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Summary 
Nowadays, warehouses are a crucial component in the supply chain, especially for Nedcargo, a 

third-party logistics provider for foods and beverages in the Benelux. With the emerging trend of e-

commerce orders, it becomes less labour intensive for the customer to place an order. This e-commerce 

changes the size of the orders and increases the frequency of their placement. Considering this increase 

in complexity also entails uncertainty. In the case of e-commerce, this mainly concerns order 

characteristics. Currently, Nedcargo has only one warehouse which handles e-commerce orders in Tiel. 

However, a new warehouse will soon be built, focusing on handling e-commerce orders. This 

warehouse, called Haaften III, its configuration has not yet been determined. The configuration of a 

warehouse refers to a combination of operations, design aspects, and resources. Operations are divided 

into inbound and outbound logistics. The variety of the configuration choices and the uncertainty due to 

the e-commerce orders in the potential order characteristics leads to the following question: What is the 

impact of order characteristics uncertainty on different configurations of the outbound logistics of a 3PL 

warehouse? Which explains the title of this research and the overall purpose.  

Now that the research background has been explained, it is necessary to focus on the main research 

question. This research question must emphasize knowledge gaps in the literature and contribute to 

future decision-making for Nedcargo’s warehouse in Haaften. Warehousing is a much-discussed topic 

in research. The versatility of the subject gives opportunities to look very specific at some warehouse 

problems. There is a discrepancy between the warehouse processes' research and operational concerns 

and a lack of a framework to trial different solutions to specific issues. Next to that, to realize a 

framework that stresses the study and operational matters, warehouse modelling is a suitable approach. 

Reviews of literature about warehouse modelling studies led to the observation that a gap in warehouse 

modelling needs to be filled. Namely, the lack of uncertainty in warehouse models consisting of all the 

outbound logistics configuration choices. This study aims to fill that gap by modelling order 

characteristics uncertainty and different outbound configurations for Haaften. To answer the following 

research question: What is the impact of context uncertainty of order characteristics on the different 

configurations of an order-picking warehouse? 

The method of this study is a contingency approach to configuring a potential warehouse for 

Haaften. The contingency approach emphasises that a warehouse must fit its context to perform 

efficiently. Since Nedcargo has insufficient information about the future context in which the new e-

commerce warehouse of Haaften will operate. On the one hand, due to the emerging e-commerce trend, 

and on the other hand, the clients for Haaften are still unknown. This “it all depends” approach consists 

of three variables: contingency, response, and performance variables. The focus of the contingency 

variables is on order characteristics, which is a contextual factor of configurations of a warehouse. The 

response variables will be the configuration choices for either the current state of Tiel or the potential 

state of Haaften. The performance is the final result of the functioning of the configuration. These 

variables were all modelled in one experiment generation and three configuration models. To prove that 

the warehouse’s order characteristics context differently influences the performance of the proposed 

configurations. Therefore, the study’s method is a contingency approach and a proof of configuration 

combined.  

Before the models were created, it was essential to analyse the current outbound logistics 

configuration of the operational warehouse in Tiel. Therefore Tiel is analysed using a recent state 

analysis followed by data analysis of the warehouse in Tiel. Tiel is a manual order picking warehouse 

that currently handles the e-commerce orders for Jacobs Douwe Egberts (JDE). First, all processes 

taking place were analysed by different techniques. This analysis gave a thorough understanding of all 

aspects of the outbound logistics of Tiel. We also established the configurational choices of Tiel. All of 

these configurational choices were further analysed by conducting data analysis. This data analysis 
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gathered data from the warehouse management system of Tiel. A new database was created using  

Microsoft Access. This database was filled with all the data of the past half-year. Existed out of the 

orders, movement of the pickers, time measurements- and the distance travelled data. Besides, the 

layout, product characteristics, and ABC analysis were also analysed for Tiel in the data analysis. This 

data analysis resulted in the current characteristics of orders of Tiel and insights into improvements that 

could be made for future configurations.  

The first model, The Experiment Generation Model, was created. This model aimed to generate 

experiments that emphasize the uncertainty of the order characteristics. This model is the first step of 

the contingency approach by defining the contingency variables. Based on the data analysis, literature 

insights, and consultation with Nedcargo experts, the variables chosen were:  

• SKU per Order, which is the number of orderlines per order;  

• The ABC ratio, which determines the number of products that are fast-, medium, and slow 

movers in the warehouse;  

• The amount of SKUs in the warehouse;  

• And the amount of Colli per type of SKU.  

These four contingency variables were classified into different levels and distributions. This 

classification made it possible to create 144 different context scenarios. Nedcargo was given a choice to 

select six plausible scenarios representing the future context in which Haaften will and could operate. 

The experiment generation model can generate various experiments based on these contingency 

variables. These experiments can be compared with an order list for a fictitious day; therefore, the output 

is a “dummy order data set.” For each chosen scenario, five experiments were generated. This model 

was modelled using Visual Basic for Applications, a computer programming language within Microsoft 

Excel 2019.  

One of the most crucial steps to answer the main research question is drafting potential 

configurations for Haaften. These configurations are established based on literature findings, 

consultation, data analysis, and the researcher’s perspective. Before this can be achieved, a requirement 

analysis is carried out. This analysis stated several functional – and non-functional requirements to 

which the potential configurations had to comply. Next to that, assumptions are defined. These are 

divided into conceptual -, mathematical - and numerical assumptions. These denote the collection of 

explicitly stated premises, conventions, and choices. These analyses resulted in three new 

configurations, which each will be discussed separately.  

Configuration 1 is predominantly focused on improving the current state. The previously 

conducted analyses provided insights into how configurations could be improved. These configurational 

changes will be dealt with per element. Concerning the layout, the primary concern that emerged was 

that the layout of Tiel was not compact. This layout was changed in configuration 1 so that as many 

aisles were used as SKUs needed. 

Furthermore, the layout almost stayed the same; only the locations in which the SKUs were stored 

now consist of three SKUs instead of four. This changed storage assignment resulted in the rack 

locations becoming smaller. In terms of the storage strategy, an ABC-class-based strategy was adopted. 

ABC-class-based means that the A products are stored the closest to the depot. The equipment used is 

the same in Tiel, and the same goes for the routing strategy, which is the shortest route algorithm. The 

significant change in configuration 1 was the picking strategy. 

The picking strategy in Tiel was based on the First Come, First Serve (FCFS) principle. This 

simple batch construction method is based that orders are sequentially assigned to batches depending on 

their arrival. So the first four orders (batches exist out of 4 orders) of an order day are batched together. 

Another batching strategy is the SinglePick strategy. The SinglePick strategy can be implemented if 

multiple orders consist of only a single SKU and a single Colli. All the orders with this characteristic 
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are picked in bulk in one batch. A previously conducted design study at Nedcargo concluded that the 

packing operations would be more efficient if these SinglePick orders were batched together. The packer 

can then pack per customer instead of pack per order. This strategy has not yet been quantified in 

research. In addition to these two strategies, another strategy will be discussed. This strategy is called 

the Star Aisle Batching strategy. This strategy is previously explored in Aboelfotoh et al. (2018) paper. 

This strategy focuses on the batching orders based on a simplified aisle-by-aisle heuristic. In simple 

words, it batches the orders based on the aisles they need to visit. Configuration 1 has also incorporated 

the strategy of merging the star aisle batching strategy with the SinglePick strategy. So first, the 

SinglePick orders are batched, and the remaining orders are batched following the star aisle batching 

strategy. This combination of two strategies is a new strategy being investigated for the first time in this 

study. These choices together form configuration 1, which will be modelled as response variables.  

The configurations are very similar to each other. It is chosen in this research to tweak them a little 

bit. Configuration 1 has made some significant changes compared to the current state. Configuration 2 

will copy most of these changes but adds an extra element, namely, in the storage assignment of the 

warehouse. Configuration 2, therefore, uses a new storage strategy called “Dynamic SKU locations.” 

The dynamic SKU locations are two locations in the warehouse where at the beginning of each working 

day, the stored SKUs could be different than the day before. This strategy is decided by first performing 

an affinity analysis, which checks if a pair of SKUs are often paired in orders on that specific day. And 

secondly, by looking at the daily demand of the SKUs. Suppose there are SKU affiliated or SKUs which 

have a high demand that particular day; they can be placed in the dynamic SKU location. This relocation 

should decrease the travel distance and therefore increase the productivity.  

Configuration 3 focuses on decreasing the possibility of congestion, which is one of the non-

functional requirements. This decongestion is achieved by changing the routing strategy of configuration 

1. In configuration 1, the shortest route algorithm is implemented; this displays the shortest path 

necessary to pick all the SKUs in the batch. Configuration 3 uses a different strategy, namely the S-

Shape routing strategy. The s-shape routing strategy leads to a route in which the aisles that need to be 

visited for completing the batch are traversed totally in a single direction. That is why it is called an S-

shape strategy; aisles are visited in a shape of an S. This strategy is commonly used in a warehouse 

because: it is easy to understand for the picker and decreases the chance of congestion. As a result, the 

layout will also be slightly different from configuration 1. The cross-aisle is removed, and the aisle width 

will be narrowed down slightly.  

Now that the configurations are apparent, it is necessary to look at the performance variables. This 

must be done before the configurations are modelled. The performance variables can also be seen as the 

output variables. There are various key performance indicators to evaluate the performance in a 

warehouse. Based on the current performance indicators in Tiel, findings in the literature, and 

consultation with Nedcargo; the following quantitative performance indicators were provided:  

• the productivity, measured in Colli per hour;  

• the total picking time, measured in hours; 

• the total distance, measured in the meters travelled by the pickers;  

• the total amount of pickers, which is the pickers needed to complete all the orders in a 

working day;  

• and the average batching time and distance.  

Next to these quantitative measures, two qualitative measures are possible: the possibility of 

congestion and automation. These are the performance measures that are used for this research.  

The modelling of the configurations is programmed by using VBA Excel 2019. The experiments 

were processed by each configuration model and gave the proposed performance indicators as output. 

The configuration models are seen as the response variables and the performance indicators as the 
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performance variables. This method tries to prove that the configurations perform differently in a 

specific order characteristics context scenario. Both within the configurations per scenario and between 

each scenario. Next to that, it is quantified if the proposed picking strategies of the Star Aisle Batching 

and the SinglePick influence the performance. These models gave both practical insights for Nedcargo 

and scientific insight by filling knowledge gaps and exploring new concepts. An overview of the method 

is shown in figure 1 below. 

 

Figure 1 – Overview of the study method. 

First, we will discuss the practical insights learned from the results of the output of the 

configuration models. The most crucial valuable insight was the configuration 1 comparison with the 

current state. This comparison resulted that if configuration 1was used with the same order set data of 

the context of Tiel, the FCFS strategy resulted in a productivity increase of 15%. If configuration 1 was 

implemented with the Star Aisle Batching Strategy, it would increase productivity by 20%. And if 

configuration 1 were implemented in Tiel with the Star Aisle combined with the SinglePicks strategy, it 

would increase by 30% in terms of productivity. Next to that, If we look at the results of the 

configurations models, it can be stated that Configuration 1 is the most optimal configuration 

investigated in terms of productivity and therefore decreases the total picking time. Next to that, it can 

be concluded that the Star Aisle Batching Strategy combined with the SinglePick Strategy has the highest 

performance in each scenario. Therefore, it needs this strategy is to be included in potential decision-

making for the configuration choice of Haaften 

The two proposed models can help Nedcargo investigate the specific context in which Haaften 

will operate. The Experiment Generation Model can help Nedcargo give insight into the uncertainty 

factor of order characteristics by defining how a potential client is characterised. This model can create 

experiments that can test configurations in terms of performance. The proposed configuration models 

include three different configurations where improvements to the current state are processed based on 

literature, expert insights, and data analysis. Proofs that certain choices, for example, the compact layout, 

ABC-class based storage, and the Star aisle batch strategy with Single Pick, improve the performance 

of the warehouse. Nedcargo must use this model to investigate, improve and quantify potential 

configurations for Haaften III.  
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Now we go back to the main research question of this research. Figure 1 shows the difference in 

productivity decrease per scenario compared to its most effective configuration and strategy. For each 

scenario, configuration 1 with the Star Aisle combined with the SinglePicks strategy has the best 

performance in terms of productivity. The table below shows the results of these experiments. 

Table 1. Results of Configuration 1 and Star Aisle combined with SinglePicks strategy  

Batch+SP Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Configuration 1       

 Avg. Colli/Hour 163 124 178 208 160 156 

 

 Firstly, it is seen in table 1 that in each scenario, the productivity is different. How can this 

difference in performance be explained? The results showed that the ABC-Ratio contingency variable 

has a significant impact on the productivity of the chosen configurations. Respectively, high productivity 

is reached if the warehouse consists of a lower percentage of A-type SKUs and lower productivity if the 

warehouse has a high rate of A-type SKUs. This finding can be explained by comparing the high and 

low productivity scenarios with their corresponding contingency variables. Next to that, a context 

scenario where the amount of colli is high and the orderlines per order are low will result in higher 

performance. These contingencies can be explained since the picker can grab more colli during an SKU 

visit, which decreases the travel distance and thus increases the performance. Table 1 shows the 

difference in performance between the scenarios, but how do they react to configuration and/or strategy 

differences?  

Figure 2 – Results of productivity percentage decrease compared with the best configuration and 

strategy per scenario 

 Figure 2 shows that the change between configuration and picking strategy has another 

effect in each scenario. In some scenarios, such as 10 and 77, another picking strategy or configuration 

does not have an as significant impact as, e.g., 107 and 92. In those scenarios, the percentage decrease 

in productivity is much higher when not the best configuration and picking strategy option is 

implemented. This is an essential insight because now it is shown that the order characteristics influence 

how well the warehouse functions per configuration and picking strategy. This analysis was done for 

-25,0% -20,0% -15,0% -10,0% -5,0% 0,0%

Scenario 50

Scenario 107

Scenario 10

Scenario 77

Scenario 92

Scenario 123

Comparison of Productivity decrease in each Scenario per Configuration and 

Strategy to the Star Aise Batch and SinglePicks Strategy

FCFS Strategy Configuration 3 Batch Strategy Configuration 3 FCFS Strategy Configuration 2

Batch Strategy Configuration 2 FCFS Strategy Configuration 1 Batch Strategy Configuration 1
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each of the performance indicators proposed, and each gave the same insight. The contextual setting in 

which the configuration has been experimented with will influence its performance differently in each 

scenario. But looking at the performance, which configuration and picking strategy perform the best? 

To answer this question, we need to look within each scenario.  

 The proof of configuration concept that is being withheld in this research aims to demonstrate 

the feasibility of the chosen configurations. The results prove that configuration 1 performs better in 

terms of productivity for each of the scenarios than configuration 3 for each picking strategy and that 

configuration 2 has no significant effect on the performance irrespective of the context. Therefore the 

contingency approach proved that specific configurations perform differently in each context, and their 

performance is affected. On the other hand, configuration 3 has less chance of congestion due to the 

routing strategy, and pickers can only traverse the aisle in one direction. This should also be kept in 

mind if, in practice, i.e., configuration 1 causes a lot of congestion. It can be decided to switch to 

configuration 3.   

The proposed three configurations were based on the requirements and assumptions that were 

urged. Each configuration was simulated within each scenario, and its performance was measured. A 

series of conclusions can be drawn from these results. First, it is seen in the performance that in each 

scenario, configuration 1 performs the best in terms of productivity together with configuration 2. 

Configuration 3, where the S-shape routing strategy is implemented, has lower productivity, reducing 2 

to 11 percent. This is also affected by the context scenario it operates in. It can be concluded that 

configurations 1 and 2 in each scenario have higher productivity than configuration 3, but there is no 

significant increase between configurations 1 and 2. Configuration 2 uses another storage strategy that 

implements the idea of dynamic SKU locations, where SKUs can be moved based on SKU affinity and 

SKU demand. The model results in proof that configuration 2 does not significantly improve the 

performance of the warehouse if compared with configuration 1, from which it slightly differs in layout 

and storage. This proof in performance concludes that configuration 2 is not worth further investigation.  

So, if we look back at the main research questions, the following can be concluded. The context 

in which an order-picking warehouse operates, based on the order characteristics uncertainty, has a 

significant impact on the performance of different configurations. Each configuration performs 

differently considering its context scenario. This is shown using the contingency approach. The 

contingency variables represent the uncertainty of the order characteristics, the response variables, 

which are the three configurations and picking strategies modelled, and the performance variables, 

which are the output of these models.  

Based on the findings, Nedcargo has an insight into how a configuration would react in a 

particular context of order characteristics. The order characteristics of the future state for Haaften are 

uncertain, and therefore Nedcargo can use the findings of this study to be prepared. The experiments 

show that it is essential to test different configurations on their performance before you start designing. 

The results of this thesis function as a proof of configuration, which is that configuration performs better 

or worse in a specific context. Nedcargo must use these models as a tool to improve its decision-making. 
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Abstract 

This thesis examines the impact of order characteristics on the performance of different 

configurations of the outbound logistics of a 3PL warehouse. A contingency approach combined with a 

proof of configuration method is used to answer this question. The contingency variables in this study 

are the order characteristics, which are uncertain for the future state of the newly built e-commerce 

warehouse Haaften III for Nedcargo Logistics, A third-party logistics provider in the Netherlands. Six 

contingency scenarios are chosen, and a model transforms them into experiments. Three different 

potential warehouse configuration models process these experiments, and their productivity 

performance is compared and analysed. Our results showed that the compactness of the layout, ABC-

class-based storage and a new picking strategy, Star Aisle Batch combined with Singlepicks, provides 

the best productivity in each scenario. Next, between each scenario, the productivity is impacted 

differently. The productivity is higher if the order characteristics contain a low percentage of A-type 

products, the amount of colli is high, or orderlines per order are low. A change in configuration or 

strategy within each scenario also influences productivity differently. Lastly, it is also proved that the 

new proposed configuration and picking strategy can improve its current productivity by over 30% 
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I. State of the Problem 
 

  



13 
 

1. Introduction  
There has been a growing interest in improving the operating efficiency of warehouses, which is 

one of the critical facilities used in the logistics sector. Warehouses are the hearth of integrated logistics 

operations, including storing, loading, unloading products, and information systems operations. 

Significantly since the emerging trend of e-commerce orders, which requires fast processing at 

warehouses to assure on-time delivery and enhance client satisfaction, the complexity of warehousing 

has increased. This new e-commerce trend is not a homogeneous concept and affects the order 

characteristics. For example, a reduction of products per order and low quantities are time-critical. 

Traditional picker-to-good (PTG) warehouses are frequently unsuitable for these requirements. 

Nedcargo is a third-party logistics provider (3PL) that recently started handling e-commerce orders in 

its warehouses. Currently, these operations are being handled in their warehouse in Tiel. But shortly, 

there will be a new warehouse built in Haaften, named Haaften III. One of the four compartments of 

Haaften III will mainly focus on e-commerce orders.  

Warehousing is a much-discussed topic in research studies. In the last few years, it has become even 

more relevant due to the rise of e-commerce. Nowadays, warehouses are seen as an essential, maybe 

even the most important, component of any supply chain (Gu et al. 2007). Manual-order-picking 

warehouses are still the most common warehouse class; according to De Koster et al. (2007), 80% of 

the Western European warehouses are manually operated. The configurations of such warehouses refer 

to a combination of operations, design aspects, and resources. Joint warehouse operations include 

receiving, put-away, storage, picking, sorting, packing, and shipping (Kembro & Normann, 2020). 

Understanding the warehouse's current and future state and goals is crucial before selecting the suitable 

configuration. Considering that configuration elements are interrelated, a top-down approach is needed 

to get all the fundamental choices right (Rouwenhorst et al. 2000). Due to the complexity of the decision 

for a warehouse configuration usually, issues are considered separately. This obstructs the overall 

evaluation of warehousing processes. As a result, a holistic approach to the warehouse modelling 

challenge is necessary (Jacyna-Goda, 2015). The warehouse and configuration modelling may be 

adequately assessed with a comprehensive approach to the problem.  

The new warehouse in Haaften allows Nedcargo to re-evaluate its current warehousing and improve 

its configuration to be efficient and robust. The performance of a warehouse is impacted by how it is 

configured, yet the pre-build development of warehouse systems has not been quantified. Besides, the 

context in which Haaften will operate is unknown. Context means the environment in which the 

warehouse operates, which could be internal or external. The uncertainty of handling the specific order 

characteristics of potential clients is a contextual factor. The fit between the warehouse’s configuration 

and the context in which it operates is an essential driver for its performance. This study aims to 

investigate the fit between the context and configuration for Haaften, especially the uncertainty of the 

order characteristics. How would the performance be in a given context per defined configuration? 

This study only focuses on the outbound logistics of the warehouse configurations. Therefore it will 

only focus on the configuration operations of the storage, picking, sorting, and somewhat on packing.  

The aim of this study can be divided into three parts, namely to produce a generic and analytical 

configuration framework to model order-picking outbound logistics of Haaften III, to define practical 

performance measures of these outbound logistics, and to provide tools for Nedcargo to set goals, 

measure performance and identify improvements. By emphasizing the uncertainty of order 

characteristics due to the yet unknown context, the potential warehouse configuration of Haaften-III will 

operate. If the research objective is accomplished, it should be able to answer the main research question 

of this study: 

What is the impact of context uncertainty of order characteristics on the different outbound 

configurations of an order-picking warehouse? 
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This all with a short objective of having flexible decision-making for the future warehouse configuration 

of Haaften III.  

This study uses a contingency approach in combination with the proof of configuration method to 

answer this question. The proof of configuration method, also known as the proof of concept but 

renamed for this study’s purpose, is focused on determining if an idea is feasible or if an idea will 

function as envisioned. In this study, this so-called idea is the three proposed configurations of Haaften 

III. The contingency approach is a theory that suggests that a warehouse configuration must be tailored 

to its particular context (Donaldson, 2001). It is applied to connect decisions concerning warehouse 

configurations to match their context to improve their performance (Woodward, 1965). By looking at 

contextual factors, which in this study are the order characteristics, do they influence the performance 

of warehouse configurations in the rapidly advancing and changing e-commerce market? The 

contingency approach is distinguished into contingency, response, and performance variables (Sousa & 

Voss 2008). Contingency variables represent the order characteristics in this study. The response 

variables are the processes that respond to the contingency factors, which are the three different 

configurations in this study. The performance variables are the dependent measures and represent the 

effectiveness of evaluating the fit between context and warehouse configuration.  

To quantify the performance of the configurations, two types of models are created in this study. 

The current state analysis is a crucial step in making these models. The existing warehouse at Tiel, which 

handles e-commerce orders, needs to be analysed. Data from the current warehouse management system 

(WMS) must be gathered to obtain contemporary order characteristics. This data will then be used to 

make a prognosis of what future context scenarios could be. Out of these findings, scenarios are 

constructed that contain the proposed order characteristics’ contingency variables. These contingency 

variables must be transformed into experiments or, in other words, a dummy order list. This is achieved 

by an Experiment generation model, which transforms the contingency variables into experiments. 

These experiments will function as the input of the second model type, the three configuration models. 

First, the three configurations model must be determined, which is done utilizing literature findings, 

consultation with Nedcargo, and the data analysis of Tiel. The thereby compiled requirements and 

assumptions shape this determination process. The performance of each proposed configuration in each 

scenario is then presented and analysed. This should pave the way for answering the central question: if 

a specific scenario influences the performance differently given the configuration and if the order 

characteristics influence the configuration’s performance. It should also analyse the difference in 

performance between the three configurations. Next to that, a current state model of Tiel is modelled. 

This is in order to compare the performance of the three new configurations with the current state 

configuration of Tiel.  

To conclude, this study will aim to prove that specific configurations perform differently in a given 

context. This all provides scientific insights into the different configuration choices and how they affect 

the performance, the contextual importance of warehouses on their performance, and whether 

knowledge gaps from literature can be filled. In addition to practice, this study tries to create tools for 

Nedcargo to eliminate uncertainty in their decision-making for Haaften III. By experimenting with 

different scenarios regarding order characteristics uncertainty and how potential configurations perform 

in these scenarios.  

The study will continue by defining the research design, followed by the literature review, current 

state analysis, data analysis of Tiel, the proposed method, scenario Modelling, configuration modelling, 

and results, and will end with conclusions and implications.   
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2. Research Design  
This chapter presents a general plan about what this research will do to answer the research question. 

It is a framework for choosing specific methods. First, the problem is defined. The research objective is 

formed, and the adjacent research questions are created. All to answer the main research question. After 

this, the context is made clear in the study and Nedcargo. Then the research approach is presented, and 

it finishes with the research structure.  

2.1  Problem Definition  
Now that the introduction of the research study case is clear, a problem statement will be drawn up. 

In designing a warehouse, a lot of decisions have to be made. Nedcargo is the one who has to make 

these long-term strategic design decisions. This chapter will systematically point out problems that 

Nedcargo will or already experienced in designing the outbound logistics of the warehouse in Haaften.  

 

Haaften III will be divided into four compartments. One of which is used for e-commerce purposes. 

The focus of the research will be on that one e-commerce compartment. The outbound logistics 

components, which will be further elaborated on in the literature review, are yet to be decided upon. 

These components all have different design options, and these choices also interact with each other. This 

interaction is currently unknown because the focus was mainly on analysing the different design 

components instead of synthesizing, which means combining the fragmented parts into an aggregated 

whole. The decision-making process is complex because of the numerous options for several 

components. Nedcargo wants its design to be as efficient and robust as possible. They want to 

substantiate their decision-making with quantified data to achieve those goals. But which design 

outperforms other designs in which situation, that is one of the main questions that Nedcargo is willing 

to get an answer to. Multiple factors should be considered, but the most interesting one is the potential 

client that will use the warehouse. How many design choices are there, and which design fits which 

client best?  

 

This is all strongly related to the type of orders that the warehouse will handle. In the case of 

Nedcargo, the potential client who will use the services offered by the warehouse Haaften III is still 

unknown. In order to make the outbound logistics system as robust as possible, quantified research is 

needed. This is because Nedcargo can then adequately substantiate their design solutions for when they 

tender a potential client. Nedcargo bases its decisions nowadays mostly on its historical data and from 

experts' analysis. Most of this analysis is qualitative, and there is a need to quantify the systems design 

processes. The currently available data is from current customers' e-commerce orders in other Nedcargo 

warehouses, and these can be extrapolated for the design choices of Haaften. Nevertheless, this points 

out that a case study for different customers, e.g., order characteristics, is desired. 

  

Concluded, the problem Nedcargo faces is that it needs insight into the consequences of confident 

design choices for outbound logistics process components, with the uncertainty aspect of the potential 

order characteristics the system will have to handle. This is to create a quantified tool for more efficient 

and robust decision-making. In the following chapter, an extensive literature review is performed. To 

give a better insight into what warehouse components for the outbound logistics are crucial in the design 

process. And to point out the knowledge gaps in current literature, which may make this research 

valuable.   
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2.2  Research Questions 
The objectives of this research are as follows: 

(1) To produce a generic and analytical configuration framework to model the order-picking outbound 

logistics of Haaften III. (2) To define practical and easy to adopt performance measures for the 

outbound logistics processes. (3) To provide the tools for Nedcargo to set goals, measure performance 

and identify areas of improvement in the warehouse configurations by pointing out the uncertainty of 

order characteristics in different context scenarios. 

In this paragraph, the research questions are specified. To fill the research gaps, which were stated in 

the literature review discussion. First, the main research question is formulated down below:   

What is the impact of context uncertainty of order characteristics on the different outbound 

configurations of an order-picking warehouse? 

This main research question will be answered via several sub-research questions. 

1. What are the different components for outbound logistics when designing a warehouse for a 

third-party service provider like Nedcargo?   

2. What are uncertainty factors when configuring a warehouse with regards to e-commerce? 

3. What are the different performance measures of an order-picking warehouse, and how can they 

be quantified?  

4. What are the current characteristics of the orders at Nedcargo’s e-commerce warehouses, and 

how will they evolve in time? 

5. What are the different process variables that occur in the outbound logistics in a current 

operational warehouse of Nedcargo? 

6. In which context can a future warehouse operate, and can various scenarios be envisaged 

concerning the uncertainty factors that have been found? 

7. Which new configurations are applicable for an e-commerce warehouse, and which 

requirements and assumptions will be made? 

8. What method can model the proposed context scenarios and configurations of an e-commerce 

warehouse? 

9. How do these new configurations perform compared to the current state?   

10. What is the influence of the different context scenarios on the performance measures of the 

different new warehouse configurations?  

11. How can the results be interpreted and used for decision-making in the future for Haaften III? 

To understand the context in which these research questions must be answered. Context analysis of 

Nedcargo is made in the next paragraph. After the research approach is elaborated, this chapter will 

end with the research setup about how each sub-questions is answered. This includes a further 

explanation and method.   
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2.3  Context Analysis  
The focus will be on a B2B distributor/wholesaler in the Netherlands and Belgium market, which 

focuses on the food and beverage supply chain, namely Nedcargo. The specific type of processed goods 

depends on which customers Nedcargo wins for their operations. The case study in this research focuses 

on a newly built warehouse in Haaften III and will use data available from the already existing operating 

warehouses of Nedcargo. First, Nedcargo's position in the supply chain will be elaborated on, then a 

deeper look at the warehouse in Haaften is being made, and certain scope choices will be supported.  

Nedcargo operates as a logistics service provider in the supply chain for food, beverages, and retail 

goods. They form the link between the manufacturers and the wholesalers or retail distribution centers 

by storing and distributing goods obtained from the manufacturers. Nedcargo does not (or hardly) add 

value to the goods. It makes sure the goods are picked up at the factories and delivered at the right 

moment to the manufacturer’s customers. It is necessary to coordinate between different parties to 

achieve an excellent total supply chain performance. In figure 1, the position of Nedcargo is shown in 

the logistics supply chain. 

Figure I-1 – Nedcargo’s position in the supply chain 

Nedcargo operates mainly in the business-to-business market. The traditional B2B market is 

characterized by high lead times, high volumes, and strong relationships with the client. However, there 

with a contemporary shift toward the e-commerce market visible in the logistics service provider sector, 

and they show changes in these B2B market characteristics. Online ordering makes the order process a 

simple and efficient process that can be executed every moment of the day. This leads to smaller orders, 

more demand, and sets new expectations for reducing the lead time of order, picking – and packing 

efficiency, and more. How Nedcargo can implement this robust approach in their warehouse designs is 

a topic they would further explore.  

To this day, Nedcargo is preparing for the arrival of a new large warehouse for its customers. In 

Haaften, there will be a 40.000 square meters warehouse built named Haaften III. It is expected that a 

lot of the daily operations of Nedcargo will be moved there. This is due to its central location in the 

Netherlands. The warehouse will be divided into four components. Figure 2 shows the construction 

plans of what the warehouse will look like. Nedcargo’s focus is mainly on retail, and its expertise lies 

in the handling of full pallets orders as well as case orders transported on pallets. But nowadays, there 

is an increase in the client’s need for e-fulfillment, which means an increase in the amount of smaller 

orders in terms of volume, the upcoming e-commerce trend. This e-commerce trend involves a different 

customer with possibly other preferences and reduced-order size. These e-commerce orders are not 

transported by Nedcargo itself but outsourced to an external distributor since it's not feasible to distribute 

these orders themselves. Nedcargo already copes with this wish, but designing warehouses for e-

fulfillment is a relatively new topic for them. Nedcargo’s goal is to cope increasingly better with these 

new upcoming circumstances.  Therefore, it needs strategic design choices, process flows, qualitative 
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and quantitative information, and external experience. Haaften III needs to be able to handle these 

smaller orders and different order characteristics next to its primary retail function.  

Figure I-2 – Construction plan of Haaften III 

Haaften III will perform all the warehouse functions that will further be elaborated on in the 

literature research. In some of these functions, the strategic design choice has already been made and 

therefore been decided to keep out of context for this research. Figure 3 shows the simplified primary 

process of the warehouse in Haaften. The warehouse is planned to be designed so that an AS/RS system 

will store them in the different compartments for all their incoming products. This means that the 

inbound logistics of the warehouse can be regarded as a constant flow of products and be considered a 

given component in the research and design. Next to that, the warehouse of Haaften will be divided into 

four compartments. Each such compartment can be designed for any wishes of a client of Nedcargo. 

The prognosis is that three of the four sections will be used for retail purposes and one of them for e-

fulfillment purposes. Figure 3 shows the scope for the research study case in the black dotted square, 

namely Haaften III’s internal warehouse 1. In warehouse 1 (Haaften I in figure 3, warehouse 1 in figure 

2), the e-fulfillment orders are being processed. It is assumed that the design choices have already been 

made for the inbound logistics, but for the outbound logistics, the design choices are still open for 

discussion. The design choices for the picking, packing, and loading are still to be decided upon. This 

is an uncertain and complex decision-making process, and Nedcargo wishes to substantiate its choices 

with quantified research outcomes.   
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Figure I-3 – Scope of the research of in-house logistics Haaften III 

Based on this information, the context of the research can be defined. Nedcargo still needs to make many 

decisions for the outbound logistics of the Haaften III e-commerce department. A lot of uncertainty and 

complexity are accompanied by these decision choices. One of the most important factors is the type of 

client that outsource their logistics to the service provider. The type of client determines the order 

characteristics and influences the processes in the warehouse logistics. Therefore a focus on different 

order characteristics will be researched (e.g., lines per order, SKU picks, product type, demand, idle 

time, etc.). Since customer orders can be very different in terms of order mix, order line, and order size, 

it is crucial to evaluate the profile of orders received in a warehouse in pursuance of good strategic 

decision-making for providing the best service. These factors very much impact the outbound process 

of an e-commerce warehouse, and the design choices should therefore be robust and efficient.  

Therefore, this case study research will consist of a detailed investigation of the problem of many design 

choices in the outbound logistics for compartment 1 of Haaften III based on the uncertainty of different 

potential order characteristics. A contingency approach will help quantify the performance of specific 

(pre)-design choices of Haaften III. 

2.4  Research Approach  
In this chapter, suitable methods are presented in order to answer the research questions. The 

methods are discussed per phase of the research approach and visualized in table 1. The proposed 

framework and structure of the research approach will provide a guideline for this research. In order to 

answer the research questions and reach the study's objective, suitable methods must be used. Some of 

these methods have already been addressed in more detail in the previous chapters. Nevertheless, to 

execute the research and look into the problem definition of Nedcargo and the gaps found in literature, 

a methodology for the fundamental research must be defined.  

The methodologies discussed are incorporated into an overall research approach, which is the 

adapted SIMILAR approach method. The SIMILAR approach is a System Engineering approach and 

can be seen as an iterative process roadmap. The SIMILAR approach is short for the following process 

steps: State of the problem, Investigate, Model the System, Integrate, Launch the system, Assess 

performance, and Re-evaluate. The last three processes are combined in one Evaluate process step in 

this research. This is because this study is more based on proving the warehouse configuration than 

implementing a new system. In this way, this research approach can be seen as an abbreviated SIMILAR 
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approach, denoted as SIMIE. This System Engineering approach is founded on system thinking, which 

is a mode of thinking that considers not the whole system but also how the pieces of that system interact. 

In this study, you can think of the different processes and choices that occur in the outbound logistics of 

a warehouse. INCOSE (2019) defines system engineering as a transdisciplinary and integrative approach 

that uses system principles, concepts, and methodologies to realize and apply engineered systems 

successfully. The descriptive parts per the research step below show the proposed SIMIE framework. 

Next to this, the research outline will be given, describing the content of each chapter. 

State of the Problem 

The research starts with the “State of the Problem” phase. The purpose of this phase is to define 

the problem of Nedcargo. This is done by identifying the problem, clarifying the scope and context, and 

setting the research goal. Only when there is a clear understanding of the overall definition of the 

research can it yield potential insights. In this phase, the research proposal is presented and should also 

introduce the first and second research questions.  

Investigate  

Furthermore, in the investigation phase, a literature review is carried out to obtain background 

information and find gaps in the literature that can be filled. The literature review primarily focuses on 

warehouse logistics, e-commerce, warehouse design components, and the proposed methodology 

conducted in previous research. In this manner, knowledge gaps are identified and can be used for the 

subsequent phases. This step is partly carried out by having written the research proposal. However, the 

literature study needs to be extended to substantiate confident choices in the following phases. 

Model the System 

The Model the System phase is the phase that focuses on how to model the current state. Before 

confident choices can be made for future state configurations, the current state must be clear and well 

understood. A clear view of all the current outbound logistics processes and design components can be 

reached by analysing. Therefore first, a current state analysis of Tiel is performed. During the current 

state analysis of the e-commerce warehouse of Tiel, the process of data collection is also started. In the 

data collection process, historical data from other Nedcargo warehouses and consultation with experts 

from Nedcargo are collected. If the available data is insufficient, new measurements have to be 

performed. With this data, the verification and validation of the future models become possible. It could 

also be beneficial to visit the building site of Haaften to get a better idea of the implementation plans. 

Then it could be clear which outbound logistics processes are included in the research and which design 

components are essential for Nedcargo. Next to that, many assumptions on which design components 

and processes are out of this research scope have to be decided. This is done in consultation with 

Nedcargo experts or of conclusions from the literature review. These assumptions must then be 

implemented with the requirements in the integrate chapter before the potential Haaften configurations 

can be modelled.  

Integrate 

This is the most time-consuming phase of the research, the integrate phase. The processes have 

been mapped, each warehouse component decided upon, and the current state model has been validated. 

This allows analysing of these processes and identifying the contingency variables that have to be 

simulated. The focus hereby will be on the order characteristics of potential clients for Haaften III, which 

is still uncertain. This is done by performing data analysis on historical data to see which levels of 

controllable variables for which design component are essential. The probabilistic functions of the 

different contextual variables are also determined. The last step of the analysis phase is the performance 

analysis in order to find out the effect of the warehouse configuration on the performance of the 

warehouse. This performance variable, which will be the output of the simulation model, will then be 

chosen in consultation with experts and based on the performance analysis results. This contingency 

simulation model must make it possible to generate different context scenario output. This means that 
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each of those context scenarios can generate an experiment that a warehouse configuration model must 

process.  

After this is done, another vital process of the research is carried out, the Modelling of the 

process variables of the outbound logistics. This is the backbone for the configuration models as it 

visually shows the steps of the warehouse activity and the entities involved in carrying out each step. 

The configurations can then be formed for the case study of Haaften III, which is simply stated as a 

series of logical relationships relative to the components, strategies, and structure of the system. Before 

the configurations can be modelled, the assumptions and requirements must be defined. Based on these 

assumptions and requirements, combined with the literature findings, consultation with experts, and data 

analysis, the new configurations can be formed and modelled. Three configurations are being modelled, 

and experiments are processed for each of the different contingency scenarios. These models result in 

different performance variables which can be analysed.  

Evaluate 

This is the last phase of the SIMIE framework and finalizes the research project. In this phase, the 

results of the models are evaluated. The chosen scenarios by Nedcargo are based on contingency 

variables, which are being processed by three different configurations and result in different 

performance indicators per configuration and scenario. It is looked at if the order characteristics impact 

the different configurations differently. Based on that outcome, the main research questions can be 

answered. Then the report is finished by writing a discussion and conclusion followed by 

recommendations for Nedcargo and possibly future research opportunities. 

2.5  Research Setup  
In this table, the analysis method and further explanation of the research question will be presented 

for each question. After the research setup is explained, the report structure will be made clear. So that 

there is an overall overview of what the questions mean, the method that will be used, and where to find 

them in the report.  

Table I-1. Research Setup per question with each method, explanation, and approach 

Question Analysis Method and Explanation  S, Inv 

1 Literature review / Data collection / Review of current process documentation Nedcargo and 

proposed process documentation / Interviews / Gemba Walk 
 

The different components applicable in a warehouse configuration for Nedcargo need to be 

defined. Therefore, it is necessary to have an extensive literature review. Multiple studies are 

performed on various design component choices and, therefore, insightful for the strategic 

choices for simulation. Next to that, the current policies applied in the operating warehouses of 

Nedcargo can be used to create the configurational model. This current data needs to be 

collected and analysed, which applies to current/proposed processes in outbound logistics. 

Interviews can also be a means of obtaining this. 

Question Analysis Method and Explanation  Inv 

2 Literature review / Context Analysis 
5 
The following two techniques are needed to understand the purpose of the proposed approach 

and the requirements needed for successful implementation. Firstly, a literature review of 

previously conducted research about the contingency approach needs to be performed. This 

should be done for better background knowledge of the techniques, so wrong choices are 

avoided in the research process. A contingency approach is an approach that focuses on the 

context of the system. In the previous chapter, some of that context was made clear, but what 

could be an uncertainty of the context in the future? Is there uncertainty regarding the context 

while configuring a warehouse? Is it different for e-commerce warehouses? Those answers 

must be found by looking into previous research and deeper investigating a warehouse's 

potential contextual factors. 
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Question Analysis Method and Explanation  Inv, M 

3 Data analysis / Interviews / Process mapping  
5 
Before defining the different performance measures used in warehousing practices, it must be 

investigated which performance measures can be found in a 3PL warehouse. Based on the data 

analysis of the current state, it must be defined how the performance of the current operations 

is measured. This can also be achieved by conducting interviews with warehouse experts of 

Nedcargo. They can also give insights into measuring performance and decide which 

indicators are more important. Before these choices can be made, the current warehouse 

processes must be clearly defined. This can be done by mapping all the processes, which also 

helps answer the sub-questions. 

Question Analysis Method and Explanation  M 

4 Interviews / Data analysis / Data Collection 
5 
This study focuses on the uncertainty of order characteristics while configuring a warehouse 

for Nedcargo. In order to make confident choices about the potential order characteristics, it is 

crucial to have insights into the current state of these. First, the current characteristics must be 

investigated. With the help of interviews with experts, it can be known where to find those 

data. By analysing the data, these insights can be made. Next to that, how will these 

characteristics evolve in time? Are there already specific insights for this future context, or 

must there they be generated? 

Question Analysis Method and Explanation  M 

5 Process mapping / Data analysis   
5 
To prove that specific configurations perform better or worse in a particular context., first, it 

must be investigated what the current process variables are in a warehouse of Nedcargo. The 

outbound logistics of a warehouse consist of several process steps, and each can be configured 

differently. By mapping all these processes and quantifying them using data analysis, an 

answer to this question can be given. This can also be the basis for future configurations, 

which are the response variables in this study. 

Question Analysis Method and Explanation  M,I 

6 Future State Analysis / Scenario Analysis / Simulation / Context Analysis 
 

The uncertainty of the order characteristics is now elaborated on. The contingency 

approach focuses on a warehouse's contextual factors that influence the performance per 

configuration it operates. This question, therefore, proposes several scenarios which can be 

potential contextual scenarios for the future state of Haaften. Therefore, scenario analysis is 

fundamental to answering this question. These scenarios must point out the context and the 

uncertainty of order characteristics. How these can be envisaged can be reached utilizing 

simulation. The simulation must generate several experiments based on the chosen scenarios 

for the future state. To prove that configurations perform differently in disparate scenarios. 

Question Analysis Method and Explanation  I 

7 Data analysis / Current state Analysis / Literature / Expert Consultation / Requirement 

Analysis / Assumptions Analysis  
  

In order to prove that configurations perform differently in the context they operate in. It is 

necessary to investigate which configurations are applicable. This is an important question that 

needs to be answered for the research. How and which choices must be made. First, the current 

state is analysed by looking at the data with the expert consultation of Nedcargo. Their 

particular insights can be made for improvements to the new configurations. This can also be 

achieved by looking at literature and how they made particular choices. Next to that, the 

requirements of the configurations must be precise. This is done by performing a requirement 

analysis. The same goes for the assumptions. Not all the processes and choices can be 

simulated, and therefore, several of them must be assumed.  

Question Analysis Method and Explanation  I 

8 Simulation / Parametric modelling 

 Now that the configurations and the scenarios are proposed, it must be decided which method 

can be used. The contingency approach is based on the three types of variables: contingency, 

response, and performance. How can we concretize these variables, and which method must 

be used? The objective is to create a decision-making tool for Nedcargo to quantify the 
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performance in specific scenarios. This can be achieved through simulation and parametric 

Modelling. This question proposed a specific method based on a combination between the 

contingency approach and the proof of configuration concept.  

Question Analysis Method and Explanation  E 

9 Performance Analysis / Current State Modelling / Configuration modelling  

To prove that the choices made in the previous questions for the new configurations work. It 

must be compared to the performance of the current state. This can prove that specific 

configurations perform better than the current state and must be quantified and substantiated. 

This is done by examining the results and the method's performance proposed in the previous 

question. Comparing the two models of the current state and the new configurations must 

answer these questions appropriately.  

Question Analysis Method and Explanation  E 

10 Configurations Modelling / Results Analysis / Scenario Modelling  

In order to answer the main research question, it must be investigated whether the chosen 

scenarios have a different impact on the performance based on their configuration. This 

question analyses the results from the scenario modelling and the configurations modelling by 

looking at the performance of each experiment. Does the context affect the performance, and 

does the configuration contributes to it? This also must fill the found knowledge gaps and 

provide the impetus to answer the main research question.  

Question Analysis Method and Explanation  E 

11 Results Analysis / Configurations modelling / Scenario Modelling 

Now that all the questions have been answered. The final step before the main question can be 

answered, and the objective hopefully is reached. Is the question how Nedcargo can learn from 

these questions. Due to the proof of configuration concept that is maintained in this research. 

The process of proof of configurations exists before the final design stage, and this question 

must be beneficial for Nedcargo, namely, how they can learn from all the findings and apply 

this to the decision process for Haaften.  

2.6  Report Structure 
The research, as described in the previous section, is divided into parts. Each part contains different 

chapters. An overview of these chapters is stated below.  

I. State of the Problem 

▪ Problem Definition 

▪ Research objective & questions 

▪ Context Analysis 

II. Investigate 

▪ Literature Study 

▪ Knowledge Gaps 

III. Model the System 

▪ Current State Analysis 

▪ Current State Modelling  

▪ Method 

IV. Integrate 

▪ Scenario Modelling  

▪ Configurations Modelling  

V. Evaluate 

▪ Results and Analysis  

▪ Conclusion 

▪ Discussion  

▪ Further Research Possibilities 
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II. Investigate    
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3. Literature Review 
In this chapter, an extensive literature review is performed on all the essential warehouse logistics 

and design topics. This all to have a good background knowledge base to substantiate confident choices 

in research. Each issue will be elaborated on in terms of definition, previous research conducted, and 

still to be investigated knowledge. This is all to eventually point out the knowledge gaps to give the 

fundamentals for the proposed research.  

3.1  Warehouse Logistics 
In the supply chain of goods, it is essential to make warehouses as efficient as possible. According 

to the supply chain management definitions and CSCMP (2013) glossary, a warehouse is a storage place 

for products. Its principal activities include storage, receipt of the product, shipment, and order picking. 

The warehouse represents a significant role in the modern supply chain. Azadnia et al. (2013) state that 

20% of the logistics costs of companies come from warehouse operations. In this manner, a warehouse's 

in-house logistics (or intralogistics) are an integral part of the organization's operations. Therefore, it 

can be seen as a vital opportunity to improve optimization, physical - and information flows, reduce 

inventory levels, and enable more agile distribution (Vrijhoef & Koselka, 2000). An appropriate 

strategy, layout, warehouse operations, and material handling system must be achieved (Lehrer et al., 

2010).                  

    The main objective of a warehouse is to satisfy its customers and clients with effective 

resource allocation and delivery of the right product, at the right place, at the right time in good condition 

(Frazelle, 2002). This leads to the fact that the main functions consist of temporary storage, protection 

of goods, fulfillment of individual orders, packaging of goods, after-sales services, repairs, testing, 

inspection, JIT sequencing, and assembly (Heragu et al., 2005). For warehouses, in the case of a third-

party service provider like Nedcargo, the focus is only on the first five functions. These kinds of 

warehouses are a non-value added step in the supply chain as they store inventory but do not transform 

the product in any way before its completion. So the warehouses of Nedcargo have a more distributive 

role. Van den Berg & Zijm (1999) emphasize this by defining three types of warehouses: distribution 

warehouses, production warehouses, and contract warehouses. The warehouses’ operations are 

classified into receiving, picking, storage, and shipping (Gu et al., 2007). Figure 1 shows an overview 

of warehouse operations and design (Kembro et al., 2018). 

Figure II-1 – Overview of Warehouse Configuration (Kembro et al., 2018) 
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According to Roodbergen and De Koster (2009) and as mentioned beforehand, the in-house 

warehouse processes can be divided into four main phases. The first phase is called the receiving 

process, and this is where the inbound goods are unloaded from shipment vehicles, checked out and/or 

transformed, and then prepared to be transported on time to their corresponding storage location. The 

second phase is the storage phase, where the incoming products are stored in their designated storage 

location. The third phase is called the order picking process: this corresponds to retrieve the items from 

their storage location, primarily based on a customer's order request. Finally, the fourth phase is the 

shipping and dispatching phase. Here, orders are checked, packed, and loaded into the mode of transport 

to be shipped to retailers or customers. This literature review will focus on the picking, sorting, packing, 

and shipping phases of warehouse logistics, the so-called outbound logistics. 

The outbound logistics of warehouses, especially with the focus on e-commerce, focus on operating 

as efficiently as possible to achieve profits. Klumpp and Heragu (2019) defined outbound logistics as 

moving and storing goods from the point of production to the point where they are delivered to the 

customer. As mentioned beforehand, the warehouse costs in the supply chain could be exceptionally 

high. So, efficient outbound logistics handling plays a vital role in reducing waste and decreasing costs 

for operations. The waste reduction factor occurs when a service provider examines the areas that are 

creating overproduction, waiting time, and stocks piling up in the inventory. If a warehouse’s outbound 

logistics are efficient, it will be able to quickly satisfy customers and obtain a better reputation (Din et 

al., 2021). Important to mention that the outbound logistics are different for every warehouse. The 

chances of warehouses having almost the same outbound logistics process due to other order 

characteristics are minimum (Baretto et al., 2017) 

Warehouse outbound operations performed at various material-handling nodes are a significant part 

of the distribution systems (Faber et al., 2013). For example, a considerable challenge is combining the 

handling and shipping of small e-commerce orders with large store replenishment orders, which were 

previously handled in different channels (Hübner et al., 2015). “The efficiency and effectiveness in any 

distribution network are substantially affected by the operations of the node in such network, i.e., the 

warehouses,” asserts Rouwenhorst et al. (2000). Warehouse operations, which were previously viewed 

as a burden due to high capital and operating costs (de Koster et al., 2007), are now increasingly regarded 

as a strategic component of supply chains, particularly in e-commerce warehousing (Hübner et al., 

2016). Therefore, the topic of efficient warehousing processes is attracting increased attention (Kembro 

et al., 2017). 

Davarzani and Norman (2015) looked at the practitioner's view on warehouse issues. They revealed 

concerns about support aspects of warehousing, which implies a scarcity of decision support for daily 

warehouse operations for warehouse managers. Decision support relies on having the correct 

information about physical – and information flows at the right time to act at the right time to detect and 

improve bottlenecks. Human operators mostly make these decisions and are mostly ignored in research 

studies concerning warehouse architecture and design (Trentesaux and Millot, 2016). Nevertheless, 

these research studies show that most problems that arise are fixable. Therefore, research should look to 

support human decision-makers in improving and resolving daily warehouse operational issues. 

To this date, a reasonable amount of research is conducted on strategic decision support in 

geographical location (Max Shen & Qi, 2007), design (Sprock et al., 2017), sizing of warehouses, and 

also in demand planning and forecasting (Dubey & Veeramani, 2017). There has also been a lot of 

research into various methods for optimizing warehouse problems like the storage location assignment 

problem (Gu et al., 2007). Figure 5 is shown which decisions are on a strategic level and which on a 

policy level (de Koster et al., 2006). However, the literature on decision support for daily warehouse 

operations is fragmented and not explored extensively. Klodawski et al. (2017) state that decomposing 

warehouse operations into separate problems, as has been done in literature research, makes it difficult 

to solve the warehouse bottlenecks in the context of the entire process in the supply chain. The 

information and analysis needed to help operational decision-makers complete the warehouse’s daily 
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amount of work is referred to as daily warehouse operation decision support (from receiving to 

shipping). In conclusion, the warehouse logistics environment management is complex and relies on 

accurate information about physical - and data flows, a series of processes and procedures, and human 

expertise. 

3.2 Warehouse E-commerce  
The booming of e-commerce has dramatically influenced modern warehouses. Bayles and Bhatia 

(2000) even estimated that e-commerce logistics could cost 40 percent of the price that the customers 

pay for their product. The logistic chain of e-commerce consists of three stages: (1) replenishment of 

goods from manufacturers to warehouses, (2) order fulfillment phase (sorting, picking, packing, etc.), 

and (3) shipping from warehouse to customers. The third phase can differ in two types of business 

models, namely business-to-consumer (B2C) and business-to-business (B2B). The difference mainly 

lies in the destination of the product (customer or a business) and the transaction volume. The transaction 

volume is usually much higher in B2B than in B2C (Ta et al., 2015). Nedcargo is a third-party logistics 

(3PL) provider, and therefore, the e-commerce literature study will focus on the order fulfillment phase. 

3PL service providers nowadays have been increasing their investments in expanding their 

warehouse capacities. In contrast, big e-commerce firms like Amazon and Alibaba have heavily invested 

in developing their own logistics facilities (Ellinger et al. 2003). This is because businesses have a 

common expectation for a paradigm shift in e-commerce to reduce the bottlenecks of an order. It is 

essential to understand the changing characteristics of e-commerce orders to find the bottlenecks in 

warehouse operations. 3PL service providers face the challenge of assembling large numbers of time-

critical orders, which are typical of just a few order lines (SKUs) and low order quantitates (Weidinger 

et al. 2018). This trend influences several warehouse processes, and therefore efficiency and 

effectiveness of the supply chain have to be improved. This can be done by obtaining more insight into 

the processes and incorporating these findings into new design components or technologies (Wang et 

al., 2017).  

3.3 Warehouse Design  
Warehouse design is a complex set of decisions made at the strategic, tactical, and operational levels to 

meet specific performance goals (Rouwenhorst et al., 2000). Warehouses can be considered as a way to 

optimize operations – and information flows, reduce inventory levels, and enable more flexible 

distribution (Vrijhoef & Koselka, 2000). The effectiveness of a warehouse is determined by its strategy, 

warehouse operations, and material handling systems (Lehrer et al., 2010). Gu et al. (2010) classified 

these warehouse design decisions into different categories: The overall structure of the warehouse, 

sizing, throughput, layout design, utilized number of workforce, equipment selection, and selection of 

operational policies. Next to that, a warehouse design project should include definitions of policies such 

as order fulfillment, picking, packing, stocking, and stock rotation (Chan & Chan, 2011). The fulfillment 

operation can be split into inbound and outbound operations. Inbound operations. Bulk items are broken 

down into stock units by the inbound processes, which are subsequently stored in the storage system. 

Orders are created by picking products from SKU into client totes and transferred to the packing 

operations in the outbound operation. Completed orders are kept in the storage area until they are 

received for shipping.  This chapter will zoom in on the various design decisions and policies of a 

warehouse's outbound logistics since this work will mainly focus on the outbound logistics operations 

of a picker-to-goods warehouse. 

Overall structure 

The overall structure of a warehouse is the plan and overall design of the quantity, scale, 

geographical location, warehouse facilities, roads, and sites of a particular area where the warehouse is 

meant to be located (Huang, 2019). Next to that, Gu et al. (2007) stated that for warehouse design, the 

overall structure primarily focuses on the material flow of the warehouse, the department identification, 
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and the relative location of those departments. In other words, the specification of functional areas and 

the flows between them.  

Layout 

Warehouse design involves sizeable capital expenditure, and after the warehouse has been built, 

it is tough to change it. The layout design is one of the most essential elements in the warehouse design. 

It consists of determining the length, width, height, aisle width, the position of the pickup/deposit depot 

(P/D), etc. This topic has received quite a bit of attention in research studies over the last few decades. 

