf is output variance, λx is length scale. Other parameter that decides the
behaviour of covariance function is noise variance σn and m̄ initial mean, these four
parameters collectively are called hyperparameters. Tuning each of them changes the
posterior distribution which is also shown in (Figures 3-2) and (3-3).

Hyperparameter tuning As mentioned in previous paragraph, covariance function con-
sists of some parameters which basically govern the results we achieve from a covariance
function. Covariance function being the most essential part in creating the GP regres-
sion, makes tuning hyperparameters important as tuning them will certainly affect in
learning the non linear function. Generally, hyperparameters are collectively denoted
as ‘θ’.
Before moving to the tuning part let’s look at how these hyperparameters affect the
regression.
The length scales gives us an idea of the distance in the input space after which the
data becomes uncorrelated to the function value [12], which be seen in (Figure 3-3). In
a casual manner, the smaller the length scale the data points are more correlated and
creates a distribution that’s more crumbled and spiky whereas bigger the length scale
the posterior becomes independent of input data.
The signal variance (λf ) is a scaling factor where it determines how close or far the
function predicted is from the mean. Lower the signal variance is low variation from
mean it will have and a higher value has a higher variation, can be seen in (Figure 3-2).
Hyperparameter tuning is commonly known as Automatic relevance determination
(ARD).
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(b) Hyperparameters
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Figure 3-2: Variation in the signal variance (λf ) and its affect on regression
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(b) Hyperparameters
(λf ,λx,σn)=(1,1,0.4)
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Figure 3-3: Variation in the length scale (λx) and its affect on regression

Initially the hyperparameters are completely unknown, so an initial estimate has to be
made, the most common estimate used is θi ∼ (0, 1) [15].
A widely used technique to tune hyperparameter is by ‘Maximum A Posteriori method’,
which is a Bayesian optimisation based method. Here we like to maximise the posterior
hyperparameter distribution. The posterior over the parameter by Bayes rule is

p(θ|f̂m, Xm) = p(f̂m|θ,Xm)p(θ|Xm)
p(f̂m|Xm)

(3-10)

where Xm is measured data points (the known data), f̂m is function values, θ is hyper-
parameters, p(θ|f̂m, Xm) is posterior hyperparameter distribution, p(f̂m|θ,Xm) is the
likelihood, p(θ|Xm) prior values and p(f̂m|Xm) is the marginal likelihood.
The expression which needs to be maximised is the logarithm of this a posteriori dis-
tribution which is

log(p) ∝ −nm2 log(2π)− 1
2 log|Kmm + Σ̂fm | −

1
2(f̂m −mm)T (Kmm + Σ̂fm)−1(f̂m −mm)

(3-11)
the reason for taking log of the distribution is increasing nature of logarithm.
Now to maximise this expression optimum choice of the hyperparameters should be
made. To get the optimal hyperparameter a gradient based algorithm is used where
gradient of the expression with each hyperparameter is calculated, and then parameters
that maximise the gradient are chosen (gradient ascent). Some manual adjustment are
also applied on top the gradient ascent method to create a better fit and maximise the
log-likelihood value of a posterior distribution.
The disadvantage of performing Gaussian Process regression is it’s high computaion
cost and runtime. When the data points involved are large in number then it becomes
troublesome to apply Gaussian Process.

Computational complexity The computational complexity of a regular Gaussian Pro-
cess regression takes O(n?n2

m + n3
m) for mean and for covariance O(n2

? + n2
mn

2
? + n3

m)
where nm is number of measurements, n? is the number of test points. So, if the number
of measurement data points are in range of 1000 then it’ll be a huge runtime.
The reason for high runtime comes from the inversion of the (Kmm+Σfm) matrix which
is nm × nm in dimension and inverting it takes O(n3

m).
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3-2 Sparse and Online GP 21

3-2 Sparse and Online GP

Sparse GP regression To tackle this high computational requirement and runtime Bijl
et.al [17] suggested Sparse GP regression. This algorithm splits the regression in two
parts to reduce the computational requirement. In first part some points are induced
(inducing points(nu)) and a prior joint distribution between them and measurement
points are done. Then for the posterior distribution the normal GP regression is used
as in equation (3-6), this step is called the training set.
The next step is the prediction step, here the prior distribution of f

?
and f

u
is merged

by a joint distribution with help of the calculated values of µu and Σuu. The sparse GP
prediction equation for µuu and Σ?? are

Σ?? = K?? −K?uK
−1
uu (Kuu − Σuu)K−1

uuKu?

µ? = m? +K?uK
−1
uu (µu −mu)

(3-12)

The problem here which needs special attention while implementing this algorithm is
f
u
has been merged twice as it has taken part in joint distribution. So, it is necessary

that
[
f
u
f
?

]
is unmerged. The computational time for sparse regression is O(n2

un
2
?).

The choice of induced point is done manually such that it is sufficiently spread be-
tween measurement points and test points [16]. The reason behind having induced
points between the measurement points and test points is to have better training from
measurements and better prediction by induced points to the test points [16].

Online GP regression Another notion is to apply new points (suppose (x+, f+)) in the
current regression without full re-calculation, which is done by online GP regression.
But the Online GP regression has a high run time and computational requirement, so
this concept is combined with sparse regression in Bijl et.al [16] and Sparse and online
GP regression is used.
The combined sparse and online GP regression are with assumption that the inducing
function values fu and measurement function values fm are completely independent.
This assumption is also called FITC (Fully Independent Training Condition) initially
given in Bijl et. al ([17]). The posterior mean and variance expressions are

Σ+
uu = Σuu − Σu+(Σ++ + σ̂2

f+)−1Σ+u

µ+
u = µu + Σu+(Σ++ + σ̂2

f+)−1(f̂+ − µ+)
(3-13)

here the superscript ‘+’ is to indicate posterior distribution of test points in account of
online measurements (x+, f+).

3-3 Gaussian Process Optimisation

Till now, the discussion was on Gaussian Process regression and its variants which were
being used to extend the values of a nonlinear and noisy function. But this regression
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22 Theoretical Framework: Gaussian Process Regression and it’s Optimisation

needs to be optimised to get a likelihood of meaningful data from the distribution.
Gaussian optimisation is quite different from optimising a normal function, as in normal
function we’ve idea that the output is from certain kind of function but here the function
itself is predicted and contains uncertainty. So, rather than going for calculating a
specific optimal point an optimal distribution is looked out for.

