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Preface

Flood safety is and will always be a challenging issue in the Netherlands and many other places around
the world. Therefore, it is important that we keep on exploring the causes, consequences and solutions
of flooding. Probabilistic tools enable us to approach flood safety from a risk perspective. They help us
to provide an answer to questions like: ‘What are the chances that a certain town gets flooded?’ Thanks
to centuries of experience and the efforts of many, these chances are very small in the Netherlands. Yet,
new challenges such as climate change ensure that flood safety is an ever­present point of attention
for humanity.

With this study into an integral probabilistic assessment of the failure probability of a Dutch flood de­
fence, I finalise my Master of Science in Hydraulic Engineering at the faculty of Civil Engineering and
Geosciences of Delft University of Technology. The research was conducted in collaboration with HKV
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First of all, I would like to thankmy graduation committee for their support and expertise within this study.
Gerbert, for his positivity and open­mindedness that motivated me a lot and helped me to keep seeing
the relevance and applicability of my research. Joost and Bram, for their scientific perspective and their
ability to constantly challenge me with difficult questions and remarks. Matthijs, for his guidance and
enthusiasm. And of course his willingness to offer me a thesis topic at HKV in the first place, which
can be seen as my entrance ticket to a career in flood safety, that I am really looking forward to getting
started on.

Furthermore, I would like to express my gratitude to my colleagues at HKV for always being helpful
and for making me feel like I am part of a team, even in times of working from home. Special thanks to
David and Guus for answering somany questions for me. Besides, I thank the water board Rivierenland
for providing the required data to base my study on. Also thanks to Juan Aguilar Lopez for providing
answers, but especially more questions and challenges.

Last but not least, I would like to thank my friends and family for their support and love. Special thanks
to my housemates, or collegues in ‘home office’ Lisa, Simone and Lieke. To Bart, for joining me on a
long and rainy walk along ‘my’ dike. To Gijs, Mick and Bart for their reading and feedback.

Writing a thesis is in itself quite individual work, let alone during nine months of lockdown. Still, all these
people made it possible to fully enjoy this period.

Enjoy reading!

Paulina Kindermann
Delft, April 2021
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Abstract

Since 2017, Dutch flood defences are assessed according to new safety standards. These standards
are based on flooding probabilities and rely on several assumptions and approximations. There are
concerns that the combination of these assumptions leads to conservative results. Recently computed
probabilities of failure are often much higher than expected by dike managers and the outcomes of
former assessment methods. This conservative bias results in a large and expensive reinforcement
task in the coming years which can be reduced by improving the current assessment procedure.

One of the reasons for the current conservatism is the assumption of mutual independence of dike
sections and failure mechanisms. Currently, the different elements are assessed independently, while
failure mechanisms and failure at different dike sections are likely to occur during the same extreme
load event. Furthermore, correlations in space and between different parameters are present within
the subsoil characteristics. Neglecting these correlations results in rather high estimations of the failure
probabilities.

The aim of this thesis is to investigate how correlations affect the reliability assessment of a dike tra­
jectory. To achieve this, an integral, full probabilistic model is developed that enables simultaneous
assessment of dike sections and failure mechanisms while accounting for uncertainties and (spatial)
correlations within the model input. The model is based on Monte Carlo simulation. The failure proba­
bility of a dike trajectory is computed by counting failure if one or more limit state function 𝑍𝑗,𝑘 for failure
mechanism 𝑗 of dike section 𝑘 returns a negative realisation. Correlations between the model input
parameters are provided by means of a Gaussian copula. A particular aspect of the model is the im­
plementation of metamodeling for the assessment of macrostability. This failure mechanism cannot be
described by an analytical limit state function that is easily implemented in the Monte Carlo framework.
Therefore, metamodels are created by means of Gaussian process regression. This method makes it
possible to assess macrostability within an integral, full­probabilistic framework that is able to include
interdependencies between e.g. macrostability and piping, within acceptable computation costs. The
model is applied to a case study of dike trajectory 43­4, which is located along the Waal between Sprok
and Sterreschans, in the east of the Netherlands.

The effects of different plausible correlations have been studied. This research shows that includ­
ing certain correlations can significantly reduce the assessed failure probabilities, by a factor ten or
more in some situations. However, the impact of correlation strongly depends on the situation. The
most significant reduction can be achieved for cases in which (1) parameters that play a dominant role
in failure of the corresponding mechanism are correlated; (2) the failure probabilities of the different
elements are similar, i.e. for a flood defence where failure is not dominated by one dike section or
one failure mechanism; and (3) the failure probabilities of the corresponding elements are smaller than
approximately 10−3.

The model forms a solid, flexible basis that can easily be adapted or extended to improve the un­
derstanding about interactions between failure mechanisms, even though some aspects are simplified
or neglected. All in all, the conservatism in current safety assessments can be partly solved by con­
sidering the interdependencies between mechanisms and dike sections and by approaching a dike
trajectory as an integral system.
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1
Introduction

1.1. Background
In the Netherlands, the majority of the inhabitants lives in flood­prone areas, located along rivers, in
the delta and in the coastal area. If flooding would occur, 60% of the country would be inundated with
water depths of more than five metres as a result (de Bruijn and van der Doef, 2011), as presented in
Figure 1.1a. The flood defence systems along the rivers, coasts and lakes are thus of critical importance
for the safety and liveability of the country. The flood protection is therefore legally laid down in the
Water Act (‘Waterwet’). Since 2017, new Dutch safety standards are applied that are based on the
concept of flooding probabilities. By examining the flooding probability, both the loads and the strength
are considered, while the old standards only considered the loads. The new standards are the result
of a risk­based approach. This means that both the probability and the consequences of flooding play
a role.

A primary flood defence, or dike ring, is divided in trajectories that are characterised by an equal threat
and, in the event of a breach, by more or less equal consequences (Kok et al., 2017). Each dike
trajectory has its own standard in terms of a required failure probability, that is based on (1) an allowable
individual risk; and (2) on considerations for the societal and economic risks. The resulting norms are
shown in Figure 1.1b.

(a) Inundation pattern (Kok et al., 2017). (b) Dike trajectories and their norms (HWBP, 2021).

Figure 1.1: The Netherlands: flooding consequences and protection norms.

1



1.1. Background 2

Flooding

Failure
section 1

Failure
section 2

Failure
mechanism 1

Failure
mechanism 2

Failure
mechnism 3

etc.

Failure
section 3

etc.

OR

OR

Figure 1.2: Fault tree of a dike trajectory.

1.1.1. Current assessment method
The new procedures for the safety assessment of the primary flood defences are described in the Legal
Assessment Instrument (‘Wettelijk Beoordelingsinstrumentarium’), from now on called the WBI. In this
section, the WBI assessment procedure will be briefly described. For a theoretical background and
more details, it is referred to Chapter 2 and Appendix B.6.

The safety standards are defined such that the overall risk becomes acceptable. Three different per­
spectives of risk have been applied in the standards: individual risk, societal risk and economic risk.
The most stringent of the three perspectives determined the safety standard of a certain region. Risk
is defined as probability of failure multiplied by the consequences due to failure. For each dike trajec­
tory, the possible consequences of flooding have been analysed in terms of number of fatalities and
economic damage. Based on a certain acceptable risk, the required annual failure probability, called
the norm or target reliability, has been determined per dike trajectory.

A dike trajectory is characterised as a series system, in terms of dike sections and failure mechanisms,
as illustrated in Figure 1.2. It means that only one dike section has to fail for one failure mechanism
to induce system failure, i.e. breaching of the flood defence. This characterisation plays a major role
in how the different elements are included in the assessment method. The required failure probability
of a trajectory is divided over the different failure mechanisms (‘faalkansbegroting’) and subsequently
divided over the corresponding sections by accounting for the so­called length­effect. This leads to
a failure probability norm per section per mechanism (Rijkswaterstaat, 2017). The definitions of the
different spatial scales are visualised in Figure 1.3. A dike section is defined such that its characteristics
can be seen as constant over the section. Dike sections have a length varying from about a 100 metre
to several kilometres, depending on the homogeneity of the dike stretch. Additional to the dike elements
there may be dune stretches and structural elements within a flood defence system (Vrouwenvelder,
2006).

The assessment of a flood defence comes down to the comparison of the actual failure probability to the
norm. This comparison is performed for the total dike trajectory, but also per section per mechanism. A
normative cross­section is chosen for computing the actual failure probability of the corresponding dike
section. The assessment is subdivided into assessment tracks (‘toetssporen’). An assessment track is
the way in which a certain failure mechanism is assessed. These assessments differ significantly from
each other, depending on the available calculation methods. The tracks make use of deterministic,
semi­probabilistic or probabilistic computation methods. In a probabilistic analysis, the uncertainty of
parameters is taken into account. Any possible combination of strength and resistance values is as­
sessed, in order to determine a failure probability. Most of the tracks, however, consist of deterministic
or semi­probabilistic calculations, since a probabilistic method is not yet available. In semi­probabilistic
methods, the parameters are included as design values, meaning that their uncertainty is not explicitly
accounted for. The result is therefore not a failure probability, but an assessment category. To be more
specific, the result is often a factor of safety (semi­probabilistic case) or a statement satisfies versus
does not satisfy (deterministic case), that are translated into a deviation from the norm (Diermanse
et al., 2016).
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Figure 1.3: Definitions of the different spatial scales (Kok et al., 2017).

Subsequently, the assessment results per mechanism per dike section are translated into a total failure
probability of the dike trajectory. The procedures of upscaling failure probabilities from sections to tra­
jectories and combining the failure mechanisms is called assemblage. If an assessment track resulted
in a failure probability, sections are combined to trajectories under the assumption of either mutual (full)
dependence or mutual independence. This provides a relatively simple, but reasonable approximation
for the combined failure probability of the trajectory. Mutual dependence is mainly a result of the fact
that extreme loads for these sections occur during the same events and is a good approximation for
failure mechanisms like overtopping. For geotechnical assessment tracks, however, the assumption
of mutual independence between sections is considered more appropriate. Despite the differences
in the degree of mutual dependence between sections, a generic approach is applied, that should be
followed for each assessment track. It is summarised in the following steps (Diermanse et al., 2016):

1. Estimate the failure probability of the dike trajectory, assuming mutual independence of the sec­
tions (upper bound);

2. Estimate the failure probability of the dike trajectory, based on the largest failure probability of the
sections (i.e. mutual dependence) and the estimated length­effect (lower bound);

3. Choose the minimum of the two estimated failure probabilities. By taking the minimum, a large
overestimation of the trajectory failure probability is avoided.

Thereafter, these trajectory failure probabilities per failure mechanism are combined to the total failure
probability of a dike trajectory. For this, the mechanisms are combined under the assumption of mutual
independence.

For assessment tracks that lead to an assessment category instead of a probability, sections and failure
mechanisms are combined to trajectories by the principal of the weakest section or mechanism is
normative (de Waal, 2016). So, the most unsafe section or mechanism determines the assessment
result for the trajectory. The last step is the comparison to the trajectory norm, to conclude whether the
safety requirement is fulfilled or not.

1.2. Problem Definition
These assessment methods are quite new and still in development. The procedure, as explained in
Section 1.1, is based on several assumptions and approximations of reality. The combination of these
assumptions leads to the fact that the current approach is conservative and contributes to the high
failure probabilities that have been the result of recent assessments. The lately computed (or by factors
of safety implied) probabilities of failure are often much higher than expected by experience and by the
outcomes by former assessment methods (ENW, 2020). A conservative bias does not pose a problem
for trajectories that, despite the conservatism, fulfill the norm. But for trajectories with relatively high
failure probabilities, this is different. A less conservative assessment might lead to a smaller number
of required dike reinforcements, or to smaller dimensions of such reinforcements. More realistic and
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credible estimates of the failure probabilities are needed. Possibilities for improvement of the current
assessment method mainly lie in the following aspects:

1. Not every track is currently assessed in the same way, in terms of load definition, accuracy of
the results and interpretation of the norms. Several failure mechanisms cannot be assessed by
a probabilistic computation yet. It is therefore not possible to compute a failure probability for
all failure mechanisms. Moreover, it means that the uncertainty of the strength and resistance
parameters is not explicitly included for all mechanisms.

2. In semi­probabilistic computations, design (peak) values are considered, implying that, in case of
failure mechanisms with more than one relevant load parameter, these peaks occur at the same
time, which is not realistic and leads to conservative conclusions (Rongen et al., 2019).

3. The mutual correlation between sections and failure mechanisms is not considered explicitly,
leading to less accurate results. The current assumption of mutual independence is a conserva­
tive assumption. In reality, the different failure mechanisms are likely to occur at the same time
during an extreme load event. Neglecting this fact, means that the same failure event is wrongly
included multiple times when the failure probability of a trajectory is computed. This leads to
unnecessary conservative results, especially in the case of large failure probabilities. Also the
omission of correlations in space and between parameters can result in too high estimates of the
failure probabilities.

4. Within the assessment tracks, failure is often defined as occurrence of the mechanism under
consideration, instead of as inundation of the hinterland, implying that residual strength is not
considered. Also, the variation of the loads in time during a flood event is not included. Both
assumptions lead to conservative results.

For a more accurate assessment of the actual failure probabilities, these aspects should be included.

1.3. Research Objective
This thesis will focus on an improvement for the items 1 and 3 of the enumeration in the previous section,
with the main focus on item 3: correlations. Particularly, the aim is to incorporate both the uncertainties
and correlations in order to investigate the effect of these adaptations on the failure probability of a
flood defence, in an integral manner. The objective of this research can be summarised by the following
research question:

What is the effect of assessing the failure probability of a dike trajectory in one integral full­probabilistic
framework that includes correlations?

This question is answered by elaborating on a method for integral and full­probabilistic assessment
of the total failure probability of an earthen dike. The failure probabilities per dike section per failure
mechanism will be computed within one integral probabilistic framework, by means of a Monte Carlo
simulation. The method takes into account the uncertainty of the input variables, by considering the
marginal distribution of each variable per dike section. Furthermore, the correlations between the
variables can be included by means of a multivariate distribution function using copulas. Random,
correlated samples of the variables will be drawn from the copula. For every realisation, the limit state
functions 𝑍 of each failure mechanism and each dike section are evaluated. If at least one evaluation
results in 𝑍 < 0, failure is counted. These steps will be repeated for 𝑁 iterations. It results in the
sectional failure probabilities per mechanism and in the total failure probability of the trajectory.

The method is applied to a case study: the dike trajectory 43­4 from Sprok to Sterreschans in the east
of the Netherlands, as illustrated in Figure 1.4. For this trajectory the input parameters are known and
sectional failure probabilities have been assessed according to the WBI procedure.

This probabilistic model, from now on often called ‘the model’, will be used to investigate the impact of
different correlations. The impact is expressed in an increase or decrease of the corresponding failure
probabilities and in a resulting correlation between the 𝑍­realisations of the corresponding elements. In
addition, the total failure probabilities that result from the model will be compared to failure probabilities
according to the WBI assemblage procedure.
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The described approach is intended to come to an answer to the main research question. The following
sub questions can be formulated, that form the basis of the methodology:

1. Which limit state functions are available in the literature that can be applied in a proba­
bilistic framework for the different failure mechanisms?
This question will be answered by means of a literature study. It results in an overview of the
current assessment methods of the WBI and other possible approaches to define the different
failure mechanisms. The aim is to decide how the different failure mechanisms will be described
through limit state functions that are suitable for the probabilistic model of this study.

2. What is the impact of incorporating the different correlations on the failure probabilities
and what correlations have the strongest impact?
A sensitivity analysis is performed to assess the effects of including the different correlations on
the failure probabilities. The main interest lies in finding the correlations with the highest impact.

3. What are resulting dependencies between different failure mechanisms and sections?
Correlations in the input variables may lead to dependencies in failure of different mechanisms
or neighbouring dike sections. Scatter plots of the resulting limit state evaluations will be created
to investigate this.

4. How do the total failure probabilities that result from the integral probabilistic assessment
compare to those based on the WBI assembly procedure?
The total failure probabilities are determined by counting failure if at least one negative limit state
evaluation occurs within an iteration of the Monte Carlo simulation. The resulting failure probabili­
ties will be compared to those estimated according to the WBI assemblage procedure. Situations
with and without correlations will be compared.

1.4. Scope
This research will be based on the assessment of the case study. Therefore, only failure mechanisms
that are relevant for the dike trajectory under consideration will be implemented in the model. How­
ever, the aim of the research is not to exactly reproduce the failure probabilities that result from the
assessment of the case study by the water authority. The aim is to determine the impact of correlations
and of the integral approach in a qualitative way, i.e. in comparison to a reference situation. Some
aspects, especially in the determination of the hydraulic loads, will be simplified or neglected, due to
time constraints. Therefore, the resulting failure probabilities of this study should not be used to assess
the actual safety of the flood defence. Also other aspects, like residual strength or time dependence
are not taken into account within this thesis.

Figure 1.4: Case study: Dike trajectory 43­4 between Sprok and Sterreschans.
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2
Reliability Theory

In this chapter, an introduction to the theory behind different techniques and concepts, that are relevant
for the model, will be presented. About several topics, more information can be found in Appendix A.
The discussed theory is the basis for certain model decisions, that will be elaborated in Section 2.6.

2.1. Failure Probability
Simply said, the safety of a system can be assessed by verifying whether the resistance 𝑅 is larger
than the load 𝑆, such that no failure occurs. This is usually described by a limit state function 𝑍:

𝑍 = 𝑅 − 𝑆 (2.1)

So, failure occurs if 𝑍 < 0, or 𝑅 < 𝑆. Both the resistance and the load are generally not constant, but
stochastic and can be described by probability density functions. The stochastic nature of the variables
originates from several factors, as will be briefly explained in Section 2.2.

Therefore, failure should be assessed by means of the probability of failure. Obviously, the probability
of failure equals the probability that the limit state function is smaller than 0: 𝑃𝑓 = 𝑃(𝑍 < 0). If the
probability density functions of 𝑅 and 𝑆 are known, the failure probability 𝑃(𝐹𝑖) or 𝑃𝑓,𝑖 of element 𝑖 is
defined as:

𝑃𝑓,𝑖 = 𝑃(𝑆𝑖 > 𝑅𝑖) (2.2)

If 𝑅 and 𝑆 are independent, the joint probability density function 𝑓𝑅𝑆(𝑟, 𝑠) follows by multiplication of
their marginal distributions. Now, the probability of failure of the system is equal to the volume of the
joint probability density function in the unsafe region, as can be seen in Figure 2.1. Mathematically,
this can be expressed by:

𝑃𝑓 =∫∫
𝑍<0

𝑓𝑅(𝑟)𝑓𝑆(𝑠) d𝑟 d𝑠 (2.3)

The failure probability of a flood defence is defined as ‘the probability of losing the water retaining
capacity of a dike trajectory, as a consequence of which the area protected by the dike trajectory may
overflow such that fatalities or substantial economic damage occur’ (KPR, 2019). In that case, the
failure probability is the result of a series system where each basic element, i.e. the failure mechanism
𝑗 for section 𝑘 can be described by a complex limit state function 𝑍𝑗,𝑘. For these complex systems, 𝑅
and 𝑆 depend on a number of quantities. In other words, they are functions of variables 𝑋 that can be
both stochastic or deterministic: 𝑅 = 𝑅(𝑋1, 𝑋2, ..., 𝑋𝑚) and 𝑆 = 𝑆(𝑋𝑚+1, 𝑋𝑚+2, ..., 𝑋𝑛). Every stochastic
parameter 𝑋 can be described by a certain distribution function with a mean and standard deviation.
The distribution functions of 𝑅 and 𝑆 therefore depend on the distribution functions of these variables:

𝑃𝑓 =∫∫∫
𝑍<0

... ∫𝑓𝑅(𝑥1, 𝑥2, ..., 𝑥𝑚) ⋅ 𝑓𝑆(𝑥𝑚+1, 𝑥𝑚+2, ..., 𝑥𝑛) d𝑥1 d𝑥2... d𝑥𝑛 (2.4)

where 𝑓𝑅 is the 𝑚­dimensional probability density function (PDF) of the 𝑚 resistance variables and 𝑓𝑆
is the (𝑛 −𝑚)­dimensional probability density function of the 𝑛 −𝑚 load variables.

7
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Finding a solution for Equation 2.4 is difficult for two reasons: (1) the 𝑍­function is too complex and (2)
the variables 𝑋 can have mutual dependencies and different marginal distributions, as will be explained
in Section 2.4. These issues can be solved by approximating the failure probability using probabilistic
computation techniques (Section 2.3) and by the definition of a multivariate joint distribution function
using copulas (Section 2.5).

Figure 2.1: Probability of failure (Jonkman et al., 2017).

2.2. Uncertainties
There are different types of uncertainties that contribute to the total uncertainty of safety assessments of
flood defences. Uncertainties mainly arise from the natural variability of parameters, sometimes called
aleatory/inherent uncertainties or randomness. On the one hand, this involves uncertainty in time, for
example the maximum yearly river discharge. Even with more measurements, this uncertainty can
hardly be reduced. This variability is handled by capturing e.g. the river discharge in a probability
distribution. On the other hand, there is variability in space, which is mainly an issue for geometric
parameters and soil properties. For example, the crest height of a dike or the permeability of the
soil is not the same everywhere. Soil properties show a large fluctuation in the depth direction and a
smaller fluctuation in the length direction, as illustrated in Figure 2.2. The spatial variability is partly
dealt with by dividing a flood defence trajectory into sections ­ typically 200 to 1000 m long ­ that
can be seen as homogeneous, meaning that the statistical characteristics of the stochastic variables
remain constant within that dike section (Vrouwenvelder, 2006). This does not imply that the value of
a stochastic is constant: it often shows a spatial variation over the length of a section, which can be
handled by assigning probability distributions to the parameters per dike section. The vertical variability
is often handled by averaging over a certain soil layer (Schweckendiek et al., 2017). Another method
to deal with these uncertainties is by taking into account different scenarios during the assessment/ For
example, of the soil layer structure.

Another source of uncertainty is knowledge ­ or epistemic ­ uncertainty. These are uncertainties about
aspects that could in principle be known, but that are not in practice. For example, the strength of a
soil type is a property that we are able to measure. However, due to a limited accuracy and/or spatial
resolution of the measurements, there remains uncertainty about the real value of this property. This is
called statistical uncertainty. The difference, though, with natural variability is that we can reduce the
uncertainty by e.g. taking more measurements. Finally, there are also uncertainties that arise when
translating reality into a model, called model uncertainties.

Most stochastic variables cover a continuous range of possible values. For these variables the un­
certainty is often modelled by continuous probability distributions. The most used distributions in flood
safety assessments are the normal and lognormal distributions. The lognormal distribution is suitable
for parameters for which a value smaller than zero is physically not possible. Variables for which the
probability distribution of the extreme values is important ­ e.g. the water level ­ are often modelled by
generalized extreme value (GEV) distributions.
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Figure 2.2: Spatial variation of a soil parameter (Vrouwenvelder, 2006).

2.3. Reliability Methods
Methods to estimate the failure probability can be divided into the following groups, that will be elabo­
rated below:

1. Level 0 methods: deterministic calculations

2. Level I methods: semi­probabilistic design

3. Level II methods: approximation / FORM

4. Level III methods: numerical integration or Monte Carlo

2.3.1. Level 0 methods: deterministic calculations
The assessment of safety is based on one nominal value for the resistance, one for the strength and
on one global (empirical) safety factor (Jonkman et al., 2017):

𝑅𝑛𝑜𝑚 ≤ 𝛾 ⋅ 𝑆𝑛𝑜𝑚 (2.5)

The uncertainty and variability of the strength and resistance is not accounted for. This approximation
is only acceptable in a very limited amount of situations.

2.3.2. Level I methods: semi­probabilistic design
In fact, a semi­probabilistic assessment does rely on safety standards, limit state functions and sta­
tistical properties of the statistic variables, making it closely related to a probabilistic assessment. Yet
a semi­probabilistic assessment rests on a number of simplifications and approximations, giving it the
appearance of a deterministic procedure (Kanning et al., 2015). The uncertain parameters are mod­
eled by one characteristic value for the load and resistance. For the load parameters, the characteristic
value 𝑆𝑐 corresponds to a high percentile of the distribution. For strength parameters, the characteristic
value 𝑅𝑐 corresponds to a low percentile of the distribution. Furthermore, partial factors 𝛾𝑖 are used,
that are based on level II calculations (Jonkman et al., 2017). The combinations of characteristic val­
ues and partial factors form the design values. The design values of stochastic resistance and load
variables, 𝑅𝑑 and 𝑆𝑑, with a given mean value 𝜇𝑖 and standard deviation 𝜎𝑖 are equal to:

𝑅𝑑 = 𝜇𝑅 + 𝛼𝑅 ⋅ 𝛽𝑇 ⋅ 𝜎𝑅 = 𝑅𝑐/𝛾𝑅 (2.6)

𝑆𝑑 = 𝜇𝑆 − 𝛼𝑆 ⋅ 𝛽𝑇 ⋅ 𝜎𝑆 = 𝑆𝑐 ⋅ 𝛾𝑆 (2.7)
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where 𝛼𝑖 are the FORM influence coefficients, that will be explained in the next section. 𝛽𝑇 is the target
reliability index, as explained in Appendix A.1. In the WBI 2017, the 𝛾𝑆 value is often set equal to 1.0
(Kanning et al., 2015).

This semi­probabilistic approach is common practice for most of the failure mechanisms in the current
assessment method, as illustrated in Table B.1 on page 102.

2.3.3. Level II methods: approximation / FORM
In a level II method, the uncertain parameters are modelled by the mean values and the standard
deviations, and by the correlation coefficients between the stochastic variables. Also, the stochastic
variables are implicitly assumed to be normally distributed (Jonkman et al., 2017). The most common
method is the First Order Reliability Method (FORM). In a FORM analysis, the limit state function is
linearised in the design point, using Taylor expansion. The design point is the location along the limit
state (𝑍 = 0) where the probability density is maximal. In other words, the most probable failure point.
In the FORM analysis, the specific location of the design point is determined by an iterative procedure.
FORM is executed in the standard normal space 𝑈. In this space, the design point is easily defined,
since it is the location along the limit state that is closest to the origin, since the highest probability
density is at the origin for standard normally distributed variables. The distance from the origin to the
design point is equal to the reliability index 𝛽, as defined in Equation A.4 of Appendix A.1 (p.94). If
𝛽 is known, the probability of failure can be easily computed with this equation. The linearised and
normalised limit state function resulting from a FORM analysis looks like:

𝑍𝐹𝑂𝑅𝑀 = 𝛽 −
𝑛

∑
𝑖=1
𝛼𝑖𝑢𝑖 (2.8)

The advantage of FORM is that the computational effort is reduced by linearisation of the limit state
function. Another advantage is the definition of the 𝛼𝑖­values. These are in fact the direction cosines
of the perpendicular or vector ⃗⃗𝛽. They are called the sensitivity factors, because they are a measure
for the relative importance of the standard deviation of a basic variable to the reliability index. The
𝛼𝑖­values are the components of the unit vector according to ⃗⃗ ⃗⃗ ⃗⃗⃗𝑂𝐷 = 𝛽⃗⃗𝛼 = ⃗⃗𝛽. The FORM approach
is visualised in Figure 2.3. Note that there will always be an error in the determination of the failure
probability, as long as the real 𝑍­function is non­linear. However, due to the linearisation in the design
point, it is a good approximation for points in the vicinity of the design point, which is generally the case
for failure events.

Figure 2.3: Visualization of FORM.
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2.3.4. Level III methods: numerical / Monte Carlo
In level III methods, the uncertain quantities are modelled by their joint distribution functions. The
probability of failure is calculated exactly, by numerical integration or Monte Carlo simulation.

Numerical integration
Numerical integration computes the failure probability by discretising the random variables 𝑋1...𝑋𝑛 that
describe the resistance and strength. Each variable is discretised over a range that is relevant for
failure, and subsequently each combination of discretised values of the 𝑋­variables is used to compute
the limit state function. The probabilities of all the combinations that lead to 𝑍 < 0 are summed, resulting
in an estimate of the overall probability of failure (van Balen et al., 2016). The disadvantage of numerical
integration is that the number of integration steps increases exponentially with the number of stochastic
variables, which makes standard numerical integration techniques computationally intensive.

Monte Carlo simulations
As previously mentioned, the calculation of 𝑃𝑓 through numerical integration is rather difficult in the
case of more than two variables. In those cases, Monte Carlo simulations (MCS) provide a suitable
alternative in order to calculate 𝑃𝑓. The method that will be elaborated is called crude Monte Carlo.
Crude Monte Carlo sampling refers to the repeated sampling of the variables from their multivariate
distribution function 𝑓𝑋(𝑥) or, if the variables aremutually independent, sampling from the corresponding
marginal distribution functions 𝑓𝑋𝑖(𝑥1), ..., 𝑓𝑋𝑛(𝑥𝑛)). So, Monte Carlo allows us to model interdependency
between input variables, by sampling from their joint distribution. A single sample 𝑥𝑖 refers to a vector
of length 𝑛 that contains one randomly sampled value for each variable, with 𝑛 the number of random
variables. The samples 𝑥𝑖 basically represent events, although the sampling may also involve variables
that present the resistance of the flood defence, instead of only the loads. For each sample 𝑥𝑖, the
resulting value of the limit state function 𝑍(𝑥𝑖) is computed. The probability of failure is estimated as
the ratio of samples for which 𝑍(𝑥𝑖) < 0 ­ denoted as 𝑁𝑓 ­ to the total number of samples 𝑁:

𝑃𝑓 =
𝑁𝑓
𝑁 =

∑𝑁𝑖=1 𝐼(𝑍(𝑥𝑖) < 0)
𝑁 (2.9)

in which 𝐼(𝑍(𝑥𝑖) < 0) = 1 if 𝑍 < 0 and 0 otherwise. Naturally, the number of required simulations
𝑁 increases as 𝑃𝑓 decreases. For the reliability assessment of flood defences, that generally have
a very low failure probability, it means that the computation time of a Monte Carlo simulation can be
rather long. The required number of samples, 𝑁𝑚𝑖𝑛, to provide a reliable estimate of the probability of
failure can be determined based on the desired uncertainty (van Balen et al., 2016). To quantify the
uncertainty on the computed failure probability, its coefficient of variation 𝑉𝑃𝑓 can be calculated as:

𝑉𝑃𝑓 = √
1 − 𝑃𝑓
𝑁 ⋅ 𝑃𝑓

(2.10)

As the probability of failure of a Dutch flood defence is typically in the order of 10−5 and the desired
coefficient of variation is for example 0.05, then, already 4 ⋅ 107 model evaluations 𝑁 are needed. This
can result in unacceptably high computation costs, depending on the complexity of the system.

To increase the efficiency of the crude Monte Carlo method, i.e. to decrease the computation costs,
a so­called ‘importance sampling’ technique can be used. The aim of this technique is to obtain more
realisations of the random sample vector 𝑥𝑖 that are located in the unsafe domain 𝐷𝑓. This will decrease
the number of samples and 𝑍­function evaluations required to produce a reliable estimate of the failure
probability. In order to achieve this, the density function is essentially shifted towards the failure domain,
so that the likelihood of a failure sample increases. This is done by defining a sampling function 𝑓𝑆(𝑥),
that is chosen such that its maximum is located in the domain that contributes most to 𝑃𝑓. Then, the
following formula is used to compute the failure probability:

𝑃𝑓 =
1
𝑁

𝑁

∑
𝑗=1
𝐼[𝑍(𝑥𝑗) < 0]

𝑓𝑋(𝑥𝑗)
𝑓𝑆(𝑥𝑗)

(2.11)
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where 𝑓𝑋 is the real distribution and 𝑓𝑆 is the sampling PDF. The samples 𝑥𝑗 are distributed according
to 𝑓𝑆(𝑥). The fraction 𝑓𝑋/𝑓𝑆 is in fact a correction term to make the estimate of 𝑃𝑓 unbiased. The
efficiency of this importance sampling technique is strongly dependent on the choice of 𝑓𝑆(𝑥). One
can for example locate 𝑓𝑆(𝑥) at the design point. In that case, the number of realisations in the unsafe
domain is approximately 50% (Jonkman et al., 2017).

Importance sampling can be applied very successfully in reliability problems with a not too large num­
ber of stochastic parameters. However, applications to high­dimensional reliability problems are more
complex and much research is still done into its development (Liu and Elishakoff, 2020).

2.4. Dependence
Modelling dependencies is an important and widespread issue in risk analysis. It often occurs in reality
that variables of the strength or resistance show some amount of mutual dependence. 𝐴 is dependent
on 𝐵 if the occurrence of 𝐴 does influence the probability of occurrence of 𝐵. Dependence is based on
physical attributes of the events or variables under consideration. Calculating under the assumption
of independence is generally easier, but, assuming independence when in fact the contrary is true can
lead to large inaccuracies (Jonkman et al., 2017). Based on the results of the study of Aguilar López
et al. (2014) ­ that investigated the correlation between the hydraulic conductivity 𝑘 and the grain size
𝑑70 for piping ­ it could be proved that when the correlation increases, the probability density function
changes as the area in the tails is more populated. This means that the frequency for values located
along the PDF will change. For the case of piping, a higher correlation degree between the two studied
variables will always imply a lower probability of failure of the flood defence. Aguilar López et al. (2014)
also mentioned several studies that show that the influence of correlation greatly affects events of low
frequency. It indicates that including correlations is of major importance for reliability assessments of
flood defences that often consider (flood) events of low frequency.

The measure of mutual dependence of two stochastic variables can be expressed by the Pearson’s
product moment correlation­coefficient 𝜌𝑋𝑌 = 𝜌(𝑋, 𝑌) that is defined as:

𝜌𝑋𝑌 =
cov(𝑋𝑌)
𝜎(𝑋)𝜎(𝑌) (2.12)

where cov(𝑋𝑌) is the covariance (see Appendix A.2 on p.94). The correlation coefficient has the fol­
lowing properties:

• If 𝑋 and 𝑌 are independent: 𝜌𝑋𝑌 = 0
• If 𝑋 and 𝑌 are completely positive linear dependent: 𝜌𝑋𝑌 = +1 (See Figure 2.4a)
• If 𝑋 and 𝑌 are completely negative linear dependent: 𝜌𝑋𝑌 = −1 (See Figure 2.4b)
• In general: −1 ≤ 𝜌𝑋𝑌 ≤ +1

However, Pearson’s correlation only assesses linear relationships. In reality, it happens that depen­
dence is nonlinear, for example events might have a higher degree of dependence for extreme values.
An alternative is Spearman’s rank correlation coefficient, 𝑟𝑋,𝑌 = 𝑟(𝑋, 𝑌) or 𝜌, which is a non­parametric
measure of rank correlation. The Spearman correlation between two variables is equal to the Pearson
correlation between the rank values of those two variables:

𝑟(𝑋, 𝑌) = 𝜌(𝐹𝑋(𝑋), 𝐹𝑌(𝑌)) =
cov(𝑟𝑋, 𝑟𝑌)
𝜎(𝑟𝑋)𝜎(𝑟𝑌) (2.13)

where 𝐹 denotes the cumulative distribution function (CDF) of the variables 𝑋 and 𝑌 respectively, which
is equal to the ranks 𝑟𝑋 and 𝑟𝑌. 𝐹 can be a parametric distribution estimate ­ e.g. a Gaussian CDF ­
or based on an empirical estimate: 𝐹̂𝑋(𝑥) = # samples ≤ 𝑥/(𝑁 + 1).
Spearman’s correlation coefficient can be used to express monotonic dependence, which holds for
both linear and nonlinear relationships. A perfect Spearman’s correlation of ±1 occurs when the ob­
servations of two variables have identical ranks (= the relative position label of an observation within
the variable).
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Figure 2.4: Dependence pattern examples for bivariate normal distributions (Jonkman et al., 2017).

2.4.1. Spatial correlations
Spatial correlation means that the value of 𝑋 at location 1 and the value of 𝑋 at location 2 are dependent,
but it can also occurs between two different parameters in space (𝑋 at location 1 and 𝑌 at location 2).
Spatial correlation exists for many soil properties. It arises from the fact that soil layers, that extent
over a large area in space, originate from the same geological deposit. Extensive research has been
done about the effect and assessment of spatial correlation of load and resistance estimation on flood
defences in the Netherlands (Vrouwenvelder, 2006), (Kanning, 2012). How a variable depends on itself
is called autocorrelation. It exists along both space and time, but for this research only correlation in
space is considered. If the spatial variability of a stochastic variable is large, it means that its spatial
autocorrelation is small. Similarly, a small spatial variability means that the spatial autocorrelation of
the stochastic variable is large. The spatial correlation structure of each stochastic variable 𝑋𝑘 can be
described by a one­dimensional correlation function 𝜌𝑘 (Vrouwenvelder, 2006):

𝜌𝑘(Δ𝑥) = 𝜌𝑥,𝑘 + (1 − 𝜌𝑥,𝑘) exp(−
Δ𝑥2

𝑑𝑥,𝑘2
) (2.14)

where:

• 𝜌𝑘 = Correlation between two cross­sections within the same section (𝜌 ≥ 0)
• Δ𝑥 = Distance between two cross­sections / points of consideration [m]

• 𝜌𝑥,𝑘 = Constant that represents the residual correlation of variable 𝑋𝑘 / lower limit of 𝜌𝑘
• 𝑑𝑥,𝑘 = Correlation length [𝑚]

The correlation length 𝑑𝑥,𝑘 represents how quickly the correlation of variable𝑋𝑘 decreases over distance
in 𝑥, also called the fluctuation scale. For a large 𝑑𝑥, the correlation coefficient 𝜌𝑘 between two cross­
sections is also large and the spatial variability is thus small. If the value for the residual correlation
𝜌𝑥,𝑘 increases, the correlation coefficient 𝜌𝑘 between two cross­sections also increases. However, this
effect diminishes if the two cross­sections are closer to each other. For geotechnical properties, the
spatial correlation should not only be considered in the horizontal direction, but in the vertical direction
𝑦 as well. However, this effect is not further elaborated within this research.
The failure probability of a section is thus length­dependent due to the spatial variability of the stochastic
variables: The probability of the limit state function being less than zero increases with length and
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decreases when spatial correlations are strong (Jongejan et al., 2013), which is also referred to as the
length­effect, as mentioned earlier. This type of length­effect can also be represented as follows:

length­effect­factor =
𝑃𝑓(dike section)

𝑃𝑓(dike cross­section)
(2.15)

The larger the correlation between two cross­sections, the larger the correlation length 𝑑𝑥 and the
smaller the length­effect factor. If there is no spatial variation (i.e. total dependence between two
points), the correlation coefficient 𝜌𝑘 is equal to 1, the correlation length goes to infinity and the length­
effect factor is also 1. If there is extremely much spatial variability (i.e. total independence between two
points), the correlation coefficient is equal to zero, as well as the correlation length. The length­effect
factor would be extremely large, meaning that the failure probability of the dike section is much larger
than that of one cross­section (Thonus, 2003). The selection of the spacing of dike sections highly
depends on the spatial variance. Thus, it depends on the autocorrelation in space of the load and
resistance variables and is associated to the length­effect. The relation between the correlation length,
the residual correlation and the spatial auto­correlation 𝜌 is illustrated in Figure 2.5.
Only for a limited number of variables, like crest height and some soil parameters (e.g. the friction
angle), it is possible to base the parameters 𝑑𝑥 and 𝜌𝑥 on measured data (Vrouwenvelder, 2006).
In other cases, engineering judgement needs to be used. In some cases, similarity with the above
mentioned better­documented variables could be used. The correlation model of Equation 2.14 can
in principle be applied for each strength variable. Load variables can generally be assumed to have
correlation 1 within one dike section (van Balen et al., 2016).

This definition of spatial correlations is implemented in the spatial upscaling technique that is used to
estimate the reliability of a dike section. It is, for example implemented in the Hydra­Ring software (van
Balen et al., 2016). It is important to mention that the spatial correlations that result from this approach
are not based on the actual structure of geological deposits. The method does not depend on local
information of the spatial distribution of geological deposits, in combination with the spatial division
into dike sections. The method is mainly based on theory and expert judgement and is thus hardly
location­dependent. This is a disadvantage of the method.

Figure 2.5: Correlation function to describe spatial variability (Diermanse et al., 2013).

2.5. Copulas
The joint distribution function of variables with mutual dependence can be described by multivariate
distributions. The main limitation of this approach, however, is that the individual behaviour of the
variables must be characterised by the same parametric family of univariate distributions (Genest and
Favre, 2007). Furthermore, some of the standard multivariate distributions can model only limited types
of dependence. These restrictions can be avoided by means of copulas. Copulas are an interesting
mathematical tool to represent correlations between probability distributions. They can be used to rep­
resent complex dependencies in multivariate risk models, when more basic tools such as multivariate
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Gaussian distributions are inappropriate. One commonly used application of copulas is the sampling
from correlated random variables (Risk Engineering, 2017).