Mohsen (2002) pointed out that designing a warehouse layout is complex for several reasons. First, the 

number of design decisions is numerous, and most of them are interrelated, which makes decision-

making even harder. Secondly, many warehouse operations (picking, packing, etc.) and warehouse 

factors  (demand, order characteristics, etc.) impact the warehouse's travel time, material handling, and 

throughput. These operations and elements of the warehouse should be accounted for in the 

comprehensive layout design in order to support them. This makes the layout design even more 

complicated. Third, these operations and factors interact, and such synthesis should be accounted for in 

the layout design. He came up with a framework derived from an analysis of different layouts and 

previous studies and cases that highlights essential design issues and steps to be taken for warehouse 

layout design. Bassan et al. (1980) used an analytical model to compare the decisions of the dimensions 

of the layout of a rectangular unit-load warehouse and a zoned warehouse. Berry (1968) looked at the 

impact of two configurations of warehouse racks, block-stacking, and pallet stacking, on the volume 

requirements and handling costs.  

Sizing 

 In the design, warehouse sizing determines the storage capacity of a warehouse. In Modelling 

the sizing problem, there are two scenarios to consider (Gu et al., 2009): (1) inventory levels are 

determined externally, so the warehouse has no direct control of when incoming shipments arrive and 

their quantities. This is primarily the case for 3PL warehouses, like Nedcargo. And the warehouse must 

meet all exogenous storage space requirements. The other scenario (2) is that the warehouse can directly 

control the inventory policy, e.g., independent wholesalers. The significant difference is that in the 

second scenario, the inventory policies and expenses must be considered when resolving the size issue. 

The first scenario is typical for 3PL, like Nedcargo, and therefore assumed further. When the warehouse 

has no control over the inventory level, the warehouse sizing design must determine an appropriate 

storage capacity to satisfy the stochastic demand for storage space. Poor warehouse sizing planning can 

harm the efficiency of warehouse logistics. Pang and Chan (2016) stated that the uncertainty of the space 

demand and warehouse sizing is an essential step in the design process. Empty warehouse space results 

in higher storage costs due to an overabundance of storage space. On the other side, a shortage of storage 

capacity might result in additional costs associated with employing an overflow warehouse as well as 

higher response time. Therefore in, warehouse design frequently includes storage demand prediction 

and contract flexibility in the warehouse-size planning to mitigate the loss costs caused by space demand 

uncertainty. Storage demand is estimated from data analysis, i.e., sales plans or product demand 

forecasts, which aid in the reduction of sizing uncertainty. Therefore, the sizing design phase has been 

considered a dynamic component of having a robust warehouse design.  

Equipment Selection 

 The equipment selection design decisions address the processes and systems to transfer and 

store products within the warehouse. In the case of Nedcargo, a picker-to-goods warehouse design is 

being researched. Therefore it will look at the strategic design decisions for equipment selection of a 

PTG warehouse. Equipment selection can, if properly carried out, have a significant impact on the 

profitability of a warehouse. Few researchers pointed out this equipment selection problem (Gu et al., 

2010). The material handling equipment selection problem (MHESP) is a vital decision-making area for 

warehouse design. Material handling can account for 30-75% of the total operating costs because it 

influences many processes. Efficient material handling can be primarily responsible for reducing the 
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warehouse systems costs (Kulak, 2006). MHESP can be divided into manual equipment and 

mechanization equipment, and both will be discussed.       

 Human operators perform manual material handling. The outbound logistics of a warehouse 

take place in the picking and packing operations. Therefore, the performance and costs profoundly 

depend on human availability and productivity, affected by the fatigue of operators and the probability 

of their injuries and gravity (Daria et al. 2015). Manual warehouses, like the ones of Nedcargo, rely on 

human operators for their order picking system (OPS). The equipment selection decisions in a manual 

warehouse are expressed, e.g., number of human resources, number of carts, utilization, etc. Order 

picking is one of the most time-intensive processes in outbound logistics, and human factors play a 

crucial role in OPS performance (Tompkins et al., 2010). Grosse et al. (2015) conducted a research 

where human factors aspects were highlighted in each OP process step. Based on the literature, they 

showed how perceptual, mental, physical, and psychosocial elements affect the performance, quality, 

and worker's health in OPS. Gong and Koster (2011) coped with stochastic models of warehouse 

operations. They discovered that human workers could introduce uncertainty into OP operations, e.g., 

by being absent from work, injuries, and the pick inaccuracy and errors.    

 Next to that, there is the usual machine equipment selection approach. This is to identify 

warehouse process requirements, match them with the available machine’s specifications, and then 

select the solution with the least cost since that has been seen as the most critical immediate factor 

(Sujono & Lashkari, 2007). Thus, warehouse managers can reduce investment costs, maintenance and 

operation costs, increase machine utilization, improve machine layout and increase warehouse 

efficiency and productivity by selecting the correct number and type of machines (Tabucanon et al., 

1994). Luong (1998) pointed out that one of the most essential aspects of MHESP is considering the 

implementation phase when selecting technology suited for warehouse operations and requirements. 

Decision-makers may encounter the following issues while adopting material handling equipment: (1) 

they have to select a technology that will provide the most significant benefit to the company while 

taking into account the company’s objectives and operating characteristics, (2) financial justification of 

the investment and (3) developing an implementation strategy to guarantee that when the chosen 

technology is implemented and evaluated, the envisaged objectives are accomplished. The efficiency of 

the warehouse outbound processes is obviously related to the material handling operations. When the 

material handling equipment is poorly designed, the planning of the warehouse processes could result 

in low machine utilization, low material handling utilization, and a longer order cycle time (Sujono & 

Lashkari, 2007).  

Level of Automation 

 Another aspect of warehouse design is the implication of reducing the lead time with increased 

automation of various warehouse operations to improve material handling speed (Hübner et al., 2016). 

Automation in material handling can be classified into three basic types, namely fixed automation, 

programmable automation, and flexible automation (Groover, 2007). Fixed automation, or hard 

automation, has little or no flexibility in order to accept a wide range of goods. Because the program of 

instructions is set according to the automated equipment's design and configuration, there is a lack of 

flexibility. As a result, processes have been set in a dormant state and are difficult to alter. This form of 

automation is utilized in the large-scale manufacturing of a single product (Craig, 2013). In 

programmable automation, the equipment is designed to modify the program of instructions. This allows 

for greater flexibility and a wider range of goods, although this adjustable characteristic results in lower 

production rates. Flexible automation enables continuous production of diverse components or product 

types by allowing any needed modification in the program of instructions (MacDuffie & Pil, 1997). This 

allows for cost-effectively responding to changes in volume requirements, product-mix requirements, 

machine status, and processing capabilities (Custodio & Machado, 2019).    

 The level of automation is increased in order to eliminate the routine manual tasks and 

administrative chores improvements in worker safety and product quality, reduce lead time, and the 

completion of processes that cannot be completed manually (Wiktorsson et al., 2017). The level of 
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automation can be defined into three subgroups: automated storage, robotics, and transportation systems. 

Automated storage and retrieval systems (AS/RS) represent a parts-to-picker order picking system. It 

can be defined as a system that performs the storage and retrieval operations of the goods with speed 

and accuracy based on automated equipment (Groover, 2011). An AS/RS system can sort, sequence, 

buffer, and store a wide range of goods with high accuracy and efficiency. This leads to a reduction of 

labor requirements, increases productivity, and exploits unused storage space. Moreover, this 

technology can reduce the picking time because it eliminates the need to have a human operator pick 

products along the aisles. Robotics represents the technology that is most discussed in modern 

literature related to the category of automated equipment. This is because of the reason that robotics is 

related to the applicability of this automated technique in other areas of research. Robotics that increase 

the performance is mostly designed for palletizing, picking, packing, or as a human collaborator. Robots 

are deployed to perform repeatable processes with not much variation by constant precision and high 

speed; therefore, standardized products are preferred (Koobally et al., 2018). The flexibility of robotic 

operations is hence a popular research area. This means that a flexible robot should have the ability to 

be quickly re-tasked without the need to shut it down, the ability to recover its errors, and the ability to 

be deployable in different scenarios. The rapid growth of e-commerce increases the need for robotic 

assistance in massive warehouses. This increase in the level of automation can lower the human 

responsibility in the warehouse process. This increases the overall productivity and accountability of the 

warehouse (Petkovic et al., 2017).        

 Transportation systems are also a component in which the level of automation can be increased. 

Problems that occur in transportation in a warehouse are: that there are smaller order deliveries, 

challenges to meeting new demands of logistics warehouses, and the necessity to detect and transfer 

SKUs. This is all due to the factors mentioned before, like the e-commerce trend and the mass 

customization in manufacturing that forces warehouses to deliver smaller orders and the need for more 

flexibility and service quality while keeping the operations costs acceptable (Casado et al., 2017). Some 

studies point out that automated guided vehicles (AGV) technology can be used due to its flexibility 

benefits (Chung fu et al., 2017; Lopez et al., 2016). AGVs are vehicles equipped with an automated 

guidance system that can move pallets and containers in the warehouse. There are driver-less and 

programmed to follow a prescribed path. Therefore, they are not manipulators and differ from 

conventional robots (Shivanand et al., 2006). Next to flexibility: they can be reprogrammed quickly; 

AGVs are efficient: they can quickly be added as required to demand growth; AGVs are precise: if 

technology improves, a more precise space localization can be achieved; AGVs have economic benefits: 

they have an outstanding price/quality ratio. Next, AGVs are safe: they are predictable and avoid 

interfering with human operators.        

 Custodio and Machado (2019) performed an extensive literature review related to flexible 

automation in a warehouse and constructed a framework that could guide future designs for innovative 

conceptual models. They stated that in order to have a flexible warehouse environment, it should (1) 

increase productivity,(2) enhance flexibility and space utilization to accommodate the growth in SKUs, 

(3) and have higher throughput and faster deliveries. They pointed out that a flexible automated 

warehouse consists of a combination of automated technologies mentioned previously, data collection 

technologies, and management solutions. These three factors can be implemented to a lesser and greater 

extent. In order to implement, the warehouse needs to be able to collect data, increase transparency in 

its operations, improve its coordination and communication, and adapt to changes. This framework can 

help construct a conceptual model for a flexible automated warehouse.  

Picking 

For the outbound fulfillment of an order, several activities are performed: picking, packing, and 

order consolidation. Order picking is a crucial and demanding part of the outbound process, and it 

accounts for approximately 55-60% of the total operating costs of a typical warehouse (de Koster et al., 

2007). The other factors of the operation’s costs are shipping, storage, and receiving. The picking 

process can be described as “the process of locating and selecting the ordered items from the warehouse's 
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inventory” (Rouwenhorst et al., 2000). The picking process in a warehouse is the most labor-intensive 

and costly activity in its supply chain (Rushton et al., 2014). Order picking can be divided into goods-

to-picker and picker-to-goods systems (de Koster et al., 2007). In the case study of a Nedcargo 

warehouse, the focus will be on a picker-to-goods system, and goods-to-picker will not be included in 

the literature study. Several design components of such a system will be elaborated on.  

In picker-to-goods (PTG) warehouses, pickers walk or drive through the aisles of the warehouse. 

The pickers have to pick customer orders consisting of Stock Keeping Units (SKU), of which multiple 

are picked per picking. The most common method that a picker picks is the pick-by list, in which a 

picker receives a list where the product of the order is being placed. Less common methods are pick-by 

light, voice picking, and RF picking. This picking process utilizes 60% of the total labor force in a 

typical warehouse (Won & Olafsson, 2005). The total processing time of a picking tour consists of (1) 

travel time, which is the time spent on traveling between two pick locations, (2) search time, i.e., the 

time spent on locating the SKU to pick, and (3) pick time, i.e., the time spent on picking the goods from 

the SKU, and (4) setup time, i.e., the time spent on administrative tasks. Batholdi and Hackman (2008) 

stated, “travel time is a waste. It costs labor hours and does not add value”. However, Tompkins et al. 

(2003) figured that the travel time accounts for at least 50% of the total processing time of a picking 

tour. In the design phase, there are five different picking strategies to consider in order to minimize the 

total picking time: single order picking, picker routing, zoning, storage assignment, and order batching. 

These strategies will be elaborated on in the following paragraphs. 

The first strategy is single order picking. Each picker in the warehouse is assigned to only one order 

at a time and undertakes the entire order's execution and the entire quantity's collection. The main 

advantage of this strategy is that the integrity of the orders is ensured; however, the picker may be 

obliged to travel long distances, especially when it’s a small order. Therefore, is this strategy more 

suitable for orders with multiple order lines so that the travel time per order line decreases (Pan et al., 

2012).             

 The second strategy is routing, where the travel distance is minimized directly. This assumes 

that the travel speed remains constant. There are several kinds of routing strategies known and used. In 

the S-shape routing strategy (1), an aisle containing at least one of the requested SKUs is traversed 

entirely in an S-shape fashion. The last aisle that is traversed has to contain one of the requested SKUs 

seen from the depot. The picker will pick up the goods and return them to the depot without traversing 

the entire aisle. In the largest-gap strategy (2), the picker enters an aisle and can turn around and travel 

back. In a way, the non-traversed length of the aisle is maximal. Only the left- and rightmost aisles are 

traversed entirely (Henn & Schmid, 2013). Ratliff and Rosenthal (1983) developed an optimal routing 

solution strategy by using the traveling salesman problem (TSP). However, this solution is not often 

implemented in real life due to the confusion it causes among the pickers (Koch and Wäscher, 2016). 

Next to that, the two first methods reduce the in-aisle congestion instead of an optimal routing strategy 

(de Koster et al., 2007).          

 Under the zoning strategy, the warehouse is divided into several disjoint zones. Each picker is 

assigned to a zone and will only pick the SKU that belongs to his own zone. There are two types of 

zoning: progressive zoning and synchronized zoning. Progressive zoning is where the picker stays in 

the zone, and the pick totes are transferred to the next zone. Synchronized zoning is where the pickers 

from different zones pick in parallel, and the orders are consolidated afterward (de Koster et al., 2007). 

The main advantage of zoning is the minimization of travel time ab the acquaintance of the picker with 

his area. The negative side of zoning is that the time required to place the goods per order correctly is 

increased, and the risk of wrong order execution is higher. Although zoning has gotten more attention 

in the literature, the consolidation stage has garnered less attention (Boysen et al., 2018).  

 The fourth strategy is the storage assignment. The storage assignment exists out of several 

methods: dedicated -, random -, closest open location -, full-turnover-based -, and class-based storage 

assignment. Each of the methods will be discussed shortly. In the dedicated storage assignment, the 

goods are stored in a dedicated storage location in the warehouse. A disadvantage of this method is that 
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it can lead to a lack of space utilization due to empty storage locations if a product is out of stock.  The 

random storage assignment means that a product is stored randomly, which means that every empty 

SKU spot can be filled with equal probability. A disadvantage can be that if the storage assignment 

changes too rapidly, the pickers might not be able to learn the storage location (Grosse et al., 2017). This 

strategy increases the average travel distance, but the space utilization is high (Hsieh and Huang, 2011). 

The SKUs will be stored in the first and closest open location to the depot in the closest-open storage 

location. SKUs are stored according to their demand frequency in the full-turnover-based storage 

assignment. Fast-moving SKUs are kept close to the depot for convenient access. However, because 

demand fluctuates over time, this approach necessitates repeated relocation. Petersen et al. (2004) 

showed that a full-turnover-based storage strategy outperforms the random location storage strategy. 

Lastly is the class-based storage assignment. This policy divides the warehouse storage into several 

areas, each corresponding to a specific property of the SKU product. An example can be that heavy 

items are stored in the bottom layers of the racks. Within each property area, a random storage policy 

can be applied. ABC class-based storage is the most commonly used storage policy in practice and is 

widely discussed in the literature. ABC class-based divide the items into different classes (three is 

common) according to the ABC curve of the demand. A-class goods are a small number of high-demand 

products that are gathered together and kept in a warehouse zone close to the depot. C-class goods are 

stored in the zone farthest away from the depot because they are seldom ordered (Yu et al., 2015).

 The fifth strategy is called the order batching strategy. Order batching means that customer 

orders are grouped into batches and picked in a single tour to save travel time. These methods are the 

ones most reviewed in literature studies (de Koster et al., 2007). Tsai et al. (2008) even considered it the 

most important strategy to save on travel time when picking. Each picker is assigned a group of orders 

in a single trip, minimizing its travel time and the average time per order line. However, because there 

needs to be an extra consolidation step after picking, the pick cart has to be sorted into individual orders, 

so the risk of wrong order execution is higher. Important to note is that batching can occur online and 

offline. In online batching, the orders are not known in advance and become available over time; offline 

batching means that the order is known beforehand (Henn, 2013). Order batching is an important aspect 

of PTG warehouses, and most research papers more or less try to tackle the same problem. How they 

solve the problem differs by (mostly) using a different algorithm. Cergibozan and Tasan (2019) made 

an overview of all the classification of these order batching operations studies. They concluded that 

storing and batching are interrelated to one and all, and therefore is storing an important issue for the 

effectiveness of the batching operation. So decisions about the determination of storage locations and 

layout design can also be considered a part of the success of a batching strategy. Next to that is that 

because of the new dynamic demand environment warehouses are part of now,  the characteristics of 

the orders can change rapidly. They predict that in future studies on warehouse optimization, the most 

reactive and flexible companies will be the most successful ones in their area. Thereby, every effort to 

make the picking process faster and more flexible becomes the most willing subject in the current state 

of warehouse logistics.           

 As can be seen, is the picking process design an extensive and complex step in designing a 

warehouse. In figure 2, the different classification of order systems is shown. Many different decisions 

must be made to obtain an efficient order picking system, and most of the research findings are not 

generalizable to every case. Therefore, for the design of a warehouse, it is important that either data 

findings or previous literature thoroughly substantiate decisions.  
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Figure II-2 – Classification of Order-Picking Systems (Dallari et al., 2009) 

Design Steps 

 There is a lot of literature about the steps that need to be taken when designing a warehouse. A 

collection of research was evaluated and generally described the design process in terms of a series of 

steps. Heskett et al. (1973) concluded that warehouse design could be divided into three main aspects: 

determining the requirements, designing the material handling, and developing the layout. These three 

broad steps can be found in most of the subsequent literature. Apple (1977) observed that the designer 

has to process and analyse many different data of processes. This makes the design a complex task and 

therefore suggests a 20-step procedure for warehouse design. Oxley (1994) provides a more 

comprehensive list of steps. He begins by establishing the supply chain’s general system requirements, 

including service levels and implementation time. Data collection and analysis are crucial steps once 

again. He also adds a new process for determining the unit loads used. The following steps are about 

coming up with alternative operational methods, equipment types, and layouts. He emphasizes that the 

warehouse design should be centered on the storage and material handling requirements and that the rest 

of the warehouse should be built around this.  Firth et al. (1988) and Mulcahy (1994) follow a similar 

approach as Apple (1977). However, they include features like recognizing the warehouse as part of a 

more extensive distribution network and comparing alternative approaches. Rowley (2000) and Rushton 

et al. (2006) added an extra element to the design steps, simulation. They were using the basic framework 

of the previously discussed steps and adding an extra step of computer simulation. They could test the 

impact of different volume throughputs and identify the consequences of specific changes on the rest of 

the supply chain. They stressed that although the steps are set out in sequence, the overall design process 

is an iterative process. Rouwenhorst et al. (2000) noted that a design process is usually divided into 

many consecutive phases. Therefore, they use a top-down method to organize these phases' actions into 

a hierarchical framework, identifying the strategic, tactical, and operational decisions. They propose that 

these three decision clusters should be evaluated in chronological order. Bodner et al. (2002) used 

ethnographic study techniques to identify how experts actually design warehouses.  The focus of the 

study was on the methods followed by designers and experts in the area of warehouse design. To attempt 

to comprehend the decisions and techniques, they employ while developing a design project. They claim 

that the warehouse designers must weigh many complicated trade-offs. The paper proposes four to five 
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steps and the requirement to reiterate these steps. These steps consist of data analysis, determining 

functional requirements, making high-level decisions, and performing a detailed system specification 

and optimization. The authors intended that following research, with the help of their proposed steps, 

could help develop computational aids for warehouse design. Bodner et al. (2002) also did an 

ethnographic study. They proposed an object-oriented model comprising five modules: base data, unit 

load and equipment details, movement within the warehouse, specified design, and the accompanying 

costs. Mohsen & Hassan (2002) and Waters (2003) also proposed a step-wise approach in similar ways 

to the abovementioned literature. However, their focus is mainly concerned with only one aspect of the 

design problem: the layout design. Waters (2003) even clashes with some of the previous authors that a 

warehouse design should not represent a stern sequence. Rushton et al. (2006) pointed out the 

importance of flexibility in the design process. This will be elaborated on further in the literature review.

 So it can be seen that in warehouse design steps proposed in the literature, some common themes 

can be found back in their methodology. First, it is acknowledged that warehouse design is considered 

a highly complex process. Secondly, the authors try to tackle these complexities by using a step-based 

approach. Thirdly, these steps need to be interconnected, and reiteration is necessary. Lastly, they agree 

that there is not something as an optimal solution. This is due to the high possibilities that exist at each 

step and the uncertainty that goes along.  

3.4  Warehouse Uncertainty  
The increased competition among third-party logistics providers (3LP) has led them to make an 

effort to achieve the highest service level and, concurrently, decrease the costs. The following can be 

achieved in several ways: the increase in the correctness of order execution and the improvement in 

personnel productivity. These improvements to stay competitive are full of uncertainties and challenges, 

like the need for shorter lead times, real-time response, to handle a large number of orders with greater 

variety, and deal with the increasing complexity of warehouse processes in a flexible manner (Gong & 

de Koster, 2011). Especially e-commerce warehousing faces customers who more often purchase by 

impulse or change/cancel their orders. This upcoming real-time aspect creates uncertainty for warehouse 

managers.  Therefore, it is necessary to consider uncertainties from various sources, both from inside 

the warehouse processes itself to outside the supply chain.  

Warehouse systems are exposed to a wide range of internal and external uncertainty sources to the 

warehouse (Chopra & Sodhi, 2004).  Gong & de Koster (2011) stated that a distinction can be classified 

into four types of uncertainties: (1) sources outside the supply chain, (2) sources in the supply chain but 

outside the warehouse, (3) Sources inside the warehouse, and (4) sources within the warehouse control 

systems. Next to that, there is also a variance structure of uncertainty, which they classified as (1) 

unpredictable events, like covid, which are rare, (2) predictable events like demand seasonality, (3) 

internal variabilities in activities, variance, or order waiting time, which could be caused by internal 

randomness. These uncertainty sources can affect the warehouse decisions at three levels: Strategic, 

tactical, and operational (Ghiani et al., 2004). Strategic decisions have a long-term effect, tactical has a 

medium (monthly/quarterly) term effect, and operational are daily-based decisions. Decisions based on 

the level of automation, layout, and system have a strategic effect. Storage, order picking, and shipping 

are examples of tactical decisions. Warehouse operational decisions include daily order-picking 

planning, daily resource planning, and daily warehouse information management.  

Flexibility is a term that is inextricably linked to uncertainty. In order to maintain efficiency along 

the supply chain of the warehouse to maintain acceptable service prices, a lot of challenges arise. But 

the flexibility to deal with time-varying or dynamic demand could be even more important nowadays. 

Customer’s orders are more likely to be increased, reduced, cancelled, or moved ahead or backward. 

Therefore warehouse operations must be more adaptable in various ways. This might involve the 

requirement to adjust capacity levels, different transportation modes, switch suppliers, deal with smaller 

order sizes, and have minimum changeover times. Flexibility is, along with cost, delivery speed, and 

quality, considered a critical component of competitiveness (Avittathur & Swamidass, 2007).  
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Aforesaid, a typical warehouse consists of multiple operations such as receiving, put-away, internal 

replenishment, order picking, accumulating, sorting, packing, cross-docking and shipping. In these 

different processes, internal variability can be observed (Gu et al., 2007). This internal variability creates 

uncertainty, and the warehouse has to learn to cope with this increase. This adaptation led to far more 

complex warehouse operations and the use of new warehouse innovations (Frazelle, 2002). The recent 

trend in e-commerce orders and the strength of its development have brought a new focus on 

warehousing operations and layout. In particular, the management of the order picking systems and 

packing, where fulfillment centers now need to process a far higher volume of smaller orders, increases 

the picking costs (Manzini et al., 2006). This e-commerce trend and the strength of its development lead 

to a new focus on warehouse activities and management. In particular, the management of order picking 

systems changes due to e-commerce. This is due to the increasing demand and the fulfillment process 

of a far higher volume and smaller orders, which eventually increases the costs.  

3.5  Warehouse Flexibility  

It is clear that warehousing is an essential business operation on a supply chain; it has to be able 

to adapt quickly and respond to changes in customer demand. A responsive warehouse should be 

flexible. In other words: flexibility must be designed into every function of the warehouse: receiving, 

material handling, picking and packing, shipping, management systems, and its personnel (Brockmann 

& Godin, 1997).  Rushton et al. (2006) pointed out the importance of flexibility in warehouse design 

and refined the steps in their research. These steps include the concept of scenario planning, which leads 

to a concurrent step of evaluating design flexibility. The need for flexibility in the supply chain is 

growing and is becoming increasingly important as product life cycles shorten and global and 

competitive pressure lead to additional uncertainty (Christopher, 2000). In this environment, companies 

need to locate their inventory and capacity at strategic points in the supply chain to facilitate the flow of 

goods to market (Stratton & Warburton, 2003).  3LP firms want to provide this responsiveness for their 

clients by having flexible capabilities in several (design) areas of their warehouses. An example of 

competence at a warehouse level is shown by Stalk et al. (1992), which describe the case of Wal-Mart’s 

cross-docking logistics operation. The case shows that this operation enables goods to be “pulled” by 

consumer sales data directly from the supplier.       

 The 25-year depreciation time of warehouses, in combination with the logistic equipment 

depreciation time of 5-10-year, the supply chain flexibility issue reconciling this long life cycle is a 

significant challenge. The long life of warehouse assets can either form a severe constraint on future 

flexibility or provide a significant advantage by making it easier to respond to market shifts that 

competitors may find difficult to adapt to (Baker & Perotti, 2008). A term associated with flexibility is 

a business-wide concept: agility (Aitken et al., 2002). Hoek et al. (2002) described it as a “management 

concept centered around responsiveness to dynamic and turbulent markets and customer demand.” So, 

agility not only responds to changing market conditions but also can exploit and take advantage of the 

changing circumstances (Sharifi & Zhang, 1999). In warehouse logistics, agility is the ability to pivot 

direction quickly in your operations and nimbly respond to changing internal and external signals. This 

extra pressure on agile operations, especially 3PL warehouses, leads to additional uncertainty. The 

starting point for the requirement of flexible capabilities for warehouses starts, following Van Hoek 

(2002) and Baker & Perotti (2008), with the ability to respond to five types of agility that are described 

as follows: (1) volume variance, e.g., caused by seasonality, product life cycles and consumer demand 

fluctuations, (2)  time variance, e.g., urgent orders, (3) quantity variance, e.g., small orders, item-level 

orders instead of case level, (4) presentation of goods, e.g., how the products are displayed, and (5) 

handling of returns, e.g., replacement of broken product. Nowadays, most of the actions to increase 

agility and adapt warehouse operations are performed on a trial-and-error basis. Consequently, the 

flexibility to adjust a warehouse system’s behaviour depends significantly on the performance of the 

warehouse system.           

 Automation in the processes of a warehouse can help to improve flexibility. A so-called flexible 
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automated warehouse should increase productivity, flexibility, and throughput (Custodio & Machado, 

2019). Automation can help to achieve these factors. Fixed automated and – mechanized systems, on 

the other hand, are unable to react to changes in product mix and market demand. The clients need to be 

satisfied, so to do that, warehouse technology must be adaptable, quickly responding to difficulties such 

as the continued growth of warehouse fulfillment, new competitive threats, faster delivery, and 

unforeseen technological advancements. A flexible automated warehouse requires automation solutions 

that are simple to implement and adaptable and integrated intelligence to take advantage of machine 

learning and other technological innovations.     

3.6  Warehouse Performance Measures 
Performance evaluation is an essential aspect of warehouse logistics. Improving warehouse 

performance in global operations is a demanding and challenging undertaking, especially in the face of 

rising competition, consumer sophistication, and demand and supply volatility in significant supply 

chain networks.  For warehouse design, there are several measures to be considered. The most 

commonly used in literature are order maturity time (OMT) (Petersen, 1997), or the travel time required 

to complete a given picking list, i.e., total picking time (TPT) (de Koster, 2010) or for especially 

automated systems the average equipment utilization (Ekren et a. 2010).   `

 Warehouses not only serve as a critical link in the supply chain, but they also have an influence 

on costs and have evolved into complicated entities to manage. As a result, it is critical to keep an eye 

on how their performance is measured. Several studies were consulted to identify performance 

requirements in various warehouse management scenarios. The subsequent studies identified the 

following performance measures, De Koster and Warffemius (2005): productivity, flexibility, and 

outbound logistics; Cao and Jiang (2013): service capability through storage, transportation, and 

costs/time control; Nair (2005): productivity, delivery competence, and responsiveness; Johnson and 

McGinnis (2011): technical and economic-related performance measures; Gu et al. (2010): costs, 

throughput, space utilization, and service; Min (2006): responsiveness to outlier orders, value-added 

services, inventory accuracy, delivery time and order fulfillment; and Staudt et al. (2015): order picking 

time, picking accuracy, costs and throughput. Furthermore, Cuthbertson and Piotrowicz (2011) argue 

that performance measurement is a context-dependent process that is adjusted to specific supply chain 

requirements using a common framework for the empirical examination of performance management 

systems. As a result, it is suggested that good performance measurement incorporates three types of 

metrics: resource measures, output measures, and flexibility measures. Lu and Yang (2010) indicated 

that a warehouse could have two types of performance measures: financial and non-financial measures. 

 Traditionally research focuses on improving the system's throughput, so the total picking time 

and effective use of equipment, but the primary concern of customers is mostly how fast their orders are 

delivered (Won & Olafsson, 2005). On the other hand, improving one performance measure could 

impact the other. That is why Chackelson et al. (2013) researched how different picking policies affected 

which performance measure. This kind of trade-off in performance measures is a critical analysis to 

align warehouse efficiency with order (customer) requirements. The study of Nair (2005) showed that 

there is a positive relationship between the two by using a conceptual model of operational policies and 

performance. Furthermore, Beamon (1999) stated that a single-measure performance measurement 

system is insufficient, not comprehensive, and lacks the relationship between key supply chain 

characteristics and vital components of the warehouse's strategic goals. 

3.7  Modelling of Warehouses  
As aforementioned, warehouses experience uncertainties from various sources, both from 

outside their supply chain and from within the warehouse itself. Therefore, warehouse design is a 

complex process that relies heavily on the designer’s experience. The overwhelming quantity of 

technological equipment, strategies, components, etc., and the difficulty in assessing them motivates the 

search for better and more effective warehouse design tools (Heragu, 2016). In recent years, warehouse 

design has become even more complicated due to the tendency to create more extensive, automated 
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warehousing facilities. Warehouse design necessitates the handling of a large amount of data and is 

frequently an iterative process that forces the designer to go through the different design steps before 

reaching a final solution (Brito & Basto, 2006). Therefore, to make the right choices for your design, 

models for warehouse design are desirable. Several methods to model warehouse design are mentioned 

in the research.           

 Deterministic warehouse models presume that the objective function is fully known and that 

this knowledge may be utilized to assess the search direction. Deterministic Modelling and algorithms 

for warehouse systems have been successfully applied in several research studies (Ratliff & Rosenthal 

(1983), van den Berg et al. (1999), Lowe et al. (1979), White & Francis (1971). Multiple studies focus 

on a warehouse's probabilistic nature. Probabilistic Modelling is a statistical approach for forecasting 

the likely occurrence of future outcomes by considering the influence of random events or actions. Next 

to that, there is stochastic modelling, which is almost the same as probabilistic Modelling. Only now 

does it take into consideration the time. So, a stochastic model is a tool that allows for random fluctuation 

in one or more inputs across time to estimate probability distributions of future outcomes. Those 

warehouse models in the literature focused on different warehouse components mentioned in the 

previous paragraph.  

Even though there are always factors with some uncertainty, deterministic models can offer a 

decent approximation in a stable environment. In highly changeable environments, such as systems with 

strongly fluctuating order patterns and responsive processes, deterministic models may not always 

suffice. The following literature table shows several studies which focus on warehousing modelling. 

Each method is described and compared with this study. 

  

  

 

Table II-1. Research Gap Table for Warehouse Modelling  

  Method Component External 

Reference Focus Deterministic  Probabilistic  Stochastic Layout Storage  Picking Strategy Equipment Routing Uncertainty 

Aboelfotoh et al. (2019) Order Batching Optimization X   X  X  X  

Altarazi et al (2018) Different Warehouse Design Simulation  X X X X X X X  

Amorim-Lopes et al. (2021) Probabilistic Simulation of Picking 

Warehouse 
 X  X X X    

Burinskiene et al. (2018) Reduction of Waste in Warehouse Logistics X  X X X X X X  

Colla & Nastasi (2010) Automated Warehouse Storage Strategy X X   X     

De La Fuente et al. (2019) Staffing Strategy and Capacity of Warehouse 

simulation 
  X  X  X   

Gagliardi et al. (2008) Warehouse Simulation to Allocate SKUs X  X  X X    

Gong (2009) Stochastic Modelling Warehouse Operations   X  X X   X 

Gray et al. (1992) Design of order-consolidation Warehouse X X  X  X    

Guo et al. (2007) Narrow Aisle Pick Density  X  X  X X X  

He et al. (2020) Uncertain Warehouse Layout Problem X   X X    X 

Hwang & Cho (2006) Performance model for Order Picking  X    X    

Kachitvichyanaku et al. 

(2005) 

Batches of Customer Orders in Warehouse 
X     X    

Le Duc (2005) Design and Control of Order Picking  X X  X X X X X  

Merkuryev et al. (2009) Warehouse Order Picking Process X   X X X X X  

Park & Webster (1989) 3D Warehouse Modelling   X X X     

Ratliff & Rosenthal (1983) Order Picking in Warehouse with TSP X     X  X  

Saderova et al. (2022) Simulation modelling of Selected activity X  X    X X  

Sadownski et al. (2021 Contingent Nature of Warehouse Flexibility X    X  X  X 

Thi et al. (2021) Optimizing Warehouse Storage Location 
under Uncertainty 

  X  X  X  X 

This Research The Impact of Order Characteristics 

Uncertainty on Performance of Warehouse 
Configurations  

X X  X X X ~ X X 
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3.8  Knowledge Gaps 
As a result of the literature review, some knowledge gaps emerged. 

• It is noted from the literature that for effective planning and control of internal logistics 

operations of a warehouse, decision-makers should know the current state of the system, analyse 

different coherent scenarios, and assess the efficiency of these scenarios. Thus, to achieve this 

objective, decision support tools must be researched in order to assist decision-makers when 

managing distribution warehouse operations.  

• There is a discrepancy between the research and operational concerns in the warehouse 

processes and a lack of a framework in which to trial different solutions to specific problems. 

• Most related Modelling-based research focuses on the order-picking function without 

integrating the other main functions of warehouse logistics such as receiving, put-away, 

unloading, storage, and shipping.   

• Most research on warehouse design via simulation considered single design components, 

mainly operational policies, layout, and/or sizing. Less focus on workforce/equipment, order 

characteristics, and throughput. Next to that, there is more focus on analysis than synthesis.  

• Studies are focused on improving the overall picking efficiency in order to improve warehouse 

performance. This optimization approach is limited wherein an attempt to improve one 

performance may craft wastage in other warehouse processes. With the help of analytical 

parametric Modelling, a synthesis perspective can take care of such an imbalanced system. So, 

look at every component of the warehouse.  

• There is not a single, one-size-fits-all solution. Optimal solutions can only be applied to 

particular settings and therefore are non-generalizable. 

3.9  Conclusion 
The literature study has shown that there is already a lot of research conducted on the warehousing 

logistics topic. Each of the studies emphasizes a different aspect of warehouse logistics, and this 

literature reviews several topics of this. The overall logistics in a warehouse, the e-commerce trend in 

warehousing, the designing of a warehouse, the uncertainty aspects in warehousing, warehouse 

flexibility, the performance measures for warehouses, how warehouse Modelling was conducted in 

previous research, and how this research will address this. From all the studies reviewed, several 

knowledge gaps emerged.  

The following three sub-questions can now (partly) be answered based on the literature review 

carried out.   

What are the different components for outbound logistics when designing a warehouse for a third-

party service provider like Nedcargo?   

Firstly, the different components that occur in outbound logistics when designing a warehouse for 

a 3PL provider. In the literature, the following components were identified as relevant to consider during 

the design process: the overall structure, the layout, the sizing, the equipment selection, the level of 

automation, picking strategies, and the packing operation. These components were integrated into the 

design steps of a warehouse. Because Nedcargo is still in its pre-stage design phase of the warehouse of 

Haaften III, it should be noticed what the current design choices are and how, with insights from 

literature, improvements can be made for the new warehouse. In Haaften? We concluded that all of these 

design steps need to be interconnected, and reiteration is necessary. So, each of the components for 

Haaften should be taken into account and must be integrated with choices still to be made.  

Next to the previous research question, the following two sub-research questions could also be 

(partly) answered utilizing the findings in the literature.  

What are uncertainty factors when configuring a warehouse with regards to e-commerce? 
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In these different processes, internal variability can be observed. This internal variability creates 

uncertainty, and the warehouse has to learn to cope with this increase. One of the uncertainty factors for 

Nedcargo is that it is still unknown which client will be handled in the new warehouse of Haaften. 

Therefore the order characteristics are an uncertainty factor in the future. This uncertainty factor is vital 

since, because of the emerging e-commerce trend, the characteristics of the orders are rapidly changing. 

This contextual uncertainty of order characteristics will be addressed in the following chapters and tried 

to integrate with the proposed method.   

What are the different performance measures of a 3PL order-picking warehouse, and how can they 

be quantified?  

The last research question that was partly answered in this literature review is the different 

performance measures that occur in a 3PL warehouse. The quantification will be carried out during the 

data analysis. During the literature review, it became clear that there are various ways of measuring the 

performance of a warehouse. The most important insight was that the choice of performance indicators 

is dependent on the environment and type of warehouse. A single performance measurement system is 

insufficient, not comprehensive, and lacks a relationship between the vital components of the 

warehouse's strategic goals. Therefore, it must be decided in consultation with Nedcargo’s expert and 

based on the current measurement system, and different performance measures should be used. This 

will be elaborated on in the following chapters and concluded before the new configurations are formed.  
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III. Model the System 
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4. Current State Analysis  
In this chapter, the current state analysis is performed to develop new design improvements for the 

newly built warehouse located in Haaften. Nedcargo has to have knowledgeable insight into their current 

outbound logistics operations in their currently active warehouses. This research focuses on the 

outbound logistics of the e-commerce warehouse operations, and therefore, the current state analysis of 

the Tiel warehouse is performed. This chapter starts with some background information about 

Nedcargo’s history and some basic information about the Tiel warehouse, in which the present e-

commerce orders are handled. Then the processes that occur at the Tiel warehouse are systematically 

explained using several techniques. Then extensive data collection is performed in order to point out the 

weaknesses of the current state and gain insights into the order profiles that are handled nowadays.  

4.1  Warehouse Background 
Nedcargo provides sustainable solutions in a changing logistical world. Three specialized divisions 

work closely together, committed to creating the most sustainable and cost-efficient supply chain for 

customers in the food, beverage, and retail markets: Nedcargo Logistics warehousing and distribution 

by road in the Benelux for food and non-food products, wines, and beverages. They own several 

warehouses in the Netherlands in which they offer various services to their customers. In order to stay 

competitive and innovative, they invest a lot of resources in the research and development of their 

operations.  

As mentioned earlier in this report, it is necessary to make the right choices for any conceptual 

design of new warehouse operations to have a clear insight into all the current warehouse operations 

regarding e-commerce at Nedcargo. Currently, these operations are being performed for one customer 

at their warehouse located in Tiel. In this chapter, some background information will be provided about 

the layout, operations, and customers handled at Tiel nowadays.  

The warehouse of Tiel handles multiple operations in two different compartments. These 

compartments are called hall 6 and hall 5. In figure 3, the different active zones of the warehouse can 

be seen. Zone A and B are respectively hall 6 and 5, zones C and D are the loading areas, and zone C is 

the packing area for the e-commerce orders. This will be discussed in more detail later. The operations 

in Tiel can primarily be divided into cross-docking operations, bulk picking operations, and e-commerce 

picking operations. The pickers in the warehouse usually conduct these operations simultaneously in 

their shifts. This research only focuses on the e-commerce operations of Tiel. Thereupon, we only 

measure and focus on the performance of the e-commerce operations of the pickers and packers.  

Figure III-1 – Warehouse Overview of Tiel 
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4.1.1 Zones  

As said, at the Tiel site, two halls are used for warehouse operations. In each of those halls, a 

total of 12 aisles with racks on either side are placed. Each of those aisles consists of 23 ‘houses,’ also 

placed on either side, leading to a total of 46 houses in each aisle. These houses have a place for 3 or 4 

stock-keeping units (SKU), which each can contain a different product. The e-commerce SKUs are only 

stored in the lowest rack house. The upper houses are used for bulk-picking and for replenishing the e-

commerce inventory. There is room for a little over 24.000 pallet storage places. These pallet places are 

currently filled with products from two customers, Go-Tan and Jacobs Douwe Egberts (JDE). JDE 

covers with their products about 2/3 of the space in the warehouse. Now that there is a clear overview 

of the essential functions of Tiel, we will further elaborate on the different zones.  

Firstly, zone A where all of the Go-Tan products are located. This zone is not used for picking 

up JDE orders, only for storage. The scope of this research lies in e-commerce order logistics handling. 

And since mainly other operations take place here, it is not essential to elaborate on them further. 

Therefore, the only thing that zone A means for the e-commerce operations is the storage locations of 

the load carriers, such as the pallet - and roll containers. Every picking tour starts with the picker 

obtaining two roll containers to put away the picked goods. This container storage is located across from 

the packing location in zone C.  

Secondly, zone B. This is where the e-commerce orders are being picked. As of today, a total 

of 351 JDE products are being stored, divided over various ground-level houses into 9 active aisles. A 

more comprehensive overview of storage, strategy, and products will be given during the data collection 

and analysis. The picking operations performed in this zone will form the basis for potential new design 

choices for Haaften.  

Thirdly, zone C, where the packing operations take place. An essential aspect of outbound 

logistics in an e-commerce warehouse is packing operations. The synthesis between the picking and 

packing operations is crucial for the smoothness of the overall outbound logistics. As of today, the 

packing area consists of three packing stations and an area where the picked roll containers are being 

stored. At the stations, the packers can pack the picked colli into shipping boxes for PostNL. PostNL is 

the distributor for e-commerce orders. Zone D and E are outside the research scope.  

4.1.2 Resources 

Furthermore, several different resources can be distinguished from the current operations at Tiel. 

The most important are the employees, which can be accounted for a lot of labor costs. At the warehouse 

of Tiel, two types of employees can be distinguished, namely the pickers and the packers. Order pickers 

are the employees who collect the orders. The picker's task is to collect the preferred colli out of the 

stock-keeping units. Order pickers are essential for the operation and also very cost-intensive. In the 

literature review, we have seen that 50% to 60% of the total picking time consists of the travel time of 

the picker. Next to that, almost 50% of the total labor costs in a warehouse go to picking activities.  So 

they are crucial for a successful warehouse and very cost-inefficient if they are poorly managed. The 

pickers receive their order information from the warehouse management system (Boltrics), which shows 

them where the desired SKU is located. They use portable scanners to scan the collected colli. The 

following paragraph will describe how this process is carried out in more detail. 

The packers are the employees who pack the collected orders into the outbound shipping boxes. 

That afterward is being transported by PostNL. These packing activities are relatively new processes for 

Nedcargo due to the upcoming e-commerce trend. They are provided with a working station at which 

they have to fold the shipping boxes themselves and pack orders into the shipping boxes, which are 

completed and palletized for transport.  

Several means of equipment are available to perform these packing and, most of all, picking 

activities. We will discuss the resources that are important for the outbound e-commerce processes. First 
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of all, the reach trucks are being used for the put-away and replenishment processes. These trucks are 

designed to carry one pallet and to be able to raise that pallet to high levels that a regular pallet truck 

cannot reach. Tiel has the availability of five such trucks.  

Secondly are the pallet trucks. Each picker has access to move with a pallet truck through the 

picking circuit. There are long and short pallet trucks, and for e-commerce picking, only the shorter one 

is being used. The picker can stand on this truck and move to its picking destination. All trucks use 

batteries that are charged at the warehouse in zone A. There are more charging stations and batteries 

than required for the case to keep at all costs the carts available. We will further zoom in on its 

specifications during the data analysis. Furthermore, the pallet trucks carry the roll containers with them 

(or picking carts). They can attach two roll containers behind them in which the orders are being placed 

after collection. They can carry two roll containers simultaneously, and each roll container has room for 

2 orders. So a picker can collect four orders during one tour through the picking circuit.   

Going further into the roll containers. The roll containers, or as they call them in literature, the 

picking carts, are used to collect and transport the picked colli through the warehouse. At the beginning 

of the order picking process, two roll containers are attached to a pallet truck. Each roll container has a 

divider in the middle, which means that they have four different locations to place the collected colli on. 

In this way, the order picker can collect four orders in one picking tour. When the picking tour is 

completed, the picker detaches the fully loaded roll containers at the packing station waiting area. Then 

the cycle will be executed again. It can be assumed that there are more than enough roll containers 

available; a shortage of roll containers is therefore not an option.  

Lastly, there is the picking scanner. Each picker uses the scanner throughout the whole 

warehouse operation. The scanners scan the barcodes on the colli, SKU, and boxes. The scanners are 

directly linked to the warehouse management system, so their actions are immediately stored as data in 

the WMS environment when scanned. Although the scanners might differ per process for which it is 

used, they all serve the same purpose of communicating and confirming information through the WMS.  

Figure III-1 – Warehouse E-Commerce Compartment Layout Tiel 
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Now it is known in which warehouse Nedcargo currently operates its e-commerce orders operations, 

and the configuration of Tiel is elaborated on. It is crucial to go deeper into the various processes and 

decisions at the warehouse which is currently being made. Next to that, when the current state is known, 

the historical data of Tiel is being collected to extract significant value from it during data analysis in 

the next chapter. This is in order to substantiate specific potential configuration improvements.  

4.2  Context Analysis    
First, the context in which the warehouse of Tiel operates will be investigated. This context analysis 

will point out the most important contextual factors which are mainly dealt with. 

Warehouse configuration is influenced by many contextual factors representing both the external 

and internal environment. Configurations refer to the combination of operations, design aspects, and 

resources (Rouwenhorst et al. 2000). The warehouse configuration is a critical component for meeting 

the customer's demands. Notably, it is interesting where specific configurations might fit better and 

which future path to pick. As a result, it is essential to comprehend how numerous contextual factors 

impact the choice of a warehouse configuration, which in this case refers to a mix of warehouse 

operations, - designs, and – resources.  

In warehousing theory, the contingency method (Donaldson, 2001) receives increased attention. 

Especially when tweaking the operations towards a configuration to the particular context in which the 

warehouse operates. The contingency approach, or situational approach, is a theory that suggests the 

most appropriate management style depends on the context of the situation and that adopting a single, 

rigid style is inefficient in the long term. In the early stages of the logistics use of the contingency 

approach in warehousing, the contextual factors were related to the complexity and dynamics of the 

flow of goods and information and the external environment. Afterward, the quantities and volumes of 

inbound and outward product flows, suppliers, manufacturers, customers, and their geographical 

distribution, were used to operationalize the contextual elements further.  

The importance of context in which a warehouse operates is of great significance. Several 

researchers emphasize the importance of context in warehousing. Van den Berg and Zijm (1999), 

Rouwenhorst et al. (2000) and Karagiannaki et al. (2011) conducted research towards the 

implementation of RFID in warehouses. They stated that there are three dimensions of aspects that 

influence the type of warehouse configuration: (1) the structure, e.g., level of automation and storage 

system; (2) the workflow, e.g., picking policy and order accumulation; and (3) resources, e.g., space 

capacity and labor. Hassan et al. (2015) identified 54 factors that influence the warehouse configuration 

and argued that operational factors and organizational are the most crucial to consider. However, he 

affirmed that the importance of each factor might vary from one situation to another and would mainly 

depend on the sector the warehouse operates in. Faber et al. (2013) studied external factors that influence 

the planning and control of WMS systems. They consider two sets of variables: the external warehouse 

environment (i.e., the market it operates in) and the internal warehouse system. They argue that a 

foundation in complexity and dynamism is necessary for understanding and optimizing the warehouse 

configuration. Next, they address five contextual factors: the number of SKUs, assortment fluctuations, 

demand unpredictability, number of SKUs per order (or amount of orderlines), and process diversity. 

These factor claims are backed up in several other warehouse studies. The need for handling and storage 

equipment is influenced by SKU features (Rouwenhorst et al., 2000). the picking process is influenced 

by order characteristics (Bartholdi and Hackman, 2016). Each type of warehouse requires different 

operations (Van den Berg and Zijm, 1999), and the characteristics of the current and future demand 

influence capacity decisions regarding storage and labor activities (Frazelle, 2016).  

Now that the awareness of the influence of contextual environment on warehouse operations is 

evident. A further look is required towards the context of the Tiel warehouse and what can be learned 

from that. Thus, some of the previously stated challenges in warehouse design could be seen as 

contextual factors that affect configuration elements. And these elements are customer characteristics, 
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demand profile, order characteristics, assortment, volume, and product characteristics. This is visualized 

in figure 3. Due to the upcoming e-commerce orders trend currently handled in Tiel for Nedcargo, a 

different context in which the warehouse must operate is changing. And most of all, the order 

characteristics are uncertain because the clients are still unknown. This context must be investigated to 

understand how the configuration can be improved or changed and what the impact could be on its 

performance.   

These contextual factors representing both the internal and external environment influence the 

warehouse configuration. Figure 3, the adapted framework from Kembro et al. (2018), explicitly 

emphasizes how the match between context and configuration affects the ultimate performance. 

Therefore, the contingency approach can be used to give direction to the still-to-be-made warehouse 

configurations.  

 

 

Figure III-3 – Conceptual Contingency Framework for Warehouse Configuration (Kembro & 

Normann, 2020)  

In the warehouse of Tiel, the importance of its context has several factors that impact these 

operations. First, in the next chapter, the outbound processes of the warehouse operations of Tiel will 

be explained and analysed using different techniques. Afterward, the data collection of its operations 

will be presented. This data collection forms the basis for the data analysis. This data analysis will point 

out the most important contextual factors of the warehouse's experiences and quantitates the warehouse 

operations of Tiel. This qualitative and quantitative current state analysis will be used to shape the future 

state of the new warehouse in Haaften for Nedcargo. 
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4.3  Process Description 
This chapter will discuss the processes of the outbound logistics of the current warehouse processes 

of Nedcargo. This part will more concretely analyse the current situation in which Nedcargo operates.  

Having seen the logistical context of the warehouse in Tiel, the processes that take place are outlined in 

this chapter. The different processes as seen and explained in the warehouse of Tiel itself are described. 

In this paragraph, we will further zoom in on the different outbound processes that occur in the e-

commerce operations in Tiel. This information is used to shape the IDEF-0.  

4.3.1 Inbound Process 

The inbound process consists of the receiving and the put-away & storage operations. This is out of 

the scope for the future state, but for the understanding of the whole warehouse system in Tiel, it is 

included in the current state analysis. The inbound process starts with the truck arriving from the clients' 

factory at Tiel. The truck with the load needs to be parked at general parking, after which the driver 

signs in at the inbound office. The inbound office appoints the driver to a specific dock where the trucks 

need to unload. After parking, the unloading process can begin. A warehouse employee at the dock 

unloads the shipment it has been appointed to. Since the COVID-19 pandemic, this was only performed 

by a Nedcargo employee before it was in cooperation with the driver of the truck. After successful 

unloading, the number of pallets and type of pallets is checked to see if they match the received CMR 

consignment note. If this is correct, the driver can leave.  

After these steps, a second check is performed by another employee of Nedcargo to see if the number 

of pallets and the type of products match the expected shipment. The state of the order is then 

communicated to the manufacturer or for Nedcargo, its customer. When there are any sudden deviations, 

the extra – or wrongful pallets are put away at a separate location in the warehouse, and the customer 

needs to be contacted about the deviations. If the shipment passes the second check, confirmation about 

the completeness of the shipment is sent to the customer.  

The completed approved inbound shipment is then put away at its allocated SKU location in the 

warehouse. This is done manually with a reach truck which has a scanner and a computer, which tells 

the employee exactly where to locate the different storage locations.  

4.3.2 Outbound Process 

The outbound process consists of three stages: storage, picking & sorting, and packing & shipping. 

For the scope of this research, we will mainly focus on the picking and sorting stage of the outbound 

process. As mentioned beforehand, there are different types of operations in the warehouse of Tiel. This 

process description is that of the handling of e-commerce orders in Tiel. The warehouse office receives 

the planned outbound orders from the planning department every day at approximately midnight for the 

next 24 hours. This includes the specific arriving time slot of the transport and the orders associated with 

that transport. Each transport ride is allocated and appointed to a specific dock by a warehouse employee. 

There is a clear distinction between the early arrivals and late arrivals of trucks. For the e-commerce 

orders, there is only one slot of transport each day, so a distinction between early and late order sorting 

is out of scope in Tiel. The orders that are placed early have more priority than those that are booked 

later. There are, therefore, first in, first out appointed to the picker. This information Is passed by the 

system present at the scanners the order picker carries.  

Picking 

As previously stated, an order picker each has a pallet truck with two roll containers attached. 

Every roll container has a divider in the middle, which means that two different orders can be separately 

collected on each roll container. Therefore, the picker has a capacity of four orders per picking tour. At 
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the start of the picking tour, the order picker must collect the two empty roll containers from the site. 

The 4 trips that the picker has to conduct during its tour are batched randomly from all the orders that 

have to be collected on that day. The order picker receives its orders on its scanner, which tells the 

location and the amount that needs to be picked. The picking route is based on the shortest route 

algorithm, which shortly will be emphasized. When the pickers accept their picking tour and the roll 

containers are collected, the picker departs from the packing area towards the picking zone.  

 The picking tour is based on the shortest route algorithm and the SKU locations. What does that 

mean? It means that of all the SKUs from the four orders to be visited, and the picker starts with the 

SKU that is the least distance from its initial location. The aisle least distant from the starting point is 

aisle 2. So the picker will first move to the aisle with the lowest aisle number. Within the aisle, the picker 

will move chronologically from the lowest number of the SKU houses to the highest within that specific 

aisle. When the pickers need to move to another aisle, it has two options. The picker can move through 

the crossing aisle, which is located at houses 25 and 26 in the warehouse, or goes back to the current 

aisle's beginning and move from there towards the designated aisle. Which options are chosen depends 

on the shortest route from its initial position towards the following location. What the exact choices and 

decision moments for the picker are in the picking tour will be more specified in paragraph 4.3.5. Next 

to that, the pickers’ decision chart is shown in appendix A table 10.  

 When the order picker arrives at the first SKU location, a barcode of the location is present and 

is scanned with the scanner. The order picker has to collect the number of collo of that product needed 

for the specific orders. So, the picker starts picking the number of collo needed for one of the four 

specific orders out of its stock-keeping unit, inserts the number of collo picked in the scanner and places 

it on the roll container scanned as well. This means that a specific order is allocated to a specific location 

on the roll container. Logically, this means that (optional) later picked colli from the same order must 

be placed in the exact location in the roll container. If multiple orders contain that product, the picker 

repeats this sequence for the other orders with the exact SKU location. If all the colli is collected at the 

SKU location, the scanner shows the following SKU location with the associated product on its 

interface. The order picker goes to the following SKU location, scans the barcode of this product 

location, inserts how many products are picked from that location for the specific orders, scans the 

barcode of the location on the roll container related to the specific order, and places the products on the 

exact location on the roll container. This goes on till all the locations of the products for all four orders 

are visited by the order picker, and then the picking tour is complete. The picker then moves back to the 

packing area with four completed orders on the roll container. The order picker will pick up another pair 

of roll containers to start picking up four other orders.  