3-3-1 Maximum Distribution

The first part in this optimisation is to calculate the maxima of this joint posterior
distribution. As Gaussian Process is distribution of random variables over the space, so
it’s maxima is not also fixed point rather it’s a distribution of variables. The challenge is
some what different from calculating an optimum point rather a maximum distribution
is looked for.

Monte Carlo Maximisation Bijl et.al [16] used a Monte Carlo technique to create a
maximum distribution. In a normal Monte Carlo technique future expectation is done
on basis of samples of current mean and variance.
In Monte Carlo Maximum Distribution (MCMD) the goal is to find the part of Gaussian
distribution where the function value will be maximum.
The terminology used in Bijl et.al [16] is a bit different, it calls the sample of points as
particles, and the comparisons as challenges and each input data point where particles
are stored is called bin. The current particles xi is called champion and the random
sample picked for xj is called challenger. The number of particles used is denoted by
np.
The steps to algorithm are

1. Divide all the particles (randomly or evenly) in ‘n’ bins so that at least there is
one particle in each bin

2. Now np comparisons have to be done so each comparison should be in following
manner

• For a particle choose the corresponding bin (champion) say xi
• Pick a random bin (challenger) xj
• Set up a joint distribution of f(xi) and f(xj) like this[

f(xi)
f(xj)

]
∼ N

([
fi
fj

]
|
[
µ(xi)
µ(xj)

]
,

[
Σ(xi, xj) Σ(xi, xj)
Σ(xj, xi) Σ(xj, xj)

])

and take samples from these distributions f̂i and f̂j
• If f̂j > f̂i then move the particles to random bin xj.

3. This procedure of comparison, moving and challenging is done till all the bins are
swept through for a certain number of iterations (nr) and until convergence of
particles is observed.
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This algorithm helps us to get an idea of the location of the maximum distribution but
the problem this algorithm has is it does a comparison of samples in a distribution which
are chosen smartly after every iteration. This makes the algorithm computationally
demanding and at times it doesn’t converge to the true maximum. So, for improved
performance a modified version of Monte Carlo maximisation is used.

3-3-2 Sequential Monte Carlo Maximisation

Sequential Monte Carlo (SMC) algorithm is creating the maximum distribution incor-
porating sequential sampling techniques in Monte Carlo maximisation technique. This
helps to make the process considerably fast and converge to the true maxima better
than the MCMD algorithm. There are three major components that are being added
so as to make the Monte Carlo maximisation algorithm faster and correct. These are
Systematic Resampling, Importance Sampling and Defensive Sampling [18]. In (Figure
3-4), the number of simulations made for a Monte Carlo Maximisation is three times as
the number of simulations done for Sequential Monte Carlo and the results are almost
the same for particle distribution. This shows the superiority of Sequential Monte Carlo
over Monte Carlo Maximisation in terms of run time and correct convergence.

Adding weights First, importance sampling is done. The reason behind doing this is
to choose samples from the region were the amount of data is not sufficient but it is
important to have that data as they are ‘rare events’. So for this purpose a weight is
added in that region of rare events. A distribution that has more of these ‘rare events’
q(xk) is chosen. The weight to be updated is given by p(xk)

q(xk) also called likelihood ratio.
p(xk) is the nominal distribution we had initially. Self normalisation is also done so
that addition of weights don’t disturb the convergence to the true values and divided
by same value. The updated distribution looks like

pm(x) =
∑np
i=1w

iδ(x, xi)∑np
i=1w

i
(3-14)

where δ(x, xi) is a dirac delta function. Initially the function pm denotes the number of
samples at xi for an input x, but after a few comparison this is the belief of maximum
distribution (pm). We also select the next challenger from this distribution as it makes
our convergence fast.

Resampling This is done after first round of challenges are done. Now the different
samples have different weights and it’s required to remove the small and zero weights,
thus assigning a common weight of 1 to non zero weights.
The reason behind performing resampling is to remove ‘Weight degeneracy’. Weight
degeneracy occurs when some weights are very small and some are very high, so the
smaller weights are removed and new samples are chosen near higher weights. The need
for removing smaller weight comes as they don’t have any important information.
This is done by ‘systematic resampling’. As described by Bijl et.al [18], In systematic
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24 Theoretical Framework: Gaussian Process Regression and it’s Optimisation

resampling cumulative sum of weights are taken which is further divided into number
of blocks. Then a single random sample is chosen from first block and remaining block
are kept as it is.

Correct Convergence As in Monte Carlo maximum distribution, maximum distribu-
tion has tendency to deviate from true maxima, this compromises the accuracy of the
convergence. To prevent this, defensive sampling is done, where a new distribution is
used for sampling of challengers which consists of data from another distribution q(x)
along with the maximum distribution pm(x). This new distribution looks like

q′(x) = αpm(x) + (1− α)q(x) (3-15)

This also makes us update the weights used for selecting the challengers. In this ex-
pression what happens is for α times the challenger is sampled from pm(x) (eqn. 3-14)
that gives a random champion and part (1− α) a completely random challenger. The
updated weight expression for a challenger looks like

wc = q(xc)
q′(x) (3-16)

where xc denotes a challenger. But this expression when used to calculate the weight
will slow down the algorithm as pm(x) in equation (3-14) calculates through all samples.
So, just to update a single weight pmax(xc) is done, which is redundant.
To remove this problem the idea used is calculate the random distribution after having
the random champion in the distribution. So, what is done is rather calculating whole
pm(x) again we select the champion (xi) beforehand and then the random particle. The
q′(x) looks like

q′(x|xi) = αδ(x, xi) + (1− α)q(x) (3-17)
After combining equations 3-16, 3-17 and 3-14 the final challenger weight is

wc = q(xc)
q′(xc|xi)

= q(xc)
αδ(xc, xi) + (1− α)q(xc)

(3-18)

Application in continuous functions In previous discussions we used Dirac delta func-
tion for calculation of pm(x) but it’s known that for a continuous function we calculate
a probability density function. So, the pm(x) is calculated using a ‘Kernel Density Es-
timation (KDE)’ function. The KDE used is a Gaussian kernel. The Gaussian kernel
looks like

k(x, x′) = 1√
2πh2

exp

(
‖x− x′‖2

h2

)
(3-19)

This makes the maximum probability as

pm(x) = 1
np

np∑
i=1

wikx(x, xi) (3-20)
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(a) Particle Distribution by Monte Carlo Maximisa-
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Figure 3-4: Comparison of Maximisation algorithms