Copulas are in fact a bridge between marginal distributions and a joint distribution. Copula functions
are a tool to separate the specification of marginal distributions and the dependence structure. There­
fore, unlike most multivariate statistics, copulas allow the combination of different marginal distributions
(Marsden, 2017). The copula provides the correlation structure between the variables. This method is
applicable for both bivariate and higher dimension distributions. For illustration purposes, the bivariate
case is considered. Sklar (1959) states that any joint cumulative distribution function 𝐻(𝑥, 𝑦) of the
random vector (𝑋, 𝑌) of continuous variables can be expressed with a copula 𝐶:

𝐻(𝑥, 𝑦) = 𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦), 𝜃) = 𝐶(𝑢, 𝑣; 𝜃), 𝑥, 𝑦 ∈ 𝑅 (2.16)

where 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginal distributions that can be different and are defined by some
parameters of their distributions. 𝜃 is the parameter of the copula, which represents the dependence
structure. The copula captures the dependency between the random variables, the marginals cap­
ture individual distributions and Sklar’s theorem ‘glues’ them together. The shape and degree of joint
tail dependence are properties of the copula and are independent of the marginal distributions. The
main advantage provided by this approach is that the selection of an appropriate model for the depen­
dence between 𝑋 and 𝑌, represented by the copula, can proceed independently from the choice of
the marginal distributions. Even after transformations of 𝑋 and 𝑌, they would still be described by the
same copula as the original 𝑋 and 𝑌. In other words, it means that the unique copula associated with
a random pair (𝑋,𝑌) is invariant by monotone increasing transformations of the marginals (Genest and
Favre, 2007). The mathematical background of copulas is further explained in Appendix A.3.

There are several different parametric copula family types. The most common are the Gaussian, which
is built as a function of the normal distribution, the Archimedean (e.g Gumbel or Clayton) which allows to
generate the samples correlated in different tails of the distribution, and the Empirical ones that allow to
build the correlated models as a function of empirical univariate distributions. The latter are especially
useful when the underlying copula is not known in advance ­ but data is available ­ to visualise the
scatter plot of the data to aid the selection of copula families. As the degree of correlation increases,
the three types of copulas tend to unite. More kinds of copulas are available. The goodness­of­fit test
statistics, such as the Cramér–von Mises statistic (𝑆𝑛) and the Kolmogorov–Smirnov statistic (𝑇𝑛), can
be employed to select suitable copula functions (Genest and Favre, 2007).

2.6. Choice for the Model
Based on a literature study, as briefly summarised above, it has been decided to implement a Monte
Carlo simulation as the reliability method of this model. This choice is based on a the following consid­
erations:

• A Monte Carlo simulation is very suitable for the sampling of mutually dependent variables.

• A Monte Carlo simulation gives accurate results ­ as long as the number of samples is sufficient.

• It is possible to assess different 𝑍­functions within the same realisation of variables, which is
essential for the purpose of this research.

• The transparency and simplicity of the computation method make Monte Carlo very convenient
to work with.

• FORM is based on the design point, which is difficult to define for this situation, as there are
multiple different 𝑍­functions that are considered within one reliability analysis. Besides, FORM
is less accurate than a Monte Carlo simulation and complex dependence structures are difficult
to implement.

• As the number of input variables will be large for this model, numerical integration would be very
time­consuming.

Still, the large computation costs are a disadvantage of Monte Carlo. Therefore, the 𝑍­functions should
be defined as simple as possible, in order to reduce the computational effort.
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Correlations and copula
In order to model the dependencies between the input variables, a copula is used. Subsequently, this
copula can be used to draw random, correlated samples. The advantage of using a copula is that the
input variables can have any type of marginal distribution.

The model will be used to assess the reliability of a Dutch earthen dike. Many of the input variables
consist of geo(hydro)logical parameters for which not much data is available. This means that it will
not be possible to reliably define the type of dependence structures based on data. Many correlations
between the input variables must be based on literature and expert judgement in that case. For the
spatial correlations, different subsoil schematisations will be consulted in order to estimate the degree
of spatial correlations based on the actual location of geological deposits.

If there is no evidence for a particular type of correlation, as is the case for this study, the Gaussian
copula is the best choice. Moreover, other copulas, like the Gumbel copula, are only available for the
bivariate case. Besides, the Gaussian copula is the only one that can be defined based on a predefined
correlation matrix in many Python modules. If correlations could be derived from large data sets, much
more would be possible.



3
Failure Mechanisms

A dike trajectory can fail due to different failure mechanisms. The most commonly encountered failure
mechanims for dikes are illustrated in Figure 3.1. The four most important failure mechanisms in a
reliability analysis for dikes are (Vrouwenvelder, 2006):

• Overflow and overtopping, followed by erosion of the inner slope

• Damage of the outer slope revetment, followed by erosion of the dike body

• Piping

• Slope stability

Therefore, only these four failure mechanisms will be included in the model and described in this chap­
ter. Additional information about these and other failure mechanisms can be found in Appendix B. The
aim of this chapter is to describe the underlying processes, causes and consequences of the relevant
failure mechanisms and to numerate possible approaches to model these failure mechanisms, based
on the WBI procedure and other research. Finally, the best approach for the probabilistic model is
chosen further elaborated.

Figure 3.1: Schematic overview of the most relevant failure mechanisms of flood defences (Jonkman et al., 2018).

17
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3.1. Overflow and Overtopping
Overtopping or overflowing water can erode the inner slope which can lead to progressive damage and
eventually to dike collapse. Overflow happens when the (design) water level is higher than the crest
level of the dike and the water can thus just flow over the dike. The limit state function for overflow is:

𝑍𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = ℎ𝑐 + Δℎ𝑐 − ℎ𝑎 (3.1)

in which ℎ𝑐 is the crest height in metres, Δℎ𝑐 is the additional height for overflow to occur in metres and
ℎ𝑎 represents the actual water level in metres(van Balen et al., 2016).
If the water level is below the crest height, the waves can still cause a flow of water over the top of the
dike, which is called overtopping. The limit state function for overtopping is:

𝑍𝑜𝑣𝑒𝑟𝑡𝑜𝑝𝑝𝑖𝑛𝑔 = 𝑙𝑜𝑔(𝑚𝑐 ⋅ 𝑞𝑐) − 𝑙𝑜𝑔(𝑚𝑎 ⋅ 𝑞𝑎) (3.2)

in which 𝑞𝑐 and 𝑞𝑎 denote the critical and actual overtopping discharge in [𝑚3/𝑠/𝑚]. 𝑚𝑐 and 𝑚𝑎 repre­
sent model factors. The model uncertainty is considered as the accuracy with which a model or method
can describe a physical process or a limit state function. Therefore, the model uncertainty describes
the deviation of the prediction from the measured data due to this method (Pullen et al., 2007). Since
the values for the overtopping discharge are usually relatively small (i.e. 𝑞 << 1 𝑚3/𝑠/𝑚), the effects
are modelled by means of a logarithm (van Balen et al., 2016).

Failure is defined as failure of the grass revetment at the inner slope, either due to overflow or due to
overtopping. So, the failure mechanism can be described as a series system as shown in Figure 3.2.

Failure of the grass revetment
at the inner slope

𝑍𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 < 0 𝑍𝑜𝑣𝑒𝑟𝑡𝑜𝑝𝑝𝑖𝑛𝑔 < 0

OR

Figure 3.2: Fault tree for the failure mechanisms overflow and overtopping.

3.1.1. Critical overtopping discharge
The critical overtopping rate represents the erosion resistance of the inner slope revetment. It depends
on the grass quality and on the wave height, since a fixed volume of water does more damage if it
tops over in a few high waves than when it tops over in many small waves. In the literature, different
values for the critical overtopping discharge can be found. For example, according to TAW (2002), the
following mean discharges are normative for erosion of the inner slope:

• 0.1 𝑙/𝑚/𝑠 for sandy soil with a grass revetment of bad quality.
• 5.0 𝑙/𝑚/𝑠 (for 𝐻𝑠 = 2−3 𝑚) or 10.0 𝑙/𝑚/𝑠 (for 𝐻𝑠 < 2 𝑚) for clay soil with a relatively good quality,
closed, grass revetment.

• 10.0 𝑙/𝑚/𝑠 for a clay cover and grass revetment according to the requirements for the outer slope
or for a cover structure.

In recent years, it is also common practice to characterise the critical overtopping discharge by a log­
normal distribution with an expected value and standard deviation that depend on the wave height and
grass quality. This approach is for example described by van Hoven (2019) in the ‘Schematiserings­
handleiding grasbekleding’ of the WBI 2017 and the values are shown in Table 3.1.
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Table 3.1: Parameters for the critical overtopping discharge, depending on the grass quality and wave height.

Wave height class
Closed sod Open sod

𝜇[𝑚3/𝑠/𝑚′] 𝜎[𝑚3/𝑠/𝑚′] 𝜇[𝑚3/𝑠/𝑚′] 𝜎[𝑚3/𝑠/𝑚′]

0 ­ 1 m 0.225 0.250 0.100 0.120
1 ­ 2 m 0.100 0.120 0.070 0.080
2 ­ 3 m 0.070 0.080 0.040 0.050

3.1.2. Actual overtopping discharge
The actual mean overtopping rate can be approximated by the formula of Van Der Meer and Bruce
(2014):

𝑞
√𝑔 ⋅ 𝐻3𝑚0

= 0.023
√tan 𝛼

⋅ 𝛾𝑏 ⋅ 𝜉𝑚−1,0 ⋅ exp {−(2.7 ⋅
𝑅𝑐

𝛾𝑏 ⋅ 𝛾𝑓 ⋅ 𝛾𝛽 ⋅ 𝛾𝑣 ⋅ 𝜉𝑚−1,0 ⋅ 𝐻𝑚0
)
1.3
} (3.3)

where 𝑞 is the wave overtopping discharge [𝑚3/𝑚/𝑠], 𝐻𝑚0 is the spectral significant wave height [𝑚],
𝑔 is the gravitational acceleration [𝑚/𝑠2], 𝛼 is the slope angle [∘], 𝑅𝑐 is the crest freeboard [𝑚], which
is the difference between the crest level 𝑦𝑁 and the still water level ℎ. 𝜉𝑚−1,0 is the breaker parameter
based on the spectral period 𝑇𝑚−1,0 [𝑠]:

𝜉𝑚−1,0 =
tan 𝛼

√(𝐻𝑚0 ⋅ 2𝜋)/(𝑔 ⋅ 𝑇2𝑚−1,0)
(3.4)

Equation 3.3 holds for the breaking­wave regime. In the non­breaking wave regime, observations have
shown that the mean overtopping rate reaches a maximum given by:

𝑞
√𝑔 ⋅ 𝐻3𝑚0

= 0.09 ⋅ exp {−(1.5 ⋅ 𝑅𝑐
𝐻𝑚0 ⋅ 𝛾𝑓 ⋅ 𝛾𝛽

)
1.3
} (3.5)

For a probabilistic analysis, the coefficients values 𝐴 and 𝐵 (in Equation 3.3: 𝐴 = 0.023 and 𝐵 = 2.7),
should be included as stochastic with a defined mean and standard deviation. The values can be
found in the paper by Van Der Meer and Bruce (2014). The formulas of Van Der Meer and Bruce
(2014) are based on recent scientific insights, and appear to be supported very well by the theoretical
work of Battjes from the 1970s. However, it is important to notice that most of the practical design
guidelines for wave overtopping contain a slightly older version of the prediction formulas. It is called
the TAW formula (TAW, 2002) and describes the dimensionless overtopping discharge for breaking
waves (𝜉𝑚−1,0 ≤ 5):

𝑄𝑏 =
0.067
√tan𝛼

⋅ 𝛾𝑏 ⋅ 𝜉𝑚−1,0 ⋅ exp(−𝑓𝑏
𝑦𝑁 − ℎ
𝐻𝑚0

⋅ 1
𝛾𝛽𝑜 ⋅ 𝛾𝑓 ⋅ 𝛾𝑏𝜉𝑚−1,0

) (3.6)

And for non­breaking waves (𝜉𝑚−1,0 < 7):

𝑄𝑛 = 0.2 ⋅ exp(−𝑓𝑛
𝑦𝑁 − ℎ
𝐻𝑚0

⋅ 1
𝛾𝛽𝑜 ⋅ 𝛾𝑓

) (3.7)

where 𝑦𝑁 − ℎ is the freeboard, 𝑓𝑏 and 𝑓𝑛 are model factors (usually 𝑓𝑏 = 4.75 and 𝑓𝑛 = 2.60). These
formulas have been derived from empirical observations and do not have an explicit theoretical basis.
The coefficients in the formulas have been fitted to match the observed data. The difference between
the Equations 3.3 / 3.5 and 3.6 / 3.7 is almost indiscernible, especially if the freeboard is not too small
(Jonkman et al., 2018).

The 𝛾’s in the formulas above are reduction factors, to include the reducing effect on the run­up and
overtopping of certain aspects:
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• 𝛾𝑏 = reduction due to a berm
• 𝛾𝑓 = reduction due to friction caused by roughness of the slope
• 𝛾𝛽 = reduction due to oblique waves
• 𝛾𝑣 = reduction due to a wall on top of the slope.

Extensive research has been done to quantify these reducing effects. A brief overview can for example
be found in Section 5.4 of the Flood Defences Lecture Notes (Jonkman et al., 2018).

3.1.3. WBI assessment method: GEKB
In the WBI, assessment track for the failure mechanisms overflow and overtopping is called GEKB
(Gras Erosie Kruin en Binnentalud). Failure is defined as the moment when approximately 20 cm of
the top layer on the crest or inner slope has eroded, such that the revetment does not protect the
subsoil against erosion any more. The assessment can performed by a full­probabilistic approach that
compares the probability distribution of the actual overtopping discharge to the probability distribution
of the critical overtopping discharge that applies for the grass quality under consideration. For this
approach, the TAW formulas are applied (Equation 3.6 and 3.7).

3.1.4. Choice for the model
One of the objectives of this research is to make a comparison with a current WBI assessment, to in­
vestigate the impact of including correlations. Therefore, it is more important to stay close to the current
assessment procedure than to apply the most accurate formulas. For this reason, the computation ker­
nel that is also used in the WBI assessments ­ e.g. in Ringtoets and Hydra­Ring ­ will be called within
the model. This kernel makes use of the TAW formulas. The ‘overtopping’ kernel, that was created
as part of the WTI (Wettelijk Toets Instrumentarium) 2017 failure mechanism library, can be called by
means of a dll­file1. A short overview of the most important parameters and calculation steps within
the kernel is provided below. A full description of the module can be found in its Functional Design
report by Kuijper et al. (2017).

The primary output of this module consists of:

• the 2% wave run­up height [𝑚]
• the mean overtopping discharge [𝑚3/𝑚/𝑠]
• the value of the limit state function 𝑍 for the wave overtopping discharge.

In the model, the mean overtopping discharge will be called to evaluate the 𝑍­function using Equation
3.2 in combination with the lognormal distribution for the critical overtopping discharge, as mentioned
in Table 3.1. The module explicitly pertains to the wave overtopping discharge only, so it holds for
water levels that do not exceed the crest level. If the water level exceeds the crest, a different kernel
for overflow will be called, by means of another dll­file2. However, the functional design of this kernel
will not be further elaborated.

The input of the overtopping module consists of:

• Load parameters: the still water level ℎ and the wave parameters (𝐻𝑚0, 𝑇𝑚−1,0 and the wave
direction 𝜑) at the toe of the dike.

• Cross­sectional data: dike segments from the toe of the dike to the outer crest level, as will be
described in subsection Dike profile schematisation.

• Model factors, that are elaborated in the subsection Model factors.

No foreland is used within the overtopping module. But the kernel takes into account berms and fore­
shores and their effect on the wave height.
1dllDikesOvertopping64.dll
2CombOverloopOverslag64.dll
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Dike profile schematisation
The dike profile has to be schematised by certain rules, the so­called ‘schematiseringsregels’, that are
elaborated in the ‘Schematiseringshandleiding Hoogte’ (Rijkswaterstaat, 2019b). According to these
rules, the cross­sectional data should satisfy the following requirements:

1. The outer dike profile is schematised by a series of 𝑀 (at least two) (𝑥, 𝑧)­profile points that are
mutually connected by straight lines. The 𝑧­values should be given in𝑚+𝑁𝐴𝑃. The straight lines
between the profile points are called profile sections.

2. The 𝑥­coordinates must increase and the 𝑦­coordinates must be non­decreasing. The profile
points start at the outer toe and end at the outer crest.

3. Two types of profile sections are allowed: slope sections with a schematised slope between 1:8
and 1:1 or berm sections with a schematised slope between 1:00 and 1:15

4. The first and the last dike section have to be a slope section.

5. A maximum of two berms is allowed per profile. A berm can consist of multiple consecutive berm
sections.

6. The lowest profile section is connected to the toe and the highest profile section to the crest.
These sections are slope sections.

7. The roughness factor should be defined for every profile section (𝑀 − 1) in accordance with
Appendix B of the ‘Schematiseringshandleiding’ (Rijkswaterstaat, 2019b). The roughness factors
lie in between 0.5 (very rough) and 1.0 (very smooth).

8. Preferably a minimum horizontal distance of 2 metre between two profile points should be taken.

9. If the outer crest is not the highest point of the profile, extend the highest slope section to the level
of the actual dike crest.

10. If a profile section is too steep to be a slope section, decrease the slope to the maximum allowable
slope of 1:1, by shifting one of the two profile points of that profile section horizontally. Make sure
that the slopes of the other profile sections don’t change, so you have to move them as well in
that case.

11. Negative slopes are not allowed.

12. The crest level is to be forced.

The dike orientation 𝜓 is implemented through the dike normal (imaginary line normal to the dike). The
direction of the dike normal is defined with respect to North in degrees [∘𝑁]. If the dike normal varies
over the dike section, choose the direction of the dike normal that gives the smallest angle with respect
to the wave direction. After all, normal incident waves give the largest wave load. The definition of the
dike orientation 𝜓 is closely related to the definition of the wave direction 𝜑: in case of full wave attack
on the dike, it holds that: 𝜓 = 𝜑.

Model factors
The following model factors [­] are required as input, with proposed stochastic properties as listed in
Table 3.2:

• 𝑓𝑏 : model factor for breaking waves
• 𝑓𝑛 : model factor for non­breaking waves
• 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤 : model factor for shallow water waves

• 𝑚𝑧2 : model factor describing the uncertainty of the wave run­up 𝑧2%
• 𝑚𝑐 : model factor describing the uncertainty of 𝑞𝑐
• 𝑚𝑎 : model factor describing the uncertainty of 𝑞𝑎
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Table 3.2: Distributions for the model factors (Kuijper et al., 2017).

Parameter Distribution 𝜇 𝜎 𝜎 / 𝜇 Design

𝑚𝑧2 Normal 1.00 0.07 0.07 1.07
𝑓𝑏 Normal 4.75 0.50 4.30
𝑓𝑛 Normal 2.60 0.35 2.30

𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤 Normal 0.92 0.24 0.6778

Wave run­up
The functions that are applied in the kernel to calculate the 2% wave run­up 𝑧2% are mainly based on
the TAW report about wave overtopping and overflow (TAW, 2002). A brief description of the most
important calculation steps is given below. For a full description of the calculations in the kernel, the
reader is referred to Kuijper et al. (2017) and (TAW, 2002).

A first important parameter is the breaker parameter, as defined in Equation 3.4. It is based on the
relative slope angle, which is the average slope in the zone between the still water level 𝑆𝑊𝐿−1.5⋅𝐻𝑚0
and 𝑆𝑊𝐿 + 𝑧2%, disregarding berms. Next, the intersection point 𝐵̂ for breaking and non­breaking
waves is calculated, by considering the breaker parameter at the transition point. For small breaker
parameters, the 2% wave run­up for breaking waves is computed as follows:

𝑧2% = 𝑚𝑧2 ⋅ 𝐻𝑚0 ⋅ 𝑓𝑟𝑢𝑛𝑢𝑝1 ⋅ 𝛾𝑓 ⋅ 𝛾𝛽𝑧 ⋅ 𝛾𝑏 ⋅ 𝜉𝑚−1,0 (3.8)

Otherwise, the 2% wave run­up for non­breaking waves is defined as:

𝑧2% = 𝑚𝑧2 ⋅max(𝐻𝑚0 ⋅ 𝛾𝑓 ⋅ 𝛾𝛽𝑧 ⋅ (𝑓𝑟𝑢𝑛𝑢𝑝2 −
𝑓𝑟𝑢𝑛𝑢𝑝3
√𝜉𝑚−1,0

) ; 0) (3.9)

with 𝑓𝑟𝑢𝑛𝑢𝑝1 = 1.65, 𝑓𝑟𝑢𝑛𝑢𝑝2 = 4.00 and 𝑓𝑟𝑢𝑛𝑢𝑝3 = 1.50. The uncertainty in 𝑧2% is accounted for by𝑚𝑧2.

Wave overtopping
Also for the overtopping discharge, the computations are mainly based on the TAW report about wave
overtopping and overflow (TAW, 2002). A brief description of the most important calculation steps is
given below. For a full description of the calculations in the kernel, the reader is referred to Kuijper et al.
(2017) and (TAW, 2002). As mentioned, the kernel is based on the TAW formulas (Equation 3.6 and
3.7) that compute the dimensionless overtopping discharge. The actual overtopping discharge is then:

𝑞𝑎 = √𝑔𝐻3𝑚0 ⋅min(𝑄𝑏; 𝑄𝑛) for 𝜉𝑚−1,0 ≤ 5 (3.10)

There is also a third formula that is applicable for shallow water (𝜉𝑚−1,0 > 5). For more information, the
reader is referred to Kuijper et al. (2017) or TAW (2002). In a probabilistic assessment, the uncertainty
of 𝑞𝑎 is usually accounted for by considering the model factors 𝑓𝑏, 𝑓𝑛 and 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤 as stochastic variables
and assigning a fixed value of 1.0 to 𝑚𝑎 (Kuijper et al., 2017).

Reduction factors
The kernel computes the applicable reduction factors for the dike section under consideration, as men­
tioned in Section 3.1.2. The reduction factor 𝛾𝛽𝑧 for the angle of wave attack for 2% wave run­up
is:

𝛾𝛽𝑧 = 1 − 0.0022 ⋅min(𝛽; 80) (3.11)

and for overtopping:
𝛾𝛽𝑜 = 1 − 0.0033 ⋅min(𝛽; 80) (3.12)

where 𝛽 is defined as:
𝛽 = { |𝜃 − 𝜓| for |𝜃 − 𝜓| ≤ 180∘

360 − |𝜃 − 𝜓| for |𝜃 − 𝜓| > 180∘ (3.13)

It can be seen that 𝛽 = 0∘ for perpendicular wave attack.
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The reduction factor 𝛾𝑓 for the roughness is based on the roughness factor that is defined for each
dike segment. The definition of the reduction factor for the berm is described in Section 5.2.7 of the
Functional Design report of the overtopping kernel (Kuijper et al., 2017).

The product of the reduction factors should not be less than 0.4. If that is the case, the kernel adapts
the factors in such a way that their product is equal to 0.4.

3.2. Macrostability
Besides overtopping, slope instability, or macrostability, is the most common failure mechanism leading
to dike breaches world­wide (Jonkman et al., 2018). Slope instability refers to the instability of the inner
slope, when large pieces of soil slide along a straight or curved slip plane. It is caused by a loss
of equilibrium, or stability, of a soil body. The equilibrium is formed by (1) a driving moment, that is
the weight of the soil body to the left of the center point of a circular slip plane (water side), by (2)
a resisting moment, that is the soil mass to the right of the center point (land side), and (3) by the
shear strength along the slip plane. The failure mechanism is driven by the infiltration of water into
the dike body and its foundation, which leads to a rise of the phreatic line and thus an increase of the
pore pressures. As a result, the soil weight increases, the effective stress and the shear resistance
decrease, and consequently a loss of equilibrium can occur. For example during long­lasting floods,
that can typically occur in rivers, this can happen, and lead to sliding of the inner slope. It is important
to note that shallow slidings are part of the failure mechanisms for revetments or micro­instability (see
Appendix B.2 on p.99).

The ratio of the moments, as described above, is used as the definition of the factor of safety 𝐹𝑜𝑆 in
reliability assessments:

𝐹𝑜𝑆 = 𝑀𝑅
𝑀𝑆

(3.14)

Subsequently, the limit state function can be defined as:

𝑍𝑚𝑎𝑐𝑟𝑜 = 𝐹𝑜𝑆 ⋅ 𝑚𝑑 − 1 (3.15)

where 𝑚𝑑 is the model uncertainty factor. The distribution parameters for 𝑚𝑑 can be found in the
‘Handreiking Faalkansanalyse Macrostabiliteit’ by Schweckendiek et al. (2017), in Table 3.1, p.37. If
the model is exact, it can be taken as a deterministic value of 1 with no standard deviation.

3.2.1. CSSM & SHANSEP
The dike’s resistance against slope instability can be determined according to the CSSM (Critical State
Soil Mechanics) theory. According to CSSM, the undrained shear strength of soils, 𝑠𝑢 [𝑘𝑃𝑎], is modelled
as:

𝑠𝑢 = 𝜎′𝑣𝑆(𝑂𝐶𝑅)𝑚 (3.16)

with
𝑂𝐶𝑅 =

𝜎′𝑣,𝑦
𝜎′𝑣,𝑖

=
𝜎′𝑣,𝑖 + 𝑃𝑂𝑃

𝜎′𝑣,𝑖
(3.17)

where 𝜎′𝑣,𝑖 denotes the in­situ effective vertical stress [𝑘𝑃𝑎], 𝜎′𝑣,𝑦 denotes the vertical yield stress [𝑘𝑃𝑎],
𝑂𝐶𝑅 represents the over­consolidation ratio [­], 𝑃𝑂𝑃 indicates the pre­overburden pressure [𝑘𝑃𝑎], 𝑆
denotes the undrained shear strength ratio (normally consolidated) [­] and 𝑚 is the strength increase
exponent [­]. 𝑆 defines the ratio between the undrained shear strength and the effective vertical stress
of the soil under normally consolidated conditions (i.e. the effective stress is equal to the limit stress).
𝑚 determines to what extent (with respect to the limit stress) a decreasing effective stress affects
the undrained shear strength. If 𝑚 is close to 1, the strength hardly decreases if the effective stress
decreases, as a result of higher pore pressures during a flood event for example (Schweckendiek et al.,
2017).

The undrained shear strength can also be evaluated using the SHANSEP (Stress History and Nor­
malised Soil Engineering Properties) method, that takes into account the stress history and path of the
soils (Simanjuntak et al., 2019).
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These models are applicable for the undrained shear strength of soils. This is the case for e.g. clay or
peat layers ­ where the permeability is low and little or no drainage will occur during sliding. Therefore,
undrained soil behaviour should be considered for these kind of soil layers.

3.2.2. Mohr­Coulomb
If the permeability of the soil is large ­ e.g. for sand ­ drainage can occur during sliding and drained
soil behaviour should be considered. In that case, the shear stress can be calculated according to
Mohr­Coulomb:

𝜏 = 𝑐′ + cos 𝜓 ⋅ sin 𝜑′
1 − sin 𝜓 ⋅ sin 𝜑′ = 𝜎

′ sin 𝜑′ (3.18)

where 𝜑′ indicates the effective friction angle [∘], which is a measure for the friction between soil par­
ticles. If the normal stress of the soil increases, the friction between soil particles increases propor­
tionally, under drained conditions. 𝜎′ represents the vertical effective stress along the slip plane [𝑘𝑃𝑎].
The cohesion 𝑐′ is zero for sand in the critical state, as well as the angle of dilatancy 𝜓 [∘], that’s why
the formula can be simplified as shown at the right hand side.

3.2.3. Correlations
It is well known that there is a negative cross­correlation between 𝑐′ and 𝜑′ of a soil type and that this
cross­correlation affects reliability analyses of geotechnical structures (Wang and Akeju, 2016). Be­
sides, there is evidence that the undrained shear strength parameters 𝑆 and𝑚 are correlated (Schweck­
endiek et al., 2017). Moreover, it seems that the value of 𝑆 increases with decreasing volumetric weight
of the soil 𝛾 (Leferink, 2020), which suggests a negative correlation between 𝑆 and 𝛾 of a soil type. About
other a possible relations ­ e.g. between 𝜑 and 𝛾 ­ nothing specific is found in literature.
In many cases, the soil characteristics of the soil layers present in a dike cross­section originate from the
same geological deposit as soil layers in a neighbouring dike cross­section. Therefore, it is likely that the
soil characteristics of neighbouring dike sections are identical or strongly correlated (Schweckendiek
et al., 2017) (Simanjuntak et al., 2019). In particular, it is assumed that mutual correlations between
neighbouring dike sections should be assumed for the strength parameters 𝑆,𝑚 and 𝜑, for the hydraulic
conductivities 𝑘 and for the volumetric weights 𝛾.

3.2.4. Limit Equilibrium Models
There are several possible approaches to determine the moments and thus the factor of safety, as
defined in Equation3.14. These approaches are called Limit Equilibrium Models (LEM). The most
relevant LEM’s are briefly explained below, in order of increasing complexity.

Bishop
This method checks the moment equilibrium of a circular slip plane. Also, the method ensures that the
vertical equilibrium is fulfilled, i.e. that the vertical forces between the slices are in balance. Interna­
tionally, it is the most commonly applied method for slope stability (Jonkman et al., 2018).

Uplift­Van
The Uplift­Van model assumes that the slip plane consists of a horizontal part bounded by two circular
parts, as shown in Figure 3.3. The safety is assessed by an equilibrium of the horizontal forces acting
on the compressed area between the active and passive slip circles. If water penetrates the aquifer
beneath the dike’s weak (clay) layers, this can lead to an increased pore water pressure and a reduction
of the effective stresses and shear resistance at the interface of these two layers. This can result in
uplift, where the clay layer virtually floats on the aquifer. In this situation, the critical sliding surface
typically looks like the elongated slip plane as proposed by Uplift­Van, and not circular as in the Bishop
model. Moreover, the Uplift­Van model not only considers the vertical equilibrium, but the horizontal
forces ­ that are important for base sliding ­ as well. The Uplift­Van method can be reduced to the
Bishop model by reducing the horizontal part to zero (Kanning et al., 2015).
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Figure 3.3: Schematic representation of the Uplft­Van model (van der Meij, 2019).

Spencer
The Spencer method can take any shape of slip plane and it can therefore be used to freely search
the slip plane with the smallest resistance. This is done by considering piecewise linear elements.
The Spencer model treats all three equilibria. Therefore, the method offers the greatest flexibility and
applicability to all sorts of sliding surfaces. The disadvantage of the method is that it is quite new, so
that there is little experience. In recent years, however, genetic algorithms have been developed to
find the sliding surface with the minimum factor of safety within pre­defined bounds. This is called the
Spencer ­ Van der Meij method.

3.2.5. Software D­Stability
The software D­Stability, developed by Deltares, can be used for the application of the abovementioned
methods in order to determine the factor of safety (van der Meij, 2019). For the undrained shear
strength, the SHANSEP method or a SU table ­ which will not be further discussed in this report ­ can
be applied. For the SHANSEP method, the user has to define the unit weight in 𝑘𝑁/𝑚3, the shear
strength ratio 𝑆 [­] and the strength increase exponent [­] for the soil layer under consideration. For the
drained shear strength, D­Stability makes use of the Mohr­Coulomb model. The user has to define the
unit weight in 𝑘𝑁/𝑚3, the cohesion 𝑐, the friction angle 𝜑 and the dilatancy angle 𝜓 in degrees for the
corresponding soil layer. Inside the software, the Waternet Creator is used for the generation of the
pore pressure.

All three LEM’s are available in D­Stability. The software offers two possibilities for the determination
of the critical slip plane. Firstly, the user can define the slip plane manually for one of the LEM’s and
the program will execute a single calculation of the 𝐹𝑜𝑆 for the given plane. Secondly, the user has
the option to let the search algorithm find the critical slip plane by defining the limit equilibrium method
and the search boundaries between which the algorithm will search for the critical slip plane. This is
called the optimisation procedure. Each optimisation procedure will generate slip planes within these
limits and will search for the slip plane with the lowest factor of safety, for the given LEM. The search
boundaries are defined in different ways, depending on the limit equilibrium method.

D­Stability enables different reliability methods for the calculation: deterministic, semi­probabilistic (us­
ing design values) and probabilistic (Level II). General theory about reliability methods can be found in
Section 2.3. A probabilistic computation requires the material properties to be entered as stochastic,
by defining the mean and standard deviation. Only a lognormal distribution can be used to define the
distributions of the parameters. This is the most common type of distribution for geotechnical parame­
ters and it prevents parameter values to become smaller than zero (van der Meij, 2019). Correlations
between material properties can be assigned, however only full correlation (𝜌 = 1) or no correlation
(𝜌 = 0) is possible in D­stability. Also correlations between entire materials and state points are possi­
ble.

It is important to emphasise that the probabilistic computation is in fact not fully probabilistic. A full
probabilistic calculation would be too time­consuming to be combined with an optimisation method for
the slip planes. Therefore, a calculation with design values is made first, to find the representative slip



3.2. Macrostability 26

plane. Then, the conditional failure probability of this slip plane is calculated by means of a FORM
analysis, for a given outside water level. So, per water level ­ and corresponding schematisation of the
pore water pressures ­ the relevant slip plane(s) is/are chosen and a FORM analysis (per slip plane)
is performed. The limit state function, as in Equation 3.15, is evaluated to find the conditional failure
probability. In order to calculate the failure probability of the cross­section, a fragility curve and the
probability density function of the water levels is needed. To construct a fragility curve, one needs to
repeat the process for several outside water levels. The combination of the fragility curve with the PDF
of the water levels can be achieved via linear interpolation and numerical integration over all water
levels. This must be done outside D­Stability, for example by means of the Probabilistic Toolkit.

The scientific background of the software is elaborated in Part III of the D­Stability User Manual by
van der Meij (2019).

3.2.6. WBI assessment method: STBI
In the WBI, failure is defined as sliding of the soil at the inner slope, resulting in a lowering of the
dike crest such that the defence loses its function. The assessment track is called STBI (stabiliteit
binnenwaarts) and is only applicable for dikes without any structural elements (i.e. anchors) or arti­
ficially reinforced soil. Based on the hydraulic loads, a phreatic line can be schematised. Different
approaches exist for the schematisation of the phreatic line, as briefly explained in the Appendix C.3.1
and the ‘Schematiseringshandleiding Macrostabiliteit’ by Rijkswaterstaat (2019a). In general, the in­
ner slope stability is determined by means of the Uplift­Van method, based on Mohr­Coulomb and
SHANSEP for the drained and undrained shear strength respectively. The parameters are based on
local measurements, expert judgement or on effective stresses. The software D­Stability is generally
used for the analysis. The calculation is based on a semi­probabilistic approach, using design values.
To account for the uncertainty and variation in space of the soil properties and subsoil layer structure,
several scenarios are assessed per cross­section. This approach is elaborated in Appendix B, of the
‘Bijlage III Sterkte & Veiligheid’ by Rijkswaterstaat (2017). The failure probability per cross­section is
based on the factor of safety per scenario:

𝑃𝑓;𝑖 = Φ(−
(𝐹𝑜𝑆𝑑;𝑖𝛾𝑑

) − 0.41
0.15 ) (3.19)

where:

• 𝑃𝑓;𝑖 = the failure probability for scenario 𝑖 [1/𝑦𝑒𝑎𝑟]
• Φ = the standard (cumulative) normal distribution [­]

• 𝐹𝑜𝑆𝑑;𝑖 = the computed 𝐹𝑜𝑆 for scenario 𝑖, based on the design value for the shear strength (=
characteristic value divided by the material factor) [­]

• 𝛾𝑑 = the model factor [­]

To get to the total failure probability of the cross­section, the failure probability per scenario should be
multiplied by the probability of occurrence of that scenario. This product is summed for all scenarios:

𝑃𝑓;𝑐𝑠 =
𝑛

∑
𝑖=1
(𝑃(𝑆𝑖) ⋅ 𝑃𝑓;𝑖) (3.20)

with 𝑃𝑓;𝑐𝑠 the failure probability per cross­section [1/𝑦𝑒𝑎𝑟] and 𝑃(𝑆𝑖) the probability of occurrence of
scenario 𝑖 [1/𝑦𝑒𝑎𝑟] . This failure probability is compared to the required failure probability of a cross­
section ­ under consideration of the length­effect ­ to determine the assessment result for the section.

This assessment procedure is elaborated in the ‘Regeling veiligheid primaire waterkeringen 2017 ­ Bi­
jlage III Sterkte en veiligheid’ by Rijkswaterstaat (2017) and in the ‘SchematiseringshandleidingMacrosta­
biliteit’ by Rijkswaterstaat (2019a).
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3.2.7. Choice for the model
The probabilistic model of this research makes use of a Monte Carlo simulation. As explained in Sec­
tion 2.3.4, Monte Carlo simulations can become an extremely time­consuming process ­ especially
when complex systems, like the assessment of macrostability, are involved. This led the path to the
use of metamodels. A metamodel, or surrogate model, predicts a model’s response based on a limited
set of model evaluations, called a training set (in this case slope stability calculations). Thus, predic­
tions of the model response can be obtained without evaluating the computational model itself (Echard
et al., 2011). This is very beneficial in the case of Monte Carlo simulations, where repetitive evaluation
of the model would be computationally expensive. Especially in the case of complex models like D­
Stability. Therefore, it has been decided to create a metamodel for the implementation of macrostability
into the probabilistic model of this research.

Metamodeling
A metamodel is a function 𝑦(𝑥) that approximates an unknown function 𝑍(𝑥) describing the response
of a system. The function 𝑦 is based on a set of points in the parameter space where the response
is known. An interpolation method is used to approximate the system’s response at points where it is
unknown. This concept is very convenient when the response of the system is obtained by an expensive
computational model. For multivariate systems with a non­linear model response, as is the case for
slope stability calculations, different interpolation methods exist.

Two methods for metamodeling have been investigated. Firstly, the ERRAGA model by Deltares
(2020), that is based on Gaussian Mixture Modelling and Kriging algorithms that incorporate machine
learning and correlation patterns in the interpolation (see Appendix C.1). It turned out that this model
is in fact too complex and not exactly suited for the purposes of this research’s model. Therefore it has
been decided to create a more simple metamodel based on Gaussian process regression (GPR). The
metamodel will be trained by D­Stability slope stability calculations, with the 𝐹𝑜𝑆 being the system’s
response to be approximated. Every dike section will be considered separately. In other words, sepa­
rate prediction functions will be obtained for each dike section. The input variables that will be used for
the training and test data depend on the geometry, and can differ per dike section. However, the water
level will be included in any case for each metamodel. It has been decided to create training data sets
of 1000 training data points.

Gaussian process regression
Gaussian processes (GP) are powerful generic supervised learningmethods, that are designed to solve
regression and probabilistic classification problems in different fields (Rasmussen and Williams, 2006).
GP are Bayesian non­parametric approaches, as they find a distribution over all possible prediction
functions 𝑓(𝑥) that are consistent with the observed data, instead of predefining the function 𝑓(𝑥) and
its parameters beforehand. The difference between parametric and non­parametric is further explained
in Appendix C.2.1.

As the name suggests, Gaussian processes assume that the probability distribution over possible func­
tions 𝑝(𝑓(𝑥1), …, 𝑓(𝑥𝑁)) is jointly Gaussian ­ or normally distributed ­ defined by a mean vector 𝜇 and
covariance matrix Σ. The covariance matrix is given by ∑𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗), where 𝑘 is a positive definite
covariance function, which is often called the kernel function. As with all Bayesian methods, GP begins
with a prior distribution and converts this to the posterior distribution over functions, as soon as data
points have been observed (Murphy, 2021). However, with an infinite amount of parameters possible,
there are potentially infinitely many functions that would fit the set of training data points. Gaussian
processes offer an elegant solution to this issue by putting some constraints on it. Firstly, a domain
of interest is defined for every input variable 𝑥. Secondly, the mean of the target variable 𝑦 should be
chosen such, that it represents the most probable characterisation of the data (𝑦 = 𝑓(𝑥)+ ∈). And
thirdly, the smoothness of the function is specified by means of the covariance matrix. In this way, it
is ensured that values that are close to each other in the input space will produce output values that
are close together as well. This covariance matrix ­ along with a mean function to output the expected
value of 𝑓(𝑥) ­ defines a Gaussian process by assigning a probability to each of the possible functions.
An elaborated description of GP is given in Appendix C.2.

One main advantage of GP is that the prediction is probabilistic. Therefore, it is possible to compute
empirical confidence intervals, that can be used to decide whether one should refit the prediction in
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some region of interest. A disadvantage of GP, that should definitely be kept in mind for this research,
is that they lose efficiency in high dimensional spaces – namely when the number of features exceeds
a few dozens (Pedregosa et al., 2011). In general, it holds that the predictions are better for a smaller
number of input variables.

Scikit­learn
Scikit­learn is an open source machine learning library that supports supervised and unsupervised
learning (Pedregosa et al., 2011). Included among its library of tools is a Gaussian Process module.

For regression tasks ­ with the purpose of predicting a continuous response variable ­ a GaussianPro­
cessRegressor is applied by specifying an appropriate kernel (covariance function). Fitting proceeds
by maximising the log of the marginal likelihood. The GaussianProcessRegressor does not allow
for the specification of the mean function, as it always assumes it to be zero. This highlights the dimin­
ished role of the mean function in calculating the posterior, as also mentioned in the Appendix C.2 on
page 104. Scikit­learn offers a library of about a dozen kernels to choose from. A flexible choice
to start with is the Matèrn covariance (Fonnesbeck, 2017). A GP kernel can be specified as the sum
of additive components, if a combination of different kernels is desired.

