
 
 

Delft University of Technology

Simulation of two-phase flow in 3D fractured reservoirs using a projection-based
Embedded Discrete Fracture Model on Unstructured tetrahedral grids (pEDFM-U)

Cavalcante, Túlio de M.; Souza, Artur C.R.; Hajibeygi, Hadi; Carvalho, Darlan K.E.; Lyra, Paulo R.M.

DOI
10.1016/j.advwatres.2024.104679
Publication date
2024
Document Version
Final published version
Published in
Advances in Water Resources

Citation (APA)
Cavalcante, T. D. M., Souza, A. C. R., Hajibeygi, H., Carvalho, D. K. E., & Lyra, P. R. M. (2024). Simulation
of two-phase flow in 3D fractured reservoirs using a projection-based Embedded Discrete Fracture Model
on Unstructured tetrahedral grids (pEDFM-U). Advances in Water Resources, 187, Article 104679.
https://doi.org/10.1016/j.advwatres.2024.104679
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.advwatres.2024.104679
https://doi.org/10.1016/j.advwatres.2024.104679


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Advances in Water Resources 187 (2024) 104679

Available online 20 March 2024
0309-1708/© 2024 Elsevier Ltd. All rights reserved.

Simulation of two-phase flow in 3D fractured reservoirs using a 
projection-based Embedded Discrete Fracture Model on Unstructured 
tetrahedral grids (pEDFM-U) 

Túlio de M. Cavalcante a,*, Artur C.R. Souza b, Hadi Hajibeygi b, Darlan K.E. Carvalho c, Paulo R. 
M. Lyra c 

a Department of Civil Engineering, UFPE, Postal address: Rua Acadêmico Hélio Ramos s/n, Cidade Universitária. CEP 50.740-530, Recife, PE, Brazil 
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A B S T R A C T   

The modeling of fluid flow in heterogeneous, anisotropic and fractured porous media is relevant in many ap-
plications, including hydrocarbon and groundwater extraction, dispersion of contaminants, hydrogen or carbon 
dioxide (CO2) storage. Thus, accurate and scalable simulation of fluid flow through these formations continues to 
be a great challenge. The presence of fractures that are explicitly modeled, ranging from flow barriers to highly 
conductive channels, significantly increases the complexity of the numerical simulation. The Embedded Discrete 
Fracture Model (EDFM) produces results that can be as accurate as those obtained using equidimensional 
Discrete Fracture Models (DFM) at a much lower computational cost for highly conductive fractures, but it is not 
adequate for impermeable barriers. In contrast, the pEDFM (projection-based Embedded Discrete Fracture 
Model) produces accurate results for both, channels and barriers by using additional matrix-fracture connec-
tivities. In its current versions, it is restricted to cartesian and corner-point grid geometries and to the classical 
Two Point Flux Approximation (TPFA) scheme. In this work, for the first time, the pEDFM is extended to handle 
unstructured tetrahedral meshes (pEDFM-U). In addition, interface fluxes are approximated by using the Mul-
tipoint Flux Approximation method with a Diamond stencil (MPFA-D). This allows for simulation of highly 
heterogeneous and anisotropic geo-models. The developed method is robust and can deal with full permeability 
tensors on arbitrary tetrahedral meshes. The advective terms are discretized considering an implicit First Order 
Upwind (FOU) method. Our method is implemented within the DARSim (Delft Advanced Reservoir Simulation) 
open-source simulator framework. Through several test cases, the proposed method showed to be robust and 
capable to accurately capture the effects of both high and low permeability fractures for general tetrahedral 
meshes, under arbitrary heterogeneous and anisotropic permeability tensors for the rock matrix.   

1. Introduction 

Understanding the fluid flow in subsurface porous rocks is very 
important for a variety of applications, including hydrocarbon recovery, 
groundwater extraction, dispersion of contaminants and subsurface 
storage of hydrogen (Hassanpouryouzband et al., 2022) or carbon di-
oxide (CO2) (Hassanpouryouzband et al., 2019). In this context, the 
computational simulation of these phenomena is essential for efficient 
and safe operations. Despite being crucial, modeling multiphase flow in 
this type of media is very challenging, due to the highly contrasting 

geometrical and hydrogeological properties, such as permeability 
(Crumpton et al., 1995; Carvalho et al., 2009). These depositional 
geo-environments are indeed heterogeneous and anisotropic, since the 
sedimentary layers can be deposited in different ways and subjected to a 
variety of geological processes, giving different preferential directions to 
the fluid flows (Carvalho et al., 2009), being particularly difficult to 
efficiently build structured meshes to discretize these domains 
(Aavatsmark et al., 1998). Moreover, the presence of fractures, ranging 
from flow barriers to highly conductive channels, significantly increases 
the complexity of the numerical simulation, so that a computational tool 
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projected to be used in these circumstances must adequately treat these 
issues. 

Over the last few decades, many strategies have been developed to 
handle the fractures in the context of the simulation of fluid flow in 
porous media. Among them, traditional methods, which do not treat the 
fractures as additional degrees of freedom, have some remarkable lim-
itations. Transmissibility multipliers, for example, are very dependent 
on the mesh (Manzocchi et al., 1999; Nilsen et al., 2012); 
Dual-continuum models (Barenblatt et al., 1960; Warren and Root, 
1963; Dershowitz et al., 1998) need a very complex basis of parameters 
to guarantee a precise solution and still are not capable to deal with high 
fracture density and localized anisotropy (Moinfar et al., 2011). On the 
other hand, the models that represent fractures explicitly may be more 
accurate and consistent (Hoteit and Firoozabadi, 2008). Besides, the 
explicit discrete fracture representation may be more suitable for 
multiphase flow problems, because the constitutive relations for capil-
lary pressures and relative permeabilities can be included directly in the 
models (Berre et al., 2019). 

Explicit fracture representation methods can be divided into two 
families, based on the type of discretization method: conforming and 
non-conforming meshes. For the first group, the mesh needs to accom-
modate the fracture positions, which are placed at the cell edges (in 2D) 
or faces (in 3D). This condition is critical when it is necessary to dis-
cretize small angles and small distances and can lead to excessive local 
mesh refinements or distorted cells, which can be detrimental to the 
applied numerical formulation. This is not necessary for the second one, 
in which the fractures may cross the rock matrix mesh cells, which 
makes it simpler on the one hand, but makes it dependent of complex 
computational geometry calculation on the other, as this text is going to 
demonstrate later. 

The second family is less restrictive in terms of mesh construction. In 
this context, there are the Embedded Discrete Fracture Models (EDFM) 
(Li and Lee, 2008; Hajibeygi et al., 2011; Moinfar et al., 2014; Shakiba 
and Sepehrnoori, 2015), in which the degrees of freedom of the rock 
matrix and fractures are discretized separately, and independently, and 
it is necessary to calculate the fluid transport between matrix and frac-
ture. However, in the EDFM, we do not use general transfer functions 
based on effective parameters as in the dual-continuum methods, and it 
is necessary to systematically determine each “matrix cell to fracture 
cell” coupling in terms of the discrete variables directly (Berre et al., 
2019) and based on the fracture characteristics (Moinfar et al., 2011). 