This maximum distribution is used for picking a random champion sample. The weigh-
ing equation for continuous domain looks like

wc = q(xc)
q′(xc|xi)

= q(xc)
αkx(x, x′) + (1− α)q(xc)

(3-21)

Maximum Distribution In above three paragraphs, tools to remove the computational
complexity and improving it’s convergence to the true values are presented. The final
distribution is created by a similar comparison methodology used in MCMD refer to (3-
3-1). In which we first created a joint distribution of challenger and champion particles
and then choose samples for both of them and perform comparison.
The extra bit which is done that all the challengers which wins a challenge is stored and
the the challenger particles (xjc) are assigned a value, this value called victory function
value f̂ i finally holds the maximum distribution. The final optimal distribution looks
like

f ? =
∑np
i=1w

ikf (f, f̂ i)∑np
i=1w

i
(3-22)

So, to solve the problem the approach followed is to use Gaussian Process Regression
for the prediction of the test data on the basis of training data set. For optimisation
Monte Carlo Maximum Distribution is used at first and to improve the convergence
sequential sampling techniques are used.

Master of Science Thesis Sabyasachi Neogi



26 Theoretical Framework: Gaussian Process Regression and it’s Optimisation

Sabyasachi Neogi Master of Science Thesis



Chapter 4

Implementation

The previous chapter consisted of all the theoretical aspects that are to be applied in
performing this project. This chapter contains all the details about the different steps
taken and how the steps are accomplished.
For implementation, there were three major steps, first was to take correct measure-
ments, second to create the prediction curve correctly and finally to achieve the likeli-
hood of optimal gains.

4-1 Measurements

The type of learning problem we are using is a supervised learning problem, where the
output at the different measurement values can be obtained. The training data points
are used to further learn the function values. For continuous set of data the problem
is often called as regression problem. The first step to take correct measurement is to
create a suitable cost function in which all the important parameters that are generally
looked into while wind turbine controller are used. Secondly, the measurement of the
process noise should be done, so the amount of uncertainty in the posterior distribution
of Gaussian Process regression is estimated correctly.

How many measurements are appropriate? In the second case study the amount of
initial measurements (training data) becomes enormous. This phenomenon is called
the ‘Hughes phenomenon’ or ‘curse of dimensionality’. Hughes phenomenon say that
having more dimensions help to get a better ‘a posterior probability’ or a better estimate
of model to be learned but it also increase the bias of classification error (Covariance
is Gaussian classifier) [19].
This increase of bias of classification error is due to increase in the number parameter
to be predicted with same number of training inputs. When the increase in a posterior
probability is less compared to increase in the bias of classification error, the purpose
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of having additional dimension fails [19]. This proves that with increase in dimension,
training data has to be increased enormous.
Another reason for having large number of training data is, increasing feature space
increase the noise factor, and the error factor that there are not sufficient observations
to get good estimate or the data is scattered [20].

4-1-1 Cost function

While designing the cost function four crucial factors which were kept in mind, are
power production, fatigue loading (tower and blade), Pitch activity and rotor speed.
The calculation of these parameters are done by simulating the wind turbine model
against controller gains. The fatigue load calculation is done by rain flow counting
technique by an aero-elastic simulation tool for span of atleast ten minutes.
After the data is obtained from the simulation, criteria are set different factors. For
power production, the power production should be around 4 Megawatts (rated power)
and so that the rotor speed is also in permissible limits, a factor for deviation of power
from the 4MW mark is kept. The reason behind doing this is, in above rated state
rotor speed tends to become very high for power production and we want minimum
fluctuation from rated power. The maximum rotor speed for the ‘D4rel’ is around 13.6
rpm.
For the fatigue loading part, both tower fatigue loads and fatigue load of all the three
blades are taken into consideration. As these values are very large parameters (in range
the of 107- 108), they were normalised by the fatigue loads obtained at current optimal
gains (gain at which the controller is optimum at above rated).
Similarly, for the pitch activity, the pitch rate of all the three blades were taken and
here also it was normalised with the pitch rate of the current optimal gain.
All the individual costs were squared so that the cost function becomes convex and γ
constant weight was added to the power production to create trade off between all the
three costs. The cost function expression used is

Cost due to power =
(
Power produced− Rated power

Rated power

)2

(4-1)

Cost due to fatigue loads =
(
Mean of fatigue loads of all the three blades

Reference blade fatigue loads

)2

+(
Rean of fatigue loads of Tower
Reference tower fatigue loads

)2 (4-2)

Cost due to pitch activity =
(

Pitch activity
Reference pitch activity

)2

(4-3)

Final cost = γ · Cost due to power + Cost due to fatigue loads + Cost due to pitch
(4-4)

where γ=102, and the weight of other two components are 1.
At a controller gain the non linear model of the ‘D4rel’ turbine with PI-controller is
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Figure 4-1: Comparison between magnitude of noise induced and cost values

simulated and then data obtained from simulation is used for cost function calculation.
The expected cost of cost due to power is in range of 10−2-10−3, expected cost due to
fatigue load is 0.8-1 and expected cost due to pitch activity is in range of 0.8-1.2 .
This is a minimisation cost function as we want to reduce the sum of all the three costs
as we want to reduce pitch activity and fatigue loads with a power yield near to that
of rated.

4-1-2 Measuring Noise

To have some randomness in the measurements, the gains that were chosen for simu-
lation were completely random numbers in the space. To know the amount of process
noise each simulation consisted of six different wind seeds so by doing that we could
get six different results for the same input parameter, this helps us to estimate the
uncertainty in the process. In (Figure 4-1) we can see the comparison between noise
and cost values, also the randomness in measurement can be observed in it. The reason
behind this step is to ensure that the process is a Gaussian process. It is crucial to take
correct measurements for a supervised learning problem as unwanted and erroneous
measurements could lead us giving erroneous function value prediction which can cause
further problems in optimisation and getting correct final results.

4-2 Regression

As mentioned before, the kind of problem we’re solving is known as a ‘Supervised
learning’ problem and in continuous domain it’s known as ‘regression’. So in this section
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we want to predict the function values at test data points using the measurement we
took. The technique we used to perform the regression is ‘Gaussian Process Regression’.
‘Sparse and Online Regression’ which is a modified form of Gaussian Process Regression
Technique (GPRT) can be used but only when the number training points becomes very
high. The first step to get a good regression is to achieve suitable hyperparameters for
the GPRT.