Methodology
The purpose of the metamodels is to assess the factor of safety for macrostability without calling D­
Stability, in order to decrease the computational costs. It has been decided to use 10 parameters as
input variables for the metamodel, as listed in Table C.1. This choice is based on the consideration that
on one hand the metamodel loses efficiency in high dimensional spaces (Pedregosa et al., 2011) and
on the other hand that many parameters and soil layers are involved in failure due to macrostability. The
metamodel is trained by 1000 D­Stability computations in which the input variables of the metamodel
are slightly varying with every realisation. This assures that the metamodel is able to predict the factor
of safety for different values of the input variables. The D­Stability computations for the training data
are based on the Uplift­Van model. To make sure that the metamodel provides accurate predictions
for the complete domain of possible variables, it will be trained by values of the input variables that are
sampled from distributions with a larger standard deviation than the real distributions of the parame­
ters. Moreover, Latin hypercube sampling (LHS) will be applied to create the training data set. Latin
hypercube sampling is a method to generate random samples of parameter values that are equally
distributed over the variable space. The practical implementation of the metamodeling is elaborated in
Section 5.6.1.

Subsequently, the metamodels will be implemented within the Monte Carlo simulation to determine the
𝐹𝑜𝑆 for each evaluation of the limit state function (Equation 3.15). The model factor 𝑚𝑑 will be based
on the uncertainty of the Uplift­Van model and the metamodels itself.

Figure 3.4: Left: Noise free case for GP regression. Right: Noisy case and more training data points (Pedregosa et al., 2011).
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3.3. Piping
Backward erosion piping (or just piping) is the relevant type of internal erosion for dikes with low­
permeability dike bodies. There are three main sub­mechanisms that play a role in the piping process:
uplift, heave and backward erosion / piping. According to the current state of knowledge, uplift, heave
and backward erosion evolve in the phases as illustrated in Figure 3.5. The process might stop at
several points in time. The limit states and assessment models that will be elaborated below are based
on this conceptual model of the piping process (Jonkman et al., 2018).

Figure 3.5: Phases of the piping process (Jonkman et al., 2018).

Definitions
The definitions of the relevant piezometric heads Φ and phreatic levels ℎ, that are important for the
evaluation of the sub­mechanisms, are presented in Figure 3.6. The situation presented in the figure,
with an aquifer underlying a blanket layer / aquitard, is very common in the Netherlands.

The potential at the exit point, Φ𝑒𝑥𝑖𝑡 is defined as:

Φ𝑒𝑥𝑖𝑡 = ℎ𝑝 + 𝜆(ℎ − ℎ𝑝) (3.21)

where ℎ𝑝 is the phreatic level of the hinterland (at the exit point), with respect to mean sea level
[𝑚+NAP], which is assumed to be equal to the piezometric head in the far hinterland. The damp­
ing factor 𝜆 [­] can be estimated using groundwater flow models, by data calibration or based on expert
judgement. If a Dupuit flow model is used, the damping factor is approximated by Equation 3.22. The
Dupuit flow model assumes predominantly horizontal flow with vertical leakage.

𝜆 = 𝜆ℎ
𝐿𝑓 + 𝐵 + 𝜆ℎ

exp ((𝐵/2 − 𝑥𝑒𝑥𝑖𝑡)/𝜆ℎ), 𝑥𝑒𝑥𝑖𝑡 > 𝐵/2 (3.22)

where:

• 𝐿𝑓 is the length of the (effective) foreshore [𝑚]
• 𝐵 is the width of the dike [𝑚]
• 𝑥𝑒𝑥𝑖𝑡 is the distance of the exit point from the center of the dike footprint [𝑚]

• 𝜆ℎ is the leakage­factor for the hinterland section [𝑚], given by 𝜆ℎ = √𝑘𝐷𝑑/𝑘ℎ, with:
– 𝑘 the hydraulic conductivity of the aquifer [𝑚/𝑠]
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– 𝐷 the thickness of the aquifer [𝑚]
– 𝑑 the thickness of the hinterland aquitard at the exit point [𝑚]
– 𝑘ℎ the hydraulic conductivity of the hinterland section [𝑚/𝑠] .

The exit­gradient 𝑖 is the gradient in the aquitard at the exit point and it is defined as:

𝑖 = (Φ𝑒𝑥𝑖𝑡 − ℎ𝑝)/𝑑 = 𝜆(ℎ − ℎ𝑝)/𝑑 (3.23)

Figure 3.6: Schematic representation of the situation and the associated groundwater flow model (Jonkman et al., 2018).

Uplift
Uplift is concerned with the rupturing of the low­permeability cohesive aquitard. The uplift model that
is used in safety assessments is based on a comparison of the pore pressures at the upper boundary
of the aquifer with the weight of the aquitard layer (Jonkman et al., 2018). This can be translated into
a limit state function as follows :

𝑍𝑢 = 𝑔𝑢(𝑥) = 𝑚𝑢 ⋅ ΔΦ𝑐,𝑢 − ΔΦ (3.24)

where 𝑚𝑢 is the model factor [­], addressing the uncertainty of the critical head difference. And with:

ΔΦ𝑐,𝑢 = 𝑑 ⋅
𝛾𝑠𝑎𝑡 − 𝛾𝑤
𝛾𝑤

(3.25)

ΔΦ = Φ𝑒𝑥𝑖𝑡 − ℎ𝑝 (3.26)

where ΔΦ𝑐,𝑢 denotes the critical head difference [m] , 𝛾𝑠𝑎𝑡 the saturated volumetric weight of the aquitard
[𝑘𝑁/𝑚3] and 𝛾𝑤 the saturated volumetric weight of water (= 10 𝑘𝑁/𝑚3) . The corresponding factor of
safety [­] is defined as:

𝐹𝑜𝑆𝑢 =
ΔΦ𝑐,𝑢
ΔΦ (3.27)

Heave
Heave considers the start of erosion of aquifer material (usually sand). The exceedance of a critical
heave gradient 𝑖𝑐,ℎ is considered a necessary condition. The corresponding limit state function 𝑍ℎ [­] is
defined as:

𝑍ℎ = 𝑔ℎ(𝑋) = 𝑖𝑐,ℎ − 𝑖 (3.28)

where 𝑖 is the exit gradient (see Equation 3.23). The corresponding factor of safety [­] is defined as:

𝐹𝑜𝑆ℎ =
𝑖𝑐,ℎ
𝑖 (3.29)

Several approaches have been proposed in literature to define the critical (exit) heave gradient 𝑖𝑐,ℎ.
For example, by Terzaghi (1996):

𝑖𝑐,ℎ =
(1 − 𝑛)(𝛾𝑠 − 𝛾𝑤)

𝛾𝑤
≈ 1.65(1 − 𝑛) (3.30)
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where 𝑛 is the porosity [­] and 𝛾𝑠 is the volumetric weight of sand grains (= 26.5 𝑘𝑁/𝑚3). . This
approach results in rather high values of 𝑖𝑐,ℎ. The critical heave gradient can also be assumed a­
priori to be lognormal distributed with the following mean and standard deviation: 𝑖𝑐,ℎ = 𝐿𝑁(0.7, 0.1)
(Jonkman et al., 2018). This implementation is applied within the WBI.

Figure 3.7: Definitions for backward erosion assessment by the revised Sellmeijer model (Jonkman et al., 2018)..

Backward erosion
Backward erosion resistance is usually expressed in terms of a critical head difference 𝐻𝑐 [𝑚] . Sell­
meijer developed a theory on backward erosion stability based on the flow pattern generated by the
head difference between the water side and the land side water level ­ which is the driving force of
internal erosion ­ and the erosion resistance of the sand grains in a partially developed piping channel
(Jonkman et al., 2018). The Sellmeijer model has been revised after extensive physical model tests in
the Netherlands, which has led to the following limit state function:

𝑍𝑝 = 𝑔𝑝(𝑋) = 𝑚𝑝 ⋅ 𝐻𝑐 − 𝐻 = 𝑚𝑝 ⋅ 𝐻𝑐 − (ℎ − ℎ𝑝 − 0.3𝑑) (3.31)

where 𝑚𝑝 is the model uncertainty factor [­] and 𝐻 is the head difference [𝑚]. The definitions of the
parameters are illustrated in Figure 3.7. In the revised version, the critical head difference is given by:

𝐻𝑐 = 𝐹1 ⋅ 𝐹2 ⋅ 𝐹3 ⋅ 𝐿 (3.32)

with:
𝐹1 = 𝜂 (

𝛾𝑠
𝛾𝑤
− 1) tan 𝜃 (3.33)

𝐹2 =
𝑑70𝑚

3√(𝜐𝑘𝐿)/𝑔
( 𝑑70𝑑70𝑚

)
0.4

(3.34)

𝐹3 = 0.91(𝐷/𝐿)0.28/((𝐷/𝐿)
2.8−1)+0.04 (3.35)

where:

• 𝐿 is the seepage length in metres
• 𝜃 is the bedding angle in degrees
• 𝜂 is the drag factor coefficient [­]
• 𝜐 is the kinematic viscosity of water (= 1.33 ⋅ 10−6 𝑚2/𝑠)
• 𝑑70 is the 70%­fraction of the grain size distribution in metres

• 𝑑70𝑚 is the reference value for 𝑑70 in metres
The grain size 𝑑70 refers to the piping­sensitive layer, which is fine sand underlying an aquitard. If
the 𝑑70 is smaller than 63 or larger than 500 , the Sellmeijer model is not applicable (Rijkswaterstaat,
2017). The factor of safety 𝐹𝑜𝑆𝑝 [­] is defined as:

𝐹𝑜𝑆𝑝 =
𝐻𝑐

ℎ − ℎ𝑝 − 0.3𝑑
(3.36)
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Fault tree
Failure due to piping can only occur if all three sub­mechanism limit states are exceeded (𝑍𝑖 < 0, or
𝑃𝑓 , 𝑖). So, the sub­mechanisms form a parallel system and the total failure probability is:

𝑃𝑓,𝑝𝑖𝑝𝑖𝑛𝑔 = 𝑃𝑓,𝑢 ∩ 𝑃𝑓,ℎ ∩ 𝑃𝑓,𝑝 = {{𝑔𝑢(𝑥) < 0} ∩ {𝑔ℎ(𝑥) < 0} ∩ {𝑔𝑝(𝑥) < 0}} (3.37)

Failure due to piping

Uplift
𝑃𝑓,𝑢 = {𝑔𝑢(𝑥) < 0}

Heave
𝑃𝑓,ℎ = {𝑔ℎ(𝑥) < 0}

Backward erosion
𝑃𝑓,𝑝 = {𝑔𝑝(𝑥) < 0}

AND

Figure 3.8: Fault tree for the failure mechanism piping.

Importance of the parameters
By means of a FORM analysis, the sensitivity factors, or 𝛼­values, can be derived. These factors
quantify the importance of each stochastic parameter that is included in the piping assessment. The
analysis is executed for a typical Dutch dike section, for which the parameter values where derived from
Vrouwenvelder (2006) and Aguilar­López et al. (2016). The results are summarised in a qualitative
way in Table 3.3. They are in line with the expectations based on the equations above. However,
it is important to notice that the magnitude of the sensitivity factors highly depends on the values for
the mean and standard deviation of each stochastic parameter. In other words, the results could be
different for another location. The outcome is therefore mainly used to understand which parameters
contribute to the load and which to the resistance, and to get a rough feeling of the importance of the
different parameters.

Table 3.3: Example of the contribution of the piping parameters.

Parameter Uplift Heave Backward erosion

ℎ ­ ­ load, large
𝑑 resistance, small resistance, small resistance, small
ℎ𝑝 resistance, large resistance, large resistance, small

Φ𝑒𝑥𝑖𝑡 load, medium load, medium ­
𝑘𝑣3 resistance, medium resistance, medium ­
𝛾𝑠𝑎𝑡 resistance, small ­ ­
𝐷 ­ ­ load, small

𝑑70 ­ ­ resistance, medium
𝑘 ­ ­ load, large
𝐿 ­ ­ resistance, medium

Correlations
As defined in Equation 3.21, Φ𝑒𝑥𝑖𝑡 and ℎ𝑒𝑥𝑖𝑡 are related to each other by the damping factor, that is
expressed as in Equation 3.22. If the damping factor is not explicitly defined within an assessment, it
can be derived from this equation that positive correlations should be assumed for (Φ𝑒𝑥𝑖𝑡 ­ ℎ𝑝), (Φ𝑒𝑥𝑖𝑡
­ 𝑘) and (Φ𝑒𝑥𝑖𝑡 ­ 𝐷𝑐𝑜𝑣𝑒𝑟) and a negative correlation between (Φ𝑒𝑥𝑖𝑡 ­ 𝑘ℎ).
In literature, evidence could be found that the grain size 𝑑70 and the hydraulic conductivity 𝑘 are pos­
itively correlated (Chapuis, 2012), (Aguilar López et al., 2014). In fact, for studies where in­situ mea­
surements are scarce, the hydraulic conductivity is even commonly estimated based on the soil rep­
resentative diameter and the porosity, by application of the Kozeny­Carman equation (Aguilar­López
et al., 2016).
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3.3.1. WBI assessment method: STPH
Within the WBI, the assessment track for piping is called STPH (stabiliteit na piping en opbarsten
(heave)). Failure due to piping is defined as the exceedance of the critical piping gradient for which the
progressive erosion process cannot find an equilibrium any more. The failure probability due to piping
is determined by the smallest failure probability of the three sub­mechanisms, as they are assumed to
form an independent parallel system. Just like for macrostability, several scenario’s are assessed. The
failure probabilities due to uplift, heave and backward erosion per section are approximated as follows:

𝑃𝑓,𝑢 = Φ(
ln (𝐹𝑜𝑆𝑢0.48 ) + 0.27 ⋅ 𝛽𝑛𝑜𝑟𝑚

0.46 ) (3.38)

𝑃𝑓,ℎ = Φ(
ln (𝐹𝑜𝑆ℎ0.37 ) + 0.3 ⋅ 𝛽𝑛𝑜𝑟𝑚

0.48 ) (3.39)

𝑃𝑓,𝑝 = Φ(
ln (𝐹𝑜𝑆𝑝1.04 ) + 0.43 ⋅ 𝛽𝑛𝑜𝑟𝑚

0.37 ) (3.40)

where 𝛽𝑛𝑜𝑟𝑚 is the reliability index of the dike trajectory . The total failure probability of the section for
scenario 𝑖 is then:

𝑃𝑓;𝑖 =min (𝑃𝑓,𝑢;𝑖; 𝑃𝑓,ℎ;𝑖; 𝑃𝑓,𝑝;𝑖) (3.41)
The total failure probability of the cross­section is then computed in the same way as for macrostability,
as described by Equation 3.20. To get to the trajectory failure probability for piping, the length­effect
factor 𝑁 is considered.

3.3.2. Choice for the model
The limit state functions of the three sub­mechanisms, as described above, will be implemented in a
full­probabilistic framework. An existing Python script by HKV will be utilised, in which the different
limit state functions have been programmed. One main difference with the approach above is the
implementation of the exit point potential Φ𝑒𝑥𝑖𝑡. For the case study, the exit point potential is explicitly
defined as an input variable, instead of by computation according to Equation 3.21. However, the model
of this study will be built such that application of the Equations 3.21 and 3.22 is possible as well, since it
can be useful for future research. The critical heave gradient 𝑖𝑐,ℎ will be implemented by the lognormal
distribution, according to the WBI. The input will be defined in Chapter 5.

3.4. Erosion of the Grass Revetment at the Outer Slope
This failure mechanism concerns erosion of the grass revetment on the outer slope of a dike. The
strength of the grass cover is determined by the interplay between the grass and the underlying clay
layer. Together they form a layer of about 20 cm. An important part of the grass revetment are the roots.
From laboratory experiments it has been found that the density of the root network of a grass revetment
is even more important than the erosion resistance of the soil (’t Hart et al., 2016). A non­uniform grass
layer ­ with variation in the shape and size of the roots ­ performs much better than uniform grass. The
erosion resistance of the underlying clay layer depends on its plasticity and its sand content (Jonkman
et al., 2018). Erosion can occur as the result of two load types: (1) wave impact and (2) wave run­up.

Figure 3.9: Schematisation of the failure of a sandy dike, due to erosion of the grass by wave impact (’t Hart et al., 2016).
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3.4.1. Wave impact
Wave impact leads to an impulsive local increase of the water pressure on the slope. This impulse
penetrates the grass revetment and causes a pressure gradient that can damage the sod and even
remove parts of it: Just after the wave impact is over, the pressure in the grass revetment is still high,
which can lead to an outward directed pressure gradient that can push out the grass. Both the wave
height and the duration of wave impact loads are important. Repetitive wave impacts can, even for
strong roots, lead to erosion. This is the first sub­mechanism of this failure mechanism. The second
is the erosion resistance after development of a gap in the revetment. The revetment close to the gap
will be undermined. The erosion rate of the subsoil depends on the soil type. Sand will erode much
quicker than clay. Failure of the dike (i.e. flooding of the hinterland) occurs if erosion continues such
that the residual dike profile is lower than the water level. This process is schematised in Figure 3.9. It
is also possible that the erosion process provokes another failure mechanism. For example, due to the
narrowing dike profile, it is possible that the inner slope becomes unstable as a result of an increase of
the pore pressures in the dike (micro­/macro­instability).

The dike’s resistance against wave impact is often assessed by comparing the load duration to the
resistance time of the grass revetment. The resistance time ­ the measure of strength of the grass
revetment ­ is the duration that the grass revetment can resist a certain wave height. The load duration
is defined as the time that a certain point on the grass revetment is exposed to wave impact during a
storm event. It is assumed that wave impact occurs in the zone between mean sea level and half a
significant wave height below. However, with a varying water level ℎ and wave height 𝐻𝑚0 during a
storm event, the exposure zone varies in time during an event. To deal with this variation, a storm event
is treated as a series of stationary time intervals Δ𝑇: the water level and wave height are assumed to
be constant within one interval. Also, a certain amount of discrete points on the outer slope is chosen,
that form a series of evaluation levels.

For each evaluation level 𝑧𝑗 and each time interval 𝑡𝑖 of stationary hydraulic load parameters at the toe
of the dike, a so­called failure fraction can be computed (de Waal and van Hoven, 2019):

𝐹𝑓,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 =
𝑡𝑙𝑜𝑎𝑑,𝑧𝑗 ,𝑡𝑖
𝑡𝑠,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖

(3.42)

where:

• 𝐹𝑓,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 = Contribution of time interval 𝑡𝑖 to failure fraction of top layer at evaluation level 𝑧𝑗 [­]

• 𝑡𝑙𝑜𝑎𝑑,𝑧𝑗 ,𝑡𝑖 = Load duration of time interval 𝑡𝑖 at evaluation level 𝑧𝑗 in hours

• 𝑡𝑠,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 = Strength duration of top layer in time interval 𝑡𝑖 at evaluation level 𝑧𝑗 in hours
This failure fraction explicitly refers to the top layer, i.e. the grass sod. The underlying clay layer will be
evaluated separately, after the grass has failed. This will be explained later on.

Resistance time of the grass layer
The resistance time or strength duration of the top layer, in hours, can be computed as follows:

𝑡𝑠,𝑡𝑜𝑝 =

⎧
⎪

⎨
⎪
⎩

𝑡𝑠,𝑡𝑜𝑝,𝑚𝑖𝑛 for 𝑓𝛽 ⋅ 𝐻𝑚0 ≥ 𝑎 + 𝑐 or 𝑎 = 0

𝑡𝑠,𝑡𝑜𝑝,𝑚𝑎𝑥 for 𝑓𝛽 ⋅ 𝐻𝑚0 ≤ 𝑐

min [max { 1𝑏 ln (
𝑓𝛽⋅𝐻𝑚0−𝑐

𝑎 ) ; 𝑡𝑠,𝑡𝑜𝑝,min} ; 𝑡𝑠,𝑡𝑜𝑝,max] for 𝑐 ≤ 𝑓𝛽 ⋅ 𝐻𝑚0 ≤ 𝑎 + 𝑐

(3.43)

where 𝑎, 𝑏 and 𝑐 are constants in the relation between the significant wave height and the strength
duration (𝑎 ≥ 0 [𝑚], 𝑏 < 0 [1/ℎ𝑟] and 𝑐 ≥ 0 [𝑚] ). The parameter 𝑡𝑠,𝑡𝑜𝑝,𝑚𝑖𝑛 is primarily introduced
to avoid dividing by zero in Equation 3.42. Its value should be set to much smaller than likely values
for the time interval duration Δ𝑇, for example 0.001ℎ𝑟. The parameter 𝑡𝑠,𝑡𝑜𝑝,𝑚𝑎𝑥 is primarily introduced
to avoid infinite values for 𝑡𝑠,𝑡𝑜𝑝. Its value should be set to a recognisable dummy value, like 1000ℎ𝑟
(de Waal and van Hoven, 2019).
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The reduction factor 𝑓𝛽 for the angle of wave attack [­] is introduced to obtain the ‘effective wave height’:

𝑓𝛽 = {
max {(cos𝛽)𝑝 ; 𝑞} for 𝛽 ≤ 90∘
max {𝑞 ⋅ (100−𝛽10 ) ; 0} for 𝛽 > 90∘ (3.44)

with 𝑝 = 0.67 and 𝑞 = 0.35 (de Waal and van Hoven, 2019). The angle of wave attack 𝛽, relative to
perpendicular wave attack, is calculated from the direction of the waves and the orientation of the dike
normal, as shown in Equation 3.13.

Load duration
If (ℎ − 0.5 ⋅ 𝐻𝑚0) ≤ 𝑧𝑗 ≤ ℎ, the evaluation level 𝑧𝑗 [𝑚+NAP] will be exposed to wave impact load of
duration 𝑡𝑙𝑜𝑎𝑑 = Δ𝑇. Otherwise 𝑡𝑙𝑜𝑎𝑑 = 0.
For each evaluation level, the failure fractions are accumulated over the previous time intervals, to
eventually obtain the cumulative failure fraction for the storm event:

𝐹𝑓,𝑐𝑢𝑚,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 =
𝑡𝑖
∑
1
𝐹𝑓,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 (3.45)

As soon as this sum exceeds 1 after a certain time interval 𝑡𝑖 at a certain evaluation level 𝑧𝑗, the critical
value of the failure fraction is exceeded and the grass revetment has failed at that location during that
storm. From that moment onward, the underlying clay layer starts to erode. Different approaches exist
of how to deal with the erosion of the clay. It mainly depends on the material of the dike core. If the
dike core consists of mainly sand or clay with a high sand fraction, the residual strength of the dike core
is generally neglected. In that case, only the resistance of the underlying clay layer of the grass root
zone is considered, because the roots give extra strength to the layer. However, in recent years, new
insights have resulted in computational models that do take into account the residual strength of the
dike core, even if it consists of sand (Rongen et al., 2019). The various approaches for these different
situations will be elaborated below.

Resistance of the root zone or sub layer
In fact, each time interval 𝑡𝑖 contributes a failure fraction 𝐹𝑓,𝑐𝑚𝑏,𝑧𝑗 ,𝑡𝑖 to the failure fraction of the combi­
nation of top layer and sub layer. But, this contribution depends on the phase of the failure mechanism
process (de Waal and van Hoven, 2019):

𝐹𝑓,𝑐𝑚𝑏,𝑧𝑗 ,𝑡𝑖 =
⎧⎪
⎨⎪⎩

𝑡𝑙𝑜𝑎𝑑,𝑧𝑗,𝑡𝑖
𝑡𝑠,𝑡𝑜𝑝,𝑧𝑗,𝑡𝑖+𝑡𝑠,𝑠𝑢𝑏,𝑧𝑗,𝑡𝑖

for 𝐹𝑓,𝑐𝑢𝑚,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 < 1

𝑡𝑙𝑜𝑎𝑑,𝑧𝑗,𝑡𝑖
𝑡𝑠,𝑠𝑢𝑏,𝑧𝑗,𝑡𝑖

for 𝐹𝑓,𝑐𝑢𝑚,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 ≥ 1
(3.46)

where 𝑡𝑠,𝑠𝑢𝑏,𝑧𝑗 ,𝑡𝑖 is the strength duration of the sub layer in time interval 𝑡𝑖 at evaluation level 𝑧𝑗 [ℎ𝑟] :

𝑡𝑠,𝑠𝑢𝑏 =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑡𝑠,𝑠𝑢𝑏,𝑚𝑖𝑛 for 𝑑𝑐 ≤ 0.2 or 𝑎 = 0

𝑡𝑠,𝑠𝑢𝑏,𝑚𝑎𝑥 for 𝑓𝛽 ⋅ 𝐻𝑚0 ≤ 0.5 and 𝑑𝑐 ≥ 0.5

min( min(𝑑𝑐;0.5)−0.2
𝑐𝑑(tan𝛼)1.5max(𝑓𝛽⋅𝐻𝑚0−0.5;0.001)

; 𝑡𝑠,𝑠𝑢𝑏,𝑚𝑎𝑥) otherwise

(3.47)

Where 𝑑𝑐 is the thickness of the top and underlying clay layer [𝑚]. 𝑡𝑠,𝑠𝑢𝑏,𝑚𝑎𝑥 = 1000 and 𝑡𝑠,𝑠𝑢𝑏,𝑚𝑖𝑛 =
0.001 are the maximum and minimum value for the strength duration of the sub layer [ℎ𝑟], 𝑐𝑑 is the
correction factor for the sand content of the clay [­] and tan𝛼 is the representative slope [­], which is
generally 1/3. For the constant 𝑐𝑑, the following relationship can be applied:

𝑐𝑑 = 1.1 +max (0; 8 (𝐹𝑠𝑎𝑛𝑑 − 0.7)) (3.48)
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with 𝐹𝑠𝑎𝑛𝑑 the sand fraction in the clay [­]. From these formulas, the following can be noted: A steeper
slope, a larger sand content and a larger wave height result in less resistance.

Again, the failure fraction of the combination of grass and underlying clay layer is accumulated over
the time intervals of the storm for each evaluation level:

𝐹𝑓,𝑠𝑡𝑜𝑟𝑚,𝑧𝑗 =∑
𝑡
𝐹𝑓,𝑐𝑚𝑏,𝑧𝑗 ,𝑡𝑖 (3.49)

The decisive failure fraction for the grass section is the maximum from the values of the different eval­
uation levels and is called 𝐹𝑓,𝑠𝑡𝑜𝑟𝑚.

Residual strength of a clayey dike core
Some dikes consist of a clay dike core or a clay layer underneath the root zone. To include the residual
strength of the clay, the approach by Mourik (2015) can be applied. According to Mourik (2015), the
erosion volume 𝑉𝑒 [𝑚3/𝑚] per time interval 𝑡 can be computed as follows:

𝑉𝑒 = {
466 ⋅ 𝑐𝑒 ⋅ 𝐻2𝑠 ⋅ (𝐻𝑠 − 0.4)2 ⋅ (tan𝛼)2 ⋅min (3.6; 0.0061𝑠𝑜𝑝1.5

) ⋅ (1 − 𝑒
−0.079⋅𝑡
𝐻𝑠2 ) for 𝐻𝑠 > 0.4m

0 for 𝐻𝑠 ≤ 0.4m
(3.50)

in which 𝑐𝑒 is the erosion coefficient for the clay [𝑚3/𝑠] and 𝑠𝑜𝑝 is the wave steepness 𝐻𝑠/ (1.56 ⋅ 𝑇2𝑝 ),
with 𝑇𝑝 the wave spectral peak period [𝑠]. A schematisation of this erosion volume is presented in
Figure 3.10. It can be noted that shallow waves and a steep slope lead to more erosion. Consequently,
the erosion depth can be computed with:

𝑑𝑒 = √𝑉𝑒 ⋅ tan𝛼 − 0.14 (3.51)

for 𝑉𝑒 ≥ 0.75 𝑚3/𝑚 and tan𝛼 in the range of 1/3 to 1/4. The formulas can be applied for clay with a
sand fraction of less than 40% (clay category 1 or 2). Based on these formulas, it is possible to define
the erosion profile for every time interval and to determine whether the residual profile is still sufficient.
The dimensions of a sufficient residual profile depend on the situation.

Figure 3.10: Erosion profile after wave impact (Mourik, 2015).

Residual strength of a sandy dike core
In most cases, the residual strength of a sandy layer or core is neglected, because sand erodes rel­
atively quickly compared to clay. However, Rongen et al. (2019) adopted the following formula from
Klein Breteler et al. (2012) for the erosion rate of a sand body:

𝜕𝑉
𝜕𝑡 =

𝐻𝑠2
𝑇𝑝

( 0.15𝑠𝑜𝑝1.3
tan(𝛼)0.8 (135 − 1500 ⋅ 𝑠𝑜𝑝) ⋅ exp(−0.0091 ⋅ (

𝐵𝑡
𝐻𝑠
)
2
)) (3.52)

in which 𝐵𝑡 is the width of the erosion terrace, i.e. the shallow part of the erosion profile [𝑚]. A wider
terrace breaks the waves, resulting in less erosion.
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3.4.2. Wave run­up
Erosion due to wave run­up is the result of a flow on the outer slope due to wave run­up (and run­
down). The flow of running­up wave is turbulent, resulting in a rapidly varying pressure on the grass
revetment underneath. Due to penetration of this pressure and the spatial variability of the pressure,
the revetment is exposed to outward pressure gradients at some locations, that can rip out parts of the
grass revetment. Run­up occurs in the zone above the mean water level until the maximum level that
is reached by the waves running up the slope. Therefore, the analysis of run­up is restricted to:

𝑧𝑒𝑣𝑎𝑙 > max
storm event

(ℎ) (3.53)

with 𝑧𝑒𝑣𝑎𝑙 the level of interest on the outer slope [𝑚+NAP].
Erosion due to wave run­up is generally assessed by the so­called ‘cumulative overload’. The load is
mainly dependent on the wave front velocity. If at a certain level of interest, 𝑧𝑒𝑣𝑎𝑙, the effective front
velocity load of a single wave run­up event exceeds a critical velocity load, then the run­up event adds
to the cumulative overload 𝐷𝑙𝑜𝑎𝑑 at 𝑧𝑒𝑣𝑎𝑙. The formula describing this process is (de Waal and van
Hoven, 2015):

𝐷𝑙𝑜𝑎𝑑,𝑧 =
𝑁

∑
𝑖=1

max (𝛼𝑀,𝑧𝑈2𝑖,𝑧 − 𝛼𝑆,𝑧𝑈2𝑐 ; 0) (3.54)

where:

• 𝑁 = Number of incident waves [­]

• 𝑈𝑖,𝑧 = Front velocity along the slope of running­up wave 𝑖 at level 𝑧 [𝑚/𝑠]
• 𝑈𝑐 = Critical front velocity along the slope [𝑚/𝑠]
• 𝐷𝑙𝑜𝑎𝑑,𝑧 = Cumulative overload at level 𝑧 [𝑚2/𝑠2]
• 𝛼𝑀,𝑧 = Factor for increased load at transitions and objects, 𝛼𝑀,𝑧 ≥ 1 (1.0 by default) [­]
• 𝛼𝑆,𝑧 = Factor for decreased strength at transitions and objects, 𝛼𝑆,𝑧 ≥ 1 (1.0 by default) [­]

The number of running­up waves is assumed to be equal to the total number of incident waves 𝑁 at
the dike toe during the time interval Δ𝑇 [ℎ𝑟]:

𝑁 = 3600 ⋅ Δ𝑇
𝑇𝑚 ⋅ 𝛾𝛽

(3.55)

in which 𝑇𝑚 is the mean wave period in seconds: 𝑇𝑚 = 𝑐𝑇𝑚_𝑇𝑚−1,0 ⋅ 𝑇𝑚−1,0 and 𝛾𝑆 is a reduction factor
for the angle of wave attack:

𝛾𝛽 =min(1;max(110 − 𝛽30 ; 0)) (3.56)

where 𝛽 is the angle of wave attack, relative to the dike normal, as described by Equation 3.13.
The front velocity 𝑈𝑖,𝑧 depends on the level of interest 𝑧. From experiments it is known that the wave
front velocity is constant for about 75% of the distance that the wave runs up from the mean water level
(’t Hart et al., 2016). Therefore, it is advised to use the maximum front velocity 𝑈max between the still
water level and 75% of the run up level. 𝑈𝑖,𝑚𝑎𝑥 of run­up event 𝑖 [𝑚/𝑠] is described by:

𝑈𝑖,max = 𝑐𝑢√𝑔 ⋅ 𝑅𝑢𝑖 (3.57)

with constant 𝑐𝑢 = 1.1 and the run­up level 𝑅𝑢𝑖 defined with respect to still water level [𝑚].
Between 75% and 100% of the run­up level of a particular wave run­up event, it is assumed that the
velocity decreases linearly. Here, the front velocity 𝑈𝑖,𝑧 is given by:

𝑈𝑖,𝑧 = 𝑈i,max ⋅max(0;min(1; 𝑅𝑢𝑖 − 𝑧0.25 ⋅ 𝑅𝑢𝑖
)) (3.58)
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The run­up level 𝑅𝑢𝑖 can be calculated from a probability of exceedance 𝑃(𝑅𝑢 > 𝑅𝑢). The run­up
height ­ in metres relative to the still water level ­ for a wave field reaching a dike is assumed to be
Rayleigh distributed (disregarding any change in slope angle or roughness along the slope):

𝑅𝑢 = 𝑅𝑢2% ⋅ √
ln(𝑃(𝑅𝑢 > 𝑅𝑢))

ln(0.02) (3.59)

The 2% run­up can be computed by the TAW formulas (TAW, 2002), as described by the Equations
3.8 and 3.9. It is assumed that the run­up height 𝑅𝑢 follows a Rayleigh distribution, as it scales linearly
with the wave height. But not every wave in the time period reaches the evaluated level. This can
be solved by sampling several waves from the Rayleigh distribution, and calculating the load for each
wave (de Waal and van Hoven, 2015). However, this approach can be numerically expensive. As
an alternative, Rongen et al. (2019) adopted a different approach, based on Smale, 2018. In that
approach, the load at a level 𝑧 is evaluated on a specified range of 𝑅𝑢, to avoid requiring very large
sample sizes to obtain enough high waves. The range is defined from the run­up height for which 𝑈𝑐
is just exceeded (𝑅𝑢𝑚𝑖𝑛) until the upper level that is defined as 3 × 𝑅𝑢2%:

𝑅𝑢𝑚𝑖𝑛 =
𝑈2𝑐
𝑐2𝑢 ⋅ 𝑔

⋅ 𝛼𝑆𝛼𝑀
(3.60)

This range is divided into 100 steps and the load is computed for each step of 𝑅𝑢𝑖. The probability
mass for each step of 𝑅𝑢𝑖 is:

𝑓(𝑅𝑢𝑖) = 2 ⋅
𝑅𝑢𝑖

𝑅𝑢𝑖,𝑟𝑚𝑠2
⋅ exp(−( 𝑅𝑢𝑖

𝑅𝑢𝑖,𝑟𝑚𝑠
)
2
) ⋅ stepsize (3.61)

with:

𝑅𝑢𝑖,𝑟𝑚𝑠 = √
−𝑅𝑢2%2
ln(0.02) (3.62)

The actual velocity 𝑈𝑖,𝑧 at level 𝑧 for wave 𝑖 is then evaluated for each step of 𝑅𝑢𝑖, using Equation 3.58.
The damage is computed for every step, then multiplied by the density mass of the step and finally
summed over the steps and multiplied by 𝑁:

𝐷𝑙𝑜𝑎𝑑,𝑧 = 𝑁 ⋅∑max (𝛼𝑀 ⋅ 𝑈𝑖,𝑧,𝑠𝑡𝑒𝑝2 − 𝛼𝑆 ⋅ 𝑈𝑐2; 0) ⋅ 𝑓(𝑅𝑢𝑖) (3.63)

The cumulative overload value is computed for a storm event by accumulating the results over the time
intervals at the considered level on the outer slope. If the cumulative overload exceeds a certain critical
value 𝐷𝑐𝑟𝑖𝑡, then the grass will start to erode ­ i.e. show damage at that evaluation level. The failure
mechanism can thus be described by the following limit state function:

𝑍𝑟𝑢𝑛−𝑢𝑝 = 𝐷𝑐𝑟𝑖𝑡 − 𝐷𝑙𝑜𝑎𝑑 (3.64)

Note that this failure mechanism description does not explicitly take residual strength of the dike core
into account. However, the value of 𝐷𝑐𝑟𝑖𝑡 can be chosen such that it implies failure of the dike. In that
case, a value of 7000 𝑚2/𝑠2 is usually applied. After erosion has occurred, failure of the dike does
evolve in fact just as described for erosion of the sub layers due to wave impact. But now the starting
point is somewhat higher on the slope. Anyway, not much is known about the processes leading to
flooding due to erosion by wave run­up

In general, the loads due to wave impact are more critical than the loads due to wave run­up. In many
cases, the wave impact zone is covered with a hard revetment and the grass revetment above is only
exposed to wave run­up (’t Hart et al., 2016). In those cases, there will always be an interface between
hard and grass revetment. This interface is a weak spot.
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3.4.3. WBI assessment method: GEBU
In the WBI, the assessment track for erosion of the grass revetment on the outer slope is called GEBU
(Gras Erosie Buitentalud). Failure is defined as the moment at which a hole is present in the grass
revetment (grass + clay sub layer) due to erosion, so that the subsoil is no longer protected against
erosion (Rijkswaterstaat, 2017). The residual strength of the dike core is generally not considered. The
assessment is based on a semi­probabilistic approach. The resistance of the dike ­ the resistance time
of the grass revetment for wave impact and the critical wave front velocity for wave run­up ­ depends
on the quality of the grass, for which three categories exist: a closed, open or fragmentary sod.

For the upper reaches of the Dutch rivers, a constant water level is used, with a storm period of 12
hours. For every water level, the wave conditions corresponding to the return period of the norm failure
probability of the cross­section are computed. Therefore, the water level with the highest wave height
is normative.

Wave impact
In the assessment, the load duration is compared to the resistance time, including any strength of the
clay layer underneath. The assessment is based on the approach by de Waal and van Hoven (2019),
as described by the Equations 3.42 to 3.49. The following values are used for the parameters that
determine the resistance time of the grass:

• Closed sod: 𝑎 = 1, 𝑏 = −0.035, 𝑐 = 0.25
• Open sod: 𝑎 = 0.8, 𝑏 = −0.07, 𝑐 = 0.25

The decisive failure fraction of Equation 3.49 is used for the definition of a factor of safety:

𝐹𝑜𝑆 = {
𝐹𝑜𝑆max for 𝐹𝑓,𝑠𝑡𝑜𝑟𝑚 ≤

1
𝐹𝑜𝑆𝑚𝑎𝑥1

𝐹𝑓,𝑠𝑡𝑜𝑟𝑚
for else

(3.65)

The parameter 𝐹𝑜𝑆𝑚𝑎𝑥 is primarily introduced to avoid dividing by zero and can be set to 10 for example
(de Waal and van Hoven, 2019). Or in terms of a limit state function:

𝑍𝑖𝑚𝑝𝑎𝑐𝑡 = 1 − 𝐹𝑓,𝑠𝑡𝑜𝑟𝑚 (3.66)

Wave run­up
Failure due to erosion of the grass revetment on the outer slope by wave run­up is defined as the
moment when the top layer with a thickness of 0.2 m is locally ruptured and the erosion of the sub
layer starts. Only erosion of the grass revetment is determined, because there is no erosion model for
the underlying layers available for the run­up zone. The resistance of the clay layer is thus not taken
into account. The approach by de Waal and van Hoven (2015), as explained above, is applied for one
single normative (lowest) evaluation level of the grass revetment on the outer slope (Rijkswaterstaat,
2017). Usually this is at the transition between ‘hard’ (e.g. block, asphalt) and grass revetment. For
discrete time steps, the distribution of the run­up velocities is determined and used to evaluate the limit
state function, as described by Equation 3.64. For the critical wave front velocity, the following values
are applied:

• Closed sod: 6.6 𝑚/𝑠
• Open sod: 4.3 𝑚/𝑠

3.4.4. Prototype time­dependent loads on revetments
In the current assessment methods, peak values for the loads are used to evaluate the resistance
against erosion. In reality, these peak values are often not likely to occur at the same time and the
loads vary during an extreme event. Therefore, the current assessment method is too conservative.
Rongen et al. (2019) have developed a prototype for the calculation of the strength of a grass revetment
on dikes under hydraulic conditions varying in time. In other words, the progressive damage during a
storm is assessed by evaluating a time series of water level, wind speed and wind direction. For the
assessment of the grass revetment, the approach by de Waal and van Hoven (2019) is applied, as
explained by Equation 3.42 etc. However, the resistance of the grass root zone is taken out of the
equation, since the model also takes the residual strength of the dike core into account, as described
by Equations 3.50 ­ 3.52. More information about this prototype can be read in Appendix B.5.
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3.4.5. Choice for the model
Python scripts of the protoype, as introduced in Section 3.4.4, are used as reference for the model. In
these Python script, some of the formulas that are also applied in the WBI kernel for the assessment
of GEBU are implemented. It comes down to the following approach in the model:

• For the assessment of erosion of the grass revetment due to wave impact, the approach by
de Waal and van Hoven (2019) is applied (Equations 3.42, 3.49 etc.).

• For the erosion of the clayey dike core, Equation 3.50 is applied. The reason for this is that it is
also applied in the WBI assessment of the specific case study that will be considered. To stay
close to the assessment of the case study, the same approach will be applied.

• Wave run­up will be assessed by the approach as elaborated in Section 3.4.2 and by calling the
dllDikesOvertopping64.dll, in which the 2% run­up is computed, conform the WBI.

However, the time­dependent load aspect of the protoype will initially not be used in the model, in order
to keep it similar to the WBI assessment. But, including time­dependent loads would be a possible
improvement for the model.



4
Hydraulic Loads

Beside the limit state functions for the different failure mechanisms, the hydraulic boundary conditions
are required. A good representation of the hydraulic loads is essential in the assessment of flood
defences. Hydraulic models are needed to derive the local water levels and wave conditions from the
more general basic variables like the sea level and the river discharge.