The EDFM solutions are accurate for high permeability fractures, 
nonetheless, their application is limited whenever the fracture perme-
ability is much lower than the rock matrix one (Ţene et al., 2017). In 
order to overcome the limitations of EDFM, the Projection-based 
Embedded Discrete Fracture Model (pEDFM) was developed by Ţene 
et al. (2017) and later applied to different applications (Jiang and 
Younis, 2017; Rao et al., 2020). pEDFM is based on the projections of the 
fractures on some faces of the cells in which they are contained. This 
strategy computes the interaction of the fractures with the cells neigh-
boring those in which they are contained, moreover allows a fracture to 
influence the interaction between the cell where it is contained and its 
neighboring cells, enriching the model. 

The pEDFM itself also evolved to overcome other limitations. From 
the original method of Ţene et al. (2017), Jiang and Younis (Jiang and 
Younis, 2017) proposed a modified formula for the effective flow area of 
the matrix-matrix connections and a modified fracture-matrix trans-
missibility calculation to avoid the flow between a fracture contained in 
an ultra-low permeability cell and its neighboring cells. Rao et al. (Rao 
et al., 2020) proposed another modification of the fracture-matrix 
transmissibility calculation to avoid the flow from a high permeability 
fracture through a neighbor cell containing a ultra-low permeability 
fracture, and included fracture-fracture interactions in their model, 
enriching the pEDFM again, beyond presenting a new strategy to choose 
the cell face for the fractures areas projections. The pEDFM was also 
extended to multilevel multiscale framework in a 3D Cartesian mesh 

(HosseiniMehr et al., 2020) and it has been recently extended to simu-
lation of multiphase flow and geothermal heat in real-field applications 
using Corner-Point-Grid (CPG) geometries which can be also non-
matching (HosseiniMehr et al., 2022). 

In this context, in the present work, for the first time in literature, a 
simplified version of the pEDFM is extended to handle unstructured 
tetrahedral meshes (pEDFM-U). Here, we consider isothermal and 
immiscible two-phase flow of oil and water in heterogeneous, aniso-
tropic and naturally fractured porous media. The Finite Volume Method 
(FVM) is used for the discretization of the continuum domain. The set of 
the nonlinear equations are coupled and solved using Fully Implicit 
Method (FIM). The matrix-matrix flux term in the mass conservation 
equation is discretized with a multipoint flux approximation with a 
diamond stencil (MPFA-D) (Lira Filho et al., 2021) and the time dis-
cretization uses a backward (implicit) Euler scheme. Additionally, for 
the advective terms we apply the First Order Upwind (FOU) scheme 
(Chen et al., 2006). The final non-linear system of algebraic equations is 
then solved by the Newton-Raphson (NR) method. Our formulation was 
implemented using the framework of the software DARSim (Delft 
Advanced Reservoir Simulation) which is written using MATLAB. In our 
formulation Through several test cases, our pEDFM-U showed to be 
robust and capable to accurately capture the effects of both high and low 
permeability fractures for general tetrahedral meshes, under arbitrary 
heterogeneous and anisotropic permeability tensors for the rock matrix. 

2. Mathematical formulation 

In this section, we present the governing equations for isothermal 
and immiscible two-phase flow in naturally fractured porous media. 
Considering a domain Ωm representing a 3-D rock matrix intersected by 
fractures, it is possible to write the mass conservation equation for each 
phase, so that the terms related to the rock matrix are indicated by the 
index m and those related to the k-th fracture intersecting the domain 
are indicated by the index fk. Thus, for phase α, with α = o (oil) and w 
(water), we can write the following expression: 

∂
∂t
(ϕραSα)m +∇⋅

(

ρα v→α

)

m
= (ραqα)m +

∑nfrac

k=1
(ραφα)m,fk (1)  

in which v→α is the Darcy velocity, which is given by 
v→α = − λαK(∇p − ρα g→) where the mobility is given by λα = krα/μα with 
krα and μα being the phase relative permeability and viscosity, respec-
tively, p is the fluid pressure and K is the rock matrix absolute perme-
ability tensor. Besides, (qα)m represents source or sink terms (i.e., 
injection or production wells) for phaseα. Here, ϕ is the porosity of the 
medium, ρα and Sα are, respectively, the density and saturation of phase 
α, and nfrac is the number of fractures within Ωm. Moreover, (φα)m,fk 

is the 
phase transfer term between Ωm and Ωfk (the k-th fracture intersecting 
Ωm), which is defined as Hajibeygi et al. (2011): 

(φα)m,fk = − ραλαKm,fk
I

m,fk
C

Vm

(
pfk − pm

)
(2)  

in which I m,fk
C is the connectivity index between Ωm and Ωfk . These 

terms will be adequately addressed in section 3. Similarly, to Eq. (1), 
considering a domain Ωfk representing the k-th of these 2-D fractures, for 
phase α, we can write: 

∂
∂t
(ωϕραSα)fk +∇⋅

(

ωρα v→α

)

fk

= (ραqα)fk + (ραφα)fk ,m +
∑nfrac

j=1
(ραφα)fk ,fj ;j∕=k

(3)  

in which (ω)fk 
is the aperture of the fracture Ωfk , (qα)fk 

is an areal 
averaged source term of phaseα and (φα)fk ,m and (φα)fk ,fj are areal 
averaged phase transfer terms analogous to (φα)m,fk , defined as: 
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(φα)fk ,m = − ραλαKm,fk
I

m,fk
C

Afk

(
pm − pfk

)
(4)  

and: 

(φα)fk ,fj = − ραλαKfk ,fj
I

fk ,fj
C

Afk

(
pfj − pfk

)
(5) 

The appropriate initial and boundary conditions are typically given, 
by Aziz and Settare (1979); Contreras et al. (2016): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p( x→, t) = gD on ΓD
m × [0, t]

v→⋅ n→= gN on ΓN
m × [0, t]

p( x→, t) = gW ,1 or
∫

ΓW

v→⋅ n→∂ΓW = gW ,2 on ΓW
m × [0, t]

Sw( x→, 0) = S0
w on Ωm

p( x→, 0) = p0 on Ωm

(6)  

where ΓD
m and ΓN

m are the Dirichlet and Neumann boundaries, respec-
tively, while ΓW

m indicate the wells (with W = I,P for injector and 
producer, respectively). Besides, t is the time variable, gD and gW ,1 are 
prescribed scalar functions for the pressure, while gN and gW ,2 are pre-
scribed scalar functions for the flux (flow velocity) and flow, respec-
tively. Moreover, n→ is the outward unitary normal vector to the control 
surface, v→= v→w + v→o is the total flow velocity, S0

w and p0 are the initial 
pressure and water saturation distribution throughout the reservoir. 
Moreover, we consider that all fractures are completely contained in Ωm, 
and, therefore, there are no boundary conditions associated to them. 
Finally, we also consider that the media is fully saturated by oil and 
water, i.e.: 

Sw + So = 1 (7)  