Tuning Hyperparameters As we are tackling a multi dimensional problem where we
are trying to tune Kp and Ki initially and then some more parameters later on, so
we have to create a multi-dimensional regression. The covariance function for a multi-
dimensional GPRT looks like [16]:

k(x, x′) = λ2
fexp

(
−1

2(x− x′)TΛ−1
x (x− x′)

)
(4-5)

where Λx is the diagonal matrix containing the length scale of each of the input dimen-
sion.
Rather than manaully tuning the length scales, we used a gradient based method to
maximise the log-likelihood of a posterior distribution i.e. equation (3-11). Initially,
some prior values of hyperparameters are chosen as the initial condition for optimisa-
tion to start. The next step is to calculate the derivative of the equation (3-11) with
respect to the hyperparameters, and calculate their values. A certain number of steps
are pre-defined to carry out the iterations with varying size of the steps. The size of
the step is decided by the value of log-likelihood of Maximum A Posteriori (MAP)
distribution. With increasing value of the gradients the step size becomes smaller by
a factor of 2 each time. Different initial condition (hyper-prior) was applied for the
optimisation so as to know the best possible minima value.
Also, hyperparameters were checked by tuning them in Gaussian Process for Machine
Learning (GPML) toolbox given by [12] which optimise the hyperparemeters on a line
and direction search based algorithm. The toolbox also focuses on increasing the neg-
ative log likelihood of aposterior distribution. The hyperparameters were quite similar
to what we obtained by gradient ascent method.

Gaussian Process Regression Till now we know that the process is Gaussian and how
to tune the correct set of hyperparameters for a squared exponential covariance func-
tion. The next step is to create the regression where prediction of the function values
at different data point is done.
The first bit of regression is to calculate the prior distribution between the measure-
ments (f

m
) and the test values (f

?
), which is done according to the equation (3-4). The

second step is to calculate the posterior mean and variance values at the test points,
which is done according to equation (3-6).
Number of measurements were increased gradually after achieving a set of points, as
we wanted to look how many measurements will be satisfactory for getting good results.
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4-3 Gaussian Process Optimisation

This section is about how the Regression was optimised to achieve the likelihood of the
optimal controller gains.
The first step is to go for a maximisation, as the cost function we have is a minimisa-
tion cost function so the first step is to change it to maximisation by making it negative.

Maximum Distribution After changing the problem to a maximisation problem, first
the Monte Carlo Maximum Distribution (MCMD) is used to calculate the maximum
distribution. By calculating this we somewhat get an idea of the region where the
likelihood of gains that maximise the predicted function value lies. We also run the
comparison algorithm for certain number of rounds to check how many rounds of com-
parison gives a converging result and how much time it takes to achieve that, so that
a comparison between MCMD and Sequential Monte Carlo (SMC) can be done.
We apply the sequential sampling techniques to sample the data in a better way, sytem-
atic resampling, Importance sampling and Defensive sampling techniques were used.
Following the sampling, similar kind of comparison is done to get a maximum distri-
bution of particles.
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Figure 4-2: Flow chart of Automated tuning
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Chapter 5

Results

This section presents the results obtained by applying the theory discussed to a wind
turbine controller. In depth analysis of the results are also done which were supported
by test results obtained by aero-elastic simulation.

In this thesis the application of the theory has been done in two parts the first one
is the major part where the tuning the gains of Pitch Kp and Ki and is done. This
done for both above rated and near rated mean wind speeds but as a different set of
simulation. Finally a comparison between the obtained optimal gain and the optimal
gain currently used by Energy Centre Netherlands (ECN).

In the second part of the experiment deals with expanding the tuning algorithm, as
tuning is performed with few more variables. The aim was to look if the cumulative
effect of tuning can be obtained or not.

5-1 First case -Tuning with two inputs

This case deals with tuning of pitchKp andKi. The tuning algorithm used in this thesis
has two parts first of prediction where a training data set is taken and using Gaussian
Process Regression Technique (GPRT) new predictions are made in the space, the
second part is optimisation of this prediction region.

5-1-1 Tuning for above rated case

Prediction First the prediction is done for the above rated wind speeds and a mesh
of points were created so as to show the fit between the measurement points and the
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Figure 5-1: Prediction mesh for above rated tuning

space of prediction points. This fit is shown in (Figure 5-1). The upper and lower
uncertainty bounds in (Figure 5-1) shows the uncertainty due to process noise in the
wind turbine which was captured by having various wind seeds in our process.
It has been mentioned earlier that hyperparameters play a crucial role in having a
correct Gaussian process regression. The hyperparameters obtained after tuning were[
1 0.15 0.65 0.22

]
which denotes

[
λf λx1 λx2 σfm

]
and the log likelihood which

has to be maximised is −1.32× 103.

Optimisation After the prediction, it can be clearly seen that there is no way the op-
timum can be perceived just by referring to (Figure 5-1), and the uncertainty bound
also contains important information which needs to be accounted for. This calls for an
optimisation of the mean prediction along with the uncertainty bounds. For that both
Monte Carlo Maximum Distribution (MCMD) and Sequential Monte Carlo (SMC) are
performed.
The (Figure 5-2) shows the likelihood of the maximum data points achieved by per-
forming MCMD. In figure (5-2) we can see that there is a vast region that has no peaks
and this suggests that there won’t be any optimal value in that region. But in a small
space there are lot of peaks of varying dimension, this makes it difficult to understand
where the optimum will be truly converging. This is also stated in (3-3-1) while ex-
plaining MCMD. The advantage of doing this is we visually get an idea of where the
optimum is, and when we’ve small number of points to optimise, this algorithm will be
pretty quick, accurate and simple to apply.
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Figure 5-2: Monte Carlo Maximum Distribution for above rated prediction

The SMC gives a good convergence to the maxima in the region and so a good per-
ception of likelihood can be made out of it. Though this algorithm is quite complex
to apply, but computationally it is quite feasible when it comes for a big data set.
For example, the results shown in figure 5-2 and 5-3 have been computed for different
number of rounds. MCMD has been computed for nr=30 where as for nr=20 which is
quite a difference and will affect more when done for a big data set.