The most important hydraulic loads are water levels, wave action, currents, groundwater flow and pore
pressures. The water level in turn is dependent on several phenomena: river discharge, tide, storm
surge etc. Its determination differs for river and sea water levels. The magnitude and direction, but also
the duration of these loads, are very important to include in the assessments. For example, the longer
the duration of extreme water levels, the higher the probability of overflow or overtopping. Furthermore,
the water will penetrate into the dike’s subsoil during a longer period, thus increasing the pore pressures
and decreasing the soil’s effective stress and therefore the dike’s stability (Jonkman et al., 2018).

The difficulty of defining the loads lies in their natural variability ­ and thus uncertainty. The loads vary in
time and in space. It is important to incorporate these uncertainties in the assessments, which makes
it important to define the load parameters as stochastic (random) variables. From the corresponding
probability density functions, the probabilities of occurrence of e.g. a certain water level can be derived.
Examples of uncertain variables that can be described as continuous stochastic variables are the wind
direction or river discharge. In the safety assessments of flood defences, the focus obviously lies on
extreme load values, with a small probability of exceedance, so on the right­hand tail of the distribution.
Therefore, the statistics of the extreme values are often used, that can be described by GEV distribu­
tions. Some uncertain variables are not easily described as continuous. Think of the wind direction,
which is better described as discrete stochastic, implying that a finite number of realisations is defined,
each with a certain probability. The sum of those is 1 (de Waal, 2016).

4.1. Current Assessment Method
Local statistics of water levels and waves are not available for each dike section or each flood defence
of the Netherlands. In practice, these local statistics are derived from the source (global) variables of
the local hydraulic loads and the physical relation between the source variable and the local hydraulic
load. Source variables are river discharges, wind velocities and sea water levels. These are called
the basic stochastic variables. These parameters are linked to a reference location, for example the
river discharge at Lobith or the wind speed at Schiphol. The definition of the basic stochastic variables
is focussed on extreme values. For every water system of the Netherlands, a specific combination of
basic stochastic variables and their corresponding reference location has been defined. In the WBI,
the definition of the physical relation between a basic stochastic variable at a reference location and
the local hydraulic load at the flood defence is a process that has been pre­defined and the results
are provided in databases. In these tables, local extreme values are provided for certain load events,
based on combinations of the basic stochastic variables. This is done for many different locations
(𝑥,𝑦­locations). For the assessment of a dike section, a normative location is chosen and the hydraulic
loads are derived from the corresponding suitable database. Interpolation between two locations is not
done. As an example, for a certain location at a flood defence along an upper river reach, it is possible
to find the local water levels for certain values of the corresponding discharge and the local values of
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the river bottom level and fetch length for the different wind directions. These can subsequently be
used to derive the local wave climate, by means of the Bretschneider equations:

𝐻𝑠 =
0.283𝑢2𝛼

𝑔 tanh(0.0125𝛼 (𝑔𝐹𝑢2 )
0.42
) , 𝛼 = tanh(0.530(𝑔𝑑𝑢2 )

0.750
) (4.1)

𝑇𝑠 =
2.4𝜋𝑢𝛽
𝑔 tanh(0.077𝛽 (𝑔𝐹𝑢2 )

0.25
) , 𝛽 = tanh(0.833(𝑔𝑑𝑢2 )

0.375
) (4.2)

where 𝐹 is the (effective) fetch length [𝑚] , 𝑢 is the wind speed [𝑚/𝑠] and 𝑑 is the water depth [𝑚] . The
formulas are applicable for narrow waters without significant flow velocities, like the Dutch Rhine.

The combination of hydraulic loads that are relevant depends on the system that is considered. The
different systems that are defined in the Netherlands are: tidal rivers, non­tidal rivers, lakes, estuaries
and seas. Brief descriptions of the basic stochastic variables are provided below.

1. Wind
Wind is the driving force for waves and it can be a source for high water levels. Wind is a so­called
fast stochastic variable, implying that its value fluctuates rapidly in time. Wind has two components:
wind direction and wind speed. The wind speed is defined as a discrete stochastic variable with a finite
number of realisations, mostly 16 directions, corresponding to a certain interval of directions. The wind
direction is a continuous stochastic variable, whose statistics are measured at specific locations. In
the current WBI approach each period of 12 hours is independent of the last or following 12 hours.
However, this is not the case in actual weather conditions (Rongen et al., 2019).

2. Sea water level
The sea water level is defined as a continuous stochastic variable, expressed as a probability distribu­
tion for a certain wind direction. The probability distribution refers to a maximum water level during a
tidal period. For the determination of the local sea water level, interpolation is applied (de Waal, 2016).

3. River discharges
The river discharge is a slow stochastic variable. The statistical information for the discharge consists
of exceedance frequencies and extreme durations. Reference locations are used for the statistical
information.

4. Lake water levels
The lake water level is the spatially averaged water level in a lake, and therefore a measure for the
water volume of the lake. It is a slow stochastic variable and thus the duration plays a role as well.

5. Storm surge barrier
The status of a storm surge barrier is a fast stochastic variable. It is discrete, often with two possible
realisations: open or closed. It is only necessary to include a storm surge barrier as a stochastic
variable if the uncertainty of operation has to be accounted for.

The way in which the hydraulic loads and their uncertainties are incorporated in the assessments differs
per assessment track. For a semi­probabilistic approach, a design value is determined for every rele­
vant load parameter. The design value of a load parameter is the value that corresponds to a probability
of exceedance that is equal to the failure probability norm of the dike trajectory under consideration.
The design values are determined using extreme value statistics.

For assessment tracks that are exposed to more than one load parameter, it is more complicated to de­
fine the design values, since the combination of parameters should satisfy the probability of exceedance
corresponding the norm. This problem can be avoided by a probabilistic approach, like it is done for
overtopping and overflow. For the assessment tracks related to the revetment this is not yet possible
in the current assessment procedure. Therefore, dike revetments are assessed based on design val­
ues of both water levels and wave conditions (wave height, wave period and wind speed). However,
peak values in wave conditions and water levels do often not occur at the same time, which makes this
approach quite conservative (Rongen et al., 2019). Moreover, the normative load for revetments is in
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reality not only determined by the peak value of the load, but also by the duration and by the variation
of in time during an event. Some pragmatic choices have been made to incorporate these aspects ­ by
the so­called Q­Variant ­ but not in a very accurate way. An alternative for the Q­variant has recently
been proposed by Rongen (2020). The implementation of time dependent loads on revetments has
been investigated by means of a prototype by Rongen et al. (2019). These improvements are briefly
discussed in Appendix B.5 and Section 3.4.4.

4.2. Models
Models are needed for the derivation of the statistics of the basic stochastic variables and for the
translation from basic stochastics variables to other load variables (e.g. river water levels or waves).
Some relevant models are shortly introduced below.

RACMO
For the wind statistics, it is possible to make use of the RACMOmodel. The RACMOwind data consists
of 800 years of hourly values of the potential wind speed and wind direction (van Meijgaard et al., 2008).
The potential wind speed is the wind speed as it is measured on an open grass field at 10 metre height.
The RACMO data is generated by means of a weather model, which contains realistic patterns, such
as autocorrelation of the direction and wind speed.

GRADE
The statistics of the river discharge at Lobith and Borgharen can be determined by GRADE. GRADE
stands for Generator of Rainfall and Discharge Extremes. It is an instrument to derive physically­based
design discharges and associated flood hydrographs for the rivers Rhine and Meuse. Stochastic sim­
ulation of the weather and hydrological / hydrodynamic modelling are the key elements of this method.
The GRADE method includes a stochastic weather generator, a rainfall­runoff model and hydrological
and hydrodynamic routing, for example by SOBEK (Hegnauer et al., 2014). Based on a 50,000 year
long rainfall series, 50,000 years of discharges at Lobith (Rhine river) or Borgharen (Meuse river) were
calculated using hydrological and hydrodynamic models, resulting in frequency discharge curves and
flood hydrographs. In this set, the daily as well as the very extreme conditions are present (up to once
in ±50,000 years), giving a good representation of the variety of possible conditions.

Hydra­NL
Hydra­NL is a probabilistic model to compute the statistics of the hydraulic loads for the assessment
of flood defences in the Netherlands. It is consistent with the WBI 2017. Hydra­NL computes water
levels, wave conditions, hydraulic load levels and occurring overtopping discharges for revetments.
The model can also be used for the assessment of the crest height for overtopping and overflow.

4.3. Climate Change
A flood defence is generally assessed for a certain year in the future, for example 2050 or 2100. There­
fore, the hydraulic loads, that are applied in the assessment, should be adapted such that they are
representative for this reference year. This is where climate change comes into play. It is likely that the
discharge and wind conditions will be different in the future. However, there is a large uncertainty in the
forecasts by different climate models. In 2006, the Royal Dutch Institute for Meteorology (KNMI) has
created four climate scenarios, based on results of extensive climate research and different models.
Climate scenarios are consistent and plausible images of the future climate. They give an impression
of the changes in temperature, precipitation, wind and sea level for a climatological period of 30 years
(KNMI, 2006). Every scenario is plausible and it is hard to say which one is the most likely to occur.
The four scenarios are:

• G: Moderate; 1°C temperature increase in 2050, with respect to 1990. No changes in the air flow
patterns in Western Europe.

• G+: Moderate+; 1°C temperature increase in 2050, with respect to 1990. Milder and wetter
winters due to more western winds and hotter and dryer summers due to more eastern winds.

• W: Warm; 2°C temperature increase in 2050, with respect to 1990. No changes in the air flow
patterns in Western Europe.
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• W+: Warm+; 2°C temperature increase in 2050, with respect to 1990. Milder and wetter winters
due to more western winds and hotter and dryer summers due to more eastern winds.

These scenarios are used in design and in exploratory studies. In flood defence practice, implementing
a climate scenario generally results in higher probabilities for extreme discharges and wind speeds
and a change in the distribution of the wind directions. For coastal flood defences, the sea level rise is
obviously included as well.

4.4. Uncertainties
As mentioned above, there is a large uncertainty present in the determination of the hydraulic loads.
Different causes of uncertainty have been discussed in Section 2.2. Two particular forms of uncertainty
that are incorporated in the WBI assessments will be elaborated on below: statistical uncertainty and
model uncertainty.

4.4.1. Statistical uncertainty
There are four generic models to describe statistical uncertainties: (1) the additive model, (2) the mul­
tiplicative model, (3) the additive model with truncation and (4) the multiplicative model with truncation.
For the basic stochastic variable discharge, the additive uncertainty model is generally applied and for
the wind speed the multiplicative model (Geerse, 2015). In the additive model, the uncertainty stochas­
tic variable 𝑌 is added to the basic stochastic variable without uncertainty 𝑋: 𝑉 = 𝑋 + 𝑌, where 𝑉 is
the basic stochastic variable with the uncertainty included. In the multiplicative model, the uncertainty
stochastic variable is multiplied by the basic stochastic variable: 𝑉 = 𝑋 ⋅ 𝑌. 𝑌 is normally distributed
with mean 𝐸(𝑌|𝑋 = 𝑥) = 0 for the additive model and 𝐸 = (𝑌|𝑋 = 𝑥) = 1 for the multiplicative model.
So, the statistics of 𝑌 depend on the realisation 𝑥 of 𝑋. Now, the probabilities of exceedance of the
basic stochastic variable including uncertainty (𝑉) can be computed by numerical integration, as follows
(Geerse, 2015):

For the additive model:

𝑃(𝑉 > 𝑣) =
𝑛

∑
𝑖=1
𝑓(𝑥𝑖)Δ𝑥 [1 − 𝐹𝑌|𝑋=𝑥𝑖(𝑣 − 𝑥𝑖)] (4.3)

For the multiplicative model:

𝑃(𝑉 > 𝑣) =
𝑛

∑
𝑖=1
𝑓(𝑥𝑖)Δ𝑥 [1 − 𝐹𝑌|𝑋=𝑥𝑖(𝑣/𝑥𝑖)] (4.4)

where 𝑥𝑖 is a realisation of 𝑋. 𝑋 is often provided by a table with probabilities of exceedance.

Including the uncertainty results in smaller return periods ­ i.e. larger probabilities of occurrence ­ of
certain discharges or wind speeds, and thus larger failure probabilities with respect to the situation
without uncertainty. By accounting for the uncertainty in the statistics of the basic stochastic variables,
the effect of uncertainties is also included in semi­probabilistic assessments, without introducing an
extra variable (Diermanse and Jongejan, 2016). The process described above is often called integrating
out (in Dutch: ‘uitintegreren’).

4.4.2. Model uncertainty
Discharges are commonly translated to local water levels by means of models like SOBEK or WAQUA.
In general, models are not able to reproduce the exact actual water level. The main source of uncer­
tainty is the roughness and morphological changes under extreme circumstances (Chbab and Groe­
neweg, 2015). So, there is always an error Δℎ∗ in the local water level, that is defined as the difference
between the actual water level and the predicted water level by the model (Duits and Kuijper, 2019):

Δℎ∗ = ℎ𝑙𝑜𝑐,𝑤 − ℎ𝑙𝑜𝑐,𝑚𝑜𝑑 (4.5)

However, the local water level is an uncertain parameter. This uncertainty is incorporated by assuming
that the error Δℎ∗ is normally distributed: Δℎ∗ 𝑁(𝜇Δℎ∗ , 𝜎Δℎ∗). In Hydra­NL this model uncertainty is
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incorporated by a surcharge to the water level (additive model):

𝑉𝑖𝑛𝑐𝑙 = 𝑉𝑒𝑥𝑐𝑙 + (𝜇 + 𝜎 ⋅ 𝐸𝑁) (4.6)

in which 𝐸𝑁 is a stochastic variable with a prescribed distribution.

For the wave height andwave period, themodel uncertainty arises from the application of the Bretschnei­
der equations or the SWAN model, for the translation of the basic stochastic variable to the local wave
conditions. These model uncertainties are incorporated by multiplying the parameters by a factor 𝑓 that
is normally distributed as well (multiplicative model):

𝑉𝑖𝑛𝑐𝑙 = 𝑉𝑒𝑥𝑐𝑙 ⋅ (1 + 𝜇 + 𝜎 ⋅ 𝐸𝑁) (4.7)

In general, including these uncertainties leads to somewhat higher hydraulic loads (Chbab and Groe­
neweg, 2015). The model uncertainty parameters for the upper reaches of a Rhine branch (specifically
the Waal) are listed in Table 4.1. The 𝜇 and 𝜎 values for the wave conditions are relative values. A
negative value of the mean for the model uncertainties of the wave conditions implies that the applied
model underestimates reality.

The way in which the hydraulic loads will be implemented in the model of this study, will be explained
in the next chapter.

Table 4.1: Overview of the model uncertainty parameters .

Notation Distribution Expected value [m] Standard deviation [m]

𝛾1 = Δℎ∗ 𝑁(𝜇1, 𝜎1) 0 0.15
𝛾2 = 𝑓𝐻 𝑁(𝜇2, 𝜎2) −0.04 0.27
𝛾3 = 𝑓𝑇𝑚−1,0 𝑁(𝜇3, 𝜎3) +0.03 0.13
𝛾4 = 𝑓𝑇𝑃 𝑁(𝜇4, 𝜎4) +0.03 0.13
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5
Model Set Up

In this chapter, relevant information regarding the case study, its safety assessment by the water au­
thority and the resulting model input will be presented. Subsequently, the general model set up of the
probabilistic assessment framework will be explained.

5.1. Trajectory Sprok­Sterreschans
The probabilistic framework will be applied to the dike trajectory Sprok­Sterreschans as a case study.
This dike trajectory has been recently assessed by the water authority ‘Waterschap Rivierenland’
(WSRL), in collaboration with HKV. Therefore, a lot of data is available, that can be used for this study.
The case study entails the primary flood defence along the North side of the Waal River, between
Sprok and Sterreschans, to the east of Nijmegen. The dike trajectory has a length of about 25.8 km,
between the dike posts DD133 and DD001, and is part of the dike trajectory 43­4. The water authority
has performed a WBI assessment for the reference years 2025 and 2075. However, within this study,
the dike trajectory will only be assessed for the year 2075.

Figure 5.1: Overview and dike section division of the trajectory Sprok­Sterreschans.
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The maximum allowable failure probability of the trajectory is set to 1/10,000 per year. For the distribu­
tion of the allowable failure probability over the different failure mechanisms, the default WBI values for
the contributions per mechanism (𝜔𝑗), as elaborated in Appendix B.6, have been used. For the length­
effect, Equation B.2 on page 103 has been applied. The used values and results for the allowable
sectional failure probabilities are shown in Table 5.1.

Table 5.1: Maximum allowable failure probabilities per cross section per failure mechanism.

Failure mechanism 𝜔 (WBI) Length effect factor 𝑁 𝑃𝑛𝑜𝑟𝑚,𝑐𝑠 𝛽𝑛𝑜𝑟𝑚,𝑐𝑠
Overflow and Overtopping (GEKB) 0.24 1 2.40 ⋅ 10−5 4.07
Piping (STPH) 0.24 78.40(𝑎 = 0.90; 𝑏 = 300) 3.06 ⋅ 10−7 4.99
Macrostability (STBI & STBU) 0.04 18.028(𝑎 = 0.033; 𝑏 = 50) 2.22 ⋅ 10−7 5.05
Erosion outer grass revetment (GEBU) 0.05 1 5.00 ⋅ 10−6 4.42

5.1.1. Dike section division
Originally, the dike trajectory had been divided into 23 general dike sections, with additional subdivi­
sions for piping and macrostability into 28 dike sections. For piping, for example, the division had been
chosen such that the variation in cover layer thickness is minimal within a section. For the present
study, however, it is important to use the same division for each failure mechanism, since each sec­
tion will be assessed within one integral probabilistic computation for the different failure mechanisms
simultaneously. Therefore, some of the existing dike sections have been split up in order to have the
same division for every failure mechanism. The dike sections will be assessed for piping and macrosta­
bility. For overtopping, overflow and erosion of the grass revetment, assessments will be performed
for the dike posts. The new section division and the dike posts are presented in Figure 5.1 and listed
in Table D.1 on page 115, together with the old dike section division.

5.2. Model Input
The case study data forms the basis of the applied model input. Local data and the documentation of
the water authority (Leeuwendrent and van Zwol, 2020) have been consulted to define the stochastic
and deterministic input parameters of the model. An elaboration will be given below.

5.2.1. Dike geometry
The geometry of the dike has been determined by the water authority based on AHN3 data, at each
dike post location. These have been defined in .prfl­files, that will be used for the assessments of
this research. In general, inaccuracies in geometry measurements are so small that their contribution
to the failure probability is negligible (Schweckendiek et al., 2017). Therefore, the dike geometry will be
considered as deterministic. This concerns the crest height, outer slope geometry and dike orientation
at the dike posts. Settlements of the soil are not included for the reference years 2025 and 2075, since
these are negligibly small.

5.2.2. Geo(hydro)logical properties
The soil structure within the trajectory Sprok­Sterreschans is characterised by Holocene layers from
the ground level at NAP + 10 m until a maximum depth of NAP + 5 m. These Holocene layers consist
of both sand and clay layers. Underneath are the Pleistocene deposits. The first of these layers is a
permeable sand layer (‘Kreftenheye zandlaag’), that covers the complete trajectory. The next layer is
also a sand layer, the ‘Waalre pakket’. In between these two layers it is assumed that a clayey layer
exists. The spatial distribution of these layers ­ according to GeoTOP ­ is illustrated in Figure 5.2,
for dike section 7 to 16 as an example. For the other dike sections, the subsoil schematisations are
presented in Appendix D.4 on page 120. A soil section according to REGIS is shown in Figure D.4 on
page 118.
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Figure 5.2: Spatial variation of the Holocene soil layers according to the GeoTOP model, from dike section 7 to 16.

Spatial distribution of geological deposits
It can be seen that most of the Holocene and Pleistocene soil layers extend over multiple dike sections
along the trajectory. In Section 3.2.3 it is explained that soil characteristics are often spatially correlated
within one geological deposit. In order to define the spatial correlations that should be considered within
the model, it is analysed whether it can be assumed that soil layers in neighbouring dike sections
indeed originate from the same geological deposit. There are different ways to analyse the spatial
variability of the subsoil. For this study the following three schematisations were consulted: (1) D­
stability schematisations of the normative profiles per dike section, that are based on extensive soil
investigations along the trajectory; (2) the SOS (Stochastic Subsoil Schematisation), that has been
created as part of the WTI and summarises the relevant variations of the sub soil in different scenarios
of the soil structure, including their probabilities (Hijma and Lam, 2015); and (3) the model GeoTOP
from the DINOloket. GeoTOP provides more detail about the upper (Holocene) soil layers (TNO, 2020).

For the reliability assessment of the case study, the Holocene layers and the first Pleistocene aquifer
(‘Kreftenheye’ sand) are relevant. The D­Stability schematisations of the normative dike profiles are
taken as the starting point, since they are used for the assessment by the water authority ­ and will be
used for the metamodels, as explained later on. The other two soil models are consulted and compared
for extra evidence. If the soil layers seem to originate from the same geological deposit and the cross
sections are not too far from each other ­ i.e. the dike sections are not too large ­ it is assumed that
the soil properties are correlated. As an example, the stretch from dike section 7 to 16 is considered.
In Figure 5.2 it can be seen that there is a clay layer (dark green) that extends from about 0.7 to 2.3
km distance. It is very likely that this layer originates from the same geological deposit and that its
properties are correlated over its entire extent. The same conclusion can be drawn from Figure 5.3,
that is derived from the SOS in D­Soil model. In this figure, the uppermost clay layer (light green) is
present in every possible scenario, showing that this layer probably extents over a large part of the
stretch. Thus, it is assumed that the properties of the clay layer that is schematised in the D­stability
file of dike section 7 are correlated to the properties of the clay layer in the D­stability schematisation
of dike section 8.

The same kind of reasoning is applied for every dike stretch and every soil layer. If both models agree
with each other and with the layers present in D­stability, spatial correlations will be considered within
the model input, for properties of the same geological deposits. An overview of the layers that are
assumed to be correlated is shown in Table D.2 on page 122. The subsoil schematisations of SOS and
GeoTOP that are used for the analysis of the other trajectory stretches are shown in Appendix D.4. Not
every correlated layer will also be included in the metamodel of the corresponding dike section. The
ones that are included, are shown in bold.

All models and also Figure D.4 agree that the first Pleistocene sand layer spans the complete trajectory,
implying that the properties of this layer are spatially correlated over all dike sections. This sand layer
is seen as the aquifer that plays an important role for the mechanism piping. The relevant properties
of this layer will be elaborated in the next section.
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Figure 5.3: Subsoil structure scenarios according to SOS, from DD038 to DD078 (dike section 7 to 15). Abbreviations of the
soil types are explained in Appendix C of the ‘Schematiseringshandleiding Macrostabiliteit’ by Rijkswaterstaat (2019a).

It is important to mention that this analysis is not very accurate. The two models do not agree with each
other on some locations and the results are quite uncertain. Furthermore, it is not known how strong the
applied spatial correlations should be, i.e. in what order of magnitude Pearson’s correlation coefficient
should be chosen. More soil samples should be investigated to improve the knowledge about spatial
correlations. However, the aim of this research is mainly to study the impact of including correlations
in the assessment of the failure probability, instead of quantifying the exact degree of correlation.

The soil properties, that play in important role for the assessment of piping and macrostability, are gen­
erally associated with high uncertainties that arise from the spatial variability of the soil characteristics
and subsoil composition. In general, only point measurements are available while large uncertainties
in the length­direction of the dike are present and possibly unaccounted for. Therefore, including the
parameters as stochastic is a very logical and important step. The input distributions of the soil strength
parameters of the different soil layers are listed in Table 5.2. They are equal to the default distributions
determined by the water authority for dike trajectories along the Waal ­ based on soil sample collections
(Waterschap Rivierenland, 2018).

Table 5.2: Distributions of the soil strength parameters for the macrostability assessment.

Soil type Parameter 𝜇 𝜎 / 𝐶𝑉 Distribution

Dike material
𝛾 18.54 0.05 (𝐶𝑉) normal
𝜑 34.8 0.07 (𝐶𝑉) lognormal
𝑆 0.42 0.04 (𝜎) lognormal

Silty sandy clay

𝛾 18.73 0.05 (𝐶𝑉) normal
𝜑 32.5 0.07 (𝐶𝑉) lognormal
𝑆 0.35 0.03 (𝜎) lognormal
𝑚 0.84 0.03 (𝜎) lognormal

Silty clay

𝛾 16.82 0.05 (𝐶𝑉) normal
𝜑 35.7 0.09 (𝐶𝑉) lognormal
𝑆 0.31 0.04 (𝜎) lognormal
𝑚 0.85 0.07 (𝜎) lognormal

Humous clay

𝛾 15.16 0.05 (𝐶𝑉) normal
𝜑 34.1 0.14 (𝐶𝑉) lognormal
𝑆 0.30 0.04 (𝜎) lognormal
𝑚 0.71 0.05 (𝜎) lognormal

Holocene /
pleistocene sand

𝛾 20.0 / 18.0 0.05 (𝐶𝑉) normal
𝜑 36.7 0.05 (𝐶𝑉) lognormal
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Aquifer properties
The first Pleistocene layer is considered to function as the aquifer. Even though this layer extends over
the entire trajectory, it can be seen in Figure D.4 that the hydraulic conductivity 𝑘 and aquifer thickness
𝐷 vary along the trajectory. This is also evident from MORIA data, as illustrated in Figure D.5. In
general, REGIS and MORIA give results in the same order of magnitude. Only in the east of the
trajectory, the thickness according to MORIA is larger than the thickness according to REGIS and field
measurements. Also the conductivity is smaller in MORIA. The water authority therefore considers
MORIA to be somewhat less reliable than REGIS, since it better matches their field data. Still, both can
be used for the determination of the thickness and hydraulic conductivity of the aquifer for the different
dike sections. The water authority decided to apply a value of 60 𝑚/𝑑𝑎𝑦 for the hydraulic conductivity
of the aquifer for the piping assessment and a value of 100 𝑚/𝑑𝑎𝑦 for macrostability. For the thickness
of the aquifer, the thickness of the Kreftenheye sand layer had been applied. The corresponding values
along the trajectory are summarised in Table 5.3.

For the model input, it has been decided to deviate from the decision by the water authority to use
different values of the hydraulic conductivity for piping and macrostability. From the Figures D.4 and
D.5, it can be concluded that especially the choice of 𝑘 = 100 𝑚/𝑑𝑎𝑦 for macrostability is a rather
conservative choice. Furthermore, it can be concluded that there is quite some variation in 𝑘 along
the trajectory. Based on these considerations, it has been decided to derive a specific mean value for
the distribution of 𝑘 for each dike section, based on the two figures mentioned above. A lognormal
distribution and a coefficient of variation 𝐶𝑉 of 0.5 will be applied in the model input for the aquifer
hydraulic conductivities of the different dike sections, which are derived from the WBI parameter list
(Deltares, 2016).

For the thickness of the aquifer 𝐷 the values as listed in Table 5.3 are used for the mean values of
the distributions for the corresponding dike sections. A lognormal distribution is applied and 𝐶𝑉 = 0.1,
according to the parameter list (Deltares, 2016).

Table 5.3: Choices for the aquifer thickness by the water authority.

Dike posts Aquifer thickness

DD001 ­ DD036 25 m
DD036 ­ DD076 20 m
DD076 ­ DD098 25 m
DD098 ­ DD115 30 m
DD115 ­ DD133 15 m

The value for the aquifer grain size 𝑑70 has been based on measurements, as shown in Figure D.7.
It can be seen that there is no spatial trend visible in the grain size. Based on a sensitivity analysis
by the water authority, it was advised to use the local values instead of the regional values that are
often applied in assessments. Therefore, the water authority applied a design value of 390 𝜇𝑚 for
the complete trajectory. In this study, a lognormal distribution with a mean value of 425.43 𝜇𝑚 and a
standard deviation of 196.14 𝜇𝑚 will be applied, based on the local measurements (Deltares, 2016).

Blanket layer (aquitard) properties
Due to the lack of multiple monitoring wells in the area, pragmatic and somewhat conservative values
have been assumed by the water authority for the cover, or blanket, layer properties. Based on the soil
type of the fore­ and hinterland, it is not likely that the permeability of the cover layers deviates a lot
along the trajectory. Values of 𝑘𝑣1 = 0.4 𝑚/𝑑𝑎𝑦 for the foreland and 𝑘𝑣3 = 0.2 𝑚/𝑑𝑎𝑦 for the hinterland
had been applied, based on measurements at other locations than Sprok­Sterreschans. These values
are applied for the entire trajectory, except for the part between DD070 and DD077 (sections 14 and
15), where the blanket layer is significantly thicker and 𝑘 = 0.1 𝑚/𝑑𝑎𝑦 is applied. The determination of
the blanket layer thickness per dike section is mainly based on the DINO database. If there are ponds
in the dike section, it is assumed that the hydraulic conductivity is 0.1 𝑚/𝑑𝑎𝑦 and the blanket layer
thickness is 0.5 𝑚.
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For macrostability, the saturated volumetric weight of the blanket layer ­ 𝛾𝑠𝑎𝑡 ­ is based on soil investi­
gations, as shown in Figure D.6. Since there is a large scatter and no visible trend along the trajectory,
the water authority decided to apply one value for the assessment of piping, namely 17 𝑘𝑁/𝑚3 for the
complete trajectory.

Since there is little data available for the hydraulic conductivities of the fore­ and hinterland blanket
layers, the values for 𝑘𝑣1 and 𝑘𝑣3, as assumed by the water authority, will be considered as the mean
values of the distributions for this study. A lognormal distribution is used, with a coefficient of variation
𝐶𝑉 = 0.5, just like for the hydraulic conductivity of the aquifer. For the volumetric weight, the values that
had been applied for macrostability by the water authority are used for both macrostability and piping in
the probabilistic model. A shifted lognormal distribution (shift = 10) is applied, with 𝐶𝑉 = 0.05, conform
the WBI parameter list. The uncertainty mainly arises from measurement uncertainty and the limited
number of soil tests, i.e. statistical uncertainty (Schweckendiek et al., 2017).

For macrostability, it was too complicated to vary the blanket layer thickness within the D­Stability
schematisations of the training data for the metamodels. Therefore, the blanket layer thickness is
considered as a deterministic value per dike section. For the piping assessment, the thickness of
the hinterland blanket layer, 𝑑, is included as stochastic variable. A lognormal distribution is applied,
conform the WBI parameter list. For each dike section, a list of input parameter data is available for the
possible exit points within that section. The data are based on ArcGIS computations, geohydrological
measurements and analyses. A distribution has been fit on these data to derive the mean and standard
deviation of the lognormal distribution that is applied as model input for the blanket layer thickness of
the corresponding dike section. Since not much data is available, these fits are quite uncertain.

Phreatic lines and head lines
As explained above for the blanket layer thickness, data could be derived from ArcGIS computations
for different piping exit points within each dike section. This also holds for the seepage length 𝐿, the
phreatic level at the exit point ℎ𝑒𝑥𝑖𝑡 and for the potential at the exit point Φ𝑒𝑥𝑖𝑡. A lognormal distribution
is fit on the seepage length data and a normal distribution for ℎ𝑒𝑥𝑖𝑡 and Φ𝑒𝑥𝑖𝑡, conform the WBI pa­
rameter list. The phreatic level of the hinterland is assumed to be equal to the ground level, since it is
assumed that the polder level cannot be maintained during a flood event. It is known that much seep­
age occurs in the area during flood events, due to the relatively thin blanket layers. For macrostability,
the implementation of the phreatic lines and head lines will be elaborated in Section 5.6.1.

Summary
A summary of the applied distributions and values for the model input is given in Table 5.4. Nominal im­
plies that the value depends on the dike section. The input distributions of the piping and macrostability
parameters are shown in Figure D.8 on page 119 for dike section 6, as an example.

Table 5.4: Summary of stochastic input parameters that are based on case study data.

Parameter Distribution 𝜇 𝜎 / 𝐶𝑉

Aquifer hydraulic conductivity 𝑘 Lognormal nominal 𝐶𝑉 = 0.5
Aquifer thickness 𝐷 Lognormal nominal 𝐶𝑉 = 0.1
Grain size 𝑑70 Lognormal 4.25 ⋅ 10−4 𝑚 𝜎 = 1.96 ⋅ 10−4 𝑚
Blanket layer hydraulic conductivities 𝑘𝑣1, 𝑘𝑣3 Lognormal nominal 𝐶𝑉 = 0.5
Volumetric weight 𝛾 Lognormal* nominal 𝐶𝑉 = 0.05
Blanket layer thickness 𝑑 Lognormal nominal nominal
Seepage length 𝐿 Lognormal nominal nominal
Hinterland phreatic level ℎ𝑒𝑥𝑖𝑡 Normal nominal nominal
Exit point potential Φ𝑒𝑥𝑖𝑡 Normal nominal nominal

*(shift=10)
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5.2.3. Hydraulic loads
The hydraulic boundary conditions that were applied by the water authority during the assessment of the
trajectory Sprok­Sterreschans can be divided into two parts: the so­called HBN (‘Hydraulisch belasting
niveau’) and the design, or norm, water level. The HBN is the minimum required crest height for a
certain overtopping discharge. The design water level was used for the assessment of macrostability
and piping and corresponds to the maximum allowable failure probability of the trajectory (1/10,000 per
year). The following relevant assumptions and starting points have been applied by the water authority
for the derivation of the hydraulic boundary conditions (Leeuwendrent and van Zwol, 2020):

• ScenarioW+ has been applied to include the effects of climate change, as explained in Section 4.3

• Statistical uncertainties have been ‘integrated out’ according to the WBI method, as explained in
Section 4.4. It means that the uncertainty is not included as a separate stochastic variable, but
is incorporated in the statistics for a probabilistic model (in this case Hydra­NL)

• The discharge statistics of the Rhine at Lobith are based on GRADE, as explained in Section 4.2

• For the wind statistics, the measuring station at Deelen is used as reference location

• The discharge at Lobith is capped at 18, 000 𝑚3/𝑠
• Loads due to earthquakes, ship collision and ice are not included.

The water authority applied a so­called ‘DPa database physica’ for reference years 2050 and 21001. As
explained in Section 4.1, the DPa database is used to derive the local water levels and wave conditions
at several locations along the trajectory. For the assessment of overtopping, overflow and erosion of
the grass revetment, the hydraulic boundary conditions were derived from a combination of this DPa
database and the WBI database. These databases have 13 overlapping locations, so­called illustration
points. Subsequently, the databases were combined with the so­called HLCD for reference years 2050
and 2100, in order to link the discharges, and thus water levels, to probabilities. The HLCD (Hydraulic
Loads Configuration Database) contains the relevant statistical data, including statistical uncertainties
and correlations, for the load stochastic variables of all locations along Dutch flood defences. For the
year 2075, the data for 2050 and 2100 have been interpolated.

Model input
The wind and discharge statistics have been derived from Hydra­NL2 input files. For the discharge,
these contain the probabilities of exceedance for certain values of the peak discharge at Lobith, with an
assumed duration of the trapezium of 30 days, including statistical uncertainty, according to the WBI.
The discharge statistics are created for climate scenario W+, within the GRADE project (Hegnauer
et al., 2014). The reference years 2050 and 2100 are interpolated to obtain the discharge statistics for
2075. The resulting probabilities of exceedance are shown in Figure 5.4.

Figure 5.4: Probabilities of Exceedance for the peak river discharge at Lobith, derived from the OI2014 input file for Hydra­NL,
for climate scenario W+, including statistical uncertainties and interpolated for the year 2075.

1DPa_Riv_Rijn_oever_2015_ref_S10_DM1p1p12_v02
2Files: Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid ; Ovkans_Lobith_piekafvoer_OI2014_W_2100
_metOnzHeid ; Ovkanswind_Deelen_2017_metOnzHeid ; Richtingskansen_Deelen_2017
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The assessments by the probabilistic model will be executed conditional on the river discharge, in
order to reduce the computation costs. After all, the failure probability conditional on a high discharge
is higher and thus less realisations are needed to determine this conditional probability (see Equation
2.10 on page 11). Subsequently, the total failure probability can be computed by:

𝑃𝑓;𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =
𝑛

∑
𝑖=1
𝑃(𝑄𝑖) ⋅ 𝑃𝑓;𝑖 (5.1)

where 𝑃𝑓;𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 is the total failure probability of the trajectory per year, 𝑃(𝑄𝑖) is the probability of
occurrence of river discharge 𝑄𝑖 [1/𝑦𝑒𝑎𝑟] and 𝑃𝑓;𝑖 is the failure probability given discharge 𝑄𝑖. The
probabilities of occurrence can be derived from the empirical CDF. For this, the Hydra­NL data for 2075
has been interpolated logarithmically, which means that the logarithms of the probabilities are linearly
interpolated for values of the discharge. The resulting CDF can be used to derive the probabilities of
occurrence of certain discharges, as follows:

𝑃(𝑄𝑖) ≈ 𝑃(𝑎 < 𝑄𝑖 ≤ 𝑏) = 𝐹𝑄(𝑏) − 𝐹𝑄(𝑎) = ∫
𝑏

𝑎
𝑓𝑄(𝑢)𝑑𝑢 (5.2)

in which 𝑎 and 𝑏 form a very small interval around 𝑄𝑖. The results are shown in Table 5.5.
Since there has not been any flood event along this trajectory in the past 50 years, it is assumed
the discharges with a smaller return period than 50 years do not lead to failure. From Figure D.1, it
can be derived that a return period of 50 years corresponds to a peak discharge at Lobith of 10, 800
𝑚3/𝑠. Therefore, discharges smaller than 10, 000 𝑚3/𝑠 are not considered within this study. For the
wind, the probabilities of exceedance of the 12­hourly maximum wind speeds at Deelen, given the wind
direction, are derived from Hydra­NL. These can be combined with the probabilities of occurrence of
the corresponding wind directions. Subsequently, a Weibull distribution has been fit on the CDF of the
Hydra­NL wind speed data for each wind direction, as can be seen in Figure D.3 on page 117. Again,
the probabilities have been logarithmically interpolated for the wind speed.

Within the probabilistic model, the value of the river discharge will be translated to a water level for
each dike section and each dike post. For this, the same DPa database is used as applied by the
water authority. For the wave conditions, random samples of the wind direction are drawn first and
then a random sample of the corresponding wind speed distribution is drawn ­ for each realisation of
the Monte Carlo simulation. These are translated to the local wave conditions at each dike post, by
means of the DPa database and the Bretschneider equations (see Section 4.1 on page 41). The model
is capable of random sampling the river discharge from its distribution as well, if desired.

It is important to mention that the combination of the applied statistics and the translation database
does not result in exactly the same hydraulic boundary conditions as applied in the assessment by
the water authority. The difference mainly lies in the model uncertainty, which is not included in the
hydraulic boundary conditions of this study. In the hydraulic boundary conditions that are used by the
water authority, there is an extra stochast included for the model uncertainty. This model uncertainty
is normally distributed with 𝜇 = 1 and 𝜎 = 15 𝑐𝑚. It is added by Hydra­NL after the translation from
discharge to water level statistics. In fact, a confidence interval is added to the (return period vs. water
level)­graph. Thereafter, this confidence interval is ‘integrated out’, as explained in Section 4.4.2. It
results in a shift of the water level statistics towards higher values, i.e. the same water level has a
smaller return period if model uncertainties are included. This shift is more extreme for larger return
periods (Pleijter et al., 2017). In other words, inclusion of this model uncertainty results in higher failure
probabilities. Moreover, capping (‘aftoppen’) of the discharge statistics at 18, 000 𝑚3/𝑠 is not applied
within this research, leading to somewhat different probabilities of the river discharge.

It would be possible to include the model uncertainty in the probabilistic assessments of this study, by
the procedure as explained in Section 4.4.2. However, considering the aim of this research, which is not
to exactly reproduce the results of the existing assessment, but to investigate the impact of aspects like
correlations, it is decided that including model uncertainty is out of the scope of this research. Besides,
the current WBI procedure of including these model uncertainty shows room for improvement and is
the subject of recent research within the Big5­project (Strijker et al., 2020).
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Table 5.5: Probabilities of occurrence of extreme peak discharges at Lobith..