3. Numerical formulation 

In this section, the numerical scheme used to simulate the two-phase 
flow of oil and water in fractured reservoirs using general unstructured 
tetrahedral meshes, arbitrary permeability tensors for the rock matrix 
and low or high fractures permeabilities, is presented. Consider that Ωm 
is discretized by ntetra tetrahedral control-volumes (CVs), so that the i-th 
one is indexed as m̂i. Also consider that Ωfk is discretized by nk

polyg 

polygonal CVs, so that the j-th one is indexed as f̂
j
k. In this context, we 

integrate Eq. (1) in Ωm, which is equal to the sum of the integrals of Eq. 
(1) on the tetrahedral cells m̂i (with i = 1…ntetra). Considering only the 
tetrahedron m̂i, applying the Gauss divergence theorem and the mean 
value theorem, and writing the discrete expression in the residual form, 
we obtain: 

(rα)
τ+1
m̂i

= Vm̂i (ραqα)
τ+1
m̂i

− ϕm̂i
Vm̂i

(ραSα)
τ+1
m̂i

− (ραSα)
τ
m̂i

Δt

−
∑ntetra

j=1
(ραF α)

τ+1
m̂i ,m̂j

+
∑nfrac

k=1

∑
nk

polyg

j=1
(ραF α)

τ+1
m̂i ,f̂

j
k

(8)  

in which Vm̂i is the volume of m̂i, τ is the time step counter and 
(ραF α)m̂i ,m̂j 

is the mass flow rate of the phase α between rock matrix cells 
m̂i and m̂j (which is null if the referred cells are not neighbors), and F α 

is its volumetric flow rate. (ραF α)m̂i ,f̂
j
k 
is the analogous term for a matrix- 

facture interaction, which is null if the matrix cell m̂i is not intersected 

by the fracture cell f̂
j
k. We can write a similar expression for f̂

j
k, whose 

area is A
f̂
j
k
, based on Eq. (3), as: 

(rα)
τ+1
f̂ j

k
= Af̂ j

k
(ραqα)

τ+1
f̂ j

k
− ωfk ϕf̂ j

k
Af̂ j

k

(ραSα)
τ+1
f̂ j

k
− (ραSα)

τ
f̂ j

k

Δt

−
∑
nk

polyg

i=1
ωfk (ραF α)

τ+1
f̂ j

k ,f̂
i
k
−
∑ntetra

i=1
(ραF α)

τ+1
m̂i ,̂f

j
k
+
∑nfrac

h=1

∑
nh

polyg

i=1
(ραF α)

τ+1
f̂ j

k ,f̂
i
h ; h∕=k

(9)  

in which (ραF α)f̂
j
k ,f̂

i
k 

is the interaction term for neighboring polygonal 

cells in the same fracture (Ωfk ) and: 

(ραF α)m̂i ,f̂
j
k
=

∫

Vm̂i

(ραφα)m,f̂ j
k
dVm̂i = −

∫

A
f̂ j
k

(ραφα)fk ,m̂i
dAf̂ j

k
= − (ραF α)f̂ j

k ,m̂i

(10)  

and the interaction term for polygonal cells in different fractures 
(intersecting each other) is: 

(ραF α)f̂ j
k ,f̂

i
h ; h∕=k =

∫

A
f̂ j
k

(ραφα)fk ,f̂
i
h
dAf̂ j

k
= −

∫

A
f̂ i
h

(ραφα)fh ,f̂
j
k
dAf̂ i

h
= − (ραF α)f̂ i

h ,f̂
j
k

(11) 

The terms above are detailed in section 3.2. In Eqs. (8) and (9), the 
source terms (ραqα)m̂i 

and (ραqα)f̂
j
k 

are calculated for the wells using the 

Peaceman model (Peaceman, 1977), in which context, the bottom-hole 
flow is considered to be proportional to the difference between the 
bottom-hole pressure and the pressure of the cell containing the well: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ραqα)m̂i
= ραλαKm̂i

I W

Vm̂i

(
pW − pm̂i

)

(ραqα)f̂ j
k
= ραλαKf̂ j

k

I W

Af̂ j
k

(
pW − pf̂ j

k

) (12)  

in which I W is the well productivity index, pW is the bottom-hole 

pressure, pm̂i is the pressure at CV m̂i, pf̂
j
k 

is the pressure at CV f̂
j
k. 

In the expressions above, ρα and λα are computed considering the 
upwind direction. The numerical definition of the phase volumetric flow 
rates (F α) are presented in the next subsections. 

Writing the Eqs. (9) and (10) for all CVs of the computational mesh, 
including fractures (polygonal CVs) and matrix blocks (tetrahedral CVs), 
we get a non-linear system of equations whose solution can be obtained 
by the Newton-Raphson (NR) method (Chen et al., 2006). Therefore, in 
each NR iteration (υ) we have: 

rυ+1
α ≈ rυ

α +

(
∂rα

∂p

)υ

δpυ+1 +

(
∂rα

∂S

)υ

δSυ+1 (13)  

in which rα =
[
rα,m̂ rα,f̂

]T is the vector of the residuals for each degree 
of freedom in the domains Ωm and Ωfk (with k = 1 to nfrac) and, similarly, 
δp = [ δpm̂ δpf̂ ]

T and δS = [ δSm̂ δSf̂ ]
T . Then, considering that we have 

2 phases (i.e., oil and water), we can find the roots of Eq. (13) by: 
⎡

⎢
⎢
⎢
⎢
⎣

r1,m̂

r1,f̂

r2,m̂

r2,f̂

⎤

⎥
⎥
⎥
⎥
⎦

υ

+ J
υ

⎡

⎢
⎢
⎢
⎢
⎣

δpm̂

δpf̂

δSm̂

δSf̂

⎤

⎥
⎥
⎥
⎥
⎦

υ+1

= 0→

⎡

⎢
⎢
⎢
⎢
⎣

δpm̂

δpf̂

δSm̂

δSf̂

⎤

⎥
⎥
⎥
⎥
⎦

υ+1

= − {J
υ
}
− 1

⎡

⎢
⎢
⎢
⎢
⎣

r1,m̂

r1,f̂

r2,m̂

r2,f̂

⎤

⎥
⎥
⎥
⎥
⎦

υ

(14)  

in which the Jacobian matrix (J ) is defined as: 
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J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
J

mm
1p J

mf
1p

J
fm
1p J

ff
1p

⎤

⎦

⎡

⎣
J

mm
1S J

mf
1S

J
fm
1S J

ff
1S

⎤

⎦

⎡

⎣
J

mm
2p J

mf
2p

J
fm
2p J

ff
2p

⎤

⎦

⎡

⎣
J

mm
2S J

mf
2S

J
fm
2S J

ff
2S

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

The convergence criteria for the iterative process is defined as Hos-
seiniMehr et al. (2022): 

(
‖ rυ+1

1 ‖2

‖ r0
1 ‖2

< ϵ1 or
‖ rυ+1

1 ‖2

‖ RHS1 ‖2

< ϵ1

)

and
(
‖ rυ+1

2 ‖2

‖ r0
2 ‖2

< ϵ2 or
‖ rυ+1

2 ‖2

‖ RHS2 ‖2
< ϵ2

)

and
(
‖ δp ‖2

‖ p ‖2

< ϵp and
‖ δS ‖2

‖ S ‖2
< ϵS

)

(16)  

in which ε1, ε2, εp and εS are tolerances defined by the user, and ‖S‖2 is 
the L-2 norm of the vector containing the phase saturations, what is 
analogous for the other terms. Moreover, all the prescribed terms, 
together with the source terms, over phase α will comprise its “Right- 
Hand Side” (RHSα) in equations definitions. Naturally there are other 
possible controls for this iterative process, the user can, for example, 
define a maximum number of NR iterations to achieve convergence, 
after which the iterative process must restart using a smaller time step 
(usually half of the previous one). It is worth mentioning that the time 
step determination here is made following the work of Cavalcante et al. 
(2020), but also considering minimum and maximum limits that can be 
stated by the user. 