0

0.005

-2

0.01

0.015

0.02

P
a
rt

ic
le

 d
is

tr
ib

u
ti

o
n 0.025

0-1.5

0.03

-0.2

0.035

-0.4
-0.6

Kp

-1 -0.8

Ki

-1
-1.2-0.5 -1.4

-1.6
-1.8

0 -2

Figure 5-3: Optimisation using SMC for above rated wind Speeds
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Test results So, looking at the results obtained from the optimisation a certain likeli-
hood of gains can be obtained. To validate the correctness of the obtained result, a time
series analysis of aero-elastic simulation is done for a set of controller gain parameters
taken from the optimal likelihood. This is later compared to the optimum parameter
currently used by ECN. The likelihood of optimum gain we’ve looked for taking a test
for controller gain is

Tuning parameter Likelihood region
Kp (-0.7 - -0.3)
Ki (-0.15 - -0.01)

Table 5-1: Likelihood region for controllers gains for above rated operational mode

For the time series analysis comparison of above case refer to appendix (A) where from
(Figure A-1 to A-5) shows how the new optimum from the likelihood give a better
performance.

Figure 5-4: Comparison of pitch activity between ECN optimum and optimum from likelihood
under disturbance

Also, a disturbance rejection test has been performed with extreme operating gust
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(Figure 5-4). This gives an idea about the robustness of the gains, also a comparative
analysis is done between the optimum used by ECN and the optimum from the like-
lihood. The result for all the parameters of disturbance rejection test is presented in
appendix (A) from (Figure A-6) to (A-10).

5-1-2 Analysis with Near Rated Operation mode

In this part results are presented for a near rated operational mode, so that we can
analyse whether the algorithm is valid for both the cases or not. Simulation at near
rated condition will give a likelihood of optimal tuning parameter at the near rated
region. This section has been divided in three parts prediction, optimisation and test.

Figure 5-5: Prediction mesh for near rated tuning

Prediction Similar to above rating case, GPRT was applied for a set of measure-
ment data and prediction for the trail data set was done. The hyperparameters were
tuned using the gradient ascent algorithm. The hyperparemeter values in this case was[
1.2 0.75 0.25 0.32

]
which denotes

[
λf λx1 λx2 σfm

]
and the log likelihood which

was to be maximised is -275.89.
The mean prediction with upper and lower uncertainty bounds is shown in (Figure 5-5).
This figure suggests that there is considerable fit between the measurement points and
the prediction mesh.

Optimisation In a similar fashion as above rated, SMC and MCMD are performed for
the prediction set of near rated data set. A result for SMC is presented in (Figure 5-6).
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Figure 5-6: SMC optimisation plot for Near rated operational mode

Test Results A clear perception of likelihood of wind turbine gains is obtained from
this optimisation plot. The likelihood for the optimum is

Tuning parameter Likelihood region
Kp (-0.7 - -0.2)
Ki (-0.25 - -0.01)

Table 5-2: Likelihood region for controllers gains for near rated region.

Time series analysis of aero-elastic simulations are done for near rated wind speeds,
where the gain was chosen from the likelihood region given in table 5-2. Time series
analysis is presented in appendix A in section ?? which validates that the likelihood
has some optimum values.

5-1-3 Quantitative comparison

After looking to the plots of SMC for both the cases, a time series analysis was done for
gains that were perceived as maximum (which has maximum predicted cost value). For
the plots of the comparison refer to Appendix (A). In table 5-3 quantitative analysis is
done so that the amount of improvement can be analysed clearly.
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Table 5-3: Comparison of Below rated and above rated performance between current parameter
and calculated parameter

Parameters Above rated Near Rated Improvement
(%)

Current Calcul. Current Calcul. Ab. rated near Rated
Generated Power (MW) 3.992 3.98 3.93 3.97 0.3 1
Pitch activity (deg/sec) 0.69 0.60 0.726 0.59 13 18.7
Max Rotor Speed 14.5 14.3 14.4 14.1 1.3 2
Tower Fatigue Loads(107 Nm) 2.81 2.61 2.65 2.42 7 8.67
Blade Fatigue Loads (106 Nm) 5.29 4.71 5.232 4.78 11 8

After looking at the table above, it can be said that there is possibility that more op-
timised parameter is present in the region of likelihood achieved after optimisation.
Also, when looked at the disturbance rejection results it can be said that not only these
parameters are performing load reduction without any kind of loss in power but are
also very robust to disturbances.
This answers the question of sensitivity of controller when disturbances are introduced
in the system. This helps us further as wind turbines are exposed to uncertain working
condition due to changing wind speeds.

5-2 Second case - More tuning variables

The aim of performing this case that how resourceful this algorithm is. As, perform-
ing a two dimensional optimisation is quite simple and can be done by other available
techniques with ease.
Apart from increasing number of variables, both near rated operational mode and above
rated operational mode load cases are kept in consideration. Previously controllers were
separately tuned for near rated condition and above rated condition, but this case would
provide a parameter that would be optimal for both the cases.
For this phase there are four parameters pitch Kp, Ki and detection threshold gains
V ua & V ub. The main task of V ua & V ub is to detect gust in the incoming wind and
then perform high pitch action.
Before directly moving to a higher dimension prediction and optimisation an attempt
was made to perform task of similar complexity with an arbitrary non-linear function
with some noise added to it.

5-2-1 Test function

The purpose of doing it with an arbitrary function is that the true values from the
arbitrary function at the test points can be calculated then a comparison can be made
with the results achieved from the algorithm. As in second case when the algorithm
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will be tested for a wind turbine controller there won’t be true values to validate the
predictions. So, it helps us to validate the fit of the prediction and reliability one can
have on this algorithm using an arbitrary function.
The chosen arbitrary function looks like:

Z = cos(x1 − 2) + sin(x2 + 2) + x2
3 + 4x4 + σ (5-1)

where σ is random noise.