𝑄𝑖 [𝑚3/𝑠] 𝑃(𝑄𝑖) [1/𝑦𝑒𝑎𝑟]

10, 000 1.23 ⋅ 10−2
11, 000 8.39 ⋅ 10−3
12, 000 6.27 ⋅ 10−3
13, 000 3.52 ⋅ 10−3
14, 000 3.07 ⋅ 10−3
15, 000 1.43 ⋅ 10−3
16, 000 5.00 ⋅ 10−4
17, 000 1.79 ⋅ 10−4
18, 000 5.66 ⋅ 10−5
19, 000 2.32 ⋅ 10−5
20, 000 7.77 ⋅ 10−6
21, 000 2.49 ⋅ 10−6
22, 000 7.49 ⋅ 10−7
23, 000 1.98 ⋅ 10−7
24, 000 4.65 ⋅ 10−8
25, 000 6.95 ⋅ 10−9

5.3. Assessment of Overflow and Overtopping
Within the assessment by the water authority, overflow and overtopping are assessed by means of the
HBN, which is in fact an assessment of the height. The assessment is based on themaximum allowable
failure probability per dike section for overflow and overtopping (see Table 5.1). The assessment was
at first semi­probabilistic with a critical overtopping discharge of 10 𝐿/𝑚/𝑠, but also values of 𝑞𝑐 = 0.1,
1.0, 5.0 𝐿/𝑠/𝑚 had been assessed. The semi­probabilistic assessment had been supplemented with
a probabilistic assessment in Riskeer, in which the resistance of the grass revetment ­ i.e. the critical
overtopping discharge ­ is included as a stochastic variable. It was assumed that the grass quality is
in the category closed sod (see Table 3.1 on page 19). It followed that a critical overtopping discharge
with 𝜇 = 0.225 𝑚3/𝑠/𝑚′ and 𝜎 = 0.250 𝑚3/𝑠/𝑚′ should be applied, based on the indicative wave
height, conform WBI 2017, that leads to a wave height class of 0 − 1 𝑚.
At each illustration point, the geometry of the dike cross­section had been defined. So, these are not
necessarily the normative cross­sections of the zone for which the illustration point holds. For obstacles
and transitions, a lower critical overtopping discharge was determined, based on BOI (‘Beoordelings­
en Ontwerpinstrumentarium’). It resulted in a mean critical overtopping discharge of 0.0076 𝑚3/𝑠/𝑚′
with 𝜎 = 0.0037 𝑚3/𝑠/𝑚′. However, within this thesis, obstacles and transitions are disregarded. The
resulting values of the HBN for the probabilistic assessment are summarised in Table 6 and 7 of the
report ‘Voorverkenning Sprok­Sterreschans: Rapportage GEKB & GEBU’ by Broere and Leeuwdrent
(2020) and the resulting failure probabilities for normative illustration points are shown in Figure 5.5.

5.3.1. Model verification
Within this research, the assessment for overtopping and overflow is full­probabilistic, meaning that the
critical discharge is included as stochastic variable, conform Table 3.1. The assessment is executed by
calling the ‘overtopping’ kernel that is used for WBI assessments ­ by means of a dll­file, as explained
in Section 3.1.4. As mentioned above, the water authority made use of Hydra­NL for the definition of
the hydraulic boundary conditions, which differ from the applied conditions of this study. Due to the
absence of the model uncertainty the resulting failure probabilities for overtopping are smaller than the
ones from the assessment by the water authority. This can be seen in Figure 5.5. Also the absence
of ‘capping’ leads to different results. Alternatively, the correctness of the overtopping computations
by the probabilistic model has been verified by means of results that were generated by the revetment
prototype of Rongen et al. (2019), since both models make use of the same ‘overtopping’ kernel.
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Figure 5.5: Verification of the assessment for overtopping.

5.4. Assessment of Erosion of the Outer Slope Grass Revetment
The water authority assessed erosion of the revetment in a semi­probabilistic way. The assessment
was based on the computation model as described in Section 3.4 or in the ‘Schematiseringshandleiding
grasbekleding’ by van Hoven (2019). The model assumes that the revetment has failed if a certain
resistance time is exceeded. Only the wave impact zone is considered, since it is normative for a grass
revetment slope, according to the ‘Schematiseringshandleigding grasbekleding’ van Hoven (2019).
The grass quality is assumed to be closed, resulting in the following values for the computation of the
resistance time of the top layer: 𝑎 = 1, 𝑏 = −0.035, 𝑐 = 0.25. If the resistance time is exceeded, the
underlying (clay) layer starts to erode, for the remaining storm duration.

Since there is a clay core present in this dike trajectory, a supplementary computation model had been
applied to account for the residual strength. The applied erosion model for the clay core originates
from the Deltares report ‘Prediction of the erosion velocity of a slope of clay due to wave attack’ by
Mourik (2015) and is based on the erosion velocity (See Equation 3.50 on page 36). The formulas
have been applied by means of an Excel sheet by Fugro. Based on these formulas, the erosion profile
could be defined for every time step and it had been determined whether the residual profile was still
sufficient. The allowable residual profile has a crest width of six metre with a slope of 1:2. The formulas
are applicable for clay with a sand fraction of less than 40% (clay catergory 1 or 2). At most of the
locations, these categories are present.

The water level had been varied in between the 1/10 year water level and the norm water level (prob­
ability of 1/10,000 per year), in steps of 0.5 𝑚. It is assumed that the wave conditions sustain for 12
hours. Based on the hydraulic database, it was derived that the maximum wave height 𝐻𝑠 = 1.2 𝑚.
This wave height was applied for the computation of the resistance time of the grass revetment and for
the residual strength of the clay.

Normative profile
The water authority assumed a fictitious profile for the geometry, that represents the most unfavourable
(= steep slope) profile of the dike trajectory. If this profile suffices, the complete trajectory does. The
profile of dike post DD010 had been chosen. So, the normative profile is characterised by:

• Outer slope of 1:2.5

• Inner slope of 1:3

• Foreshore level is NAP + 7.5 𝑚, so it does not have any influence on the computed erosion
volume

• Ground level inner side is NAP + 7.5 𝑚 as well.
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5.4.1. Assessment
According to the assessment by the water authority, the resulting failure probability is very small and
the normative profile easily suffices the norm. Therefore, it has been decided to not consider failure
due to erosion of the outer slope grass revetment in the current study. Still, the failure mechanism is
included in the probabilistic framework, to enable flexible usage and easy application of the model to
different case studies in the future. The failure mechanism is implemented by the method as explained
in Section 3.4.

5.5. Assessment of Piping
The semi­probabilistic assessment by the water authority was executed by means of a Python script in
ArcGIS. For the hydraulic load, the norm water level (with probability 1/10,000 per year) was applied
for each dike section. As explained in Section 3.3.1, the failure probability due to Piping is determined
by the smallest probability out of the three sub­mechanisms uplift, heave and backward erosion. In
this case, the sub­mechanism backward erosion is the normative mechanism ­ i.e. with the highest
reliability index or lowest failure mechanism ­ for every normative exit point in the trajectory.

5.5.1. Model verification
As explained in Section 3.3, a Python script in which the piping formulas are already programmed
is implemented in the probabilistic model. For verification purposes, the model is run for the design
values and norm water levels, as applied in the semi­probabilistic computation by the water authority.
In Figure 5.6, the assessment results per dike section by the water authority are shown in blue. The
results by the model, applied in a semi­probabilistic manner, are shown in orange. It can be concluded
that both assessments give more or less the same results and therefore the probabilistic model is
verified for the failure mechanism piping.

Figure 5.6: Verification of the model for piping.

5.6. Assessment of Macrostability
The water authority has performed a semi­probabilistic assessment for macrostability. For the hydraulic
load, the corresponding norm water level (with probability 1/10,000 per year) was applied for each dike
section. The assessment was executed in D­Stability, by means of the method LiftVan with strength
parameters based on CSSM. If the cover layer has a thickness of less than four metre, a bursting zone
was schematised. Otherwise, a head line schematisation without bursting was assumed. Between
two soil measurement locations, it was assumed that soil layers run horizontally. Furthermore, it was
assumed that every cohesive (blanket) layer shows undrained soil behaviour. Only if the OCR value
is larger than three, the (undrained) cover layer was replaced by drained characteristics. The actual
factor of safety had been computed for the normative cross­section of each dike section and had been
compared to the required factor of safety. The required factor of safety is composed of a schematisation
factor of 1.05 (as explained in the document ‘Voorverkenning Sprok­Sterreschans ­ Rapportage STBI
& STBU’ by Broere and Knops (2020)), a damage factor of 1.17 (belonging to the dike trajectory)
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and a model factor of 1.06 (belonging to LiftVan), leading to a required factor of safety equal to 1.30.
The water authority also assessed macrostability during overtopping, assuming that the dike body is
saturated. However, within this study, Macrostability during overtopping is not considered, since it is
not a normative mechanism for failure due to macro­instability in general.

For themodel of this study, it is decided tomake use of the concept of metamodeling based onGaussian
process regression (GPR), in order to assess macrostability in a more efficient way. One calculation
in D­Stability takes 10 to 60 seconds, depending on how fast the search algorithm finds the critical slip
plane within the search limits. For a Monte Carlo simulation, more than 100,000 calculations are gen­
erally needed for one assessment. So, using D­Stability would lead to unacceptably long computation
costs. Instead, assessing the factor of safety by means of a metamodel in Python takes less than a
second ­ 0.078 𝑠 for the used computer ­ within the probabilistic framework. From this, it can be con­
cluded that applying a metamodel is roughly 300 times more efficient than calling D­Stability for each
realisation of the model. The basics of metamodeling are explained inSection 3.2.7 and Appendix C.
The application will be explained below.

5.6.1. Metamodeling
The 31 dike sections of the case study differ such that it is necessary to create customised metamodels
for each section. The predictions of eachmetamodel are based on ten input variables. Themetamodels
are trained based on the geometry and soil characteristics of the normative cross­sections ­ that have
been captured in D­Stability files by the water authority ­ for each dike section. It is assumed that
this cross­section is indeed the most critical one and that it determines the safety of the complete
corresponding dike section. For each dike section, a FORM analysis has been performed to find the
parameters that have the largest influence on the failure probability. Based on this FORM analysis, the
six most important soil parameters have been selected per dike section to be included in the ten input
variables of the corresponding metamodel, as shown in Table C.1 on page 107. Besides, the water
level is included as input variable. The other three input variables are reserved for parameters related
to the phreatic line and head line ­ as explained below.

Phreatic lines and head lines
The water level is generally the most important input variable. However, if the water level increases,
the phreatic line in the dike and the head line in the subsoil will also increase, as a consequence of
infiltration via the outer dike slope and via the subsoil. These processes lead to the increase of the
pore pressures and all together it results in a decrease of the shear strength of the subsoil and dike. It
is therefore important to include this dependence on the water level of the phreatic line and head line
in the metamodels. In order to achieve this, the following schematisations ­ as applied by the water
authority ­ have been applied within the metamodel training data.

For the phreatic lines, this is a rather simple schematisation, as explained in Appendix C.3.1. A dis­
tinction is made based on the dike type: different schematisations for clay dikes, sand dikes and clay
dikes with enclosed sand (‘zandscheg’). A clay dike with enclosed sand originates from previous rein­
forcements at the inner slope by sand, with a new clay cover layer on top. At these locations, the flood
defence is described as a clay dike with enclosed sand (‘zandscheg’) and a different, rather conserva­
tive schematisation is applied by the water authority: The real dimensions of the sand containment are
larger than those in the schematisation.

The head lines in the aquifers have been schematised in accordance with schematisation 4A of the
‘Technical Report for Pore Pressures in Dikes’ (TRWD) (TAW, 2004), that is applicable for flow in a
sandy subsoil beneath an impermeable dike with poorly permeable blanket layers in the fore­ and
hinterland. If the blanket layer has a thickness of less than four metres, hydraulic heave, or bursting,
is taken into account. Hydraulic heave can typically occur in situations where a Pleistocene sand layer
is only covered by weak layers, as is the case at some of the dike sections of this study. In these
cases, schematisation 4C of the TRWD has been applied, that is applicable in situations of aquifer flow
beneath an impermeable dike in which the limit potential occurs in the hinterland.

The relation between outer water level, phreatic line and head line strongly depends on the subsoil
geometry and soil characteristics. However, it is complicated to adjust the dike and subsoil geometry in
the D­Stability files of each training data point. Therefore, it has been decided to consider the geometry
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as deterministic and to include only the hydraulic conductivities of the aquifer, fore­ and hinterland as
stochastic input variables that define the head lines and preatic lines for the metamodels. In reality,
there is of course an uncertainty in the soil geometry which should be taken into account, so it should
be kept in mind that the current approach is certainly an approximation of reality.

A Python script has been developed that is able to construct and implement the phreatic lines and head
lines into the D­Stability files of the training data for each metamode ­ depending on the parameters
𝑘, 𝑘𝑣1 and 𝑘𝑣3. The script is based on the formulas above. In Table C.3 on page 111, it can be seen
which schematisations are applied for each dike section.

Summarising, the metamodels for each dike section are based on ten input variables: six parameters
related to the strength of the soil layers, the three hydraulic conductivities and the river water level.
1000 different D­Stability files are created per dike section, in which the ten input variables are deviating
from the original D­Stabiliy schematisation of the corresponding dike section. These files ­ called the
training data ­ are run in D­Stability to compute the corresponding factor of safety, which is the system’s
response to be predicted by the metamodel. The training data are created by drawing random samples
of the ten input variables from normal distributions with a rather large standard deviation, by means
of Latin hypercube sampling. This is done to cover the complete space of possible values of these
parameters. The means of these normal distributions are equal to the corresponding design values.
Examples of these input variable distributions for the creation of training data are shown in the Figures
C.1 and C.6 on page 108 and 111. As a consequence, a relatively large part of the training data points
result in a 𝐹𝑜𝑆 that is close to the critical one, implying that the metamodels will perform best around
failure. Note that these training data distributions are not the real distributions of these parameters.
The real distributions are listed in Table 5.3.

Validation of the metamodel
After performing the 1000 computations in D­Stability for each dike section, 20% of these training data
have been extracted for validation purposes. The GPR model is thereafter trained by the remaining
80% of the training data. Subsequently, the trained model is used to predict the factor of safety of
the validation data. These predicted 𝐹𝑜𝑆 are compared to the 𝐹𝑜𝑆 that were computed by D­Stability
for the validation data, in order to quantify the accuracy of the metamodels. For each metamodel,
the percentage predictive error, the root mean square error (RMSE) and the coefficient of variation
(𝐶𝑉) have been computed. As an example, this comparison and the error determination is shown in
Figure 5.7 for dike section 23.

The mean errors and 𝐶𝑉’s for each dike section are presented in Table C.4. The mean percentage pre­
dictive error is −0.64%, implying that the metamodels have a very slight conservative bias. The mean
RMSE is 0.092 and the mean coefficient of variation is 0.076. This is somewhat larger than the coeffi­
cient of variation of the Uplift­Van model in D­Stability, which is 0.033. At the same time, the uncertainty
of the different soil parameters is generally larger, as can be concluded from Table 5.2. Therefore, it is
considered an acceptable error and it is decided to continue working with these metamodels.

Figure 5.8 shows the predicted 𝐹𝑜𝑆 for the case study dike sections in orange, including their un­
certainty, and the assessed 𝐹𝑜𝑆 by the water authority in blue. These predictions are based on a
semi­probabilistic application of the metamodels, i.e. based on the design values of the corresponding
input variables.

The fact that the metamodels do not have a notable bias means that they are not consistently under­
or overestimating the 𝐹𝑜𝑆, implying that the errors might cancel out during a Monte Carlo simulation.
Moreover, the metamodels give the best predictions close to the limit state, as it is the case for most
dike sections of the case study. Therefore it is expected that the metamodels will perform even better
during the probabilistics assessments of this study, even though these cannot be validated.
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Figure 5.7: Validation of the metamodel of dike section 26.

Implementation of the metamodel
Now, the metamodel can be implemented into the integral probabilistic framework. The corresponding
limit state function 𝑍𝑚𝑎𝑐𝑟𝑜 is defined as:

𝑍𝑚𝑎𝑐𝑟𝑜 =
𝐹𝑜𝑆
𝑚𝑑

− 1 (5.3)

where 𝑚𝑑 is the model uncertainty. D­Stability makes use of the Uplift­Van model to determine the
slip circle, which has an uncertainty parameter𝑚𝑑 with 𝜇𝑚𝑑 = 1.005 and 𝜎𝑚𝑑 = 0.033 (Schweckendiek
et al., 2017). Since the application of metamodeling leads to an increase of the uncertainty, the standard
deviation of the model uncertainty has been set to 𝜎𝑚𝑑 = 0.07.

Importance of the metamodel input parameters
The contribution of each input parameter to the factor of safety is investigated by changing one­factor­
at­a­time (OAT). This is a simple and common approach for sensitivity analyses. In this case, each
input parameter is increased by 30% with respect to the case study design value. Subsequently, the
relative difference between the resulting 𝐹𝑜𝑆 and the reference 𝐹𝑜𝑆 (based on the case study input
values) is computed. The results of this analysis for each metamodel are shown in the Tables C.5 of
Appendix C.3.3 on page 113. More or less the same order of importance resulted from FORM analyses
in D­Stability for each dike section. However, D­Stability takes the volumetric weights and the water
level as deterministic values and the hydraulic conductivities are not explicitly included, causing that
no 𝛼­values can be obtained for these input parameters. Moreover, the metamodels are only based on
ten input variables, while the corresponding D­Stability schematisations are dependent on many more
parameters. Therefore, the importance factors obtained from D­Stability differ from the ones obtained
by the OAT approach. For these reasons, it had been decided to base conclusions about the parameter
contributions to the metamodels on the OAT approach, as shown in the Tables C.5.

It follows that the water level is the most important parameter for all dike sections. Regarding the con­
tribution of the soil parameters, there are large differences between the dike sections. This is explained
by (1) the large differences in dike and subsoil geometry of the dike sections of the case study and (2)
the fact that it strongly depends on the location of the critical slip plane whether a parameter contributes
to the resistance or to the load, and to what extent. For instance, the volumetric weights can have both
a positive and a negative impact on the stability analysis, as they have an influence on the driving
moment, the resisting moment and the shear strength, as explained in Section 3.2 (Schweckendiek
et al., 2017). Moreover, in most cases it seems that there is not really one (or two) driving soil parame­
ter(s). Most parameters do not contribute much to either the resistance or the load. These observations
should be kept in mind when the impact of correlations is analysed in the following chapter.
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Figure 5.8: Validation of the model for macrostability, including error bars of 2 ⋅ 𝜎. The mean error is 0.63%.

5.7. Assessment of the Outer Slope Stability
For the outer slope stability, one assessment was performed by the water authority, that describes the
safety of the complete trajectory. This choice was based on the expectation that the trajectory would
easily suffice the norm. For the normative cross­section, a profile with a steep slope and a large crest
height was chosen, namely DD010. It is assumed that the water level decrease after a flood event
(‘mate van val’) is equal to 4.5 metre. The analysis was executed in D­Stability, by means of LiftVan
with strength parameters based on CSSM. It resulted in 𝑃𝑓 = 5.96 ⋅ 10−9 due to outer slope instability,
while the norm is equal to 2.2 ⋅ 10−7. So, it could be concluded that the complete trajectory indeed
suffices for outer slope stability. Traffic load is not included.

Since the failure probability due to outer slope instability is so small, according to the assessment by
the water authority, it has been decided to not consider the failure mechanism in the current study.

5.8. Computational Set Up
The input parameters, implementation of the failure mechanisms and relevant mathematical concepts
for the integral probabilistic model have been explained previously. In the current section, the set up of
the model will be summarised. Figure 5.9 gives an illustration of the different computational steps.

5.8.1. Correlations
In Sections 3.2 and 3.3, it is explained that correlations exist between several parameters that play a role
in the piping and macrostability mechanisms. Moreover, Section 5.2.2 proves that spatial correlations
between geotechnical properties of the dike sections are very likely. The aim of this research is to
investigate the effects of correlations. Therefore, themodel is built in such away that correlations can be
implemented, by means of a Gaussian copula. The Gaussian copula is defined by a covariance matrix
(upper left in Figure 5.9) and the marginal distributions of the parameters (upper right of Figure 5.9).
In the covariance matrix, mutual correlations between all parameters can be defined by means of a
Pearson’s correlation coefficient 𝜌. In the uncorrelated case, the matrix is an 𝑛 × 𝑛 identity matrix,
with 𝑛 the total number of input variables. The real values of the (spatial) correlations are not known
and cannot be derived from data. Therefore, the impact of correlations will be assessed by means
of sensitivity analyses. The marginal distributions of the input parameters have been defined in this
chapter and summarised in Table 5.2 and Table 5.4. For each iteration of the Monte Carlo simulation,
random samples are drawn from the Gaussian copula, so that the defined correlations are taken into
account.

As explained previously, the hydraulic loads are determined per dike section of dike post. The condi­
tional river discharge is translated to water levels, by means of the DPa database. The wind conditions
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are randomly sampled for each iteration within the Monte Carlo simulation and translated to the wave
conditions of each dike section, based on the same database.

5.8.2. Total failure probability
For each iteration 𝑖, the different limit state function 𝑍𝑗,𝑘 are evaluated, for failure mechanism 𝑗 and dike
section 𝑘. If any of these evaluations is smaller than zero, failure is counted, see Figure 5.9. After 𝑁
iterations of the Monte Carlo simulation, the total failure probabilities can be computed by dividing the
total number of failure 𝑁𝑓 by 𝑁 (see Equation ). Failure is also counted per dike section and per failure
mechanism, in order to derive the total failure probability of a certain dike section and due to a certain
mechanism, respectively.

WBI assemblage
The total failure probabilities are also computed according to theWBI assemblage procedure. As briefly
explained in Chapter 1, the procedure consists of the following steps:

1. Estimate the failure probability of the dike trajectory, assuming mutual independence of the sec­
tions (upper bound):

𝑃𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 1 −
𝑁

∏
𝑖=1

(1 − 𝑃𝑖) (5.4)

2. Estimate the failure probability of the dike trajectory, based on the largest failure probability of the
sections (i.e. mutual dependence) and the estimated length­effect (lower bound):

𝑃𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =max {𝑃𝑖} ⋅ 𝑁 (5.5)

3. Choose the minimum of the two estimated failure probabilities. By taking the minimum, a large
overestimation of the trajectory failure probability is avoided.

The two different methods of assessing the total failure probability will be compared, for correlated and
uncorrelated situations. The results are presented in the next chapter.

Figure 5.9: Illustration of the probabilistic model.
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5.9. Conclusions
Before proceeding to the results of this study, a few important remarks and conclusions related to the
model performance should be summarised.

Overtopping
As explained in Section 5.2.3, the hydraulic boundary conditions that are applied in the model differ
from those applied by the water authority, due to neglecting the model uncertainty. Therefore, the
resulting failure probabilities for overtopping are smaller than the ones from the assessment by WSRL.
This difference did not pose a problem for the validation of piping or macrostability, since these were
based on the norm water level. Since there are no correlations between parameters of overtopping
and macrostability or piping, the analyses of this study are not focussed on overtopping. Thus, the fact
that the results could not be fully verified does not pose a problem.

Macrostability
For macrostability, metamodels are created, in order to reduce the computation costs. It has been
proved that the metamodels are indeed able to reduce the computation costs significantly, roughly
by a factor of 300. Moreover, it was demonstrated that the metamodel predictions of the factor of
safety are of acceptable accuracy for the current study, especially in the domain around failure. Since
metamodeling is most effective for about a dozen input variables, including every parameter of every
relevant soil layer into every metamodel is not feasible. A disadvantage of this is that the metamodels
are based on only ten input variables, which differ per dike section. Therefore, it is not possible to
incorporate and investigate every plausible (spatial) correlation within the model.

Piping
The assessment of piping is based on the Sellmeijer equations. Since these are also applied in the
semi­probabilistic assessment by the water authority, the results could be easily verified.

Other failure mechanisms
The instability of the outer slope and the erosion of the outer grass revetment are not considered, since
the corresponding failure probabilities are negligibly small.
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6
Results

Sensitivity analyses into the effects of different correlations on the failure probabilities have been exe­
cuted. This has been performed for model input that is based on the case study ­ as described in the
previous chapter. Firstly, correlations between different parameters and secondly correlations in space
are considered. This chapter elaborates upon the findings of this study.

6.1. Correlations between Input Parameters
Firstly, correlations between variables are considered. In general, three situations have been imple­
mented: no correlation (𝜌 = 0), a strong correlation of 𝜌 = ±0.8 and a weak correlation of 𝜌 = ±0.2.
These values are chosen to investigate different extreme situations of correlation. They are not based
on realistic values, since there is not sufficient data available to obtain the actual correlation coefficients
at the locations under consideration. Also in literature not much was found. Only for the correlation
between the hydraulic conductivity 𝑘 and the grain size 𝑑70 a value of 0.70 of the Kendall coefficient
was obtained for another dike trajectory, the Lekdijk. Also at other locations there is strong evidence
for a significant correlation between 𝑘 and 𝑑70 (Aguilar­López et al., 2016). The other correlations for
piping are the result of the explicit definition of the exit potential Φ𝑒𝑥𝑖𝑡 and are therefore expected to be
significant and positive. If not much was much found in literature about possible correlations between
two parameters, both positive and negative correlations have been investigated. This applies to the soil
strength parameters for macrostability. In some cases, correlations also result in dependency between
failure due to piping and failure due to macrostability of a dike section, since the corresponding param­
eters are included in both mechanisms. In that case, the resulting correlation between the evaluations
of the two 𝑍­functions is investigated.

6.1.1. Piping
In Section 3.3, possible mutual correlations between the following piping parameters have been men­
tioned and explained: (𝑘−𝑑70), (𝑘−Φ𝑒𝑥𝑖𝑡), (𝑘𝑣3−Φ𝑒𝑥𝑖𝑡), (ℎ𝑝−Φ𝑒𝑥𝑖𝑡), (𝐷𝑐𝑜𝑣𝑒𝑟−Φ𝑒𝑥𝑖𝑡) and (𝐷−Φ𝑒𝑥𝑖𝑡).
In the following sections, the results of implementing weak and strong correlations between these pa­
rameters are presented. It is often referred to the importance or contribution of the piping parameters
to failure, as listed in Table 3.3. The analyses have been executed conditional on a river discharge of
𝑄 = 16, 000 𝑚3/𝑠 and for 𝑁 = 400, 000 iterations of the Monte Carlo simulation. The failure probabili­
ties due to piping for dike section 17 and 18 are so small that convergence of the results is not achieved
within this study. Therefore, the results of these two dike sections are not considered for the analyses
and conclusions.

1. Hydraulic conductivity 𝑘 and grain size 𝑑70 of the aquifer material
Implementation of strong, weak and no correlation between these two parameters resulted in the sec­
tional failure probabilities due to piping as presented in Figure 6.1. The results for the three sub­
mechanisms of piping separately are shown in Figure E.1 and E.2 on page 123 and 124. Those two
figures illustrate that a correlation between 𝑘 and 𝑑70 only affects backward erosion, which is obvious
since both parameters are only included in the assessment of this sub­mechanism. Therefore, the rel­
ative difference between the correlated and uncorrelated case are presented for the sub­mechanism
backward erosion in Figure 6.2.
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Figure 6.1: Sensitivity analysis into the impact of different scenarios of the correlation between 𝑘 and 𝑑70 on the sectional
failure probabilities due to piping, conditional on a river discharge of 𝑄 = 16, 000 𝑚3/𝑠 and for 𝑁 = 400, 000.

From Figure 6.1 and 6.2 and from the figures in the appendix, it is apparent that the sub­mechanism
backward erosion dominates the total failure mechanism piping, since the effect of the correlation is
clearly affecting the total failure probability due to piping. As shown in Equation 3.37, piping is treated
as a parallel system, implying that the sub­mechanism with the smallest probability of failure dominates
the system (see Table A.1).

A strong positive correlation of 𝜌 = 0.8 leads to an average reduction of approximately 40% of the
sectional failure probabilities due to piping, with respect to the uncorrelated situation. A weak positive
correlation of 𝜌 = 0.2 leads to an average reduction of about 10%. This effect is expected, based
on the Sellmeijer model as explained in Section 3.3. A large hydraulic conductivity 𝑘 promotes the
groundwater flow, while a large grain size 𝑑70 increases the resistance of the sand grains against
erosion in the (partially developed) piping channels. Correlation implies that a high value of 𝑘 is likely
to occur at the same time as high value of 𝑑70. So, in a correlated situation the effects of the two
parameters compensate each other out, resulting in more ‘safe’ situations. However, the magnitude of
the effect varies significantly per dike section. Dike sections with the smallest failure probabilities for
the sub­mechanism backward erosion appear to experience the strongest reduction. The dike sections
22 and 27, where the effect of the correlation is almost negligible, have the largest failure probabilities.

The hydraulic conductivity of the aquifer 𝑘 is also included in the assessment for macrostability. Con­
sequently, a correlation between 𝑘 and 𝑑70 also relates the two failure mechanisms to each other.
However, the impact of 𝑘 on the failure probabilities due to macrostability is very small, as shown in
Table C.5. It is thus not surprising that the correlation between 𝑘 and 𝑑70 does not lead to a higher
degree of correlation between failure due to macrostability and due to piping, as becomes apparent in
the scatter plot of the limit state function evaluations 𝑍𝑝𝑖𝑝𝑖𝑛𝑔 versus 𝑍𝑚𝑎𝑐𝑟𝑜 in Figure 6.9.

Figure 6.2: Relative difference in % between the failure probability due to the sub­mechanism backward erosion for situations
with strong resp. weak correlation between 𝑘 and 𝑑70, with respect to a situation with no correlation, conditional on a river

discharge of 𝑄 = 16, 000 𝑚3/𝑠 and for 𝑁 = 400, 000.
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2. Hinterland phreatic level ℎ𝑝 and exit point potential Φ𝑒𝑥𝑖𝑡
The potential Φ𝑒𝑥𝑖𝑡 contributes to the load for the sub­mechanisms heave and uplift, while the phreatic
level ℎ𝑝 contributes to the resistance of all three sub­mechanisms. So, a correlation between these
two parameters directly affects the failure probabilities due to heave and uplift, but it also leads to
mutual correlations between the three sub­mechanisms. For most dike sections, failure is dominated
by the sub­mechanism backward erosion and not by heave or uplift. Therefore, a correlation between
the phreatic level ℎ𝑝 and the potential Φ𝑒𝑥𝑖𝑡 generally appears to have a smaller impact on the failure
probabilities than a correlation between 𝑘 and 𝑑70, as can be seen in Figure 6.3 and 6.4.
A strong positive correlation of 𝜌 = 0.8 leads to an average reduction of about 7.5% of the sectional
failure probabilities due to piping, with respect to the uncorrelated situation. A weak positive correlation
of 𝜌 = 0.2 leads to an average reduction of about 2%. Again, the magnitude of the effect is very
dependent on the dike section. For some dike sections, the correlation strongly reduces the failure
probability due to piping, while for others the effect is negligible or even an increase of the failure
probability.

The impact on the failure probabilities due to heave and uplift is shown in Figure 6.4 and in Figure E.3
of the appendix. From these figures it becomes clear that the correlation leads to an increase of the
sectional failure probabilities if these are higher than about 0.5. For dike sections for which the failure
probabilities due to these two sub­mechanisms are significantly smaller, like 19 or 25, the correlation
leads to a reduction of the failure probability.

Figure 6.3: Sensitivity Analysis for correlations between ℎ𝑝 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism piping, conditional on a
discharge 𝑄 = 16, 000 𝑚3/𝑠, for 𝑁 = 400, 000.

Figure 6.4: Relative difference in % between the failure probability due to uplift and heave for a situation with no correlation and
situations with strong resp. weak correlation between ℎ𝑝 and Φ𝑒𝑥𝑖𝑡, conditional on a discharge 𝑄 = 16, 000 𝑚3/𝑠, for

𝑁 = 400, 000.
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For dike section 19 the impact of the correlation is not only very apparent in the sub­mechanisms, it
also results in a reduction of the total failure probability due to piping, as illustrated in the figure above.
This is explained by the fact that the failure probability due to uplift becomes almost the same as the
failure probability due to the sub­mechanism piping, when a correlation of 0.8 is included. In that case,
uplift starts to become more dominant for the total failure probability and that explains why the impact
of the correlation is so strong for dike section 19. Moreover, it can be seen in Figure 6.3 and 6.4 that for
some dike sections, the correlation has a reducing effect on the total failure probability due to piping,
while it has an increasing effect on the sub mechanisms uplift and heave.

3. Blanket layer thickness 𝑑 and exit point potential Φ𝑒𝑥𝑖𝑡
The blanket layer thickness contributes to the resistance of the sub­mechanisms backward erosion
and uplift, while it contributes to the load for heave. However, it can be deduced from Table 3.3, that
the parameter is of minor importance. Together with the fact that heave and uplift are generally not
normative for failure due to piping, the impact of a correlation between 𝑑 and Φ𝑒𝑥𝑖𝑡 is expected to be
small. This is confirmed by the results in Figure 6.5.

A strong positive correlation of 𝜌 = 0.8 leads to an average reduction of about 3.5% of the sectional
failure probabilities due to piping, with respect to the uncorrelated situation. A weak positive correlation
of 𝜌 = 0.2 leads to an average reduction of about 1%. Again, the magnitude of the impact is very
dependent on the dike section and can be explained in the same way as for the correlation between
ℎ𝑝 and Φ𝑒𝑥𝑖𝑡 above.

Figure 6.5: Sensitivity Analysis for correlations between 𝑑 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism piping, conditional on a
discharge 𝑄 = 16, 000 𝑚3/𝑠, for 𝑁 = 400, 000.

Figure 6.6: Relative difference in % between the failure probability due to heave and uplift for a situation with no correlation and
situations with strong resp. weak correlation between 𝑑 and Φ𝑒𝑥𝑖𝑡, conditional on a discharge 𝑄 = 16, 000 𝑚3/𝑠, for

𝑁 = 400, 000.
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4. Aquifer thickness 𝐷 and the exit point potential Φ𝑒𝑥𝑖𝑡
Correlation between the aquifer thickness 𝐷 and the exit point potential Φ𝑒𝑥𝑖𝑡 has a negligible impact
on the sectional failure probabilities. This can be explained by the fact that Φ𝑒𝑥𝑖𝑡 only contributes to
heave and uplift, while 𝐷 only contributes to backward erosion. Moreover, the aquifer thickness is of
minor importance. The results are shown in Appendix E.

5. Hydraulic conductivity of the aquifer 𝑘 and exit point potential Φ𝑒𝑥𝑖𝑡
The hydraulic conductivity 𝑘 contributes to the load for backward erosion and the exit point potential
Φ𝑒𝑥𝑖𝑡 to the load for uplift and heave. In that case, the correlation has no effect on the failure probabilities
of the sub­mechanisms. But the correlation implies that failure due to the three sub­mechanisms ismore
likely to occur at the same time, resulting in a higher failure probability for the parallel system piping.
This effect is apparent in Figure 6.7 and 6.8.

Figure 6.7: Sensitivity Analysis for correlations between 𝑘 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism piping, conditional on a
discharge 𝑄 = 16, 000 𝑚3/𝑠, for 𝑁 = 400, 000.

Figure 6.8: Relative difference in % between the failure probability due to piping for situations with strong resp. weak
correlation between 𝑘 and Φ𝑒𝑥𝑖𝑡, with respect to a situation with no correlation, conditional on a river discharge of 𝑄 = 16, 000

𝑚3/𝑠 and for 𝑁 = 400, 000.

6. Hydraulic conductivity of the blanket layer 𝑘𝑣3 and exit point potential Φ𝑒𝑥𝑖𝑡
Since the hydraulic conductivity of the blanket layer 𝑘𝑣3 is not explicitly included in the assessment of
failure due to piping, a correlation between 𝑘𝑣3 andΦ𝑒𝑥𝑖𝑡 has no impact on sectional failure probabilities
due to piping, as shown in Figure E.13 on page 129. At the same time, 𝑘𝑣3 is included in the failure
assessment due to macrostability, but Φ𝑒𝑥𝑖𝑡 is not, and thus also for the sectional failure probabilities
due to macrostability no effect is seen (see Figure E.14). But again, this correlation links the two failure
mechanisms to each other. Since 𝑘𝑣3 is more important than 𝑘 for most metamodels, as shown in
Table C.5, the correlation becomes apparent in the scatter plot of the 𝑍­evaluations for the two failure
mechanisms, as shown in Figure 6.9. However, it is not strong (𝜌 = 0.1), since the importance of 𝑘𝑣3
is still quite small.
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(a) Correlation of 𝜌 = 0.8 between 𝑘 and 𝑑70. (b) Correlation 𝜌 = 0.8 between 𝑘𝑣3 and Φ𝑒𝑥𝑖𝑡.

Figure 6.9: Resulting correlations of 𝜌 = 0.1 between the failure mechanisms piping and macrostability for dike section 9,
conditional on a discharge 𝑄 = 20, 000 𝑚3/𝑠, for 𝑁 = 400, 000.

6.1.2. Macrostability
It can be assumed that the undrained shear strength parameters 𝑆 and 𝑚 are positively correlated
(Schweckendiek et al., 2017). Furthermore, evidence exists that the value of 𝑆 increases with decreas­
ing volumetric weight 𝛾, which suggests a negative correlation (Leferink, 2020). In general, however,
there is not much found in literature about correlations between the different soil strength parameters.
Therefore, four different possibilities have been investigated: weak vs. strong negative vs. positive
correlation. The analyses are executed conditional on a river discharge of 𝑄 = 20, 000 𝑚3/𝑠 and for
𝑁 = 400, 000 iterations of the Monte Carlo simulation. At first, it is important to note that a different
river discharge is used than for the sensitivity analyses of piping. The reason is that a Monte Carlo
simulation of 400,000 iterations is not able to accurately capture failure probabilities smaller than the
order of 10−3 (see Equation 2.10). This limit is indicated in the figures below by a horizontal line. In
order to have as many as possible dike sections with failure probabilities in the accurate regime, an
(unrealistically) high discharge has been chosen for these analyses. For the same reason, only the
results for dike sections 4, 5, 6, 8, 9, 21, 23, 24, 25, 26, 27, 28, 29, 30 and 31 are considered to draw
conclusions from: to ensure that conclusions are based on reliable results. The results will be pre­
sented below. It is often referred to the importance of the meta model input parameters, as presented
in Table C.5 on page 113.

1. Shear strength ratio 𝑆 and shear strength exponent 𝑚
Figure 6.10 and 6.11 illustrate that the impact of a correlation between the shear strength ratio 𝑆 and the
shear strength exponent 𝑚 strongly differs per dike section. Both the magnitude ­ large versus small
effect ­ and the direction ­ increasing versus decreasing effect ­ are dependent on the dike section.

Figure 6.10: Sensitivity analysis for correlations between 𝑆 and𝑚 for the failure mechanism macrostability, conditional on a
discharge 𝑄 = 20, 000 𝑚3/𝑠, for 𝑁 = 400, 000.
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Figure 6.11: Relative difference in % between the failure probability due to macrostability for situations with strong resp. weak
correlation between 𝑆 and𝑚, with respect to a situation with no correlation, conditional on a river discharge of 𝑄 = 20, 000

𝑚3/𝑠 and for 𝑁 = 400, 000.

From Table C.5, it can be derived for which dike sections the largest impact is expected after inclusion
of a correlation between 𝑆 and 𝑚, based on the importance of these two parameters. These are the
sections 23, 19, 14, 2, 30 and 3, ordered from highest importance to lowest. It can be seen that the
dike sections 23 and 30 indeed show a significant impact of the correlations. Also for the dike sections
5, 6, 21 and 29 a medium impact was expected, based on the importance of 𝑆 and 𝑚, and indeed a
medium impact can be observed in the figures. For the dike sections 4 and 9, the impact is somewhat
high, for no impact was expected since there is no 𝑚 included in the metamodel. For the other dike
sections, the impact was expected to be small and this is indeed confirmed by the results.

On average, a correlation of 𝜌 = 0.8 and 𝜌 = 0.2 result in an increase of approximately 2% and 0% of
the failure probability due to macrostability, while a negative correlation of 𝜌 = −0.8 and 𝜌 = −0.2 lead
to a reduction of 4% and 2%, respectively.

2. Shear strength ratio 𝑆 and volumetric weight 𝛾
Also the impact of several correlations between the shear strength ratio 𝑆 and the volumetric weight 𝛾
of the same soil layer has been investigated. Again, it turned out that the impact differs per dike section,
as shown in Figure 6.12 and 6.13. Dike sections for which a large impact was expected according to the
Table C.5 are 1, 14, 21, 23, 26 and 27. From the figures it can be concluded that this is indeed visible
in the results. The impact for dike section 21 and 23 might be somewhat unrealistically high. For dike
sections 4, 5, 6, 7, 11, 16, 17, 19, 22 and 31 the parameters are not both included in the metamodels,
so no impact is expected. For 4, 5, 6 and 31 it can be confirmed that a correlation between 𝑆 and 𝛾
does indeed not have a noteworthy impact on the failure probabilities. For the other dike sections, one
or both parameters are of minor importance, so a minor impact of the correlation was expected.

On average, a positive correlation leads to an increase of the failure probability due to macrostability
of about 19% and 3%, for a correlation of 𝜌 = 0.8 and 𝜌 = 0.2, respectively and a negative correlation
leads to a decrease of about 12% and 4% for 𝜌 = −0.8 and 𝜌 = −0.2, respectively.

Figure 6.12: Sensitivity analysis for correlations between 𝑆 and 𝛾 for the failure mechanism macrostability, conditional on a
discharge 𝑄 = 20, 000 𝑚3/𝑠, for 𝑁 = 400, 000.
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Figure 6.13: Relative difference in % between the failure probability due to macrostability for situations with strong resp. weak
correlation between 𝑆 and 𝛾, with respect to a situation with no correlation, conditional on a river discharge of 𝑄 = 20, 000

𝑚3/𝑠 and for 𝑁 = 400, 000.

Since the volumetric weight is also included in the assessments for piping, it is possible that a correlation
between 𝑆 and 𝛾 also results in a correlation between failure due to piping and due to macrostability.
This has been analysed but it turned out to have a negligible effect, as can be seen in Figure E.15. This
is explained by the fact that the volumetric weight only has a minor contribution to the sub­mechanism
uplift, which in turn plays a minor role for the failure probability due to piping, for most dike sections of
this case study.

3. Frictional angle 𝜑 and volumetric weight 𝛾
As depicted in Figure 6.14, a correlation between the frictional angle 𝜑 and the volumetric weight 𝛾
does have an impact, however it differs per dike section whether it leads to a reduction or an increase
of the failure probability. Positive correlations of 𝜌 = 0.8 and 𝜌 = 0.2 lead to an average reduction of 6%
and 0.5%, respectively, with respect to the failure probability of the uncorrelated case. Meanwhile, a
negative correlation of 𝜌 = −0.8 and 𝜌 = −0.2 results in a reduction of about 4% and 1.5%, respectively.