The matrix-matrix flux calculation (MPFA-D) 
The unique flux expression through a face IJK shared by m̂i and m̂j, 

considering the configuration shown in Fig. 1, can be written as: 

(F α)m̂i ,m̂j
= v→α⋅N→= v→p

α⋅N→+ v→g
α⋅N→ (17)  

in which, according to the Darcy velocity definition, the velocity due to 
pressure gradient is v→p

α⋅N→= − λαK∇p and the velocity due to the grav-
itational force is v→g

α⋅N→ = ραλαK g→, with N→ being the area normal vector 
of the face shared by m̂i and m̂j. From the formulation presented by Lira 
Filho et al. (2021), which is applicable to diffusion problems on 3D 
tetrahedral meshes, we can define v→p

α⋅N→ and v→g
α⋅N→ as: 

v→p
α⋅N→= − K

[(
pm̂j − pm̂i

)
−

1
2
DJK(pJ − pI)+

1
2
DJI(pJ − pK)

]

(18)  

and: 

v→g
α⋅N→= ραgK

[
(
zm̂j − zm̂i

)
−

1
2
DJK(zJ − zI)+

1
2
DJI(zJ − zK)

]

(19)  

with: 

K = λα

⃒
⃒
⃒N
→
⃒
⃒
⃒

Kn
m̂i

Kn
m̂j

hm̂i K
n
m̂j
+ hm̂j K

n
m̂i

(20)  

Di j =

〈

τ→i j , L̂ R̂
̅→
〉

⃒
⃒
⃒N
→
⃒
⃒
⃒

2 −
1
⃒
⃒
⃒N
→
⃒
⃒
⃒

(

hm̂i

Kt,i j
m̂i

Kn
m̂i

+ hm̂j

Kt,i j
m̂j

Kn
m̂j

)

; i , j = I, J,K (21)  

where: 

τ→i j = N→× i j
→
; Kn

k̂
=

N→
T
Kk̂ N→
⃒
⃒
⃒N
→
⃒
⃒
⃒

2 ; Kt,i j
k̂

=
N→

T
Kk̂ τ→i j
⃒
⃒
⃒N
→
⃒
⃒
⃒

2 ; k = mi,mj; i , j

= I, J,K (22)  

in which hm̂i is the distance (height) of the centroid of m̂i to the referred 
face (analogous to m̂j) and λα is taken upwind. In this formulation, the 
auxiliary vertex unknowns (pI, pJ, pK) must be interpolated as convex 
weighted averages of the values of p at the cells sharing the respective 
node (I, J or K). In this context, we use the least square interpolation 
strategy presented by Dong and Kang (Dong and Kang, 2021; Dong and 
Kang, 2022). This scheme approximates the pressure value at a vertex as 
a combination of its values at the centroids of all the tetrahedral cells 
sharing that node, returning linearity-preserving explicit weights 
(LPEW), and has proved to be quite robust when compared with others 
LPEW interpolations (which could be also applied here) when solving 
benchmark problems using general unstructured tetrahedral meshes and 
arbitrary permeability tensors (Cavalcante, 2023). It is worth 
mentioning that, as other linear MPFAs methods, the MPFA-D scheme is 
not monotone and for strongly anisotropic permeability tensors or very 
distorted non-k-orthogonal meshes non monotone solutions may arise. 
But some relatively simple strategies can be used to remedy this problem 
(Cavalcante et al., 2022). Moreover, it is also possible to apply other 
forms of flux approximation than MPFA-D, with due care regarding 
anisotropy, heterogeneity and meshes. 

3.1. The matrix-fracture flux calculation 

If a polygonal fracture cell intersects a tetrahedral cell, as shown in 
Fig. 2, it is necessary to calculate the terms in Eqs. (8) and (9) corre-
sponding to the phase transfer between a tetrahedral cell m̂i and a 

polygonal fracture cell f̂
j
k. It can be done according to an embedded 

discrete fracture model adapted to unstructured tetrahedral grids 
(EDFM-U), based on Eq. (2), and given by: 

Fig. 1. Face IJK shared by the tetrahedrons L̂ and R̂, highlighting MPFA-D 
stencil. Source: adapted from the work of Cavalcante et al. (2022). 

Fig. 2. Intersection between m̂i and f̂
j
k.  
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(ραF α)m̂i ,f̂
j
k
= − (ραF α)f̂ j

k ,m̂i
= − ραλαKm̂i ,fk I

m̂i ,f̂
j
k

C

(
pf̂ j

k
− pm̂i

)
(23)  

in which ρα and λα are taken upwind and the connectivity index I m̂i ,f̂
j
k

C is 
calculated as (HosseiniMehr et al., 2022): 

I
m̂i ,f̂

j
k

C =
Am̂i ,f̂

j
k〈

dm̂i ,m̂i∩f̂ j
k

〉 (24)  

and Km̂i ,fk is calculated as: 

Km̂i ,fk =

(
lm̂i + ωfk

)
Kn

m̂i
Kfk

Kn
m̂i

ωfk + Kfk lm̂i

(25)  

where lm̂i =
̅̅̅̅̅̅̅
Vm̂i

3
√

, ωfk is the aperture of the fracture Ωfk , Kfk is the 
permeability tensor of Ωfk , with Kfk = Kfk I3 × 3, with I3 × 3 being the 

identity matrix, Kn
m̂i 

is defined analogously to Eq. (22), but considering 

the normal vector to the plane containing ̂f
j
k. Moreover, A

m̂i ,f̂
j
k 

is the area 

of m̂i ∩ f̂
j
k (whose calculation is presented in detail in the work of Cav-

alcante (2023) and 〈d
m̂i ,m̂i∩f̂

j
k
〉 is the average distance between m̂i and 

m̂i ∩ f̂
j
k, calculated as: 