It can occur that the product is not available at its SKU location. The order picker can indicate 

this on her scanner and continue with picking the rest of the products on the list. If a pick location needs 

to be replenished, a reach truck gets a primary task to do a replenishment. The order picker will then 

collect the skipped products at the end of her picking route. 

Another situation that can occur is as follows: the size of the order can be larger than the 

available space on the roll container. If an order has a lot of colli per pick, which needs to be stored in 

the depicted location on the roll container, it can be the case that it exceeds the roll container's capacity. 

The protocol is then that the order picker puts a sticky note with the correct order number written on the 

product that does not fit and puts it on the available space of other order compartments of the roll 

container. This means that the packer needs to collect colli from other compartments than the one 

assigned to the order of the roll container.  

When all four orders are completed and collected, the picker takes the shortest route toward the 

packing area. It parks the roll containers in the designated area for completed picked orders and prepares 

to collect a new batch of orders.   
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Packing 

The following process of the outbound logistics of the e-commerce orders at Tiel is the packing 

process. It starts with the packer employee scanning the barcode of one of the four orders on the roll 

container. The computer present at the packing station shows the order with the list of the type and 

amount of products it contains. The packing employee estimates how many shipping boxes are necessary 

to pack all products of that order. The employee collects the right amount of boxes in the right size of a 

pallet with empty unfolded shipping boxes. The packer registered the first box with its associated size 

in the computer at the working station. The boxes are folded and taped so the products can be scanned 

one by one and placed in the shipping box. Products without a barcode can be selected on the computer. 

After the first box is filled, the second box is registered in the computer until the order is complete. 

When the order is completed, and all the shipping boxes are filled, the packing list is printed and put 

into the shipping boxes. The shipping boxes are then closed with tape, and the labels for all boxes are 

printed and put on the boxes. Now the shipping boxes are positioned on the pallets which are destined 

for the PostNL transport. When such a pallet is complete, the pallet is sealed and set up on a collection 

point for the total shipment of PostNL. A new empty pallet then replaces the entire pallet.  

 A few possible situations require additional actions of the packing employee. First of all, it can 

be the case that the order picker did not pick everything correctly. For example, he did not pick every 

product belonging to the order or picked the wrong product. In this case, the packing employee will 

walk to the SKU location of the missing product and pick up the product himself. Next to that, the 

packing employee can incorrectly estimate the necessary shipping boxes. In this case, the packing 

employee needs to change this on the computer and take an extra box to put in the remaining colli that 

belong to the order.  

 When all the orders for the shipment for PostNL are processed, the last pallets will be set up at 

the collection point. After the arrival of the PostNL truck, on the time slot that is determined in advance 

(only one time a day), the shipment is loaded into the truck with a forklift by the driver of PostNL. This 

ends the cycle in the warehouse for the e-commerce orders.  

4.3.3 IDEF-0 

In appendix A, the full IDEF-0 chart can be found. The IDEF-0 summarizes these processes by 

using an integrated framework of the inputs, control, outputs, and mechanisms. The IDEF-0 technique 

is used to model systems and their processes to be understood and improved.   

4.3.4 Swim Lane 

More insight into the specific order picking processes at Nedcargo must be obtained, so a swimlane 

diagram has been constructed. Swimlane is a process stream diagram in which the process is divided 

into several ‘swimlanes.’ These swimlanes indicate what a specific department or employee has to do 

in a process (Janse, 2019). The swimlane of Tiel can be found in appendix A.  

4.3.5 Outbound Logistics Flow Chart 

In appendix A, the logistic flow chart of the human picker resource of the Tiel warehouse is shown. This 

chart shows the different decisions the human picker has to perform. Although the scanner supports 

these actions, it gives a comprehensive insight into how a picker moves through the SKU locations. This 

way of moving can also be easily adapted by changing specific processes or configuring new methods 

or strategies of picking.  

4.3.6 Information System and Flow 

Nedcargo has its own warehouse management system (WMS), named Boltrics, in which each 

warehouse has its own environment. These systems are used during the whole process, from the inbound 

of goods to the final outbound of orders. Each employee receives the necessary information on their 

scanner or computer. All actions or movements are all directly updated in Boltrics. 
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In the Tiel warehouse, the information flows started when the transport planning is provided for the 

next 24 hours by the planning department. The team leader of the warehouse will assign the orders to 

the different docks available at the warehouse and releases them based on the priority in planning. The 

IDEF-0 also shows what information is provided for the different sub-processes. 

The WMS includes different strategy algorithms for warehouse operations. In Tiel, this WMS 

determines the storage location for the inbound goods and the picking strategy to pick the different 

orders. The product placement strategy of the incoming goods is based on the sort of goods, the weight 

and height of the pallet, and the distance from the dock at which the goods are unloaded. In this way, 

after scanning the inbound pallet, the best fitting location is assigned to the pallet and shown on the 

computer of the reach truck. The second algorithm determines the strategy for picking the different 

orders. As said beforehand, it defines the route of the picker using the shortest route algorithm. It looks, 

therefore, to the stackability of the goods related to the order and the SKU locations of these goods. The 

algorithm integrated with the WMS tries to find the shortest path to pick all colli included in the accepted 

orders. When arriving at an SKU location, it also considers that the more fragile product in that SKU 

location is to be picked last when stacking the roll container.  

The control of the operations also is managed by WMS. The employees who handle the operations 

use their scanners as a means of control. The incoming pallets need to be scanned before they are 

relocated into the storage. Confirmation is given by the reach operator at the computer when the pallet 

is correctly stored at the right SKU location. The WMS also keeps track of the inventory levels of each 

SKU location. When the pallet of a specific product is almost empty, the system automatically sends a 

priority task to one of the reach truck operators, who gets the assignment to replenish the SKU with a 

full pallet from the storage and relocate this to the specific SKU location. The pallet is then scanned as 

well and stored in the database of the WMS.  

When picking the colli from the pallet, the picker scans the barcode of the compartment located on 

the roll container. It confirms the number of colli pickers per order relocated to the specific compartment 

of the roll container. Therefore, the WMS knows where all colli is situated in the warehouse. Since all 

the pickers need to scan the SKU location, roll container compartment, and confirm the number of colli 

picked, the margin of error for the order picking is narrowed. Furthermore, the WMS system interface 

on the scanner shows which products still need to be picked and prevents an order from being confirmed 

as picked by the picker while not all products are present yet in the roll container.  

For the e-commerce orders, after the picking, there is an extra check by the packing employee. The 

packer checks if the order is complete and rightfully picked. An empty shipping box is registered via 

the computer at the working station to the WMS. The colli of the products are placed in the shipping 

box and are chosen from the list presented at the computer and linked to the shipping box. In this way, 

all colli an order need must be registered by the packer before the order can be confirmed as entirely 

packed. Nex to that, the WMS distributes a packing list that is printed and added to the shipping box 

and the label with a barcode per package.  

Before loading the pallet for PostNL transport, the last scanning moment occurs. Namely, to discard 

the pallet as being active in the warehouse. It can be concluded that multiple warehouse operations and 

employees are dependent on this warehouse information system. The use of the WMS is nevertheless 

always a point of discussion if used correctly or efficiently. The error margin is reduced by using 

multiple checks by different types of employees. But to conclude if the use of the WMS is efficient, a 

further look at the produced data from the WMS is necessary. So, this data has to be collected and 

analysed for a better qualitative and quantitative understanding. 

4.4  Data Collection  
Data collection is a systematic process of gathering observations or measurements. This research 

focuses on the contextual factors in which a warehouse operates and how its design choices react to 
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uncertainty in a future state. Before these types of decisions and questions for the future state can be 

answered, the observations and measurements of the current state are crucial for a better understanding 

of the actual state of the warehouse operation. Therefore, data on the current outbound logistics of the 

operations in Tiel have to be collected before it is analysed in the following chapter. The previous 

paragraphs mainly focus on the qualitative aspect of the Tiel warehouse, and this chapter will be 

explained how quantitative data is obtained and used.  

The warehouse management system Boltrics monitor the current and historical state of the 

warehouse in Tiel. For this research, the data was collected from all the e-commerce orders from 1-3-

21 to 8-10-21. In this half-year period, a total of 36.552 orders were processed. These orders consisted 

of 103.969 order lines, all of which have their movements of the associated picker of the orderline. 351 

products were used in 136 SKUs by the customer JDE for e-commerce purposes. The following 

paragraph explains how this data was imported and stored in a database. 

4.4.1 UML 

The collected data from the warehouse management system of Tiel is used to create a database. 

These data are linked using different queries and relations between multiple datasheets. In order to make 

these relations, a software package is used. The data from the WMS systems are exported to Microsoft 

Excel and later imported into Microsoft Access. Microsoft Access is a popular relational database 

management system for creating and managing client database applications. It is packaged with 

Microsoft Office Professional, which combines the relational Microsoft Jet Database Engine with a 

graphical user interface. It allows reasonably rapid development because all database tables, queries, 

forms, and reports are stored in the database. From a programmer's standpoint, one of the advantages of 

Access is its relative compatibility with various programming languages that may be utilized within its 

environment to add new functionality to the programs, such as SQL, Macros, and Visual Basics for 

Application (VBA). For this research, Microsoft Access is used to store and link the data provided from 

the WMS of Tiel. In this way, queries can be formed to link the different tables and eventually make 

analyses.  

UML, a unified Modelling language, is used for visualizing, specifying, and documenting the 

components of data systems. UML is a standard way to diagram computer systems or databases. It helps 

the developer visualize the different relationships between different pieces of software to more 

efficiently plan development. The input data from the WMS of Tiel is used to form a database in 

Microsoft Access. The database structure is seen in figure 4 as a UML to the extent of the object-oriented 

analysis. The database that forms the parametric model of Tiel contains the data of the distance travelled 

(Booked Movements), orders, orderlines, time measurements (Booked Movements), pick locations, and 

product characteristics. The data tables from WMS are all modified and connected through different 

data relations. For example, each order had one OrderID, consisting of multiple orderlines. Each 

orderline of the according order can be linked through the OrderID from both tables. In this way, a 

database is created in which multiple queries in SQL are run to give new data insights the WMS did not 

provide. In the next chapter, we will discuss these findings regarding the operations and context of the 

warehouse in Tiel.    
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Figure III-4 – UML of the Access Database of Tiel 

4.5  Conclusion  
In conclusion, the current state analysis gave a lot of insights into the current operations and 

processes that occur in the warehouse of Tiel. The background of the warehouse in Tiel was discussed. 

This explained confident choices in strategy and operations. Next to that, an additional context analysis 

pointed out that the warehouse's context depends on several variables. One of these variables was the 

order characteristics that the next chapter will investigate using data from Tiel. The contingency 

approach, which was briefly mentioned, will also be further discussed when proposing the method of 

this study. 

Furthermore, the processes were elaborated using several analysis techniques, such as IDEF0, the 

swim lane diagram, and the outbound logistics flow charts. These techniques make it possible to 

visualize and assemble all the processes that occur during the outbound logistics in Tiel at one glance. 

The warehouse management system (WMS), which Nedcargo uses, was explained and made it possible 

to collect the data in a database, which collects all the warehouse data, order data, and picking activities. 

This data should provide the input for multiple analyses, which quantify the retrieved processes. So, 

now that we analysed the current state of the e-commerce warehousing in Tiel. We can start by 

answering the following question: 

What are the different process variables that occur in the outbound logistics in a current operational 

warehouse of Nedcargo? 

It is noticeable that the outbound logistics at the current operations exist out of picking and 

packing. Researchers of Nedcargo previously redesigned the packing operations, and one of the 

conclusions of that design study was that the picking operations must be in symbiosis with the packing. 

The functioning of one depends on the other. This is visualized using process Modelling techniques and 

gives an overview of all the processes that occur in Tiel. This current state analysis gives the possibility 

to improve the processes and realize new strategies and operations. The first step to concretize these 

goals is to quantify the process variables and obtain more insights from the collected data on the current 

state of e-commerce operations at Tiel. This will be performed in the next chapter using the compiled 

database presented in paragraph 4.4.  
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5. Data Analysis 
The previous paragraphs gave an extensive overview of all the processes and the data 

collection of the operations in Tiel. This research focuses on the context in which the warehouse 

operates, and its purpose will be more explicit in the next chapter. But first, data analysis must be 

performed on the context and operation data of the warehouse in Tiel. This is to obtain more insight 

into how the handling is performed and the environment Nedcargo operates. This can be used to figure 

out or substantiate confident new design or strategy choices for the new warehouse configurations of 

the Haaften warehouse. Several aspects of the order data will be discussed per paragraph.   

 

5.1 Order Characteristics 
In the previous chapter, the context in which the warehouse operations operate was emphasized. 

One of these context factors was the order characteristics that the warehouse must handle. For a further 

understanding of the current state, the order characteristics of Tiel are being analysed. The analyses are 

being made by using the software packages of Microsoft Excel in combination with PowerPivots, 

Microsoft Access, Java, and SPSS. The data has been collected from the WMS ‘Boltrics’ from 01/03/21 

till 08/10/21 

Table III-1. Amount of SKU picks in Tiel warehouse operations 

Total Orders Total SKU Picks Mean Mode Minimum Maximum 

36551 104090 2,85 1 1 33 

 

Table III-2. Amount of Colli picks in Tiel warehouse operations 

Total Orders Total Colli Picks Mean Mode Minimum Maximum 

36551 254498 6,72 2 1 260 

 

Table III-3. Amount of Colli per SKU in Tiel warehouse operations 

Total SKU Picks Total Colli Picks Mean Mode Minimum Maximum 

104090 254260 2,36 1 1 260 

 

In the above tables, the different order characteristics of the e-commerce orders in Tiel are 

shown. In table 1, the amount of SKU picks are displayed. Here can be seen that the mean of the SKU 

picks per order is almost three, but the mode is only 1 pick. The data set mode is the number that occurs 

most frequently in the order set. This can be explained by looking at table 4, which shows the exact 

amount of picks per SKU and the associated amount of colli, which is then collected per SKU visit. 

Table 2 shows the characteristics of the amount of colli that has been picked during the measured period. 

Per order, an average of 6,72 colli has been collected, but the mode is two colli. Therefore, the gravity 

of the orders is much lower than the maximum amount of colli once picked of 260. This will be shown 

in more detail further in this chapter. Table 3 shows the amount of colli that is picked per SKU visit. 

With a mean of 2,36, and yet again with a mode of 1. To have a more detailed look at the colli per SKU 

picked, we have to look at table 4.  
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Table III-4. Order characteristics Tiel with the amount of SKU and Colli picks   

Amount of SKU picks  

Amount of Colli 1 2 3 4 5 6 7 8 9 10 Total 

1 5984          5984 

2 4105 2209         6314 

3 1629 1426 1126        4181 

4 1260 1004 746 565       3575 

5 501 542 600 466 261      2370 

6 700 428 480 391 262 166     2427 

7 63 232 286 299 248 145 110    1383 

8 278 234 256 244 189 157 96 75   1529 

9 28 105 192 210 178 130 105 55 46  1049 

10 357 134 155 156 161 134 86 58 36 23 1300 

Total 14905 6314 3841 2331 1299 732 397 188 82 23  

 

In table 4, the number of SKU visits per order and the number of colli that the order consists of 

are contrasted. It’s been chosen to only look at 10 colli picks because the gravity of the colli per order 

consists of only 1 to 10 colli. From the amount of SKU picks perspective, it can be seen that the mode 

(as seen in table 1) is 1 SKU visit. This means that the picker for those specific orders only has to visit 

1 SKU location and pick an amount of colli. Also, for the e-commerce orders in Tiel, the most common 

order consists of only 1 colli per 1 SKU location, namely 5984 orders. From the amount of colli 

perspective, it is seen that most orders consist of 2 colli, namely 6314 orders. Mostly picked from only 

1 SKU location. Next to that, it can be assumed that an order is less likely to consist of a higher amount 

of colli than that of a less amount. To give a better overview of the likelihood of the amount of SKU 

visits and colli per order, tables 5 and 6 are provided.  

Table III-5. Characteristics for SKUs per Order 

SKUs Amount of Orders Percent Cumulative Percent 

1 15426 42,20 42,20 

2 6789 18,57 60,77 

3 4422 12,10 73,88 

4 3060 8,37 81,25 

5 2024 5,54 86,79 

6 1467 4,01 90,80 

7 1045 2,86 93,66 

8 754 2,06 95,72 

9 492 1,35 97,07 

10 356 0,97 98,04 

 

As we can see in the above table, the number of orders that only consist of one SKU visit account 

for over 42 percent. Next to that, it can be seen that also over 80 percent of the order consist of only 4 

or fewer SKU visits. It is, therefore, less likely that a picker has to visit more than 4 SKU locations for 

one picking trip. Nevertheless, a picker tour consists of four picker trips (or orders), and we will discuss 

that later on in the data analysis of Tiel. This can be explained due to the e-commerce environment the 

Tiel warehouse operates. E-commerce orders trigger a trend that is more likely to consist of fewer 

products and, therefore, fewer SKU visits for a picker. Figure 5 shows the cumulative percentage of the 

number of SKU visits in a line graph. Here is seen that very few orders consist of more than 16 SKU 

(99,86% of the orders consist of 16 or fewer) visits, and as mentioned beforehand that 80 percent of the 

orders will not exceed the amount of 4 SKU visits.  
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 Figure III-5 – Cumulative percentage of Number of SKU picks per Order  

The below table shows the percentage share of the number of orders that consist of that particular 

number of colli. Table 2 taught us that the mean of the colli per order is 6,72, and its mode is 2 colli per 

order, just as can be seen in the above table. Also, more than 80 percent of the orders consist of only 10 

or fewer colli per order. If that is combined with the characteristics of the SKU per order, it can be 

concluded that over 80 percent of the total orders will be less than 4 SKU visits, with most of the time 

not more than 10 colli picks. Another interesting finding is that almost seventeen percent of the orders 

consist of only one colli, which does not differs much from the mode of colli picked 2. This characteristic 

can be used to provide a more efficient batching strategy for the future state.  

Figure III-6 – Cumulative percentage of Amount of Colli per Order  

 

Table III-6. Characteristics for Colli per Order 

Colli Amount of Orders Percent Cumulative Percent 

1 5984 16,37 16,37 

2 6314 17,27 33,65 

3 4181 11,44 45,08 

4 3575 9,78 54,87 

5 2370 6,48 61,35 

6 2427 6,64 67,99 

7 1383 3,78 71,77 

8 1529 4,18 75,96 

9 1049 2,87 78,83 

10 1300 3,56 82,38 
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Table III-7. Order characteristics Tiel with the amount of SKU and total Colli picked 

 

Amount of SKU picks  

Amount of Colli 1 2 3 4 5 6 7 8 9 10 Total 

1 5984          5984 

2 8210 4418         12628 

3 4887 4278 3378        12543 

4 5040 4016 2984 2260       14300 

5 2505 2710 300 2330 1305      11850 

6 4200 2568 2880 2346 1572 996     14562 

7 441 1624 2002 2093 1763 1015 770    9681 

8 2224 1872 2048 1952 1512 1256 768 600   12232 

9 252 945 1728 1890 1602 1170 945 495 414  9441 

10 3570 1340 1550 1560 1610 1340 860 580 360 230 13000 

Total 37313 23771 19570 14431 9337 5777 3343 1675 774 230  

 

  

Table III-8. Characteristics of total Colli picked 

Colli Amount of Colli Percent Cumulative Percent 

1 5984 2,44 2,44 

2 12628 5,14 7,58 

3 12543 5,11 12,69 

4 14300 5,82 18,52 

5 11850 4,83 23,34 

6 14562 5,93 29,27 

7 9681 3,94 33,22 

8 12232 4,98 38,20 

9 9441 3,85 42,05 

10 13000 5,30 47,34 

 

The total amount of colli picked per type of SKU and Colli combination is shown in the above 

tables. Here, the mode of the total colli picked is with an order where 6 colli needs to be picked. This 

table can be used to determine which type of order could take the most amount of time to be completed. 

5.2 Product Characteristics  

 

In table 9, we see the product characteristics of the fast movers in Tiel. The 10 most visited 

SKUs are displayed on the left, and on the right, the SKUs were the most colli picked. As you can see, 

there is a difference in ranking per SKU visit and in colli picked. Tables 1 and 2 in appendix A compare 

the SKUs on their ranking per SKU and Colli for both fast movers categories.  

 

Table III-9. Average colli per pick of fast-movers of total SKU Picked and total Colli picked 

Product Name Ranking 

SKU 

Avg. Colli/Pick Product Name Ranking 

Colli 

Avg. Colli/Pick 

DE MELKPOEDER ZAK 1 1,38 DE ESPR MED ROAST 1 2,63 

DE CACAO FANT BLUE 2 1,27 DE ESP DRST100%ARA 2 2,38 

DE ESP DRST100%ARA 3 2,38 PICKW GR TEA LEM PRO 3 3,28 

DE ESPR MED ROAST 4 2,63 DE MELKPOEDER ZAK 4 1,38 

DE CAFE MILC LIQ 5 2,34 DE CAFE MILC LIQ 5 2,34 

DE WOODEN STIRRERS 6 2,37 DE WOODEN STIRRERS 6 2,37 

DE SUIKERSTICKS 7 1,90 PICKW ROOIB ORIG 7 3,03 

DE P. CUP BLCK 8 1,78 LOR PROMESSO MILC 8 4,46 

PICKW GR TEA LEM PRO 9 3,28 PICKW ENGLISH PROF 9 3,18 

PICKW FOR FRT PROF 10 2,60 PICKW FOR FRT PROF 10 2,60 
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The above tables show the affinity analysis of the SKUs in Tiel. What is meant by affinity? 

Product affinity analysis shows which SKUs are most often ordered together. Knowing which SKUs are 

mostly picked or ordered together can give a better idea of how to optimize product storage in your 

warehouse (Kofler et al., 2014). The affinity analysis tool by John Bartholdi III (2016) gave the 

possibility to do such analysis for all the orders that have been processed in Tiel. The results are given 

in the tables above. Table 10 shows the SKU pair with the highest percentage of being ordered together 

and also completes the order. This means that the order exists out of two orderlines. This is the case for 

197 orders out of the 346 times they were being ordered together. Table 11 shows were more than 1 

million combinations of SKU pairing and that DE MELKPOEDER ZAK and  DE CACAO FANT 

BLUE were the most often picked together in orders. In over 6% of these orders, the order was 

completed. There is a choice of slotting these SKU locations near each other in order to reduce travel 

distance (Garfinkel, 2005). 

 

5.3 Picker Movement 
 An analysis has also been made about the pickers' movement in the warehouse. Each picker tour 

has been analysed, and the results of that analysis are displayed in Table 12. As can be seen, the mean 

SKUs that are visited in each batch is 11,29, and the mean amount of colli collected in those batches is 

26,82. The scan time shows the time between the first and last scan of colli. The tour time is the total 

time that the tour has costs. The drive time back to the packing depot is added to the scan time, which 

gives the tour time. The last two columns show the average speed at which the pickers move through 

the system. It stands still to pick the colli at the specific SKU most of the time.   

Table III-10. Affinity analysis of SKUs in Tiel Warehouse for Amount of Completed Orders 

Total Amount of Unique SKU Pairs 1048576   

SKU-1 SKU-2 Amount of Orders  Amount of 

Completed Orders  

% of Completed 

Orders 

DE CAFE MILC LIQ DE SMOOTH RST LIQ 346 197 56,94 

DE MELKPOEDER ZAK DE CACAO FANT BLUE 2049 133 6,49 

DE ESP DRST100%ARA DE ESPR MED ROAST 697 129 18,51 

DE MELKPOEDER ZAK DE ESPR MED ROAST 703 122 17,35 

DE MELKPOEDER ZAK DE ESP DRST100%ARA 741 113 15,25 

DE MELKPOEDER ZAK DE INST GO OR UTZ 654 107 16,36 

TP SUMA CAFÉ MLK TP SUMA CAFÉ AUTOTA 194 103 53,09 

DE CACAO FANT BLUE DE CAFE MILC LIQ 204 95 46,57 

TP FR.VLG VOLLE MELK DE ESPR MED ROAST 281 66 53,09 

DE INSTANT CLASSIC DE MELKPOEDER ZAK 361 64 46,57 

Table III-11. Affinity analysis of SKUs in Tiel Warehouse  Amount of Orders 

Total Amount of Unique SKU Pairs 1048576   

SKU-1 SKU-2 Amount of Orders  Amount of 

Completed Orders  

% of Completed 

Orders 

DE MELKPOEDER ZAK DE CACAO FANT BLUE 2049 133 6,49 

PICKW GR TEA LEM PRO PICKW ROOIB ORIG PRO 1022 4 0,39 

PICKW ROOIB ORIG PRO PICKW FOR FRT PROF 1018 3 0,29 

PICKW GR TEA LEM PRO PICKW FOR FRT PROF 1004 2 0,20 

PICKW ENGLISH PROF PICKW GR TEA LEM PRO 836 5 0,60 

DE MELKPOEDER ZAK SUIKER AUTOM. ZAK 828 17 2,05 

PICKW ENGLISH PROF PICKW FOR FRT PROF 822 0 0,00 

PICKW ENGLISH PROF PICKW ROOIB ORIG 799 5 0,63 

DE SUIKERSTICKS DE LICHT&ROMIG MELK 796 43 5,40 

PICKW EARL GREY PICKW ENGLISH PROF 785 5 0,64 
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Table III-12. Picker Tours Data Results Tiel 

Total Tours: 5468 Total Orders: 22278 Picker Cart Speed (km/h): 5,78 

Total SKU Visits: 61678 Total Colli: 146469    

       

 SKU Visits Colli Picked Scan Time (s) Tour Time (s) km/h Scan km/h Tour 

Mean 11,29 26,82 676,49 752,32 1,84 1,54 

Median 10 22 501 571 1,61 1,41 

Mode 8 15 251 608 2,27 1,28 

Std. Deviation 5,75 18,82 595,81 616,961 1,12 0,83 

Skewness 1,14 2,87 2,22 2,12 1,80 1,29 

Minimum 1 2 21 31 0,07 0,07 

Maximum 44 298 3556 3558 9,91 7,38 

 

The table below shows the distance travelled per picking tour. The mode of this distance is more 

representable because it shows the distance travelled that occurs the most per picking tour. Long 

and shorter picking tours more influence the mean, and therefore, the mode is more representable 

for comparing it in the future state. As can be seen in the table, the mode of the picking tours in Tiel 

is 264 meters.  
 

Table III-13. Distance travelled per Picking Tour  

Total Measurements:   5468    

 Distance travelled (m)    

Mean 243,79    

Median 248,22    

Mode 264,00    

Std. Deviation 92,63    

Skewness 0,50    

Minimum 29,17    

Maximum 969,91    

 

5.4 Time Measurements 
 The time measurements focus on the picking activities of a picker. The picking time per SKU 

can be distinguished into two-time measurements: the fixed time per SKU and the variable time per 

colli. The fixed time per SKU is the time the picker needs at every SKU stop. For example, the scan 

time of the SKU, disembarkation time, and search time. Table 14 shows the results of the fixed time per 

SKU of the valid data in Tiel. Valid data means the times that the picker performs the stops correctly, 

so no loss of time due to, i.e., forgetfulness of scanning.  

Table III-14. Fixed Time per SKU of Valid Data  

Total Measurements (SKU picks): 92903   

Total Colli: 199435   

 Fixed Time per Colli (s)   

Mean 23,50    

Median 17,23    

Mode 16,00    

Std. Deviation 20,19    

Skewness 1,94    

Minimum 1    

Maximum 120    
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There is another time measurement in the warehouse of Tiel measured. That is the time between 

picking tours or idle time. Idle time incorporates the sign-off time of the picking cart, de-, and attachment 

of old and new picking cart, etc. In the data of Tiel, the breaks were incorporated in this measurement. 

In this manner, a full picking day of 8 hours was analysed. The average time between two picking tours 

is almost 6 minutes.  

Table III-15. The time between Picking Tours   

Total Measurements:  7638    

 The time between tours (s)    

Mean 325,84    

Median 207,00    

Mode 159,00    

Std. Deviation 415,16    

Skewness 3,95    

Minimum 1    

Maximum 3542    

 

5.5 Performance Measurement 
 The performance of the pickers in the Tiel warehouse is measured for each month and is reported 

in the average amount of pickers and average colli picked per hour, their total colli picked, and the total 

picking hours. The productivity of the pickers of Nedcargo is measured in the average colli picked per 

hour, and as we can see, it is on an average of 113 colli per hour. This productivity is achieved by an 

average of 4 pickers for all analysed picking days.  

Table III-16. Performance per Month 

Month Amount of 

Picking Days 

Avg. Amount of 

Pickers 

Avg. Colli Picked 

per Hour 

Total Colli Picked Total Picking 

Hours 

Mar 23 5,04 90,64 25141 282,21 

Apr 20 5 110,20 19378 180,71 

May 20 4,15 117,04 17796 160,45 

Jun 22 4,14 106,37 26070 254,27 

Jul 21 3,33 112,22 17684 158,87 

Aug 22 2,90 126,07 15752 130,73 

Sep 22 3,18 122,19 19630 163,65 

Oct 5 4 128,49 5184 41,93 

Total 155 3,96 112,46 146815 1372,83 

 

In tables 3, 4, and 5, the average performance for three different picking days is shown in 

appendix A. These tables prove that the number of pickers active for a picking day is very randomly 

determined. This can explain the disparate average number of pickers seen in the table above. The total 

colli picked should determine how many pickers should be active in combination with the productivity 

reached in the warehouse. This analysis, therefore, makes it clear that this should be considered in the 

new configurations. Thus, to decrease the number of pickers by increasing productivity and have insight 

into the number of pickers needed. 

  



59 
 

5.6 ABC Analysis  
 The final analysis of the acquired data of Tiel is the ABC analysis. The ABC analysis helps to 

classify each SKU and how often it is picked. This classification is made by defining if an SKU is an A-

product, B-product, or C-product. Group A products are the most critical warehouse products, namely 

the best sellers. Followed by B-product and C-products. The inventory turnover of Nedcargo’s products 

is determined on respectively 75%, 20%, and 5%, which means that A-products provide 75% of the total 

turnover in the warehouse. This can be seen in table 16. Here can be seen that 64 products cause almost 

75% of the inventory turnover in the warehouse. Insight into the ABC distribution allows the warehouse 

to create and implement a strategic strategy to optimize its layout. The ABC-analysis table below is 

based on the SKU visits. The ABC analysis can also be made for the amount of colli picked, which is 

displayed in the appendix.  

Table III-16. ABC-analysis of SKU visits per product in Tiel  

 A-Products B-Products C-Products   

Total Products 64 95 192   

Share of Products 18,2% 27,07% 54,70%   

Share of SKU Visits 74,8% 20,13% 5,09%   

 

 Next to that, it can differ per type of category how many colli is picked. IT could occur that, for 

example, the A-products are picked in less quantity than the C-products. Therefore the analysis is made 

on the colli picked per category of SKU in tables 17, 18, and 19. As seen in the tables, there is a clear 

distinction in the amount of colli picked per category. It is more likely in Tiel that A type of SKUs is 

picked in larger quantities than that B and C. The chance that only 1 colli is picked increases significantly 

when an SKU belongs to a “lower” category than A. This product share of colli is a characteristic of the 

order.   

Table III-17. Colli picked share for A-products SKU visits  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 37436 27022 11155 1557 549 28 

Share 48,15% 34,76% 14,35% 2,00% 0,71% 0,04% 

 

Table III-18. Colli picked share for B-products SKU visits  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 10975 6803 2718 299 124 9 

Share 52,44% 32,51% 12,99% 1,43% 0,59% 0,04% 

 

Table III-19. Colli picked share for C-products SKU visits  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 3012 1494 622 116 50 0 

Share 56,89% 28,22% 11,75% 2,19% 0,94% 0,00% 
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5.7 Current State Model of Tiel  
 Before proceeding with this research method, the current state as described must be 

implemented as a model. This should be done as it allows for comparing whether new strategies, designs, 

layout, or operations choices for Haaften are valid and verified based on the current state model. 

Therefore a simulation model representing the current state warehouse of Tiel has been made to make 

it possible to measure the effects of future state configurations for Haaften. This paragraph explains how 

the process of creating an accurate model is described.  

 The outbound logistics processes and data analysis of Tiel is now precise, and this must be 

transformed into a simulation model. To obtain the performance of the real-world operations, only then 

in the form of simulated data. The model has been implemented using Microsoft Excel Visual Basic for 

Applications (VBA). This object-based programming language for Microsoft Excel 2019 allows the 

Modeller to automate processes and control them with multiple application aspects. This powerful built-

in programming language allows you to write your functions or commands in an Excel spreadsheet.  

 

Figure III-7 – Data from Tiel Access Database,which shapes the Current State Model 

Figure 7 shows the data that is gathered in order to form the current state model of Tiel. The 

data of distance travelled is compiled by the database in Access 2019 of Tiel and showed that this is a 

mode of around 264 meters per picking tour. The data of all the orders have been analysed and can show 

there is a mean of 2,85 SKU per order and an average of 6,72 colli per order. The average number of 

orders for a picking day in Tiel is around 180 orders with 1006 colli. The data of movements is how 

each orderline is picked. The data analysis showed that this is performed using the shortest route 

algorithm when switching aisles. As stated, the pickers first pick all the colli that need to be picked per 

aisle before switching to the next aisle with the shortest route. This is collected in the data of movements, 

and based on that data, the velocity of the picking cart is determined at 5,7 km/h. The time measurement 

is the last data that is gathered in order to establish the current state model. The time measurements are 

the fixed time per colli, the variable time per colli, and the idle time per picking tour. The fixed time and 

idle time can be seen in paragraph 5.4. These data of time measurement are used to form the current 

state model. The variable time is the time needed per colli, which Nedcargo’s Supply Chain department 

conducted research into. They stated that Nedcargo’s pickers that for each colli that needs to be picked, 

the “extra” time is continuously distributed between 6 and 9 seconds.  

 They are based on the data gathered during the data analysis and the current state analysis. 

Where the processes, strategies, designs, and resources were analysed. The model of Tiel can be 

modelled, and real-life average orders can be simulated into the model. This gives the following results 

for the productivity of an average picking week with every 10 iterations.  
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Table III-20. The results of the current state model based on the performance of an average Tiel Day 

 Simulated Day 1 Simulated Day 2 Simulated Day 3 Simulated Day 4 Simulated Day 5 

Performance in Colli/Hour 116,6 114,4 117,2 117,1 118,1 

Avg. Batching Distance (m) 331 303 297 278 288 

 

Table III-21. The average results of the Tiel warehouse. 

 Average Day Tiel  

Avg. Performance in Colli/Hour 112,4 

Avg. Batching Distance (m) 264 

 

 

5.7.1 Verification and Validation 

 Model verification and validation is an enabling technique for the development of computational 

models that can be used to generate warehouse predictions with a high level of certainty. In order to 

apply the current state model for configuring the future models, it must be verified and validated. 

Verification is determining that the simulation model performs as intended. Validation is concerned with 

determining whether the conceptual simulation model accurately represents the real-life model. It can 

be stated that verification aims that the current state model has no programming error, so it is made 

efficient and more user-friendly. Therefore it must accurately represent the Modeller’s conceptual 

description of the current state of Tiel. Validation aims that the model is an accurate representation of 

the real world from the perspective of Nedcargo.  

 Now the current state simulation model has been programmed. It must be checked whether the 

model can be verified. This can be done by (1) checking if the model generates any errors. (2) comparing 

the final simulation outputs with analytical findings for the real-world system, and (3) via animation. 

Firstly, the code is checked to see whether any errors are made in the code. Because it represents the 

Tiel warehouse, the data of time movement and time measurement is known. It s checked whether these 

two aspects were programmed the same in the current state model as in the WMS. This process is 

relatively easy because both models use the spreadsheet's same order layout. Next to that, it must be 

checked whether the analytical findings from the current state analysis were implemented in the model. 

This includes the storage, layout, and strategy characteristics. They must be the same in the model as in 

Tiel. This includes the same storage of SKUs, the same width and length of the aisles, FCFS strategy, 

etc. This was verified when a walk-through of the model was performed. This corresponding confidence 

of the simulated data compared with Tiel can be used to verify the results. Lastly is the animation, for 

the reason that Excel can visualize what happens with the data. IN this manner, a reference can be made 

to the model implementation to see if it is implemented in the same way as the WMS of Tiel. 

 The validation process of the current state model is based on discussion and interaction with 

experts during the phase of modelling the simulation model. Validation can be achieved when the 

experts discuss the model while designing it. If it interacts with the client throughout the process, and if 

it can be supervised. This is done by weekly meetings with the supervisor expert of Nedcargo, which 

could validate if specific processes were implemented correctly. Next is the comparison of the simulated 

data with the real-world data. It was chosen to simulate an average working day in Tiel. And as can be 

seen in the tables above, first of all, the data of the simulations are in the same range, and no outliers are 

detected. This means that the model does it the same way for each iteration. Next to that, if compared 

to the real-life performance and batching distance, it can be seen that all of the simulated data is a bit 

higher in performance, but not more than 5%. This means that the obtained results lie within the 

reliability of the 95% confidence interval of the average performance in Tiel (106.8-112.4-118.1, see 

tables 20 and 21).   
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5.8 Conclusion  
 This chapter focused on the data analysis of the current state. To find out how the different 

characteristics of the warehouse in Tiel are categorized. First, to quantify the processes that were 

discussed in the previous chapter. Secondly, to investigate whether specific findings out of data can help 

for configuring the future state. Thirdly, a current state model was configured with the help of the data 

analysis. Based on the current state analysis, the collected data, and the data analysis, a model could be 

created which represents the warehouse of Tiel. This current state model can simulate the processes that 

occur in the warehouse and gives them according to performance. This performance is verified and 

validated so that the model is accepted as a simulated representation of the Tiel warehouse. This model 

attributes to the following sub-question to be answered.  

What are the different performance measures of an order-picking warehouse, and how can they be 

quantified?  

 The performance indicators were discussed earlier in the literature analysis. In this chapter, we 

have quantified them for the warehouse in Tiel. As stated, the performance of the warehouse is measured 

in productivity per hour, or the average amount of colli that is picked per picker. The data analysis 

quantified this productivity, resulting in the average productivity of 113 colli per hour in the warehouse 

of Tiel. The other performance measure that was simulated and analysed is the average batching 

distance. This is the distance covered by the picker for each batch consisting of four orders. This was 

also verified, validated, and considered plausible. 

In the next chapter, we will further elaborate on more performance indicators and how these will be used 

in the new configurations of Haaften. 

Lastly, the data analysis aimed to give an insight into the current order characteristics of the e-commerce 

operations of Nedcargo. To partly answer the following sub-research questions  

What are the current characteristics of the orders at Nedcargo’s e-commerce warehouses, and how will 

they evolve in time? 

The data analysis gave us multiple insights into the current characteristics of the orders at 

Nedcargo’s e-commerce warehouse in Tiel. This by looking at the order characteristics, product 

characteristics, picker movement, performance analysis, and ABC-analysis of Tiel. The data analysis 

gave the means to obtain insights, which can help to improve new configurations for Haaften. These 

paragraphs answered the current characteristics of Nedcargo’s e-commerce warehouse in Tiel. The next 

chapter will elaborate on how these will evolve in time.    
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6. Method 
This study aims to research the uncertainty aspect of the order characteristics on different design 

configurations of the warehouse in Haaften. A contingency approach is used to connect different 

decisions concerning warehouse configurations in the e-commerce concept of Haaften. The contingency 

approach focuses on the importance that the processes and structure of the design should match with the 

internal and external environment it operates in, in other words, the context in which it is placed. This 

is all to improve the overall performance.  

The proposed method will be explained in the following paragraphs.  

 

6.1 Contingency Approach 
The contingency research approach is based on two assumptions. First, there is no ideal way to 

organize, for warehouses that can mean that there is no universally acceptable management structure or 

system that applies to all warehouses in every scenario. Secondly, the most successful organizational 

structure, or in this case, configuration, should be appropriate for the environmental operating 

conditions. Contingency theory is the central theoretical perspective on such organizational 

contingencies. Lawrence and Lorsch (1967) were the first to point out that organizations whose structure 

fitted their environment had higher performance and created the theory. Central to the theory is the 

concept of the fit between structural and environmental characteristics of organizations (Donaldson, 

2001). Sousa and Voss (2008) pointed out that contingency studies consist of three types of variables: 

(1) contingency variables, which represent the context, (2) response variables, which represent the 

organizational actions to respond to the context, (3) and performance variables, which measure the 

effectiveness of the operations of the system. Thus, applying the contingency theory in this study, we 

propose that a warehouse system's performance depends upon the fit between its configuration structure 

and the context the warehouse operates.  

Kembro et al. (2018) stated that it is emphasized in many recent studies that the role of a 

warehouse in meeting its customers’ expectations is growing. Mainly due to the shorter lead times and 

e-commerce trend, it has become more common to rely on the functioning of a warehouse to fulfill the 

client’s wishes. Kembro et al. stress that more research is needed to analyse and test managerial practices 

and solutions. Particularly “the need to understand where certain configurations might fit better and 

which future path to pick” Warehouse configuration refers to the combination of operations, design 

aspects, and resources (Kembro and Norrman, 2020; see also, e.g., Rouwenhorst et al., 2000; Tompkins 

et al.,2010; Bartholdi and Hackman, 2016; Frazelle, 2016).  

 

In the figure below, it is visualized what is meant by the configuration of a warehouse as 

discussed in the context analysis in 4.2. It is a combination of its operations, design, and resources. This 

figure is well known in research studies about warehousing, but what Kembro et al. ( 2020)added to the 

figure is the context in which a warehouse configuration operates influences its handling. Those 

contextual factors are shown in the green box and consist of the customer, product and order 

characteristics, demand profile, assortment, and volume.  They stated that if a warehouse wants a steady-

state and robust system, it needs to understand and highlight the various contextual factors that influence 

the selection of a warehouse configuration.  
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Figure III-8 – Conceptual Contingency Framework for Warehouse Configuration (Kembro & 

Normann, 2020) 

 This research tries to implement this way of thinking in a case study for Nedcargo. The 

contingency approach will help in this regard. The main research question is based on the outbound 

logistics of a warehouse and order uncertainty. How can we link these two to the figure above? The 

outbound logistics are seen in the warehouse operations of the configuration. It is seen that storage, 

picking, sorting, and packing are part of outbound logistics. These processes will be involved in the 

contingency approach as the configuration of the warehouse in combination with the design and 

resources used for these processes. Next to that is the order uncertainty mentioned in the main research 

question. Therefore, this can be seen as a contextual factor that should fit. As seen in the figure, order 

characteristics are seen as a contextual factor. Therefore, this study will focus on the contextual factor 

of order characteristics and how the performance will react to different warehouse configurations 

operating in these contexts. The following section will explain how these context of order characteristics 

is quantified and used.  

 

 

6.2 Experimental Plans  
In order to investigate the effect of contingencies on warehouse configurations performance, 

scenarios are created of different variables of order characteristics. Each scenario can be used to create 

a dummy order data set or a fictitious order set. The dummy data set contains records with the same 

content and layout as an accurate production data set, but all the data is fictitious. The contingency 

variables will shape the data according to the scenario.  

Order characteristics are a contextual factor in the operations of a warehouse. The warehouse’s 

operations and design together form the configuration of the warehouse. The choice of configuration in 

a specific context consequently leads to a specific performance. Therefore, it is explicitly stressed that 
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there is a match between context and configuration that influence performance. This dummy data set 

can test whether a particular context scenario of order characteristics works better in a chosen 

configuration.  

The configurations are based on literature findings and on observations of the current state in Tiel 

for Haaften III. But the scenarios are chosen by using Nedcargo’s expertise.  The variables of the 

scenarios are all based on probability. The different contingency variables that are being used for the 

scenarios are: 

1. SKU per Order 

2. ABC-Ratio 

3. Number of SKUs 

4. Colli per SKU  

These variables together form the context in which Haaften III can operate. Confident configuration 

choices can perform better than other configurations based on the order characteristics’ contextual 

factors. So for a better understanding of potential configuration choices, it can be beneficial to look at 

the context in which it has to operate in.  

6.2.1 Contingency variables  

All these scenario variables are based on probability. These probabilities are based on the current 

state of Nedcargo's e-commerce operations in Tiel and chosen deviations from this study’s perspective 

and those out of literature. We will discuss them one by one. 

SKU per Order: 

SKU per 

Order 1 2 -- 3 4 -- 8 8 -- 10 11 -- 20 20 -- 50 

Distribution 1  25% 20% 28% 17% 7% 3% 

Distribution 2 42% 31% 18% 7% 2% 0,05% 

Distribution 3 50% 34% 11% 4% 1% 0,02% 

Distribution 4 45% 19% 21% 10% 4% 1% 

 

The above table shows the 4 levels of distribution of which one can occur in a scenario. 

Distribution 2 is the current characteristics of the probability of SKU per order in Tiel. It is based on the 

probability of how many orderlines an order exists.  

ABC-Ratio:  

ABC-Ratio A B C 

Level 1 10% of SKU 30% of SKU 60% of SKU 

Level 2  18% of SKU 27% of SKU 55% of SKU 

Level 3  25% of SKU 32% of SKU 43% of SKU 

 

After the SKU per order characteristics of the order are determined, the next step is to look if 

the product is an A, B, or C product. ABC analysis is an inventory management technique that 

determines the value of inventory items based on their importance to the warehouse. The ABC-ratio and 

ABC inventory turnover is based on previous data from the Tiel warehouse, which is level 2 in the table. 

The share of SKU visits for this characteristic is 75/20/5, which means that 18% of the SKUs account 

for 75% of the SKU visits. The characteristics of 75/20/5 will be given as a constant.  
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Number of SKUs 

Number of SKUs  

Level 1 350 SKUs 

Level 2 500 SKUs 

Level 3  750 SKUs 

 

After determining if the orderlines consist of an A, B, or C product, it has to be chosen which, 

according to SKU, has to be picked. In order to acknowledge this information, it is necessary to know 

how many SKUs are available in the warehouse. It is chosen to vary the number of SKUs on three levels, 

namely 350, 500, and 750 SKUs. Currently, Nedcargo has an e-commerce warehouse with 350 different 

products, so 350 possible SKU locations. It is chosen not to vary to a level less than 350 due to the 

current strategy of Nedcargo of extending its e-commerce warehousing selection.  

Colli per SKU  

Colli per SKU Distribution 1 1 -- 2  3 -- 5 6 -- 10 11 -- 20 21 -- 50 51 -- 100 

 A 37% 37% 17% 5% 2,50% 1,50% 

 B 44% 34% 15% 4% 2% 1% 

 C 54% 27% 12% 4% 2% 1% 

 Distribution 2 1 -- 2  3 -- 5 6 -- 10 11 -- 20 21 -- 50 51 -- 100 

 A 48% 35% 14% 2,00% 0,71% 0,04% 

 B 53% 33% 13% 1,38% 0,50% 0,04% 

 C 57% 28% 12% 2,19% 0,94% 0,00% 

 Distribution 3 1 -- 2  3 -- 5 6 -- 10 11 -- 20 21 -- 50 51 -- 100 

 A 53% 36% 9% 1,5% 0,50% 0,01% 

 B 59% 34% 6% 0,80% 0,19% 0,01% 

 C 69% 27% 3% 0,5% 0,10% 0% 

 Distribution 4 1 -- 2  3 -- 5 6 -- 10 11 -- 20 21 -- 50 51 -- 100 

 A 60% 22% 15% 2,0% 1% 0,05% 

 B 51% 31% 16,2% 1,50% 0,30% 0,01% 

 C 30% 29% 28% 6% 5% 2% 

 

After all the previous 3 steps, the final characteristics of the order are determined by how many 

colli the orderline consists of. Based on the data analysis of Tiel, it is chosen that the amount of colli per 

order is based on whether the orderlines consisting SKU is an A, B, or C product. It occurred out of the 

data analysis that there is a difference in the amount of colli picked per type of product, so in this manner, 

the probability also differs for the scenarios. There are 4 levels of distribution of probabilities for the 

type of product seen in the above table.  

6.2.1 Dummy Data Set 

Each order set will consist of 300 orders. This is chosen to be constant because the used 

performance measure is colli picked per hour. So if we increase the order total, this will only increase 

the picking time and not the colli picked per hour. How an order is characterized is dependent on the 

scenario. The algorithm of how the order is formed will be based as follows:  

First, an order is created – i.e., this is order 212 of 300 – first, the number of orderlines (SKU 

per order) in the order is determined – then for each of the orderlines, it is determined if it is an A, B or 

C product, this is dependent on the ABC-ratio - after this, the algorithm will decide which exact product 

it is. This depends on how many SKUs are in the warehouse – the last step to complete one orderline is 
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to determine how many colli has to be picked for that product. This is based on the accompanying 

probabilistic distribution of the type of product. – this process is repeated for every orderline until all 

300 orders are completed.  

This should create a dummy order data set, which can be used to test different deterministic 

configurations on how it responds to a particular context. Based on this, it can be said that the scenarios 

are being used as experimental plans. Further elaboration on the model's work will be given in the next 

chapter.  

6.2.2 Experimental Plans 

As mentioned beforehand, in order to form such experimental plans or scenarios, four different 

variables are used to point out the contextual factor of order characteristics in a warehouse. Two of those 

variables, ABC-ratio, and total SKUs, consist of 3 levels, and the other two, SKU per order and colli per 

order, consist of 4 different levels. Thus, a total of 3*3*4*4 = 144 experimental plans can be established. 

They are displayed in the table in appendix B.  

The choice has been made only to perform a dummy order data set for 5 different experimental 

plans. Nedcargo is choosing these 5 scenarios. They have to decide which scenario they find the most 

plausible or exciting to investigate and test on different configurations for Haaften III. These contextual 

experimental plans are scenarios 50, 107, 10,77, 92 and 123  

  

6.3 Proof of Configuration  
  The proof of concept, or in this thesis’ case configuration, constituted the scope of this research 

project. As part of a robust systems engineering process, it is critical to conduct a proof-of-concept initial 

study to identify potential system limitations in order to develop an understanding of the expected 

usefulness of the system before incurring additional costs (e.g., software development efforts).  As told 

in the contingency approach chapter, we address a warehouse concept as a configuration. So from now 

on, we will talk about a proof of configuration approach.  

 In the figure below, the method proposed in this research is visualized. On the left, the 

contingency variables of the order characteristics are shown. The scenario experiment generation model 

is shown in the first black box, and on the left, the three configuration models are shown. The previous 

paragraphs pointed out the importance of this study of the contingency variables translated into 

experiments. The contingency variables together are formed into various scenarios, out of which the 

experts at Nedcargo chose six plausible scenarios for them. These scenarios are transformed in 

experiments by using the scenario experiment generation model. The outcome of this model results in 5 

experiments for each scenario. This can also be seen as a week of orders which are the input for 

operations at a warehouse. The output of the scenario model will function as the input of the 

configuration models.  

 The proof of configuration approach in combination with the contingency approach is pursued 

because it can prove that specific configurations better fit and perform in certain contexts. Therefore 

Nedcargo can use that knowledge for their decision-making in design, operations, strategies, etc., for 

their new warehouse in Haaften. These configuration models must represent the outbound logistics of a 

warehouse; thus, storage, layout, picking strategy, routing, and equipment must be modelled within the 

models. Each of the configurations differs from the other. The aim is to prove whether a particular 

context performs better or worse, given the configuration it operates in. This can be called proof of 

configuration.  
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Figure III-9 – Overview of the Method of this Study 

6.4 Performance Measures 
Figure 9 also shows that the output of the configuration model is the performance measure. As 

is stated during a contingency approach, there are three types of variables. The contingency variables 

are being used to model the experiments. The response variables are defined in the configuration model. 

And the performance variables, or key performance variables (KPI), are metrics associated with 

measuring the warehouse’s performance in outbound logistics. These KPIs can be used to monitor the 

efficiency of the operations and can uncover potential problems, manage risks and find ways to optimize 

the workflow. There is a distinction between quantitative KPIs and qualitative KPIs in this study.  

6.4.1 Quantitative KPI’s 

KPIs measure performance and quantitative are the most straightforward KPIs. They are 

measured solely by a number. In warehouse logistics, there are a lot of performance indicators available 

for measurement. This way, it is necessary to choose the right indicators for the proper analysis. This 

study aims to see if specific configurations perform better under certain contexts. But which indicators 

can provide the correct answer to this question? With a combination of consultation with the expert of 

Nedcargo and what is found in literature about performance indicators of warehouses, a couple of KPIs 

have been selected. Because the picking operation can primarily be measured in numbers, most of the 

KPIs involve picking.  

The first quantitative KPI is the picking time. Picking time means the number of hours, minutes, 

or seconds the picking operation account for a specific order day. This is the total amount of time needed 

to complete every order. This differs per scenario because more SKUs have to be visited or more colli 

have to be picked. Therefore, this picking time is influenced by multiple factors in the system and is a 

result of it. Factors that can influence the picking time are the pickers' picking speed. Pickers have a 

fixed amount of time and a variable time per order. The fixed amount of time is the time that is needed 

to get out of the reach truck and scan the SKU in order to start picking. Each time a picker visits an SKU 

of an order, this is a fixed time. The variable picking time of a picker is the time that is needed per colli. 

This is less than the fixed picking time but increases if more colli needs to be picked. Nedcargo did some 

research to quantify these numbers, which will be further discussed when the model's working is covered 

in the next chapter. The last factor that influences the picking time is the driving time of the picker. This 



69 
 

differs per routing strategy and batch. It covers the time needed to complete the trip to collect all the 

orders in the batch.  

That brings us to the following quantitative KPI, which is the total distance covered. Each 

experiment consists of 300 orders that need to be picked in batches of four. The total distance that the 

pickers need to cover to collect all the orders is measured in the model. It is beneficial for Nedcargo that 

this distance is as low as possible. This can mean that an efficient picking strategy is adopted and that 

there is not much loss of time due to a greater travel distance. 

One of the most critical indicators of efficiency in a picking warehouse is the productivity of 

the pickers. This is measured in the amount of colli picked per hour. Each picker has a performance that 

is measured in colli per hour. If this productivity increases, the same amount of colli can be picked in 

less time. Therefore, it is very beneficial to have a colli per hour as high as possible. This can be achieved 

by having an efficient picking strategy, a more favorable layout, a better storage strategy, and much 

more. Is this also affected by the context of the warehouse? Which this study aims to show. Higher 

picking productivity can also result in fewer pickers needed to complete an order day.  

The following KPI is the number of pickers that are needed. In a Nedcargo warehouse, pickers 

work 8-hour shifts which means that if there are two pickers, they can pick an order day that requires 

less than 16 hours of picking time. The model also aims to give an insight into the number of pickers 

needed, which does not happen in today’s operations. This can mean that a prognosis can be made for 

future operations as to how many labor hours will be needed in a certain period. This can be translated 

into costs and thus provide cost estimation and possible savings from these insights.  

The last quantitative KPI that is measured is the average batching time. As mentioned in the 

current state analysis, is that Nedcargo batches their order in quantities of four. This is to reduce the 

distance that needs to be travelled. It is, therefore, interesting to have. As a result, an insight into the 

average time needed for each batch. This is influenced by multiple factors such as distance and 

productivity. But it can also reflect for a warehouse manager to check if the pickers are collecting the 

orders in the right way. It gives a possibility that when the model is translated into real-life to check if a 

picker reaches its productivity or not. But also gives an insight if the batching strategy is working or not.  