It seems remarkable that the correlation has such a large impact for dike section 9, but this can be
explained as follows. As shown in Table C.5, the volumetric weight 𝛾 and the frictional angle 𝜑 of the
clay layer are by far the most important resistance parameters of the metamodel for macrostability for
dike section 9, and also 𝜑 and 𝛾 of the dike material are quite important. Therefore, correlation between
these two parameters has a very strong impact. Dike sections for which the impact is negligible, like 8
and 23 are dike sections for which the parameters 𝛾 and 𝜑 of the same soil type are not both included
in the corresponding metamodel or dike sections for which the contribution of these two parameters is
very small.

Figure 6.14: Sensitivity analysis for correlations between 𝜑 and 𝛾 for the failure mechanism macrostability, conditional on a
discharge 𝑄 = 20, 000 𝑚3/𝑠, for 𝑁 = 400, 000.
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Figure 6.15: Relative difference in % between the failure probability due to macrostability for situations with strong resp. weak
correlation between 𝜑 and 𝛾, with respect to a situation with no correlation, conditional on a river discharge of 𝑄 = 20, 000

𝑚3/𝑠 and for 𝑁 = 400, 000.

6.1.3. Impact of correlation vs. failure probability
A remarkable observation from the figures above is that it seems to depend on the order of magnitude
of the failure probability whether the correlation has a small or large effect on the corresponding failure
probability. Consider for example Figure 6.2: Dike sections 22 and 27 show a minimal reduction of the
failure probability of less than 10%, while for other dike sections the correlation leads to a reduction
of more than 50%. The dike sections 22 and 27 have the highest failure probabilities due to the sub­
mechanism backward erosion, as can be seen in Figure E.1. At the same time, it can be interpreted
from the same figures that the reduction of the failure probability is strongest for the dike sections with
the smallest failure probabilities due to the sub­mechanism backward erosion. This trend seems to
become even more extreme for very high failure probabilities in the order of 0.5, like for heave and
uplift (see for example Figure 6.4 and Figure E.3). In those cases, a correlation that is expected to
result in a reduction of the failure probability, leads to the opposite: an increase of the corresponding
failure probability.

Based on these observations, it has been decided to analyse the impact of correlation for a varying
order of magnitude of the failure probability ­ i.e. for a varying water level ℎ. For this, one simplified
dike section has been considered. All parameters have been included as deterministic values, except
for the two correlated parameters. Then, failure probabilities for a situation with correlation (𝜌 = 0.8)
and for a situation with no correlation have been assessed for different values of the water level ℎ. In
Figure 6.16, the results for correlation 𝑘 − 𝑑70 and 𝑆 −𝑚 are shown and they confirm that the effect of
the correlation increases for decreasing failure probability (i.e. decreasing water level ℎ).

(a) Piping, correlation 𝑘 − 𝑑70. (b) Macrostability, correlation 𝑆 −𝑚.

Figure 6.16: The impact of correlation on the failure probability for varying water level ℎ.
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Table 6.1 shows the factor of the reduction or increase for different values of the water level. Note that
a positive correlation between 𝑆 and 𝑚 for macrostability leads to an increase of the failure probability,
as could be observed in the previous section as well. For small water levels, the effect of including a
correlation between 𝑘 and 𝑑70 is very significant. Including a correlation of 𝜌 = 0.8 leads to a reduction
of the failure probability from order 10−3 to order 10−7, when all other parameters are taken as deter­
ministic values. Besides, it can be observed that the effect is intensifying much more for 𝑘 − 𝑑70 than
for 𝑆 − 𝑚 when moving to smaller failure probabilities. Explanations for the observed effects will be
given in the Discussion in Chapter 7.

Table 6.1: The factor of the reduction or increase of the failure probability: 𝑃𝑓,𝑛𝑜𝑐𝑜𝑟𝑟/𝑃𝑓,𝑐𝑜𝑟𝑟 for a correlation of 0.8.

Water level [m] 𝑘 − 𝑑70 𝑆 − 𝑚

15.0 92,138 0.89
15.5 2,238 0.77
16.0 51 0.68
16.5 5 0.59
17.0 1.6 0.56
17.5 0.9 0.56
18.0 0.8 0.54

6.1.4. Overtopping
Since the study area is located in the upper river reach, it is common practice to assume that the water
level is entirely determined by the river discharge and that there is no correlation between the river
discharge / water level and the wind. However, there is a correlation between the wind speed and the
wind direction. In the Hydra­NL wind statistics, that are applied within this case study, this correlation
is already included. No other correlations between input variables are assumed to be present for the
failure mechanism overtopping.

6.1.5. Summary of the results
In Table 6.2 and 6.3, a summary is given of the results from the analyses that are elaborated in the
previous sections. The relative differences for the three sub­mechanisms of piping are shown in Ta­
ble E.1. The failure probabilities due to piping for dike section 17 and 18 are so small that a Monte
Carlo simulation with 400,000 samples is not able to capture it accurately. Therefore the results for
these two sections are not trusted and not included in the determination of the mean relative difference
with respect to the uncorrelated situation. The reason for these very small failure probabilities for dike
sections 17 and 18 is the particularly large blanket layer thickness of almost nine metre. The same
holds for the dike sections that have small failure probabilities (𝑃𝑓 < 10−3) due to macrostability.

Table 6.2: Summary of the results of the sensitivity analyses into correlations between piping parameters.

Relative difference w.r.t. uncorrelated situation [%]

Correlated parameters 𝜌 = 0.8 𝜌 = 0.2

min median max min median max

𝑘 ­ 𝑑70 −81.6 −37.5 −0.85 −25.0 −8.68 −0.42
Φ𝑒𝑥𝑖𝑡 ­ 𝑘 −0.76 +5.93 +21.5 −3.83 +1.77 +5.98
Φ𝑒𝑥𝑖𝑡 ­ ℎ𝑝 −47.3 −3.74 +5.76 −9.73 −1.38 +0.96
Φ𝑒𝑥𝑖𝑡 ­ 𝑑 −22.7 +1.09 +6.25 −10.7 +0.12 +2.08
Φ𝑒𝑥𝑖𝑡 ­ 𝐷 −1.05 +1.12 +6.38 −4.26 0.0 +2.88
Φ𝑒𝑥𝑖𝑡 ­ 𝑘𝑣3 −1.64 0.0 +1.55 −2.27 0.0 1.05
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Table 6.3: Summary of the results of the sensitivity analyses into correlations between macrostability parameters.

Correlated
parameters

Relative difference w.r.t. uncorrelated situation [%]

𝜌 = 0.8 𝜌 = 0.2 𝜌 = −0.2 𝜌 = −0.8
min median max min median max min median max min median max

𝑆 ­ 𝑚 −5.08 0.0 +16.5 −6.25 +0.29 +3.59 −11.2 −1.15 +10.2 −19.1 +0.70 +2.03
𝑆 ­ 𝛾 −5.38 +1.58 +120 −4.28 0.0 +24.0 −20.4 −1.38 +0.97 −63.8 −2.89 0.51
𝜑 ­ 𝛾 −8.74 −0.48 +112 −7.57 0.0 +23.3 −16.0 −0.37 +4.79 −58.7 −0.17 +5.10

6.2. Spatial Correlations
Now spatial correlations in the soil parameters are considered. The choice of which spatial correlations
should be investigated is based on an analysis of the spatial distribution of geological deposits in the
area of the case study. This analysis has been elaborated in Section 5.2.2 of the previous chapter.
Moreover, the hydraulic load is assumed to be fully correlated in space. After all, the river discharge
is the same everywhere along the trajectory, so a high river discharge results in high water levels for
each dike section at the same time. However, most analyses of this study are executed conditional on
the discharge, so for a fixed value of the river discharge. Therefore, the spatial correlation of the water
level is not visible in the results.

Spatial correlations are expected to have no impact on the sectional failure probabilities, but lead to
dependency between failure of neighbouring dike sections or to dependency in failure of two different
failuremechanismswithin one dike section. It is assumed that spatial correlations are always expressed
in positive correlations. In other words, spatial correlations imply that drawing a high realisation of a
soil parameter in dike section 1 increases the chances of drawing a high realisation of the same soil
parameter in dike section 2. Different scenarios of spatial correlation in the soil parameters have been
investigated:

• No spatial correlations;
• Spatially correlated aquifer parameters;
• Spatially correlated dike material;
• Spatial correlations for the layers that are listed in Table D.2;
• Spatial correlations for all layers.

The first two scenarios will be elaborated in more detail, while the other results will be summarised in
a few graphs and plots.

1. No spatial correlations
First, the model is run for a situation of no correlations between the parameters of two neighbouring
dike sections. Figure 6.17 shows scatter plots of the simultaneous realisations of the limit state func­
tions 𝑍 of two neighbouring dike sections for (a) piping; for (b) macrostability; and for (c) piping and
macrostability of the same dike section. These graphs illustrate the resulting dependencies between
failure of the sections and failure mechanisms when no spatial correlations are included in the model.
It can be seen that a situation with no spatial correlations obviously results in uncorrelated failure be­
tween dike sections and failure mechanisms. This scenario is used as the reference scenario, in order
to investigate the effect of including spatial correlations.

Table 6.4: Overview of the total failure probabilities in the uncorrelated situation, conditional on a river discharge of 𝑄 = 20, 000
𝑚3/𝑠. First column: according to the method of the model. Second column: according to the WBI assemblage procedure.

Counting failure integrally WBI procedure Relative difference

𝑃𝑓,𝑡𝑜𝑡𝑎𝑙 9.992 ⋅ 10−1 9.992 ⋅ 10−1 −0.005%
𝑃𝑓,𝑝𝑖𝑝𝑖𝑛𝑔 9.979 ⋅ 10−1 9.978 ⋅ 10−1 +0.007%
𝑃𝑓,𝑚𝑎𝑐𝑟𝑜 6.482 ⋅ 10−1 6.484 ⋅ 10−1 −0.040%
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(a) Scatter plot of 𝑍 for Piping of
dike section 30 vs. dike section 31

.

(b) Scatter plot of 𝑍 for
Macrostability of dike section 30

vs. dike section 31.

(c) Scatter plot of 𝑍 for Piping vs.
Macrostability for dike section 31.

Figure 6.17: Resulting dependencies in failure for a situation with no spatial correlations, conditional on a river discharge of
𝑄 = 20, 000 𝑚3/𝑠 and 𝑁 = 400, 000.

As explained in the previous chapter and in Chapter 1, the model makes use of an alternative method
to compute the total failure probabilities when compared to the standard WBI procedure. In the model,
failure is counted at the end of each Monte Carlo realisation if one or more 𝑍­values of the different
failure mechanisms and different dike sections are smaller than zero. In this way, simultaneous failure
of dike sections or failure mechanisms, as it is likely to occur in correlated scenarios, is only counted
once for the assessment of the total failure probability. The WBI procedure of assembling the failure
probabilities is explained in Section 5.8.2. In Table 6.4, the resulting total failure probabilities of the
uncorrelated scenario are summed. The last row gives the relative difference between the failure prob­
ability computed by the method of the integral probabilistic model, with respect to the failure probability
computed by the WBI procedure. It can be seen that the failure probabilities by counting failure are
practically the same as the failure probabilities according to the WBI assembling procedure, for the
uncorrelated scenario.

2. Spatial correlations for the Pleistocene sand layer (aquifer)
Now, spatial correlations are included. From Section 5.2.2, it was concluded that it is very likely that the
aquifer properties are correlated along the dike trajectory Sprok­Sterreschans, since there is one large
Pleistocene sand layer present. Therefore, the first situation that has been analysed is the situation in
which the aquifer parameters are spatially correlated over the complete trajectory. A positive spatial
correlation between neighbouring dike sections has been applied for the hydraulic conductivity 𝑘, the
grain size 𝑑70 and the frictional angle of the Pleistocene sand 𝜑𝑝𝑙 of the aquifer. 𝑘 and 𝑑70 are included
in the assessment for piping. 𝑘 and 𝜑𝑝𝑙 are included in the assessment for macrostability, where 𝑘 is
included in all metamodels, while 𝜑𝑝𝑙 is only included in some of the metamodels (see Table C.1).
Figure 6.18 and 6.19 illustrate that spatial correlations have a negligible effect on the sectional failure
probabilities, which is logical since the two correlated parameters play a role in different dike sections.
However, this observation is again based on the dike sections with failure probabilities that are higher
than the order of 10−3, since it is clearly visible that the results for dike sections with lower failure
probabilities are unreliable.

Figure 6.18: Resulting sectional failure probabilities for piping, conditional on a river discharge 𝑄 = 20, 000 𝑚3/𝑠, for two
different situations of spatially correlated aquifer properties.
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Figure 6.19: Resulting sectional failure probabilities for macrostability, conditional on a river discharge 𝑄 = 20, 000 𝑚3/𝑠, for
two different situations of spatially correlated aquifer properties.

(a) Scatter plot of 𝑍 for piping of
dike section 30 vs. dike section

31 .

(b) Scatter plot of 𝑍 for
macrostability of dike section 30 vs.

dike section 31.

(c) Scatter plot of 𝑍 for piping vs.
macrostability for dike section 31.

Figure 6.20: Resulting dependencies in failure for a situation with a correlation of 𝜌 = 0.8 between the aquifer properties,
conditional on a river discharge of 𝑄 = 20, 000 𝑚3/𝑠 and 𝑁 = 400, 000.

It is expected that the spatial correlations will result in correlated failure between neighbouring dike
sections and/or failure mechanism. In Figure 6.20, the resulting dependencies are shown. It can be
seen that it indeed leads to a correlation between failure due to Piping of neighbouring dike sections.
However, no effect is present in failure due to macrostability of neighbouring dike sections or in failure
due to the two mechanisms within one dike section. This can be explained by the fact that the parame­
ters 𝑘 and 𝜑𝑝𝑙 have a negligible effect on failure for macrostability (see Table C.5), while 𝑘 and 𝑑70 are
quite important for piping. The example is given for dike section 31, but the same holds for the other
dike sections.

3. Other scenarios of spatial correlations
For all other scenarios, including spatial correlations of the geotechnical parameters of a soil layer result
in dependencies in failure for piping, with a Pearson’s coefficient 𝜌 = 0.4 maximum. Still, the effect is
not really visible in a reduction of the total failure probability, when counting failure within the integral
model. For macrostability, the spatial correlations generally lead to a somewhat weaker dependency in
failure between two dike sections than for piping. A correlation between failure due to piping and due
to macrostability within one dike section is not visible. For the scenario of spatial correlations for all soil
layers, dependencies in failure became the most apparent for dike section 24 and 25, although they
are still quite weak (see Figure 6.21). This can be explained by the fact that the dike sections 24 and
25 make use of the same metamodel. In that scenario, all parameters of the same soil layer type were
correlated to the corresponding parameter of the same soil layer type of a neighbouring dike section.
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(a) Scatter plot of 𝑍 for piping of
dike section 24 vs. dike section

25 .

(b) Scatter plot of 𝑍 for
macrostability of dike section 24

vs. dike section 25.

(c) Scatter plot of 𝑍 for piping vs.
macrostability for dike section 24.

Figure 6.21: Resulting dependencies for a situation with a correlation of 𝜌 = 0.8 between all properties of the same soil layer,
conditional on a river discharge of 𝑄 = 20, 000 𝑚3/𝑠 and 𝑁 = 400, 000.

6.2.1. Summary of the results
The relative difference of the computed failure probabilities with respect to the uncorrelated situation
or the WBI procedure are listed in Table 6.5. In the table, the effect of including spatial correlations
on the total failure probabilities is shown, in terms of the relative difference between the correlated
scenario and the uncorrelated scenario (left columns) and between the correlated scenario and the
failure probabilities according to the WBI procedure (right columns). It can be seen that the effect is
negligible for most cases, while it was expected that it would be more significant. The results will be
interpreted and discussed in the next chapter.

To summarise, the total failure probabilities related to the most likely scenario of spatial correlations,
conditional on a river discharge of 𝑄 = 20, 000 𝑚3/𝑠 and for 𝑁 = 400, 000 are:

• 𝑃𝑓,𝑡𝑜𝑡,𝑢𝑛𝑐𝑜𝑟𝑟 = 9.992 ⋅ 10−1

• 𝑃𝑓,𝑡𝑜𝑡,𝑐𝑜𝑟𝑟 = 9.985 ⋅ 10−1

• 𝑃𝑓,𝑡𝑜𝑡,𝑊𝐵𝐼 = 9.992 ⋅ 10−1

These failure probabilities correspond to the third row of Table 6.5, with spatial correlations according
to Table D.2 for a correlation of 𝜌 = 0.8.

Table 6.5: Relative differences in % between the failure probabilities including correlations, with respect to (1) the uncorrelated
situation and (2) the failure probabilities computed by the WBI assemblage procedure.

Situation 𝜌 𝑃𝑓,𝑡𝑜𝑡 𝑃𝑓,𝑝𝑖𝑝 𝑃𝑓,𝑚𝑎𝑐𝑟𝑜
no corr WBI no corr WBI no corr WBI

Aquifer properties spatially correlated
0.8 −0.04 −0.05 −0.15 −0.13 +0.20 −0.10
0.2 −0.02 −0.02 −0.06 −0.03 −0.16 −0.07

Spatial correlations according to Table D.2
0.8 −0.07 −0.07 −0.17 −0.15 −3.8 −4.1
0.2 −0.02 −0.01 −0.06 −0.03 −0.98 −0.97

Dike properties spatially correlated
0.8 −0.01 −0.00 −0.04 −0.00 −2.5 −3.3
0.2 −0.04 −0.02 −0.02 −0.00 −0.35 −0.41

All properties of a layer spatially correlated
0.8 −0.13 −0.15 −0.39 −0.40 −1.4 −3.3
0.2 −0.02 −0.03 −0.06 −0.08 −0.98 −0.97



7
Discussion

The main objective of this study is to investigate the effects of including correlations in the assessment
of the failure probability of a dike trajectory within one integral, full­probabilistic model framework. In
this chapter, the results of this study, that were presented in the previous chapter, will be interpreted,
discussed and compared to the results of other studies. Also, the limitations of this research and the
relevance of the results will be explored.

7.1. Interpretation of the Results
In the following two subsections, the results ­ as presented in Chapter 6 ­ will be explained. First, the
correlations between variables will be discussed and second the spatial correlations.

7.1.1. Correlations between variables
In Section 6.1, the impact of different plausible correlations between variables of the piping andmacrosta­
bility assessments were investigated. From the results, it can be interpreted that the magnitude and
direction of the effect of correlations depend on the following aspects:

1. The importance and contribution of the correlated parameters;
2. For piping: the sub­mechanism in which the correlated parameters play a role;
3. The order of magnitude of the corresponding failure probability.

1. The importance and contribution of the correlated parameters
A correlation has a more significant effect if both parameters are of large importance for failure. This
explains why a correlation between the shear strength ratio 𝑆 and the volumetric weight 𝛾 shows the
largest impact for macrostability and between the hydraulic conductivity 𝑘 and the grain size 𝑑70 for
piping. Correlations related to macrostability generally have a smaller impact than to piping. Macrosta­
bility is a complex, non­linear process and there are many different parameters that play a minor role
in failure. Moreover, it depends on the location of the slip circle whether a parameter contributes to the
resistance or to the load, so the contribution, as well as the importance of a parameter, can vary. On
the contrary, failure due to piping is more linear and there are less parameters that determine failure,
leading to a generally stronger impact of correlations.

Whether a correlation leads to a reduction or to an increase of the failure probability strongly depends
on the importance and contribution of the parameters. This can be explained by taking 𝑘 and 𝑑70 as an
example: 𝑘 contributes to the load and 𝑑70 contributes to the resistance. If these two parameters are
positively correlated it means that a high realisation of 𝑘 is more likely to be drawn at the same time as
a high realisation of 𝑑70. A high realisation of 𝑘 would probably lead to an unsafe 𝑍­value, while a high
realisation of 𝑑70 would most probably lead to a safe value of 𝑍 and vice versa. So, these two effects
cancel each other out, leading to more ‘safe’ realisations of 𝑍. Therefore, the correlation between 𝑘 and
𝑑70 leads to a reduction of the failure probability due to piping. This conclusion is confirmed by Aguilar
López et al. (2014), where different copula types were applied to model the correlation between 𝑘 and
𝑑70. No matter which copula type was chosen, the Sellmeijer limit state function showed a reduction in
the failure probability due to piping for a higher degree of correlation.

79
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(a) No correlation between 𝑘 and 𝑑70. (b) Correlation of 𝜌 = 0.8 between 𝑘 and 𝑑70.

Figure 7.1: The importance of the stochastic parameters for the assessment of the sub mechanism backward erosion,
expressed by the FORM Importance factors (𝛼­values).

On the contrary, correlating two resistance parameters to each other leads to an increase of the failure
probabilities. After all, a positive correlation between two resistance (or two load) parameters implies
that low or high realisations of both parameters are likely to occur at the same time and thus will result
in more unsafe evaluations of 𝑍. This is often the case within macrostability.
At the same time, including correlation changes the importance of the corresponding parameters. This
can be illustrated by performing a FORM analysis for the sub­mechanism backward erosion, for the
uncorrelated and for the correlated situation of 𝑘 − 𝑑70 (𝜌 = 0.8). Figure 7.1 illustrates that the impor­
tance of the grain size 𝑑70 increases significantly when the correlation between 𝑘 and 𝑑70 is included
in the FORM analysis.

2. For piping: the sub­mechanism in which the correlated parameters play a role
Piping is assessed as a parallel system of the three sub­mechanisms uplift, heave and backward ero­
sion. This implies that the sub­mechanism with the lowest probability determines the total failure prob­
ability of piping. Therefore, a correlation between parameters that are included in the assessment of
the sub­mechanism with the lowest probability, will have the most significant effect on the total failure
probability. The sub­mechanism backward erosion dominates failure for this case study, explaining the
strong impact of a correlation between 𝑘 − 𝑑70.
Correlation between two load parameters of different mechanisms of a parallel system leads to an
increase of the failure probability, since the sub­mechanisms are more likely to fail at the same time.
This is the case for a correlation between the hydraulic conductivity 𝑘 and the exit potential Φ𝑒𝑥𝑖𝑡, for
example.

3. The order of magnitude of the failure probability
In Section 6.1.3, it could be observed that (1) the smaller the failure probability, the stronger the impact of
correlations and (2) this effect is stronger for a correlation between the hydraulic conductivity 𝑘 and the
grain size 𝑑70 than for the shear strength ratio 𝑆 and the shear strength exponent𝑚. In order to explain
these observations, the realisations of the correlated parameters and the histogram of the resulting
evaluations of the limit state function 𝑍 are analysed. This is presented in Figure 7.2 for correlated and
uncorrelated scenarios of 𝑘 and 𝑑70. First for a lower water level ℎ (i.e. lower failure probability) and then
for a very high water level. All other parameters than 𝑘 and 𝑑70 have been included deterministically.
Realisations of 𝑘 and 𝑑70 that lead to failure (𝑍 < 0) are plotted in red in Figure 7.2. Again, it can be
observed that the reduction of the failure probability, due to inclusion of the correlation, is much stronger
for the case with smaller failure probabilities (ℎ = 16). But now the figure also provides an explanation:
It can be observed in the most right panels that the width of the histogram ­ i.e. the variance of the
model ­ decreases when the correlation is included. This happens for both scenarios of the water level.
For ℎ = 16, the failure domain of the histogram (𝑍 < 0) is very small and thus the difference between
the area for 𝜌 = 0.8 and 𝜌 = 0 is relatively large. Therefore, the failure probability including correlation
is significantly smaller than the uncorrelated failure probability: due to the decrease of the variance.
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Figure 7.2: Scatter plots of the realisations of 𝑑70 vs. 𝑘. For the uncorrelated (left) and the correlated case (middle). Right: the
histogram of the evaluations of 𝑍𝑝𝑖𝑝𝑖𝑛𝑔. Conditional on a water level of ℎ = 16 m+NAP (upper) and ℎ = 18 m (lower).

For ℎ = 18, the failure domain is much larger, almost half of the histogram. In the lower histogram plot
it can be seen that the area in the failure domain of the histogram for 𝜌 = 0.8 is larger than the area of
𝜌 = 0. This is because the decrease of the variance is more evident in the right­hand tail, while most
𝑍­realizations for 𝜌 = 0.8 are located around 𝑍 < 0. This explains why the correlated failure probability
is larger than the uncorrelated failure probability for ℎ = 18. In short, the impact of correlation can be
explained by the decrease of the model variance.

Why this effect is more extreme for the correlation between 𝑘 and 𝑑70 than for the correlation between
𝑆 and 𝑚, can be partly explained by the marginal distributions of the parameters. Although all four
parameters are described by a lognormal distribution, the standard deviations differ. If the analysis as
shown in Figure 7.2 is repeated for a smaller standard deviation of 𝑘, the decrease of the variance of
the 𝑍­histogram is even stronger. This is shown in Figure E.16 of the appendix (p.130).

For a full explanation of this effect, it would be interesting to perform a variance­based sensitivity anal­
ysis in order to investigate the contribution of the input variables and combinations of variables to the
output variance. However, this is out of the scope of this research.

7.1.2. Spatial correlations and the total failure probability
From Table 6.5 on page 78, it can be concluded that spatial correlations have a negligible effect on the
total failure probability of this case study. This is a rather surprising conclusion, since it was expected
that the impact would be stronger, especially with the alternative way of counting failure within the
Monte Carlo simulation. However, the minor impact can be explained by two aspects:

1. The heterogeneity of the dike sections and failure mechanisms
2. The number of stochastic parameters

These aspects will be discussed below and illustrated by means of a simple, theoretical example of
two to three dike sections.

1. Heterogeneity of the dike sections and failure mechanisms
The major reason why the effect of spatial correlation cannot be fully expressed within this study is the
heterogeneity of the dike sections of the case study. The dike sections differ significantly from each
other in terms of order of magnitude of the failure probabilities and subsoil geometry. The latter leads
to the fact that the different metamodels of the dike sections are based on different ten input variables,
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because the importance of the soil parameters varies. So, even though there might be one clay layer
that extends over multiple dike sections, it does not mean that the strength properties of this layer are
included in all metamodels. Therefore, this spatial correlation cannot be fully included in the model and
its full impact is not reflected in the resulting dependencies and failure probabilities. If the dike sections
would have a similar geometry and subsoil, the corresponding parameters would be equally important
for all sections and it would be possible to use one metamodel ­ or at least similar metamodels ­ that are
based on the same input variables. So, it is expected that spatial correlations have a more significant
impact if the (subsoil) geometry is more or less constant in space.

Moreover, the method of counting failure if one or more negative evaluations of 𝑍𝑗,𝑘 occur, gives the
largest reduction of the total failure probability ­ compared to the uncorrelated situation or the WBI
assemblage ­ if all sectional failure probabilities are in the same order of magnitude. This can be
explained as follows: the method gives a reduction of the total failure probability if failure due to one
mechanism or dike section happens most often at the same time as failure due to another mechanism
or dike section (i.e. in correlated situations). However, if the failure probability of the first element
is in the order of e.g. 10−2, while the failure probability of the other is in the order of e.g. 10−5, the
combined failure probability for a correlated situation would be in the order of 10−2 and in the order of
10−2 + 10−5 = 10−2, for the uncorrelated situation. In other words, the reduction of the total failure
probability due to inclusion of spatial correlation is minimal in that case. This is what happened for the
case study of this research. The same line of reasoning explains why the method has a larger impact
if both sectional failure probabilities are in the same order of magnitude. Theoretically, it could lead to
a halving of the failure probability if failure of the two elements always occurs at the same time and if
their failure probabilities are the same.

2. Number of stochastic parameters
The assessments for macrostability of dike sections 5 and 6 are based on metamodels that have the
same input parameters. Still, the effects of correlations differ. This can be explained by the random­
ness of the realisations and by the complexity of macrostability. Apparently, the combination of the
drawn realisations of all parameters within an iteration really determines the 𝑍­value for macrostability,
and not the realisations of the two correlated parameters in particular. This is explained by the fact that
there is often not really one parameter that dominates the mechanism macrostability within a section.
Therefore, correlation between two parameters is in most situations not influential enough to show a
consistent trend in the failure probabilities for macrostability. It is expected that the impact of correla­
tion would be more evident if the other parameters than the correlated ones would be considered as
deterministic. The same holds for piping.

7.1.3. Effectiveness of the model
The predominantly insignificant effect of spatial correlations, in combination with the integral approach,
can be explained by the large differences between the dike sections. The dike sections have very
different failure probabilities, as could be observed in for example Figure 6.19 on page 77. Also the
subsoil geometry varies. It is expected that spatial correlations probably have a more significant impact
on the total failure probability in more homogeneous situations. This is proved by assessing a theo­
retical dike trajectory of three dike sections with the same geometry and metamodels by means of the
integral model.

Table 7.1: Upper: Failure probabilities for a situation with different failure probabilities for piping and macrostability, for a
spatially correlated and uncorrelated 𝑘. Lower: Total failure probabilities for a situation with similar failure probabilities for

piping and macrostability. For 𝑁 = 400, 000 realisations of the Monte Carlo simulation and all other parameters deterministic.

𝑘 𝑃𝑓,𝑝𝑖𝑝 𝑁𝑓,𝑝𝑖𝑝 𝑃𝑓,𝑚𝑎𝑐𝑟𝑜 𝑁𝑓,𝑚𝑎𝑐𝑟𝑜 𝑃𝑓,𝑡𝑜𝑡 𝑁𝑓,𝑡𝑜𝑡 𝑃𝑓,𝑡𝑜𝑡,𝑊𝐵𝐼 Diff w.r.t. WBI Diff w.r.t. ref

𝜌 = 0 2.22 ⋅ 10−2 8862 5.00 ⋅ 10−5 20 2.22 ⋅ 10−2 8881 2.22 ⋅ 10−2 −0.0063% ref
𝜌 = 0.8 2.17 ⋅ 10−2 8674 7.25 ⋅ 10−5 29 2.17 ⋅ 10−2 8674 2.18 ⋅ 10−2 −0.33% −2.33%

𝜌 = 0 3.15 ⋅ 10−4 126 3.43 ⋅ 10−4 137 6.75 ⋅ 10−4 263 6.57 ⋅ 10−4 2.68% ref
𝜌 = 0.8 3.25 ⋅ 10−4 130 4.55 ⋅ 10−4 182 4.55 ⋅ 10−4 182 7.80 ⋅ 10−4 −41.66% −32.59%
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Table 7.2: Reduction of the total failure probability due to macrostability after inclusion of spatial correlation for different
parameters. All other parameters are included deterministic. The order of magnitude of the sectional failure probabilities is 10­3.

Parameter Diff w.r.t. WBI Diff w.r.t. no corr

𝑆𝑐𝑙𝑎𝑦 ­30.6% ­30.6%
𝑚𝑐𝑙𝑎𝑦 ­22.3% ­23.0%
𝜑𝑑𝑖𝑘𝑒 ­90.4% ­91.7%

The effectiveness for different orders of magnitude of the sectional failure probabilities is investigated.
Therefore, two different scenarios of failure probabilities have been considered, both with and without
spatial correlation for the hydraulic conductivity 𝑘. The results are listed in Table 7.1. The first two rows
show the results for dike sections with a relatively high 𝑃𝑓 for piping and a small 𝑃𝑓 for macrostability.
The number of failures shows that including the correlation indeed causes the failures for macrostability
and piping to occur at the same time. However, it can be concluded that this only reduces the failure
probability by 2.3% with respect to the uncorrelated situation. This is due to the small number of
failures for macrostability. In the lower two rows of the table, however, the effect is much larger. Now
the failure probabilities due to piping and macrostability are both in the order of 10−4 and it can be seen
that inclusion of the spatial correlation for 𝑘 reduces the failure probability by more than 40%. This
reduction is much more significant than the ones achieved for the case study in the previous chapter.

Furthermore, the effect of using the same metamodel for multiple dike sections can be illustrated by
means of this theoretical case. In Table 7.2, the impact of including spatial correlations is shown for
three soil parameters. These parameters are likely to be spatially correlated in reality. All dike sections
have the same metamodel, and all other parameters are deterministic. The frictional angle of the dike
material 𝜑𝑑𝑖𝑘𝑒 has the largest importance factor in this theoretical case. It can be concluded that the
effect of spatial correlation is now much more notable. This also becomes clear from the scatter plots
for 𝑍, as shown in Figure 7.3. Including the correlation leads to a much more visible dependence in
failure of two neighbouring dike sections than previously for the case study.

So, including spatial correlation of an important parameter can give a reduction of the failure probability
of approximately 90% ­ a factor 10 ­ as listed below for spatial correlation of 𝜑𝑑𝑖𝑘𝑒 for a trajectory of
three dike sections and all other parameters deterministic:

• 𝑃𝑓,𝑚𝑎𝑐𝑟𝑜,𝑡𝑜𝑡,𝑐𝑜𝑟𝑟,𝑊𝐵𝐼 = 1.47 ⋅ 10−2
• 𝑃𝑓,𝑚𝑎𝑐𝑟𝑜,𝑡𝑜𝑡,𝑛𝑜𝑐𝑜𝑟𝑟 = 1.47 ⋅ 10−2
• 𝑃𝑓,𝑚𝑎𝑐𝑟𝑜,𝑡𝑜𝑡,𝑐𝑜𝑟𝑟 = 9.95 ⋅ 10−4

At the same time, the more parameters are included as stochastic, the more randomness is added to
themodel. The effects of the different parameter realisations partly cancel each other out and smoothen
the effect of spatial correlation. Still, the reduction of the failure probability as a consequence of spatial
correlation for 𝜑𝑑𝑖𝑘𝑒 is about 20% if all other parameters are stochastic and identical metamodels for
all three dike sections. This is still much more than for the case study Sprok­Sterreschans where the
dike sections are more heterogeneous and the metamodels differ along the trajectory.

(a) No correlation for 𝜑𝑑𝑖𝑘𝑒. (b) 𝜌 = 0.8 for 𝜑𝑑𝑖𝑘𝑒.

Figure 7.3: Scatter plots of 𝑍𝑚𝑎𝑐𝑟𝑜 for dike section 1 vs. dike section 2, for uncorrelated and correlated dike material 𝜑𝑑𝑖𝑘𝑒.
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7.2. Limitations of the Study
From the discussions above, a few limitations of the model already became clear. The most important
are listed and discussed below.

Metamodeling
Metamodels are most accurate for about a dozen input parameters (Pedregosa et al., 2011), while
macrostability is a complex failure mechanism with many more parameters involved. Since the dike
sections of the trajectory have different geometries and subsoil layers, the ten input variables differed
per dike section. As a consequence, it was not possible to include every plausible spatial correlation
that was observed in the subsoil schematisations as described in Section 5.2.2. This became evident
in the relatively small impact of spatial correlation for the case study. Moreover, the uncertainty in the
subsoil geometry is not included. The layer structure, as schematised by the water authority in D­
Stability, has been considered as deterministic. To include this uncertainty, the layer thickness should
be treated as stochastic and different scenarios of the subsoil structure should be considered. This
would make the creation of the metamodels much more complicated and time­consuming and could
be a research topic itself.

Reliability vs. computation time
Most of the analyses have been performed with 400,000 iterations of the Monte Carlo simulation. With
400,000 iterations, a coefficient of variation of 0.05 can be achieved for failure probabilities in the order
of 10−3 (see Equation 2.10 on p.11). For smaller failure probabilities, the simulation does not provide
a reliable estimate of the failure probability, which explains the rather strange results for dike sections
with smaller failure probabilities. Obviously, this could be solved by taking more iterations for the Monte
Carlo simulation. But then the computation time comes into play: with the used computer 400,000 iter­
ations already take about 18 hours for an assessment of the complete dike trajectory and with all input
parameters as stochastic. Increasing the number of iterations by a factor ten or more, which would be
required to have reliable estimates for failure probabilities in the order of 10−4 or lower, results in unfea­
sible computation time, for the available compute power. This is one of the major disadvantages of the
model and of Monte Carlo simulations in general. Monte Carlo simulations can be made more efficient
by means of importance sampling for example. However, for high­dimensional reliability problems in­
cluding correlations, the application of importance sampling is rather complex and still in development
(Liu and Elishakoff, 2020).

It also explains why an unrealistically high conditional discharge of 𝑄 = 20, 000𝑚3/𝑠 was applied for the
assessments of macrostability. Such an extreme value of the river discharge at Lobith is in reality very
unlikely to occur and is often not considered in the assessment of flood defences. Nevertheless, such
a high value had been chosen in order to obtain as many high, and thus reliable, failure probabilities as
possible. For piping, a value of 𝑄 = 16, 000 𝑚3/𝑠 was applied, since the sectional failure probabilities
are higher. For overtopping and erosion of the grass revetment on the outer slope, the sectional failure
probabilities of the case study trajectory are so small (< 10−6) that the results of the integral model are
not reliable.

Copula choice
A Gaussian copula had been chosen to model the correlations. The Gaussian copula does not induce
any specific tail dependence. Tail dependence can be important in reliability assessments, where
extreme values are considered. Still, the choice for a Gaussian copula is justified if there is no evidence
from data for a particular type of correlation, which is the case for this research. However, it should
be kept in mind that a different copula model may lead to a different effect of including correlations.
This became evident in the research of Aguilar­López et al. (2016), where the correlation between the
hydraulic conductivity 𝑘 and the grain size 𝑑70 of the aquifer was studied for different copula models.

Lack of data
An elaborate analysis of which copula to choose only makes sense if the amount of available data
is large enough to accurately derive the correlation structure between parameters from. For most
cases, just like the case study of this research, not many measurements are available for the different
geotechnical parameters. Thus, it is not even possible to define a value of the correlation coefficient 𝜌
between parameters from data. The same holds for the marginal distributions of the parameters.
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Hydraulic loads
In Section 5.3.1 it was concluded that the failure probabilities for overtopping could not be exactly
reproduced by the model. This could be mainly explained by neglecting the model uncertainty. The
model uncertainty is an important aspect in the definition of the hydraulic boundary conditions and
neglecting it leads to an underestimation of the failure probabilities. However, the aim of this research is
more of qualitative nature than quantitative, which is why it has been decided to focus on other aspects
than on improving the accuracy of the hydraulic loads. Therefore, the resulting failure probabilities of
this research are not very accurate, but they enable the investigation of the impact of correlations.

Definition of the exit point potential Φ𝑒𝑥𝑖𝑡 for piping
In the case study, the exit point potential Φ𝑒𝑥𝑖𝑡 was included as an explicit stochastic variable in the
assessment for piping. This was done to stay close to the assessment by the water authority. However,
it would be closer to reality to define Φ𝑒𝑥𝑖𝑡 as a function of the water level ℎ, phreatic level ℎ𝑝 and the
damping factor 𝜆, as described in Equation 3.21 and 3.22 on page 29. In that case, Φ𝑒𝑥𝑖𝑡 would be
dependent on the hydraulic conductivities (𝑘 and 𝑘𝑣3) and the thickness of the aquifer 𝐷 and blanket
layer 𝑑. Since these parameters partly play a role in both piping and macrostability, it would result in
more dependency between these mechanisms.

From a quick theoretical analysis with the model, it could be concluded that an implicit definition of
Φ𝑒𝑥𝑖𝑡 (by Equations 3.21 and 3.22) leads to somewhat smaller failure probabilities for piping in the
uncorrelated case ­ a reduction of 5% in particular ­ when compared to the model with explicit definition
ofΦ𝑒𝑥𝑖𝑡 as a stochastic input variable. The total failure probabilities are almost the same. Subsequently,
including a correlation for 𝑘 and 𝑑70 gives similar reductions of the failure probabilities for both variants
of the model, in the order of ­30%.

So, it seems that for this case study the explicit definition of Φ𝑒𝑥𝑖𝑡 leads to similar results as an implicit
definition would do. Still, it is recommended for future studies to use the implicit definition, as it is closer
to reality and enables the investigation of more correlations between the mechanisms.

7.3. The Relevance of an Integral Model
It can be concluded that the effect of the integral model was not very significant for the case study, in
which large differences between sections and mechanisms exist. But, it has also been demonstrated
that a significant reduction of the failure probabilities can be achieved if the different elements have
similar failure probabilities. This is a very interesting conclusion for design situations: In dike design,
the aim is to have similar failure probabilities for the different elements. So, in those situations, there
is a lot to be gained with this integral model ­ failure probability reductions in the order of 40% are
achievable. Especially in view of the rather conservative assessments within the current, conventional
approach, this is very relevant. A less conservative approach can lead to a smaller dike reinforcement
task, and thus less costs.

This thesis nicely aligns with the demand for less conservatism. An integral approach regards an
assessment from a different perspective: A flood defence is considered as a whole, in which the differ­
ent dike sections and failure mechanisms interact and in which the assessment is more event­based.
Event­based refers to the fact that the integral model does not unnecessarily double­count failure for
multiple mechanisms due to the same water level. Hence, the integral approach is closer to reality, in
which a dike is one continuous soil structure that experiences load from the same water system.