〈
dm̂i ,m̂i∩f̂ j

k

〉
=

1
Vm̂i

∫

Vm̂i

⃒
⃒
⃒
⃒
⃒

r→m̂i∩f̂ j
k ,m̂i

⋅ n→f̂ k

⃒
⃒
⃒
⃒
⃒
dVm̂i (26)  

in which r→
m̂i∩f̂

j
k ,m̂i 

is a vector from the centroid of m̂i ∩ f̂
j
k to a point in m̂i 

and n→f̂ k 
is the unitary normal vector to Ωfk . It is important to stablish 

that, when determining A
m̂i ,̂f

j
k
, if one or two vertices of m̂i are on Ωfk , 

A
m̂i ,̂f

j
k
= 0. If three vertices of m̂i are on Ωfk , the area of m̂i ∩ Ωfk is that of 

the face comprised by these vertices. More than this, if one or two 

vertices of f̂
j
k are on a face of m̂i, similarly, A

m̂i ,f̂
j
k
= 0, and, if all the 

vertices of f̂
j
k are on the same face of m̂i, then A

m̂i ,f̂
j
k 

is the area of the 

polygon f̂
j
k. Naturally, the determination of if a vertex is or not on the 

planes is made considering a tolerance (Cavalcante, 2023). 
These procedures are insufficient to reproduce the effects of low 

permeability fractures in the flow simulation since the EDFM-U matrix- 
fracture interaction term, given by Eqs. (23) to (26) will be as low as the 
permeability of the fracture. Therefore, the presence of low permeability 
fractures makes little difference in the model. Besides, EDFM-U does not 
include any modification in matrix-matrix interaction, which prevents it 
from reproducing the effect of blocking the flow between two matrix 
cells due to the existence of a low permeability fracture. In this context, a 
projection-based embedded discrete fracture model adapted to un-
structured tetrahedral grids (pEDFM-U) considers that the fractures may 
also modify the matrix-matrix fluxes. In this work, we admit that, if a 
fracture Ωfk intersects the segment connecting the centroids of two 
tetrahedra m̂L and m̂R sharing a face, as shown in Fig. 3, the matrix- 
matrix interactions between them, calculated according to Eq. (17) is 
cancelled (HosseiniMehr et al., 2022). 

Moreover, in the pEDFM-U, we consider additional matrix-fracture 
interactions under the same conditions. Considering the situation 
shown in Fig. 4, showing pEDFM projections in a 2-D cartesian grid for 
didactic purposes, the fracture Ωfk intersects the segment connecting the 
centroids m̂L and m̂R, sharing a face F. This way, the intersections be-

tween the fracture cells within Ωfk (e.g., f̂
j
k and f̂

x
k) and m̂L must be 

Fig. 3. Intersection between Ωf k and the segment connecting m̂L and m̂R. The 

blue region represents the intersection f̂
j
k ∩ m̂L. 

Fig. 4. pEDFM fractures projections.  
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projected on F and, through these projections, f̂
j
k and f̂

x
k should interact 

with m̂R. Considering the cell f̂
j
k, the additional pEDFM-U interaction 

between it and m̂R can be calculated as: 

(ραF α)m̂R ,f̂
j
k
= − (ραF α)f̂ j

k ,m̂R
= − ραλαKF

m̂R ,fk I
m̂R ,f̂

j
k

C,F

(
pf̂ j

k
− pm̂R

)
(27)  

with: 

KF
m̂R ,fk =

(
ωfk + lm̂R

)
Kn

m̂R
Kfk

Kn
m̂R

ωfk + Kfk lm̂R

(28)  

in which Kn
m̂R 

is calculated considering Eq. (22) and the unitary normal 
vector to F. Besides: 

I
m̂R ,f̂

j
k

C,F
=

AF
m̂L ,f̂

j
k〈

dm̂R ,m̂L∩f̂ j
k

〉 (29) 

This additional pEDFM-U interaction needs to be added with the 
previously presented EDFM-U one, shown in Eq. (23). Fig. 5 summarizes 
the matrix-fracture interactions considered in this work. In this figure, 
there is again a fracture Ωfk intersecting the segment connecting the 

centroids m̂L and m̂R. The fracture cell f̂
i
k, for example, intersects m̂L 

and, as a consequence, it has an EDFM-U interaction with it, to be 

calculated according to Eq. (23). Additionally, f̂
i
k also intersects m̂R. 

Because of this, the part of f̂
i
k which is inside m̂R has a pEDFM-U 

interaction with m̂L, to be calculated according to Eq. (27). Also, the 

part of ̂f
j
k within m̂L has an EDFM-U interaction with m̂L and a pEDFM-U 

interaction with m̂R. 

3.2. The fracture-fracture flux calculation 

The terms in Eq. (9) corresponding to the phase transfer between two 

polygonal CVs ( f̂
i
k and f̂

j
k) contained in the same fracture Ωfk are 

calculated as: 

(ραF α)f̂ j
k ,f̂

i
k
= − (ραF α)f̂ i

k ,f̂
j
k
= − ραλαKfk ωfk

Lf̂ j
k ,f̂

i
k

df̂ j
k ,f̂

i
k

(
pf̂ i

k
− pf̂ j

k

)
(30)  

in which L
f̂
j
k ,f̂

i
k 
is the length of the edge shared by ̂f

i
k and ̂f

j
k and d

f̂
j
k ,̂f

i
k 
is the 

distance between their centroids. 

On the other hand, if two polygonal CVs (f̂
i
h and f̂

j
k) contained in 

different fractures Ωfh and Ωfk intersect each other, as shown in Fig. 6, it 
is necessary to calculate the phase transfer term between them, by: 

(ραqα)f̂ j
k ,f̂

i
h
= − (ραqα)f̂ i

h ,f̂
j
k
= − ραλαKfk ,fh ζf̂ j

k ,f̂
i
h

(
pf̂ i

h
− pf̂ j

k

)
(31)  

in which Kfk ,fh is defined as: 

Kfk ,fh =

(
ωfk + ωfh

)
Kfk Kfh

Kfh ωfk + Kfk ωfh
(32)  

and ζ
f̂

j
k ,f̂

i
h 

is given by: 

ζf̂ j
k ,f̂

i
h
=

(
ωfk + ωfh

)
Lf̂ j

k ,f̂
i
h〈

df̂ j
k ,f̂

i
h

〉
+
〈

df̂ i
h ,f̂

j
k

〉 (33) 

Again, in both cases, ρα and λα are computed by an upwind 
approximation. 

4. Results 

In this section, we present some results involving the numerical 
simulation of single-phase flow and immiscible two-phase flow of oil 
and water in heterogeneous, anisotropic and fractured porous media. 
They are all 3D example in which the subdomains containing fractures 
(Ωfi ) are represented by 2D rectangles discretized using structured 
quadrilateral grids. 

Fig. 5. Summary of matrix-fracture interactions.  

Fig. 6. Intersection between f̂
i
h and f̂

j
k.  
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We have five examples, of which the first three present some quan-
titative analysis (sections 4.1 to 4.3), while the last two ones present 
some qualitative evaluation of the capability of our pEDFM-U to deal 
with full permeability tensors (section 4.4) and high heterogeneity 
(section 4.5). The quantitative evaluations are made against some 
reference result, got from other author or manufactured by us using 
Cartesian (structured) grids, Two Point Flux Approximation (TPFA) and 
the classical pEDFM (Ţene et al., 2017) to handle fractures. 