Prediction The first step is to take measurements and then to apply Gaussian process
regression to predict the input-output mapping at set of test data points.
As we’re working in a higher dimensional space the form of the covariance formu-
lae changes as per described in equation (3-9). This makes hyper-parameter tun-
ing more complex as there will be more gradients to calculate for maximising the
negative log-likelihood. The increase in dimension leads to increase in number of
length scales and the number of measurement points required shoots up to achieve
a good covariance [20]. The hyper-parameters for this part of experiment were tuned
using the gradient ascent algorithm same as in two dimensional case. The hyper-
paremeter values in this cases were

[
4.21 4.055 3.022 3.57 4.30 3.7

]
which de-

notes
[
λf λx1 λx2 λx3 λx4 σfm

]
. As it is difficult to say how good the prediction

is because it has more than three dimensions. A technique which is quite popular to
determine how good the fit is, by plotting the true value at the points where prediction
is done versus the mean prediction value. Ideally if it is a good fit the plot should be
linear [21].
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Figure 5-7: True value v/s Predicted value
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So, looking at (Figure 5-7) it can be said the prediction is good.
To validate the fit, another way is to plot the true value of the function at the test points
and plot the prediction obtained from Gaussian process regression, refer to (Figure 5-8).
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Figure 5-8: Comparing true value and predicted value for test data points

Optimisation This section both the optimisation techniques were used to show the
points of maxima with respect to the data points and also a true function value plot is
given. This helps to validate the optimisation. The (Figure 5-9) has particle distribu-
tion where the high particle distribution at certain points shows the maximum value
of the arbitrary function at the corresponding data point. The (Figure 5-9) uses the
MCMD algorithm to find maxima.
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Figure 5-9: Maximum distribution using MCMD along with true value plot
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As in this section the data points were taken randomly with some noise, thats why
there is some randomness in the function value plot (not to be confused as a time series
data).
Sequential Monte Carlo SMC is performed to get a better maximum distribution. As
mentioned in section (3-3-1), SMC helps to get a true convergence to the maxima and
is computationally cheaper. Here when a comparison made between figure (5-10) and
(5-9) it can be clearly seen that some maximum values are missing out in (Figure 5-9).
This helps us to understand that SMC is a superior algorithm as it is more precise
compared to MCMD for optimisation.
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Figure 5-10: Maximum distribution using SMC along with true value plot

If we sort and put all the maxima’s aside and analyse for at least 10% of the maximum
distribution we can easily get a likelihood of values where there is a possible maxima
but it’s not that easy as compared to what we saw in two dimensional optimisation.
Another disadvantage to have more variable is the number of initial measurement in-
creases by few folds and the length scales becomes big, that reduces the correlation
between the data points.

Paramater Likelihood Value
x1 (-1.00 - -1.50)
x2 (-0.1 - -0.45)
x3 (0.005 - 0.02)
x4 (0.3 - 0.05)

Table 5-4: Likelihood for an arbitrary function

The results in the table (5-4) is a local maxima, as the measurement and prediction
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is done in a chosen specific range. Thus, this results are optimum for that particular
space.

5-2-2 On Wind turbine controller

For the wind turbine model it is not possible to get true value for a set of control param-
eter as the output value is generated from a simulator, and each measurement almost
takes 10 minutes. In previous section it can be observed that for a large dimensional
problem this algorithm was successful.
The variables added in this part of the problem are (pitch Kp&Ki and V ua&V ub). In
this section the wind turbines are simulated for the for both above rated wind speed
and near rated wind speed combined.

Prediction In this section it is difficult to show how good our prediction is as we can’t
compare it with true value as we did it in previous section. The only thing that one
can do is to look what is the variance given by the GP regression. Smaller the variance
better the fit is. Also to show the amount of fit some of the points from the prediction
region were actually simulated to check the error correctness. This doesn’t helps to say
that if the whole regression is correct or not because in a non linear system it’s very
uncertain how the behaviour would be changing.
The hyper parameter tuning is done similarly as done in all the cases. The hyper-
paremters are

[
4.323 0.65 0.2924 5.4 1.082 3.2

]
these denotes[

λf λx1 λx2 λx3 λx4 σfm
]
.

Optimisation Optimisation in this part is done only with SMC as it is shown clearly
in the previous sections that SMC is more precise in pointing at maxima’s rather than
the MCMD.
The (Figure 5-11) gives the particle distribution with SMC along with the predicted
mean values.
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Figure 5-11: Particle Distribution with Sequential Monte Carlo Maximisation along with Pre-
dicted Mean Values

Similarly, as done in arbitrary function the particle distribution is sorted and it can
help us to find the likelihood of the maximum distribution.

Test Results What we see in the time series analysis of aero-elastic simulation (in
appendix A in section A-4) is that at an above rated wind speed, if the threshold
detection gains (V ua&V ub) are set at an very low values it’ll start the Extreme Event
Control (EEC) action where blades are pitched at a very high angles even at a small
gust. Looking at the results it can be inferred that at above rated stochastic wind
(mean wind speed is 16 m/s in this case) it is not very ideal to have EEC, maybe at a
large sudden gust this parameter would be more efficient.
This can be proved by comparing fatigue loads of tower and the blades, along with the
maximum and minimum tower bending moments and blade bending moment.
Also time series plots are shown in appendix A in section A-4. For a quantitative
analysis the comparative values are given in the table.

Parameters ECN Optimum Calculated Optimum
Tower Fatigue Load (107N-m) 2.737 2.616
Blade fatigue Load (106N-m) 5.175 4.732

Maximum Tower Bending Moment (107N-m) 1.275 1.21
Minimum Tower Bending Moment (107N-m) -0.303 -0.273
Maximum Blade Bending Moment (107N-m) 1.303 1.242
Minimum Blade Bending Moment (106N-m) -1.13 -0.537

Table 5-5: Comparison Table for Parameter with EEC and without extreme event control

The reason behind having Maximum and Minimum Blade Bending Moment is this
gives a better idea of the loads by the incoming gust.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

Gaussian process regression coupled with Monte Carlo based optimisation technique
has given a new perspective for tuning a wind turbine controller. By achieving optimal
control parameters for wind turbine problem which considers multiple factors for being
optimal, shows a lot of prospect with this algorithm. The objectives mentioned in the
problem formulation are answered in this section:

Designing of a cost function Having a good cost function is essential because in a
supervised learning problem input-output mapping is to be predicted on basis of train-
ing data. For having a appropriate training data the cost function should define the
dynamics of a wind turbine properly. For this a data based cost function consisting of
net power production, fatigue loading of flapwise bending moment and tower bending
moment and pitch activity is used. The aim of this cost function is to keep the power
production as close to rated power i.e. 4 MW with smallest possible pitch activity and
fatigue loads.
The cost function represents the turbine behaviour under various set of tuning param-
eters. For the second case where we use four variables an extra eye on maximum and
minimum tower bending moment and blade bending moment is kept. As, at high wind
case threshold gain for Extreme Operating region is used for detecting gust that could
possibly damage the wind turbine.