In the conventional approach, the different elements are assessed independently. The norm failure
probability of a trajectory is broken down to sectional failure probabilities per mechanism, by means
of the failure probability distribution and the length effect. After assessment of these loose elements,
they are accumulated again by means of the assembly procedure, in which semi­probabilistic results
are translated into estimates of sectional failure probabilities. The procedure is cumbersome and it is
often difficult to determine where unrealistic results arise (ENW, 2020). With the integral model, this
procedure is not needed, since the different elements are assessed simultaneously. The result is a
total failure probability that can be directly compared to the norm. Furthermore, it is easier to trace
back the origin of (unrealistically) high failure probabilities, e.g. by investigating the impact of a certain
parameter or a specific dike section.
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If dike sections and failure mechanisms are assessed integrally, the inclusion of many correlations ­
that are likely to be present in reality ­ is possible. For instance, it is often the case that there is one
geological sand deposit that spans large parts of the dike trajectory and that functions as the aquifer
for different dike sections. It is logical to assume that its properties are strongly correlated between
the different dike sections. This kind of dependency is not incorporated in the conventional approach,
while it can partly resolve the conservatism. As an example: solely by implementing one and the same
probabilistic parameter for the hydraulic conductivity 𝑘 for both piping andmacrostability, the total failure
probability could be reduced by 40%. For reference, in the conventional procedure, these mechanisms
are assessed independently and sometimes even with different design values for 𝑘 within the same
dike section, which is not realistic. But, it is also important to mention that many other correlations
between parameters only have a limited effect within this study.

And finally, an integral approach offers possibilities for more investigations regarding the coherence
between failure of different dike sections and mechanisms. For example, how does macrostability
evolve when the revetment has eroded? How does a slope instability affect piping? The integral model
provides a flexible basis that can be extended in order to answer these kind of questions.



8
Conclusion

The assessment of a Dutch flood defence within the current procedure is subdivided into different
failure mechanisms and dike sections that are assessed independently. In reality, a dike is of course
one earthen structure with interactions in the failure behaviour, between the failure mechanisms and
in space. These interactions take place, because the different dike sections and failure mechanisms
are dependent on the same hydraulic loads, the same dike geometry and the same subsoil structure
and characteristics. Especially for the geotechnical failure mechanisms. Regarding the different failure
mechanisms and dike sections as independent assessments is thus an approximation of reality. For a
more accurate reliability assessment, these dependencies should be taken into account. Dependencies
are commonly expressed in statistical correlations between parameters. The aim of this thesis is to
investigate the impact of including correlations in the reliability assessment of a dike trajectory. To
achieve this, an integral, full probabilistic model is created that enables the simultaneous assessment
of dike sections and failure mechanisms, while accounting for uncertainties and (spatial) correlations
within the model input. The research is conducted on the basis of a case study for the dike trajectory
43­4 between Sprok and Sterreschans. This chapter presents the conclusions that can be drawn from
the investigations by providing an answer to the main research question:

What is the effect of assessing the failure probability of a dike trajectory in one integral full­probabilistic
framework that includes correlations?

The short answer to the question is: The assessment of a flood defence in an integral, probabilistic
manner and with inclusion of the most important correlations can reduce the failure probability signifi­
cantly, by more than a factor ten in some situations. The reduction of the failure probability is caused
by two aspects of this study: (1) the inclusion of correlations between parameters; and (2) the inclusion
of spatial correlation of a parameter combined with an alternative method to compute the total failure
probability.

In the common practice, the total failure probability is determined by combining the independently com­
puted sectional failure probabilities per mechanism according to the so­called assemblage procedure.
The current research method counts failure within the Monte Carlo simulation whenever at least one
failure mechanism of one dike section results in a negative limit state evaluation 𝑍. In other words, it
does not matter for the total failure probability how many elements of the trajectory fail simultaneously
for the same realisation of the input, since a dike breach at one location is just as much failure as dike
breaches at several locations at the same time. Both situations lead to inundation, and thus imply failure
of the trajectory. If failure mechanisms and dike sections are assessed independently, simultaneous
failure due to the same realisation of input (i.e. due to the same flood event) cannot be recognised
and is included multiple times when the sectional failure probabilities per mechanisms are assembled
to a total failure probability. This method results in a lower trajectory failure probability with respect
to the assembled trajectory failure probability as soon as failure between mechanisms and sections is
correlated. However, it is important to emphasise that the impact of both aspects strongly depends on
the situation.
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Impact of correlations
Statistical correlations and their effects are a complex mathematical concept. The effect of including a
certain correlation is in the first place dependent on the importance and contribution of the correlated
parameters. But it should be kept in mind that the importance factors can change significantly in a
correlated situation. Whether a correlation leads to an increase or decrease of the corresponding failure
probability depends on whether the parameters contribute to the load or resistance of the corresponding
mechanism. Moreover, the effect strengthens for small failure probabilities. In a situation where failure
is dominated by a few parameters and the failure probability is in the order of 10−3 or smaller, inclusion of
a realistic degree of correlation between those parameters can reduce the failure probability by a factor
1000. This situation generally applies to piping, where a correlation between the hydraulic conductivity
𝑘 and the grain size 𝑑70 is present. On the other hand, for macrostability ­ which is a more complex,
non­linear mechanism where many different parameters play a minor role ­ the effect of correlation is
less significant: A reduction or increase of the failure probability of about 50% for failure probabilities
in the order of 10−3 is achieved, for correlation between the strength parameters 𝑆 and 𝑚.
Furthermore, it could be concluded that the more stochastic parameters are involved, the less apparent
the effect of a correlation becomes. This is explained by the fact that the 𝛼­values, i.e. the importance
of the correlated parameters, decrease for an increasing number of stochastic variables. The resulting
reductions due to correlations as mentioned above are based on situations in which most parameters
are included as deterministic. More stochastic parameters imply more randomness in the realisations
and less influence of the correlated parameters on failure. This is evident from the results for the case
study, where the effect of including correlations was much smaller than for a theoretical case.

Metamodeling
The minor influence of some correlations for the case study is also due to use of metamodels for
the assessment of macrostability. Implementation of macrostability within a full­probabilistic Monte
Carlo framework is complicated and generally leads to unacceptable computation costs. These issues
were tackled by the implementation of metamodeling based on Gaussian process regression. The
metamodels are able to predict the factor of safety of a dike section based on the ten most important soil
strength parameters, with a mean error of 5%, which is in the same order of magnitude as other sources
of uncertainty. An assessment by means of a metamodel reduced the computation costs by a factor
of roughly 300 with respect to an assessment by means of D­Stability. The downside of metamodeling
is that the mechanism is simplified to a model that depends on only ten geotechnical parameters.
Therefore, only if both metamodels of neighbouring dike sections include the corresponding correlated
parameters, the effect would be noticeable and thus the total impact of including a certain correlation
was small. In general, it can be concluded, however, that the concept of metamodeling is a very
promising method to enable the assessment of complex mechanisms like macrostability within a time­
consuming full­probabilistic reliability method like Monte Carlo, if some improvements are made.

Integral assessment
The combined effect of spatial correlations and the method of counting failure works best for dike sec­
tions and mechanisms with failure probabilities in the same order of magnitude. If one element always
dominates failure, correlations between other elements and counting (simultaneous) failure does not
make the difference. However, for a situation of homogeneous dike sections for which a few parame­
ters are the most important regarding failure, the integral model including correlations does lead to less
conservative assessments of the failure probability. This makes the model especially interesting for
design situation, in which it is aimed to achieve the same failure probabilities for the different elements.

The integral set up of the probabilistic model has definitely potential. The set up of an assessment of a
complete dike trajectory within one probabilistic model might seem complicated at first. However, many
steps of the current assessment procedure can be skipped, making the method not so complex at all.
For example, the distribution of the target failure probability over the mechanisms or the assemblage
for upscaling to a total failure probability are not needed any more. Moreover, the integral assessment
of a dike trajectory is closer to reality and provides more feeling about interactions and the importance
of a certain mechanism or parameter during a certain flood event. Even though the model is simplified
in many aspects, it provides a solid, working basis that can easily be extended and improved.
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Recommendations

Based on the findings of this thesis, several points of improvements of the research can be indicated,
as well as recommendations for dike managers and topics that are interesting to be further studied in
the future.

1. It is recommended to explore the possibilities to increase the efficiency of the model, to reduce the
computation costs. Possible approaches to investigate would be importance sampling or FORM.

2. Different degrees of correlation have been investigated within this study, but it is not known how
much correlation is actually realistic to assume between certain parameters. More data should
be obtained and further research should be done into the degree of correlation between soil
parameters in different areas of the Netherlands.

3. It is recommended to study the effect of correlations based on different copula models. Only the
Gaussian copula has been applied, while other copula models give a better representation of tail
dependencies, which could lead to different results.

4. Include model uncertainties for the hydraulic loads in order to be able to provide more accurate
estimations of the failure probabilities.

5. Apply the model to a different case study. In particular, a sea dike would be interesting. Sea dikes
are often more homogeneous in space and the failure mechanisms overtopping and erosion of
the outer grass revetment are more important, due to extreme wave loads. It is expected that
more significant reductions of the failure probabilities can be achieved with the model in a case
with homogeneous dike sections.

6. Investigate possible improvements and alternatives of the metamodeling approach. The current
research does not take the uncertainty in the soil geometry into account. Including a stochastic
soil structure would facilitate the investigation of more interactions between mechanisms and
would result in more accurate assessments of the failure probability. Also, other metamodeling
methods than the Gaussian process regression, or other combinations of parameters, could be
investigated.

7. Include the progression of failure. After sliding of a dike slope or erosion of the revetment has
occurred, some properties of the dike change, e.g. the geometry or the saturation of the dike body.
It would be interesting to investigate the impact of these interactions on other failure mechanisms
or dike sections, which was not part of this study. Also including time dependence would improve
the model.

8. For dike assessments, it is recommended to apply an integral model like this in situations with
homogeneity along the trajectory. This is the case if there is strong evidence that geological
deposits span large areas and if the dike geometry is homogeneous along the trajectory. In those
situations, it is likely that the failure probabilities of different elements are similar and that spatial
correlations exist. Considering these aspects can result in more realistic and less conservative
assessments of the failure probability.
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A
Reliability Theory

A.1. Reliability Index
If the limit state function 𝑍 only depends on two independent variables, 𝑟 and 𝑠, it holds that:

𝑓𝑅𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟) ⋅ 𝑓𝑆(𝑠) (A.1)

where 𝑓𝑅𝑆 is the joint probability density function. This can be illustrated as shown in Figure 2.1 on page
8. If 𝑅 and 𝑆 are independent normally distributed random variables, then also 𝑍 is normally distributed
with:

𝜇𝑍 = 𝜇𝑅 − 𝜇𝑆 , 𝜎𝑍 = √𝜎2𝑅 + 𝜎2𝑆 (A.2)

where 𝜇 denotes the mean value and 𝜎 the standard deviation. 𝑋𝑖 are the variables of 𝑅 and 𝑆. In
general, 𝜇𝑍 is positive, because otherwise failure would even occur under ‘normal’ conditions (van
Balen et al., 2016). Subsequently:

𝑃𝑓 = 𝑃[𝑍 < 0] = Φ [
0 − 𝜇𝑍
𝜎𝑍

] = Φ(−𝛽) = 1 − Φ(𝛽) (A.3)

or
𝛽 = Φ−1(1 − 𝑃(𝑍 < 0)) (A.4)

whereΦ denotes the standard normal distribution function. 𝛽 is the reliability index, which is defined as
the distance between 𝜇𝑍 and 𝑍 = 0 in 𝜎𝑍 units. For example, if 𝛽 = 4, failure occurs if a random sample
of 𝑍 is more than 4⋅𝜎𝑍 lower than themean. The reliability index is ameasure for the probability of failure
of a system and is often defined for a given time period. Note that if 𝛽 is defined as 𝜇𝑍/𝜎𝑍, Equation
A.3 does not necessarily hold if 𝑍 is not normally distributed. However, often 𝛽 is computed directly
from Equation A.4 in which case it is an exact representative of the failure probability by definition (van
Balen et al., 2016). If 𝛽 is small, it indicates a large probability of failure. In other words, it can be said
that larger values of 𝛽 indicate that more extreme events are required for failure to occur, meaning a
lower probability of failure and a larger reliability of the system.

Note that most of the equations above only hold for linear 𝑍­functions and for independent input vari­
ables that are normally distributed.

A.2. Covariance
An important property in the definition of dependence is the covariance:

cov(𝑋𝑌) = 𝐸{(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)} = 𝐸(𝑋𝑌 − 𝜇𝑋𝑌 − 𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌) = 𝐸(𝑋𝑌) = 𝜇𝑋𝜇𝑌 (A.5)

where 𝜇𝑖 are the mean values of 𝑋 and 𝑌 and 𝐸(𝑋𝑌) is the expectation or mean of 𝑋𝑌.
The covariance matrix, often denoted as Σ, models the variance along each dimension and determines
how the different random variables are correlated. The covariance matrix is always square, symmetric
and positive semi­definite (Lerman, 2014). The diagonal of Σ consists of the variance 𝜎2𝑖 of the 𝑖­th
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random variable. And the off­diagonal elements 𝜎𝑖𝑗 describe the covariance or correlation between the
𝑖­th and 𝑗­th random variable.

Σ = Cov (𝑋𝑖 , 𝑋𝑗) = 𝐸 [(𝑋𝑖 − 𝜇𝑖) (𝑋𝑗 − 𝜇𝑗)
𝑇] (A.6)

There are a number of additional rules that further restrict the patterns of permissible values among
their elements. The numbers on the diagonal (the variance) must all be positive. The values on the
diagonal restrict the range of possible off­diagonal values: Covariance coefficients 𝜎𝑖𝑗 must not be
greater in absolute value than (𝜎2𝑖 𝜎2𝑗 )1/2. Or equivalently, correlations must fall into the range between
­1 and 1.

The admissible range of a correlation between variables 𝑖 and 𝑗 is codetermined by the correlations
of all other variables with 𝑖 and 𝑗. The triangular inequality condition restricts the range of permissible
values for the correlation of variables 𝑖 and 𝑗 to fall between the two limiting values:

cos[arccos(𝜌𝑖𝑘) − arccos(𝜌𝑗𝑘)] (A.7)

and
cos[arccos(𝜌𝑖𝑘) + arccos(𝜌𝑗𝑘)] (A.8)

where the index 𝑘 stands for any arbitrary third variable in the same correlationmatrix. In larger matrices
there are additional, higher­order rules. For instance, the two ranges implied for the correlation between
𝑖 and 𝑗 by a third variable 𝑘 and a fourth variable 𝑙 must have a common non­empty intersection.

A.3. Joint Distribution Functions and Copulas
Joint probability distributions are defined as:

𝑓(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) (A.9)

representing the probability that events 𝑥 and 𝑦 occur at the same time. The Cumulative Distribution
Function (CDF) for a joint probability distribution is given by:

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃𝑟(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) (A.10)

Each of the random variables in 𝑋 can be transformed to independent standard normal variables 𝑈 =
(𝑈1, ...𝑈𝑛). If all the 𝑋­variables are mutually independent, this transformation can be described as
follows:

Φ(𝑢𝑖) = 𝐹𝑖 (𝑥𝑖) ⇒ 𝑢𝑖 = Φ−1 [𝐹𝑖 (𝑥𝑖)] ⇒ 𝑥𝑖 = 𝐹−1𝑖 (Φ (𝑢𝑖)) (A.11)

where:

• Φ = Standard normal distribution function

• 𝐹𝑖 = Distribution function (CDF) of 𝑥𝑖, the 𝑖­th variable in 𝑋
• 𝑢𝑖 = Realisation of the 𝑖­th variable in 𝑈, corresponding to the 𝑖­th variable in 𝑋

In any multivariate normal distribution it holds that each underlying random variable is distributed nor­
mally and that their (conditional) joint distributions are also normal.

A.3.1. Copulas
To get a feeling for the dependence between variables 𝑋 and 𝑌, it is traditional to look at the scatter
plot of the pairs (𝑋1, 𝑌1),...,(𝑋𝑛 , 𝑌𝑛). However, the pair of ranks (𝑅1, 𝑆1),...,(𝑅𝑛, 𝑆𝑛) associated with the
sample (𝑋, 𝑌) contain a greater amount of information and are therefore an important ingredient in the
application of copulas. 𝑅𝑖 stands for the rank of 𝑋𝑖 among 𝑋1,...,𝑋𝑛 and 𝑆𝑖 stands for the rank of 𝑌𝑖
among 𝑌1,...,𝑌𝑛.
The probability that 𝑋 < 𝑥 and 𝑌 < 𝑦 can be expressed by the CDF:

𝑃𝑟(𝑋 < 𝑥AND𝑌 < 𝑦) = 𝐹𝑋𝑌(𝑥, 𝑦) = 𝑡 𝑤𝑖𝑡ℎ 𝑡 ∈ (0, 1) (A.12)
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(a) From (𝑥, 𝑦) to (𝑢, 𝑣). (b) from (𝑢, 𝑣) back to (𝑥, 𝑦).

Figure A.1: Illustration of the transformations within the concept of copulas (Marsden, 2017).

We can use the marginal CDF’s to map from (𝑥, 𝑦) to a point (𝑢, 𝑣) on the unit square. Conversely we
can use the marginal inverse CDF’s to map from (𝑢, 𝑣) to (𝐹−1𝑋 (𝑢), 𝐹−1𝑌 (𝑣)). So, it also holds that:

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐹𝑋𝑌(𝐹−1𝑋 (𝑢), 𝐹−1𝑌 (𝑣)) = 𝐶(𝑢, 𝑣) = 𝑡 (A.13)

with 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦), meaning that the copula function lets us map directly from the unit square
to the joint distribution. It lets us express the joint probability as a function of the marginal distributions.

We can generate random points on [0, 1]2 using the copula function random generator. Then, we can
use the inverse CDF’s to generate points in the space of the real variables. The joint distribution of
these points has marginals 𝐹𝑋 and 𝐹𝑌, with the required dependency structure.
By definition, applying the normal cumulative distribution function (CDF), denoted by Φ, to a standard
normal random variable results in a random variable that is uniform on the interval [0, 1]. To see this, if
𝑍 has a standard normal distribution, then the CDF of 𝑈 = Φ(𝑍) is:

𝑃𝑟{𝑈 ≤ 𝑢} = 𝑃𝑟{Φ(𝑍) ≤ 𝑢} = 𝑃𝑟{𝑍 ≤ Φ−1(𝑢)} = 𝑢 (A.14)

which is the CDF of a 𝑈(0, 1)­random variable. Applying the inverse CDF of any distribution 𝐹 to a
𝑈(0, 1)­random variable results in a random variable whose distribution is exactly 𝐹. This two­step
transformation can be applied to each variable of a standard bivariate normal, resulting in dependent
random variables with arbitrary marginal distributions. Since the transformation works on each com­
ponent separately, the two resulting random variables are not required to have the same marginal
distributions.

The correlation parameter 𝜌 of the underlying bivariate normal determines the dependence between 𝑋1
and 𝑋2 in this construction. However, in more general cases such as the combination of a Gamma and
a 𝑡 marginal distribution, the linear correlation between 𝑋1 and 𝑋2 is difficult or impossible to express in
terms of 𝜌. That is because the linear correlation coefficient expresses the linear dependence between
random variables. However, if nonlinear transformations are applied to those random variables, linear
correlation is not preserved. In that case, a rank correlation coefficient, such as Kendall’s 𝜏 or Spear­
man’s 𝜌, is more suitable (MathWorks, 2020). Simply said, these rank correlations measure the degree
to which large or small values of one random variable associate with large or small values of another.
Unlike the linear correlation coefficient, they measure the dependence only in terms of ranks. As a
result, the rank correlation is preserved under any monotonic transformation. So, knowing the rank
correlation of the bivariate normal 𝑍 exactly determines the rank correlation of the final transformed
random variables 𝑋. Still, the linear correlation coefficient 𝜌 is required to parametrise the underlying
bivariate normal. At the same time, Kendall’s 𝜏 and Spearman’s 𝜌 are more useful for describing the
dependence between random variables, since they are invariant to the choice of marginal distribution.
For the bivariate normal, there is a simple one­to­one mapping between Kendall’s 𝜏 or Spearman’s 𝜌,
and the linear correlation coefficient 𝜌:
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𝜏 = 2
𝜋 arcsin(𝜌) or 𝜌 = sin (𝜏𝜋2 )

𝜌s =
6
𝜋 arcsin (

𝜌
2 ) or 𝜌 = 2 sin (𝜌s

𝜋
6 )

(A.15)

Therefore, by choosing the correct 𝜌 parameter value for the linear correlation between 𝑍1 and 𝑍2, it
is not difficult to create the desired rank correlation between 𝑋1 and 𝑋2, regardless of their marginal
distributions.

The concept described above is known as the bivariate Gaussian copula. A copula is a multivariate
probability distribution, where each random variable has a uniform marginal distribution on the unit
interval [0, 1]. These random variables may be completely independent, deterministically related, or
anything in between (MathWorks, 2020). A copula can be used to construct a new multivariate distribu­
tion for dependent variables, in the case of dependence among variables. Each variable is transformed
separately, possibly using different CDF’s. This enables that arbitrary marginal distributions are possi­
ble. Such multivariate distributions are often useful in simulations, where the different random inputs
are not independent of each other.

A.4. System Reliability
A dike trajectory is a series system for which the failure probability is determined by combining the differ­
ent failure mechanisms and dike sections. This has already been visualised by a fault tree in Figure 1.2.
The general formulation of the failure probability for a series system, consisting of 𝑚 components is:

𝑃𝑓 = 𝑃 [𝑍1(𝑢11, ..., 𝑢1𝑛) < 0 ∪ ... ∪ 𝑍𝑚(𝑢𝑚1, ..., 𝑢𝑚𝑛) < 0] = 𝑃 [
𝑚

⋃
𝑖=1
𝑍𝑖(𝑢𝑖1, ..., 𝑢𝑖𝑛) < 0] (A.16)

in which 𝑢𝑖𝑗 is the 𝑗th variable of the 𝑍­function of the 𝑖th component. For different components 𝑖 and
𝑘, the 𝑗th random variables (i.e. 𝑢𝑖𝑗 and 𝑢𝑘𝑗) in principle refer to the same load or strength variable,
but the sampled values can be different because they refer to different components. For instance, the
𝑗th variable may refer to the thickness of a clay layer. This thickness will be different for different dike
segments.

The system failure probability can easily be computed as long as the components are either mutually
exclusive, independent or fully dependent (i.e. 𝜌 = 0 or 𝜌 = ±1), as shown in Table A.1. For other
cases and values of the correlation coefficient 𝜌, the failure probability will be between the upper and
lower bound and the calculation is very challenging. Different approaches are possible though, for
example the Hohenbichler method.

Table A.1: System reliability for generic cases (Jonkman et al., 2017).

System Gate Operator
Components

Mutually exclusive Independent Fully dependent

series ⋃
𝑛

∑
𝑖=1
𝑃𝑖 (upper bound) 1 −

𝑛

∏
𝑖=1
(1 − 𝑃𝑖) max {𝑃𝑖} (lower bound)

parallel ⋂ 0 (lower bound)
𝑛

∏
𝑖=1
𝑃𝑖 min {𝑃𝑖} (upper bound)



B
Failure Mechanisms

B.1. Macrostability: Sliding of the Outer Slope
Macro­instability can, under certain circumstances, also occur on the river/sea side of a dike. This
failure mechanism generally does not occur during normative circumstances, as it most likely occurs
after a flood event or heavy rainfall, that is assumed to be independent of a flood event. Thus, the
water retaining function of the dike is not directly endangered, which makes outer slope macrostability
an indirect failure mechanism (’t Hart et al., 2016).

This failure mechanism is very much alike macrostability of the inner slope. Just like inner slope insta­
bility, also outer slope instability is caused by a loss of equilibrium of a soil body. This loss of equilibrium
can be caused by an increase of the pore pressures in the soil, resulting in a decrease of the shear
strength. High water pressures in the dike are again the result of a high (river) water level, of heavy
rainfall or of deformations. During a flood event, the high water level on the outer side of the dike
provides a counteracting moment, which ensures that the equilibrium can often be preserved, even
though the pore pressures may be high. The stability of the outer slope is only at risk if the outer water
level decreases so rapidly, that the phreatic line in the dike does not have enough time to follow. The
shear strength of the saturated soil is very small and the weight is large, while the stabilising effect of
the outer water level has disappeared. Consequently, the outer slope can slide, following a straight or
circular slip plane. Since this mechanism mostly occurs after a flood event, it is assumed that there
should almost always be enough time to repair the damage before the next event. Macro­instability
of the outer slope is largely dependent on the same parameters as for inner slope stability: The most
important factors are dike geometry, the pore pressures and the structure of the subsoil (’t Hart et al.,
2016).

In a correct assessment of the probability of flooding due to sliding of the outer slope, the correlation
between (extreme) rain events and (high) water levels should be included. Moreover, the probability
distribution of the time interval between two flood events ­ or the conditional probability of occurrence
of a second flood event given that a first flood event has occurred shortly before ­ should be accounted
for. Furthermore, the probability of flooding due to sliding of the outer slope is very dependent of the
location of the entry point of the slip plane and of the residual strength of the dike. For example, if
this entry point is located in the crest, then there will still be a part of the dike body that remains. If
and when flooding will occur then, depends on any subsequent slidings and on the erosion speed of
the remaining dike body. Since a revetment is not present any more after sliding, this can go very fast
for dikes with a sandy core. This mechanism again depends on the water level and wave load after
sliding has occurred. The probability of subsequent sliding is smaller for the outer slope than for the
inner slope, since the residual dike profile is on the land side and thus less saturated as for the situation
where sliding occurs at the inner slope and the rest profile is on the water side (’t Hart et al., 2016).
If the crest height is reduced as a result of sliding and the water level is sufficiently high, overflow will
occur, leading to more erosion and possibly inundation of the hinterland.
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B.2. Microstability
Micro­instability concerns the loss of stability of soil layers with a very limited thickness at the surface
of the inner slope, caused by ground water seepage through the soil body. Micro­instability manifests
itself for example as wash out of core material of sandy dikes or as instability of the clayey top layer at
the inner slope. In the case of dikes, this phenomenon usually occurs in the lower section of the inner
slope during or shortly after high water levels. The area over which the groundwater emerges from
the dike is called the seepage area CUR and TAW (1990). For micro­instability to occur, the phreatic
surface, an imaginary line or surface that bounds a saturated zone from above, has to reach the inner
slope and seepage flow has to develop. Under normal circumstances, the phreatic level lies below the
toe level. As a result of high outer water levels and infiltration in the run­up zone, the phreatic surface
will rise. The course of the rise and the final height of the phreatic surface below the inner slope is
dependent on several factors (Rijkswaterstaat, 2016):

• The elevation of the phreatic surface before the flood event

• The course of the high water levels and waves in time during the event and the total duration.

• The permeability of the outer slope revetment. If this layer is poorly permeable (e.g. an asphalt
revetment or a very thick clay layer), water cannot easily enter the dike core, leading to a very
limited rise of the phreatic level.

• The core material, concerning the storage capacity and the permeability of the soil. For clayey
dikes (i.e. cohesive soil) problems related to micro­instability rarely occur. For dikes with a per­
meable revetment and a sandy core (i.e. low cohesion), the phreatic line can easily rise, such
that the exit point may reaches the inner slope.

Whether micro­instability will lead to problems, also depends on the steepness and material of the inner
slope. The exit point of the phreatic line determines the height at which the slope failure starts, if the
effective weight and force exerted by the flow exceed the resisting shear stress. A hole will develop
at the inner slope of the dike. If the phreatic line remains high, more grains will be washed out and
more slidings will occur, leading to growth of the hole. It is assumed that the gap can grow so far that
the inner slope (and crest) will be undermined, such that that a large part of the slope will slide. If the
failure profile is high enough to damage the dike crest, it is assumed that it can lead to dike failure
(Vorogushyn et al., 2009). This process is illustrated in Figure B.1.

In view of the small­scale character of the phenomenon (washing­out of small soil elements) it is com­
mon to consider not the equilibrium of moments like for macrostability, but the equilibrium of forces
parallel to the slope. In the report by CUR and TAW (1990), several limit state functions are described:
one for groundwater flowing out of a slope above the water level and one for groundwater flowing out
of a slope below the water level. If the limit state of micro­instability is exceeded, this will not neces­
sarily lead at once to loss of the water­retaining function of the dike. For slopes above the water level
it is possible to make an approximate estimate of the damage profile based on assumptions (CUR and
TAW, 1990). The dike is assumed to collapse if so much material is moved from the inner slope to the
toe that the crest of the dike is affected. As shown in Figure B.2, this means that the level of point A
attains the crest level ℎ𝑜. The reliability function for failure is:

𝑍𝑚𝑖𝑐𝑟𝑜 = ℎ𝑜 − ℎ𝑎 (B.1)

Figure B.1: Schematic overview of the process leading to dike failure due to micro­instability (’t Hart et al., 2016).
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Figure B.2: Mechanism of micro­instabillity of the inner slope (CUR and TAW, 1990).

Flooding due to only micro­instability has never been observed (’t Hart et al., 2016). However, micro­
instability does have an influence on the occurrence of other failure mechanisms or can lead to failure
in combination with other mechanisms. The stability of the inner slope is affected by micro­instability
and the combination of overtopping, overflow and micro­stability will most likely result in dike failure.
On the other hand, erosion or sliding of the outer slope can enhance the process of micro­instability.
There is no relation between micro­instability and piping. To assess microstability in a realistic way,
these interactions between failure mechanisms should be taken into account.

Micro­instability is often confused with instability as a result of infiltration and erosion due to overtopping.
The difference, however, is that micro­instability concerns seepage through the dike and water that
flows from inside outwards, while for infiltration due to overtopping the water flows is from outside
inwards. Besides infiltration, some water will flow down the inner slope, resulting in erosion. Moreover,
water will seep through the dike during overtopping, as it also occurs during micro­instability.

If there is a significant amount of wave overtoping, the failure mechanism Sliding of the grass revetment
at the inner slope (GABI) will be normative, above the failure mechanism Micro­instability (STMI). If
there is however no significant overtopping, the mechanism micro­instability is normative above GABI.
The limit value for significant overtopping is 0.1 𝐿/𝑠/𝑚. If the overtopping rate is larger than this limit
value, micro­instability is not considered (’t Hart et al., 2016).

B.3. Sliding of the Grass Revetment at the Outer Slope
The grass revetment concerns the grass, including the clay layer underneath, that lies on a sand layer
or sand core. If the grass revetment lies directly on a clay core, sliding of the grass revetment cannot
occur (’t Hart et al., 2016). The mechanism regards the loss of stability of the revetment. If the pressure
difference over the clay layer is too large, the revetment can undergo uplifting, sliding or a combination
of the two.

The critical situation for the stability of the revetment on the outer slope most likely occurs during ex­
treme conditions of a high water level and high waves. A high phreatic line in the sand underneath
the clay layer leads to high outward directed pressures on the clay layer. During the moment of wave
run­down, the inward directed pressure on the outer slope is small. Consequently, there is an outward
directed resulting force on that part of the clay layer. Where the run­down is maximum, the effective
stress on the interface between clay and sand layer will be reduced such that loss of stability of the clay
layer can occur. Sliding of the outer revetment can only occur if the phreatic surface in the sand core
lies sufficiently high. This can happen for several reasons: if relatively permeable locations are present
in the revetment or if the sand body is relatively small. It can also happen if drainage of the sand core is
insufficient under normal conditions, in combination with a prolonged rainy period. Another important
factor for sliding of the outer revetment to occur is the wave height. The larger the wave height, the
more unfavourable the situation.



B.4. Sliding of the Grass Revetment at the Inner Slope 101

Whether sliding or uplift occurs depends on the strength, thickness and weight of the clay layer, the
pressure distribution over the clay layer and the slope. Moreover, it is possible that the clay layer bursts
open if the pressure is too high. This will lead to progressive erosion. The same will happen after a
part of the revetments has slided. Note that the flood safety is only endangered in the case that sliding
occurs during a flood event.

B.4. Sliding of the Grass Revetment at the Inner Slope
Just like sliding of the grass revetment on the outer slope, this failure mechanism concerns the loss of
stability. Infiltration due to wave overtopping and due to a high outer water level leads to an increase
of the pore pressures underneath the inner slope. As a result of the large pressure difference over
the revetment, it can lift up, slide or a combination of the two can happen. Furthermore, sand might
washes out, caused by an outward directed gradient of water flowing out of the dike. Further erosion
can result in progressive erosion of the dike core and eventually a dike breach. The increase of the
pore pressure depends on the course of the water level in time during an extreme event, the duration,
the amount and intensity of wave overtopping and the permeability of the revetment. Furthermore, it
depends a lot on the type of dike, clay vs. sandy core.

As mentioned already in Appendix B.2, the mechanism is closely related to micro­instability. The dif­
ference is that sliding of the grass revetment at the inner slope is caused by wave overtopping (as well
as seepage through the core). The stability problems are the same for the two mechanisms, but the
cause is different.

B.5. Time Dependent Loads on Revetments
The purpose of the prototype is to give insight into the sensitivity of the most important parameters for
the evaluation of grass revetments under time varying hydraulic loads. The erosion model for a sand
and clay dike core from Kaste and Klein Breteler (2015) is adopted in the prototype to incorporate the
residual strength. Combined with a probabilistic and time­varying approach of loads it is possible to
obtain a flooding probability for dike erosion (Rongen et al., 2019). The prototype has been tested with
a large number of time dependent and realistic load patterns from GRADE and RACMO.

In an follow­up study of the prototype ((Rongen et al., 2020)), it has been researched what time aspects
of the hydraulic loads are relevant for revetment strength, by simulating a high number of storms on sev­
eral dikes. The assessments led to smaller failure probabilities than by the WBI method. The method
by Rongen et al. (2020) to define the loads was as follows: The first step is selecting a representative
set of storms from ECMWF data. All storms with a peak above a certain surge or a certain wind speed
are selected. To calculate a failure probability, every storm condition must also be assigned a proba­
bility. Storms are then grouped to reduce the number of storms to around 1000. After this, the storms
are combined with river discharges. Nine levels discharge are chosen for the discharge at Lobith. The
course of the discharge wave is not included. The momentary probability of a discharge is used to
determine the probability of a discharge being within a certain range, at any moment. These can be
calculated with Hydra­NL. With these boundary conditions, the SOBEK­RE simulations are done. Each
of the roughly 1000 storms was simulated with each of the 9 discharge levels. These result in water
levels, which are combined with wind data to form the boundary conditions for the dikes.

This prototype consists of 4 separate kernels, each describing a different physical processes:

• Wave impact: a Python model based on de Waal and van Hoven, 2019.

• Wave run­up: a Python model (Python) based on de Waal and van Hoven, 2015. The dl­
lLeveesOvertopping64.dll is used for calculating the run­up height.

• Residual strength: a Python erosion model based on Kaste and Klein Breteler, 2015. It simulates
the dike profile after the revetment has failed due to impact or run­up.

• Overtopping and overflow, calculated with dllLeveesOvertopping64.dll and CombOver­
loopOverslag64.dll respectively. Overtopping is calculated for the current profile, meaning
that the profile is updated during erosion of the dike body.
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In the model, the revetment is divided into segments, for example with a height of 0.5 m. Per segment,
the cumulative load is calculated over time. When the critical cumulative load is reached at one of the
segments, the outer revetment has failed and erosion will occur. The cumulative load depends on the
load from wave run­up and wave impact. The threshold value for the deterioration depends on the
state of the revetment: closed or open turf (RWS, 2018). Three types of load input can be used in the
prototype:

1. A time series with at each time step thewater level, wind speed andwind direction. The Bretschnei­
der equations are used to convert the input values to the wave height and period.

2. A time series of wave conditions. This should contain at least water level, significant wave height,
wave direction and one or both of the peak period and spectral period. When only one period is
given, the other is calculated form the present one: 𝑇𝑝 = 1.1 ⋅ 𝑇𝑚−1,0 and vice versa.

3. Constant values of: wave height, wave period, wave direction, duration of storm and the time
step. This last option is useful for test purposes.

B.6. WBI 2017 Procedure
In the WBI, the failure mechanisms are assessed by different assessment tracks. An assessment track
is the way in which a mechanism is assessed. The assessment tracks can be subdivided into five
groups, based on the available computation methods and whether they are related to direct or indirect
mechanisms (Rijkswaterstaat, 2017). The following four groups are relevant for dikes:

1. Group 1: The detailed assessment per section is executed by a probabilistic analysis.

2. Group 2: Assessment tracks for which the detailed assessment per section is executed by a
semi­probabilistic analysis, which is translated to a distance to the norm by extrapolation.

3. Group 3: The detailed assessment per section is semi­probabilistic. The safety coefficients have
been derived anew for the WBI 2017. Separate computations are needed to find the distance to
the norm.

4. Group 4: No probabilistic or semi­probabilistic computation with new safety coefficients is avail­
able. These assessment tracks have not been modified with respect to the former assessment
method or a detailed assessment is not available.

For group 1, the failure probability per section is the result of a computation. For the other groups
however, the result is an approximation of the failure probability (Rijkswaterstaat, 2017). A summary
of the assessment method per failure mechanisms, and their codes in the WBI, are given in Table B.1.

Table B.1: Assessment tracks or failure mechanisms within WBI 2017.

Assessment tracks for dikes Code Group Reliability method

Macro stability (sliding inner slope) STBI 2 semi­prob.
Macro stability (sliding outer slope) STBU 4 det. / semi­prob. old
Internal erosion / piping STPH 2 semi­prob.
Micro stability STMI 4 det. / semi­prob. old
Wave impact on asphalt revetment AGK 3 semi­prob.
Water overpressure for asphalt revetment AWO 4 det. / semi­prob. old
Erosion grass revetment outer slope GEBU 3 semi­prob.
Sliding grass revetment outer slope GABU 4 det. / semi­prob. old
Erosion grass revetment crest and inner slope GEKB 1 probabilistic
Sliding grass revetment inner slope GABI 4 det. / semi­prob. old
Stability of stone revetment ZST 3 semi­prob.
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Figure B.3: Distribution of the probability of failure over the different mechanisms (‘Faalkansbegroting’).

B.6.1. Failure probability distribution
The target failure probability is distributed over the failure mechanisms by default values for their maxi­
mum contribution𝜔𝑗 (‘faalkansruimtefactor’). The target probability per failure mode (𝜔𝑗 ⋅𝑃𝑟𝑒𝑞) accounts
for the fact that each failure mode can lead to system failure. The default values of the maximum
contributions per failure mechanism (𝜔𝑗) are based on the conservative assumption that the failure
mechanisms are statistically independent ­ or strictly speaking mutually exclusive ­ implying that the
sum of these contributions should be smaller or equal to one (∑𝜔𝑗 ≤ 1). In this way it is ensured that
if the failure mechanisms satisfy their individual target probabilities, also the system target probabil­
ity is met with certainty (Jonkman et al., 2018). The default values of 𝜔𝑗 are illustrated in Figure B.3
(Rijkswaterstaat, 2017).

B.6.2. The length­effect
The next step is to divide the target failure probability per mechanism over the corresponding dike
sections. For this, the length­effect should be taken into account, by introducting the length­effect
factor 𝑁𝑗. The length­effect basically means that a failure probability increases with the length of the
flood defence system. In other words, the probability that failure occurs at any location is larger than
the probability that failure occurs at one specific location. In practice, this uncertainty mainly arises
from the fact that measurements are not available for every location continuously. Because of this,
it is never exactly known in practice where the weakest spot is located and how weak this spot is
exactly. The longer the dike, the larger the probability of occurrence of a weak spot. The length­
effect also arises from the spatial variability of the load and resistance parameters (KPR, 2019). The
length­effect is relatively small for failure mechanisms with a high level of dependence (correlation),
such as overtopping. 𝑁𝑗 will be in the order of 1 or 2. The effect is larger for failure mechanisms that
behave more independently, like stability or piping. For these failure mechanisms, the additive effect
of individual sectional failure probabilities on trajectory reliability is stronger. 𝑁 will be more in the order
of 10 to 100. The exact values can be determined consulting the WBI 2017 documents.

The subdivision method for the norm can be summarised by the following formula:

𝑃𝑟𝑒𝑞,𝑖,𝑗 =
𝜔𝑗
𝑁𝑗
⋅ 𝑃𝑟𝑒𝑞 (B.2)

where 𝑃𝑟𝑒𝑞 denotes the annual norm of a trajectory and 𝑃𝑟𝑒𝑞,𝑖,𝑗 the target reliability for section 𝑖 and
failure mechanism 𝑗 [1/𝑦𝑒𝑎𝑟].



C
Metamodeling

C.1. Kriging and ERRAGA
Kriging has been developed for geostatistics by Krige and then by Matheron in the fifties and sixties.
Kriging is an exact interpolation method, meaning that the prediction in a point belonging to the ex­
perimental data is the exact value of the performance function in this point. Also, Kriging provides not
only predicted values in any point, but also estimations of the local variance of the predictions. This
variance defines the local uncertainty on the prediction and is called the Kriging variance. It is under­
stood in the way that the higher the variance, the less certain the prediction. Echard et al. (2011) have
proposed a promising surrogate modelling method called Active learning Kriging based Monte Carlo
simulation (AK­MCS), that has shown to be an efficient way of approximating failure probabilities. It
consists of an Active learning reliability method combining Kriging and Monte Carlo simulation. Active
learning means that an iterative process is used in which the training set is updated by adding a new
point to the training data set, where this point is being selected based on its expected improvement on
the Kriging model. This decreases the uncertainty of the model, especially in the region of interest (i.e.
region near the limit state). The process is repeated until a chosen convergence criterion is met. The
metamodel is used in a Monte Carlo simulation to determine the system response of interest.