These are the five quantitative KPIs that will be investigated. They will function as an output of 

the configuration models. The next chapter should envision how they are influenced and differ per 

context when the models are described in more detail.   

6.4.2 Qualitative KPI’s 

Qualitative KPIs are typical characteristics of a process of business decision and are not measured 

by numbers but expressed descriptively. They tend to focus more on expert experiences and feelings 

and the value placed on them. A couple of qualitative KPIs are being used in this research. 

Firstly, the possibility of congestion is a qualitative performance indicator that is looked into. When 

a warehouse is congested, it is so crowded with traffic or people that it hinders freedom of movement. 

If there is a lot of warehouse congestion, it can affect the ability to take care of fulfilling customer orders 

promptly. Multiple causes can lead to an increase in congestion. In this study, congestion was considered 

to be a qualitative indicator. This is for the reason that congestion has to be measured using flow analysis. 

Flow analysis can be modelled using agent-based Modelling and is not in the scope or method for this 

research. Nevertheless, using several insights from practice and literature, congestion can be detected 

early. The potential congestion can be visualized by reflecting on the heat maps of the SKU visits and 

the demand per SKU seen in appendix A, figures 11, and 12.  

The second and last qualitative performance indicator is the possibility of automation. Warehouse 

automation is the process of automating the movement of inventory within the warehouse without (or 

minimizing) human assistance. For outbound logistics, this can be achieved through AGVs or other 
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innovations. Nedcargo would like to retain the option of switching to more automation in the warehouse 

in the future. Therefore, the configurations developed in this study will have to take this into account. 

6.5 Conclusion 
  Now that the method of this study is known, the research questions need to be reflected upon. 

The proposed method is based on combining the contingency approach and proof of configuration. The 

contingency approach focuses on that warehouses must fit their context. The contingency approach 

consists of three variables: the contingency variables, the response variables, and the performance 

variables. The contingency variables represent the warehouse context, and in this study, the context is 

the uncertainty of the order characteristics. An experiment generation model is developed to create 

dummy order data (experiments) to use as an input for the configuration models. The configuration 

models can be seen as the response variables. The design, operations, strategy, layout, and storage 

together form these configurations. The configuration models must show if a different configuration 

setup leads to other performance in specific context experiments. These performances are measured in 

quantitative and qualitative performance indicators. This all to give proof that specific configurations fit 

better in a particular context. This proof can help Nedcargo in future decision-making concerning their 

new projected warehouse in Haaften. Based on the proposed method, the following sub-research 

question can be answered: 

What method can model the proposed context scenarios and configurations of an e-commerce 

warehouse? 

Therefore, the method is a contingency approach to prove that specific configurations perform 

differently based on their context. Four models will be drawn up, one experiment generation model, 

which transforms the scenario’s into a dummy order day. And three configuration models, each 

representing the outbound logistics of a warehouse. The output of those three models will be the 

performance indicators, which will be analysed and drawn to conclusions upon. Figure 10 shows the 

knowledge gap which can be filled with this research. As can be seen, there is a strong link between 

organizational concerns and the contingency theories that have been found in theories. But it lacks to 

translate these concerns and ideas into practical applications, which this study aims to accomplish (Betts 

2003). 

  

Figure III-10 – Visualisation of the knowledge gap to create a practical application which is in line 

with the contingency theory of warehousing 
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IV. Integrate 
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7. Scenario Modelling  
This chapter will take a closer look at the chosen scenarios and how these scenarios are 

converted into experiments. In order to achieve this, a model is needed to generate the experiment. First, 

the chosen experimental plan of the scenarios will be discussed, and then the model's functioning will 

be explained. As mentioned earlier, the scenarios will be based on simulating the possible context of 

where the warehouse in Haaften will operate. In appendix X, all of the experiments are being described 

and will be referred to if needed.   

7.1 Experimental Plans 
In chapter 6.2, the different scenarios were discussed and visualized in the appendix. Nedcargo was 

given the task of selecting the six most plausible and exciting scenarios for the Haaften III warehouse. 

They had the possibility to choose out of a variety of scenarios (appendix B) and chose scenarios 10, 

107, 10, 77, 92, and 123. These scenarios will be transformed into an experimental plan to create a 

dummy order data set for each scenario. These dummy data sets are being generated by a model that is 

made to create a dummy order list from the chosen contextual factors of each scenario. Five of those 

experiments will form the experimental plan of the scenario and will each be simulated through the 

configuration models, which will be elaborated further in this thesis.   

 In this paragraph, first, the different experimental plans of each scenario will be discussed, and 

after this, the model will be explained. The results, namely the experimental plans, will serve as an input 

for the configuration models. This is to eventually look at if a particular context of a warehouse has any 

influence on its performance.  

7.1.1. Experimental Plan of Scenario 50 

The first scenario for which experimental plans are generated is scenario 50. The different variables 

a scenario consists of to point out the warehouse context are SKU per order, ABC-Ratio, number of 

SKUs, and Colli per SKU. The first scenario that the experts of Nedcargo have chosen is that of scenario 

50. The SKU per Order is distribution 2 (see chapter 6.2.1), the ABC-ratio is level 2 (see chapter 6.2.1), 

the number of SKUs is 350 (see chapter 6.2.1), and the Colli per SKUs is based on distribution 2 (chapter 

6.2.1). Nedcargo chooses this scenario because it is based on the current order characteristics the Tiel 

warehouse operates in. As can be seen in the current state analysis, the distributions and the levels of 

the scenario variables are aligned with Tiel's in scenario 50. Thus, it can be seen as transferring the 

current client of Tiel towards the new potential configurations of Haaften to quantify whether new 

configuration choices have any effect and how much they will be. The model will each generate five 

experiments that form the experimental plan of scenario 50.  

7.1.2. Experimental Plan of Scenario 107 

The second scenario for which experimental plans are generated is scenario 107. The different 

variables a scenario consists of to point out the context of the warehouse are SKU per order, ABC-Ratio, 

number of SKUs, and Colli per SKU. In scenario 107, the SKU per Order is distribution 3, the ABC-

ratio is level 3, the number of SKUs is 750, and the Colli per SKUs is based on distribution 3. Nedcargo 

chooses this scenario since it represents clients for whom they can potentially provide the warehousing 

in the e-commerce section of Haaften. This order characteristics can suggest a client with many different 

products that need to be distributed, namely 750. Based on the SKU per order, it is more likely that 

customers of the client place an order which has fewer different SKUs per order than Nedcargo is 

currently accustomed to. Next to that, due to the ABC Ratio, more products will be ordered more often 

because this scenario profile has a higher percentage of A-products. The probability of picking a product 

will be higher because of this higher share of A-product. This is also combined with the number of SKUs 

stored in the warehouse. The last variable is that of the colli per order. Distribution 3 shows a higher 

probability for each type of SKU (A, B, or C) that less colli will be picked per SKU visit than at the 

current state.  
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7.1.3. Experimental Plan of Scenario 10 

The third scenario for which experimental plans are generated is scenario 107. The different 

variables a scenario consists of to point out the context of the warehouse are SKU per order, ABC-Ratio, 

number of SKUs, and Colli per SKU. In scenario 10, the SKU per Order is distribution 1, the ABC-ratio 

is level 1, the number of SKUs is 750, and the Colli per SKUs is based on distribution 2. Nedcargo 

chooses this scenario because its characteristics can represent clients with whom Nedcargo might do 

business. This order characteristic can refer to a client with many products and is likely to have many 

different products in a customer order. This is based on distribution 1 of the SKU per order. Next to that, 

in combination with the ABC Ratio, it can be established that fewer products are A-products, and 

therefore, the picker will travel to fewer locations. This is because most of the time, A-products are 

picked. The colli per SKU that is being picked is the same as in the current state.  

7.1.4. Experimental Plan of Scenario 77 

The fourth scenario for which experimental plans are generated is scenario 77. The different 

variables a scenario consists of to point out the context of the warehouse are SKU per order, ABC-Ratio, 

number of SKUs, and Colli per SKU. In scenario 77, the SKU per Order is distribution, the ABC-ratio 

is level 1, the number of SKUs is 500, and the Colli per SKUs is based on distribution 1. Nedcargo 

chooses this scenario because it could characterize a potential client in the contextual environment 

Haaften could operate. This scenario characterizes a client whose customer has a medium variety of 

product choices and mostly orders less SKU of which its A-products do not vary that much. Next to this, 

the amount of colli picked per SKU visit is based on distribution 1, which means that it is more likely 

that the customer orders a large amount of colli per SKU it orders. This means that the probability is 

higher per SKU visit than nowadays that a more considerable amount of colli has to be picked.  

7.1.5. Experimental Plan of Scenario 92 

The fifth scenario for which experimental plans are generated is scenario 92. The different variables 

a scenario consists of to point out the context of the warehouse are SKU per order, ABC-Ratio, number 

of SKUs, and Colli per SKU. In scenario 92, the SKU per Order is distribution 3, the ABC-ratio is level 

2, the number of SKUs is 500, and the Colli per SKUs is based on distribution 4. Nedcargo chooses this 

scenario because it could represent a potential client of theirs. This contextual character of the scenario 

is that there is an increased chance of an order with only one or a few SKUs to pick. Whereas the number 

of SKUs is medium, and its distribution level is the same as nowadays in Tiel. The colli per order differs 

from the other scenarios in the amount of colli per SKU visit. In the sense that the chances are 

significantly higher than if an A-product is taken, the customer often requires fewer colli. But with the 

C-products, which are ordered less, the required colli are significantly more likely to be ordered in large 

quantities. 

7.1.6. Experimental Plan of Scenario 123 

The last scenario for which experimental plans are generated is scenario 123. The different variables 

a scenario consists of to point out the context of the warehouse are SKU per order, ABC-Ratio, number 

of SKUs, and Colli per SKU. In scenario 123, the SKU per Order is distribution 4,  the ABC-ratio is 

level 2, the number of SKUs is 350, and the Colli per SKUs is based on distribution 3. Nedcargo chooses 

this scenario because it is plausible that these order characteristics could be the context of Haaften. 

Scenario 123 differs from the other scenarios regarding the SKU per order. In this scenario and thus in 

the experiments, the number of SKUs increases in terms of only a single SKU per order but decreases 

at the current levels for two or three SKUs per order. So its probability of either a small order or a larger 

one in terms of SKUs is increasing in this scenario.  

To conclude this paragraph, Nedcargo has opted to select the most diverse package of scenarios possible. 

This is so that each experiment of the scenarios could result in a dummy order data set, which could 

occur in the Haaften warehouse's future operation. Table 1 shows the results of the generation of 
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experiments, but to substantiate these results, we must first understand how the scenario model works. 

This will be explained in the next section.  

Table IV-0. Distributions and Levels per Scenario 

 SKU per Order ABC-Ratio Number of SKU Colli Per SKU 

Scenario 50 Distribution 2 Level 2 Level 1 Distribution 2 

Scenario 107 Distribution 3 Level 3 Level 3 Distribution 3 

Scenario 10 Distribution 1 Level 1 Level 3 Distribution 2 

Scenario 77 Distribution 3 Level 1 Level 2 Distribution 1 

Scenario 92 Distribution 3 Level 2 Level 2 Distribution 4 

Scenario 123 Distribution 4 Level 2 Level 1 Distribution 3 

 

7.2 Experiment Generation Model 
As mentioned, in order to generate the experiments based on the different order characteristics 

scenarios, a model must be created to generate a dummy order data set based on the various 

characteristics. The model is implemented by using Excel VBA in combination with macros and 

PowerPivot functions. Excel Visual Basics for Applications is a powerful built-in programming 

language that allows to code functions or commands in a spreadsheet. VBA is an extensible 

programming language made up of a core set of commands and extended on a per-application basis to 

work directly with objects in that application. In combination with macros, VBA makes it possible to 

create an experiment generation model to generate, based on the order characteristics of contextual 

variables, experiments. These experiments can be used as an input for the configuration models. This 

paragraph will explain step by step how this is achieved. 

Firstly the input of the model. The input consists of the contextual variables of the scenarios. 

The context in which a warehouse operates can vary in order characteristics. These before mentioned 

variables are SKU per Order, ABC-Ratio, Number of SKUs, and Colli per SKU. These four variables 

are defined based on probability, and each varies in 3 or for levels/distributions. Those variables together 

form the input of the model. In figure 1, a snapshot of the input dashboard of the model can be seen.  

Figure IV-1 – Dashboard of the Experiment Generation Model in VBA Excel 

Figure 1 above shows all the input variables and how they can be adjusted. Each of the input 

variables can be adapted to the Modeller's wishes. However, in this study, we have chosen to work with 

different levels in order to make a convenient choice as an expert. Nevertheless, one can also choose to 

deviate from the levels, but we will not go into that now. After the scenario variables have been inserted 

in the yellow cells, the “Generate Dummy Order Data Set” button can be pressed. This generation 

process takes about 30 seconds with an 8GB 1,80 GHz computer. The model's input must be 

complemented by variables considered constant in this research. Those two variables are mentioned 
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earlier: the number of orders for the dummy order day and the ABC inventory turnover. The number of 

orders is set at a constant of 300 per day. This was chosen as a constant to get the best possible 

assessment of the pickers’ productivity. This research aims to distinguish the different contexts of 

warehouses, and therefore, the demand must be constant to only focus on the order characteristics. And 

not on the demand characteristics. However, the model can change this number of orders dynamically. 

The second constant variable is the ABC inventory turnover, respectively 75-20-5 percent. This means 

that, for instance, with the ABC ratio in figure 1, 75% of the turnover in the warehouse is caused by 

18% of the products. This is given as a constant because, in warehousing logistics, this distribution has 

been investigated multiple times, and there is a general consensus on this ratio (Nallusamy et al., 2017).  

Now that the input of the model is clear, a further look into the processing step of the model is 

needed. The first step in the model is to determine how many SKUs are needed in each order. This 

process step is carried out for 300 orders. The model determines, based on the probabilities given as an 

input for SKU per Order, for each order how many orderlines it possesses. This gives a list of every 

orderline for the dummy order day. The second step of the model is that for each orderline generated, 

an SKU must be assigned if the SKU that needs to be picked is an A, B, or C product. This is based on 

the probability indicated in the ABC-Ratio variable and with the constant of the ABC inventory turnover 

ratio. When this step is completed, the model must assign a specific A, B, or C product to the orderline. 

So that is known which specific SKU needs to be picked for that orderline. This step is the most complex 

one in this scenario experiment generation model.  

The assignment of a specific product to an orderline is dependent on the probability that the 

specific type of product is chosen. First, it is therefore mandatory to know how many products of which 

type there are. Thus, the first step of the assignment process is to generate a list of the number of products 

of each type of product. In the experiment shown in figure 1, there are 350 SKUs with respectively an 

18-27-55% ABC ratio. This means there are 64 A-products, 94 B-products, and 191 C-products. 

Naturally, this changes with other input variables. The generated list gives an output of A1 till A64, B1 

till B94, and C1 till C191 products. The question then arises as to how the probability of a specific SKU 

being chosen is determined. For this reason, we have to go back to the data analysis of Tiel.  

In table III-5, where the product characteristics of Tiel are being displayed, we can see that there 

is a certain probability that an SKU is chosen. In order to allocate a certain probability to the fictional 

SKUs in the experiments in the experiment generation model, a different look has been made into this 

probability of the SKUs in Tiel. The warehouse of Tiel consists of 350 SKUs. Each SKU can also be 

seen as either A, B, or C. If we hold on to the same ABC inventory turnover, three types of distributions 

can be seen in the following three figures.  

Figure IV-2 – The probability of an A-product being picked in Tiel per SKU 
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 Figure IV-3 – The probability of a B-product being picked in Tiel per SKU 

Figure IV-4 – The probability of a C-product being picked in Tiel per SKU 

Each of the probabilities per type of SKU in the figures all adds up to a cumulative probability 

of 100%. In short, these 64 A-products provide for 75% of the inventory turnover, 94 B-products for 

205 of the inventory turnover, and 191 C-products for 5% of the inventory turnover. So in each type of 

SKU, there is a probability that a specific SKU is chosen. Looking back at appendix A table 1 of the 

data analysis of Tiel, we can see that in 6,8% of the SKU visits, the fastest moving product of the 

warehouse is picked. In this model, we call that product A1. The SKU most likely to be picked next has 

its own probability and is called A2, and so on. The same is done for the B-products and C-products. 

But how is this probability assigned in the model?  

The probability is based on a model fit to the figures above. Based on the historical data of Tiel, 

we will model fit this data based on an exponential decay which can be recognized. Next to that, this 

model fit can be scaled according to the number of needed products for each type. What is meant by 

exponential decay? This can be seen in the formula below.  

𝑦(𝑡) = 𝑎 ∗ 𝑔𝑝           (1) 

𝑤ℎ𝑒𝑟𝑒  

𝑦(𝑝𝑡) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑆𝐾𝑈 𝑝 𝑜𝑓 𝑡𝑦𝑝𝑒 t 

𝑎 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑠𝑡 𝑝𝑖𝑐𝑘𝑒𝑑 𝑆𝐾𝑈 

𝑔 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦  

𝑝 = 𝑆𝐾𝑈 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑒. 𝑔. 𝑓𝑜𝑟 𝐴: 1 𝑡𝑖𝑙𝑙 64)  
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The growth factor is based on the historical data in Tiel and is respectively 0,932 for A-products, 

0,987 for B-products, and 0,980 for C-products. The starting value a is based on the highest probability 

per type of product, so those of A1, B1, and C1. Based on this formula and based on the possibility of 

scaling this probability in the model, the model can decide which probability is assigned for each product 

in the dummy data set. The fitted models for the example figures can be seen in Appendix C.  

Now that the probability is known for each SKU, the model can assign a specific product to an 

orderline. So after it has been decided if an orderline consists of an A, B, or C product, now the model 

assigns a specific A, B, or C product. Therefore, the result can be that 1 order consists of 3 SKUs, e.g., 

A31, B44, and C107. If this is done for each orderline, the dummy order data set is almost completed. 

The last step that remains is to assign an amount of colli to each orderline. This is based on the product 

type of the SKU to visit. The colli per SKU distribution chosen in the input assigns, based on the 

probability of the colli per the product type, the amount of colli for each orderline. These processing 

steps together form the output of the model. 

Now that the processing of the model is explained, we can take a look at the output the model 

generates. A snapshot of the first 4 orders of the output of the example in figure 5 is shown below. As 

can be seen, the output consists of four variables, namely the OrderID, the Product Type, the Amount 

of Colli, and the ProductID. As can be seen below, Order 1 only consists of 1 SKU visit and 1 Colli to 

be picked of ProductID A6. Order 2 consists of two orderlines, or SKU visits, of A40 and A9. This list 

consists of all the orderlines of 300 orders. It can be seen as a fictitious day for a warehouse of a specific 

client with certain order characteristics defined in the input variables. The Export OrderList button 

makes it possible to save the dummy order data set as an input for the configuration models discussed 

in the next chapter. This is to quantify and visualize the strategy, layout, storage, and performance of a 

potential configuration of a warehouse where the dummy order list must be handled.  

 

Figure IV-5 – Snapshot of the output of the Experiment Generation Model 

 7.3 Verification and Validation 
Validation and verification are the two steps in any simulation project to validate a model. 

Validation is the comparison of two outcomes. Therefore is needed to compare the representation of a 

conceptual model to the existing system. If the comparison is valid, it is legitimate; otherwise invalid. 

Verification is the process of comparing two or more results to ensure their accuracy. Therefore this 

process requires comparing the model’s implementation and its associated data with the developer’s 

conceptual description and specification.  

Verifying the scenario experiment generation model was done by tracing the intermediate results 

and comparing them with the observed outcomes. Next to that, it was performed by checking the model’s 

output using various input combinations. Finally, the last technique that was used to perform verification 

was by comparing the final results with the analytic results. Using the PowerPivot function of Excel 

gave the possibility that after an experiment was generated to check whether it was in accordance with 

the scenario input. For each experiment, this was performed, and no outliers or deviations were found. 

The Power Pivot verification tool is implemented in the models and can be found in the deliverables.   
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To validate the data, it needs to determine the representativeness of the output of the model. This 

can be achieved by using several steps. First, it is determined how close the simulation output is to the 

actual system output. Table 1 shows the results of all the experiments combined per scenario. This table 

is being analysed with the real-world data in Tiel, which is the same as scenario 50. The average 

orderlines per order is in Tiel 2,85, and in the model 2,78, The average colli per orderline is in Tiel 2,36 

and in the experiment model 2,77, and lastly, the average colli per order which in Tiel is 7,71 and in the 

simulation 6,72. The five experiments that are averaged in the below table come very close to the real-

life data of half a year in Tiel, and no significant changes are shown. In order to ultimately converge, 

more experiments should be run. But this validates that the output comes very close to real-life data.  

Table IV-1. Order Characteristics per Scenario 

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 

 

Another step of validation is to design a model with high validity. This can be achieved using 

the following steps applied in the model design process. While designing, the model must be discussed 

with system experts at Nedcargo. So, the model must interact with the client throughout the process, and 

system experts must supervise the output. All these steps have been performed in the design of the 

model.  

7.4 Conclusion  
To conclude this chapter of the scenario experiment generation model, it is needed to reflect on 

sub-question 6 of this research: In which context can a future warehouse operate, and can various 

scenarios be envisaged in relation to the uncertainty factors that have been found? 

This sub-question can be distinguished into three parts. The first one is in which context can a 

future warehouse operate. As mentioned earlier, the operations of a warehouse are influenced by 

contextual factors and affect its performance. This being said, it is necessary to look into which 

contextual setting is applicable for a future warehouse of Nedcargo, in this case, Haaften III. The experts 

of Nedcargo were given a list of scenarios where the SKU per order, ABC-ratio of the SKUs, the amount 

of SKUS, and the colli per SKU are variables. The choice was given to select 6 given scenarios based 

on predetermined levels and distributions of the variables, which were applicable or interesting contexts 

to look further into. This answers that these scenarios are substantiated the potential context of a 

warehouse for Nedcargo. The envisaging of the scenarios was performed by designing a scenario 

experiment generation model. The order characteristic uncertainty factors were implemented as an input 

of the model in order to quantify and visualize what a potential order list would look like. This order 

dummy data set is the model's output and can be used to test whether specific configurations perform 

better and quantify the outbound operations. In table 1, the average result of 5 experiments per scenario 

of the model is shown. All these scenario outcomes of the model can be used to visualize a potential 

client, which Nedcargo can handle its distribution in an e-commerce warehouse.  

Now the contingency variables are transformed into experiments by the experiment generation 

model. The next step is to process these experiments by different configurations of warehouses which 

function as the response variables. It is therefore needed to quantify, design, and visualize its warehouse 

performance for different configurations. This will be discussed in the next chapter. 
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8. Configurations Modelling 
This research stresses that it is crucial to understand how various contextual factors influence the 

performance of a warehouse configuration, which, in the current paper, represents the combination of 

warehouse operations, design, and resources. Next to that, it should prove that the proposed 

configurations perform better (or worse) than the current state because of potential improvements found 

during the current state's data analysis. The proof of configuration method can therefore help improve 

future decision-making by realizing the quantification of configurations to demonstrate their feasibility. 

It can show that it has practical potential and shows if a specific throughput can be reached.  

Several steps need to be taken to determine which choices must be made to configure such 

warehouse configurations. The first step is requirement analysis. During a requirement analysis, it is 

determined how and what the expectations should be of the warehouse configurations for Haaften. This 

is mainly adjusted through consultation with Nedcargo. They can state several wishes that the possible 

configurations should achieve. Next to that, the current state analysis is being used to point out specific 

weaknesses in the current e-commerce warehouse operations. This is all because a lot of assumptions 

will come from the current state, and the configurations will be tailored for Nedcargo. This means that 

a lot of processes and choices will be assumed. Beneficial to the outcome, it should therefore focus on 

the weaknesses of the current state analysis and require changes to those weaknesses. Returning to the 

proof of configuration concept, implementing improvements in the current system as configurations can 

help to make it easier for design choices for Haaften. This all will be highlighted in the requirement 

analysis.  

In the following paragraph, multiple model assumptions will be made. Model assumptions denote 

the collection of clearly stated (or implicitly premised) conventions, - choices, and other specifications 

on which the configuration models are based. Assumptions about the data are made based on the 

relationship between different variables, processes, strategies, storage, layout, and resources. These 

assumptions are either based on the current state analysis or in consultation with the experts of Nedcargo. 

This is in order to make the model as complete as possible with a sufficient amount of certainty about 

several choices, conventions, and specifications. This will be presented as a list to the reader.  

The following paragraph will explain the different configurations that are being modelled. In this 

research, it is chosen to model three different types of configurations of warehouses. These 

configurations aim to quantify and visualize the potential outcome of performance factors. Again, these 

configuration choices will be based on consultation with Nedcargo and the findings in the requirement 

analysis. The processes and operations of the outbound logistics, which form the configuration, will aim 

to improve the current state and give insight into how they will react to different contextual influences. 

This section will focus on all the different design choices, picking strategy, routing strategy, storage, 

and layout of the warehouse. Together they form the configuration of the warehouse.  

After the configurations are determined, they are modelled. By using Excel VBA, in combination 

with macros and PowerPivot, three configuration models are created. These models will be explained 

by looking at their input, the processing steps, and output. The output of the model will form the basis 

for the evaluation part of this thesis. Then the results will be presented and analysed. In this section, it 

will be explained how the configurations are being modelled.  

Next to the configurations models, the current state is also being modelled. Primarily because for 

verification and validation of the models, it needs to be proved that the modelled data corresponds to 

the real-life data and if the model matches the concept proposed in section 8.3. If the obtained results 

can be verified and validated, good recommendations and conclusions can be constituted. The context 

in which the current warehouse of Nedcargo operates is known, so it will only be experimented with 

using the current context. This corresponds with scenario 50.  
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8.1 Requirement Analysis 
This paragraph will discuss how and what the expectations should be of the warehouse 

configurations. It should be analysed how the current state configuration could be improved based on 

literature findings, consultation with Nedcargo experts, personal expertise, and data analysis findings. 

This brings out the conditions for future state configurations to be met. The weaknesses of the current 

state will be discussed, and required improvements will be addressed.  

 The new warehouse requirements can be divided into functional and non-functional 

requirements. Each of those requirements will result in a baseline of requirements that the warehouse 

configuration must implant. The requirements should be necessary and sufficient. The difference 

between functional and non-functional is that functional requirements are what the end-user (client) 

specifically demands as basic facilities. All these functionalities need to be incorporated into the system. 

These are represented or stated in the form of input to the system, the operations performed, and the 

expected output. They are basically the requirements stated by Nedcargo, which one can see directly in 

the new configuration models. Non-functional requirements are mostly quality constraints that the 

system must satisfy and elaborates a performance characteristic of the system. It has been decided to 

retain many of the (non) functional of the current configuration of Tiel. This paragraph will, therefore, 

only deal with the new requirements. Namely, the ones Nedcargo has expressed and the new 

requirements which can be improved based on insights. Strategies are not included and will be 

elaborated on in the following paragraphs.  

The functional requirements are listed below in table 2 and explained afterward. 

Table IV-2. Functional Requirements of Configuration Models  

Functional Requirements of the configurations Explanation: 

-Productivity as high as possible  -Colli per hour as high as possible. 

-As few pickers as possible  -Not more pickers than needed. 

-Insight beforehand how many pickers needed  -Currently, they are randomly 

assigned based on the number of 

orders. 

-All orders picked in about 8 working hours  -Picking operations are based on 

an 8-hour work shift. 

-The layout must fit its context.   -The warehouse layout must be 

compatible with the context it 

operates. 

-1 SKU with 1 Collo type orders must be 

collected as a batch 

 -To decrease the packing time, 1 

SKU/1 Collo orders must be 

collected as a batch.  

 

One of the functional requirements of the configurations is productivity. The current state 

analysis showed that the productivity is an average of about 112 colli per hour. Nedcargo aims to 

increase this productivity in their new warehouse. This means there is a need for new strategies or 

policies that can raise productivity. The configurations, therefore, need to be improved in comparison 

with the current system in Tiel. This is all so that its productivity will increase. Expanding this 

requirement can also be stated that there should be as few pickers as possible in the warehouse if the 

productivity is higher, so fewer pickers are needed to complete all the orders. During the current state 

analysis, it was concluded that Nedcargo in Tiel’s operations does not have prior insight into the number 

of pickers required. This is one of the requirements that before the operations start must be explored. 

This insight into the number of pickers needed can decrease expenses and, therefore, is very interesting 

to look into.  

This is in line with another functional requirement for the configurations, and that is that all the 

orders must be finished in about eight working day hours. The picking operations in the warehouse can 

not take longer than those eight working hours. An example is that if an order day takes about 15 hours, 
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it needs 2 pickers to complete that order list for the day. On the other hand, if the picking operations 

take longer, i.e., 17 hours, three pickers are needed that order day.  

Another functional requirement is that the layout must be as compacted as possible. What does 

compact mean? As can be seen in the heat map of Tiel, the SKUs are widely stored in the warehouse, 

which means that the travelled distance of the picker increases per trip. In consultation with Nedcargo, 

based on these findings, the conclusion was drawn that the SKUs must be stored as compact as possible 

in new configurations. This must be seen from an aisle perspective. Use as few SKUs as possible in the 

least amount of aisles. Next to that, the layout must fit its context. This simply means that if 500 products 

need to be stored, there must be available SKU locations in the warehouse for the 500 products. Where 

the products are stored is a strategic choice and therefore not a requirement and will be elaborated on in 

the next paragraph.  

The following functional requirement is that orders which consist of 1 SKU visit and 1 collo to 

be picked must be collected in a batch. This is mainly a strategy but is also considered a functional 

requirement because the packing strategy will be adapted to this strategy. A design project conducted at 

Nedcargo before this study concluded that the packing operations would be more efficient if this strategy 

were implemented. An extensive explanation of this strategy will be given in the following paragraphs.  

Table IV-3. Non-Functional Requirements of Configuration Models 

Non-Functional Requirements of the configurations Explanation: 

Conventional racking is not necessary  It can be assumed that the 

conventional way of racking is not 

necessary.  

Future possibility for automation   The system should be adaptable to 

future automation possibilities. 

   

 

As shown in the table, there are not many non-functional requirements to consider. This is since 

the configurations are considered in the proof of configuration theory. This means that a broad 

perspective is maintained for proof of these configurations. If the performance and operations are 

known, more non-functional requirements must be considered for the actual design process. The first 

non-functional requirement that Nedcargo experts mentioned was that for the new configurations, the 

conventional racking was not necessary. It, therefore, was possible to look at smaller SKU locations or 

possibly 2-floor picking. This is non-functional because it is difficult to quantify this in the model but 

should be considered while creating the configurations. 

The following non-functional requirement is the future possibility of automation. In the long 

term, Nedcargo will be investigating automation in the warehouse. This means that it should not prevent 

this from being possible.  

These functional - and non-functional requirements together must meet the quality standards set 

by Nedcargo for the configurations. These features are determined based on consultation, literature 

research, and data analysis. The next step before crafting the configurations is the assumptions that need 

to be made. The assumptions are crucial to scope how comprehensive the configurations must be 

modelled and designed. The next chapter will elaborate on the assumptions made.  

8.2 Model Assumptions 
In the academic environment, making assumptions is vital as the research statement of the 

problem when determining the new configurations of the warehouse for Haaften. For the configurations, 

certain operations, strategy, design, and resource choices are assumed as accurate. This is based on 

literature findings, data analysis insights, current state analysis, and consultation with experts. The 

configurations can be built step-by-step to produce working configuration models when these 
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assumptions are known. Therefore, these model assumptions function as means for the functionality of 

the configuration models and must be chosen consistently and accurately. There are three types of 

assumptions, conceptual, mathematical, and numerical assumptions. Each category will be discussed.  

8.2.1 Conceptual assumptions  

 This class of assumptions concerns idealizations and simplifications of the warehouse 

configurations that are being modelled. A table is created with each of these assumptions numbered. 

The table is pictured below, and a further explanation of those assumptions will be presented in the 

table:  

Table IV-4. Conceptual assumptions of the configurations models.   

Conceptual Model Assumptions  Explanation 

1. The configuration models are based on the picker-to-goods warehouses' concept. For the configuration models, it is chosen to look at PTG 

warehouses. So the pickers move to the products that 

need to be picked in the configuration models.  

2. The pickers are human laborers. The pickers are humans in the configuration models and 

act like one. The data collected from Tiel can 

substantiate specific picker actions.  

3. Conventional rectangular layout (width and length of Haaften). The warehouse is a rectangular space. This is reflected 

in the context analysis.  

4. Pickers can move freely through the aisles. Pickers can move freely through the aisles and 

warehouse. In the model, congestion is not accounted 

for. Therefore the assumption is that the picker can 

move freely and do not have to wait for other pickers or 

warehouse employees.  

5. Picker ergonomics are not accounted for. The configuration models do not account for any 

ergonomics of the pickers. Basically, ergonomics is the 

way the job is performed, and employers can change 

their work to better suit the needs of their employees. 

Because of the proof of configuration method, it is 

chosen not to include ergonomics in the model.   

6. Product characteristics are not accounted for.  Nedcargo's current e-commerce warehouse is based on 

colli picks. That means that most of the items to be 

picked are already packaged. Those boxes to be 

collected are therefore considered quite similar to each 

other, and the same characteristics shall be maintained.  

7. Packing Station (P/D point) in the bottom left of the layout. Most warehouses have their packing station in the 

bottom left of the warehouse. This is also the case in 

Tiel. The model can dynamically change its packing 

station, but for the sake of this study, it is chosen that for 

each configuration model, the packing station will be 

positioned in the bottom left corner.  

8. Equipment tools same as in Tiel (scanner, picker cart, etc.) The equipment tools used in the configuration models 

will be the same as in Tiel. This is due to the fact that 

Nedcargo’s pickers are known with the equipment, and 

there is data available about the usage. Therefore, this 

data knowledge can be used to quantify the processes 

the pickers perform.   

9. No quantitative congestion restrictions accounted for.  This assumption can be considered together with 

assumption 4. In the configuration models, the delay 

due to congestion will not be accounted for.  

10. Storage, picking, and handling equipment always work correctly.  This is an extension of assumption 8. The model is not 

accounted for any deficiency or failures of equipment. 

It is therefore assumed that every piece of equipment 

used in outbound logistics is working correctly and 

consistently used. So no reliability issues.  

11. The inbound logistics of the warehouse are working correctly.     The inbound logistics are out of the scope of this study. 

Therefore in the configuration model, the receiving, 
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8.2.3 Mathematical assumptions  

 This class of assumptions concerns assumptions around the mathematical representation of the 

configurations that are being modelled. These are implicit or explicit choices about distributions and 

dependencies. This is also the choice of parameter fitting, which is done with the Experiment Model 

explained in section 7.2. A table is created with each of these assumptions numbered. The table is 

pictured below, and further explanation of those assumptions will be presented in the table 

Table IV-5. Mathematical assumptions of the configurations models.   

Mathematical Model Assumptions  Explanation  

1. Fixed time per colli has a uniform distribution. A more extensive explanation will be given in the next 

chapter, which explains the configurations. But it 

means that there is a particular distribution based on 

the data analysis of the current state that will be held 

in the configurations models. By the fixed time is 

meant the time each SKU visit takes. So for every stop 

for an SKU, each pick is in an order. Think of the stop 

time, scan time, search time, etc.  

2. Variable time per colli has a uniform distribution.  A more extensive explanation will be given in the next 

chapter. There will be assumed that a specific 

distribution is maintained for the variable time of an 

SKU visit. This distribution is based on the data 

analysis of the current state in Tiel. The variable time 

means the time each colli needs per SKU visit. Think 

of the picking time of one collo and the extra time 

needed if multiple colli needs to be picked at an SKU 

location.   

3. Idle Time of Picking tour has a uniform distribution A more extensive explanation will be given in the next 

chapter. There will be assumed that particular 

distribution of time is assumed or the idle time 

between picking tours. This distribution of idle time is 

based on the data analysis of the current state of Tiel. 

By idle time is meant the time that the complete orders 

are returned, the picker cart is disconnected, and 

preparation is made to pick up new orders.  

4. The speed of the human picker on the reach truck is constant The speed of the reach truck is known and is in the 

model taken as a constant. Because the accelerating, 

constant speed, and decelerating are explored together 

in the data analysis, it is chosen to set the speed of the 

reach truck as a constant. More about this in the 

explanation and quantification of the configurations.  

5. ABC-Analysis turnover is based on, respectively, a 75% - 20% - 5% distribution. As mentioned in chapter 7.2, the ABC analysis 

turnover is based on a 75/20/5 distribution. This means 

that every SKU considered an A product provides for 

75% of the volume turnover, respectively 20% volume 

turnover for B-products and 5% for C-products. This 

is implemented in the models together with the ABC 

ratio of the contextual factor of the scenarios. It is 

chosen based on the data analysis of Tiel, in which this 

put-away, and replenishment processes are considered 

as functioning correctly and should not cause any 

deficit in the outbound logistics processes.  

12. There is a safety stock on the 2nd level racks.  This is an inbound strategy choice of Nedcargo. This 

means that there is always enough stock because the 

pickers can replenish from the safety stock, which is 

located at the 2nd level of the racks where the SKUs are 

stored.  
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volume turnover distribution was found. This is also 

widely considered plausible in warehousing literature.  

6. If there is a cross-section aisle, this will be at 60% of the warehouse’s length. Nedcargo is familiar with a cross-section aisle. It is 

currently used in multiple active warehouses of them. 

A cross-aisle section is a horizontal lane through a 

vertical conventional racking layout. This assumption 

states that every cross-section aisle in the 

configuration model is located at 60% of the active 

length of the warehouse. This assumption is made 

because it is also used in the current states.  

 

8.2.2 Numerical assumptions  

 This class of assumptions concerns assumptions around the explicit selection of numerical 

values of the configurations that are being modelled. It represents quantitative choices that are there to 

be made in order to create a sufficient configuration model. Therefore certain assumptions are chosen 

as given in consultation with Nedcargo. A table is created with each of these assumptions numbered. 

The table is pictured below, and further explanation of those assumptions will be presented in the table 

Table IV-6. Numerical assumptions of the configurations models.   

Numerical Model Assumptions  Explanation  

1. 300 orders per day. The amount of orders that need to be handled 

in each experiment is set at 300 orders. It is 

chosen to keep a constant demand to see 

whether the productivity is dependent on the 

order characteristics and not on-demand 

characteristics. This is an essential assumption 

in this study. The models are nevertheless 

dynamic. Thus, future research can increase or 

decrease the number of orders.  

2. Three SKUs per location. A location is meant as a storage place for 

SKUs. E.g., in Tiel, it is possible to store four 

different SKUs in one location. For the reason 

that Nedcargo requires their warehouse to be 

more compact. It is chosen to store three 

different SKUs at each location. Therefore the 

width of the locations can be smaller.  

3. The 12 SKUs locations closest to the P/D point are reserved for the 12 most visited SKUs In the model, these SKUs will be referred to as 

AA-products. In the current state data analysis, 

it is seen that a small number, i.e., 12,  of 

products are picked much more often than the 

other products. Just as explained in the 

Experiment Generation model chapter, an 

exponential decay formula can be used to 

describe its SKU visit characteristics. Because 

it is unknown where the product must be placed 

in which context, it is therefore assumed that 

the 12 “AA” products are stored the closest to 

the P/D point.   

4. A batch consists of 4 orders.  The batching strategy is a component of the 

configurations that can be improved the most, 

as seen in literature, the data analysis, and 

personal belief. However, an assumption must 

be made as to how many orders a batch 

contains. In Tiel, they batch with an FCFS-

strategy, and the batches exist out of 4 orders. 

It has been decided to keep this batch size also 

at 4 orders so that the picker productivity can 
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Now that the three categories of assumptions are presented and explained. In addition to the 

Experiment Generation model, which explains how the contextual factors of order characteristics can 

generate a dummy order day, the requirements of the model are covered. We can start looking at the 

configurations. The input, the requirements, and the assumptions of the model are known. The following 

paragraph will elaborate on the different configurations and which strategy, layout, storage, and routing 

choices are made.  

8.3 Configuration 1 
In the following paragraphs, each configuration of a warehouse of Haaften will be elaborated 

on. The previous chapters focused, among other things, on warehouse literature and the current state 

analysis. Based on these insights, different configurational choices for the warehouse are being made. 

This is in combination with the requirements and assumptions raised by this study. These configurations 

can be seen as possible configurations for the new e-commerce warehouse of Haaften. As indicated, the 

context of the order characteristics of Haaften is currently unknown, and therefore different context 

scenarios must be investigated. These scenarios are chosen by Nedcargo and converted into experiments 

with the Experiment Generation model, presented in chapter 7. These experiments can be considered a 

dummy order data set, which will act as the input for the configuration models. So this contingency 

input, with the response variables of the configuration model, must eventually lead to the performance 

of the different configurations. This so-called contingency approach should enable this study to prove 

that specific configurations perform better or differently in a given context.  

This section is structured as follows: for configuration 1, its choice of layout, storage, picking 

strategy, and equipment will be elaborated. There are a total of three configurations, and each is a bit 

different from the other. All the operations, resources, and design choices have been made based on 

literature insights and improvements for the current state based on data analysis and in consultation with 

experts.  

8.3.1 Picking Strategy 

Firstly, we take a look at the picking strategy. The focus of configuration 1 is mainly on 

improving the picking strategy. In Tiel, we noticed that an FCFS (first come, first serve) batching 

strategy is followed and is stated to be inefficient. Both insights from Tiel and the found literature will 

determine the new batching strategy.   

This study considers three types of picking strategies: the so-called “SinglePick” strategy, the star aisle 

batch strategy, the First Come, First Serve strategy, and the SinglePick combined with the star aisle 

batch strategy. These strategies will be explained except for the FCFS strategy, which is already 

explained in the current state chapter.  

8.3.1.1. The SinglePick Strategy 

What is striking from the data analysis is that the majority of orders contain 1 SKU pick a 

moment from which 1 package is picked. In the 2021 data of Tiel, this equals 16% of the total orders, 

which can be seen in table III-6 and III-7. This type of order characteristic, consisting of just a few order 

lines with low collo quantities, are the biggest challenge for e-commerce retailers. Traditional picker-

to-goods warehouses such as Tiel are often ill-suited for these prerequisites (Boysen et al., 2019). A 

be copied. This is because now the pickers do 

not have to get used to the new batch size.  

5. The notation of the data will be the same as the WMS of Tiel. These assumptions are based on the numerical 

expression of the model. The assumption is 

made to record the notation of the data as 

similar as possible to Nedcargo’s current 

WMS. This is so that the data can be 

understood more quickly and easily.   
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possible different batch picking strategy will be explained, which can possibly help to address these 

types of order characteristics mentioned beforehand, namely the SinglePick strategy.   

 

In the current process in Tiel, this is still carried out based on one trip for the picker per four 

orders. So even if the picker only has to pick one collo from one SKU, that will be 1 of the 4 trips out 

of a tour. Although a trip consists of four orders, in practice, 4 colli could be picked up intended for 4 

orders. It may also be interesting for Nedcargo to see whether a different way of thinking could influence 

the entire pick and pack process.  

Suppose now that the choice is made to pick all 1 SKU with 1 collo order in a batch. Order batching 

means that orders are grouped into batches and picked in a single tour to save on travel time.  

This means that, on average, 36 orders per day in Tiel can be picked up in as few trips as possible, 

preferably 1 trip. This is possible because the packer does not need to look at which customer needs 

which product, but rather which product belongs to which customer. This is because the packer knows, 

with this type of order characteristic, that all the packages on the particular load carrier are equal to the 

number of shipping boxes it needs to be in. This will also reduce human error. This will create a shift 

from picking based on customer-to-product toward product-to-customer picking. An additional 

hypothesis could therefore be that the number of trips made by the picker will go down as a large number 

of orders can now be picked up in bulk. This strategy will be quantified in the models and shown the 

effect on the performance measures. So every SinglePick order (1 SKU with 1 collo) will be collected 

as a batch and will only consist of one tour instead of considering these orders as a separate trip, which 

the pickers currently do in Tiel. In appendix D, figure 1, a simplified way of thinking is illustrated in the 

SinglePick Strategy.   

 

 

8.3.1.2 The Star Aisle Batch Strategy 

Before we begin explaining this strategy, it is essential to mention that another author’s paper 

inspired it. Aboelfotoh et al. (2019) paper called “Order Batching Optimization for Warehouses with 

Cluster-Picking.” The paper focuses on optimizing the static order batching problem with multiple 

pickers. Before explaining the strategy and conclusions of this paper, It is important to mention that we 

have been in contact with Aboelfotoh et al. to ask for permission to investigate her findings further by 

using the algorithm proposed in her research. The algorithm is modelled in our way but based on her 

explanation of the model in the paper.  

The star-aisle batching strategy is a simplified aisle-by-aisle heuristic. The heuristic considered 

various parameters such as item location, order details, detailed layout of pick area, and the maximum 

number of orders allowed per batch. The heuristic is based on six steps which are shown below. 

Step 1: Define star aisle 𝑘 

Step 2: Generate star aisle vector 𝑋∗ 

Step 3: Generate order aisle vector 𝑋𝑖 for each order  

Step 4: Choose the first order for this assignment based on the minimum sum of squared distance 𝑆𝑖 of 

order 𝑖 
Step 5: Update the star aisle vector 𝑋∗ 

Step 6: Group next order 

For each order 𝑖, calculate its sum of the squared distance 𝑆𝑖 to star aisles and assign the order 

with the least 𝑆𝑖. 

Is the number of orders grouped greater than the maximum number of orders that van de 

assigned in one batch assignment? 

Then go to Step 1 

Else, go to Step 5 

 

𝑖 = 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 

𝑘 = 𝑏𝑎𝑡𝑐ℎ 𝑖𝑛𝑑𝑒𝑥 

𝑗 = 𝑎𝑖𝑠𝑙𝑒 𝑖𝑛𝑑𝑒𝑥 
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑠 

𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑖𝑠𝑙𝑒𝑠 

𝐵 = 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 

𝑁𝑎 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑖𝑠𝑙𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

𝐴𝑙𝑎𝑠𝑡 = 𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎𝑖𝑠𝑙𝑒  
 

 

 

This is all we need to know to understand the algorithm proposed by Aboelfotoh et al. (2019) 

and is adjusted to be configured for Nedcargo data as well. We will start by explaining the algorithm 

step-by-step.  

The algorithm starts by distinguishing the most frequently visited aisle by all orders and calls it 

𝑠𝑡𝑎𝑟 𝑎𝑖𝑠𝑙𝑒 𝑘. In the case of a tie, the heuristic chooses the smallest aisle number. During step 2, the star 

aisle vector 𝑋∗ = [𝑥1
∗, 𝑥2

∗ … 𝑥𝑎
∗ ] for each order is determined and 𝑥𝑗

∗=1, if order 𝑖 visits (star) aisle 𝑗. So 

if the 𝑗 is equal to k, and 0 otherwise. Step 3 determines the order aisle vector for each order index 𝑖.  

𝑋𝑖 = [𝑥1
𝑖 , 𝑥2

𝑖 … 𝑥𝑎
𝑖 ] 𝑥𝑗

𝑖 = 1, if order 𝑖 visits aisle 𝑗, and 0 otherwise. Step 4 determines the sum of squared 

distance 𝑆𝑖 between each order 𝑖 and the star aisles using the following equation. When for each order, 

this sum of squared distance is found in the order with the least amount of 𝑆𝑖 is denoted as order ℎ and 

is the first order assigned to the first batch. For clarification, a numerical explanation is given of the 

below formula with the input of table 7.  

𝑆𝑖 = ∑  

𝑎

𝑗=1

∑  

𝑎

𝑗∗=1

(𝑗 − 𝑗∗)2                             ∀𝑥𝑗
𝑖 = 1   ∀𝑥𝑗

∗ = 1  (2) 

 

Table IV-7. Order information for the example problem. 

Order 1 2 3 4 5 6 7 8 9 10 11 12 

Aisles 1,2,5 2 2,3,5 1,2 3,5 5,6 6 3,6 1,2,4 2,4 5,6 4,5 

 

Numerical example: Table 7 shows that order 3 requires packages from aisle numbers 2, 3, and 

5. Aisle 2 is the most frequently visited aisle; therefore, aisle 2 is defined as the star aisle. This translates 

for order 3 to 𝑥2
3, 𝑥3

3 , 𝑥5 
3 = 1 and 𝑥2

∗ = 1. Applying the sum of the squared distance equation from 

above, this corresponds to (2 − 2)2 + (3 − 2)2 + (5 − 2)2  and resulting in a total sum of square 

distance 𝑆3 of 10.  

Next, the star aisle vector 𝑋∗is updated in step 5 by checking the following conditions for all the 

𝑥𝑗
∗ elements in the vector, if 𝑥𝑗

∗ = 0 and 𝑥𝑗
ℎ ≠ 0, then change 𝑥𝑗 to equal 1, otherwise 𝑥𝑗

∗ remains the 

same. Finally, in step 6, it is determined which is the following order to group, again based on the sum 

of the square formula. Likewise, the order with the minimum 𝑆𝑖 is chosen in the following order to group 

and is denoted as ℎ. If the number of orders grouped in the current batch has reached the maximum 

capacity of the batch size, then return to step 1. Otherwise, return to step 5 and update the star aisle 

vector 𝑋∗ = [𝑥1
∗, 𝑥2

∗ … 𝑥𝑎
∗ ].  
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To clarify what the heuristic calculates for each step, we can present an example. Table 8 shows 

the implementation of the star aisle batch strategy on the example problem given in table 7.   

 

The heuristic in table 8 starts with defining the most frequently visited aisle of all the orders, 

which is in the example aisle 2. Then, the order to star aisle sum of squared distance is calculated for all 

aisles 𝑗 required by all orders for star aisle 2. Therefore, order 2 is the first order to be assigned to the 

first batch, based on a minimum sum of squared distance 𝑆2 of 0. Order 2 only consists of aisle 2, so the 

same sum of squared distance formula is held. Order 4 is assigned next to the current batch, using the 

same procedure as the 1st order assignment. Since order 4 requires aisles 2 and 1, the star aisles are 

updated accordingly to step 5 in order to include aisles 1 and 2. Order 10 is then assigned to the next 

batch, using the same procedure as the previous orders with 𝑆10 =0+4+1+9=10. As a result, the star aisle 

is still 2 but based on the previous order 10, aisle 4 is added. Finally, order 5 is assigned to complete the 

batch. Since the maximum orders per batch are reached for the current batch. The process starts again 

with the remaining orders at step 1 to define a new star aisle.  

The table below shows the final batching results using the star aisle batch heuristic strategy. The 

number of aisles visited gives an insight into the number of aisles to be visited and the  

 

Aboelfotoh et al. (2019) compared three different picking strategies. A mixed-integer 

programming method, the star aisle heuristic, and the First Come, First Serve strategy. They concluded 

that the FCFS is a fast and straightforward approach, but for every order size, it results in a significantly 

higher traveling distance which consequently increases the picking time in the warehouse. The following 

conclusion was that if more than 50 orders were in the data set, the MIP method did not produce a lower 

total travel distance than the star aisle heuristic. Even after a computation time, that was way more than 

the star aisle strategy. 

Table IV-8. Order information for the example problem. 

 Order i 1 2 3 4 5 6 7 8 9 10 11 12 

1st 

order 

j 1,2,5 2 2,3,5 1,2 3,5 5,6 6 3,6 1,2,6 2,4 5,6 4,5 

(𝒋 − 𝟐)𝟐 1,0,9 0 0,1,9 1,0 1,9 9,16 16 1,16 1,0,16 0,4 9,16 4,9 

𝑺𝒊 10 0 10 1 10 25 16 17 17 4 25 13 

 Order i 1 - 3 4 5 6 7 8 9 10 11 12 

2nd 

order 

j 1,2,5 - 2,3,5 1,2 3,5 5,6 6 3,6 1,2,6 2,4 5,6 4,5 

(𝒋 − 𝟐)𝟐 1,0,9 - 0,1,9 1,0 1,9 9,16 16 1,16 1,0,16 0,4 9,16 4,9 

𝑺𝒊 10 - 10 1 10 25 16 17 17 4 25 13 

 Order i 1 - 3 - 5 6 7 8 9 10 11 12 

3rd 

order 

j 1,2,5 - 2,3,5 - 3,5 5,6 6 3,6 1,2,6 2,4 5,6 4,5 

(𝒋 − 𝟐)𝟐 1,0,9 - 0,1,9 - 1,9 9,16 16 1,16 1,0,16 0,4 9,16 4,9 

(𝒋 − 𝟏)𝟐 0,1,16 - 1,4,16 - 4,16 16,25 25 4,25 0,1,25 1,9 16,15 9,16 

𝑺𝒊 27 - 31 - 30 66 41 46 47 14 56 38 

 Order i 1 - 3 - 5 6 7 8 9 - 11 12 

4th 

order 

j 1,2,5 - 2,3,5 - 3,5 5,6 6 3,6 1,2,6 - 5,6 4,5 

(𝒋 − 𝟐)𝟐 1,0,9 - 0,1,9 - 1,9 9,16 16 1,16 1,0,16 - 9,16 4,9 

(𝒋 − 𝟒)𝟐 9,4,1 - 4,1,1 - 1,1 1,4 4 1,4 9,4,4 - 1,4 0,1 

𝑺𝒊 24 - 16 - 12 30 20 22 34 - 30 14 

Table IV-9. Order information, for example, problem. 

Assignment  Batch 1 Batch 2 Batch 3 

Order 2 4 10 5 6 7 11 12 9 3 8 1 

Aisles 2 1,2 2,4 3,5 5,6 6 5,6 4,5 1,2,6 2,3,5 3,6 1,2,5 

Aisle Visited 1,2,3,4,5 4,5,6 1,2,3,5,6 

𝑁𝑎 5 3 5 

𝐴𝑙𝑎𝑠𝑡  5 6 6 
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On the other hand, the star aisle heuristic computation time stays low and for more than 50 

orders gives less total distance than the other methods. Therefore, this strategy is beneficial because this 

study consists of 300 orders and has 30 experiments to run. In which each experiment has 10 iterations. 

The computation time has to be fast, and the order size is of a size that performs better than optimization 

models. For this reason, the star aisle batch heuristic could be a good fit for the configuration of Haaften. 

Therefore it is chosen for configuration 1 to implement the star aisle batch strategy into the model.   

8.3.1.3 The Star Aisle Batch - combined with the SinglePicks Strategy 

Since the SinglePick strategy has not been quantified in literature, it is more interesting to see 

how it will perform if combined with the star aisle batch instead of the FCFS strategy. This is based on 

the findings in the literature that heuristics or optimization models outperform FCFS. Therefore for this 

study, it is chosen to also combine the two in configuration 1. This means that first, the SinglePick orders 

are batched and after the remaining orders are batched following the star aisle heuristic. This can be seen 

as a new picking strategy and, therefore, will be compared with both the star aisle strategy and the FCFS 

strategy in different warehouse contexts. To see whether it has any effect on the performance of the 

warehouse. Both its quantification and exploration have not yet been seen in warehousing literature.  

8.3.1 Routing Strategy 

The routing strategy is a strategy by which the route through the warehouse is determined. The 

route is the path of the picker in which you pass all items of an order. The orders obviously influence 

the route it has to pick and determine the length. Just as in the current warehouse of Tiel, the shortest 

route strategy is maintained for configuration 1. The shortest path solution finds the shortest path 

between two nodes in the warehouse, with the nodes representing the SKUs that have to be visited. The 

shortest route algorithm is valuable since it can be used at each SKU to determine the shortest distance 

between that location and the rest of the order’s location. This is reasonably practical. The starting point 

of the order is always at the P/D point, which is located in the bottom left of the warehouse. It moves to 

the nearest aisle, from which SKUs need to be picked in the batch. Important to note that all the SKUs 

of an aisle are first visited before moving to the next aisle. When the last SKU of the aisle is visited from 

a particular batch, it then chooses the closest aisle and SKU to be picked next. This route is then offered 

to the picker, and he will follow it. The cross-aisle can be seen as a decision variable if the picker travels 

via the cross-aisle or not. Cross aisles provide greater flexibility in the routing of order pickers, thus 

providing shorter order picking travel distances (Vaughan, 1999). There is a cross-aisle section at 60% 

of the warehouse's active length in this configuration. If the pickers end at an SKU whose route is shorter 

when traveling through the cross-aisle, the routing strategy will then decide that he will traverse the 

cross-aisle. How the strategy is precisely modelled will be explained in the next chapter.  