To apply a learning algorithm to predict cost value from the training data at set of trail
controller parameters Gaussian process regression was used to predict the cost values
at a set of trail controller parameters. Gaussian process regression was applied along
with tuned hyper-parameters. The tuning of hyper-parameter was done in order to
maximise the log likelihood of a posterior distribution. Process noise was measured by
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running various seeds for single simulation. For first case (two dimensional) as surface
fit is created which fits with the measurement points which can be seen in (Figures 5-5)
and (5-1). This give us a prediction of cost value at set of random trail points.
For the second case where Regression with multiple inputs, the accuracy of the fit is
analysed by Figures (5-7) and (5-8).
Thus, prediction of the cost values at set of trail controller parameters helps to extend
the set of controller parameters with corresponding cost values. This saves us to perform
large number aero-elastic simulations at different controller parameters. Also, Gaussian
process regression can successfully predict input-output mapping for a problem having
large number of inputs. But with a small downside of having a big training set.

Creating a suitable likelihood of gains and tuning parameters After achieving a predic-
tion of cost value at a set of test data points (controller gains), a likelihood needs to
be found out where there is optimum cost. For achieving the likelihood Monte Carlo
Maximum distribution and its modified version with sequential sampling technique is
used.
The algorithms were applied for two cases, first is for tuning two parameters (pitch Kp

& Ki). In this case, both algorithms predicted region of optimum points which can
be clearly seen in (Figure 5-3), range of likelihood were also presented in (Tables 5-2
- 5-1). Upon doing a quantitative comparison with than current parameters used by
Energy Centre Netherlands (ECN), the parameters in likehood were found to be more
optimal than the currently used parameters.
For second case tuning of four parameters is performed, to know the potential of this
optimisation technique. First this was performed upon an arbitrary function, where
prediction space was created first and then optimisation was done (5-2-1). Then op-
timisation with wind turbine parameters (pitch Kp&Ki and V ua&V ub) which were
extrapolated by Gaussian Process regression (5-11).
Thus, performing this case successfully tells us that this algorithm can optimise a n-
dimensional problem successfully. So, if a case study consists of ‘n’ number of variables
and a optimal set of variable has to be calculated this algorithm can do it successfully.
The Sequential sampling techniques helped to give out a better likelihood of the opti-
mum control parameters when compared to Monte Carlo Maximisation.

The goal to achieve a likelihood of optimally tuned parameter is successfully met and
also an comparison has been done. In comparison it was shown that the parameters
in the likelihood were quite much of improvement when compared to current parame-
ters. This was confirmed by performing aero-elastic against the optimal gains from the
likelihood.
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6-2 Recommendations

This thesis work is a result of collaboration of machine learning and wind turbine
controller. Which opens up wide possibilities as new machine learning algorithms are
being developed everyday and wind turbine control is getting more and more complex.
So, this thesis can pave the way for aspirants of wind turbine control to develop and
apply machine learning principles in wind turbine control. Some recommendations are
made so that this work can be improved further

• Wind turbine control is a difficult task due to large number of parameters to
be look out for, for achieving best performance. So in future work some more
parameters can be added to the cost function to improve it.

• For constantly growing data sets, Sparse and online GP regression has been shown
in this thesis can be done so as the prediction can be be done with least computa-
tional complexity and runtime. This can help also for tuning multiple dimensions
as they need much larger training set.

• As a maximum likelihood is obtained a Bayesian optimisation scheme for (re-
gret/error minimisation) can be set up. This will further optimise the likelihood
and will give further optimal controller parameters.

• In this thesis only a stand alone Wind turbine but it’ll be good to see how this
algorithm performs for a wind farm set up. As it will have more variables and more
parameters to optimise, the optimisation and prediction will be more difficult.
Though it is possible that a meta-heuristic optimisation will be better solution to
wind farm problem.
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Appendix A

This appendix consists of all the time series analysis comparison done for different
optimum tuning parameters. The results of comparison for both above rated and near
rated cases are done in this appendix. Also a disturbance rejection under ‘Extreme
Operating Gust’ is given for the parameters tuned in two dimensional optimisation.
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A-1 Time series analysis of above rated operational mode

Figure A-1: Pitch activity Comparison between ECN Optimum and Optimum from likelihood
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Figure A-2: Blade fatigue load comparison between ECN Optimum and Optimum from likelihood
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Figure A-3: Tower load fatigue comparison between ECN Optimum and Optimum from likelihood
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Figure A-4: Comparison of power production between ECN Optimum and Optimum from like-
lihood
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Figure A-5: Rotor speed comparison between ECN Optimum and Optimum from likelihood
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A-2 Time series analysis for Extreme Operating Gust

Figure A-6: Extreme Operating Gust used for testing
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Figure A-7: Blade fatigue load comparison between ECN optimum and optimum from likelihood
under disturbance
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Figure A-8: Tower fatigue load comparison between ECN optimum and optimum from likelihood
under disturbance
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Figure A-9: Comparison of generated power between ECN optimum and optimum from likelihood
under disturbance
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Figure A-10: Comparison of rotor speed between ECN optimum and optimum from likelihood
under disturbance
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A-3 Time series analysis at near rated Operational mode

Figure A-11: Blade fatigue load comparison between ECN Optimum and Optimum from likeli-
hood for near rated case
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Figure A-12: Tower load fatigue comparison between ECN Optimum and Optimum from likeli-
hood near rated case
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Figure A-13: Comparison of power production between ECN Optimum and Optimum from
likelihood for near rated case
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Figure A-14: Pitch activity comparison between ECN Optimum and Optimum from likelihood
for near rated case

A-4 Time series analysis with Extreme Event Controller

This section contains test results when the threshold gains are very small and when they
are considerably large for a continuous above rated wind speed. ECN uses currently a
small threshold gain parameter which I’ve suggested against in this wind conditions.
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Figure A-15: Blade fatigue load comparison between ECN optimum and optimum from likelihood
under disturbance Extreme event Control
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Figure A-16: Tower fatigue load comparison between ECN optimum and optimum from likelihood
under disturbance Extreme event Control
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Figure A-17: Comparison of generated power between ECN optimum and optimum from likeli-
hood under disturbance Extreme event Control
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Figure A-18: Pitch activity Comparison between ECN Optimum and Optimum from likelihood
for Extreme event Control
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Appendix B

This appendix contains information about the ‘D4Rel Turbine’, whose model is used
for simulation in this project.