For all the two-phase flow problems presented, the relatives per-
meabilities are calculated by simple linear relations, given by: krw = Sw 
and kro = 1 − Sw. Besides, unless stated otherwise, rock properties are 
established and fluid properties are approximated as: ϕ = 0.2 (rock 
porosity), ρw = 1000 kg/m2 (water density), ρo = 800 kg/m3 (oil den-
sity), μw = 0.001Pa ⋅ s (water viscosity), μo = 0.001Pa ⋅ s (oil viscosity), 
S0

w = 0 (initial water saturation), S0
o = 1 (initial oil saturation), p0

w = p0
o 

= 0.2GPa (initial phase pressure), while I is the identity matrix. 
Furthermore, in all simulations, ωfk = 0.005 m with k = 1…nfrac. It is 
worth mentioning that we did not test higher properties differences 
between phases, as in the case of existing gas, because our model does 
not consider the possibility of gas being dissolved in liquid phases. 

Furthermore, in terms of simulation settings, we adopted ε1 = ε2 = εp 
= εS = 10− 4 to be used in convergence checking presented in Eq. (16), 
the maximum number of NR iterations to convergence as 5 and the 
minimum and maximum limits for time step as 0.1 and 30 days, 
respectively. 

4.1. Single-Phase flow in a domain divided into four parts 

This example was included to demonstrate the capability of the 
methodology proposed here to accurately reproduce the pressure field in 
context of a fractured reservoir. It is based on the benchmark test case 1 
of Berre et al. (2021) with a domain Ωm = [0, 100]3 m divided into four 
subdomains Ωm = ∪4

i=1Ωi according to Fig. 7. 
In Fig. 7, Ω2 is a planar fracture with an aperture of 0.01 m. The rock 

matrix domains Ω1 and Ω3 are, respectively, the subdomains above and 

below to Ω2. The subdomain Ω4 represents a heterogeneity within the 
rock matrix. There are two parts of the cube faces that are assigned as 
Dirichlet boundaries. One has prescribed pressure of pI = 0.4 bar and is 
marked in blue in Fig. 7, while the other has prescribed pressure of pP =

0.1 bar and is marked in purple in Fig. 7. All remaining parts of the 
boundary are assigned no flow conditions. Moreover, the permeability 
tensors are defined as: 

Ki = κiI3 × 3 in Ωi with (i= 1…4) (34)  

with κ1 = κ3 = 10− 6 D (darcy), κ2 = 10− 3 D and κ4 = 10− 5 D. Beyond this, 
I3 × 3 is the identity matrix. Finally, the porosities are defined as ϕ1 = ϕ3 
= 0.2, ϕ3 = 0.25 and ϕ4 = 0.4. 

Four unstructured tetrahedral meshes were used, in this example, to 
obtain the pressure field, respectively with 9919; 39,705; 161,303 and 
531,961 cells. The reference solution was obtained from the work of 
Gläser (2020). Table 1 presents the results of this test, in terms of L-2 
error (l 2

p) and convergence ratio (R p), both calculated in the same way 
than in the work of Cavalcante et al. (2022). In this table, ntetra is the 
number of tetrahedral cells and, as expected, the response obtained from 
the finest grid is the closest one to the reference solution. Note that the 

Fig. 7. Domain for test 4.1 - Single-Phase Flow in a Domain Divided into Four Parts. Adapted from Berre et al. (2021).  

Table 1 
Results for test 4.1 - Single-Phase Flow in a Domain Divided into Four Parts.  

ntetra l 2
p 

R p 

9,919 0.0299 – 
39,705 0.0232 0.5497 
161,303 0.0165 0.7274 
531,961 0.0103 1.1853  

Fig. 8. Domain configuration for test 4.2 - Flow in an Isotropic Media in a 
Cuboid Reservoir with One Fracture. 
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L-2 errors decreases as the number of degrees of freedom increases, with 
a crescent convergence ratio, which is a good indication in this type of 
study. 

4.2. Flow in an isotropic media in a cuboid reservoir with one fracture 

In the first two-phase flow problem, we consider a cubic domain Ωm 
= [0, 100]3 m with null flux at all its boundaries (closed box). There are 

Fig. 9. Water saturation field, after 750 days, for test 4.2.1 - Case 1 – Conductive Fracture. Slice by a parallel plane to axis z and crossing both wells. (a) Tetrahedral 
grid with 60,963 CVs. (b) Structured cartesian grid with 103,823 CVs. 

Fig. 10. Cumulative oil and water production of test 4.2.1 - Case 1 – Conductive Fracture. (a) Cumulative oil production. (b) Watercut.  

Fig. 11. Water saturation field, after 770 days, for test 4.2.2 - Case 2 – Flow Barrier. Slice by a parallel plane to axis z and crossing both wells. (a) Tetrahedral grid 
with 60,963 CVs. (b) Structured cartesian grid with 103,823 CVs. 
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two wells: the injector is located at x→I = (10, 90, 100)m and we apply a 
prescribed pressure of pI = 0.03GPa, while the producer is located at x→P 
= (90, 10, 100)m and has a prescribed pressure of pP = 0.01GPa. The 
compressibility factors of the fluids are defined, respectively, by: cfw =

0.4 ⋅ 10− 9Pa− 1 (water) and cfo = 0.6 ⋅ 10− 9Pa− 1 (oil). The rock matrix 
permeability is Km = I3 × 3⋅10− 14 m2. Moreover, within this domain, 
there is one fracture and two wells, placed as shown in Fig. 8. We have 
used a tetrahedral meshes with 60,963 and 99,507 CVs in our scheme. 
We have compared the pEDFM-U results with those obtained using a 
structured (cartesian) grid (47 × 47 × 47) with 103,823 CVs, using the 
classical pEDFM. 

The fracture was discretized as a 2D 38 × 38 structured quadrilateral 
grid and we have considered two different scenarios with two different 
permeability of the fractures: Case 1 – in which Kf1 =

I3 × 3⋅10− 6 m2 (Conductive Fracture) and Case 2 – in which Kf2 =

I3 × 3⋅10− 22 m2 (Flow Barrier). 

4.2.1. Case 1 – conductive fracture 
In the first case, we consider a conductive fracture for which the 

permeability is Kf1 = I3×3⋅10− 6 m2, the results obtained are those shown 
in Fig. 9 and Fig. 10. Fig. 9 shows the water saturation field after 750 
days using a tetrahedral mesh with 60,963 CVs (Fig. 9a) and a structured 
cartesian mesh with 103,823 CVs (Fig. 9b). These figures present slices 
in the solutions made by a plane parallel to the z axis and which crosses 
both wells. 

Fig. 9 shows that even the result obtained using the coarsest tetra-
hedral mesh applied in this example (60,963 cells) clearly indicates the 
effect of the presence of the high permeability fracture, which quickly 
leads the water saturation front to the vicinity of the production well. 
Fig. 10 presents the cumulative oil productions (Fig. 10a) and watercut 
curves (Fig. 10b) obtained using the tetrahedral mesh with 99,507 cells 
and the already referred cartesian mesh. The results of oil production 
and watercut (and water breakthrough) from both meshes are almost 
coincident, which is a good indication of our pEDFM-U, when compared 
to another method (pEDFM) which is already established in the litera-
ture. Note that both methods indicate a total cumulative oil production 
around to 28,000 m3 and that the water breakthrough occurs in about 
300 days. It is worth noting that, unlike the simulations using Cartesian 
mesh or tetrahedral mesh with 60,963 CVs (completed at 750 days), the 
simulation carried out with the most refined tetrahedral mesh was 
completed at 770 days. 