8.3.2 Warehouse Layout 

The table below shows the characteristics of the warehouse layout of configuration 1.  

Table IV-10. Warehouse layout information of configuration 1 

Warehouse Length 62,1 Meter 

Warehouse Width 48 Meter 

SKU per Location 3 SKUs 

Cross Aisle Section Yes  

Pick Location Length 2,7 Meter 

Pick Location Width 2,5 Meter 

Aisle Width 3 Meter 

Pick Locations per Aisle 44 Locations  

AA-Locations 4*3=12 SKUs 

 

As can be seen, is the warehouse's length and width 62,1 meters and 48 meters. The warehouse 

length is based on the pick locations per aisle, namely 23 locations on each side, every 2,7 meters in 



90 
 

length. This results in a length of 62,1 meters of the warehouse. The width is based on the maximum 

amount of SKUs that the experiments have, so 750 SKUs. If all these SKUs need to be stored in the 

warehouse, a total of 6 aisles are required. Therefore, this is the configuration’s maximum amount of 

aisles, which gives a width of 48 meters—more about the storage strategy of the configuration in the 

next paragraph. Configuration 1 does have a cross-aisle located at 60% of its warehouse’s length. The 

pick location has a width (or depth) of 2,5m and a length (or width if you stand in front of it) of 2,7m. 

This is chosen because it can easily store three euro pallets next to each other and one (even two) behind. 

The aisle width has a width of 3 meters. A reach truck has to operate in this configuration, and this can 

use a narrow aisle. The minimum width that an aisle can have when using a reach truck is 9 feet, so 

approximately 3 meters is allowed. In appendix D, figure 2, the minimum aisle width per forklift type 

and according to rack layout is shown. Lastly, are the number of pick locations, which are stored with 

three SKU each, in the warehouse. This is the same amount as in Tiel, so 44 locations per aisle. The so-

called AA locations, reserved for the 12 most visited SKUs, are nearest to the P/D point. These are the 

characteristics of the layout of configuration 1 that will be modelled.  

8.3.3 Storage  

 The storage strategy is how you determine where to store the SKUs/products. As mentioned in 

the previous paragraph, there is room for 44*3=132 SKUs per aisle. The current state data analysis 

showed in the heat map in appendix A, figures 11 and 12, that the SKUs were stored quite randomly 

and widely spread over the active aisles. One of the requirements of the new configurations is that the 

warehouse must be as compact as possible, which means that this spread of products over multiple aisles 

is not preferred. First, it is crucial to choose the configuration strategy to store its SKUs. Figure 6 shows 

the ABC-class-based storage strategy from Yu & Koster (2010).  

 

Figure IV-6 – ABC-Class-Based analysis and ancillary storage strategy  

This is the strategy that will be adopted in the configurations. The storage strategy means that it 

will be stored in the warehouse based on the class that a product is in. This is called an ABC-class-based 

storage strategy. So, if a specific SKU is an A-product, it has to be stored nearest to the depot. This is 

due to the reason that it has to be picked more often. Thus, this strategy will decrease the traveling 

distance of the pickers. The ABC ratio and the number of SKUs affect the storage assignment in the 

model, which are contingency variables. These variables differ per experiment, and that is why the 

model must be dynamic. This will be further explained in the configuration models section.  

That leaves the question, how is each specific product assigned to an SKU location? Beforehand, 

it is known through the experiments how many products are A, B, and C. Based on that information, the 

storage assignment can be formed so that all the A products must be stored in the nearest SKU locations 
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from the P/D point. The same goes for B-products in the second closest SKU locations and C-products 

in the third closest. Each of the locations has a location ID, and each of the SKUs is to be stored as an 

ID. The model then randomly assigns each SKU ID to a location ID, resulting in three SKUs having the 

same location ID. This is done for all A, B, and C products, except for the AA products. These 12 SKUs 

are always randomly assigned to the 4 nearest SKUs from the P/D point. After this, it can be generated 

how and where the SKUs are stored for each context. The model chapter will explain how this is 

implemented in the model.  

To conclude, the storage assignment is based on an ABC-class-based assignment. Which stores 

the most visited SKUs the nearest to the depot. Based on their characteristics, the SKUs are assigned 

randomly to a location in the configuration. This is done in a manner that the stored products are as 

compact as possible. So there are no widely spread locations in the warehouse as we saw on the heat 

map at Tiel. It, therefore, always generates the least amount of aisles needed for the number of SKUs to 

be stored. How this is modelled will be explained in the Configuration Models chapter.  

8.3.4 Equipment and Picking Speed 

 Equipment in the warehouse operations is primarily crucial for the picking speed. Most of the 

picking activities are performed by human action. But many of those actions are supported by the 

equipment. Think of scanning the colli and SKUs through a scanner, the pickers who move through the 

warehouse using the picker cart. This all influences the total time in the system. It is chosen for 

configuration 1 to use the same equipment as in Tiel. This is due to the data already gathered, which 

allows us to quantify each action that a picker has to conduct. The model has several actions that need 

to be quantified to justify the picker's speed. This by using the data from Tiel. We will each discuss 

them. 

First is the speed of the picker cart. By analysing the data from Tiel and with the consultation 

of the warehouse manager of Tiel, the speed of the picker cart is set at a constant of 5,7 km/h or 1,58 

m/s. This means that the picker will always travel at a constant speed on its cart in the model, so there 

is no accelerating or decelerating. Since this emerged from the data analysis, actually, the acceleration 

and deceleration are already included in this speed. Now that the speed is known of the picker cart, the 

distance can be measured through the route that is needed to collect the batch. The model can calculate 

how long the driving time along the route will be, including the trip back to the P/D point from the last 

pick of the batch.  

Next is the picking speed, which processes can be found in the IDEF-0 discussed in the current 

state. It is stated that the picking speed consists of a fixed time and a variable time. Fixed time means 

the pickers have to make at every stop irrespective of the amount of colli to be picked. Think about 

getting off the picker cart, searching time, the scan time of the SKU location, and preparing the picking. 

This is quantified using table III-14 of the data analysis, and it was decided to distribute this using a 

continuous uniform distribution. The fixed time in the model is a value between 15 and 30 seconds. This 

is based on an average of 23 seconds and a mode of 16. The variable time per SKU visit is based on the 

amount of colli that needs to be picked. If there are more colli to be picked, the picking time increases. 

Nedcargo researched to quantify the extra time needed per extra colli to be picked. They stated that it 

could also be seen as a continuous uniform distribution. Their findings showed that for each colli to be 

picked, the picker takes about 4 to 9 seconds per colli. The fixed time plus the variable time gives the 

picking time per orderline (SKU visit).    

 The last time measurement is idle time. This is also gathered from the data analysis of Tiel. The 

idle time is the time between each picking tour. Several things can occur in idle time. The actions that 

each time occur are disconnecting the picker cart at the packing station and the preparations for the new 

picking tour. This may include, for example printing the new order list and attaching new picker carts. 

What also is implemented in the idle time can be a break. Think of a toilet break or lunch break for the 

picker. This can be the case because the idle time comes from the data of Tiel, which is real-life data. 
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The idle time data of two picking tours can be significantly higher than other tours because of, e.g., a 

lunch break. That is why the average has been in table III-15 in the data analysis with a slight deviation 

based on the mode. This results in an idle time in the model of a time value between 150 and 400 

seconds.  

 To conclude, each picking tour takes a certain amount of time. This time is based on the 

equipment available to the picker. Configuration 1 is chosen to use the same equipment as in Tiel. 

Therefore the data of the time measurements in Tiel can be used as quantification for the time 

measurements in the model. To complete one picking tour and start with the next tour, the time that is 

needed is based on the fixed time per orderline, the variable time per colli per orderline, the driving time 

of the route, and the idle time before the next picking tour starts. In the model explanation, it will be 

shown how this is modelled in the configuration model.  

8.4 Configuration 2 
  As indicated earlier, the configurations are very similar to each other. This study has made a 

choice only to tweak them a little bit. Configuration 1 has made some significant changes from the 

current state, which are substantiated by literature and data analysis to improve its current operations. 

Configuration 2 copies all of these changes and adds an extra element to this, namely, in the storage 

assignment.  

 Each day is different at a warehouse. This is due to the reason that every day it receives new 

orders with different characteristics. This is what we call the context of the warehouse. Is there a way 

how we can benefit from this? In configuration 2, a new strategy is implemented: the “Dynamic SKU 

Locations.” The dynamic SKU locations are locations in which, at the beginning of each experiment is 

analysed if there are SKUs that day that have (1) a high demand that given day or (2) two SKUs that are 

affiliated with each other that day. If so, would it benefit to bring these SKUs closer to the depot? This 

means that a product far away from the depot will be placed closer to the dynamic SKU location. Will 

that decrease the travel time and therefore increase productivity? 

 The Dynamic SKU locations are 2 locations that are next to the AA locations. So there is a place 

for 6 SKUs each day. Before the start of the experiments, it is analysed if there is an SKU that needs to 

be visited multiple times that day that is not placed near the packing depot. It can then be moved by an 

inbound employee to the dynamic SKU location so that the picker decreases its picking distance since 

it is now closer to the P/D point. Next to that, a second analysis is made before the picking starts. To see 

whether two SKUs are affiliated with each other. An affinity analysis checks if SKUs are likely to pair 

in an order. If two SKUs are often picked in an order together, as seen in the Tiel analysis with the milk 

powder and cacao powder. Then the warehouse manager can decide before the operations start to move 

those SKUs to the exact location at the dynamic SKU locations. This is in order to also decrease the 

travel time in the warehouse for the picker.  

The strategy of configuration 2 is a hypothesis and has not been seen or quantified in the 

literature. Therefore it is a hypothesis that the travel time will decrease because of the less travelled 

distance for the picker. And if the context of the warehouse can influence the functioning of the strategy. 

This has to be concluded in the result chapter, where the performance will be discussed. How this is 

modelled in the configuration model will be explained in paragraph 8.6.  
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8.5 Configuration 3 
Configuration 3 also adopts almost everything configuration 1 has and only differs in one type 

of strategy. Namely, the routing strategy. In configurations 1 and 2, the routing strategy was based on 

the shortest route algorithm. In configuration 3, this is based on the s-shape routing strategy. The s-shape 

routing strategy leads to a route in which the aisles that need to be visited for completing the batch are 

traversed totally. Aisles, where nothing needs to be picked, are skipped. It is called an S-shape strategy 

because the aisles are visited in shape of an S. The picker, therefore, enters the aisle on one side and 

leaves the aisle from the other side. This strategy is commonly used in a warehouse because it is easy to 

understand for the picker, and it decreases the change of congestion (De Koster, 1998). Since congestion 

is one of the qualitative performance measures in this study. Configuration 3 will focus on the s-shape 

routing strategy and how it will affect the performance in a certain context. Nedcargo can decide if they 

find it beneficial to switch to the s-shape strategy if they see that the other configurations lead to 

congestion. Then they have the insights into the model into what a potential switch of routing means for 

their performance. In this configuration is chosen not to go with a cross-aisle section. Next to that, the 

width of the aisles will become slightly smaller. This is for the reason that there is less chance of 

congestion, and the pickers traverse only one way in the aisles. The below table shows the layout 

characteristics of configuration 3.  

 

How can we calculate the distance using the s-shape strategy? Each batch includes multiple 

SKU pick locations. Every SKU has to be visited once and could be located in multiple aisles. The 

distance travelled consists of the distance within the visited aisles and the distance between the visited 

aisles. The layout is based on the fact that every aisle that is in the model has an active SKU in it, so it 

is not possible to make it any more compact. Figure 7 gives an example of a warehouse with an s-shape 

routing strategy.  

Figure IV-7 – Example of Warehouse Layout where S-routing strategy is maintained  

In order to calculate the in-aisle distance of the batch, the number of aisles that should be traversed in 

the batch or 𝑁𝑎𝑖𝑠𝑙𝑒𝑠
𝑏  is multiplied by the aisle length. Every picking route starts and ends at the P/D point, 

and it is not allowed to traverse an odd number of aisles (aisle 1 goes up, 2 goes down, 3 goes up, etc.).  

Table IV-11. Warehouse layout information of configuration 3 

Warehouse Length 62,1 Meter 

Warehouse Width 44,4 Meter 

SKU per Location 3 SKUs 

Cross Aisle Section No  

Pick Location Length 2,7 Meter 

Pick Location Width 2,5 Meter 

Aisle Width 2,4 Meter 

Pick Locations per Aisle 44 Locations  

AA-Locations 4*3=12 SKUs 
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Therefore the number of aisles is rounded up to the nearest even number by dividing it by two, taking 

the ceiling, and multiplying it back by two. This formula looks like this: 

𝐼𝑛 − 𝑎𝑖𝑠𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2 ⋅ ([
N𝑎𝑖𝑠𝑙𝑒𝑠

b

2
] ⋅ 𝑑𝑤𝑙)     (3)  

𝑊ℎ𝑒𝑟𝑒: 

𝑑𝑤𝑙 = 𝐿𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒  

𝑁𝑎𝑖𝑠𝑙𝑒𝑠
𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑖𝑠𝑙𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏         𝑏 𝜖 𝐵 

 

The distance between aisles, or to cross the aisles, is needed to switch from the one aisle to the 

next aisle. This distance is dependent on the width of the aisles and the depth of the SKU locations, and 

this is notated as 𝑑𝑐𝑤. Those two can be different based on the pallets that are stored. This distance 

between aisles can be decomposed into two parts: the distance between the depot and the start of the 

farthest (last) aisle to be picked and the distance back from the end of the last visited aisle. It is assumed 

that these distances are symmetric, which means that from x to y is the same as from y to x. Thus, 

afterward, the formula must be multiplied by two. The following formula is needed to calculate the 

distance between the aisles. 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛 − 𝐴𝑖𝑠𝑙𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2 ∗ 𝑑𝑐𝑤 ∗ 𝐴𝑙𝑎𝑠𝑡         (4) 

𝑊ℎ𝑒𝑟𝑒: 

𝑑𝑐𝑤 = 𝑐𝑟𝑜𝑠𝑠 𝑙𝑒𝑛𝑔ℎ𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎𝑖𝑠𝑙𝑒𝑠 (𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛) 

𝐴𝑙𝑎𝑠𝑡
𝑏 = 𝐿𝑎𝑠𝑡 𝑎𝑖𝑠𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏          𝑏 𝜖 𝐵 

Combining the two previous formulas, thus the distance covered within the aisles and the 

distance covered between the aisles gives:  

𝑑𝑏 = 2 ([
N𝑎𝑖𝑠𝑙𝑒𝑠

b

2
] ⋅ 𝑑𝑤𝑙 + 𝑑𝑐𝑤 ∗ 𝐴𝑙𝑎𝑠𝑡)      (5) 

𝑊ℎ𝑒𝑟𝑒: 

𝑑𝑏 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏          𝑏 𝜖 𝐵 

It is assumed that the horizontal and vertical velocity of the picker is constant and that 

within an aisle, the distance from one rack to another rack is 0. This is commonly assumed in 

warehouse literature when the width of an aisle is narrow, which is here the case (Roodbergen 

& Vis, 2006). 

 Configuration 3 replaces the shortest routing strategy with an S-shape routing strategy without 

a cross-aisle section. This can be beneficial in preventing congestion because pickers can now only 

traverse an aisle in one direction. Nedcargo wanted to investigate what a smaller width of the aisles in 

combination with the S-shape strategy has on the performance in a specific context. How this will be 

modelled will be explained in the next paragraph.  

8.6 Configuration Models 
 In the previous paragraphs, the three configurations were explained, and their choices in picking 

strategy, routing strategy, layout, equipment, and storage were elaborated on. Now that these 

configuration choices are known, to reach the objective of this study, the configurations must be 

modelled. The contingency approach is based on three variables: contingency variables, response 
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variables, and performance variables (Neuenberg, 2010). The contingency variables can be found in the 

Experiment Generation Model. The response variables are meant to be found in the configuration model, 

which, respectively, its output must be the performance variables. These performance variables must 

then show that the context in which a warehouse operates influences its operation. In that manner, 

Nedcargo can have insights into their decisions for their new warehouse in Haaften. 

 In this chapter, we will discuss how the model works. What is the input, processing, and output 

of the configuration model? This model is created by using Visual Basics for Applications (VBA) for 

Microsoft Excel (MS Excel 2019). This is a programming language tailored to act as a macro language 

found in most spreadsheets. Macros permit the Modeller to automate repetitive tasks by programming 

user keystrokes. It gives the Modeller also the option to incorporate a spreadsheet-specific macro 

language for writing more complex applications. The potential of the configuration model is that it can 

function as a spreadsheet simulation via VBA as a decision-making tool.  

Primarily, the model of configuration 1 will be elaborated on. As explained in the previous 

paragraphs, configurations 2 and 3 are very similar to configuration 1 except for minor tweaks in 

different strategies. Therefore the models will be elaborated generic, and afterward, the additional steps 

of configuration models 2 and 3 shall be described.  

 First of all, the figure below shows the dashboard of the model. As can be seen, the dashboard 

model consists of four steps before the performance results are obtained. We will cover all these steps 

gradually so that the model's functioning becomes clear. Occasionally, references will be made to 

explaining the strategies in the previous sections.  

  

Figure IV-8 – Dashboard of Configuration Model 1 in VBA Excel 

The dashboard has multiple steps, tables, and buttons that need further explanation. In the upper 

left corner, the input variables are shown. These input variables are part of the layout and storage 

characteristics of the warehouse, which need to be simulated. There are two types of input variables: 

those in the yellow cells and those in the orange cells. The yellow variables are two order characteristics 

variables, and the ones in orange are warehouse layout variables. This study focuses on the uncertainty 

of order characteristics. Therefore, they should be changed per experiment. This gives insight into the 

effect of that uncertainty on the performance. Nevertheless, it is possible in the model to change the 

warehouse layout characteristics in the orange cells. But as it is not the objective of this study, they are 

displayed in orange. If Nedcargo also wants to experiment with different layout characteristics, the 

model can dynamically change.   
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 Now that the input variables have been explained. Step 1 can be performed. This step generates 

a warehouse layout based on the input variables that have been inserted. Some conditions must be taken 

into account before generating a layout. The first condition is that the input variables must correspond 

with the order characteristics of the experiment that you want to run. Each experiment has incorporated 

the variables, total SKUs, and ABC-Ratio. These input variables must correspond with the levels chosen 

to generate an experiment for a scenario. So if Nedcargo wants to generate a layout for 350 SKUs with 

an ABC ratio of 18/27/55, these dashboard settings are corresponding. Next to that, it needs to check 

whether the ABC-Ratio adds to 100%, which can be seen under the yellow cells. If those conditions are 

met, we can generate a warehouse layout. This dynamically changes the warehouse layout and assigns 

which location to store which SKU type. Therefore the layout generation and the storage strategy (partly) 

are performed in this step. The results for two different input variables are shown in the figure below. 
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Figure IV-10 – Overview of model’s layout and storage allocation output for the input shown in the yellow coloured table 

Figure IV-11 – Overview of model’s layout and storage allocation output for the input shown in the yellow coloured table 
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The figures above show two different outcomes for a warehouse layout with different order 

characteristics. This example can represent an experiment that is simulated in the model. As can be seen, 

the locations can be either for A, B, or C SKUs. Based on the ABC-class-based storage strategy, the 

locations which are the closest to the packing depot or P/D point are reserved for the A-products shown 

in red. The second closest locations for the B-products are shown in blue and respectively beige for C-

products, which are the farthest away from the P/D point. The generation of this layout is dependent on 

the total SKUs to be handled and how these SKUs are defined as A, B, or C.  

 Now the warehouse is generated for the experiment; each SKU must be allocated to a specific 

location. The SKUs are each randomly assigned to a location. This is dependent on the number of SKUs 

and the distribution of the type of SKUs that need to be handled in the warehouse. As is seen in the 

Experiment Generation Model, each SKU has a Product ID. In the dashboard example, the active 

Product IDs are A1…A64, B1…B94, and C1…C191. The model assigns each active SKU to a location, 

except for the AA products assigned to the closest 4 locations to the depot.  In the table below, an 

example of the output is given.  

Table IV-12. Example of allocation of SKUs to Locations  

Location ID SKU 1 SKU 2 SKU 3 

H01.001  A2  A11 A3 

H01.002 A7 A9 A5 

H01.010 A41 A37 A28 

H02.006 A30 A48 A14 

H01.020 B19 B2 B80 

H03.011 B92 B24 B37 

H01.036 C24 C168 C58 

H02.035 C169 C81 C3 

 

Now that step 1 is clear; we move to step 2. First, the dummy order data set of an experiment, 

which is the output of the Experiment Generation Model, is imported into the model. Then the model 

assigns each Product-ID from the dummy order list to its corresponding location in the warehouse. This 

approximately takes 2 minutes of computation time. What is then created is an order list for that specific 

experiment. This order list can then be loaded as “batch input.” Batch input means that the generated 

order list is accepted as the input for defining the batching strategy. If so, the load order list button can 

be pressed, and steps 2 and 3 are completed.  

 The model has a dummy order list of an experiment that needs to be picked in the generated 

warehouse. The last step is to define which picking strategy is used to pick those orders. The Modeller 

can choose between the FCFS strategy, the only batching, which is the Star Aisle Batch strategy, and 

the Star Aisle Batch strategy combined with the SinglePick Strategy (see step 4, figure 8). All three 

strategies are described in previous paragraphs. All three are available in order to compare the three 

strategies in terms of performance. The FCFS strategy is simple. In this strategy, the orders are batched 

based on when they arrive. This means that orders 1,2,3,4 are collected as batch 1, orders 5,6,7,8 in 

batch 2, etc. The Star Aisle Batching strategy follows the algorithm proposed in paragraph 8.3.2.1. This 

strategy batches the orders based on the aisles that need to be visited. The SinglePick strategy, in 

combination with the Star Aisle Batch Strategy, is batched in two steps. First, it looks at the order list, 

consisting of 1 SKU and 1 Collo. These orders are assigned to the SPBatch and are collected as the last 

pick tour of the day, and there is no capacity constraint. These can be picked as bulk because the packers 

can pack per customer instead of per order, which significantly minimizes the packing time. An example 

of the batching strategy is shown in the table below.  
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 Table IV-13. Example of Batching output for each strategy in the model.  

FCFS ORDER_ID BATCHS ORDER_ID BATCHS+SP ORDER_ID 

Batch 1 1,2,3,4 Batch 1 4,8,24,92 Batch 1 5,82,122,212 

Batch 2 5,6,7,8 Batch 2 15,29,159,176 Batch 2 8,20,101,192 

Batch 3 9,10,11,12 Batch 3 78,122,200,211 SPBatch 1,6,4,90,91,82,102,156,211,219,277 

 

Now the model has batched all the orders based on the selected strategy in step 4. The only two 

actions the model has to perform are assigning and determining the route per batch for the picker and 

the total travel distance this route takes. And the time measurements of each action of the picker, with 

the fixed time, variable time, and idle time described in the previous paragraph. The route in 

configuration 1 is based on the shortest route algorithm, and know that every SKU that needs to be 

visited is known per batch. The shortest route algorithm can provide a route for each batch. It also 

calculates the distance that needs to be travelled for the picker, and by dividing it by the velocity of the 

picker cart, the model can give the total drive time of the route. Next to the drive time is the fixed time 

per SKU visit, the variable time per colli pick, and the idle time between batches. The fixed and variable 

time is calculated for each orderline that the model produces, and the idle time is calculated after the 

batch. So the drivetime plus the fixed and variable time per orderline and the idle time combined gives 

the total time of the batch. For the reason that the fixed, variable, and idle times are randomly 

continuously distributed, each experiment needs 10 iterations. This means that each result of the 

experiment differs in picking time. The average of those iterations gives the performance of the model.   

 Now that the processing variables are discussed, we can look at the model's output. The model’s 

output is based on the quantitative key performance indicator discussed in paragraph 6.4. These are the 

picking time, the productivity, the number of pickers, the total distance, and the average batching 

time. The model is capable of quantifying each of the proposed KPIs as the output. For each experiment, 

it is possible to generate, strategize and clarify the quantified performance of a warehouse. In figure 11 

below, a snapshot is seen of the output of the configuration model. The analysis of the results of the 

different context experiments will be discussed in the next chapter.  

Figure IV-12 – Snapshot of the output table of Configuration Models 

8.6.1 Configuration model 2 

 The model of configuration 2 largely resembles the model of configuration 1, except that now 

the storage strategy is different. As stated, in configuration 2, there are two locations, namely H01.005 

and H01.006, which are now “dynamic” SKU locations. This means that before the allocation of the 

SKU and batching of the orders is carried out, the dummy order list (experiment) is analysed. The order 

list is analysed and checked whether (1) there is an SKU that is located far from the depot, which is 

picked often that day, and (2) if there are 2 SKUs that are affiliated, which means that there a 2 SKUs 

which are often paired in an order. If that is the case, it can be chosen to move these SKUs before the 

Total Picking Time (s) 48636

Total Picking Time (min) 810,6

Total Picking Time (h) 13,51

Total Colli 2227

Total Colli/hour pick 164,84

Total Pickers 2

PickTime(h)/Picker 6,8

Avg. Distance Batch (m) 108,3

Total Distance (m) 6495,3

Avg. Batching Time 811
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allocation and batching of the orders are placed in the dynamic SKU locations. In the below figure is 

seen how this is implemented in the model. This analysis is performed after step 2.  

 

 

Figure IV-12 – Snapshot of Dynamic SKU Location Input of Configuration Model 2 in VBA Excel 

The above figure shows the actions that need to be taken in order to analyse if certain SKUs can 

be beneficial to move to the dynamic SKU location. Firstly, we will take a look at the affinity analysis. 

After step 2, the dummy order list of the experiment is imported into the model. Step 2b is to create an 

affinity file, which can check whether certain SKUs are likely to pair with each other in that experiment 

file. This affinity analysis is performed by using the affinity analyser of John J. Bartholdi III found on 

warehouse-science.com.  The copyright to this computer program is held by John Bartholdi, who 

reserves all rights thereunto appertaining (2007). The affinity analyser checks whether a pair of SKUs 

in an order list is likely to be picked in the same order. Then you may be able to reduce travel in the 

warehouse by storing the two SKUs in the dynamic SKU location. When the generated affinity file is 

imported into the tool, it gives the affinity of each SKU pair. If the analysis shows that this is the case, 

these SKUs can then be replaced with one of the SKUs currently placed in the dynamic location.  

Secondly, the amount of colli that needs to be picked is checked. If the demand of the experiment 

day is high for an SKU that is far away from the depot, it can be chosen to move that SKU to the dynamic 

SKU location. This is done with PowerPivots in the configuration model. After this has been checked, 

the (optional) SKUs can be moved to the dynamic SKU location by swapping the SKU location of the 

SKUs that are already in the dynamic SKUs. Then step 3 and step 4 can be run, and the performance of 

the warehouse will be shown in the output file.  

8.6.2 Configuration 3 model  

 Configuration 3 is almost the same as configuration, and only the routing strategy is the S-shape 

strategy. This means that the cross-aisle is removed, and the aisles are slightly smaller since the pickers 

can only traverse the aisle in one direction. This should lead to less probability of congestion within the 

aisles. The model is almost the same as the model of configuration 1; only the travelled distance is based 

on the formula that is explained in paragraph 8.5.   
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8.6.3 Sensitivity Analysis 

 A sensitivity analysis is used to show how the uncertainty in the output of a simulation model 

can be divided and allocated to different sources of uncertainty in its input. The distributed variables in 

this model are the one of the picking time. Namely, the fixed time, the variable time, and the idle time. 

The sensitivity was already tested by making 10 iterations per experiment. In this manner, a convergence 

was reached. The sensitivity indices converge when their value stabilizes. This is not an extensive 

sensitivity analysis, but this (mostly picking time) data was validated and verified based on the current 

state analysis. For further studies, it is recommended to extend the sensitivity analysis.  

 

8.7 Conclusion  
This extensive chapter elaborated on the requirements, assumptions, configurations, and the 

models of the configurations. With the contingency approach in mind, we state that the configuration 

models function as the processing variables of the research. The Experiment Generation model’s input 

function as the contingency variables and the output of the configuration models as the performance 

variables will be analysed in the next chapter. This all to prove that configurations perform differently 

given the context they have to operate in so that Nedcargo can have a decision-making tool for choices 

at the new warehouse in Haaften.  

To summarize this chapter, first, the requirements were discussed. They were divided into 

functional and non-functional requirements, which were composed in consultation with Nedcargo, 

insights from the data analysis of Tiel, and prior findings from warehousing literature. Out of this 

analysis, several requirements were formed, which can be seen in tables 2 and 3. They are all related to 

warehouses' design, strategies, layout, and equipment, of which configurations are a generic term. Next, 

before confident configuration choices could be made, the model assumptions were formulated. These 

assumptions were divided into three different categories: conceptual assumptions, mathematical 

assumptions, and numerical assumptions. These assumptions are necessary because it is not 

necessary/beneficial for the outcome study to model every process in the warehouse. Therefore, these 

assumptions are made to construct a viable model that focuses on aspects that are considered necessary 

in this research.  

Then the three configurations were explained. Each choice regarding picking strategy, layout, 

routing, storage, equipment, and the picking speed were proposed and substantiated by either literature, 

data analysis of Tiel, and/or with expert's view. First configuration 1, which focus lays on improving 

the picking strategy. In Tiel, we noticed that an FCFS (first come, first serve) strategy is followed and 

is stated to be inefficient. Both insights from Tiel and from literature determined the new strategy. This 

resulted in the Star Aisle Batch strategy in combination with the SinglePick strategy. Which are, 

respectively, a picking strategy that examines at which aisles need to be visited and batches similar 

orders, and which batches all the single SKU with single collo to be picked. Next to that, configuration 

1’s routing strategy is that of the shortest path algorithm. It stores its SKUs using an ABC-class-based 

storage strategy, uses a more compact layout than Tiel, and uses the same equipment as in Tiel. 

Secondly, Configuration 2 is a slightly modified version of configuration 1 where the storage strategy 

is different. Therefore the focus of configuration 2 is on the dynamic improvement of the warehouse 

storage strategy. This is done by adding flexible SKU locations near the packing depot. Then, by 

analysing the orders beforehand on affinity and/or demand, these SKU locations can be stored with 

different SKUs each day. This is all to reduce the traveling distance of the picker. Lastly, configuration 

3 changes the layout by removing the cross-aisle, using slightly smaller aisles, and by using a different 

routing strategy. The routing strategy that is used is the S-shape strategy, which states that each aisle 

can only be traversed in one way by the picker. This is in order to decrease the possibility of congestion.  

 



 

102 
 

All this information allows us to answer the following sub-research question: 

Which new configurations are applicable for an e-commerce warehouse, and which 

requirements and assumptions must be made? 

The three configurations are applicable for an e-commerce warehouse that Nedcargo potentially 

can apply for the new warehouse in Haaften. Based on the requirements that are stated in combination 

with the assumptions, we can conclude that these configurations are applicable to Nedcargo’s objectives 

for Haaften III.  

That brings us to the next sub-question that can be answered and validates the method proposed 

in chapter 6.  

What method can model the proposed context scenarios and configurations of an e-commerce 

warehouse? 

The configurations are straightforward, applicable, and modelled using Visual Basics for 

Applications (VBA) for Microsoft Excel (MS Excel 2019). The proposed context variables are modelled 

using the Experiment Generation Model and its output functions as the input for the configuration 

models. Namely, the dummy order list of the given context scenario, which each configuration model 

processes. The model's output gives the warehouse's performance in the experiment. These performance 

indicators are based on the proposed indicators of the picking time, the productivity, the number of 

pickers, the total distance, and the average batching time. This model could be seen as a conceptual 

configuration of Haaften.  

Now that the experiment generation model and configuration models are explained. Can the 

proposed experiments be simulated? First, each experiment is being generated, after which each 

configuration model will process each experiment. This gives the performance of each picking strategy 

per configuration per experiment. These results will be discussed in the next chapter and will contribute 

to the proof of configuration to eventually answer the main research question.  
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V. Evaluate 
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9. Results and Analysis  
We start by re-asking the sub-question we want to answer using the obtained results to introduce 

the results. These two sub-questions are the last three questions that need to be answered before this 

research can be concluded by answering the main research questions. The questions that need to be 

answered in the analysis of the results are: 

9. How do these new configurations perform compared to the current state?   

10. What is the influence of the different context scenarios on the performance measures of different 

warehouse configurations?  

11. How can the results be interpreted and used for decision-making in the future for Haaften III? 

9.1 Comparing New Configurations with Current State 
Firstly, we start by answering the ninth sub-research question. We compare the proposed 

configurations with the current state, which is also modelled. This gives us insight into whether the 

findings and choices for configuration changes from the data analysis, consultation with experts, and 

literature findings, are plausible. These insights were applied to substantiate certain modifications in the 

current state configurations. This resulted in three new configuration concepts, which were being 

translated into a simulation model. Therefore, these configuration models must be compared in the same 

context as Tiel is currently operating, thus with the current state model. The current state order 

characteristics are the same as in scenario 50. The specific order characteristics of Tiel can therefore be 

found back in appendix X.  

The current state model was verified and validated in chapter 5.7. This brings us to the fact that 

the model could represent real-world performance. In order to see whether the new configurations have 

any effect, we have to simulate them within the same experiments. In Appendix E, tables 10, 11, and 

12, the results are shown of that simulation. Each batching strategy for the configurations is compared 

with the current performance of the Tiel warehouse, where currently the FCFS strategy is being used. 

The below graphs shows visualizes these results per strategy.  

Figure V-1 – Improvement in productivity and in batching distance per strategy in configuration 1, 

compared to Tiel’s configuration  

 These are the most important results that can be analysed by comparing the current state with 

the new configurations. It should be noted that several extra analyses could be made but that these graphs 

are sufficient for answering sub-question nine. As can be seen in the results tables in the appendix, which 

configuration has the most improvements in performance compared with the current state? It can be 

noticed that this is configuration 1. Therefore we visualize its improvement compared with the current 

state in the graphs above. As seen in both graphs, the improvement per strategies is measured. This 
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percentage improvement is analysed for the productivity, which is based on the picking time per colli, 

and the batching distance, which is the average meters of a picking tour.  

 The first thing that strikes immediately is that even with an FCFS strategy, the productivity in 

configuration 1 is more than 14% higher than that of the current state performance in Tiel. If we do not 

look at the picking strategy, the only thing that was changed is that in configuration 1, a more compact 

layout was implemented. There were only as many aisles as storage locations for SKUs needed. Next to 

that, the locations now store 3 SKUs instead of 4. These improvements in storage and layout strategy 

give an immediate improvement of almost 15%. How can this significant improvement be justified? 

Therefore we need to look at the percentage improvement of the batching distance. Namely, a more 

compact layout is used for the warehouse in the same order characteristics context, resulting in less 

distance travelled per batch for the picker. This resulted in an improvement of 166% due to its 

compactness. Instead of the 8 active aisles in Tiel, configuration 1 only uses 3 aisles which explains this 

reduction. This reduction in travel distance accounts for an improvement of almost 15% in the picking 

productivity.  

 How does the star aisle batching strategy and the star aisle strategy combined with the 

SinglePick strategy influence the productivity of the current state? Due to the fact that in this context, 

only 3 aisles are being used, the star aisle batching strategy can probably easily batch these orders, 

judged by the proposed algorithm. Nevertheless, it is seen that it improves productivity by 5% compared 

to the FCFS in configuration 1 and by almost 20% compared to the current state in Tiel. The productivity 

increase of the star aisle – with SinglePick batching strategy increases the productivity by over 30%. 

Even within the configuration 1 model, adding the SinglePick strategy to the Star Aisle batch strategy 

will increase productivity by 10%. However, the star aisle batching strategy decreases the average 

batching distance the most. Combining it with the SinglePick strategy increases the average batching 

distance by over 14% (see appendix E table 1) but increases productivity by over 10%. This shows that 

for the current context of the Tiel warehouse configuration, model 1 with the SinglePick and star aisle 

batching strategy is the best new option for Nedcargo. So if configuration 1 with the BatchSP strategy 

is implemented in the Tiel warehouse, it will increase its productivity by 30%. 

 This significant increase in productivity and the decrease in the average batching distance also 

affect the total number of pickers needed to complete the orders. As can be seen in table 1 in appendix 

E, with the current state configuration of Tiel, to complete the orders of the experiment data set, a total 

of 3 pickers are needed. In configuration 1, with the most efficient strategy, only 2 pickers are required 

to complete all the batches within 8 hours of picking. In addition to this finding, the configuration model 

now optimizes the number of pickers needed, which is not the real-world case in Tiel. In Tiel, the number 

of pickers assigned to complete the orders is entirely random. So if we take the average number of 

pickers of 4, as seen in the data analysis of the current state. Nedcargo (at least) can save two pickers 

using configuration 1 and the proposed strategy. This can even be implemented as soon as possible in 

the configurations of Tiel. That brings us to answering the sub-question nine:  

How do these new configurations perform compared to the current state in the current context?  

The answer to this is that if we implement the new configuration 1, which is the best of the three 

configurations performance-wise, in combination with the star aisle batch strategy and SinglePick 

strategy in the current context of Tiel. It will improve productivity by over 30%, saving costs due to 

fewer pickers needed.  
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9.2 Results and Analysis of Scenarios Experiments 
Secondly, the tenth sub-research question will be addressed. The influence of the context 

scenarios on the performance measures for each of the three proposed configurations needs to be studied. 

In order to answer this question, we need to look back at which scenarios were proposed. Nedcargo’s 

experts have chosen scenarios 50, 107, 10, 77, 92, and 123 as the contingency order characteristics 

scenarios. For each of these context scenarios, 5 experiments were being generated by the Experiment 

Generation Model. In Appendix E, in table 4 till 9, the order characteristics output of the experiments 

are being shown per scenario. Each of those experiments' outputs, namely the dummy order data set, is 

processed by the configurations models 1,2, and 3. In the table below, we can see each experiment's 

average output, which shows the specific order characteristics or so-called context of each scenario.  

Table V-1. Order Characteristics per Scenario 

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 

 

 Each scenario generates five experiments, which will be simulated into 3 configurations with 

every 10 iterations for each picking strategy. This means that a total of 5 ∗ 3 ∗ 3 ∗ 10 = 450 KPI as 

output has been simulated in all of the configuration models. This is performed on an 8GB 1,80 GHz 

computer, which took four working days. All the results of each experiment can be seen in appendix 

E, tables 13 till 48. The average results of all experiments per scenario can be seen as well in appendix 

E, tables 49 till 138. The final results are summarized for each configuration in tables 10, 11, and 12. 

These 3 tables give us the average results of all the experiments for each configuration, per scenario, 

per strategy, and its performance indicators. In this paragraph, we will analyse the findings that can be 

seen from the results of appendix E tables 10, 11, and 12.  There are only two variables that we can 

compare between the context scenarios, the productivity per scenario and the average batching 

distance. These are generic performance measures, and based on these performance indicators, we can 

see whether the context of the warehouse impacts the performance of the configurations differently.  

Next, we also look within the context variables to see if the strategies have a different impact on 

productivity, total picking time, or the total distance.  

 

The next paragraphs aim to answer the following sub-question: What is the influence of the 

different context scenarios on the performance measures of different warehouse configurations?. Each 

paragraph will analyse the different proposed performance measures of the configuration model's output. 

And see if the context scenarios, in different configurations and picking strategies, affect it.   
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9.2.1. Productivity  

 Firstly, we start by analysing the productivity performance per scenario. There is a distinction 

between the three types of picking strategies in the configuration models. In order to investigate which 

strategy performs the best for both the scenario it is in and the configuration, the model processes the 

experiments for each of the picking strategies proposed. Those strategies are the Star Aisle Batching 

strategy combined with the SinglePick Strategy, the Star Aisle Batching strategy, and The First Come, 

First Serve strategy. The experiments are processed for each of the three configurations and each of the 

scenarios, and the outputs are given in the table below.  

Table V-2. KPI’s of Configuration 1 with batching strategy and singlepicks in the multiple scenarios 

Batch+SP Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Configuration 1       

 Avg. Colli/Hour 163 124 178 208 160 156 

Configuration 2      

Avg. Colli/Hour 163 124 178 207 159 157 

Configuration 3       

Avg. Colli/Hour 158 121 174 185 155 152 

Batching Strategy      

Configuration 1      

 Avg. Colli/Hour 149  111 173 195 143 143 

Configuration 2      

Avg. Colli/Hour 149 111 173 194 143 143 

Configuration 3       

Avg. Colli/Hour 142 107 169 184 137 138 

FCFS       

Configuration 1       

 Avg. Colli/Hour 142 104 167 187 135 136 

Configuration 2      

Avg. Colli/Hour 143 104 167 187 135 136 

Configuration 3       

Avg. Colli/Hour 133 96 158 174 126 128 

 

 The first thing to notice in the above table is that the Star Aisle Batching strategy combined with 

the SinglePick Strategy is the best in terms of productivity in every scenario. In each scenario, 

productivity decreases if the Star aisle batching strategy or FCFS strategy is used. This is the first 

conclusion this research can present. Namely, the productivity in each configuration is the highest with 

the Star Aisle Batch strategy combined with the SinglePick strategy compared to the other two strategies. 

Later on, we will show the exact loss in productivity when the Batch+SP strategy is not adopted. In 

order to show that the contextual setting each influences this differently.   

 Next, we will only focus on the Batch+SP strategy and then the performance between the context 

scenarios to see if the difference between performance is deductible. The productivity is the highest in 

scenario 77 and the lowest in scenario 107, respectively, 208 and 124 colli per hour. We can divide the 

productivity of these context scenarios into four groups: the very high productivity (scn. 77), the high 

productivity (scn. 10), and the average productivity (scn. 50, 92, and 123), and the low productivity 

(scn.107).  

How can we explain this by looking at the order characteristics of the scenarios? How and which 

of these order characteristics (contingency) variables influence the productivity in the warehouse and 

therefore perform better in a different context? 

To explain why scenario 77 has higher productivity than the other scenarios can be explained 

by looking at two order characteristics: the amount of colli to be picked and the number of orderlines 

per order. How higher the amount of colli in combination with not so many orderlines per order is 

beneficial for the picker's productivity. It means that the picker has to visit not that many SKU locations, 
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making it easier for the batching algorithm to batch orders that are primarily positioned in the same aisle. 

Next to that, it is beneficial for the productivity to have fewer A-products as in ratio in combination with 

more colli for A-products. 75% of the time, the picker picks A-products that are located much closer to 

the depot. This scenario is based on a context in which there can be a client in which customers order a 

lot of the same products and, more occasionally, in more significant amounts. This results in the picker 

often visiting the same SKU in a day, so their productivity is higher than in another context. The model 

results confirm this, and this can be retrieved from table 1 with the order characteristics per scenario.  

Scenarios 10 and 77 have in common that they both have an ABC-Ratio of level 1. As said, this 

means that there are fewer A-products in the warehouse. This means that the inventory turnover is 

primarily dependent on only 10% of the total SKUs (namely A-products). This has a high impact on the 

productivity of the pickers because for the logical reason that they have to travel less through the 

warehouse and often visit the same SKUs. Therefore, more orders will consist mainly of the same SKUs, 

namely the A-products. This also makes the star aisle batching algorithm more efficient.  

Scenario 107 has the lowest productivity, and how can that be explained? The scenario has 750 

SKUs and an ABC ratio where 25% of these products are considered A-products. Also is seen that there 

are fewer colli per order and a small number of orderlines per order. This means that the picker has to 

travel to many different SKUs and picks a small amount of colli. This is difficult to batch as efficiently 

as the other scenario, and therefore, it has the lowest productivity of all the scenarios. Next to that, it is 

the only scenario with an ABC-Ratio of level 3. So not only do the pickers have to travel to multiple 

SKUs, but they also have the increased chance that they are widely spread over the warehouse.  

Concluded, the ABC ratio, the orderlines/order, and the amount of colli to be picked are very 

influential for the productivity of your warehouse. Suppose the ABC ratio is one that there are not that 

many A-products, combined with a lot of colli/order and a low orderlines/order. This means that multiple 

orders primarily consist of the same SKU with a higher chance of multiple colli picks. The picker, 

therefore, has not had to travel to many different locations and can collect multiple colli per SKU visit, 

which increases productivity. Next, we have to take a look at the productivity within each configuration 

per scenario and how each configuration responds in each scenario if a decrease/increase in productivity 

is different per given context scenario.  

 
Figure V-2 – Percentual productivity change if switched to a different configuration using the Star 

Aisle Batching combined with Singlepick Strategy 

The figure above shows what the percentual decrease is in productivity compared to 

configuration 1 with the BatchSP Strategy. In three of the six scenarios configuration 1 has the same 
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productivity as configuration 2. In scenarios 77 and 92, the configuration has a minor decrease in 

productivity. Only in scenario 123 does configuration 2 perform slightly better in terms of productivity 

than configuration 1. Configuration 3 has in each scenario lower productivity. This differs per scenario 

and ranges from more than 2% to almost 12%. Scenario 77 does certainly not perform better when 

using configuration 3. This also confirms the idea that each context has a different impact on the 

performance of a configuration.  

 Now that we have presented the results and analysis of the productivity between scenarios, we 

have to analyse what happens within the scenarios between the different configurations. The research 

question asks about the impact of different context scenarios on the different proposed configurations 

and if these impacts differ per scenario. So, within the scenarios, is the effect weaker and the other 

more robust in terms of productivity per configuration and strategy? This is seen in the following 

graph:  

Figure V-3 – Productivity decreases per scenario when switched from the highest productivity 

combination (picking strategy and configuration) to another combination.  

The above graph shows that each scenario reacts differently to a change of configuration in 

combination with the involved strategy. This means that the different context in which a configuration 

is placed in combination with the strategy impacts its productivity. In this way, we can state that the 

experiments show that different configurations perform differently in specific scenarios. For example, 

in scenario 10, if not chosen for configuration 1 or the Batch+SP strategy, it does not impact productivity 

as much as scenario 107. In scenario 107, if not chosen for configuration 1 with the Batch+SP strategy, 

it will decrease the productivity in the best case by more than 10% already. Therefore the context in 

which a warehouse operates is essential to see whether some configurations perform better or worse. 

This must therefore be investigated before starting to design. This can help in the pre-design phase of a 

warehouse design. To see how specific configurations will perform and react to confident 

configurational choices. Nedcargo can do this using the proposed method with each experiment and 

configuration of their liking.  
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9.2.2  Total Picking Time 

 The total picking time is the time that is needed to finish all the orders. In this paragraph, we 

will compare within each configuration and between the scenarios what the influence of the context 

scenarios is on the picking time.  

As can be seen in appendix E tables 10, 11 and 12, the picking time is the smallest in 

configuration 1 in scenarios 77 and 92, and scenarios 50,107, 10, and 123 have the lowest picking time 

for configuration 2. These differences in picking time between configurations 1 and 2 are all less than 

0,3 percent and therefore almost neglectable. The below figure shows the impact of a different 

configuration for each scenario on the picking time.  

Figure V-4 – Increase in picking time per scenario when switched to other configuration 

 As can be seen in figure 4, in terms of picking time, the difference between configurations 1 and 

2 is almost neglectable. It is also slowly becoming apparent that configuration 2 does not significantly 

impact productivity and, as a result, the total picking time of the warehouse. Also can be concluded from 

the graph that scenario 77 does perform a lot worse when using the configuration 3 models. The rest of 

the context scenarios differ slightly but also have a slight decrease in total picking time when the model 

of configuration 3 is used.  

The total picking time is almost the same percentual decrease in productivity. This is because 

the total picking time is mainly based on the productivity the pickers achieve in the warehouse. The 

reason for showing the total picking time is that it is easier to see the exact difference between the 

configurations. The total picking time is also essential to see how much time is needed for that type of 

client. This makes it easier for Nedcargo to predict their (labor) costs. The total picking time also shows 

that it can be concluded that configuration 2 has no significant effect on the picking time compared to 

configuration 1. Therefore there is proof of configuration that configuration 2 does not perform better 

or worse than configuration 1 while using the BatchSP strategy. This is because the star aisle batching 

algorithm already considers that orders are picked from the same aisle. Therefore the dynamic shuffling 

of SKUs has no impact compared to configuration 1. 
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In the following graph, we compare the percentage increase in picking time in each scenario per 

configuration and picking strategy within the scenario. They are being compared with the most efficient 

configuration and strategy per configuration. This line is missing per batching strategy in the figure and 

is for every configuration: the Batch+SP strategy. In appendix E, tables 10, 11, and 12, the effect of each 

strategy on the picking time is seen per configuration. The below figure combines those three tables.  

 Figure V-5 – Picking time increase per scenario when switched from the highest productivity 

combination (picking strategy and configuration) to another combination. 

It is seen that almost in every scenario, each configuration responds differently to a change in a 

strategy. This means that the contingency variables, which in the study are the order characteristics, 

have on each configuration different effects. In some scenarios like 107 and 92, the picking time is 

susceptible to configuration and/or strategy changes. On the other hand, if we look at scenarios 10 and 

77, they are not that sensitive to a change in configuration and/or strategy.  
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9.2.3 The Total Travelled Distance 

 Another performance indicator that this research looks into is the total travelled distance. The 

following table displays the results of the experiments on average batching distance, and the total 

distance travelled in the warehouse.   

Table V-3. The Avg. Batching distance and total distance per strategy in Configuration 1  

Configuration 1 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Batch+SP       

 Average Batching Distance 113 186 200 103 131 126 

Total Distance 6647 10486 13401 6355 7283 7184 

Batching Only      

 Average Batching Distance 99 157 186 92 109 107 

Total Distance 7267 11460 13822 6790 7975 7798 

FCFS       

 Average Batching Distance 126 206 231 123 145 139 

Total Distance 9479 15476 17352 9206 10880 10406 

 

 The first noticeable thing is that the average batching distance is the smallest in each scenario 

when the star aisle batching strategy is being used. Although the total distance in the Batch+SP strategy 

is for each scenario the smallest compared to the other two strategies. This has a simple explanation, 

namely the batching only, and FCFS strategies consist of 75 batches, i.e., 300 orders with 4 orders per 

batch (300/4=75). In the Batch+SP strategy, the quantity of batches depends on the number of 

SinglePick orders. Since all the SinglePick orders are handled in one batch, this quantity of orders is 

different in each experiment. These Singlepick orders are placed into one batch, and the remaining 

orders are batched following the star aisle batch strategy. Therefore, the SinglePick batch is increasing 

the average batching distance, and it appears that this batch has a longer picking route. It may also be 

that it becomes more difficult to efficiently star aisle batch strategize with fewer orders to batch with. 

Next to that, the results show that the FCFS distance is the highest for each scenario. Which, logically, 

was also to be expected.  

What the results reveal that is happening is that even though the average batching distance 

increases with the Batch+SP strategy, the total distance will be lower in each scenario. This is for the 

reason that in the Batch+SP strategy, fewer batches need to be picked because the SinglePick orders are 

being collected in one batch. This increases the average batching distance (1) because the SinglePick 

batch has a lengthier route and (2). After all, fewer orders are available to batch with, which makes it 

more challenging to be efficient with the star aisle batching strategy.  

The difference between the total travelled distance of the configurations with the Batch+SP 

strategy is shown in the following graph. Figure 6 shows the increase in total distance per configuration 

and per scenario in the SinglePick strategy. As can be seen in the results table, in some of the scenarios, 

configuration 2 has slightly decreased the total distance in the scenario, as shown in figure 6, are 

scenarios 50, 107, and 123. In this scenario, the distance travelled by the pickers is approximately 3% 

less than if configuration 1 is used. As was expected in each scenario, the total distance travelled 

significantly increases when using the S-shape routing strategy proposed in configuration 1. This routing 

strategy does not allow the pickers to traverse the aisles in both ways and no longer has a cross-aisle. 

This will increase the total distance that needs to be covered to complete all the orders. Later on in this 

chapter, we will come back to what impact this may have on congestion and how Nedcargo can cope 

with this knowledge.  
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Figure V-6 – Increase in total distance per scenario when switched to other configuration 

Table 6 shows all the strategies per configurations combined per scenario in appendix E. It 

shows the increase in the total distance when another strategy and/or configuration is used per scenario.  

9.2.4 The Average Batching Time  

The average batching time is a result of the productivity and the amount of colli that needs to 

be picked. As shown in appendix E tables 10, 11, and 12., in each configuration, the total batching time 

is the lowest when the star aisle batching strategy is being used. This can be explained by the findings 

of the last paragraph, namely that the average batching distance that needs to be travelled is the lowest 

when using the star batch strategy. Which consequently decreases the average batching time. What 

stands out is that in each scenario and configuration, the average batching time is the highest for the 

Batch+SP strategy. This is reflected in the below table, where it is seen that for configuration 1 in each 

scenario, the average batching time is the highest for the Batch+SP strategy. The table shows the 

percentage decrease in batching time per scenario.    

Table V-4. The Avg. Batching Time and total distance per strategy in Configuration 1  

Configuration 1 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Batch+SP       

 Average Batching Time (s) 869 850 1257 914 862 963 

Batching Only      

Average Batching Time (s) 763 (-12%) 732 (-14%) 1167 (-7%) 815 (-11%) 737 (-15%) 823 (-15%) 

FCFS       

Average Batching Time (s) 781 (-10%) 763 (-10%) 1196 (-5%) 832 (-9%) 756 (-12%) 844 (-12%) 

 

How can this be explained? The average batching time is higher, but as highlighted in the 

previous paragraph, the picking time is the lowest for the Batch+SP strategy in each scenario and 

configuration. Table 1 shows for every scenario the average amount of Singlepicks per experiment. This 

average number of Singlepicks equals the amount of colli that needs to be picked in the SinglePick 

batch. For example, in scenario 50, where the average number of SinglePicks in all experiments is 

approximately 72. This means that 72 orders are collected as one batch and are not included in the star 

aisle batching algorithm. This results in there being 17 batches less to be picked, i.e., 57 batches (for the 

remaining 228 orders) and 1 SPBatch. Consequently, as can be seen in the results, this increases the 

scenario's picking time by 10% and 12%. On the other hand, the productivity increases with the 

Batch+SP, as seen in table 4. Based on these findings, it can be concluded that despite the increasing 

average batching time and distance travelled when using the Batch+SP strategy due to the SPbatch, 
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which takes more time and distance.  Nevertheless, fewer batches need to be picked. So, this fastens the 

needed time to complete all the orders.  

9.2.5 Congestion and Automation 

 Next to the quantitative performance indicators modelled as the output of the configurations 

models, there are qualitative performance indicators that must be compared between the different and 

within configurations. We will discuss the two qualitative indicators, the possibility of congestion and 

the possibility of automation, per configuration. In each of those configurations, there are pros and cons 

for each of the two.  

Firstly, configuration 1 in terms of congestion and automation in each scenario. The scenarios 

where there are multiple active aisles due to the number of SKUs. So, in scenarios 107 and 10, where 

there are the most SKUs (750) in the warehouse, it is the probability less likely that there is congestion 

in the warehouse. Therefore, configuration 3, which is proposed to decrease the chance of congestion 

with the S-shape routing strategy, is not really necessary since pickers are less likely to be in the same 

aisle. On the other hand, scenarios 50 and 123, which experiments consist of only 350 SKUs stored in 

three aisles. It can be beneficial because the pickers are most of the time in the same aisle to investigate 

configuration 3 in this context. So, if Nedcargo wants to avoid the potential of congestion in these 

scenarios, it can be chosen to switch to configuration 3. But as can be seen in the productivity chapter, 

this decreases in both scenarios by almost 15%. Therefore, the models provide a good insight into the 

pros and cons of switching configurations in different scenarios, and Nedcargo will have to weigh up 

itself. Regarding the possibility of automation in configuration 1, their model does not give a swift 

answer to that question. It is therefore recommended to further look into this requirement and indicator.  