Parameter Values
Effective Hub Height (m) 89.80

Rotor Speed (rpm) 13.360
Rotor Diameter (m) 129.876
Number of Circles 18

Number of Points in a Circle 64
Radius of inmost Circle (m) 3.849

Radial distance between circles (m) 3.706
Spectrum Upper Cut-off Frequency (Hz) 12.603

Total Simulation Time (sec) 650
Characteristic Turbulence Intensity (%) 14.00

Actual Turbulence Intensity (%) 15.40
Annual Average Wind Speed (m/s) 10.00

Water Depth (m) 29.6000
Wave Peak Period (sec) 6.000
Significant Wave Height 1.6250

Peak Parameter 3.300
Number of Nodeset 8

Table B-1: Information Table for ‘D4Rel Turbine’

Master of Science Thesis Sabyasachi Neogi



70 Appendix B

Sabyasachi Neogi Master of Science Thesis



Bibliography

[1] Global Wind Energy Council. Global wind report 2014. Brussels, Belgium, pages
9–10, 2016.

[2] Monique Maria Hoogwijk. On the global and regional potential of renewable energy
sources. PhD thesis, 2004.

[3] Chong Ng and Li Ran. Offshore wind farms: Technologies, design and operation.
Woodhead Publishing, 2016.

[4] E. A. Bossanyi. The design of closed loop controllers for wind turbines. Wind
Energy, 8(3):149–163, 2000.

[5] Fernando D Bianchi, Hernan De Battista, and Ricardo J Mantz. Wind turbine
control systems: principles, modelling and gain scheduling design. Springer Science
& Business Media, 2006.

[6] Jeff S Shamma. An overview of lpv systems. In Control of linear parameter varying
systems with applications, pages 3–26. Springer, 2012.

[7] Mahmood Mirzaei, Carlo Tibaldi, and Morten H Hansen. Pi controller design
of a wind turbine: evaluation of the pole-placement method and tuning using
constrained optimization. In Journal of Physics: Conference Series, volume 753,
page 052026. IOP Publishing, 2016.

[8] Gijsbrecht Jan Van der Veen. Identification of wind energy systems. 2013.

[9] Carlo Tibaldi, Morten Hartvig Hansen, and Lars Christian Henriksen. Optimal
tuning for a classical wind turbine controller. In Journal of Physics: Conference
Series, volume 555, page 012099. IOP Publishing, 2014.

[10] Edwin van Solingen, Sebastiaan Paul Mulders, and Jan-Willem van Wingerden. It-
erative feedback tuning of wind turbine controllers. Wind Energy Science, 2(1):153,
2017.

Master of Science Thesis Sabyasachi Neogi



72 Bibliography

[11] Stoyan Kanev, J Schuurmans, R Rutterman, and E Nguyen. Towards new indus-
trial software for advanced wind turbine control. In Proceedings of European Wind
Energy Conference & Exhibition (EWEA), pages 14–17, 2011.

[12] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for
machine learning, volume 1. MIT press Cambridge, 2006.

[13] Alex J Smola and Peter L Bartlett. Sparse greedy gaussian process regression. In
Advances in neural information processing systems, pages 619–625, 2001.

[14] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. Journal of Machine Learning Re-
search, 6(Dec):1939–1959, 2005.

[15] Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian pro-
cess regression: Active data selection and test point rejection. In Neural Networks,
2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Con-
ference on, volume 3, pages 241–246. IEEE, 2000.

[16] Hildo Bijl. LQG and Gaussian Process Techniques-For Wind turbine control. PhD
thesis, TU Delft, Netherlands, 2016.

[17] Hildo Bijl, Jan-Willem van Wingerden, Thomas B Schön, and Michel Verhaegen.
Online sparse gaussian process regression using fitc and pitc approximations** this
research is supported by the dutch technology foundation stw, which is part of the
netherlands organisation for scientific research (nwo), and which is partly funded
by the ministry of economic affairs. the work was also supported by the swedish
research council (vr) via the project probabilistic modeling of dynamical systems
(contract number: 621-2013-5524). IFAC-PapersOnLine, 48(28):703–708, 2015.

[18] Hildo Bijl, Thomas B Schön, Jan-Willem van Wingerden, and Michel Verhaegen. A
sequential monte carlo approach to thompson sampling for bayesian optimization.
arXiv preprint arXiv:1604.00169, 2016.

[19] Behzad M Shahshahani and David A Landgrebe. The effect of unlabeled samples
in reducing the small sample size problem and mitigating the hughes phenomenon.
IEEE Transactions on Geoscience and remote sensing, 32(5):1087–1095, 1994.

[20] María C Alonso, José A Malpica, and Alex Martínez de Agirre. Consequences of
the hughes phenomenon on some classification techniques. In ASPRS 2011 Annual
Conference, Milwaukee, Wisconsin May, pages 1–5, 2011.

[21] Gervasio Piñeiro, Susana Perelman, Juan P Guerschman, and José M Paruelo. How
to evaluate models: observed vs. predicted or predicted vs. observed? Ecological
Modelling, 216(3):316–322, 2008.

Sabyasachi Neogi Master of Science Thesis



Glossary

List of Acronyms

GPRT Gaussian Process Regression Technique

MAP Maximum A Posteriori

GPML Gaussian Process for Machine Learning

MCMD Monte Carlo Maximum Distribution

SMC Sequential Monte Carlo

ACT Advanced Control Tool

LPV Linear Parameter Varying

LMIs Linear matrix inequalities

ECN Energy Centre Netherlands

KDE Kernel Density Estimation

EEC Extreme Event Control

IFT Iterative feedback tuning

List of Symbols

δθcol Collective pitch angle
δΩint

r Integrated rotor speed
γ Torsion angle
Ω̂r Rotor speed estimate
Ω̂r Rotor speed estimate
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74 Glossary

λ Tip-speed ratio
λ Tip-speed ratio
Ω Rotor speed
Ωg Generator speed
Ωr,min Minimum rotor speed
Ωr Rotor speed
θ Pitch angle
θ Pitch angle
f
?

Function value of test points
f
?

Test points
f
m

Measurement values
dt Damping
Fdyn Force exerted
Jg Generator inertia
Jr Rotor inertia
M i

tilt Tilting Moment
mt Tower mass
nr Number of rounds
nr Number of rounds
st Stiffness
T ia Generator torque
Tc Coulomb forces
Tgen Generated Torque
Tgen Generator Torque
Tloss Model conversion losses
Tsh Shaft torque
Tv Viscous forces
uiax Wind speed
xfa Tower top position
xsd Tower sideways position
B Number of blades
i Per blade
R Radius of wind turbine
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