4.2.2. Case 2 – flow barrier 
In Case 2, we consider that the fracture permeability is Kf1 =

I3 × 3⋅10− 22 m2, and the results obtained are those shown in Fig. 11 and 
Fig. 12. Fig. 11 shows the water saturation field after 770 days using the 

same tetrahedral mesh used in Case 1 with 60,963 CVs (Fig. 11a) and the 
structured Cartesian mesh with 103,823 CVs (Fig. 11b). 

Fig. 11 shows that again even the result obtained using the coarsest 
tetrahedral mesh applied in this example (60,963 cells) clearly indicates 
the effect of the presence of the fracture, which, in this case, is a flow 
barrier that forces the water saturation front to displaces around it. 
Fig. 12 presents the cumulative oil productions (Fig. 12a) and watercut 
curves (Fig. 12b) obtained using the tetrahedral mesh with 99,507 cells 
and the already referred cartesian mesh. The results of cumulative oil 
production from both meshes are again almost coincident (indicating 
about 30,000 m3 after 770 days), while the watercut ones seems not to 
be. However, we can conclude that it is a wrong impression just looking 
at the ordinate axis, since the magnitude order of the production of 
water is very low, when compared with the oil production, for example 
(around 1200 m3/d). In fact, both strategies (pEDFM and pEDFM-U) 
indicate that there is not a relevant production of water after 770 days. 

4.3. Flow in an isotropic media in a flat cuboid domain with multiple 
fractures 

This example is adapted from the work of HosseiniMehr et al. (2022). 

Fig. 12. Cumulative oil and water production of test 4.2.2 - Case 2 – Flow Barrier. (a) Cumulative oil production. (b) Watercut. Note, at ordinate axis, that the 
magnitude order of the production of water is very low, when compared with the oil production. 

Fig. 13. 2D top visualization of the fractures distribution for the test 4.3 - Flow 
in an Isotropic Media in a Flat Cuboid Domain with Multiple Fractures. 
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In this case, we consider a flat cuboid domain (Ωm = [100 × 100 × 1] m) 
with two wells: the injector one at x→I = (0, 0, 1) m have a prescribed 
pressure pI = 0.03GPa, while the producer one at x→P = (100, 100, 1) m 
have a prescribed pressure pP = 0.01GPa. Besides, there are 30 fractures 
distributed as shown in Fig. 13 (blue lines are conductive fractures and 
red lines are barriers). 

The fluids are incompressible and can not cross through the external 
boundaries of the domain (closed box). Since the depth of the considered 
domain is very small, in this example, we neglected the gravitational 
effects. The rock matrix permeability (Km) and the fractures perme-
abilities (Kf1 and Kf2) are defined by Km = I3 × 3.10− 14 m2; Kf1 =

I3 × 3.10− 6 m2; Kf2 = I3 × 3.10− 22 m2. 
Moreover, in this case we use a tetrahedral mesh with 81,455 CVs 

and each fracture is discretized as a 2D structured grid (40 × 1), so that 

nk
polyg = 40 with k = 1…30. Fig. 14 presents the water saturation field 

obtained using the referred tetrahedral mesh after 51 and 291 days of 
injection of water. It is possible to observe that the barriers, i.e., the low 
permeability fractures, marked as black lines, really prevent the advance 
of the water saturation front through them, forcing it to walk around the 
barriers. On the other hand, the channels, i.e., the high permeability 
fractures, marked as white lines, work as fluid conduits in the reservoir, 
as clearly shown in Figs. 13a and 13b. 

Fig. 15 presents the comparison between the water saturation fields 
obtained by using the tetrahedral mesh (pEDFM-U) with 81,455 CVs and 
the structured (cartesian) grid (pEDFM) with 206 × 206 × 2 (84,872) 
hexahedral CVs. 

Fig. 15 shows that the results for both approaches are quite similar, 
demonstrating the capability of our method to reproduce the results 

Fig. 14. Results obtained with the pEDFM-U for test 4.3 - Flow in an Isotropic Media in a Flat Cuboid Domain with Multiple Fractures. Conductive fractures are 
represented by the white lines and barriers by the black lines. Water saturation fields at: (a) 51 days. (b) 291 days. 

Fig. 15. Results of the test 4.3 - Flow in an Isotropic Media in a Flat Cuboid Domain with Multiple Fractures. fractures are represented by the white lines and barriers 
by the black lines. Water saturation field at 291 days using: (a) Tetrahedral mesh with 81,455 CVs. (b) Structured (cartesian) grid with 84,872 hexahedral CVs. 
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obtained with other strategy already established in literature. This is 
reinforced by Fig. 16, which presents the comparison between the so-
lutions obtained with the tetrahedral and the structured grids, in terms 
of cumulative oil and water production. For both methodologies and 
meshes, the water breakthroughs are almost simultaneous (see Fig. 16b) 
and we have approximately 800 m3 of cumulative oil production after 
500 days (see Fig. 16a). 

4.4. Flow in a fractured porous media with a full tensor for the rock 
matrix permeability in a non-cuboid reservoir 

In this case, we consider the domain shown in Fig. 17 with a full 
tensor for the rock matrix permeability (Km) defined in Eq. (35). 

Km =

⎡

⎣
0.4219 0.2864 0.2545
0.2864 0.5594 0.2862
0.2545 0.2862 0.3187

⎤

⎦⋅10− 13 m2 (35) 

Also, there are three wells, one injector well at x→I = (25, 0, 0) m 
with a prescribed pressure pI = 0.03GPa and two producer wells at x→P1 

= (0, 75, 50) m and at x→P2 = (50, 150, 50) m with prescribed 

pressures pP1 = pP2 = 0.01GPa. Besides, there are 6 fractures distributed 
as shown in Fig. 17. The fractures were discretized as a 2D structured 
grid with 1.25 m sided squares and placed as shown in Fig. 17, in which 
the blue ones are the conductive fractures and the red ones are the flow 
barriers, whose permeabilities are given by Kf1 =

I3 × 3.10− 6 m2 and Kf2 = I3 × 3.10− 22 m2. 
Besides, the fluids are incompressible and can not cross through the 

boundaries of the domain. Finally, we use an unstructured grid with 
22,483 tetrahedral CVs. Fig. 18 shows the water saturation fields in two 
situations: considering and not considering the presence of the fractures. 

Fig. 18a and 17c show the water saturation fields for the case where 
fractures are not considered, respectively after 231 and 500 days, and 
we can see the behavior of the fluid flow due to the anisotropic 
permeability tensor presented in Eq. (35). Fig. 18b shows that when we 
consider the fracture acting as barrier (fract. on) close to the injection 
well, marked in black, the flow pattern is completely changed if 
compared to the fluid flow when we disregard the fractures (fract. off) as 
it can be seen in Fig. 18a. In the former case, the necessity of circumvent 
the fracture that acts as a barrier, initially delay the passage of fluid 
throughout the reservoir. However, later on, when the fluid reaches the 

Fig. 16. Cumulative oil and water production for test 4.3 - Flow in an Isotropic Media in a Flat Cuboid Domain with Multiple Fractures. (a) Cumulative oil pro-
duction. (b) Cumulative water production. 