Secondly, configuration 2 differs from the previous configurations in that it applies the principle 

of dynamic SKU location. In terms of congestion, it can be considered the same as configuration 1, 

based on the similarity of the results. But in terms of the possibility of automation, Nedcargo can look 

at the possibility of automating the process of replenishing the dynamic SKU location. This is a much 

less complex process to automate because it only needs the replenishment of six SKUs. Nevertheless, 

the costs of this automation must be recovered from the increase in productivity. And as the model 

results have shown, the increase in productivity of configuration 2 is almost neglectable compared to 

configuration 1.  

Lastly, configuration 3 uses the S-Shape routing strategy. This strategy decreases the chance of 

congestion. Nedcargo has to arrogate in which scenarios it is likely to have congestion. As stated before, 

this can happen when not a lot of active aisles are used. This increases the chance of congestion. This 

model results can be used to see whether a change in configuration influences the performance of the 

warehouse. As shown in figure 5, scenario 77 and scenario 10 are not as sensitive to changes in strategy 

and configuration as the other scenarios. This proves that the context does influence the performance of 

particular configurations. This model can therefore give insight if Nedcargo should change its 

configuration to decrease the chance of congestion. This is an omission of multiple indicators which 

must be tested in practice.  

9.3 Haaften III 
Now that almost all the sub-questions have been answered, and before we move to answer the 

main research question. There remains one sub-question that needs to be answered. Namely, How can 

the results be interpreted and used for decision-making in the future for Haaften III?  

The problem statement showed that Nedcargo is opting to build a new warehouse in Haaften, 

where e-commerce warehousing operations are included. The current warehouse configuration of e-

commerce warehousing is for Nedcargo, located in Tiel. The context of the Tiel warehouse is known, 

but for Haaften, the context in which the warehouse will operate is still unknown. Therefore the 

uncertainty of a specific contextual factor of order characteristics must be pointed out and investigated. 
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Whether a specific context influences the performance of a particular configuration, which configuration 

performs better or worse?  

The order characteristics are being modelled using a Model Generation model. This model allows 

Nedcargo to experiment with different client order characteristics. Nedcargo chooses 6 scenarios out of 

the 144 proposed contextual scenarios to investigate in this research. The model is transforming these 

scenarios into experiments. Each experiment represents a dummy order day that must be processed by 

different warehouse configurations, which gives insights into its performance per scenario. The 

configuration models perform this processing of the contextual variables. These models are based on 

three types of different configurations.  

 We discussed the above method results in the previous paragraphs for each different picking 

strategy per configuration. How can these results contribute to future decision-making for Haaften III? 

Nedcargo has chosen scenarios that their experts think are plausible as future client order characteristics. 

Therefore it can be the potential context of Haaften III. By using this model, the uncertainty regarding 

the order characteristics is eliminated. This is due to insight into the contextual variables of a client, 

which results in a dummy order set. These dummy order sets could represent a real-life order list that 

must be handled in the future warehouse of Haaften. The output of the Experiment Generation Model 

can therefore be used to partly resolve the uncertainty of a possible context in which Haaften III is 

placed. This model must therefore be used as means to give clients and Nedcargo itself insights into the 

potential order list that its clients’ customers demand. Each model output, the dummy order data sets, 

can be processed by different warehouse configurations. The warehouse configuration that Nedcargo is 

accustomed to is that of Tiel. But can there be improvements in that configurations based on data 

analysis, expert consultation, and literature? Based on this, three new configurations were presented and 

modelled.  

Let us look at the results of the configuration models. It can be stated that Configuration 1 is the 

most optimal configuration investigated in terms of productivity and therefore decreases the total 

picking time. Next to that, it can be concluded that the Star Aisle Batching Strategy, combined with the 

SinglePick Strategy, has the highest performance in each scenario. Therefore, it needs this strategy to be 

included in potential decision-making for the configuration choice of Haaften. Another improvement is 

the compact layout of the configurations. Compared with the current state model, if a compact ABC-

class-based storage layout is proposed, the productivity will increase by 15%. Another result that can 

benefit the future decision-making of Haaften is that the output of the models gives an insight into the 

number of pickers needed. This can decrease labor costs. It is unnecessary to use more pickers than 

needed to complete an order list for a specific day. 

The two proposed models can help Nedcargo investigate in (1) the specific context Haaften will 

operate. The Experiment Generation Model can help Nedcargo give insight into the uncertainty factor 

of order characteristics by defining how a potential client is characterised. This model can create 

experiments that can test configurations in terms of performance. And (2) the proposed configuration 

models. The models include three types of configurations where improvements to the current state are 

processed based on literature, expert insights, and data analysis. Proofs that certain choices, for example, 

the compact layout, ABC-class based storage, and the Star aisle batch strategy with Single Pick, improve 

the performance of the warehouse. Nedcargo must therefore use this model to investigate, improve and 

quantify potential configurations for Haaften III. This can be seen as a pre-design phase for Haaften III.  
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10. Conclusions and Implications    
In this chapter, the findings from the research are concluded. First, all the key findings of the 

research will be discussed, after which the main research question will be answered. Thereupon 

recommendations will be made for Nedcargo, and we will reflect on the objective of the study. 

10.1 Key Findings and Main Research Question  
The order characteristics’ contingency variables generated experiments using the experiment 

generation model, in which the configurations models were being processed and gave the final results 

as the proposed performance indicators. This is all to answer the following question: 

What is the impact of context uncertainty of order characteristics on the different outbound 

configurations of an order-picking warehouse? 

This is in order to have flexible decision-making in the future warehouse configuration of Haaften III. 

 The first important conclusion that can be made is that the configurations model has been shown. 

What if the new requirements of a potential configuration option are being implemented in the models? 

The current state can be improved. It was examined how each of the configuration models would 

perform in a scenario with the same order characteristics of Tiel.  This was compared with running the 

same experiments through the current state model. The results showed that respectively configuration 

1, with the FCFS, Star Aisle Batching, and Batch+SP, resulted in an improvement in productivity of 15, 

20, and 30% compared to the current state. Next to that, a significant decrease is measured in the total 

distance travelled by the pickers. This also allows for completing the orders with fewer pickers, namely 

2 fewer pickers on average.  Therefore can be concluded that if only the warehouse’s layout were more 

compact, an increase of 15% in productivity would be reached, and if this is combined with the Star 

Aisle Batching with SinglePicks, the productivity will increase by 30% in Tiel.  

 Next to this, this study aimed to investigate if the context of the warehouse has an impact on its 

performance in different configurations. There were a total of six scenarios chosen by Nedcargo, and 

three new configurations were being modelled. The experiments were simulated in each configuration 

model, and their performance was compared. This comparison could be checked within the 

configuration models and between the scenarios. We will start by discussing the conclusions that can be 

made from the performance of each of the scenario experiments.  

First, the results showed that the productivity for each configuration and picking strategy differs 

from each other. In specific scenarios, productivity is much higher or lower than in others. The context, 

therefore, influences the performance between scenarios. This is also the case with the other 

performance indicators, such as travelled distance, picking time, and average batching time. How can 

be explained which contingency factors are causing that the increase in productivity? The results showed 

that the ABC-Ratio contingency variable has a significant impact on the productivity of the chosen 

configurations. Respectively, high productivity is reached if the warehouse consists of a lower 

percentage of A-type SKUs and lower productivity if the warehouse has a high percentage of A-type 

SKUs. This can be concluded by comparing the high and low productivity scenarios with their 

corresponding contingency variables. Next to that, a context scenario where the amount of colli is high 

and the orderlines per order are low will result in higher performance. This is since the picker can grab 

more colli during an SKU visit, which decreases the travel distance and thus increases the performance. 

For example, scenario 77, which has all of the above order characteristics, has the highest performance 

of all context scenarios. On the other hand, scenario 107, which does not characterize the above findings, 

has the worst performance measures.  

Next to that, it can be seen that in each scenario, the change between configuration and picking 

strategy has another effect. In some scenarios, such as 10 and 77, another picking strategy or 

configuration does not have an as significant impact as, e.g., 107 and 92. In those scenarios, the 
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percentage decrease in productivity is much higher when not the best configuration and picking strategy 

option is implemented. This is an important insight because the order characteristics influence how well 

it functions per configuration and picking strategy. But looking at the performance, which configuration 

and picking strategy perform the best? To answer this question, we need to look within each scenario.  

This research proposed a new batching strategy that was not yet been seen or quantified before 

in warehousing literature. The ones that were known are the First Come, First Serve (FCFS) strategy 

that is currently implemented in Nedcargo’s current warehouse in Tiel. The SinglePick strategy was 

proposed during a previously conducted design project at Nedcargo. States that each of the single SKU 

and single colli orders should be collected in one batch. And the Star Aisle Batching strategy is derived 

from the literature that batches the orders based on the aisles that need to be visited. The new strategy 

proposed is a combination between the SinglePick strategy and the Star Aisle Batching strategy. The 

results showed that for each configuration, this strategy has the best performance in terms of productivity 

and picking time within each scenario. Which means that this strategy fits each scenario and 

configuration best and outperforms the other two strategies modelled.  

The proposed three configurations were based on the requirements and assumptions that were 

urged. Each of the configurations was simulated within each scenario, and its performance was 

measured. A series of conclusions can be drawn from these results. First, it is seen in the performance 

that in each scenario, configuration 1 performs the best in terms of productivity together with 

configuration 2. Configuration 3, where the S-shape routing strategy is implemented, has lower 

productivity, reducing 2 to 11 percent. This is also affected by the context scenario it operates in. It can 

be concluded that configurations 1 and 2 in each scenario have higher productivity than configuration 

3, but there is no significant increase between configurations 1 and 2. Configuration 2 uses another 

storage strategy that implements the idea of dynamic SKU locations, where SKUs can be moved based 

on SKU affinity and SKU demand. The model results in prove that configuration 2 does not significantly 

improve the performance of the warehouse if compared with configuration 1, from which it slightly 

differs in layout and storage. This proof in performance concludes that configuration 2 is not worth 

further investigation.  

The proof of configuration concept that is being withheld in this research aims to demonstrate 

the feasibility of the chosen configurations. The results prove that configuration 1 performs better in 

terms of productivity for each of the scenarios than configuration 3 for each picking strategy and that 

configuration 2 has no significant effect on the performance irrespective of the context. Therefore the 

contingency approach proved that specific configurations perform differently in each context, and their 

performance is affected. On the other hand, configuration 3 has less chance of congestion due to the 

routing strategy. Pickers can only traverse the aisle in one direction. This should also be kept in mind if, 

in practice, i.e., configuration 1 causes a lot of congestion. Nedcargo now has insight into the impact per 

scenario when it is switched to configuration 3.  

So, if we look back at the main research questions, the following can be concluded. The context 

in which an order-picking warehouse operates, based on the order characteristics uncertainty, has a 

significant impact on the performance of different configurations. Each configuration performs 

differently considering its context scenario. This is shown using the contingency approach. The 

contingency variables represent the uncertainty of the order characteristics, the response variables, 

which are the three configurations and picking strategies modelled, and the performance variables, 

which are the output of these models. Now that this has been stated, how can this be used for the purpose 

of flexible decision-making for Nedcargo? In order to make the right choices in the right contextual 

setting for Haaften III.  

Based on the findings, Nedcargo has an insight into how a configuration would react in a 

particular context of order characteristics. The order characteristics of the future state for Haaften are 

uncertain, and therefore Nedcargo can use the findings of this study to be prepared. The experiments 
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show that it is essential to test different configurations on their performance before you start designing. 

The results of this thesis function as a proof of configuration, which is that configuration performs better 

or worse in a specific context. Nedcargo must use these models as a tool to improve its decision-making. 

10.2 Discussion   
 The simulation models developed have some limitations due to their assumptions and simplified 

representation of some processes. Therefore, the results and findings should be discussed by looking at 

confident choices that are being made in the research process. Further research could tackle these points, 

and thus this will also be indicated.  

 Firstly, the experiment generation model uses only four contingency variables. In real life, more 

order characteristics can be added to the model. Next to that, it can also be chosen also to take the 

demand characteristics into account to see what the impact of the demand is on the functioning of the 

configurations. This research is chosen to only focus on the order characteristics. Nevertheless, there are 

more contextual factors that can influence the configurations. Structural equation Modelling could 

implicitly look at all of those contextual factors for the functioning of a warehouse. Next to that, it could 

be investigated whether the demand characteristics could be implemented as stochastic variables. 

Stochastic variables are time-dependent and could therefore generate each order day with a different 

demand based on the stochastic distribution. Further research is obliged to investigate this.  

The picking time is chosen to be continuously uniform distributed in the configuration models.  

This is due to the data that was collected and analysed. This is acceptable, but it is recommended that 

Nedcargo and future researchers further look into the data gathering of the picking activities. This 

optimizes the configuration models. Iterations were required to obtain sufficiently close to zero residuals 

to reach iterative convergence in the models. In the future, this could be more efficient if more data 

about the picking activities are being gathered.  

The configuration models all used the same layout per experiment within the scenarios. It can 

also be investigated what the effect would be if another layout were used per experiment. This could 

therefore be compared with the current results. The current models can quickly obtain these results, but 

for the sake of the research, it was chosen to keep the storage of the SKUs in the layout the same. Next 

to that, more analyses could be made based on the gathered results from the experiments. In this study, 

only the analyses relevant to answering the main research question and its corresponding sub-research 

questions were elaborated. It could be discussed if more analyses could be made to substantiate the aim 

of the research.  

 

10.3 Scientific Relevance 
 Scientific research, such as this thesis, is performed to fill up a gap in knowledge by performing 

research on a particular topic. It can also be conducted to give insights into vaguely or unknown topics. 

This study aims to fill some research gaps and also to investigate new topics. The listed four points stress 

the scientific relevance of this paper based on the method or findings.   

• The SinglePick strategy is a picking strategy that has not yet been quantified in the literature. It 

is described as a strategy option but not quantified what its specific impact on the productivity 

it causes. Also, the literature stated that warehouse strategies are non-generalizable and are very 

case specific. Therefore each quantification could benefit Nedcargo because it reflects their 

operation.  

• The Star Aisle Batching Strategy combined with the SinglePick strategy is a new strategy 

proposed. The combination of the two has not been seen in literature before. This strategy 

outperforms the other two strategies in each of the experiments. Hence, it is exciting to carry 
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out further research on this strategy. This, of course, is context-dependent, which has also been 

concluded in this research.  

• Quantification of the contingency approach has only been seen once in literature (Sadowski et 

al., 2021). The research approach of this thesis, in combination with the proof of configuration 

aim, is a new approach that could benefit the stage before the design process of a new warehouse 

starts. This approach could prove that confident configurational choices would improve or 

deteriorate performance in a particular context. This can be executed preliminary to the design 

phase of a warehouse.  

• “Develop scales to more precisely measure different contextual factors and configuration 

elements for warehouses.”. This is a literature gap by Kembro (2020), that is filled with the 

experiment generation and configuration models. These models give an insight into the scales 

of contextual factors, although only those of the order characteristics. The configurational 

elements were modelled as response variables. A Modelling approach that integrates multiple 

components of warehouse configurations as response variables. This is not yet been developed 

in previously conducted research. Next to that, multiple components were implemented in the 

model. While in other warehouse modelling studies, mostly one or few specific component(s) 

were investigated.   

10.4 Deliverables  
The models that are proposed in this thesis can function as a decision-making tool for Nedcargo. 

For their new warehouse in Haaften, it is advised to further look into the proposed strategy, design, 

storage, resources, and layout choices. Most of all, the BatchSP strategy, which results in the highest 

productivity, should be considered for implementation. The batching output could be modelled with the 

current WMS so that even Tiel could benefit from the productivity gain for its picking operation. 

Configuration 1 is seen as the best configuration, in terms of quantitative performance, that is modelled 

in this study. Therefore, it is recommended to include the components suggested there during the design 

process. Adjustments could always be made to the configuration model and its results quantified.  

Next to that, Nedcargo can use the Experiment Generation Model to recreate a specific client 

and the configuration model to see how this client will affect their potential warehouse performance. 

The Experiment Generation model can be used to recreate a fictitious order list for a specific client. If 

the client knows their order characteristics, their orders could be generated as experiments. This gives 

both the client and Nedcargo insight into the potential orders that must be handled. This can be presented 

to the client as the future state of their order profile.  
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Appendix A: Current State Analysis 
Integration definition for function (IDEF) is a lean method that provides a structured overview 

of process flows (Lightsey, 2001). It is a diagram containing rectangles and arrows. The rectangles 

indicate a process step or function where some activity is performed. On the left side, incoming arrows 

provide the input for that activity, whilst the arrows coming out on the right side provide the output. 

Arrows coming in from the top depict control, and arrows from the bottom indicate materials or 

employees needed to perform that process step. IDEF is particularly useful because it is possible to zoom 

in on one of the subprocesses even further quickly. To fully understand and depict the warehouse process 

related to B2B type e-commerce orders, an IDEF diagram is drawn in which several of the subprocesses 

will be further dived into. 

As said, an IDEF0 diagram is a functional Modelling method that can help with Modelling the decisions, 

actions, and activities of an organization or system. An IDEF0 diagram is built up with an activity block 

with an input on the left side and an output on the right side. Controls are depicted by arrows that come 

from the top, whereas required resources are shown by arrows that come in from the bottom. This can 

be visualized in the following figure:  

 

Figure A-1 – IDEF-0 Conceptually 

IDEF-0 diagrams consist of several levels in which each level dives deeper into a certain sub-process. 

In this report, an IDEF0 diagram was made to provide insights into the processes considering 

warehousing activities of Nedcargo related to B2B e-commerce type orders. It starts with level A-0, 

which depicts all the controls and materials that are required for all of the warehouse operations. It also 

shows that the flow considered is scoped to an inbound load carrier in a truck and an outbound sealed 

load carrier in a truck.  
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Figure A-2 – A-0 Level IDEF-0 

As can be seen from the figure above, a lot of control mechanisms and materials are required to fulfill 

the warehousing of B2B type e-commerce orders.  

If we go into these processes a little bit deeper in the second level, the A-1 level, the flow is depicted a 

little bit more logically. There are 6 subprocesses defined in this diagram, ranging from A1 to A6. These 

processes are unloading, storing, picking, packing, sealing, and loading.  

 

Figure A-3 – A-1 Level IDEF-0 

As stated before, this diagram describes the processes a little bit more specifically. It can be seen that it 

all starts with the unloading of a truck, in which the driver or an unloader uses a scanner and a pallet 

truck to unload, and he needs a CMR consignment note in order to do so. With this control, the number 

of goods carried can be checked, as well as confirmed. After the pallets have been unloaded, the pallets 
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have to be stored. The storage of goods entails the put-away process as well as the replenishment of the 

pick location. When the storing process is zoomed in on, the following processes can be defined:  

 

Figure A-4 – A-2 Level IDEF-0 

The main takeaway from this diagram is that there can occur two situations: after being put away, the 

pallet in bulk storage goes directly towards the picking process, or the pallet goes from bulk storage 

through the replenishing process towards a picking location. These two flows depict the input for the 

picking process, which can be found in figure 4.  

As stated before, the to-be-picked goods can either be a full pallet in bulk or a pallet at a picking location, 

where colli can be picked from that location. The process is built up with several steps that have to be 

taken. Firstly, a load carrier has to be picked up. After this, the order picker drives the pallet truck to the 

pick location. The location has to be scanned, after which goods can be picked and consequently 

registered.  

 

Figure A-5 – A-3 Level IDEF-0 

Finally, the load carrier, which can be colli on a full pallet, on a ‘pick roll container’ or colli on a roll 

container with dividers, is headed for the packing process. These last orders are for outbound goods 

transported by PostNL, whereas the first two load carriers are transported by van Vliet.  
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It’s vital to notice that there are three types of outputs from this flow, all of which flow toward a different 

next activity. The full pallets are still sealed from the inbound process and go directly towards the dock. 

The colli on pallet/pick RC go towards the sealing location, and lastly, the colli on RC with the dividers 

go to the packing location. The packing process consequently can be depicted by the following figure: 

 

Figure A-6 – A-4 Level IDEF-0 

There are two different flows that are important: the folding and registering of boxes, in which the colli 

eventually have to be packed, and the packing process itself in which the colli are scanned, packed, 

labeled, and eventually palletized. The end product is packed and labeled boxes on pallets which are 

consequently made ready for sealing. It is essential to see that both of these processes are executed by 

the same order packer. She, as stated before in the Gemba walk, has to make an estimate of the number 

of boxes that are needed to pack all the colli in an order. She then has to fold those boxes and pack them.  

After the colli are packed, all of the load carriers are ready to be sealed, as can be seen from the first A-

1 level diagram, after which they are loaded into outbound trucks. This shortly described how the 

warehouse operations are filled in at Nedcargo with e-commerce B2B type orders. 
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In order to see how the process flows are moving between different parties, in our case, employees, a 

swimlane diagram is created. A swimlane diagram is based on the analogy of lanes in a pool, and it 

places process steps within horizontal “swimlanes” of a particular department, workgroup, or employee 

(Office Timeline, 2020). The lines between different lanes represent communication between these 

lanes. The swimlane diagram can serve as an indicator of waste, redundancy, and inefficiency in a 

process.  

The swimlane diagrams made in this study focus on the release, picking, and packing of orders. One 

diagram is made: one of the picking and packing processes of the small Post NL orders (see figure 8). 

The swimlane diagram includes all subprocesses from the release of orders to be picked by the team 

leader of the warehouse towards the final positioning of the load carrier with the picked (and packed) 

orders on the assigned dock.  

Figure A-7 – Swimlane Pick and Pack Diagram 
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Figure A-8 – Swimlane Pick and Pack diagram, Replenishment 
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Figure A-10 – Logistics Flow Decision Chart per Picking Tour 
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Table A-3. Picker Performance on Busiest Day  

23-06-2021  Total Colli: 1761   

  Day Performance: 101,27 Colli/h Avg. Picking Time: 8720 

PickerID Performance Amount of Colli Picking Time (sec) Amount of Batches  

BELJRF 182,14 51 1008 1  

DOBARF 58,41 35 2157 1  

FIGSRF 32,06 10 1123 1  

JURARF 103,53 619 21523 16  

JURPRF 100,47 419 15013 8  

NICTRF 109,89 398 13039 15  

STYARF 114,85 229 7178 10  

 

  

Table A-1. Characteristics of fast-movers of total SKU Picked  

Product Name Ranking SKU SKU Picks % SKU Ranking Colli Amount of Colli % Colli 

DE MELKPOEDER ZAK 1 5356 6,81 4 7375 3,23 

DE CACAO FANT BLUE 2 4081 3,93 11 5165 2,26 

DE ESP DRST100%ARA 3 3390 3,26 2 8054 3,53 

DE ESPR MED ROAST 4 3294 3,17 1 8654 3,79 

DE CAFE MILC LIQ 5 2980 2,87 5 6973 3,05 

DE WOODEN STIRRERS 6 2859 2,75 6 6765 2,96 

DE SUIKERSTICKS 7 2646 2,54 12 5030 2,20 

DE P. CUP BLCK 8 2269 2,18 13 4040 1,77 

PICKW GR TEA LEM PRO 9 2264 2,18 3 7423 3,25 

PICKW FOR FRT PROF 10 2167 2,08 10 5644 2,47 

Table A-2. Characteristics of fast-movers of total Colli picked 

Product Name Ranking Colli Amount of Colli % Colli Ranking SKU SKU Picks % SKU 

DE ESPR MED ROAST 1 8654 3,79 4 3294 3,17 

DE ESP DRST100%ARA 2 8054 3,53 3 3390 3,26 

PICKW GR TEA LEM PRO 3 7423 3,25 9 2264 2,18 

DE MELKPOEDER ZAK 4 7375 3,23 1 5356 6,81 

DE CAFE MILC LIQ 5 6973 3,05 5 2980 2,87 

DE WOODEN STIRRERS 6 6765 2,96 6 2859 2,75 

PICKW ROOIB ORIG 7 6375 2,80 11 2114 2,03 

LOR PROMESSO MILC 8 5913 2,79 18 1428 1,37 

PICKW ENGLISH PROF 9 5644 2,59 12 1862 1,79 

PICKW FOR FRT PROF 10 5165 2,47 10 2167 2,08 
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Table A-4. Picker Performance on Average Day in Colli 

18-03-2021  Total Colli: 1006   

  Day Performance: 92,97 Colli/h Avg. Picking Time: 6585 

PickerID Performance Amount of Colli Picking Time (sec) Amount of Batches  

BELJRF 86,31 58 2419 6  

FIGSRF 139,96 18 463 1  

KAWPRF 96,81 629 23390 25  

OSCBRF 128,40 82 2299 2  

RUIGRF 61,77 83 4837 3  

VERGRF 80,25 136 6101 8  

 

Table A-5. Picker Performance on Average Performance Day 

08-07-2021  Total Colli: 925   

  Day Performance: 111,99 Colli/h Avg. Picking Time: 9588 

PickerID Performance Amount of Colli Picking Time (sec) Amount of Batches  

KLESRF 147,37 409 19506 28  

WIEMRF 95,23 516 19027 20  

 

 

 

 

Table A-6 ABC-analysis of Colli picked per product in Tiel  

 A-Products B-Products C-Products   

Total Products 60 80 244   

Share of Products 17,09% 27,07% 55,84%   

Share of Colli Picks 75,52% 19,60% 4,88%   

 

Table A-7. Colli picked share for A-products total Colli  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 34983 26432 11243 1577 592 36 

Share 46,73% 35,31% 15,02% 2,11% 0,79% 0,05% 

 

Table A-8. Colli picked share for B-products total Colli  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 12256 7232 2690 311 114 1 

Share 54,22% 31,99% 11,90% 1,38% 0,50% 0,00% 

 

Table A-9. Colli picked share for C-products total Colli  

Colli Picked 1 2-3 4-8 9-15 16-50 50-250 

Total Picks 4184 1655 562 84 17 0 

Share 64,35% 25,45% 8,64% 1,29% 0,26% 0,00% 
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Figure A-11 – Heat Map of SKU picks in Tiel  

  

         

 
 

 
 
T02.023 

  

 
 
T02.024 

 

 
 
T03.023 

  

 
 
T03.024 

 

 
 
T04.023 

  

 
 
T04.024 

 

 
 
T05.023 

  

 
 
T05.024 

 

 
 
T06.023 

  

 
 
T06.024 

 

 
 
T07.023 

  

 
 
T07.024 

 

 
 
T08.023 

  

 
 
T08.024 

 

 
 
T09.023 

  

 
 
T09.024 

 

 
 
T02.021 

 

 
 
T02.022 

 

 
 
T03.021 

 

 
 
T03.022 

 

 
 
T04.021 

 

 
 
T04.022 

 

 
 
T05.021 

 

 
 
T05.022 

 

 
 
T06.021 

 

 
 
T06.022 

 

 
 
T07.021 

 

 
 
T07.022 

 

 
 
T08.021 

 

 
 
T08.022 

 

 
 
T09.021 

 

 
 
T09.022 

 

 
 
T02.019 

 

 
 
T02.020 

 

 
 
T03.019 

 

 
 
T03.020 

 

 
 
T04.019 

 

 
 
T04.020 

 

 
 
T05.019 

 

 
 
T05.020 

 

 
 
T06.019 

 

 
 
T06.020 

 

 
 
T07.019 

 

 
 
T07.020 

 

 
 
T08.019 

 

 
 
T08.020 

 

 
 
T09.019 

 

 
 
T09.020 

 

 
 
T02.017 

 

 
 
T02.018 

 

 
 
T03.017 

 

 
 
T03.018 

 

 
 
T04.017 

 

 
 
T04.018 

 

 
 
T05.017 

 

 
 
T05.018 

 

 
 
T06.017 

 

 
 
T06.018 

 

 
 
T07.017 

 

 
 
T07.018 

 

 
 
T08.017 

 

 
 
T08.018 

 

 
 
T09.017 

 

 
 
T09.018 

 

 
 
T02.015 

 

 
 
T02.016 

 

 
 
T03.015 

 

 
 
T03.016 

 

 
 
T04.015 

 

 
 
T04.016 

 

 
 
T05.015 

 

 
 
T05.016 

 

 
 
T06.015 

 

 
 
T06.016 

 

 
 
T07.015 

 

 
 
T07.016 

 

 
 
T08.015 

 

 
 
T08.016 

 

 
 
T09.015 

 

 
 
T09.016 

 

 
 
T02.013 

 

 
 
T02.014 

 

 
 
T03.013 

 

 
 
T03.014 

 

 
 
T04.013 

 

 
 
T04.014 

 

 
 
T05.013 

 

 
 
T05.014 

 

 
 
T06.013 

 

 
 
T06.014 

 

 
 
T07.013 

 

 
 
T07.014 

 

 
 
T08.013 

 

 
 
T08.014 

 

 
 
T09.013 

 

 
 
T09.014 

 

 
 
T02.011 

 

 
 
T02.012 

 

 
 
T03.011 

 

 
 
T03.012 

 

 
 
T04.011 

 

 
 
T04.012 

 

 
 
T05.011 

 

 
 
T05.012 

 

 
 
T06.011 

 

 
 
T06.012 

 

 
 
T07.011 

 

 
 
T07.012 

 

 
 
T08.011 

 

 
 
T08.012 

 

 
 
T09.011 

 

 
 
T09.012 

 

 
 
T02.009 

 

 
 
T02.010 

 

 
 
T03.009 

 

 
 
T03.010 

 

 
 
T04.009 

 

 
 
T04.010 

 

 
 
T05.009 

 

 
 
T05.010 

 

 
 
T06.009 

 

 
 
T06.010 

 

 
 
T07.009 

 

 
 
T07.010 

 

 
 
T08.009 

 

 
 
T08.010 

 

 
 
T09.009 

 

 
 
T09.010 

 

 
 
T02.007 

 

 
 
T02.008 

 

 
 
T03.007 

 

 
 
T03.008 

 

 
 
T04.007 

 

 
 
T04.008 

 

 
 
T05.007 

 

 
 
T05.008 

 

 
 
T06.007 

 

 
 
T06.008 

 

 
 
T07.007 

 

 
 
T07.008 

 

 
 
T08.007 

 

 
 
T08.008 

 

 
 
T09.007 

 

 
 
T09.008 

 

 
 
T02.005 

 

 
 
T02.006 

 

 
 
T03.005 

 

 
 
T03.006 

 

 
 
T04.005 

 

 
 
T04.006 

 

 
 
T05.005 

 

 
 
T05.006 

 

 
 
T06.005 

 

 
 
T06.006 

 

 
 
T07.005 

 

 
 
T07.006 

 

 
 
T08.005 

 

 
 
T08.006 

 

 
 
T09.005 

 

 
 
T09.006 

 

 
 
T02.003 

 

 
 
T02.004 

 

 
 
T03.003 

 

 
 
T03.004 

 

 
 
T04.003 

 

 
 
T04.004 

 

 
 
T05.003 

 

 
 
T05.004 

 

 
 
T06.003 

 

 
 
T06.004 

 

 
 
T07.003 

 

 
 
T07.004 

 

 
 
T08.003 

 

 
 
T08.004 

 

 
 
T09.003 

 

 
 
T09.004 

 

 
 
T02.001 

 

 
 
T02.002 

 

 
 
T03.001 

 

 
 
T03.002 

 

 
 
T04.001 

 

 
 
T04.002 

 

 
 
T05.001 

 

 
 
T05.002 

 

 
 
T06.001 

 

 
 
T06.002 

 

 
 
T07.001 

 

 
 
T07.002 

 

 
 
T08.001 

 

 
 
T08.002 

 

 
 
T09.001 

 

 
 
T09.002 

  

2 
   

3 
   

4 
   

5 
   

6 
   

7 
   

8 
   

9 
 

 
<= 1,  

> 1,  

> 10,  

> 30,  

> 50,  

> 100,  

> 200,  

> 300,  

> 400,  

> 500,  

> 750,  

> 1000,  

> 1250,  

> 1500,  

> 2000,  

> 2500,  

> 3000,  

> 4000,  

> 5000,  

> 6000,  

 

 

T09.046 

 

 

T09.044 

 

 

T09.042 

 

 

T09.040 

 

 

T09.038 

 

 

T09.036 

 

 

T09.034 

 

 

T09.032 

 

 

T09.030 

 

 

T09.028 

 

 

 

T08.046 

 

 

T09.045 

 

 

T08.044 

 

 

T09.043 

 

 

T08.042 

 

 

T09.041 

 

 

T08.040 

 

 

T09.039 

 

 

T08.038 

 

 

T09.037 

 

 

T08.036 

 

 

T09.035 

 

 

T08.034 

 

 

T09.033 

 

 

T08.032 

 

 

T09.031 

 

 

T08.030 

 

 

T09.029 

 

 

T08.028 

 

 

T09.027 

 

 

 

T07.046 

 

 

T08.045 

 

 

T07.044 

 

 

T08.043 

 

 

T07.042 

 

 

T08.041 

 

 

T07.040 

 

 

T08.039 

 

 

T07.038 

 

 

T08.037 

 

 

T07.036 

 

 

T08.035 

 

 

T07.034 

 

 

T08.033 

 

 

T07.032 

 

 

T08.031 

 

 

T07.030 

 

 

T08.029 

 

 

T07.028 

 

 

T08.027 

 

 

 

T06.046 

 

 

T07.045 

 

 

T06.044 

 

 

T07.043 

 

 

T06.042 

 

 

T07.041 

 

 

T06.040 

 

 

T07.039 

 

 

T06.038 

 

 

T07.037 

 

 

T06.036 

 

 

T07.035 

 

 

T06.034 

 

 

T07.033 

 

 

T06.032 

 

 

T07.031 

 

 

T06.030 

 

 

T07.029 

 

 

T06.028 

 

 

T07.027 

 

 

 

T05.046 

 

 

T06.045 

 

 

T05.044 

 

 

T06.043 

 

 

T05.042 

 

 

T06.041 

 

 

T05.040 

 

 

T06.039 

 

 

T05.038 

 

 

T06.037 

 

 

T05.036 

 

 

T06.035 

 

 

T05.034 

 

 

T06.033 

 

 

T05.032 

 

 

T06.031 

 

 

T05.030 

 

 

T06.029 

 

 

T05.028 

 

 

T06.027 

 

 

 

T04.046 

 

 

T05.045 

 

 

T04.044 

 

 

T05.043 

 

 

T04.042 

 

 

T05.041 

 

 

T04.040 

 

 

T05.039 

 

 

T04.038 

 

 

T05.037 

 

 

T04.036 

 

 

T05.035 

 

 

T04.034 

 

 

T05.033 

 

 

T04.032 

 

 

T05.031 

 

 

T04.030 

 

 

T05.029 

 

 

T04.028 

 

 

T05.027 

 

 

 

T03.046 

 

 

T04.045 

 

 

T03.044 

 

 

T04.043 

 

 

T03.042 

 

 

T04.041 

 

 

T03.040 

 

 

T04.039 

 

 

T03.038 

 

 

T04.037 

 

 

T03.036 

 

 

T04.035 

 

 

T03.034 

 

 

T04.033 

 

 

T03.032 

 

 

T04.031 

 

 

T03.030 

 

 

T04.029 

 

 

T03.028 

 

 

T04.027 

 

 

 

T02.046 

 

 

T03.045 

 

 

T02.044 

 

 

T03.043 

 

 

T02.042 

 

 

T03.041 

 

 

T02.040 

 

 

T03.039 

 

 

T02.038 

 

 

T03.037 

 

 

T02.036 

 

 

T03.035 

 

 

T02.034 

 

 

T03.033 

 

 

T02.032 

 

 

T03.031 

 

 

T02.030 

 

 

T03.029 

 

 

T02.028 

 

 

T03.027 

 

 

 

T02.045 

 

 

T02.043 

 

 

T02.041 

 

 

T02.039 

 

 

T02.037 

 

 

T02.035 

 

 

T02.033 

 

 

T02.031 

 

 

T02.029 

 

 

T02.027 

 



 

139 
 

 

Figure A-12 – Heat Map of Colli Picked in Tiel 
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Appendix B: Scenarios 

 SKU per Order ABC-Ratio Number of SKU Colli per SKU 

Scenario 1 Level 1 Level  1 Level 1  Level 1 

Scenario 2 Level 1 Level 1 Level 1  Level 2 

Scenario 3 Level 1 Level  1 Level 1  Level 3  

Scenario 4 Level 1 Level  1 Level 1  Level 4 

Scenario 5 Level 1 Level  1 Level 2  Level 1 

Scenario 6 Level 1 Level  1 Level 2 Level 2 

Scenario 7 Level 1 Level  1 Level 2 Level 3  

Scenario 8 Level 1 Level  1 Level 2 Level 4 

Scenario 9 Level 1 Level  1 Level 3 Level 1 

Scenario 10 Level 1 Level  1 Level 3 Level 2 

Scenario 11 Level 1 Level  1 Level 3 Level 3  

Scenario 12 Level 1 Level  1 Level 3 Level 4 

Scenario 13 Level 1 Level 2 Level 1  Level 1 

Scenario 14 Level 1 Level 2 Level 1  Level 2 

Scenario 15 Level 1 Level 2 Level 1  Level 3  

Scenario 16 Level 1 Level 2 Level 1  Level 4 

Scenario 17 Level 1 Level 2 Level 2  Level 1 

Scenario 18 Level 1 Level 2 Level 2 Level 2 

Scenario 19 Level 1 Level 2 Level 2 Level 3  

Scenario 20 Level 1 Level 2 Level 2 Level 4 

Scenario 21 Level 1 Level 2 Level 3 Level 1 

Scenario 22 Level 1 Level 2 Level 3 Level 2 

Scenario 23 Level 1 Level 2 Level 3 Level 3  

Scenario 24 Level 1 Level 2 Level 3 Level 4 

Scenario 25 Level 1 Level 3  Level 1  Level 1 

Scenario 26 Level 1 Level 3  Level 1  Level 2 

Scenario 27 Level 1 Level 3 Level 1  Level 3  

Scenario 28 Level 1 Level 3 Level 1  Level 4 

Scenario 29 Level 1 Level 3 Level 2  Level 1 

Scenario 30 Level 1 Level 3 Level 2 Level 2 

Scenario 31 Level 1 Level 3 Level 2 Level 3  

Scenario 32 Level 1 Level 3 Level 2 Level 4 

Scenario 33 Level 1 Level 3 Level 3 Level 1 

Scenario 34 Level 1 Level 3 Level 3 Level 2 

Scenario 35 Level 1 Level 3 Level 3 Level 3  

Scenario 36 Level 1 Level 3 Level 3 Level 4 

Scenario 37 Level 2 Level  1 Level 1  Level 1 

Scenario 38 Level 2 Level 1 Level 1  Level 2 

Scenario 39 Level 2 Level  1 Level 1  Level 3  

Scenario 40 Level 2 Level  1 Level 1  Level 4 

Scenario 41 Level 2 Level  1 Level 2  Level 1 

Scenario 42 Level 2 Level  1 Level 2 Level 2 

Scenario 43 Level 2 Level  1 Level 2 Level 3  

Scenario 44 Level 2 Level  1 Level 2 Level 4 

Scenario 45 Level 2 Level  1 Level 3 Level 1 

Scenario 46 Level 2 Level  1 Level 3 Level 2 

Scenario 47 Level 2 Level  1 Level 3 Level 3  
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Scenario 48 Level 2 Level  1 Level 3 Level 4 

Scenario 49 Level 2 Level 2 Level 1  Level 1 

Scenario 50 Level 2 Level 2 Level 1  Level 2 

Scenario 51 Level 2 Level 2 Level 1  Level 3  

Scenario 52 Level 2 Level 2 Level 1  Level 4 

Scenario 53 Level 2 Level 2 Level 2  Level 1 

Scenario 54 Level 2 Level 2 Level 2 Level 2 

Scenario 55 Level 2 Level 2 Level 2 Level 3  

Scenario 56 Level 2 Level 2 Level 2 Level 4 

Scenario 57 Level 2 Level 2 Level 3 Level 1 

Scenario 58 Level 2 Level 2 Level 3 Level 2 

Scenario 59 Level 2 Level 2 Level 3 Level 3  

Scenario 60 Level 2 Level 2 Level 3 Level 4 

Scenario 61 Level 2 Level 3  Level 1  Level 1 

Scenario 62 Level 2 Level 3  Level 1  Level 2 

Scenario 63 Level 2 Level 3 Level 1  Level 3  

Scenario 64 Level 2 Level 3 Level 1  Level 4 

Scenario 65 Level 2 Level 3 Level 2  Level 1 

Scenario 66 Level 2 Level 3 Level 2 Level 2 

Scenario 67 Level 2 Level 3 Level 2 Level 3  

Scenario 68 Level 2 Level 3 Level 2 Level 4 

Scenario 69 Level 2 Level 3 Level 3 Level 1 

Scenario 70 Level 2 Level 3 Level 3 Level 2 

Scenario 71 Level 2 Level 3 Level 3 Level 3  

Scenario 72 Level 2 Level 3 Level 3 Level 4 

Scenario 73 Level 3 Level  1 Level 1  Level 1 

Scenario 74 Level 3 Level 1 Level 1  Level 2 

Scenario 75 Level 3 Level  1 Level 1  Level 3  

Scenario 76 Level 3 Level  1 Level 1  Level 4 

Scenario 77 Level 3 Level  1 Level 2  Level 1 

Scenario 78 Level 3 Level  1 Level 2 Level 2 

Scenario 79 Level 3 Level  1 Level 2 Level 3  

Scenario 80 Level 3 Level  1 Level 2 Level 4 

Scenario 81 Level 3 Level  1 Level 3 Level 1 

Scenario 82 Level 3 Level  1 Level 3 Level 2 

Scenario 83 Level 3 Level  1 Level 3 Level 3  

Scenario 84 Level 3 Level  1 Level 3 Level 4 

Scenario 85 Level 3 Level 2 Level 1  Level 1 

Scenario 86 Level 3 Level 2 Level 1  Level 2 

Scenario 87 Level 3 Level 2 Level 1  Level 3  

Scenario 88 Level 3 Level 2 Level 1  Level 4 

Scenario 89 Level 3 Level 2 Level 2  Level 1 

Scenario 90 Level 3 Level 2 Level 2 Level 2 

Scenario 91 Level 3 Level 2 Level 2 Level 3  

Scenario 92 Level 3 Level 2 Level 2 Level 4 

Scenario 93 Level 3 Level 2 Level 3 Level 1 

Scenario 94 Level 3 Level 2 Level 3 Level 2 

Scenario 95 Level 3 Level 2 Level 3 Level 3  

Scenario 96 Level 3 Level 2 Level 3 Level 4 
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Scenario 97 Level 3 Level 3  Level 1  Level 1 

Scenario 98 Level 3 Level 3  Level 1  Level 2 

Scenario 99 Level 3 Level 3 Level 1  Level 3  

Scenario 100 Level 3 Level 3 Level 1  Level 4 

Scenario 101 Level 3 Level 3 Level 2  Level 1 

Scenario 102 Level 3 Level 3 Level 2 Level 2 

Scenario 103 Level 3 Level 3 Level 2 Level 3  

Scenario 104 Level 3 Level 3 Level 2 Level 4 

Scenario 105 Level 3 Level 3 Level 3 Level 1 

Scenario 106 Level 3 Level 3 Level 3 Level 2 

Scenario 107 Level 3 Level 3 Level 3 Level 3  

Scenario 108 Level 3 Level 3 Level 3 Level 4 

Scenario 109 Level 4 Level  1 Level 1  Level 1 

Scenario 110 Level 4 Level 1 Level 1  Level 2 

Scenario 111 Level 4 Level  1 Level 1  Level 3  

Scenario 112 Level 4 Level  1 Level 1  Level 4 

Scenario 113 Level 4 Level  1 Level 2  Level 1 

Scenario 114 Level 4 Level  1 Level 2 Level 2 

Scenario 115 Level 4 Level  1 Level 2 Level 3  

Scenario 116 Level 4 Level  1 Level 2 Level 4 

Scenario 117 Level 4 Level  1 Level 3 Level 1 

Scenario 118 Level 4 Level  1 Level 3 Level 2 

Scenario 119 Level 4 Level  1 Level 3 Level 3  

Scenario 120 Level 4 Level  1 Level 3 Level 4 

Scenario 121 Level 4 Level 2 Level 1  Level 1 

Scenario 122 Level 4 Level 2 Level 1  Level 2 

Scenario 123 Level 4 Level 2 Level 1  Level 3  

Scenario 124 Level 4 Level 2 Level 1  Level 4 

Scenario 125 Level 4 Level 2 Level 2  Level 1 

Scenario 126 Level 4 Level 2 Level 2 Level 2 

Scenario 127 Level 4 Level 2 Level 2 Level 3  

Scenario 128 Level 4 Level 2 Level 2 Level 4 

Scenario 129 Level 4 Level 2 Level 3 Level 1 

Scenario 130 Level 4 Level 2 Level 3 Level 2 

Scenario 131 Level 4 Level 2 Level 3 Level 3  

Scenario 132 Level 4 Level 2 Level 3 Level 4 

Scenario 133 Level 4 Level 3  Level 1  Level 1 

Scenario 134 Level 4 Level 3  Level 1  Level 2 

Scenario 135 Level 4 Level 3 Level 1  Level 3  

Scenario 136 Level 4 Level 3 Level 1  Level 4 

Scenario 137 Level 4 Level 3 Level 2  Level 1 

Scenario 138 Level 4 Level 3 Level 2 Level 2 

Scenario 139 Level 4 Level 3 Level 2 Level 3  

Scenario 140 Level 4 Level 3 Level 2 Level 4 

Scenario 141 Level 4 Level 3 Level 3 Level 1 

Scenario 142 Level 4 Level 3 Level 3 Level 2 

Scenario 143 Level 4 Level 3 Level 3 Level 3  

Scenario 144 Level 4 Level 3 Level 3 Level 4 
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Appendix C: Experiment Generation Model  
 

Figure C-1– Fitted probability of an A-product being picked in Tiel per SKU 

Figure C-2 – Fitted probability of a B-product being picked in Tiel per SKU 
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Figure C-3 – Fitted probability of an C-product being picked in Tiel per SKU 
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Appendix D: Configuration Model 2 

 

Figure D-1 – SinglePick Decision Chart 

 

 

 

Figure D-2 – Width of Aisle per Forklift Type. In the configuration models Reach Truck is used. 
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Appendix E: Results and Analysis 

E1. Results Current State Model Tiel 
 

Table E-1. KPI’s of the current state model of Tiel in comparison to configurations models with batch strategy and singlepicks 

Configurations use Batch Strategy with SinglePicks    

 Tiel Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 65977 50553 50735 53090 

Avg. Total Picking Time (min) 1100 843 846 885 

Avg. Total Picking Time (h) 18,3 14,0 14,1 14,7 

Avg. Total Colli 2302 2302 2302 2302 

 Avg. Colli/Hour 126 164 163 156 

Avg. Total Pickers 3,0 2,00 2,0 2,0 

Avg. Pick Time(h)/Picker 6,1 7,02 7,0 7,4 

Avg. Distance Batch (m) 316 104 105 163 

Avg. Total Distance (m) 23711 6238 6325 9782 

Avg. Batching Time (s) 880 843 846 885 

 

Table E-2. KPI’s of the current state model of Tiel in comparison to configurations models with batch strategy  

Configurations use Batch Strategy     

 Tiel Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 65977 55030 54745 57590 

Avg. Total Picking Time (min) 1100 917 912 960 

Avg. Total Picking Time (h) 18,3 15,3 15,2 16,0 

Avg. Total Colli 2302 2302 2302 2302 

 Avg. Colli/Hour 126 151 152 144 

Avg. Total Pickers 3,0 2,00 2,0 2,7 

Avg. Pick Time(h)/Picker 6,1 7,64 7,6 6,0 

Avg. Distance Batch (m) 316 91 90 155 

Avg. Total Distance (m) 23711 6664 6487 11204 

Avg. Batching Time (s) 880 749 761 800 

 

Table E-3. KPI’s of the current state model of Tiel in comparison of configurations models with FCFS strategy  

Configurations use FCFS    

 Tiel Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 65977 57704 57033 61962 

Avg. Total Picking Time (min) 1100 962 951 1033 

Avg. Total Picking Time (h) 18,3 16,0 15,8 17,2 

Avg. Total Colli 2302 2302 2302 2302 

 Avg. Colli/Hour 126 144 145 134 

Avg. Total Pickers 3,0 2,40 2,3 3,0 

Avg. Pick Time(h)/Picker 6,1 6,93 7,0 5,7 

Avg. Distance Batch (m) 316 119 115 209 

Avg. Total Distance (m) 23711 8939 8613 15657 

Avg. Batching Time (s) 880 769 760 826 
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E2. Experimental Plans; Results from Experiment Generation Model 
 

Table E-4. Experimental Plan for Scenario 50 

 SKU per Order Distribution 2 Number Of SKUs Level 1  

 ABC-Ratio Level 2 Colli per SKU Distribution 2  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 794 835 912 794 837 

Total Colli 2176 2482 2536 2101 2281 

Avg. Orderline/Order 2,65 2,78 3,04 2,65 2,79 

Avg. Colli/Orderline 2,74 2,97 2,78 2,65 2,73 

Avg. Colli/Order  7,25 8,27 8,45 7,00 7,60 

Number of SinglePicks 74 72 62 83 67 

 

Table E-5. Experimental Plan for Scenario 107 

 SKU per Order Distribution 3 Number Of SKUs Level 3  

 ABC-Ratio Level 3 Colli per SKU Distribution 3  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 734 706 711 816 766 

Total Colli 1560 1640 1687 1736 1607 

Avg. Orderline/Order 2,45 2,35 2,37 2,72 2,55 

Avg. Colli/Orderline 2,13 2,32 2,37 2,13 2,10 

Avg. Colli/Order  5,20 5,47 5,62 5,79 5,36 

Number of SinglePicks 77 82 82 68 88 

 

Table E-6. Experimental Plan for Scenario 10 

 SKU per Order Distribution 1 Number Of SKUs Level 3  

 ABC-Ratio Level 1 Colli per SKU Distribution 2  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 1665 1565 1438 1495 1636 

Total Colli 4606 3937 3759 4048 4506 

Avg. Orderline/Order 5,55 5,22 4,79 4,98 5,45 

Avg. Colli/Orderline 2,77 2,52 2,61 2,71 2,75 

Avg. Colli/Order  15,35 13,12 12,53 13,49 15,02 

Number of SinglePicks 31 40 43 37 38 
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Table E-7. Experimental Plan for Scenario 77 

 SKU per Order Distribution 3 Number Of SKUs Level 2  

 ABC-Ratio Level 1 Colli per SKU Distribution 1  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 662 737 694 751 727 

Total Colli 2819 3664 3262 3123 3388 

Avg. Orderline/Order 2,21 2,46 2,31 2,50 2,42 

Avg. Colli/Orderline 4,26 4,97 4,70 4,16 4,66 

Avg. Colli/Order  9,40 12,21 10,87 10.41 11,29 

Number of SinglePicks 59 55 57 65 60 

 

Table E-8. Experimental Plan for Scenario 92 

 SKU per Order Distribution 3 Number Of SKUs Level 2  

 ABC-Ratio Level 2 Colli per SKU Distribution 4  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 742 736 709 721 764 

Total Colli 2181 2217 2015 1981 2285 

Avg. Orderline/Order 2,47 2,45 2,36 2,40 2,55 

Avg. Colli/Orderline 2,94 3,01 2,84 2,75 2,99 

Avg. Colli/Order  7,27 7,39 6,72 6,60 7,62 

Number of SinglePicks 83 75 94 78 84 

 

Table E-9. Experimental Plan for Scenario 123 

 SKU per Order Distribution 4 Number Of SKUs Level 1  

 ABC-Ratio Level 2 Colli per SKU Distribution 3  

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Orders 300 300 300 300 300 

Orderlines 1095 1130 1090 1000 1042 

Total Colli 2312 2616 2544 2377 2110 

Avg. Orderline/Order 3,65 3,77 3,63 3,33 3,47 

Avg. Colli/Orderline 2,11 2,32 2,33 2,38 2,02 

Avg. Colli/Order  7,71 8,72 8,48 7,92 7,03 

Number of SinglePicks 75 79 72 79 83 
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E3. Overall Results of Configuration Models per Batching Strategy 
 

Table E-10. KPI’s of Configuration 1 with batching strategy and singlepicks in the multiple scenarios 

Configuration 1        

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 

 Batch+SP      

 Avg. Total Picking Time (s) 50973 47946 84267 56282 48055 55098 

Avg. Total Picking Time (min) 850 799 1404 938 801 918 

Avg. Total Picking Time (h) 14,2 13,3 23,4 15,6 13,3 15,3 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 163 124 178 208 160 156 

Avg. Total Pickers 2 2,0 3,4 2 2 2 

Avg. Pick Time(h)/Picker 7,1 6,7 7,0 7,2 6,7 7,3 

Avg. Distance Batch (m) 113 186 200 103 131 126 

Avg. Total Distance (m) 6647 10486 13401 6355 7283 7184 

Avg. Batching Time (s) 869 850 1257 914 862 963 

 Batching Strategy     

 Avg. Total Picking Time (s) 55957 53512 86587 59970 53779 60151 

Avg. Total Picking Time (min) 933 892 1443 999 896 1003 

Avg. Total Picking Time (h) 15,5 14,9 24,1 16,7 14,9 16,7 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 149 111 173 195 143 143 

Avg. Total Pickers 2 2,0 3,4 3 2 3 

Avg. Pick Time(h)/Picker 7,0 7,4 7,1 6,1 7,5 5,8 

Avg. Distance Batch (m) 99 157 186 92 109 107 

Avg. Total Distance (m) 7267 11460 13822 6790 7975 7798 

Avg. Batching Time (s) 763 732 1167 815 737 823 

 FCFS      

 Avg. Total Picking Time (s) 58548 57193 89736 62414 56730 63316 

Avg. Total Picking Time (min) 976 953 1496 1040 946 1055 

Avg. Total Picking Time (h) 16,3 15,9 24,9 17,3 15,8 17,6 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 142 104 167 187 135 136 

Avg. Total Pickers 3 2,3 3,7 3 2 3 

Avg. Pick Time(h)/Picker 6,4 7,2 6,8 6,0 7,0 5,9 

Avg. Distance Batch (m) 126 206 231 123 145 139 

Avg. Total Distance (m) 9479 15476 17352 9206 10880 10406 

Avg. Batching Time (s) 781 763 1196 832 756 844 
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Table E-11. KPIs of Configuration 2 with batching strategy in the multiple scenarios 

Configuration 2       

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 

 Batch+SP      

 Avg. Total Picking Time (s) 50961 47842 84219 56413 48324 54853 

Avg. Total Picking Time (min) 849 797 1404 940 805 914 

Avg. Total Picking Time (h) 14,2 13,3 23,4 15,7 13,4 15,2 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 163 124 178 207 159 157 

Avg. Total Pickers 2 2,0 3,4 2 2 2 

Avg. Pick Time(h)/Picker 7,1 6,6 7,0 7,2 6,7 7,4 

Avg. Distance Batch (m) 110 181 200 104 133 122 

Avg. Total Distance (m) 6429 10184 13395 6376 7442 6960 

Avg. Batching Time (s) 869 848 1256 916 866 959 

 Batching Strategy     

 Avg. Total Picking Time (s) 55851 53537 86480 60189 53903 60103 

Avg. Total Picking Time (min) 931 892 1441 1003 898 1002 

Avg. Total Picking Time (h) 15,5 14,9 24,0 16,7 15,0 16,7 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 149 111 173 194 143 143 

Avg. Total Pickers 2 2,0 3,4 3 2 3 

Avg. Pick Time(h)/Picker 7,2 7,4 7,2 6,2 7,4 5,9 

Avg. Distance Batch (m) 95 155 184 93 112 104 

Avg. Total Distance (m) 6927 11306 13652 6872 8177 7631 

Avg. Batching Time (s) 762 733 1165 817 739 822 

 FCFS      

 Avg. Total Picking Time (s) 58268 56816 89878 62354 56995 63323 

Avg. Total Picking Time (min) 971 947 1498 1039 950 1055 

Avg. Total Picking Time (h) 16,2 15,8 25,0 17,3 15,8 17,6 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 143 104 167 187 135 136 

Avg. Total Pickers 3 2,2 3,8 3 2 3 

Avg. Pick Time(h)/Picker 6,4 7,3 6,7 5,9 6,7 5,9 

Avg. Distance Batch (m) 121 200 230 122 147 136 

Avg. Total Distance (m) 9099 15036 17252 9152 11022 10209 

Avg. Batching Time (s) 777 758 1198 831 760 844 
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Table E-12. KPI’s of Configuration 3 with FCFS strategy in the multiple scenarios 

Configuration 3       

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 

 BatchSP      

 Avg. Total Picking Time (s) 52736 49076 86080 63525 49635 56447 

Avg. Total Picking Time (min) 879 818 1435 1059 827 941 

Avg. Total Picking Time (h) 14,6 13,6 23,9 17,6 13,8 15,7 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 158 121 174 185 155 152 

Avg. Total Pickers 2,0 2,0 3,4 3 2 2 

Avg. Pick Time(h)/Picker 7,3 6,8 7,1 6,4 6,9 6,8 

Avg. Distance Batch (m) 164 214 239 198 172 169 

Avg. Total Distance (m) 9590 12089 15996 14009 9599 9665 

Avg. Batching Time (s) 900 870 1284 913 890 987 

 Batching Strategy     

 Avg. Total Picking Time (s) 58767 55372 88497 63557 56168 62512 

Avg. Total Picking Time (min) 979 923 1475 1059 936 1042 

Avg. Total Picking Time (h) 16,3 15,4 24,6 17,7 15,6 17,4 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 142 107 169 184 137 138 

Avg. Total Pickers 2,7 2,2 3,7 3 2 3 

Avg. Pick Time(h)/Picker 6,3 7,2 6,7 5,9 6,8 5,9 

Avg. Distance Batch (m) 156 195 225 158 160 158 

Avg. Total Distance (m) 11461 14298 16670 11783 11695 11555 

Avg. Batching Time (s) 801 758 1192 853 770 855 

 FCFS      

 Avg. Total Picking Time (s) 62694 61738 94953 67152 60914 67321 

Avg. Total Picking Time (min) 1045 1029 1583 1119 1015 1122 

Avg. Total Picking Time (h) 17,4 17,1 26,4 18,7 16,9 18,7 

Avg. Total Colli 2315 1646 4171 3251 2136 2392 

 Avg. Colli/Hour 133 96 158 174 126 128 

Avg. Total Pickers 3,0 3,0 4,0 3 3 3 

Avg. Pick Time(h)/Picker 5,8 5,7 6,6 6,2 5,6 6,2 

Avg. Distance Batch (m) 220 305 336 220 233 226 

Avg. Total Distance (m) 16496 22854 25213 16475 17463 16919 

Avg. Batching Time (s) 836 823 1266 895 812 898 

 

  



 

152 
 

 

E4. Average Results of Each Experiment per Scenario 

 

Scenario 50 
 
Table E-13. Average KPI Results per Picking Strategy of all Experiments of Scenario 50 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 50973 50961 52736 

Avg. Total Picking Time (min) 850 849 879 

Avg. Total Picking Time (h) 14,2 14,2 14,6 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 163 163 158 

Avg. Total Pickers 2 2 2,0 

Avg. Pick Time(h)/Picker 7,1 7,1 7,3 

Avg. Distance Batch (m) 113 110 164 

Avg. Total Distance (m) 6647 4429 9590 

Avg. Batching Time (s) 869 869 900 

 

Table E-14. Average KPI Results per Picking Strategy of all Experiments of Scenario 50 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 55957 55851 58767 

Avg. Total Picking Time (min) 933 931 979 

Avg. Total Picking Time (h) 15,5 15,5 16,3 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 149 149 142 

Avg. Total Pickers 2 2 2,7 

Avg. Pick Time(h)/Picker 7,0 7,2 6,3 

Avg. Distance Batch (m) 99 95 156 

Avg. Total Distance (m) 7267 6927 11461 

Avg. Batching Time (s) 763 762 801 

 

Table E-15. Average KPI Results per Picking Strategy of all Experiments of Scenario 50 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 58548 58268 62694 

Avg. Total Picking Time (min) 976 971 1045 

Avg. Total Picking Time (h) 16,3 16,2 17,4 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 142 143 133 

Avg. Total Pickers 3 3 3,0 

Avg. Pick Time(h)/Picker 6,4 6,4 5,8 

Avg. Distance Batch (m) 126 121 220 

Avg. Total Distance (m) 9479 9099 16496 

Avg. Batching Time (s) 781 777 836 
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Table E-16. Average KPI Results of Configuration 1 of all Experiments of Scenario 50 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 50973 55957 58548 

Avg. Total Picking Time (min) 850 933 976 

Avg. Total Picking Time (h) 14,2 15,5 16,3 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 163 149 142 

Avg. Total Pickers 2 2 3 

Avg. Pick Time(h)/Picker 7,1 7,0 6,4 

Avg. Distance Batch (m) 113 99 126 

Avg. Total Distance (m) 6647 7267 9479 

Avg. Batching Time (s) 869 763 781 

 

Table E-17. Average KPI Results of Configuration 2 of all Experiments of Scenario 50 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 50961 55851 58268 

Avg. Total Picking Time (min) 849 931 971 

Avg. Total Picking Time (h) 14,2 15,5 16,2 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 163 149 143 

Avg. Total Pickers 2 2 3 

Avg. Pick Time(h)/Picker 7,1 7,2 6,4 

Avg. Distance Batch (m) 110 95 121 

Avg. Total Distance (m) 6429 6927 9099 

Avg. Batching Time (s) 869 762 777 

 

Table E-18. Average KPI Results of Configuration 3 of all Experiments of Scenario 50 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 52736 58767 62694 

Avg. Total Picking Time (min) 879 979 1045 

Avg. Total Picking Time (h) 14,6 16,3 17,4 

Avg. Total Colli 2315 2315 2315 

 Avg. Colli/Hour 158 142 133 

Avg. Total Pickers 2,0 2,7 3,0 

Avg. Pick Time(h)/Picker 7,3 6,3 5,8 

Avg. Distance Batch (m) 164 156 220 

Avg. Total Distance (m) 9590 11461 16496 

Avg. Batching Time (s) 900 801 836 
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Scenario 107 
 

Table E-19. Average KPI Results per Picking Strategy of all Experiments of Scenario 107 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 47946 47842 49076 

Avg. Total Picking Time (min) 799 797 818 

Avg. Total Picking Time (h) 13,3 13,3 13,6 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 124 124 121 

Avg. Total Pickers 2,0 2,0 2,0 

Avg. Pick Time(h)/Picker 6,7 6,6 6,8 

Avg. Distance Batch (m) 186 181 214 

Avg. Total Distance (m) 10486 10184 12089 

Avg. Batching Time (s) 850 848 870 

 

Table E-20. Average KPI Results per Picking Strategy of all Experiments of Scenario 107 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 53512 53537 55372 

Avg. Total Picking Time (min) 892 892 923 

Avg. Total Picking Time (h) 14,9 14,9 15,4 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 111 111 107 

Avg. Total Pickers 2,0 2,0 2,2 

Avg. Pick Time(h)/Picker 7,4 7,4 7,2 

Avg. Distance Batch (m) 157 155 195 

Avg. Total Distance (m) 11460 11306 14298 

Avg. Batching Time (s) 732 733 758 

 

Table E-21. Average KPI Results per Picking Strategy of all Experiments of Scenario 107 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 57193 56816 61738 

Avg. Total Picking Time (min) 953 947 1029 

Avg. Total Picking Time (h) 15,9 15,8 17,1 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 104 104 96 

Avg. Total Pickers 2,3 2,2 3,0 

Avg. Pick Time(h)/Picker 7,2 7,3 5,7 

Avg. Distance Batch (m) 206 200 305 

Avg. Total Distance (m) 15476 15036 22854 

Avg. Batching Time (s) 763 758 823 
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Table E-22. Average KPI Results of Configuration 1 of all Experiments of Scenario 107 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 47946 53512 57193 

Avg. Total Picking Time (min) 799 892 953 

Avg. Total Picking Time (h) 13,3 14,9 15,9 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 124 111 104 

Avg. Total Pickers 2,0 2,0 2,3 

Avg. Pick Time(h)/Picker 6,7 7,4 7,2 

Avg. Distance Batch (m) 186 157 206 

Avg. Total Distance (m) 10486 11460 15476 

Avg. Batching Time (s) 850 732 763 

 

Table E-23. Average KPI Results of Configuration 2 of all Experiments of Scenario 107 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 47842 53537 56816 

Avg. Total Picking Time (min) 797 892 947 

Avg. Total Picking Time (h) 13,3 14,9 15,8 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 124 111 104 

Avg. Total Pickers 2,0 2,0 2,2 

Avg. Pick Time(h)/Picker 6,6 7,4 7,3 

Avg. Distance Batch (m) 181 155 200 

Avg. Total Distance (m) 10184 11306 15036 

Avg. Batching Time (s) 848 733 758 

 

Table E-24. Average KPI Results of Configuration 3 of all Experiments of Scenario 107 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 49076 55372 61738 

Avg. Total Picking Time (min) 818 923 1029 

Avg. Total Picking Time (h) 13,6 15,4 17,1 

Avg. Total Colli 1646 1646 1646 

 Avg. Colli/Hour 121 107 96 

Avg. Total Pickers 2,0 2,2 3,0 

Avg. Pick Time(h)/Picker 6,8 7,2 5,7 

Avg. Distance Batch (m) 214 195 305 

Avg. Total Distance (m) 12089 14298 22854 

Avg. Batching Time (s) 870 758 823 
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Scenario 10 
 

Table E-25. Average KPI Results per Picking Strategy of all Experiments of Scenario 10 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 84267 84219 86080 

Avg. Total Picking Time (min) 1404 1404 1435 

Avg. Total Picking Time (h) 23,4 23,4 23,9 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 178 178 174 

Avg. Total Pickers 3,4 3,4 3,4 

Avg. Pick Time(h)/Picker 7,0 7,0 7,1 

Avg. Distance Batch (m) 200 200 239 

Avg. Total Distance (m) 13401 13395 15996 

Avg. Batching Time (s) 1257 1256 1284 

 

Table E-26. Average KPI Results per Picking Strategy of all Experiments of Scenario 10 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 86587 86480 88497 

Avg. Total Picking Time (min) 1443 1441 1475 

Avg. Total Picking Time (h) 24,1 24,0 24,6 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 173 173 169 

Avg. Total Pickers 3,4 3,4 3,7 

Avg. Pick Time(h)/Picker 7,1 7,2 6,7 

Avg. Distance Batch (m) 186 184 225 

Avg. Total Distance (m) 13822 13652 16670 

Avg. Batching Time (s) 1167 1165 1192 

 

Table E-27. Average KPI Results per Picking Strategy of all Experiments of Scenario 10 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 89736 89878 94953 

Avg. Total Picking Time (min) 1496 1498 1583 

Avg. Total Picking Time (h) 24,9 25,0 26,4 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 167 167 158 

Avg. Total Pickers 3,7 3,8 4,0 

Avg. Pick Time(h)/Picker 6,8 6,7 6,6 

Avg. Distance Batch (m) 231 230 336 

Avg. Total Distance (m) 17352 17252 25213 

Avg. Batching Time (s) 1196 1198 1266 
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Table E-28. Average KPI Results of Configuration 1 of all Experiments of Scenario 10 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 84267 86587 89736 

Avg. Total Picking Time (min) 1404 1443 1496 

Avg. Total Picking Time (h) 23,4 24,1 24,9 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 178 173 167 

Avg. Total Pickers 3,4 3,4 3,7 

Avg. Pick Time(h)/Picker 7,0 7,1 6,8 

Avg. Distance Batch (m) 200 186 231 

Avg. Total Distance (m) 13401 13822 17352 

Avg. Batching Time (s) 1257 1167 1196 

 

Table E-29. Average KPI Results of Configuration 2 of all Experiments of Scenario 10 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 84219 86480 89878 

Avg. Total Picking Time (min) 1404 1441 1498 

Avg. Total Picking Time (h) 23,4 24,0 25,0 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 178 173 167 

Avg. Total Pickers 3,4 3,4 3,8 

Avg. Pick Time(h)/Picker 7,0 7,2 6,7 

Avg. Distance Batch (m) 200 184 230 

Avg. Total Distance (m) 13395 13652 17252 

Avg. Batching Time (s) 1256 1165 1198 

 

Table E-30. Average KPI Results of Configuration 3 of all Experiments of Scenario 10 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 86080 88497 94953 

Avg. Total Picking Time (min) 1435 1475 1583 

Avg. Total Picking Time (h) 23,9 24,6 26,4 

Avg. Total Colli 4171 4171 4171 

 Avg. Colli/Hour 174 169 158 

Avg. Total Pickers 3,4 3,7 4,0 

Avg. Pick Time(h)/Picker 7,1 6,7 6,6 

Avg. Distance Batch (m) 239 225 336 

Avg. Total Distance (m) 15996 16670 25213 

Avg. Batching Time (s) 1284 1192 1266 
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Scenario 77 
 

Table E-31. Average KPI Results per Picking Strategy of all Experiments of Scenario 77 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 56282 56413 63525 

Avg. Total Picking Time (min) 938 940 1059 

Avg. Total Picking Time (h) 15,6 15,7 17,6 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 208 207 185 

Avg. Total Pickers 2 2 3 

Avg. Pick Time(h)/Picker 7,2 7,2 6,4 

Avg. Distance Batch (m) 103 104 198 

Avg. Total Distance (m) 6355 6376 14009 

Avg. Batching Time (s) 914 916 913 

 

Table E-32. Average KPI Results per Picking Strategy of all Experiments of Scenario 77 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 59970 60189 63557 

Avg. Total Picking Time (min) 999 1003 1059 

Avg. Total Picking Time (h) 16,7 16,7 17,7 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 195 194 184 

Avg. Total Pickers 3 3 3 

Avg. Pick Time(h)/Picker 6,1 6,2 5,9 

Avg. Distance Batch (m) 92 93 158 

Avg. Total Distance (m) 6790 6872 11783 

Avg. Batching Time (s) 815 817 853 

 

Table E-33. Average KPI Results per Picking Strategy of all Experiments of Scenario 77 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 62414 62354 67152 

Avg. Total Picking Time (min) 1040 1039 1119 

Avg. Total Picking Time (h) 17,3 17,3 18,7 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 187 187 174 

Avg. Total Pickers 3 3 3 

Avg. Pick Time(h)/Picker 6,0 5,9 6,2 

Avg. Distance Batch (m) 123 122 220 

Avg. Total Distance (m) 9206 9152 16475 

Avg. Batching Time (s) 832 831 895 
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Table E-34. Average KPI Results of Configuration 1 of all Experiments of Scenario 77 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 56282 59970 62414 

Avg. Total Picking Time (min) 938 999 1040 

Avg. Total Picking Time (h) 15,6 16,7 17,3 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 208 195 187 

Avg. Total Pickers 2 3 3 

Avg. Pick Time(h)/Picker 7,2 6,1 6,0 

Avg. Distance Batch (m) 103 92 123 

Avg. Total Distance (m) 6355 6790 9206 

Avg. Batching Time (s) 914 815 832 

 

Table E-35. Average KPI Results of Configuration 2 of all Experiments of Scenario 77 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 56413 60189 62354 

Avg. Total Picking Time (min) 940 1003 1039 

Avg. Total Picking Time (h) 15,7 16,7 17,3 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 207 194 187 

Avg. Total Pickers 2 3 3 

Avg. Pick Time(h)/Picker 7,2 6,2 5,9 

Avg. Distance Batch (m) 104 93 122 

Avg. Total Distance (m) 6376 6872 9152 

Avg. Batching Time (s) 916 817 831 

 

Table E-36. Average KPI Results of Configuration 3 of all Experiments of Scenario 77 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 63525 63557 67152 

Avg. Total Picking Time (min) 1059 1059 1119 

Avg. Total Picking Time (h) 17,6 17,7 18,7 

Avg. Total Colli 3251 3251 3251 

 Avg. Colli/Hour 185 184 174 

Avg. Total Pickers 3 3 3 

Avg. Pick Time(h)/Picker 6,4 5,9 6,2 

Avg. Distance Batch (m) 198 158 220 

Avg. Total Distance (m) 14009 11783 16475 

Avg. Batching Time (s) 913 853 895 
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Scenario 92 
 

Table E-37. Average KPI Results per Picking Strategy of all Experiments of Scenario 92 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 48055 48324 49635 

Avg. Total Picking Time (min) 801 805 827 

Avg. Total Picking Time (h) 13,3 13,4 13,8 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 160 159 155 

Avg. Total Pickers 2 2 2 

Avg. Pick Time(h)/Picker 6,7 6,7 6,9 

Avg. Distance Batch (m) 131 133 172 

Avg. Total Distance (m) 7283 7442 9599 

Avg. Batching Time (s) 862 866 890 

 

Table E-38. Average KPI Results per Picking Strategy of all Experiments of Scenario 92 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 53779 53903 56168 

Avg. Total Picking Time (min) 896 898 936 

Avg. Total Picking Time (h) 14,9 15,0 15,6 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 143 143 137 

Avg. Total Pickers 2 2 2 

Avg. Pick Time(h)/Picker 7,5 7,4 6,8 

Avg. Distance Batch (m) 109 112 160 

Avg. Total Distance (m) 7975 8177 11695 

Avg. Batching Time (s) 737 739 770 

 

Table E-39. Average KPI Results per Picking Strategy of all Experiments of Scenario 92 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 56730 56995 60914 

Avg. Total Picking Time (min) 946 950 1015 

Avg. Total Picking Time (h) 15,8 15,8 16,9 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 135 135 126 

Avg. Total Pickers 2 2 3 

Avg. Pick Time(h)/Picker 7,0 6,7 5,6 

Avg. Distance Batch (m) 145 147 233 

Avg. Total Distance (m) 10880 11022 17463 

Avg. Batching Time (s) 756 760 812 
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Table E-40. Average KPI Results of Configuration 1 of all Experiments of Scenario 92 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 48055 53779 56730 

Avg. Total Picking Time (min) 801 896 946 

Avg. Total Picking Time (h) 13,3 14,9 15,8 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 160 143 135 

Avg. Total Pickers 2 2 2 

Avg. Pick Time(h)/Picker 6,7 7,5 7,0 

Avg. Distance Batch (m) 131 109 145 

Avg. Total Distance (m) 7283 7975 10880 

Avg. Batching Time (s) 862 737 756 

 

Table E-41. Average KPI Results of Configuration 2 of all Experiments of Scenario 92 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 48324 53903 56995 

Avg. Total Picking Time (min) 805 898 950 

Avg. Total Picking Time (h) 13,4 15,0 15,8 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 159 143 135 

Avg. Total Pickers 2 2 2 

Avg. Pick Time(h)/Picker 6,7 7,4 6,7 

Avg. Distance Batch (m) 133 112 147 

Avg. Total Distance (m) 7442 8177 11022 

Avg. Batching Time (s) 866 739 760 

 

Table E-42. Average KPI Results of Configuration 3 of all Experiments of Scenario 92 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 49635 56168 60914 

Avg. Total Picking Time (min) 827 936 1015 

Avg. Total Picking Time (h) 13,8 15,6 16,9 

Avg. Total Colli 2136 2136 2136 

 Avg. Colli/Hour 155 137 126 

Avg. Total Pickers 2 2 3 

Avg. Pick Time(h)/Picker 6,9 6,8 5,6 

Avg. Distance Batch (m) 172 160 233 

Avg. Total Distance (m) 9599 11695 17463 

Avg. Batching Time (s) 890 770 812 
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Scenario 123 
 

Table E-43. Average KPI Results per Picking Strategy of all Experiments of Scenario 123 

Picking Strategy: BatchS + Singlepick   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 55098 54853 56447 

Avg. Total Picking Time (min) 918 914 941 

Avg. Total Picking Time (h) 15,3 15,2 15,7 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 156 157 152 

Avg. Total Pickers 2 2 2 

Avg. Pick Time(h)/Picker 7,3 7,4 6,8 

Avg. Distance Batch (m) 126 122 169 

Avg. Total Distance (m) 7184 6960 9665 

Avg. Batching Time (s) 963 959 987 

 

Table E-44. Average KPI Results per Picking Strategy of all Experiments of Scenario 123 

Picking Strategy: BatchS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 60151 60103 62512 

Avg. Total Picking Time (min) 1003 1002 1042 

Avg. Total Picking Time (h) 16,7 16,7 17,4 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 143 143 138 

Avg. Total Pickers 3 3 3 

Avg. Pick Time(h)/Picker 5,8 5,9 5,9 

Avg. Distance Batch (m) 107 104 158 

Avg. Total Distance (m) 7798 7631 11555 

Avg. Batching Time (s) 823 822 855 

 

Table E-45. Average KPI Results per Picking Strategy of all Experiments of Scenario 123 

Picking Strategy: FCFS   

 Configuration 1 Configuration 2 Configuration 3 

 Avg. Total Picking Time (s) 63316 63323 67321 

Avg. Total Picking Time (min) 1055 1055 1122 

Avg. Total Picking Time (h) 17,6 17,6 18,7 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 136 136 128 

Avg. Total Pickers 3 3 3 

Avg. Pick Time(h)/Picker 5,9 5,9 6,2 

Avg. Distance Batch (m) 139 136 226 

Avg. Total Distance (m) 10406 10209 16919 

Avg. Batching Time (s) 844 844 898 
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Table E-46. Average KPI Results of Configuration 1 of all Experiments of Scenario 123 per Picking Strategy 

Configuration 1    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 55098 60151 63316 

Avg. Total Picking Time (min) 918 1003 1055 

Avg. Total Picking Time (h) 15,3 16,7 17,6 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 156 143 136 

Avg. Total Pickers 2 3 3 

Avg. Pick Time(h)/Picker 7,3 5,8 5,9 

Avg. Distance Batch (m) 126 107 139 

Avg. Total Distance (m) 7184 7798 10406 

Avg. Batching Time (s) 963 823 844 

 

Table E-47. Average KPI Results of Configuration 2 of all Experiments of Scenario 123 per Picking Strategy 

Configuration 2    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 54853 60103 63323 

Avg. Total Picking Time (min) 914 1002 1055 

Avg. Total Picking Time (h) 15,2 16,7 17,6 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 157 143 136 

Avg. Total Pickers 2 3 3 

Avg. Pick Time(h)/Picker 7,4 5,9 5,9 

Avg. Distance Batch (m) 122 104 136 

Avg. Total Distance (m) 6960 7631 10209 

Avg. Batching Time (s) 959 822 844 

 

Table E-48. Average KPI Results of Configuration 3 of all Experiments of Scenario 123 per Picking Strategy 

Configuration 3    

 BatchS + Singlepick BatchS FCFS 

 Avg. Total Picking Time (s) 56447 62512 67321 

Avg. Total Picking Time (min) 941 1042 1122 

Avg. Total Picking Time (h) 15,7 17,4 18,7 

Avg. Total Colli 2392 2392 2392 

 Avg. Colli/Hour 152 138 128 

Avg. Total Pickers 2 3 3 

Avg. Pick Time(h)/Picker 6,8 5,9 6,2 

Avg. Distance Batch (m) 169 158 226 

Avg. Total Distance (m) 9665 11555 16919 

Avg. Batching Time (s) 987 855 898 
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E5. Results of each Experiment per Scenario per Configuration  

 

Scenario 50 

 

Table E-49. KPI Results of Configuration 1 of Experiment 1 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 48737 54183 56929 

Total Picking Time (min) 812 903 949 

Total Picking Time (h) 13,5 15,1 15,8 

Total Colli 2176 2176 2176 

Total Colli/Hour 161 145 138 

Total Pickers 2,0 2,0 2,3 

Pick Time(h)/Picker 6,8 7,5 7,0 

Avg. Distance Batch (m) 115 98 125 

Total Distance (m) 6646 7194 9373 

Avg. Batching Time (s) 840 740 759 

 

Table E-50. KPI Results of Configuration 1 of Experiment 2 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51588 57171 59397 

Total Picking Time (min) 860 953 990 

Total Picking Time (h) 14,3 15,9 16,5 

Total Colli 2482 2482 2482 

Total Colli/Hour 173 156 150 

Total Pickers 2,0 2,5 3,0 

Pick Time(h)/Picker 7,2 6,5 5,5 

Avg. Distance Batch (m) 104 96 120 

Total Distance (m) 6054 7013 9035 

Avg. Batching Time (s) 889 781 792 

 

Table E-51. KPI Results of Configuration 1 of Experiment 3 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 55038 59148 62074 

Total Picking Time (min) 917 986 1035 

Total Picking Time (h) 15,3 16,4 17,2 

Total Colli 2536 2536 2536 

Total Colli/Hour 166 154 147 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,6 5,7 5,7 

Avg. Distance Batch (m) 121 107 136 

Total Distance (m) 7403 7834 10226 

Avg. Batching Time (s) 902 804 828 
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Table E-52. KPI Results of Configuration 1 of Experiment 4 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47906 53737 56275 

Total Picking Time (min) 798 896 938 

Total Picking Time (h) 13,3 14,9 15,6 

Total Colli 2101 2101 2101 

Total Colli/Hour 158 141 134 

Total Pickers 2,0 2,0 2,1 

Pick Time(h)/Picker 6,7 7,5 7,5 

Avg. Distance Batch (m) 111 96 122 

Total Distance (m) 6219 7037 9170 

Avg. Batching Time (s) 855 736 750 

 

Table E-53. KPI Results of Configuration 1 of Experiment 5 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51596 55547 58064 

Total Picking Time (min) 860 926 968 

Total Picking Time (h) 14 15 16 

Total Colli 2281 2281 2281 

Total Colli/Hour 159 148 141 

Total Pickers 2,0 2,0 2,7 

Pick Time(h)/Picker 7,2 7,7 6,3 

Avg. Distance Batch (m) 115 99 128 

Total Distance (m) 6914 7257 9591 

Avg. Batching Time (s) 860 756 774 
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Table E-54. KPI Results of Configuration 2 of Experiment 1 in Scenario 50 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49034 53874 56187 

Total Picking Time (min) 817 898 936 

Total Picking Time (h) 13,6 15,0 15,6 

Total Colli 2176 2176 2176 

Total Colli/Hour 160 146 139 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,8 7,5 7,8 

Avg. Distance Batch (m) 110 92 119 

Total Distance (m) 6386 6724 8926 

Avg. Batching Time (s) 845 735 749 

 

Table E-55. KPI Results of Configuration 2 of Experiment 2 in Scenario 50 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 52291 56846 58991 

Total Picking Time (min) 872 947 983 

Total Picking Time (h) 14,5 15,8 16,4 

Total Colli 2482 2482 2482 

Total Colli/Hour 171 157 151 

Total Pickers 2,0 2,2 3,0 

Pick Time(h)/Picker 7,3 7,4 5,5 

Avg. Distance Batch (m) 107 92 119 

Total Distance (m) 6190 6727 8891 

Avg. Batching Time (s) 902 777 787 

 

Table E-56. KPI Results of Configuration 2 of Experiment 3 in Scenario 50 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 54545 59501 61336 

Total Picking Time (min) 909 992 1022 

Total Picking Time (h) 15,2 16,5 17,0 

Total Colli 2536 2536 2536 

Total Colli/Hour 167 154 149 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,6 5,7 5,7 

Avg. Distance Batch (m) 113 100 124 

Total Distance (m) 6876 7342 9301 

Avg. Batching Time (s) 894 809 818 
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Table E-57. KPI Results of Configuration 2 of Experiment 4 in Scenario 50 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47664 53459 56181 

Total Picking Time (min) 794 891 936 

Total Picking Time (h) 13,2 14,8 15,6 

Total Colli 2101 2101 2101 

Total Colli/Hour 159 142 135 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,6 7,4 7,8 

Avg. Distance Batch (m) 108 92 120 

Total Distance (m) 6063 6706 8966 

Avg. Batching Time (s) 851 732 749 

 

Table E-58. KPI Results of Configuration 2 of Experiment 5 in Scenario 50 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51272 55573 58646 

Total Picking Time (min) 855 926 977 

Total Picking Time (h) 14 15 16 

Total Colli 2281 2281 2281 

Total Colli/Hour 160 148 140 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 7,1 7,7 5,4 

Avg. Distance Batch (m) 110 97 125 

Total Distance (m) 6630 7135 9408 

Avg. Batching Time (s) 855 756 782 
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Table E-59. KPI Results of Configuration 3 of Experiment 1 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 50403 57148 61040 

Total Picking Time (min) 840 952 1017 

Total Picking Time (h) 14,0 15,9 17,0 

Total Colli 2176 2176 2176 

Total Colli/Hour 155 137 128 

Total Pickers 2,0 2,5 3,0 

Pick Time(h)/Picker 7,0 6,7 5,7 

Avg. Distance Batch (m) 160 156 220 

Total Distance (m) 9285 11490 16503 

Avg. Batching Time (s) 869 780 814 

 

Table E-60. KPI Results of Configuration 3 of Experiment 2 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 53875 59890 64041 

Total Picking Time (min) 898 998 1067 

Total Picking Time (h) 15,0 16,6 17,8 

Total Colli 2482 2482 2482 

Total Colli/Hour 166 149 140 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,5 5,8 5,9 

Avg. Distance Batch (m) 162 157 220 

Total Distance (m) 9402 11487 16488 

Avg. Batching Time (s) 929 818 854 

 

Table E-61. KPI Results of Configuration 3 of Experiment 3 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56352 62068 65668 

Total Picking Time (min) 939 1034 1094 

Total Picking Time (h) 15,7 17,2 18,2 

Total Colli 2536 2536 2536 

Total Colli/Hour 162 147 139 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,8 6,0 6,1 

Avg. Distance Batch (m) 167 157 229 

Total Distance (m) 10206 11587 17146 

Avg. Batching Time (s) 924 843 876 
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Table E-62. KPI Results of Configuration 3 of Experiment 4 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49773 56628 60358 

Total Picking Time (min) 830 944 1006 

Total Picking Time (h) 13,8 15,7 16,8 

Total Colli 2101 2101 2101 

Total Colli/Hour 152 134 125 

Total Pickers 2,0 2,2 3,0 

Pick Time(h)/Picker 6,9 7,4 5,6 

Avg. Distance Batch (m) 165 155 208 

Total Distance (m) 9249 11334 15575 

Avg. Batching Time (s) 889 775 805 

 

Table E-63. KPI Results of Configuration 3 of Experiment 5 in Scenario 50 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 53279 58103 62363 

Total Picking Time (min) 888 968 1039 

Total Picking Time (h) 15 16 17 

Total Colli 2281 2281 2281 

Total Colli/Hour 154 141 132 

Total Pickers 2,0 2,8 3,0 

Pick Time(h)/Picker 7,4 5,8 5,8 

Avg. Distance Batch (m) 164 155 224 

Total Distance (m) 9811 11405 16766 

Avg. Batching Time (s) 888 791 832 
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Scenario 107 

 

Table E-64. KPI Results of Configuration 1 of Experiment 1 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47726 53252 56730 

Total Picking Time (min) 795 888 945 

Total Picking Time (h) 13,3 14,8 15,8 

Total Colli 1560 1560 1560 

Total Colli/Hour 118 106 99 

Total Pickers 2,0 2,0 2,1 

Pick Time(h)/Picker 6,6 7,4 7,6 

Avg. Distance Batch (m) 194 161 210 

Total Distance (m) 11038 11778 15776 

Avg. Batching Time (s) 837 728 756 

 

Table E-65. KPI Results of Configuration 1 of Experiment 2 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46635 52210 56049 

Total Picking Time (min) 777 870 934 

Total Picking Time (h) 13,0 14,5 15,6 

Total Colli 1640 1640 1640 

Total Colli/Hour 127 113 105 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,5 7,3 7,8 

Avg. Distance Batch (m) 176 152 198 

Total Distance (m) 9851 11086 14884 

Avg. Batching Time (s) 833 715 747 

 

Table E-66. KPI Results of Configuration 1 of Experiment 3 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47160 52967 56624 

Total Picking Time (min) 786 883 944 

Total Picking Time (h) 13,1 14,7 15,7 

Total Colli 1687 1687 1687 

Total Colli/Hour 129 115 107 

Total Pickers 2,0 2,0 2,1 

Pick Time(h)/Picker 6,5 7,4 7,6 

Avg. Distance Batch (m) 191 158 207 

Total Distance (m) 10678 11540 15556 

Avg. Batching Time (s) 842 725 755 
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Table E-67. KPI Results of Configuration 1 of Experiment 4 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51292 55935 59204 

Total Picking Time (min) 855 932 987 

Total Picking Time (h) 14,2 15,5 16,4 

Total Colli 1736 1736 1736 

Total Colli/Hour 122 112 106 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 7,1 7,8 5,5 

Avg. Distance Batch (m) 185 159 210 

Total Distance (m) 10887 11677 15762 

Avg. Batching Time (s) 869 763 789 

 

Table E-68. KPI Results of Configuration 1 of Experiment 5 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46918 53195 57359 

Total Picking Time (min) 782 887 956 

Total Picking Time (h) 13 15 16 

Total Colli 1607 1607 1607 

Total Colli/Hour 123 109 101 

Total Pickers 2,0 2,0 2,2 

Pick Time(h)/Picker 6,5 7,4 7,4 

Avg. Distance Batch (m) 185 154 205 

Total Distance (m) 9977 11217 15403 

Avg. Batching Time (s) 869 731 765 
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Table E-69. KPI Results of Configuration 2 of Experiment 1 in Scenario 107 

Iterations  10   

Number of Changes 4   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47405 53052 56299 

Total Picking Time (min) 790 884 938 

Total Picking Time (h) 13,2 14,7 15,6 

Total Colli 1560 1560 1560 

Total Colli/Hour 118 106 100 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,6 7,4 7,8 

Avg. Distance Batch (m) 186 157 206 

Total Distance (m) 10620 11473 15413 

Avg. Batching Time (s) 832 726 751 

 

Table E-70. KPI Results of Configuration 2 of Experiment 2 in Scenario 107 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46532 52339 55581 

Total Picking Time (min) 776 872 926 

Total Picking Time (h) 12,9 14,5 15,4 

Total Colli 1640 1640 1640 

Total Colli/Hour 127 113 106 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,5 7,3 7,7 

Avg. Distance Batch (m) 171 152 192 

Total Distance (m) 9581 11095 14414 

Avg. Batching Time (s) 831 717 741 

 

Table E-71. KPI Results of Configuration 2 of Experiment 3 in Scenario 107 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47874 53185 56542 

Total Picking Time (min) 798 886 942 

Total Picking Time (h) 13,3 14,8 15,7 

Total Colli 1687 1687 1687 

Total Colli/Hour 127 114 107 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,6 7,4 7,9 

Avg. Distance Batch (m) 187 157 200 

Total Distance (m) 10458 11475 15017 

Avg. Batching Time (s) 855 729 754 
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Table E-72. KPI Results of Configuration 2 of Experiment 4 in Scenario 107 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 50697 55675 58578 

Total Picking Time (min) 845 928 976 

Total Picking Time (h) 14,1 15,5 16,3 

Total Colli 1736 1736 1736 

Total Colli/Hour 123 112 107 

Total Pickers 2,0 2,0 2,8 

Pick Time(h)/Picker 7,0 7,7 6,0 

Avg. Distance Batch (m) 181 158 204 

Total Distance (m) 10689 11578 15288 

Avg. Batching Time (s) 859 759 781 

 

Table E-73. KPI Results of Configuration 2 of Experiment 5 in Scenario 107 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46701 53434 57078 

Total Picking Time (min) 778 891 951 

Total Picking Time (h) 13 15 16 

Total Colli 1607 1607 1607 

Total Colli/Hour 124 108 101 

Total Pickers 2,0 2,0 2,3 

Pick Time(h)/Picker 6,5 7,4 7,0 

Avg. Distance Batch (m) 177 150 201 

Total Distance (m) 9573 10911 15050 

Avg. Batching Time (s) 865 734 761 
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Table E-74. KPI Results of Configuration 3 of Experiment 1 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 48872 54720 61749 

Total Picking Time (min) 815 912 1029 

Total Picking Time (h) 13,6 15,2 17,2 

Total Colli 1560 1560 1560 

Total Colli/Hour 115 103 91 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,8 7,6 5,7 

Avg. Distance Batch (m) 219 196 315 

Total Distance (m) 12455 14368 23654 

Avg. Batching Time (s) 857 749 823 

 

Table E-75. KPI Results of Configuration 3 of Experiment 2 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47887 54514 60745 

Total Picking Time (min) 798 909 1012 

Total Picking Time (h) 13,3 15,1 16,9 

Total Colli 1640 1640 1640 

Total Colli/Hour 123 108 97 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,7 7,6 5,6 

Avg. Distance Batch (m) 214 192 302 

Total Distance (m) 12010 14049 22654 

Avg. Batching Time (s) 855 747 810 

 

Table E-76. KPI Results of Configuration 3 of Experiment 3 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 48136 54457 60681 

Total Picking Time (min) 802 908 1011 

Total Picking Time (h) 13,4 15,1 16,9 

Total Colli 1687 1687 1687 

Total Colli/Hour 126 112 100 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,7 7,6 5,6 

Avg. Distance Batch (m) 211 198 294 

Total Distance (m) 11842 14478 22054 

Avg. Batching Time (s) 860 746 809 
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Table E-77. KPI Results of Configuration 3 of Experiment 4 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 52499 57730 63855 

Total Picking Time (min) 875 962 1064 

Total Picking Time (h) 14,6 16,0 17,7 

Total Colli 1736 1736 1736 

Total Colli/Hour 119 108 98 

Total Pickers 2,0 2,8 3,0 

Pick Time(h)/Picker 7,3 5,8 5,9 

Avg. Distance Batch (m) 215 197 314 

Total Distance (m) 12697 14470 23516 

Avg. Batching Time (s) 890 787 851 

 

Table E-78. KPI Results of Configuration 3 of Experiment 5 in Scenario 107 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47986 55437 61661 

Total Picking Time (min) 800 924 1028 

Total Picking Time (h) 13 15 17 

Total Colli 1607 1607 1607 

Total Colli/Hour 121 105 94 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,7 7,7 5,7 

Avg. Distance Batch (m) 212 194 299 

Total Distance (m) 11440 14123 22391 

Avg. Batching Time (s) 889 762 822 
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Scenario 10 

 

Table E-79. KPI Results of Configuration 1 of Experiment 1 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 90441 91781 95014 

Total Picking Time (min) 1507 1530 1584 

Total Picking Time (h) 25,1 25,5 26,4 

Total Colli 4606 4606 4606 

Total Colli/Hour 183 181 175 

Total Pickers 4,0 4,0 4,0 

Pick Time(h)/Picker 6,3 6,4 6,6 

Avg. Distance Batch (m) 205 192 241 

Total Distance (m) 14124 14278 18053 

Avg. Batching Time (s) 1311 1233 1267 

 

Table E-80. KPI Results of Configuration 1 of Experiment 2 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 82795 85521 88831 

Total Picking Time (min) 1380 1425 1481 

Total Picking Time (h) 23,0 23,8 24,7 

Total Colli 3937 3937 3937 

Total Colli/Hour 171 166 160 

Total Pickers 3,0 3,1 4,0 

Pick Time(h)/Picker 7,7 7,7 6,2 

Avg. Distance Batch (m) 206 192 233 

Total Distance (m) 13590 14263 17501 

Avg. Batching Time (s) 1254 1154 1184 

 

Table E-81. KPI Results of Configuration 1 of Experiment 3 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 79085 81889 84688 

Total Picking Time (min) 1318 1365 1411 

Total Picking Time (h) 22,0 22,7 23,5 

Total Colli 3759 3759 3759 

Total Colli/Hour 171 165 160 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 7,3 7,6 7,8 

Avg. Distance Batch (m) 200 184 231 

Total Distance (m) 13213 13618 17294 

Avg. Batching Time (s) 1198 1105 1129 
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Table E-82. KPI Results of Configuration 1 of Experiment 4 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 81864 84073 86912 

Total Picking Time (min) 1364 1401 1449 

Total Picking Time (h) 22,7 23,4 24,1 

Total Colli 4048 4048 4048 

Total Colli/Hour 178 173 168 

Total Pickers 3,0 3,0 3,7 

Pick Time(h)/Picker 7,6 7,8 6,7 

Avg. Distance Batch (m) 187 174 219 

Total Distance (m) 12533 12928 16406 

Avg. Batching Time (s) 1222 1133 1159 

 

Table E-83. KPI Results of Configuration 1 of Experiment 5 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 87149 89673 93233 

Total Picking Time (min) 1452 1495 1554 

Total Picking Time (h) 24 25 26 

Total Colli 4506 4506 4506 

Total Colli/Hour 186 181 174 

Total Pickers 3,9 4,0 4,0 

Pick Time(h)/Picker 6,3 6,2 6,5 

Avg. Distance Batch (m) 202 189 233 

Total Distance (m) 13547 14026 17506 

Avg. Batching Time (s) 1301 1208 1243 
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Table E-84. KPI Results of Configuration 2 of Experiment 1 in Scenario 10 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 90332 91998 95451 

Total Picking Time (min) 1506 1533 1591 

Total Picking Time (h) 25,1 25,6 26,5 

Total Colli 4606 4606 4606 

Total Colli/Hour 184 180 174 

Total Pickers 4,0 4,0 4,0 

Pick Time(h)/Picker 6,3 6,4 6,6 

Avg. Distance Batch (m) 204 189 240 

Total Distance (m) 14080 14087 17963 

Avg. Batching Time (s) 1309 1236 1273 

 

Table E-85. KPI Results of Configuration 2 of Experiment 2 in Scenario 10 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 82513 84930 88682 

Total Picking Time (min) 1375 1415 1478 

Total Picking Time (h) 22,9 23,6 24,6 

Total Colli 3937 3937 3937 

Total Colli/Hour 172 167 160 

Total Pickers 3,0 3,0 4,0 

Pick Time(h)/Picker 7,6 7,9 6,2 

Avg. Distance Batch (m) 206 187 232 

Total Distance (m) 13586 13826 17409 

Avg. Batching Time (s) 1250 1146 1182 

 

Table E-86. KPI Results of Configuration 2 of Experiment 3 in Scenario 10 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 78929 81446 85109 

Total Picking Time (min) 1315 1357 1418 

Total Picking Time (h) 21,9 22,6 23,6 

Total Colli 3759 3759 3759 

Total Colli/Hour 171 166 159 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 7,3 7,5 7,9 

Avg. Distance Batch (m) 200 183 230 

Total Distance (m) 13173 13540 17213 

Avg. Batching Time (s) 1196 1099 1135 
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Table E-87. KPI Results of Configuration 2 of Experiment 4 in Scenario 10 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 81565 84033 86959 

Total Picking Time (min) 1359 1401 1449 

Total Picking Time (h) 22,7 23,3 24,2 

Total Colli 4048 4048 4048 

Total Colli/Hour 179 173 168 

Total Pickers 3,0 3,0 3,9 

Pick Time(h)/Picker 7,6 7,8 6,3 

Avg. Distance Batch (m) 187 172 218 

Total Distance (m) 12507 12799 16316 

Avg. Batching Time (s) 1217 1132 1159 

 

Table E-88. KPI Results of Configuration 2 of Experiment 5 in Scenario 10 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 87756 89993 93191 

Total Picking Time (min) 1463 1500 1553 

Total Picking Time (h) 24 25 26 

Total Colli 4506 4506 4506 

Total Colli/Hour 185 180 174 

Total Pickers 4,0 4,0 4,0 

Pick Time(h)/Picker 6,1 6,2 6,5 

Avg. Distance Batch (m) 203 189 231 

Total Distance (m) 13628 14009 17360 

Avg. Batching Time (s) 1310 1213 1243 
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Table E-89. KPI Results of Configuration 3 of Experiment 1 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 91969 93574 100453 

Total Picking Time (min) 1533 1560 1674 

Total Picking Time (h) 25,5 26,0 27,9 

Total Colli 4606 4606 4606 

Total Colli/Hour 180 177 165 

Total Pickers 4,0 4,0 4,0 

Pick Time(h)/Picker 6,4 6,5 7,0 

Avg. Distance Batch (m) 242 229 345 

Total Distance (m) 16693 17071 25875 

Avg. Batching Time (s) 1333 1257 1339 

 

Table E-90. KPI Results of Configuration 3 of Experiment 2 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 84437 87186 93550 

Total Picking Time (min) 1407 1453 1559 

Total Picking Time (h) 23,5 24,2 26,0 

Total Colli 3937 3937 3937 

Total Colli/Hour 168 163 152 

Total Pickers 3,0 3,9 4,0 

Pick Time(h)/Picker 7,8 6,2 6,5 

Avg. Distance Batch (m) 241 228 335 

Total Distance (m) 15896 16892 25108 

Avg. Batching Time (s) 1279 1176 1247 

 

Table E-91. KPI Results of Configuration 3 of Experiment 3 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 80903 83387 90298 

Total Picking Time (min) 1348 1390 1505 

Total Picking Time (h) 22,5 23,2 25,1 

Total Colli 3759 3759 3759 

Total Colli/Hour 167 162 150 

Total Pickers 3,0 3,0 4,0 

Pick Time(h)/Picker 7,5 7,7 6,3 

Avg. Distance Batch (m) 234 221 342 

Total Distance (m) 15443 16406 25663 

Avg. Batching Time (s) 1226 1125 1204 
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Table E-92. KPI Results of Configuration 3 of Experiment 4 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 83875 86911 92618 

Total Picking Time (min) 1398 1449 1544 

Total Picking Time (h) 23,3 24,1 25,7 

Total Colli 4048 4048 4048 

Total Colli/Hour 174 168 157 

Total Pickers 3,0 3,7 4,0 

Pick Time(h)/Picker 7,8 6,6 6,4 

Avg. Distance Batch (m) 237 222 330 

Total Distance (m) 15867 16498 24772 

Avg. Batching Time (s) 1252 1171 1235 

 

Table E-93. KPI Results of Configuration 3 of Experiment 5 in Scenario 10 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 89216 91428 97848 

Total Picking Time (min) 1487 1524 1631 

Total Picking Time (h) 25 25 27 

Total Colli 4506 4506 4506 

Total Colli/Hour 182 177 166 

Total Pickers 4,0 4,0 4,0 

Pick Time(h)/Picker 6,2 6,3 6,8 

Avg. Distance Batch (m) 240 222 329 

Total Distance (m) 16079 16484 24648 

Avg. Batching Time (s) 1332 1232 1305 
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Scenario 77 

 

Table E-94. KPI Results of Configuration 1 of Experiment 1 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 52113 56278 58102 

Total Picking Time (min) 869 938 968 

Total Picking Time (h) 14,5 15,6 16,1 

Total Colli 2819 2819 2819 

Total Colli/Hour 195 181 175 

Total Pickers 2,0 2,3 2,6 

Pick Time(h)/Picker 7,2 7,1 6,6 

Avg. Distance Batch (m) 95 88 115 

Total Distance (m) 5876 6474 8642 

Avg. Batching Time (s) 841 764 775 

 

Table E-95. KPI Results of Configuration 1 of Experiment 2 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 59981 63127 65465 

Total Picking Time (min) 1000 1052 1091 

Total Picking Time (h) 16,7 17,5 18,2 

Total Colli 3664 3664 3664 

Total Colli/Hour 220 209 202 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 5,6 5,8 6,1 

Avg. Distance Batch (m) 101 88 121 

Total Distance (m) 6384 6481 9104 

Avg. Batching Time (s) 952 856 873 

 

Table E-96. KPI Results of Configuration 1 of Experiment 3 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56243 59613 61890 

Total Picking Time (min) 937 994 1031 

Total Picking Time (h) 15,6 16,6 17,2 

Total Colli 3262 3262 3262 

Total Colli/Hour 209 197 190 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,8 5,8 5,7 

Avg. Distance Batch (m) 103 93 121 

Total Distance (m) 6398 6875 9101 

Avg. Batching Time (s) 907 809 825 
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Table E-97. KPI Results of Configuration 1 of Experiment 4 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 55942 59812 63113 

Total Picking Time (min) 932 997 1052 

Total Picking Time (h) 15,5 16,6 17,5 

Total Colli 3123 3123 3123 

Total Colli/Hour 201 188 178 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,8 5,8 5,8 

Avg. Distance Batch (m) 112 98 134 

Total Distance (m) 6747 7219 10047 

Avg. Batching Time (s) 932 815 842 

 

Table E-98. KPI Results of Configuration 1 of Experiment 5 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 57134 61018 63502 

Total Picking Time (min) 952 1017 1058 

Total Picking Time (h) 16 17 18 

Total Colli 3388 3388 3388 

Total Colli/Hour 213 200 192 

Total Pickers 2,1 2,9 3,0 

Pick Time(h)/Picker 7,7 5,9 5,9 

Avg. Distance Batch (m) 104 94 122 

Total Distance (m) 6370 6900 9133 

Avg. Batching Time (s) 937 830 847 
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Table E-99. KPI Results of Configuration 2 of Experiment 1 in Scenario 77 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 52295 56125 58036 

Total Picking Time (min) 872 935 967 

Total Picking Time (h) 14,5 15,6 16,1 

Total Colli 2819 2819 2819 

Total Colli/Hour 194 181 175 

Total Pickers 2,0 2,0 2,8 

Pick Time(h)/Picker 7,3 7,8 6,0 

Avg. Distance Batch (m) 95 88 113 

Total Distance (m) 5913 6502 8493 

Avg. Batching Time (s) 843 762 774 

 

Table E-100. KPI Results of Configuration 2 of Experiment 2 in Scenario 77 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 60065 63473 65034 

Total Picking Time (min) 1001 1058 1084 

Total Picking Time (h) 16,7 17,6 18,1 

Total Colli 3664 3664 3664 

Total Colli/Hour 220 208 203 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 5,6 5,9 6,0 

Avg. Distance Batch (m) 99 89 121 

Total Distance (m) 6265 6587 9095 

Avg. Batching Time (s) 953 860 867 

 

Table E-101. KPI Results of Configuration 2 of Experiment 3 in Scenario 77 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56494 60026 61466 

Total Picking Time (min) 942 1000 1024 

Total Picking Time (h) 15,7 16,7 17,1 

Total Colli 3262 3262 3262 

Total Colli/Hour 208 196 191 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,8 5,8 5,7 

Avg. Distance Batch (m) 104 94 121 

Total Distance (m) 6432 6919 9086 

Avg. Batching Time (s) 911 815 820 
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Table E-102. KPI Results of Configuration 2 of Experiment 4 in Scenario 77 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56109 60409 63845 

Total Picking Time (min) 935 1007 1064 

Total Picking Time (h) 15,6 16,8 17,7 

Total Colli 3123 3123 3123 

Total Colli/Hour 200 186 176 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,8 5,8 5,9 

Avg. Distance Batch (m) 115 101 132 

Total Distance (m) 6875 7408 9892 

Avg. Batching Time (s) 935 823 851 

 

Table E-103. KPI Results of Configuration 2 of Experiment 5 in Scenario 77 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 57100 60913 63390 

Total Picking Time (min) 952 1015 1057 

Total Picking Time (h) 16 17 18 

Total Colli 3388 3388 3388 

Total Colli/Hour 214 200 192 

Total Pickers 2,1 2,9 3,0 

Pick Time(h)/Picker 7,7 5,9 5,9 

Avg. Distance Batch (m) 105 94 123 

Total Distance (m) 6394 6943 9196 

Avg. Batching Time (s) 936 828 845 
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Table E-104. KPI Results of Configuration 3 of Experiment 1 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 54723 58978 62790 

Total Picking Time (min) 912 983 1047 

Total Picking Time (h) 15,2 16,4 17,4 

Total Colli 2819 2819 2819 

Total Colli/Hour 185 172 162 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,6 5,7 5,8 

Avg. Distance Batch (m) 158 151 207 

Total Distance (m) 9818 11167 15546 

Avg. Batching Time (s) 883 800 837 

 

Table E-105. KPI Results of Configuration 3 of Experiment 2 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 70210 67190 70572 

Total Picking Time (min) 1170 1120 1176 

Total Picking Time (h) 19,5 18,7 19,6 

Total Colli 3664 3664 3664 

Total Colli/Hour 188 196 187 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 6,5 6,2 6,5 

Avg. Distance Batch (m) 219 161 219 

Total Distance (m) 16422 12046 16422 

Avg. Batching Time (s) 936 896 941 

 

Table E-106. KPI Results of Configuration 3 of Experiment 3 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 66756 63381 66467 

Total Picking Time (min) 1113 1056 1108 

Total Picking Time (h) 18,5 17,6 18,5 

Total Colli 3262 3262 3262 

Total Colli/Hour 176 185 177 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 6,2 5,9 6,2 

Avg. Distance Batch (m) 223 161 223 

Total Distance (m) 16751 12089 16751 

Avg. Batching Time (s) 890 845 886 
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Table E-107. KPI Results of Configuration 3 of Experiment 4 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 67382 64226 68144 

Total Picking Time (min) 1123 1070 1136 

Total Picking Time (h) 18,7 17,8 18,9 

Total Colli 3123 3123 3123 

Total Colli/Hour 167 175 165 

Total Pickers 3,0 3,0 3,0 

Pick Time(h)/Picker 6,2 5,9 6,3 

Avg. Distance Batch (m) 233 165 233 

Total Distance (m) 17452 12392 17452 

Avg. Batching Time (s) 898 856 909 

 

Table E-108. KPI Results of Configuration 3 of Experiment 5 in Scenario 77 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 58554 64009 67784 

Total Picking Time (min) 976 1067 1130 

Total Picking Time (h) 16 18 19 

Total Colli 3388 3388 3388 

Total Colli/Hour 208 191 180 

Total Pickers 2,9 3,0 3,0 

Pick Time(h)/Picker 5,7 5,9 6,3 

Avg. Distance Batch (m) 157 152 216 

Total Distance (m) 9599 11220 16203 

Avg. Batching Time (s) 960 870 904 
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Scenario 92 

 

Table E-109. KPI Results of Configuration 1 of Experiment 1 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49084 54399 57359 

Total Picking Time (min) 818 907 956 

Total Picking Time (h) 13,6 15,1 15,9 

Total Colli 2181 2181 2181 

Total Colli/Hour 160 144 137 

Total Pickers 2,0 2,0 2,6 

Pick Time(h)/Picker 6,8 7,6 6,5 

Avg. Distance Batch (m) 133 110 149 

Total Distance (m) 7434 8057 11201 

Avg. Batching Time (s) 877 746 765 

 

Table E-110. KPI Results of Configuration 1 of Experiment 2 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49431 54935 57626 

Total Picking Time (min) 824 916 960 

Total Picking Time (h) 13,7 15,3 16,0 

Total Colli 2217 2217 2217 

Total Colli/Hour 161 145 139 

Total Pickers 2,0 2,0 2,6 

Pick Time(h)/Picker 6,9 7,6 6,5 

Avg. Distance Batch (m) 129 114 148 

Total Distance (m) 7500 8355 11136 

Avg. Batching Time (s) 852 750 768 

 

Table E-111. KPI Results of Configuration 1 of Experiment 3 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 45560 52006 55784 

Total Picking Time (min) 759 867 930 

Total Picking Time (h) 12,7 14,4 15,5 

Total Colli 2015 2015 2015 

Total Colli/Hour 159 140 130 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,3 7,2 7,7 