Fig. 17. Domain and fractures and wells positions for test 4.4 - Flow in a Fractured Porous Media with a Full Tensor for the Rock Matrix Permeability in a Non- 
Cuboid Reservoir. The red rectangles represent low permeabilities fractures, while the blue ones represent high permeabilities fractures. 
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fractures that act as channels, the fluid flows it is accelerated towards 
the production wells P1 and P2, anticipating the water breakthrough in 
approximately 60 days in well P1, as it can be seen in Fig. 19b. 

Moreover, the Fig. 18d shows that the high permeability fractures 
conducts the water saturation front to the production well P2 during the 
first 500 days of injection, what do not happens when the fractures are 
not considered (Fig. 18c). This is enforced by Fig. 19d, which shows that 
water production is not perceived in “fractures off” condition, but it is 
relevant in the “fractures on” condition. 

Fig. 19a and Fig. 19c indicate that the cumulative oil productions in 
P1 and P2 are much larger, when we do not consider fractures with high 
permeabilities, because, in this case, most of the injected water is 
channeled to close to the production well, hindering the sweep of the oil 
throughout the reservoir. 

Finally, our strategy, using pEDFM-U and MPFA-D, showed to be 
able to deal with a full permeability tensor and multiple fractures 
(channels and barriers), producing physically reasonable solutions, free 
of non-physical counterflows or any other type of unexpected behavior, 
which can be concern a whenever using linear MPFA schemes (Cav-
alcante et al., 2022; Keilegavlen and Aavatsmark, 2011). 

4.5. Flow in a highly heterogeneous and anisotropic faulted reservoir 

Consider the reservoir as shown in Fig. 20, in which we can see a 
fault in a porous rock, with a highly heterogeneous permeability field 
(Km) defined by Eq. (36) and shown in Fig. 21. 

There are two wells, one injector at x→I = (20, 50, 80)m with a 
prescribed pressure pI = 0.03GPa and one producer well at x→P =

(150, 50, 120) m with prescribed pressure pP = 0.01GPa. 

Km =

⎡

⎢
⎢
⎣

y2 + z2 + 1 0 0

0 x2 + z2 + 1 0

0 0 x2 + y2 + 1

⎤

⎥
⎥
⎦.10− 14 m2 (36)  

in which: 
⎧
⎨

⎩

x = x/[max(x) − min(x)]
y = y/[max(y) − min(y)]
z = z/[max(z) − min(z)]

(37) 

The compressibility factors of the fluids are defined as cw = 0.4 ⋅ 
10− 9Pa− 1 (water) and co = 0.6 ⋅ 10− 9Pa− 1 (oil). For this problem, we 

Fig. 18. Water saturation field for test 4.4 - Flow in a Fractured Porous Media with a Full Tensor for the Rock Matrix Permeability in a Non-Cuboid Reservoir. (a) and 
(c) Fractures are not considered at t = 231 days and 500 days, respectively. (b) and (d) Fractures are taken into account at t = 231 days and t = 500 days, respectively. 
Black rectangles represent low permeabilities fractures and the white ones represent high permeabilities fractures. 
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consider a tetrahedral mesh with 34,027 CVs discretizing the rock ma-
trix. The fault (or fracture) was discretized by a 2D (38 × 38) with 1444 
CVs structured (cartesian) grid and its permeability is given by Kf =

I3 × 3.10− 6 m2.

The results obtained for the water saturation front are shown in 
Fig. 22. In Fig. 22b, which is a slice at y = 50 m, we can observe that, as 
expected, in that region, the water saturation front spread preferentially 
in x direction, if comparing with z direction, and the channel (fault) 
conducts the water saturation front to close to the production well, 
which can be seen also in the overview of Fig. 22a. Our formulation, 
including the pEDFM-U and the MPFA-D, showed to be able to deal with 
the anisotropy, the high heterogeneity and the faulted characteristic of 
this reservoir, producing physically reasonable solutions, free of non- 
physical counterflows or any other type of unexpected behavior, 
which, as stated before, can be concern a whenever using linear MPFA 
schemes (Cavalcante et al., 2022; Keilegavlen and Aavatsmark, 2011). 

5. Conclusions 

We presented the development of a numerical formulation to simu-
late two-phase flow in naturally fractured heterogeneous and aniso-
tropic reservoirs. For the first time in literature, using a fully implicit 
implementation, the pEDFM is adapted for use with unstructured 
tetrahedral meshes (pEDFM-U) using the framework of the software 
DARSim (Delft Advanced Reservoir Simulation). In our formulation, we 
inherit the flexibility of modeling complex geometries such as pinchouts, 
faulted reservoirs, deviated wells, etc., associated to unstructured 
meshes with the ability of the pEDFM-U to model the effects of both high 
and low permeability fractures without the necessity to build meshes 
that fit to the fracture positions, making the mesh generation process 
simpler and less susceptible to local over refinements. 

Through a series of representative problems, we have shown that our 
formulation is able to handle general tetrahedral meshes and full 

Fig. 19. Cumulative oil and water production for test 4.3 - Flow in a Fractured Porous Media with a Full Tensor for the Rock Matrix Permeability in a Non-Cuboid 
Reservoir. (a) Cumulative oil production in P1. (b) Cumulative water production in P1. (c) Cumulative oil production in P2. (d) Cumulative water production in P2. 

Fig. 20. Geometry, fault and wells positions for the test 4.5 - Flow in a Highly 
Heterogeneous and Anisotropic Faulted Reservoir. The blue rectangle repre-
sents the fault. 
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permeability tensors, properly reproducing the effects of the presence of 
both, high and low permeability fractures. Even so, we hope that, in the 
future, we can complement this study by comparing real field produc-
tion data. In order to handle real field applications, we intend to further 
improve our pEDFM-U scheme by integrating it with the recently 
developed Algebraic Multiscale Scheme for Unstructured Grids (AMS-U) 
(Souza et al., 2022), allowing to solve large scale problems that would be 
non-tractable directly on the fine meshes much more accurately than 
using traditional upscaling techniques. The major challenges we foresee 
are connected to the extension of the AMS-U to three dimensional ap-
plications and to the adaptation of the EDFM-U/pEDFM-U to a multi-
scale formulation, particularly the difficulty of incorporating fractures in 
these types of schemes due to necessity of handling fractures and faults 
that may cross the boundaries of the dual coarse mesh (Tene et al., 2016; 
Mehrdoost, 2022). In the future, we intend to use our computational 
strategy to model “real world” applications involving naturally fractured 
reservoirs, such as the highly heterogeneous and anisotropic carbonate 
reservoirs that can be found in “Brazilian Pre-Salt (Fernandez-Ibanez 
et al., 2022; Mendes et al., 2022). 
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Fig. 21. Permeability distribution for test 4.5 - Flow in a Highly Heterogeneous and Anisotropic Faulted Reservoir.  

Fig. 22. Water saturation field in test 4.5 - Flow in a Highly Heterogeneous and Anisotropic Faulted Reservoir. (a) Water saturation field at 500 days. (b) Slice at y =
50 m of the water saturation field at 500 days. 
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