Avg. Distance Batch (m) 128 104 143 

Total Distance (m) 6794 7533 10709 

Avg. Batching Time (s) 860 716 744 
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Table E-112. KPI Results of Configuration 1 of Experiment 4 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46859 52662 55168 

Total Picking Time (min) 781 878 919 

Total Picking Time (h) 13,0 14,6 15,3 

Total Colli 1981 1981 1981 

Total Colli/Hour 152 136 129 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,5 7,3 7,7 

Avg. Distance Batch (m) 130 111 143 

Total Distance (m) 7423 8120 10695 

Avg. Batching Time (s) 822 720 736 

 

Table E-113. KPI Results of Configuration 1 of Experiment 5 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49339 54893 57713 

Total Picking Time (min) 822 915 962 

Total Picking Time (h) 14 15 16 

Total Colli 2285 2285 2285 

Total Colli/Hour 167 150 143 

Total Pickers 2,0 2,0 2,6 

Pick Time(h)/Picker 6,9 7,6 6,5 

Avg. Distance Batch (m) 132 107 142 

Total Distance (m) 7267 7808 10658 

Avg. Batching Time (s) 897 754 770 
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Table E-114. KPI Results of Configuration 2 of Experiment 1 in Scenario 92 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49179 54392 57840 

Total Picking Time (min) 820 907 964 

Total Picking Time (h) 13,7 15,1 16,1 

Total Colli 2181 2181 2181 

Total Colli/Hour 160 145 136 

Total Pickers 2,0 2,0 2,7 

Pick Time(h)/Picker 6,8 7,6 6,2 

Avg. Distance Batch (m) 135 113 151 

Total Distance (m) 7551 8226 11344 

Avg. Batching Time (s) 878 745 771 

 

Table E-115. KPI Results of Configuration 2 of Experiment 2 in Scenario 92 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49916 54637 57794 

Total Picking Time (min) 832 911 963 

Total Picking Time (h) 13,9 15,2 16,1 

Total Colli 2217 2217 2217 

Total Colli/Hour 160 146 138 

Total Pickers 2,0 2,0 2,7 

Pick Time(h)/Picker 6,9 7,6 6,2 

Avg. Distance Batch (m) 134 114 147 

Total Distance (m) 7782 8352 11062 

Avg. Batching Time (s) 861 746 771 

 

Table E-116. KPI Results of Configuration 2 of Experiment 3 in Scenario 92 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 45905 52301 55602 

Total Picking Time (min) 765 872 927 

Total Picking Time (h) 12,8 14,5 15,4 

Total Colli 2015 2015 2015 

Total Colli/Hour 158 139 130 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,4 7,3 7,7 

Avg. Distance Batch (m) 130 107 146 

Total Distance (m) 6896 7732 10918 

Avg. Batching Time (s) 866 721 741 
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Table E-117. KPI Results of Configuration 2 of Experiment 4 in Scenario 92 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 47276 52561 55802 

Total Picking Time (min) 788 876 930 

Total Picking Time (h) 13,1 14,6 15,5 

Total Colli 1981 1981 1981 

Total Colli/Hour 151 136 128 

Total Pickers 2,0 2,0 2,0 

Pick Time(h)/Picker 6,6 7,3 7,8 

Avg. Distance Batch (m) 135 114 148 

Total Distance (m) 7702 8362 11066 

Avg. Batching Time (s) 829 719 744 

 

Table E-118. KPI Results of Configuration 2 of Experiment 5 in Scenario 92 

Iterations  10   

Number of Changes 3   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 49344 55625 57935 

Total Picking Time (min) 822 927 966 

Total Picking Time (h) 14 15 16 

Total Colli 2285 2285 2285 

Total Colli/Hour 167 148 142 

Total Pickers 2,0 2,1 2,9 

Pick Time(h)/Picker 6,9 7,5 5,7 

Avg. Distance Batch (m) 132 113 143 

Total Distance (m) 7282 8213 10721 

Avg. Batching Time (s) 897 764 772 
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Table E-119. KPI Results of Configuration 3 of Experiment 1 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 50959 56995 61426 

Total Picking Time (min) 849 950 1024 

Total Picking Time (h) 14,2 15,8 17,1 

Total Colli 2181 2181 2181 

Total Colli/Hour 154 138 128 

Total Pickers 2,0 2,5 3,0 

Pick Time(h)/Picker 7,1 6,4 5,7 

Avg. Distance Batch (m) 179 166 243 

Total Distance (m) 10023 12135 18205 

Avg. Batching Time (s) 910 780 819 

 

Table E-120. KPI Results of Configuration 3 of Experiment 2 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 50899 57131 61689 

Total Picking Time (min) 848 952 1028 

Total Picking Time (h) 14,1 15,9 17,1 

Total Colli 2217 2217 2217 

Total Colli/Hour 157 140 129 

Total Pickers 2,0 2,5 3,0 

Pick Time(h)/Picker 7,1 6,7 5,7 

Avg. Distance Batch (m) 169 160 232 

Total Distance (m) 9796 11762 17379 

Avg. Batching Time (s) 878 780 823 

 

Table E-121. KPI Results of Configuration 3 of Experiment 3 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 46931 54425 59962 

Total Picking Time (min) 782 907 999 

Total Picking Time (h) 13,0 15,1 16,7 

Total Colli 2015 2015 2015 

Total Colli/Hour 155 134 121 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,5 7,6 5,6 

Avg. Distance Batch (m) 171 158 236 

Total Distance (m) 9073 11537 17730 

Avg. Batching Time (s) 885 749 799 

 

  



 

193 
 

 

Table E-122. KPI Results of Configuration 3 of Experiment 4 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 48315 54609 59614 

Total Picking Time (min) 805 910 994 

Total Picking Time (h) 13,4 15,2 16,6 

Total Colli 1981 1981 1981 

Total Colli/Hour 148 131 120 

Total Pickers 2,0 2,0 3,0 

Pick Time(h)/Picker 6,7 7,6 5,5 

Avg. Distance Batch (m) 166 156 227 

Total Distance (m) 9490 11436 17036 

Avg. Batching Time (s) 848 747 795 

 

Table E-123. KPI Results of Configuration 3 of Experiment 5 in Scenario 92 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51072 57679 61878 

Total Picking Time (min) 851 961 1031 

Total Picking Time (h) 14 16 17 

Total Colli 2285 2285 2285 

Total Colli/Hour 161 143 133 

Total Pickers 2,0 2,8 3,0 

Pick Time(h)/Picker 7,1 5,8 5,7 

Avg. Distance Batch (m) 175 159 226 

Total Distance (m) 9614 11606 16963 

Avg. Batching Time (s) 929 792 825 
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Scenario 123 

 

Table E-124. KPI Results of Configuration 1 of Experiment 1 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 55409 60278 63493 

Total Picking Time (min) 923 1005 1058 

Total Picking Time (h) 15,4 16,7 17,6 

Total Colli 2312 2312 2312 

Total Colli/Hour 150 138 131 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,7 5,8 5,9 

Avg. Distance Batch (m) 130 110 140 

Total Distance (m) 7514 8061 10463 

Avg. Batching Time (s) 955 824 847 

 

Table E-125. KPI Results of Configuration 1 of Experiment 2 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56927 62311 65619 

Total Picking Time (min) 949 1039 1094 

Total Picking Time (h) 15,8 17,3 18,2 

Total Colli 2616 2616 2616 

Total Colli/Hour 165 151 144 

Total Pickers 2,3 2,9 3,0 

Pick Time(h)/Picker 7,1 6,0 6,1 

Avg. Distance Batch (m) 126 108 142 

Total Distance (m) 7183 7880 10649 

Avg. Batching Time (s) 999 853 875 

 

Table E-126. KPI Results of Configuration 1 of Experiment 3 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 57388 61924 65013 

Total Picking Time (min) 956 1032 1084 

Total Picking Time (h) 15,9 17,2 18,1 

Total Colli 2544 2544 2544 

Total Colli/Hour 160 148 141 

Total Pickers 2,4 3,0 3,0 

Pick Time(h)/Picker 6,9 5,7 6,0 

Avg. Distance Batch (m) 134 114 144 

Total Distance (m) 7755 8380 10792 

Avg. Batching Time (s) 989 846 867 
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Table E-127. KPI Results of Configuration 1 of Experiment 4 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 53308 58619 61184 

Total Picking Time (min) 888 977 1020 

Total Picking Time (h) 14,8 16,3 17,0 

Total Colli 2377 2377 2377 

Total Colli/Hour 161 146 140 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,4 5,7 5,7 

Avg. Distance Batch (m) 115 98 127 

Total Distance (m) 6578 7145 9509 

Avg. Batching Time (s) 935 802 816 

 

Table E-128. KPI Results of Configuration 1 of Experiment 5 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 52457 57624 61270 

Total Picking Time (min) 874 960 1021 

Total Picking Time (h) 15 16 17 

Total Colli 2110 2110 2110 

Total Colli/Hour 145 132 124 

Total Pickers 2,0 2,8 3,0 

Pick Time(h)/Picker 7,3 5,8 5,7 

Avg. Distance Batch (m) 123 103 142 

Total Distance (m) 6893 7524 10618 

Avg. Batching Time (s) 937 789 817 
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Table E-129. KPI Results of Configuration 2 of Experiment 1 in Scenario 123 

Iterations  10   

Number of Changes 2   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 55580 60136 63183 

Total Picking Time (min) 926 1002 1053 

Total Picking Time (h) 15,4 16,7 17,6 

Total Colli 2312 2312 2312 

Total Colli/Hour 150 139 132 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,7 5,8 5,9 

Avg. Distance Batch (m) 125 108 138 

Total Distance (m) 7242 7896 10358 

Avg. Batching Time (s) 958 821 842 

 

Table E-130. KPI Results of Configuration 2 of Experiment 2 in Scenario 123 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56874 62237 65654 

Total Picking Time (min) 948 1037 1094 

Total Picking Time (h) 15,8 17,3 18,2 

Total Colli 2616 2616 2616 

Total Colli/Hour 166 151 143 

Total Pickers 2,3 2,9 3,0 

Pick Time(h)/Picker 7,1 6,0 6,1 

Avg. Distance Batch (m) 125 106 138 

Total Distance (m) 7141 7766 10349 

Avg. Batching Time (s) 998 852 875 

 

Table E-131. KPI Results of Configuration 2 of Experiment 3 in Scenario 123 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56662 61702 65356 

Total Picking Time (min) 944 1028 1089 

Total Picking Time (h) 15,7 17,1 18,2 

Total Colli 2544 2544 2544 

Total Colli/Hour 162 149 140 

Total Pickers 2,1 2,9 3,0 

Pick Time(h)/Picker 7,6 5,9 6,1 

Avg. Distance Batch (m) 127 111 142 

Total Distance (m) 7360 8107 10636 

Avg. Batching Time (s) 977 842 871 
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Table E-132. KPI Results of Configuration 2 of Experiment 4 in Scenario 123 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 53151 58636 61446 

Total Picking Time (min) 886 977 1024 

Total Picking Time (h) 14,8 16,3 17,1 

Total Colli 2377 2377 2377 

Total Colli/Hour 161 146 139 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,4 5,6 5,7 

Avg. Distance Batch (m) 111 95 123 

Total Distance (m) 6314 6974 9258 

Avg. Batching Time (s) 932 802 819 

 

Table E-133. KPI Results of Configuration 2 of Experiment 5 in Scenario 123 

Iterations  10   

Number of Changes 1   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 51996 57803 60977 

Total Picking Time (min) 867 963 1016 

Total Picking Time (h) 14 16 17 

Total Colli 2110 2110 2110 

Total Colli/Hour 146 132 125 

Total Pickers 2,0 2,7 3,0 

Pick Time(h)/Picker 7,2 6,1 5,6 

Avg. Distance Batch (m) 120 102 139 

Total Distance (m) 6742 7413 10447 

Avg. Batching Time (s) 929 792 813 
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Table E-134. KPI Results of Configuration 3 of Experiment 1 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 56872 62640 67434 

Total Picking Time (min) 948 1044 1124 

Total Picking Time (h) 15,8 17,4 18,7 

Total Colli 2312 2312 2312 

Total Colli/Hour 146 133 123 

Total Pickers 2,2 2,9 3,0 

Pick Time(h)/Picker 7,4 6,0 6,2 

Avg. Distance Batch (m) 172 159 232 

Total Distance (m) 9957 11691 17387 

Avg. Batching Time (s) 981 856 899 

 

Table E-135. KPI Results of Configuration 3 of Experiment 2 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 58757 64437 69409 

Total Picking Time (min) 979 1074 1157 

Total Picking Time (h) 16,3 17,9 19,3 

Total Colli 2616 2616 2616 

Total Colli/Hour 160 146 136 

Total Pickers 2,9 3,0 3,0 

Pick Time(h)/Picker 5,7 6,0 6,4 

Avg. Distance Batch (m) 167 157 220 

Total Distance (m) 9526 11485 16503 

Avg. Batching Time (s) 1031 882 925 

 

Table E-136. KPI Results of Configuration 3 of Experiment 3 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 58749 63763 69068 

Total Picking Time (min) 979 1063 1151 

Total Picking Time (h) 16,3 17,7 19,2 

Total Colli 2544 2544 2544 

Total Colli/Hour 156 144 133 

Total Pickers 2,9 3,0 3,0 

Pick Time(h)/Picker 5,7 5,9 6,4 

Avg. Distance Batch (m) 172 161 233 

Total Distance (m) 9950 11796 17504 

Avg. Batching Time (s) 1013 871 921 
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Table E-137. KPI Results of Configuration 3 of Experiment 4 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 54344 61244 65675 

Total Picking Time (min) 906 1021 1095 

Total Picking Time (h) 15,1 17,0 18,2 

Total Colli 2377 2377 2377 

Total Colli/Hour 157 140 130 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,5 5,9 6,1 

Avg. Distance Batch (m) 165 155 218 

Total Distance (m) 9380 11339 16357 

Avg. Batching Time (s) 953 837 876 

 

Table E-138. KPI Results of Configuration 3 of Experiment 5 in Scenario 123 

Iterations  10   

 BatchS + Singlepick BatchS FCFS 

Total Picking Time (s) 53515 60477 65020 

Total Picking Time (min) 892 1008 1084 

Total Picking Time (h) 15 17 18 

Total Colli 2110 2110 2110 

Total Colli/Hour 142 126 117 

Total Pickers 2,0 2,9 3,0 

Pick Time(h)/Picker 7,4 5,8 6,0 

Avg. Distance Batch (m) 170 157 225 

Total Distance (m) 9512 11464 16846 

Avg. Batching Time (s) 956 829 867 
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Appendix F. Analysis of Results  
 

In this Appendix the different performance indicators are shown and compared what the 

sensitivity is in output of the according KPIs. It is shown per configuration and strategy. How each 

scenario will react to a change in batching strategy per KPI.  

 

Figure F-1 – Percentage decrease in Colli per Hour configuration 1 if switched to another picking 

strategy 

 

Figure F-2 – Percentage decrease in Colli per Hour configuration 2 if switched to another picking 

strategy 
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Figure F-3 – Percentage decrease in Colli per Hour configuration 3 if switched to another picking 

strategy 

 

 

 

Figure F-4 – Percentage increase in Picking Time configuration 1 if switched to another picking 

strategy 

As can be seen in the figure is, in each scenario, the Batch SinglePicks strategy the best strategy in each 

scenario if we look at the picking time. Therefore we analyse how much increase in picking time there 

will be if we use another picking strategy. As can be seen in the figure, scenario 92 and scenario 107 

significantly increase if another strategy is being used. In scenario 10, the increase in picking time is a 

lot less.  

The same analysis is done for configuration 2 in the graph below.  
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Figure F-5 – Percentage increase in Picking Time configuration 2 if switched to another picking 

strategy 

Configuration 2 very much looks like configuration 1. Here also, the best strategy in each scenario is 

the star aisle batching with SinglePicks. Later on in the analysis, we will further look into the 

comparison between configurations 1 and 2 for each strategy. 

 

Figure F-6 – Percentage increase in Picking Time configuration 2  if switched to another picking 

strategy 
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Figure F-7 – Percentage increase in Total Distance  configuration 1 if switched to another picking 

strategy 

 

Figure F-8 – Percentage increase in Total Distance configuration 2 if switched to another picking 

strategy 
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Figure F-9 – Percentage increase in Total Distance configuration 3 if switched to another picking 

strategy 
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Appendix G. Scientific Paper  
 



 Thesis Paper 

The Impact of Order Characteristics Uncertainty on Different 

Configurations of the Outbound Logistics of a 3PL Warehouse 

W.J.Eil*1 , Dr. J.M. Vleugel2, Dr. W.W.A. Beelaerts van Blokland3, MSc M.Put4,             

  Prof. R.R. Negenborn3 

Abstract 

This paper examines the impact of order characteristics on the performance of different configurations of the 

outbound logistics of a 3PL warehouse. A contingency approach combined with a proof of configuration method is used 

to answer this question. The contingency variables in this study are the order characteristics, which are uncertain for the 

future state of the newly built e-commerce warehouse Haaften III for Nedcargo Logistics, A third-party logistics 

provider in the Netherlands. Six contingency scenarios are chosen, and a model transforms them into experiments. Three 

different potential warehouse configuration models process these experiments, and their productivity performance is 

compared and analysed. Our results showed that the compactness of the layout, ABC-class-based storage and a new 

picking strategy, Star Aisle Batch combined with Singlepicks, provides the best productivity in each scenario. Next, 

between each scenario, the productivity is impacted differently. The productivity is higher if the order characteristics 

contain a low percentage of A-type products, the amount of colli is high, or orderlines per order are low. A change in 

configuration or strategy within each scenario also influences productivity differently. Lastly, it is also proved that the 

new proposed configuration and picking strategy can improve its current productivity by over 30% 

 

Keywords: 3PL Warehouse, Order Characteristics, Uncertainty, Warehouse Configurations, Modelling, Contingency Approach, 
Proof of Configuration, Outbound Logistics 

1. Introduction 

Warehouses are a crucial component in the supply 
chain. This is especially true for third-party logistics 
providers (3PL), which specialise in the integrated 
logistics of warehousing and transportation services. 
Clients of 3PL providers outsource their warehousing 
operations and, therefore, must be scaled and adapted to 
fulfil the expectations and requirements for their products. 
Consequently, a growing interest in improving the 
efficiency of warehouses has grown.  

The complexity of warehousing has increased 
significantly with the emerging trend of e-commerce 
orders, which requires fast processing at warehouses to 
assure on-time delivery and enhance client satisfaction. 
This e-commerce trend also increases the uncertainty 
aspect of the order characteristics because the e-commerce 
trend is not a homogenous concept. It affects the order 
characteristics differently. For example, the customer now 
orders low quantities of product per order due to the 
easiness, which is also becoming time-critical due to 
competition. 

Warehouses fulfil operations like receiving, put-
away, storage, picking, sorting, packing, and shipping 
(Kembro et al., 2020). Warehouse operations, design, and 
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2 Faculty of Civil Engineering and Geosciences, Delft University of Technology. 
3 Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology. 
4 Supply Chain Management, Nedcargo Logistics, Waddinxveen. 

resources together can be mentioned as the configuration 
of a warehouse. These configurations should allow a 
flexible response to the varying and uncertain needs in the 
future. Warehouse configuration and the way it is operated 
determines its efficiency. So,  understanding the 
warehouse's current - and future state and goals is crucial 
before selecting the suitable configuration.  

1.1. Research Purpose 

This study aims to investigate the fit between the 
future context and configuration of a soon to be built 
warehouse. The uncertainty of handling specific order 
characteristics of potential clients is a contextual factor. 
The fit between the warehouse's configuration and the 
context in which it operates is an essential driver for its 
performance and must be explored. 

1.2. Case Study 

This paper focuses on the newly built warehouse for 
Nedcargo, a 3PL provider in The Netherlands, named 
Haaften III. The new warehouse in Haaften allows 
Nedcargo to re-evaluate its current warehousing and 
improve its configuration to be efficient and robust. The 
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focus will be on outbound logistics, including storing, 
sorting, picking, and packing. The performance of a 
warehouse is impacted by how it is configured, yet the pre-
build development of warehouse systems has not been 
quantified 

1.3. Research Question 

As mentioned, it is suggested that the warehouse 
configuration must be tailored to its particular context. The 
contingency factor in this research is the order 
characteristics, and the configuration focuses on the 
outbound logistics. The following research question is 
established:  

 
What is the impact of context uncertainty of order 

characteristics on the different outbound configurations of 
an order-picking warehouse? 

1.4. Research Methodology 

This research uses a contingency approach combined 
with the proof of configuration method to answer the 
research question. The proof of configuration method, also 
known as the proof of concept but renamed for this study's 
purpose, is focused on determining if an idea is feasible or 
if an idea will function as envisioned. This so-called idea 
is the three proposed configurations of Haaften III in this 
study.  

The contingency approach is a theory that suggests that 
a warehouse configuration must be tailored to its particular 
context (Donaldson, 2001). It is applied to connect 
decisions concerning warehouse configurations to match 
their context to improve their performance (Woodward, 
1965). How  do these contextual order characteristics 
influence the performance of warehouse configurations in 
the rapidly advancing and changing e-commerce market? 
This approach is based on modelling three variables, 
namely the contingency, response, and performance 
variables. These are respectively modelled as a scenario 
experiment model, configuration models, and the 
performance as output. Before this, an extensive current 
state analysis is performed to investigate the current 
characteristics and configuration located in their 
warehouse Tiel. Further elaboration on this is in chapter 3. 

1.5. Research Approach 

The proof of configuration - and contingency approach 
is incorporated into an overall research approach, the 
adapted SIMILAR approach method. The SIMILAR 
approach is a System Engineering approach and can be 
seen as an iterative process roadmap. The SIMILAR 
approach is short for the following process steps: State the 
problem, Investigate, Model the System, Integrate, Launch 
the system, Assess performance, and Re-evaluate. The last 
three processes are combined in this research's evaluation 
process step. This is because this research is more based 
on proving the warehouse configuration than 
implementing a new system. This research approach can 
be seen as an abbreviated SIMILAR approach, denoted as 

SIMIE. This System Engineering approach is founded on 
system thinking, which is a mode of thinking that considers 
not the whole system but also how the pieces of that system 
interact. 

1.6. Research Objective 

This research will prove that specific configurations 
perform differently in a given context. This aim should 
provide scientific insights into the different configuration 
choices and how they affect the performance, the 
contextual importance of warehouses on their 
performance, and whether knowledge gaps from literature 
can be filled. In addition to practice, this study tries to 
create tools for Nedcargo to eliminate uncertainty in their 
decision-making for Haaften III. By experimenting with 
different scenarios regarding order characteristics 
uncertainty and how potential configurations perform in 
these scenarios.  

2. Literature Review 

In section 2, essential previous research findings are 
discussed based on several topics. These findings pave the 
way for the methodology of this paper. 

2.1. Warehouse Logistics 

The warehouse represents a significant role in the 
modern supply chain. Azadnia et al. (2013) state that 20% 
of the logistics costs of companies come from warehouse 
operations. In this manner, a warehouse's in-house 
logistics (or intralogistics) are integral to the organisation's 
operations. Therefore, it can be seen as a vital opportunity 
to improve optimisation, physical - and information flows, 
reduce inventory levels, and enable more agile distribution 
(Vrijhoef & Koselka, 2000). An appropriate strategy, 
layout, warehouse operations, and material handling 
system must be achieved (Lehrer et al., 2010).    

2.2. Warehouse Configuration 

Warehouse configuration refers to the combination of 
operations, design aspects, and resources (Kembro and 
Norrman, 2020; see also, e.g., Rouwenhorst et al., 2000). 
The focus of this research is, as said, on the outbound 
logistics of this warehouse configuration. First is the 
outbound operations; Klumpp and Heragu (2019) defined 
outbound logistics as moving and storing goods from 
production to the point where they are delivered to the 
customer. So, the warehouse's storage, sorting, picking, 
and packing operations. Important to mention that the 
outbound logistics are different for every warehouse. The 
chances of warehouses having almost the same outbound 
logistics process due to other order characteristics are 
minimum (Baretto et al., 2017). Therefore the current state 
analysis is mandatory.  

Secondly, the warehouse design aspects. Gu et al. 
(2010) classified these warehouse design decisions into 
different categories: The overall structure of the 
warehouse, sizing, throughput, layout design, utilised 
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number of workforce, equipment selection, and selection 
of operational policies. Next to that, a warehouse design 
project should include definitions of policies such as order 
fulfilment, picking, packing, stocking, and stock rotation 
(Chan & Chan, 2011). 

Lastly, the resources of the warehouse. Manual 
warehouses, like Nedcargo, rely on human operators for 
their order picking system (OPS). The equipment selection 
decisions in a manual warehouse are expressed, e.g., 
number of human resources, number of carts, utilisation, 
etc. Order picking is one of the most time-intensive 
processes in outbound logistics, so human factors play a 
crucial role in OPS performance (Tompkins et al., 2010). 

2.3. Warehouse Context 

Kembro et al. (2018) stated that it is emphasised in 
many recent studies that the role of a warehouse in meeting 
its customers' expectations is growing. Mainly due to the 
shorter lead times and e-commerce trend, it has become 
more common to rely on the functioning of a warehouse to 
fulfil the client's wishes. Kembro et al. (2020) stress that 
more research is needed to analyse and test managerial 
practices and solutions. Particularly "the need to 
understand where certain configurations might fit better 
and which future path to pick" The important context in 
which a warehouse operates is therefore of great 
significance. Several researchers emphasise the 
importance of context in warehousing. Faber et al. (2013) 
studied external factors that influence the planning and 
control of WMS systems. They consider two sets of 
variables: the external warehouse environment (i.e., the 
market it operates in) and the internal warehouse system. 
Next, they address five contextual factors: the number of 
SKUs, assortment fluctuations, demand unpredictability, 
number of SKUs per order (or amount of orderlines), and 
process diversity. These factor claims are backed up in 
several other warehouse studies. Sousa and Voss (2008) 
pointed out that contingency studies consist of three types 
of variables: (1) contingency variables, which represent 
the context, (2) response variables, which represent the 
organisational actions to respond to the context, (3) and 

performance variables, which measure the effectiveness of 
the operations of the system 

2.4. Warehouse Performance 

The Overwhelming quantity of technological 
equipment, strategies, components, etc., and the difficulty 
in assessing them motivates the search for better and more 
effective warehouse configuration tools (Heragu, 2016). 
This difficulty in determining is where warehouse 
modelling comes in. In order to make the right choices in 
design, strategies and resource models for warehouses are 
desirable. Therefore multiple studies were conducted to 
model warehouse components. Table 1 shows the 
literature table of studies in which warehouse modelling 
was performed. There is a distinction made between the 
modelling method, the warehouse components that were 
modelled, and if the model accounted for uncertainty. Here 
you can see that most of the studies use a deterministic 
approach. This research combines this deterministic 
approach with a probabilistic modelling approach. Next, 
most of the studies of warehouse modelling considered 
only a single design method, with the focus mostly on 
improving the picking strategy. This optimisation 
approach is limited wherein an attempt to improve one 
performance may craft wastage in other warehouse 
processes. This research takes all the warehouse 
components into account so that it is more of a synthesis 
than an analysis. Finally, there are not many studies that 
account for uncertainty in their model. In this study, the 
uncertainty of its warehouse context is accounted for, 
namely the order characteristics. The general methodology 
chapter will further elaborate on this.  

In warehouse modelling, there is not a single, one-size-
fits-all solution. Optimal solutions can only be applied to 
particular settings and therefore are non-generalisable. 
And therefore, of importance to Nedcargo. 
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3. General Methodology 

In section 3, the general methodology of the paper is 
presented. Each paragraph will discuss a particular step in 
the research approach. The results obtained from each 
method are then compared in sections 4 and 5. 

3.1. Current State Analysis; Tiel 

To develop new configurations for the newly built 
warehouse of Haaften. We need to have knowledgeable 
insight into their current outbound logistics operations in 
their currently active e-commerce warehouse. Because 
there is no single one-size-fits-all solution. The warehouse 
in Tiel currently handles the e-commerce orders for 
Nedcargo. This picker-to-good manually operated 
warehouse handles the e-commerce orders of Jacob 
Douwe Egberts (JDE). This study focuses on new 
configurations and the order characteristics uncertainty of 
Haaften III. But before confident future choices can be 
made, the current state must be analysed. This current state 
analysis is conducted by process description and followed 
by extensive data analysis in the research.  

First is the process description. Since this research 
focuses on outbound logistics, we will confine to the 
storing, picking, and packing operations. The storing in 
Tiel is based on an ABC-class-based strategy, but it is not 
compact. Six aisles are used for only 351 products, or 
Stock-Keeping Units (SKU),  that need to be stored. This 
storage should be more compact in the future 
configuration. Because now, a total of 351 SKUs are stored 
in 130 pick locations, where each pick location can exist 
out of 4 SKUs. So, if we look at the compactness of that 
storage, if we divide 351 by four, only 88 pick locations 
are needed. This reasoning is vital to consider in future 
configurations. 

Figure 1- Logistics flow decision chart per picking tour 

 
Next are the picking operations, shown in figure 1. The 

orders in Tiel are batched per four orders, and it follows a 
First Come, First Serve strategy. This simple batch 
construction method is based that orders are sequentially 
assigned to batches depending on their arrival. The figure 
shows the decision that must be made for the pickers when 
moving through the picking circuit. The picker follows the 
route with the use of the shortest route algorithm. It must 
be explored if this batching/picking strategy can be 
executed more efficiently. 
 

Concerning the packing operations, the following has 
been noticed. Namely, maintaining a SinglePick strategy is 
beneficial for the packing operation. The SinglePick 
strategy is a batching strategy that batches all the orders 
consisting of a single SKU and a single colli; colli is the 
number of packages of a particular SKU. If these orders 
are collected as a bulk batch, the packer now can pack-per-
colli instead of pack-per-customer. Because the packer 
does not have to include multiple SKUs in the shipping 
box, it can now scan the colli and see to which customer it 
belongs. Instead of collecting colli from the picking cart 
based on the customer's order. This strategy should fasten 
the picking and packing performance. The figure below 
shows the picker's decision chart concerning the 
SinglePick strategy.  

Figure 2- Logistics flow decision chart for SinglePicks 

3.2. Data Analysis of Tiel 

After the current state analysis of Tiel is explored. It is 
time to look deeper into the data of Tiel. Tiel's warehouse 
management system (WMS) allowed us to analyse the 
collected data from the warehouse over a half year, the 
second semester of 2021. The data was gathered and 
analysed using Microsoft Access. This access database 
allowed the possibility to link data nodes and perform 
analyses the WMS could not function. 

The following data was collected: 
1. The data of the distance travelled 
2. The data of all the orders 
3. The data of the movements in the warehouse 
4. The data of time measurements  

By the distance travelled is meant the total distance that the 
pickers travel within the warehouse. The data of all the 
orders consist of the order characteristics, the product 
characteristics, and an ABC analysis of the SKUs. With 
the movements in the warehouse, is meant the storage of 
all the SKUs and the allocation of SKUs, both by using a 
heat map. Lastly, the data of the time measurements 
included the pick time per picking tour, the fixed time per 
SKU visit, the variable time per colli pick, and the 
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performance of the pickers in colli per hour. The below 
figure shows that these data together form the current state 
model of Tiel.  

 Figure 3- Data from Tiel Access Database, which shapes the 

Current State Model 

 

The current state model of Tiel is a simulation model 
representing the current state warehouse of Tiel that has 
been made to make it possible to measure the (simulated) 
performance. It is a computer simulation which can 
process an order list based on the collected data. The below 
table compares the simulated performance with the real-
life performance. This model will be used to prove that the 
configurational changes should improve the current state 
as well.  

 

Table 1. The model results of the Tiel Warehouse. 

 
Real-Life 

Day 

Simulated Day 

Avg. Performance  

(Colli/Hour) 
112,4 116,7 

Avg. Batching 

Distance (m) 
264 299 

3.3. Proof of Configuration 

The proof of configuration approach in combination 
with the contingency approach is pursued because it can 
prove that specific configurations better fit and perform in 
certain contexts. The proof of concept, or in this research's 
case configuration, constituted the scope of this research 
project. As part of a robust systems engineering process, 
conducting a proof-of-concept initial study to identify 
potential system limitations is critical to understanding the 
system's expected usefulness before incurring additional 
costs. This approach can benefit the pre-design phase of 
Nedcargo by highlighting potential limitations of the 
configurations in specific contextual settings. These 
configuration models must represent the outbound 
logistics of a warehouse; thus, storage, layout, picking 
strategy, routing, and equipment must be modelled within 
the models.  

3.4. Contingency Approach 

Sousa and Voss (2008) pointed out that contingency 
studies consist of three types of variables: (1) contingency 
variables, which represent the context, (2) response 
variables, which represent the organisational actions to 
respond to the context, (3) and performance variables, 
which measure the effectiveness of the operations of the 

system. These three variables will each represent a specific 
aspect of the warehouse, and all will be modelled.  

The contingency variables will represent the order 
characteristics, which are contextual factors influencing a 
warehouse's performance. The order characteristics are 
measured in four types of contingency variables: 

 
1. Number of SKUs 
2. SKU per Order 
3. Colli per SKU 
4. ABC-Ratio  

 
The response variables are the proposed configurations. 

The configurations represent the different components in a 
warehouse and will process the orders influenced by the 
contingency variables. 

 The performance variables, which are in this paper: the 
productivity (colli per hour), the distance travelled, the 
picking time, the number of pickers, and the average 
batching time.  

Based on these proof of configuration and contingency 
approaches, the following method of this research can be 
visualised in figure 4.  

Figure 4- Overview of Method of Study 

3.5. Scenarios 

As can be seen in figure 4, out of the four order 
characteristics variables, 144 scenarios are presented. 
These contingency variables are each distributed at 
different levels. We will each discuss them separately.  

The first contingency variable is the "Number of 
SKUs". This variable represents the number of SKUs that 
needs to be handled in the warehouse. It can be chosen 
from three levels, namely 350, 500 or 750 SKUs in the 
warehouse.  

 The second contingency variable is the "SKU per 
Order". This variable represents the probability that an 
order consists of X amount of SKUs. This variable is based 
on four distributions where each distribution differs in 
likelihood for the amount of 1 -, 2 till 3 -, 4 till 7 -, 8 till 10 
-, 11 till 20 -, and 20 till 50 SKUs per order.  

The third contingency variable is the colli per SKU. 
This variable represents the probability of how many colli 
an SKU visit consists of. During the data analysis, it was 
discovered that the type of SKU influences the colli per 
SKU probability. So if an SKU is an A-type, B-type or C-
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type, thus, it is chosen to have four probability 
distributions for each type of SKU.  

The last contingency variable is the ABC Ratio. The 
ABC ratio is based on the ABC analysis performed in the 
data analysis. Tiel has an ABC ratio of 18%-27%-55%, 
with an inventory turnover of the Tiel warehouse being 
75%-20%-5%. This means that 18% of the SKUs account 
for 75% of the SKU visits. This 18% of the SKUs are 
called A-type SKUs. But what if we change the ABC ratio 
to other ratios? The latter is what this contingency variable 
represents, namely three levels of different ABC ratios.  

Based on the different levels and distributions of the 
contingency variables, 144 context scenarios were created. 
Nedcargo could choose the six most applicable or 
plausible scenarios for Haaften. The chosen scenarios are 
50, 107, 10,77, 92 and 123. As shown in figure 4, these 
scenarios are being transformed into experiments by the 
Experiment Generation Model. The next chapter will 
explain how this and further steps in the method are carried 
out.  

4. Models 

The 4 models created in this research will be explained 
in this chapter. The experiment generation model, which 
transforms the scenarios into experiments, will be 
discussed first—followed by the three configuration 
models that will process the experiments quantifying their 
performance.  

4.1. Experiment Generation Model 

As mentioned in the previous chapter, each scenario is 
a different combination of contingency levels and 
distributions. Each of these context scenarios must be 
transformed into experiments that the configuration 
models can process.  

A model must therefore be created to generate a dummy 
order data set based on the various contingency 
characteristics. Each scenario will have five generated 
experiments. The model is implemented  using Excel VBA 
in combination with macros and PowerPivot functions.  

This dummy order data set can be compared with an 
actual order list received at the beginning of a picking day. 
This will function as the input of the proposed 
configuration models 

This "Experiment Generation Model" consists of 
several steps. Each step will be discussed in short. 

 
The first step is to decide how many orders should be 

generated. In this research, it is assumed that 300 orders  
are generated for each experiment. This is assumed 
because we do not want to see the impact of the demand 
characteristics but rather the impact of order characteristics 
on the performance of the proposed configurations. 

The second step is to generate out of how many order 
lines the order consists of. An order line is also the number 
of SKUs per order. The model assigns an amount of SKUs 
to each order based on the probability distribution of the 
scenario. For example, order-1 has 5 SKUs to pick and 
order-2 only 1 SKU. These orderlines are based on the 

chosen distribution of the "SKU per Order" contingency 
variable.  

Now that for each order, the amount of SKUs is known. 
We must decide whether each SKU is an A-type, B-type 
or C-type SKU. For this step, two contingency variables 
are essential: the ABC ratio and the Number of SKUs. 
Based on these two variables, how many SKUs are A, B or 
C can be decided.  

If that step is completed, it is known how many SKUs 
are A, how many are B, and how many are C. The next 
step is to decide the probability of an SKU being visited. 
If that probability is known, a specific SKU can be 
assigned to each orderline generated in step 2.  

For this step, we have to use the data analysis of Tiel. 
The probability per SKU and type of SKUs have been 
analysed during the data analysis. For the experiment 
generation model, the probability that a particular SKU is 
visited. It was seen that this probability followed an 
exponential decay. So for each type of SKU, a growth 
factor was decomposed out of the data analysis, which was 
scaled and fitted for the chosen contingency variables. 
Then the probability for each SKU was awarded by the 
following formula: 

 
𝑦(𝑝𝑡) = 𝑎 ∗ 𝑔𝑝           (1) 

𝑤ℎ𝑒𝑟𝑒  

𝑦(𝑝𝑡) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑆𝐾𝑈𝑝 𝑜𝑓 𝑡𝑦𝑝𝑒 t 

𝑎 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑠𝑡 𝑝𝑖𝑐𝑘𝑒𝑑 𝑆𝐾𝑈 

𝑔 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦  

𝑝 = 𝑆𝐾𝑈 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑒. 𝑔. 𝑓𝑜𝑟 𝐴: 1 𝑡𝑖𝑙𝑙 64)  

 
This formula assigns to each SKU a certain probability 

of being picked. 
After this step, each order now has the amount of 

SKU(s) it needs to pick and which specific SKU(s) they  
are. The last step is that based on the "Colli per SKU", 

how many colli the pickers have to collect at each SKU 
visit is generated. This is decided by the probability 
distribution per type- of SKU of the particular scenario.  

The average results of all the generated experiments per 
scenario are shown in table 2. These characteristics are the 
average results of each dummy order set that the model 
generates.  

4.2. Configuration Models 

In this paragraph, the three proposed configuration 
models will be elaborated on. Each of the configuration 
components will be discussed per configuration. Based on 
literature findings, consultation with Nedcargo, data 
analysis, and personal insights, these configurations are 
configured. Out of the consultation with Nedcargo, the 
following functional and non-functional requirements 
were presented:  
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- Productivity as high as possible 
- As few pickers as possible 
- Insight beforehand how many pickers needed 
- All orders picked in about 8 working hours 
- The layout must fit its context.  
- SinglePick type orders must be collected as a 

batch 
- Conventional racking is not necessary 
- Future possibility for automation 

Next to these requirements, there were also assumptions 
to be made. These were divided into numerical, 
mathematical and conceptual assumptions, which can be 
found in the full research report. 

 
Configuration 1 has the most configurational changes 

compared to the current state. Configuration models 2 and 
3 are mostly tweaked compared to configuration 1. Each 
of the configurations is created by using Visual Basics for 
Applications (VBA) for Microsoft Excel (MS Excel 2019). 
This is a programming language tailored to act as a macro 
language found in most spreadsheets. 

We will now discuss each of the configurations per 
configurational component. 

 

Configuration Model 1 

This section is structured as follows: for configuration 
1, its choice of layout, storage, picking strategy, and 
equipment will be elaborated. 

 
First, we take a look at the picking strategy. We have 

already discussed the FCFS and the SinglePick strategy. 
But this configuration considers three types of picking 
strategies which will be compared. The First Come, First 
Serve strategy, the Star Aisle Batch strategy and the Star 
Aisle Batch combined with SinglePick strategy. We will 
discuss the last two strategies.  

The Star Aisle Batch strategy is a batching heuristic 
presented by Aboelfotoh et al. (2019). This batching 
strategy focuses on batching orders located in the same 
aisle. This aisle-by-aisle heuristic considers various 
parameters such as item location, order details, detailed 
layout of pick area, and the maximum number of orders 
allowed per batch. The heuristic is based on six steps 
which are shown below in the algorithm:  

 
 
 
 
 
 

 

Step 1: Define star aisle 𝑘 

Step 2: Generate star aisle vector 𝑋∗ 

Step 3: Generate order aisle vector 𝑋𝑖 for each order  

Step 4: Choose the first order for this assignment based on the 

minimum sum of squared distance 𝑆𝑖 of order 𝑖 
Step 5: Update the star aisle vector 𝑋∗ 

Step 6: Group next order 

For each order 𝑖, calculate its sum of the squared distance 𝑆𝑖 to 

star aisles and assign the order with the least 𝑆𝑖. 

Is the number of orders grouped greater than the maximum 

number of orders that van de assigned in one batch assignment? 

Then go to Step 1 

Else, go to Step 5 

𝑆𝑖 = ∑  

𝑎

𝑗=1

∑  

𝑎

𝑗∗=1

(𝑗 − 𝑗∗)2                             ∀𝑥𝑗
𝑖 = 1   ∀𝑥𝑗

∗ = 1  (2) 

𝑖 = 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 

𝑘 = 𝑏𝑎𝑡𝑐ℎ 𝑖𝑛𝑑𝑒𝑥 

𝑗 = 𝑎𝑖𝑠𝑙𝑒 𝑖𝑛𝑑𝑒𝑥 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑠 

𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑖𝑠𝑙𝑒𝑠 

𝐵 = 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 

 

The Star Aisle Batch combined with the SinglePick 
strategy is a new strategy proposed. This first batches all 
the SinglePick orders in a so-called "SPBatch". So that the 
pickers first collect all the SinglePick orders in one picking 
tour. Then the remaining orders are batched following the 
Star Aisle Batching Algorithm. 

 
Now that the picking strategies are clear, we move to 

the routing strategy. Just as in the current warehouse of 
Tiel, the shortest route strategy is maintained for 
configuration 1. The shortest path algorithm finds the 
shortest path between two nodes (SKUs), and the pickers 
follow that path. 

The storage assignment is based on the ABC-class-
based storage strategy from Yu & Koster (2010). This is 
visualised in figure 5. 

Figure 5- ABC-Class-Based Storage strategy 

 

 

Table 2. Average results of experiments per scenario 

 Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Orders 300 300 300 300 300 300 

Orderlines 834 747 1560 714 734 1071 

Total Colli 2315 1646 4171 3251 2135 2391 

Avg. Orderline/Order 2,78 2,21 5,20 2,38 2,45 3,57 

Avg. Colli/Orderline 2,77 2,21 2,67 4,55 2,90 2,23 

Avg. Colli/Order 7,71 5,49 13,90 10,94 7,12 7,97 

Avg. SinglePicks 71,6 79,4 37,8 59,2 82,8 77,6 
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In this layout, the A-class SKUs are the nearest to the 
packing depot. The only thing that is added to this is that 
there are AA-products., which are the twelve most ordered 
SKUs. Those SKUs are the closest to the depot, and the 
rest is randomly assigned based on their class type.  

The warehouse layout is based on almost the same 
characteristics as the Tiel warehouse. Only in 
configuration 1, it is as compact as possible. That means 
that only as many aisles are used as SKUs that are needed. 
Each pick location can store three SKUs, so the number of 
aisles that are needed can be calculated because the aisles 
consist of the same amount of pick locations as in Tiel. 
Next to that, a cross-aisle is located at 60% of the 
warehouse's length; this is the same as the current state.  

The equipment that is used is the same as in Tiel. So the 
data of the time measurements of the data analysis are also 
implemented in this model.  
 

Configuration Model 2 

Configuration 1 has made some significant changes 
from the current state, substantiated by literature and data 
analysis to improve its current configuration of Tiel. 
Configuration 2 copies all of these changes and adds an 
extra element to this, namely, in the storage assignment. 

This new storage strategy is called "Dynamic SKU 
Location." The dynamic SKU locations are two locations 
in the warehouse where at the beginning of each working 
day, the stored SKUs could be different than the day 
before. This strategy is decided by first performing an 
affinity analysis, which checks if a pair of SKUs are often 
paired in orders on that specific day. And secondly, by 
looking at the daily demand of the SKUs 

 
Configuration Model 3 

Configuration 3 focuses on decreasing the possibility of 
congestion in the warehouse. This decongestion is 
achieved by changing the routing strategy of configuration 
1. Instead of using the shortest route algorithm, 
configuration 3 uses a different strategy: The S-Shape 
routing strategy. The s-shape routing strategy leads to a 
route in which the aisles that need to be visited to complete 
the batch are traversed in a single direction. That is why it 
is called an S-shape strategy; aisles are visited in a shape 
of an S. As a result, the cross-aisle is removed, and the aisle 
width will be narrowed down slightly. The same is 
assumed for the other warehouse components as in 
configuration 1. Formula 3 shows the calculation needed 
to calculate the distance between and within the aisles.  

 

𝑑𝑏 = 2 ([
N𝑎𝑖𝑠𝑙𝑒𝑠

b

2
] ⋅ 𝑑𝑤𝑙 + 𝑑𝑐𝑤 ∗ 𝐴𝑙𝑎𝑠𝑡)      (3) 

𝑊ℎ𝑒𝑟𝑒: 
𝑑𝑏 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏          𝑏 𝜖 𝐵 

𝑑𝑐𝑤 = 𝑐𝑟𝑜𝑠𝑠 𝑙𝑒𝑛𝑔ℎ𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎𝑖𝑠𝑙𝑒𝑠 (𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛) 

𝐴𝑙𝑎𝑠𝑡
𝑏 = 𝐿𝑎𝑠𝑡 𝑎𝑖𝑠𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏          𝑏 𝜖 𝐵 

𝑑𝑤𝑙 = 𝐿𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 

𝑁𝑎𝑖𝑠𝑙𝑒𝑠
𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑖𝑠𝑙𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏         𝑏 𝜖 𝐵 

 

 

5. Analysis and Results 

In this chapter, the results of the configuration models 
will be discussed. In this research, several performance 
indicators were addressed. But it is chosen for this paper to 
only focus on one of the performance indicators, namely 
productivity. The productivity is measured in colli per hour 
for each picker. If anyone wants to know more about the 
results of the other performance indicators measured, 
please contact the author. It was also seen that 
configuration 1 outperformed configurations 2 and 3. So, 
the focus will be on configuration 1 as well.  

5.1. Current State Comparison 

The first thing that we wanted to achieve with the 
configuration models was to prove that the new 
configurations perform better in the same context as Tiel. 
Therefore we needed to compare the configuration models 
with the current state model. For each configuration, we 
simulated the productivity if the contextual order 
characteristics were the same as in Tiel. There it was seen 
that configuration 1 outperformed configurations 2 and 3 
in terms of productivity increase compared to the current 
state model of Tiel. Therefore, we will now continue to 
address configuration 1. 

This comparison resulted that if configuration 1 was 
used with the same order set data of the context of Tiel, the 
FCFS strategy resulted in a productivity increase of 15%. 
This is due to the improvements with ABC-class based 
storage and compacter layout choices compared to the 
current state. If configuration 1 was implemented with the 
Star Aisle Batching Strategy, it would increase 
productivity by 20%. And if configuration 1 were 
implemented in Tiel with the Star Aisle combined with the 
SinglePicks strategy, it would increase by 30% in terms of 
productivity. This improvement is visualised in the graph 
below.  

So, if this configuration is implemented in combination 
with the new picking strategy Star Aisle combined with the 
SinglePicks, the current operations will increase its 
productivity by over 30%. This increase in productivity 
also means that Nedcargo now only requires two pickers 
to complete the picking operations. If we take the current 
state average number of  4 pickers, as seen in the data 
analysis. Nedcargo (at least) can save two pickers using 
configuration 1 and the proposed strategy. Consequently, 
saving costs due to fewer pickers needed.  
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5.2. Results Context Experiments  

This paragraph will reflect on the main research 
question and answer it. The main research question was: 
What is the impact of context uncertainty of order 
characteristics on the different outbound configurations of 
an order-picking warehouse? 

As shown in Table 3, in each scenario, the productivity 
is different per scenario in configuration 1 with the Star 
Aisle combined with SinglePicks. This combination of 
configuration and strategy is chosen to reflect on because 
it results in the highest productivity of all the combinations 
possible. How can this difference between productivity 
and the scenarios be explained? And how can we trace that 
back to the order characteristics of the scenarios presented 
in Table 2.  

 
The results showed that the ABC-Ratio contingency 

variable has a significant impact on the productivity of the 
chosen configurations. Respectively, high productivity is 
reached if the warehouse consists of a lower percentage of 
A-type SKUs and lower productivity if the warehouse has 
a high rate of A-type SKUs.  

 
Next to that, a context scenario where the amount of 

colli is high and the orderlines per order are low will result 
in higher performance. These contingencies can be 
explained since the picker can grab more colli during an 
SKU visit, which decreases the travel distance and thus 
increases the performance. Table 1 shows the difference in 
performance between the scenarios, but how do they react 
to configuration and/or strategy differences? 

Figure 6- Productivity decrease other configurations/strategies 

 
Figure 6 shows that the change between configuration 

and picking strategy affects each scenario. In some 
scenarios, such as 10 and 77, another picking strategy or 
configuration does not have an as significant impact as, 
e.g., 107 and 92. In those scenarios, the percentage 
decrease in productivity is much higher when not the best 
configuration and picking strategy option is implemented. 
This is an essential insight because now it is shown that the 
order characteristics influence how well the warehouse 
functions per configuration and picking strategy. Each 
order characteristics scenario is differently sensitive to a 
change in configuration or strategy.  

The different context in which a configuration is placed 
in combination with the strategy impacts its productivity. 
In this way, we can state that the experiments show that 
different configurations perform differently in specific 
scenarios. 

5.3. Case Analysis 

It is proven that the context in which a warehouse operates 
is essential to see whether some configurations perform 
better or worse. This insight can help in the pre-design 
phase of a warehouse design. To see how specific 
configurations will perform and react to confident 
configurational choices. Nedcargo can do this using the 
proposed method with each experiment and configuration 
of their liking. The order characteristics of the future state 
for Haaften III are uncertain, and therefore Nedcargo can 
use the findings of this study to be prepared. The 
experiments show that it is essential to test different 
configurations on their performance before you start 
designing.  

Table 3. Results of Configuration 1 and Star Aisle combined with SinglePicks strategy  

Batch+SP Scenario 50 Scenario 107 Scenario 10 Scenario 77 Scenario 92 Scenario 123 

Configuration 1       

 Avg. Colli/Hour 163 124 178 208 160 156 

-25,0% -20,0% -15,0% -10,0% -5,0% 0,0%

Scenario 50

Scenario 107

Scenario 10

Scenario 77

Scenario 92

Scenario 123

Comparison of Productivity decrease in each Scenario per Configuration and 

Strategy to the Star Aise Batch and SinglePicks Strategy

FCFS Strategy Configuration 3 Batch Strategy Configuration 3 FCFS Strategy Configuration 2

Batch Strategy Configuration 2 FCFS Strategy Configuration 1 Batch Strategy Configuration 1



6. Discussion and Conclusion 

In this chapter, the key findings from the research are 
presented. Next, the scientific relevance of this study 
will be highlighted. Finally, some limitations of this 
study will be discussed. 

6.1. Key Findings  

Several key conclusions can be drawn up from this 
study. We will highlight some of them. The first key 
finding was that it was proven that configuration 1 
outperformed configurations 2 and 3 in each of the 
context scenarios. Thus, it can be concluded that the 
"Dynamic SKU locations" and the S-Shape routing 
strategy do not improve productivity. However, the 
chance of congestion with the S-shape strategy is lower, 
which can be considered if this should be avoided. 

Suppose we compare the configuration 1 model with 
the current state model with the order characteristics of 
Tiel. If the same picking strategy is used (FCFS), the 
improvements from the current state analysis in the 
storage and layout choices cause an improvement of 
15% in productivity. If the picking strategies Star Aisle 
Batch or the combination with SinglePick strategy is 
used, respectively, a productivity increase of 20% and 
30% is achieved. This configuration and strategy 
options could be implemented during the pre-design 
phase for Haaften. The models can help to reflect and 
quantify certain configurational and contextual choices.  

Next, if we reflect on the main research question, it 
is proven that the context in which a configuration 
operates influences its productivity. The order 
characteristics have an influence between the scenarios 
for the same configurations and also within scenarios in 
different configurations. This also proved that Star Aisle 
Batching Strategy combined with the SinglePick and 
configuration 1 is the best combination to have the 
highest productivity. Respectively, high productivity is 
reached if the warehouse' order characteristics consist 
of a lower percentage of A-type SKUs and/or where the 
amount of colli is high, and the orderlines per order are 
low.  

So, the context in which an order-picking warehouse 
operates, based on the order characteristics uncertainty, 
has a significant impact on the performance of different 
configurations. Each configuration performs differently 
considering its context scenario. This is shown using the 
contingency approach. The contingency variables 
represent the uncertainty of the order characteristics, the 
response variables, which are the three configurations 
and picking strategies modelled, and the performance 
variables, which are the output of these models. 

6.2. Scientific Relevance 

The SinglePick strategy is a picking strategy that has not 

yet been quantified in the warehousing literature. It is 

described as a strategy option but not quantified what its 

specific impact on the productivity it causes. Also, the 

literature stated that warehouse strategies are non-

generalisable and are very case specific. Therefore each 

quantification could benefit Nedcargo because it 

reflects their operation.  

The Star Aisle Batching Strategy combined with the 

SinglePick strategy is a new strategy proposed. The 

combination of the two has not been seen in literature 

before. This strategy outperforms the other two 

strategies in each of the experiments. Hence, it is 

exciting to carry out further research on this strategy. 

This, of course, is context-dependent, which has also 

been concluded in this research.  

Quantification of the contingency approach has only 

been seen once in literature (Sadowski et al., 2021). The 

research approach of this thesis, the combination with 

the proof of configuration aim, is a new approach that 

could benefit the stage before the design process of a 

new warehouse starts. This approach could prove that 

confident configurational choices would improve or 

deteriorate performance in a particular context. This can 

be executed preliminary to the design phase of a 

warehouse.  

"Develop scales to measure different contextual 
factors and configuration elements for warehouses 
more precisely.". This literature gap by Kembro (2020) 
is filled with the experiment generation and 
configuration models. These models give an insight into 
the scales of contextual factors, although only those of 
the contingency of order characteristics. The 
configurational elements were modelled as response 
variables. A Modelling approach that integrates 
multiple components of warehouse configurations as 
response variables is not yet been developed in 
previously conducted research. Next to that, multiple 
components were implemented in the model. While in 
other warehouse modelling studies, mostly one or few 
specific component(s) were investigated.   

6.3. Discussion  

Further research should focus on implementing more 
contingency variables, for example, demand 
characteristics, which are set as a constant in this model. 
Furthermore, the picking time is chosen to be 
continuously uniform and distributed in the 
configuration models. This is due to the data that was 
collected and analysed. This is acceptable, but it is 
recommended that Nedcargo and future researchers 
further look into the data gathering of the picking 
activities. Next to that, the experiment generation - and 
configuration models give a substantial amount of data 
as output. Only several analyses were made regarding 
this study's context and chosen KPIs. For further 
research, the models could be used to answer other types 
of questions. The quantity of the data provides the 
opportunity for new insights.  
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