Recently, a two stage AK­MCS metamodel has been developed by Deltares for modelling noisy and
incomplete models, called ERRAGA. A model is incomplete if it does not return an answer for some
combinations of input parameters. The first stage of the two­stage model is therefore used for classifi­
cation. It estimates whether a combination of parameters is feasible or not. The feasible ones proceed
to the second stage, where the model response is determined by the surrogate model. The two­stage
approach allows the model to be used in a reliability updating context, in which one of the stages
would be used for identifying consistency with the observation. This way the failure probability given
consistency can be determined (Kentrop, 2021).

C.2. Gaussian Process Regression
A common applied statistics task involves building regression models to characterise non­linear re­
lationships between variables. It is possible to fit such models by assuming a particular non­linear
functional form, such as a sinusoidal, exponential, or polynomial function, to describe a variable’s re­
sponse to the variation in other variables. Unless this relationship is obvious from the outset, however,
it involves possibly extensive model selection procedures to ensure the most appropriate model is
retained. Alternatively, a Bayesian non­parametric approach can be adopted (Fonnesbeck, 2017).

C.2.1. Non­parametric Bayesian approach
In a Bayesian model, a full probability model is specified for the problem at hand, assigning probability
densities to each model variable. For example, parametric Bayesian linear regression finds the distri­
butions over the parameters of the function 𝑓(𝑥) = 𝜃0+𝜃1 ⋅ 𝑥. 𝑓(𝑥) is the function to model and predict
the dependent variable 𝑦, as a function of an independent variable 𝑥: 𝑦 = 𝑓(𝑥)+𝜖, where 𝜖 is the error
term, representing the error of the measurements.
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In a parametric approach, the number of parameters 𝜃𝑖 has to be specified upfront, while in a non­
parametric approach every possible function that matches the data is considered, independent of the
number of parameters involved. Non­parametric in fact means that there are infinitely many parameters
(Fonnesbeck, 2017).

C.2.2. Approach
Gaussian processes (GP) define a probability distribution over all possible functions. GP assume that
𝑝(𝑓(𝑥1), …, 𝑓(𝑥𝑁)) is jointly Gaussian (Murphy, 2021). Adopting a set of Gaussians ­ a multivariate
normal vector ­ confers a number of advantages. First, the marginal distribution of any subset of ele­
ments from a multivariate normal distribution is also normal. Conditional distributions of a subset of the
elements of a multivariate normal distribution (conditional on the remaining elements) are normal too.
A Gaussian process generalises the multivariate normal to infinite dimensions: An infinite collection of
random variables, with any marginal subset having a Gaussian distribution (Fonnesbeck, 2017).

Visually, the multivariate Gaussian distribution is centred around the mean and the shape is determined
by the covariance matrix, in which the correlations between the variables are defined. Each sample
of the multivariate normal distribution represents one realisation of the function values. Because this
distribution is a multivariate Gaussian distribution, the distribution of functions 𝑝(𝑓(𝑥1), …, 𝑓(𝑥𝑁)) is
normal too. Similarly, this distribution of functions is fully specified by a mean function and a covariance
function:

𝑝(𝑥) ∼ 𝒢𝒫 (𝑚(𝑥), 𝑘 (𝑥, 𝑥′)) (C.1)
The essential ingredients for GP are the training data set 𝑌 with data points 𝑥 for which the outcome /
function values 𝑓(𝑌) have been observed, and the test data set 𝑋 with data points denoted as 𝑡 or 𝑥∗ for
which we would like to estimate/predict the function value 𝑓∗ = 𝑓(𝑋). For now, let’s consider the case
where we have not yet observed any training data. In the context of Bayesian inference, this is called
the prior distribution 𝑃𝑋. In order to set up the prior distribution, 𝜇 and Σ have to be defined. In Gaussian
processes it is often assumed that 𝜇 = 0, which simplifies the necessary equations for conditioning. It
is always possible to assume this, even if 𝜇 ≠ 0. We can always add 𝜇 back to the resulting function
values after the prediction step. But also, it turned out that most of the learning in the GP involves
the covariance function and its hyperparameters, so very little is gained in specifying a complicated
mean function (Fonnesbeck, 2017). The prior distribution will have the same dimensionality as the
number of training data variables 𝑁 = |𝑋|. Setting up the covariance matrix Σ is a bit more complex.
The covariance matrix will not only describe the shape of the distribution, but ultimately determines the
characteristics of the function to be predicted. The kernel is used to define the entries of the covariance
matrix. The kernel 𝑘 receives two test points 𝑥∗ , 𝑥’∗ ∈ ℝ𝑛 (or sometimes called 𝑡, 𝑡′) as an input and
returns a similarity measure between those points in the form of a scalar:

𝑘 ∶ ℝ𝑛 × ℝ𝑛 → ℝ, Σ = Cov (𝑋, 𝑋′) = 𝑘 (𝑡, 𝑡′) (C.2)

This function is evaluated for each pairwise combination of the test points to retrieve the covariance
matrix. As mentioned earlier, the entry Σ𝑖𝑗 describes how much influence the 𝑖­th and 𝑗­th point have
on each other. The covariance matrix will have dimensions of 𝑁 × 𝑁. Consequently, the covariance
matrix determines which type of functions from the space of all possible functions are more probable.
As the prior distribution does not yet contain any additional information, it is very suited to visualise the
influence of the kernel on the distribution of functions.

In order to perform regression on the training data, the problem is treated as Bayesian inference.
The essential idea of Bayesian inference is to update the current hypothesis as new information, i.e.
the training data, becomes available (Görtler et al., 2019). The key idea is to model the underlying
distribution of test data 𝑋 together with training data 𝑌 as a multivariate normal distribution, where the
training and the test points are linked to each other, to compute the corresponding covariance matrix.
That means that the joint probability distribution 𝑃𝑋,𝑌 spans the space of possible function values for
the function that we want to predict and it can be described as:

( 𝑓𝑓∗ ) ∼ 𝒩 (( 𝜇
𝜇∗ ) , (

𝐾 𝐾∗
𝐾𝑇∗ 𝐾∗∗ )) (C.3)

where 𝐾 is the matrix that is obtained by applying the kernel function 𝑘 to the training data, i.e. the
similarity of each observed 𝑥 to each other observed 𝑥. 𝐾∗ gives the similarity of the training data to the
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test data whose output values we are trying to estimate. 𝐾∗∗ gives the similarity of the test data points
to each other. This joint distribution of test and training data has |𝑋| + |𝑌| dimensions.
By means of conditioning, it is possible to derive the conditional probability 𝑃𝑋|𝑌 from 𝑃𝑋,𝑌. By definition,
𝑃𝑋|𝑌 is normally distributed as well and the dimension is the number of test points 𝑋. The conditional
distribution 𝑃𝑋|𝑌 forces the set of functions to precisely pass through each training point. Deriving this
conditional probability is how the posterior is derived from the prior and the observations in a GP:
With the joint distribution 𝑝(𝑓, 𝑓∗) known, it is possible to obtain the conditional 𝑝(𝑓∗|𝑓) (or 𝑝(𝑓∗|𝑥∗, 𝑥, 𝑓)),
resulting in the mean 𝜇∗ and covariance matrix Σ∗ that define the distribution 𝑓∗ ∼ 𝒩(𝜇∗, Σ∗). The last
step is to sample from this distribution. By marginalising each random variable, we can extract the
respective mean function value 𝜇∗𝑖 and standard deviation 𝜎∗𝑖(= Σ∗𝑖𝑖) for the 𝑖­th test point, that can
provide us with the desired predicted values.

C.2.3. Kernels for Gaussian Processes
Kernels, or covariance functions as they are often called in the context of GP, are a crucial ingredient.
The kernel describes the similarity between the values of the function and subsequently it encodes the
assumptions on the function ­ i.e. similar data points should lead to similar function values. Therefore,
it also controls the possible shape that a fitted function can adopt. When choosing a kernel it should
be ensured that the resulting matrix adheres to the properties of a covariance matrix, as described in
Appendix A.2. Many kernels conceptually embed the input points into a higher dimensional space in
which they then measure the similarity (Görtler et al., 2019). There are two categories of kernels that
can be distinguished: stationary kernels and non­stationary kernels. Stationary kernels are functions
that depend only on the distance of two data points and not on their absolute values and are thus
invariant to translations in the input space, and the covariance of two points is only dependent on their
relative position. Stationary kernels can be further subdivided into isotropic and anisotropic kernels,
where isotropic kernels are also invariant to rotations in the input space (Pedregosa et al., 2011). Non­
stationary kernels also depend on the specific values of the data points. Common kernels for Gaussian
processes are the following:

• RBF kernel: It uses the Squared Exponential and is known as the Gaussian or Radial Basis
Function (RBF) kernel. It calculates the squared distance between points and converts it into a
measure of similarity, controlled by a tuning parameter (Bailey, 2019). It is a stationary kernel
and defined as:

𝑘(𝑡, 𝑡′) = 𝜎2 exp(−
‖𝑡 − 𝑡′‖2

2𝑙2 ) (C.4)

where 𝜎 is the variance that determines the average distance away from the function’s mean. De­
creasing the variance Σ therefore results sampled functions that are more concentrated around
the mean 𝜇 and thus in a narrow confidence bound of the resulting function. The length 𝑙 deter­
mines the reach of influence on neighbours. A large value for 𝑙 gives a smooth function, while a
small value results in a wiggly function.

• Periodic kernel: It is a stationary kernel and suitable for periodic functions, defined as:

𝑘(𝑡, 𝑡′) = 𝜎2 exp(−2 sin
2 (𝜋 |𝑡 − 𝑡′| /𝑝)

𝑙2 ) (C.5)

where 𝑝 is the periodicity that determines the distance between repetitions. Here, a large value of
𝑙 results in a quite constant periodic function, while a small value gives a wiggly/irregular periodic
function. The larger 𝑝, the larger the period of the periodic function.

• Linear kernel: It is a non­stationary kernel and it is suitable for linear functions:

𝑘(𝑡, 𝑡′) = 𝜎2𝑏 + 𝜎2(𝑡 − 𝑐) (𝑡′ − 𝑐) (C.6)

where 𝜎𝑏 determines the certainty around 𝑐 which is the offset that determines the intersection
point of all functions. Setting the variance 𝜎𝑏 = 0 results in a set of functions constrained to
perfectly intersect the offset point 𝑐. If we set 𝜎𝑏 > 0, we can model uncertainty, resulting in
functions that pass close to 𝑐.
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There are many more kernels that can describe different classes of functions, which can be used to
model the desired shape of the function. It is also possible to combine several kernels . A good overview
of different kernels is given by Kristjanson Duvenaud (2014).

C.3. Application
Table C.1: Input variables for the metamodels per dike section. Beside these parameters, the metamodels are based on the

hydraulic conductivities 𝑘, 𝑘𝑣1, 𝑘𝑣3 and the water level ℎ.

Dike section Parameters

DV1 φ dike γ dike φ sand pl φ clay sand S clay sand γ clay sand
DV2 φ dike γ dike φ clay sand S clay sand m clay sand γ clay sand
DV3 φ dike φ sand pl φ clay sand S clay sand m clay sand γ clay sand
DV4 φ dike S dike φ clay sand S clay sand φ clay silt S clay silt
DV5 & 6 γ dike φ sand pl S clay sand φ clay silt S clay silt m clay silt
DV7 φ dike γ dike φ clay sand S clay sand φ clay silt S clay silt
DV8 φ dike γ sand hol φ clay silt S clay silt m clay silt γ clay silt
DV9 φ dike S dike γ dike φ drained clay γ drained clay S drained clay
DV10 φ dike S dike γ dike φ sand pl φ clay sand S clay sand
DV11 φ dike φ clay sand S clay sand φ clay silt S clay silt m clay silt
DV12 φ dike γ dike φ hol sand φ clay sand S clay sand γ clay sand
DV13 φ dike γ dike φ clay sand S clay sand m clay sand γ clay sand
DV14 φ dike φ sand hol φ clay sand S clay sand m clay sand γ clay sand
DV15 φ dike γ dike φ clay sand S clay sand m clay sand γ clay sand
DV16 & 17 φ dike φ clay sand S clay sand φ clay hum S clay hum m clay hum
DV18 φ dike S dike φ sand hol φ clay sand S clay sand γ clay sand
DV19 φ dike φ sand hol γ sand hol φ clay silt S clay silt m clay silt
DV20 φ dike γ dike φ sand hol φ clay sand S clay sand γ clay sand
DV21 φ dike φ sand pl φ clay sand S clay sand m clay sand γ clay sand
DV22 φ dike φ sand hol φ sand pl φ clay silt S clay silt m clay silt
DV23 φ dike γ sand hol φ clay hum S clay hum m clay hum γ clay hum
DV24 φ dike γ dike φ clay sand S clay sand m clay sand γ clay sand
DV25 φ dike γ dike φ clay sand S clay sand m clay sand γ clay sand
DV26 φ dike φ sand hol φ clay sand S clay sand φ drained clay sand γ drained clay sand
DV27 φ dike φ sand pl φ clay sand S clay sand m clay sand γ clay sand
DV28 φ dike γ dike φ sand pl φ clay sand S clay sand γ clay sand
DV29 φ dike γ dike φ clay silt S clay silt m clay silt γ clay silt
DV30 φ dike γ dike φ clay silt S clay silt m clay silt γ clay silt
DV31 φ dike γ dike φ sand pl φ clay silt S clay silt m clay silt

Table C.2: Description of the input variables and their values that are used in the original D­Stability schematisations.

Abbreviation Description 𝛾 [kN/m3] 𝜑 [deg] 𝑆 [­] 𝑚 [­]

dike the total dike material (clay) 18.54 30 0.34 0.87
clay sand silty, sandy clay layer with 𝛾 > 17.5 kN/m3 18.73 29.7 0.28 0.85
clay silt silty clay layer with 𝛾 = 16 ­ 17 kN/m3 16.82 28.7 0.25 0.86
clay hum silty, humous clay layer with 𝛾 = 14 ­ 16 kN/m3 15.15 27.7 0.21 0.87
drained clay sand drained silty, sandy clay layer with 𝛾 > 17.5 kN/m3 18.73 29.7 ­ ­
sand hol holocene sand layer 18 (unsat) ; 20 (sat) 31.3 ­ ­
sand pl pleistocene sand layer 17 ; 20 31.3 ­ ­
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Figure C.1: Distributions from which the samples of the soil strength parameters have been drawn for training the metamodel
of dike section 23, as an example..

C.3.1. Phreatic lines and head lines
1. Phreatic Lines for clay dikes

Figure C.2: Schematisation of the phreatic line in clay dikes (Brookhuis and Beekx, 2017). 𝐴 is the intersection point of the
normative river water level (MHW) and the outer dike slope, 𝐵 is always 1.0 m below MHW and below the outer edge of the

dike crest, 𝐶 is below the inner edge of the crest and 1.5 m below MHW and 𝐷 is located at the inner toe.

2. Phreatic line at sand containments (‘zandscheg’)

Figure C.3: Schematisation of the phreatic line at sand containments (Brookhuis and Beekx, 2017). Point 𝐶 is located below
the inner crest edge and 1.5 m below the normative water level, just like in the schematisation for clay dikes. From point 𝐶, a
slope of 1:2 towards the ground level of the land side. From this point, a horizontal connection to the inner toe of the dike where

the phreatic line is located at the ground level.
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3. Aquifer Head Line
According to schematisation 4A of the TRWD (‘Technical Report for Pore Pressures in Dikes’) (TAW,
2004), the head line in the aquifer can be approximated as explained below.

The head at the inner toe of the dike is then [𝑚+NAP]:

𝜑2 = 𝜑3 + (𝜑0 − 𝜑3)
𝑊3
Σ𝑊 = 𝜑3 + (𝜑0 − 𝜑3)

𝜆3 tanh
𝐿3
𝜆3

𝜆1 tanh
𝐿1
𝜆1
+ 𝐿2 + 𝜆3 tanh

𝐿3
𝜆3

(C.7)

The head at the outer toe [𝑚+NAP]:

𝜑1 = 𝜑3 + (𝜑0 − 𝜑3)
𝑊2 +𝑊3
Σ𝑊 = 𝜑3 + (𝜑0 − 𝜑3)

𝐿2 + 𝜆3 tanh
𝐿3
𝜆3

𝜆1 tanh
𝐿1
𝜆1
+ 𝐿2 + 𝜆3 tanh

𝐿3
𝜆3

(C.8)

Next, the head line beneath the foreland can be schematised by:

𝜑(𝑥) = 𝜑0 − (𝜑0 − 𝜑1)
sinh 𝑎+𝐿1+𝑥

𝜆1
sinh 𝐿1

𝜆1

(C.9)

the head line beneath the dike:

𝜑(𝑥) =
(𝜑1 + 𝜑2)

2 −
(𝜑1 − 𝜑2)

2
𝑥
𝑎 (C.10)

And the head line underneath the hinterland:

𝜑(𝑥) = 𝜑3 + (𝜑2 − 𝜑3)
sinh 𝑎+𝐿3−𝑥

𝜆3
sinh 𝐿3

𝜆3

(C.11)

In these equations, 𝜆1,3 = √𝑘 ⋅ 𝐷 ⋅ 𝑐1,3 is the leakage factor of the fore­ and hinterland respectively [𝑚],
in which 𝑐1,3 = 𝑑1,3/𝑘𝑣1,3 is the resistance of the blanket layers [𝑑], with 𝑘𝑣1,3 the hydraulic conductivities
of the blanket layers. 𝜑0 is equal to the river water level and 𝜑3 to the polder level [𝑚+NAP]. The head
lines and their parameters are illustrated in Figure C.4.

Figure C.4: Schematisation of the groundwater flow in a clay dike (TAW, 2004).
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4. Head line in case of bursting
Hydraulic heave occurs if the pore pressures in the aquifer in the hinterland of the dike are equal to
the weight of the overlying soil. The effective stress on the interface is then equal to 0. The occurring
potential is called the limit potential 𝜑𝑔 (‘grenspotentiaal’) (TAW, 2004):

𝜑𝑔 =
𝜎′𝑣𝑠
𝛾𝑤

+ 𝜑𝑝 =
∑(𝛾𝑠𝑖𝑑𝑖)
𝛾𝑤

+ 𝜑𝑝 − 𝑑𝑧 (C.12)

In which 𝜎𝑣𝑠 is the vertical soil stress at the interface [𝑘𝑁/𝑚2], 𝜑 is the polder level [𝑚], 𝛾𝑠𝑖 is the
saturated volumetric weight of soil layer 𝑖 [𝑘𝑁/𝑚3], 𝑑𝑖 is the thickness of layer 𝑖 [𝑚] and 𝑑𝑧 is the depth
of the aquifer with respect to the polder level [𝑚].
For the approximation of the aquifer head line in a situation in which hydraulic heave can occur, schema­
tisation 4C of the TRWD is applicable. Beneath the foreland and dike, the same approximation as in
4A can be applied. However, the head at the end of the inner berm [𝑚+NAP] is now:

𝜑3 = 𝜑𝑔 + Δ𝜑𝑢 = 𝜑𝑔 + (𝜑0 − 𝜑𝑔)
0, 44𝐷

𝜆1 tanh (
𝐿1
𝜆1
) + 𝐿2 + 𝐿3 + 0, 44𝐷

(C.13)

and the head at the inner toe [𝑚+NAP]:

𝜑2 = 𝜑𝑔 + (𝜑0 − 𝜑𝑔)
𝐿3 + 0, 44𝐷

𝜆1 tanh (
𝐿1
𝜆1
) + 𝐿2 + 𝐿3 + 0, 44𝐷

(C.14)

The head line and its parameters are illustrated in Figure C.5. The water authority schematised the
bursting zone as 3 times the thickness of the cover layer and no strength is assigned to the cover layer
within this zone.

Figure C.5: Schematisation of the groundwater flow with the occurrence of the limit potential (TAW, 2004).
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Table C.3: Phreatic and head line schematisations per dike section. 4A refers to schematisation 4A of the TRWD (TAW, 2004),
that is applicable for flow in a sandy subsoil beneath an impermeable dike with poorly permeable blanket layers in the fore­ and
hinterland. 4C refers to schematisation 4C of the TRWD, that is applicable in situations of aquifer flow beneath an impermeable

dike in which the limit potential occurs in the hinterland.

Dike section Phreatic Line Head Line

DV1 sand containment 4A
DV2 sand containment 4C
DV3 sand containment 4C
DV4 sand containment 4A
DV5 sand containment 4A
DV6 sand containment 4A
DV7 sand containment 4A
DV8 sand containment 4A
DV9 sand containment 4A
DV10 clay dike 4A
DV11 sand containment 4C
DV12 sand containment 4C
DV13 sand containment 4C
DV14 sand containment 4C
DV15 sand containment 4C
DV16 sand containment 4A
DV17 sand containment 4A
DV18 sand containment 4C
DV19 sand containment 4A
DV20 sand containment 4A
DV21 sand containment 4C
DV22 sand containment 4C
DV23 clay dike 4C
DV24 clay dike 4A
DV25 clay dike 4A
DV26 sand containment 4A
DV27 sand containment 4C
DV28 clay dike 4C
DV29 clay dike 4C
DV30 clay dike 4C
DV31 clay dike 4A

Figure C.6: Distributions from which the realisations of ℎ, 𝑘𝑣1, 𝑘𝑣3 and 𝑘 have been drawn for training the metamodel.
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C.3.2. Validation of the metamodel
Table C.4: Errors of the metamodels.

Dike section
Percentage

Prediction Error
RMSE CV

DV1 ­0.67% 0.168 0.134
DV2 ­1.27% 0.129 0.106
DV3 ­0.09% 0.055 0.047
DV4 ­0.46% 0.086 0.070
DV5 ­0.69% 0.119 0.088
DV6 ­0.69% 0.119 0.088
DV7 ­1.97% 0.125 0.085
DV8 ­0.41% 0.222 0.166
DV9 0.31% 0.074 0.061
DV10 ­0.19% 0.043 0.035
DV11 ­0.47% 0.092 0.075
DV12 0.69% 0.126 0.103
DV13 ­0.14% 0.040 0.027
DV14 0.04% 0.050 0.038
DV15 ­0.93% 0.072 0.049
DV16 ­0.76% 0.057 0.046
DV17 ­0.76% 0.057 0.046
DV18 ­0.34% 0.039 0.027
DV19 ­2.39% 0.085 0.072
DV20 ­0.11% 0.060 0.046
DV21 ­0.11% 0.040 0.035
DV22 ­0.31% 0.056 0.050
DV23 0.39% 0.094 0.092
DV24 ­0.74% 0.086 0.082
DV25 ­0.74% 0.086 0.082
DV26 ­0.46% 0.086 0.064
DV27 ­3.50% 0.231 0.208
DV28 ­2.82% 0.111 0.106
DV29 ­0.19% 0.056 0.060
DV30 ­0.76% 0.083 0.071
DV31 0.32% 0.087 0.084

mean: ­0.64 0.092 0.076
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C.3.3. Contribution of the input parameters
Table C.5: Importance of the input parameters of the metamodels per dike section. Each parameter has been multiplied by 1.3

(increased by 30%) and the relative difference of the resulting 𝐹𝑜𝑆 with respect to the 𝐹𝑜𝑆 based on the case study input
values of the parameters has been computed. These are listed below. If the relative difference is negative, it means that the

corresponding parameter contributes to the load, while a positive value means that it contributes to the resistance.

Dike section 1 Dike section 2 Dike section 3 Dike section 4 Dike section 5 & 6

ℎ ­71.97% ℎ ­93.23% ℎ ­40.82% ℎ ­46.93% ℎ ­57.65%
Φ𝑠𝑎𝑛𝑑,𝑝𝑙 14.68% 𝑆𝑐,𝑠 11.42% 𝑆𝑐,𝑠 10.30% 𝑆𝑑𝑖𝑘𝑒 10.44% 𝛾𝑑𝑖𝑘𝑒 ­6.66%
𝛾𝑐,𝑠 14.17% 𝑚𝑐,𝑠 6.36% Φ𝑑𝑖𝑘𝑒 6.93% 𝑆𝑐,𝑠𝑖𝑙𝑡 10.31% 𝑚𝑐,𝑠𝑖𝑙𝑡 6.26%
𝛾𝑑𝑖𝑘𝑒 10.94% Φ𝑑𝑖𝑘𝑒 5.60% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 5.97% 𝑆𝑐,𝑠 5.09% 𝑆𝑐,𝑠 3.67%
Φ𝑑𝑖𝑘𝑒 9.77% 𝑘𝑣1 ­3.49% 𝑚𝑐,𝑠 4.31% 𝑘𝑣3 4.36% 𝑆𝑐,𝑠𝑖𝑙𝑡 3.30%
𝑆𝑐,𝑠 6.16% 𝛾𝑑𝑖𝑘𝑒 ­2.57% 𝛾𝑐,𝑠 2.95% 𝑘𝑣1 ­3.59% 𝑘𝑣3 2.41%
𝑘𝑣3 4.80% 𝑘 2.23% 𝑘 0.83% Φ𝑐,𝑠𝑖𝑙𝑡 ­1.59% Φ𝑐,𝑠𝑖𝑙𝑡 1.29%
Φ𝑐,𝑠 2.89% 𝑘𝑣3 ­1.48% 𝑘𝑣1 ­0.65% Φ𝑑𝑖𝑘𝑒 0.77% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 0.89%
𝑘 1.46% Φ𝑐,𝑠 0.65% 𝑘𝑣3 ­0.48% 𝑘 ­0.33% 𝑘𝑣1 0.43%
𝑘𝑣1 ­1.00% 𝛾𝑐,𝑠 ­0.03% Φ𝑐,𝑠 0.45% Φ𝑐,𝑠 0.29% 𝑘 ­0.11%

Dike section 7 Dike section 8 Dike section 9 Dike section 10 Dike section 11

ℎ ­51.99% ℎ ­57.57% ℎ ­71.01% ℎ ­51.94% ℎ ­37.08%
Φ𝑑𝑖𝑘𝑒 7.63% 𝑘𝑣3 7.13% 𝛾𝑐,𝑑𝑟 31.03% Φ𝑑𝑖𝑘𝑒 19.82% Φ𝑑𝑖𝑘𝑒 7.05%
𝛾𝑑𝑖𝑘𝑒 ­6.54% 𝑚𝑐,𝑠𝑖𝑙𝑡 4.44% Φ𝑐,𝑑𝑟 12.50% 𝛾𝑑𝑖𝑘𝑒 7.77% 𝑆𝑐,𝑠𝑖𝑙𝑡 4.20%
𝑆𝑐,𝑠 5.91% 𝑘𝑣1 ­4.02% 𝛾𝑑𝑖𝑘𝑒 ­5.51% 𝑆𝑐,𝑠 1.49% 𝑚𝑐,𝑠𝑖𝑙𝑡 4.02%
Φ𝑐,𝑠 ­3.67% Φ𝑑𝑖𝑘𝑒 3.49% Φ𝑑𝑖𝑘𝑒 4.66% 𝑘𝑣1 ­0.33% 𝑆𝑐𝑠 2.20%
Φ𝑐,𝑠𝑖𝑙𝑡 1.35% 𝛾𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 3.08% 𝑘𝑣3 3.99% 𝑆𝑑𝑖𝑘𝑒 ­0.17% 𝑘𝑣1 ­1.34%
𝑘𝑣3 1.20% 𝑆𝑐𝑠𝑖𝑙𝑡 1.72% 𝑘𝑣1 ­2.90% 𝑘 ­0.17% 𝑘𝑣3 ­1.04%
𝑘 1.09% 𝛾𝑐,𝑠𝑖𝑙𝑡 1.34% 𝑘 0.96% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 0.16% 𝑘 1.02%
𝑘𝑣1 0.91% Φ𝑐,𝑠𝑖𝑙𝑡 0.36% 𝑆𝑑𝑖𝑘𝑒 0.79% 𝑘𝑣3 0.12% Φ𝑐,𝑠 ­0.28%
𝑆𝑐,𝑠𝑖𝑙𝑡 ­0.34% 𝑘 ­0.05% 𝑆𝑐,𝑠 0.32% Φ𝑐,𝑠 ­0.11% Φ𝑐,𝑠𝑖𝑙𝑡 ­0.13%

Dike section 12 Dike section 13 Dike section 14 Dike section 15 Dike section 16 & 17

ℎ ­43.23% ℎ ­41.47% ℎ ­28.39% ℎ ­53.22% ℎ ­34.04%
Φ𝑑𝑖𝑘𝑒 11.72% Φ𝑑𝑖𝑘𝑒 8.01% 𝑆𝑐,𝑠 14.53% Φ𝑑𝑖𝑘𝑒 12.00% 𝑆𝑐,ℎ𝑢𝑚 6.37%
𝛾𝑑𝑖𝑘𝑒 2.98% 𝑆𝑐,𝑠 7.78% 𝛾𝑐,𝑠 9.86% 𝑆𝑐,𝑠 9.92% 𝑆𝑐,𝑠 5.91%
𝑘𝑣1 ­2.88% 𝛾𝑑𝑖𝑘𝑒 5.49% Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 6.90% 𝑚𝑐,𝑠 4.24% Φ𝑑𝑖𝑘𝑒 3.41%
Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 2.35% 𝑚𝑐,𝑠 4.08% 𝑚𝑐,𝑠 5.23% 𝛾𝑑𝑖𝑘𝑒 2.22% 𝑚𝑐,ℎ𝑢𝑚 2.91%
𝑆𝑐,𝑠 2.25% 𝛾𝑐,𝑠 0.34% Φ𝑑𝑖𝑘𝑒 5.09% Φ𝑐,𝑠 1.47% 𝑘𝑣3 0.73%
𝑘 1.87% 𝑘 0.18% Φ𝑐,𝑠 0.58% 𝛾𝑐,𝑠 0.94% Φ𝑐,ℎ𝑢𝑚 ­0.69%
𝛾𝑐,𝑠 ­1.00% 𝑘𝑣3 ­0.15% 𝑘 0.46% 𝑘𝑣1 ­0.65% Φ𝑐,𝑠 ­0.66%
𝑘𝑣3 ­0.64% 𝑘𝑣1 ­0.05% 𝑘𝑣3 ­0.25% 𝑘 0.13% 𝑘𝑣1 ­0.61%
Φ𝑐,𝑠 ­0.15% Φ𝑐,𝑠 0.03% 𝑘𝑣1 ­0.12% 𝑘𝑣3 0.09% 𝑘 0.54%
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Dike section 18 Dike section 19 Dike section 20 Dike section 21 Dike section 22

ℎ ­16.98% ℎ ­72.68% ℎ ­69.01% ℎ ­41.76% ℎ ­37.16%
𝑆𝑐,𝑠 9.12% 𝑆𝑐,𝑠𝑖𝑙𝑡 14.99% Φ𝑑𝑖𝑘𝑒 12.45% 𝛾𝑐,𝑠 16.56% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 7.97%
𝑆𝑑𝑖𝑘𝑒 7.51% 𝛾𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 13.96% 𝛾𝑐,𝑠 10.36% 𝑆𝑐,𝑠 8.30% 𝑆𝑐,𝑠𝑖𝑙𝑡 7.19%
Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 6.84% 𝑚𝑐,𝑠𝑖𝑙𝑡 8.65% Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 8.87% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 6.45% Φ𝑑𝑖𝑘𝑒 6.39%
𝛾𝑐,𝑠 2.22% Φ𝑑𝑖𝑘𝑒 5.72% 𝛾𝑑𝑖𝑘𝑒 6.50% 𝑚𝑐,𝑠 5.54% Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 4.93%
Φ𝑑𝑖𝑘𝑒 1.31% 𝑘𝑣3 4.05% 𝑆𝑐,𝑠 2.60% Φ𝑑𝑖𝑘𝑒 5.03% 𝑚𝑐,𝑠𝑖𝑙𝑡 4.33%
𝑘 0.64% Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 ­1.79% 𝑘𝑣1 ­1.91% 𝑘 0.89% 𝑘 1.22%
Φ𝑐,𝑠 ­0.30% Φ𝑐,𝑠𝑖𝑙𝑡 1.33% 𝑘𝑣3 1.87% 𝑘𝑣1 ­0.63% Φ𝑐,𝑠𝑖𝑙𝑡 0.40%
𝑘𝑣1 ­0.27% 𝑘𝑣1 ­1.17% 𝑘 0.42% 𝑘𝑣3 0.50% 𝑘𝑣1 ­0.40%
𝑘𝑣3 0.05% 𝑘 ­1.09% Φ𝑐,𝑠 0.28% Φ𝑐,𝑠 0.20% 𝑘𝑣3 ­0.35%

Dike section 23 Dike section 24 & 25 Dike section 26 Dike section 27

ℎ ­33.41% ℎ ­64.65% ℎ ­56.58% ℎ ­43.91%
𝑆𝑐,ℎ𝑢𝑚 22.63% Φ𝑑𝑖𝑘𝑒 23.75% 𝛾𝑐,𝑑𝑟 30.25% 𝑆𝑐,𝑠 ­10.98%
𝛾𝑐,ℎ𝑢𝑚 15.54% 𝛾𝑑𝑖𝑘𝑒 9.28% Φ𝑐,𝑑𝑟 8.93% 𝛾𝑐,𝑠 ­10.19%
𝑚𝑐,ℎ𝑢𝑚 11.61% 𝑚𝑐,𝑠 4.27% 𝑘𝑣3 3.92% Φ𝑐,𝑠 5.59%
𝛾𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 9.76% 𝑘 2.40% 𝑆𝑐,𝑠 2.79% 𝑚𝑐,𝑠 ­2.66%
Φ𝑑𝑖𝑘𝑒 4.11% 𝑆𝑐,𝑠 ­1.20% 𝑘𝑣1 ­2.31% 𝑘𝑣1 ­2.54%
𝑘 ­0.23% 𝛾𝑐,𝑠 0.63% Φ𝑑𝑖𝑘𝑒 1.45% 𝑘 1.14%
Φ𝑐,ℎ𝑢𝑚 0.20% 𝑘𝑣1 0.16% Φ𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 1.23% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 ­1.14%
𝑘𝑣1 ­0.18% 𝑘𝑣3 0.07% Φ𝑐,𝑠 1.10% 𝑘𝑣3 ­1.00%
𝑘𝑣3 0.00% Φ𝑐,𝑠 ­0.01% 𝑘 ­0.92% Φ𝑑𝑖𝑘𝑒 0.48%

Dike section 28 Dike section 29 Dike section 30 Dike section 31

ℎ ­76.09% ℎ ­64.08% ℎ ­48.60% ℎ ­66.34%
𝛾𝑑𝑖𝑘𝑒 15.85% Φ𝑑𝑖𝑘𝑒 19.05% 𝑆𝑐,𝑠𝑖𝑙𝑡 10.61% Φ𝑑𝑖𝑘𝑒 15.45%
Φ𝑑𝑖𝑘𝑒 14.90% 𝑚𝑐,𝑠𝑖𝑙𝑡 6.23% 𝑚𝑐,𝑠𝑖𝑙𝑡 6.19% 𝛾𝑑𝑖𝑘𝑒 4.53%
𝑆𝑐,𝑠 ­3.28% 𝛾𝑑𝑖𝑘𝑒 4.75% 𝑘𝑣3 5.56% 𝑆𝑐,𝑠𝑖𝑙𝑡 ­1.52%
𝛾𝑠𝑎𝑛𝑑,ℎ𝑜𝑙 ­3.03% 𝑆𝑐,𝑠𝑖𝑙𝑡 1.10% 𝛾𝑐,𝑠𝑖𝑙𝑡 4.99% Φ𝑠𝑎𝑛𝑑,𝑝𝑙 1.41%
Φ𝑐,𝑠 ­1.73% 𝛾𝑐,𝑠𝑖𝑙𝑡 ­1.05% Φ𝑑𝑖𝑘𝑒 4.43% 𝑘𝑣3 0.70%
𝛾𝑐,𝑠 1.60% 𝑘𝑣3 ­0.68% 𝛾𝑑𝑖𝑘𝑒 ­2.90% 𝑘𝑣1 0.17%
𝑘 0.83% Φ𝑐,𝑠𝑖𝑙𝑡 ­0.50% 𝑘 2.65% 𝑚𝑐,𝑠𝑖𝑙𝑡 0.15%
𝑘𝑣1 0.80% 𝑘𝑣1 ­0.47% 𝑘𝑣1 ­1.48% Φ𝑐,𝑠𝑖𝑙𝑡 0.08%
𝑘𝑣3 ­0.18% 𝑘 0.44% Φ𝑐,𝑠𝑖𝑙𝑡 ­0.35% 𝑘 0.00%

For comparison, the resulting parameter contributions for dike section 1, based on a FORM analysis in
D­Stability, are listed below:

• Φ𝑠𝑎𝑛𝑑,𝑝𝑙 = 0.756
• Φ𝑑𝑖𝑘𝑒 = 0.541
• Φ𝑐𝑠 = 0.368
• 𝑆𝑐𝑠 = 0.368
• 𝑚𝑐𝑠 = 0.024 (not included in the metamodel)



D
Detailed Model Input

D.1. Dike Section Division
Table D.1: Dike section division.

New dike sections Old dike sections macrostability Old dike sections piping

Dike section From To Dike section From To Normative profile Dike section From To

DV1 DD001 DD002 DV1b DD001 DD002 DD001+046M
DV2 DD002 DD004+50 DV1c DD002 DD004+50 DD004+010M

DV1 DD000 DD004

DV3 DD004+50 DD015+50 DV2 DD004+50 DD015+50 DD012+97M DV2 DD004 DD015+50
DV4 DD015+50 DD019 DV3 DD015+50 DD019 DD015+104M
DV5 DD019 DD022

DV3 DD015+50 DD022

DV6 DD022 DD025
DV4 DD019 DD025 DD019+19M

DV4 DD022 DD025
DV7 DD025 DD031+50 DV5 DD025 DD031+50 DD031+46M DV5 DD025 DD032
DV8 DD031+50 DD036+50 DV6 DD031+50 DD036+50 DD033+75M DV6 DD032 DD036+50
DV9 DD036+50 DD040 DV7 DD036+50 DD040 DD039+23M DV7 DD036+50 DD040
DV10 DD040 DD045+50 DV8 DD040 DD045+50 DD040+66M DV8 DD040 DD045
DV11 DD045+50 DD047 DV9 DD045+50 DD047 DD045+91M DV9 DD045 DD046+50
DV12 DD047 DD050 DV10 DD047 DD050 DD049+39M DV10 DD046+50 DD050
DV13 DD050 DD053 DV11 DD050 DD053 DD052+99M DV11 DD050 DD053+50
DV14 DD053 DD061 DV12 DD053 DD061 DD059+4M
DV15 DD061 DD064 DV13 DD061 DD064 DD061+55M

DV12 DD053+50 DD064

DV16 DD064 DD070+50 DV13 DD064 DD070+50
DV17 DD070+50 DD075+50

DV14 DD064 DD075+50 DD071+91M
DV14 DD070+50 DD075

DV18 DD075+50 DD077+50 DV15 DD075+50 DD077+50 DD075+78M DV15 DD075 DD077+50
DV19 DD077+50 DD080+50 DV16 DD077+50 DD080+50 DD079+78M DV16 DD077+50 DD080+50
DV20 DD080+50 DD085 DV17 DD080+50 DD085 DD083+75M DV17 DD080+50 DD085
DV21 DD085 DD093 DV18 DD085 DD093 DD087+8M DV18 DD085 DD091
DV22 DD093 DD097 DV19 DD093 DD097 DD094+56M DV19 DD091 DD097
DV23 DD097 DD100+50 DV20 DD097 DD100+50 DD099+54M DV20 DD097 DD100+50
DV24 DD100+50 DD107+50 DV21 DD100+50 DD107+50 DD107+31M DV21 DD100+50 DD107+50
DV25 DD107+50 DD109+50 DV22 DD107+50 DD109+50 ­ DV22 DD107+50 DD110
DV26 DD109+50 DD112+50 DV23 DD109+50 DD112+50 DD111+43M DV23 DD110 DD112+50
DV27 DD112+50 DD121 DV24 DD112+50 DD121 DD113+22M DV24 DD112+50 DD121
DV28 DD121 DD126 DV25 DD121 DD126 DD126+0M DV25 DD121 DD126
DV29 DD126 DD128+50 DV26 DD126 DD128+50 DD127+78M DV26 DD126 DD128+50
DV30 DD128+50 DD130 DV27 DD128+50 DD130 DD129+57M DV27 DD128+50 DD130
DV31 DD130 DD133+50 DV28 DD130 DD133+50 DD131+88M DV28 DD130 DD133+50
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D.2. Load Input

Figure D.1: Return periods for the peak river discharge at Lobith, derived from the OI2014 input file for Hydra­NL, including
statistical uncertainty, based on climate scenario W+ and interpolated for the year 2075. In dashed orange lines, the river

discharge that corresponds to a return period of 50 years is shown, to mark the lower limit of discharges that are considered in
this research.

Figure D.2: Probabilities of occurrence of the wind directions at Deelen, to sample from within the MC simulation.
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Figure D.3: Statistics of the 12­hourly maximum wind speed at Deelen, given the wind direction.
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D.3. Geotechnical Input

Figure D.4: A REGIS section for Sprok­Sterreschans.

Figure D.5: Hydraulic conductivity and thickness of the aquifer according to MORIA. The dike sections (from DV31 to DV1) are
shown in the same colors as in Figure 5.1.

Figure D.6: Saturated volumetric weight 𝛾𝑠𝑎𝑡 of the blanket layer along the trajectory .
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Figure D.7: 𝑑70 values from measurements along the trajectory.

Figure D.8: Input distributions for dike section 6.
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D.4. Geological Deposits and Spatial Correlations

Figure D.9: GeoTOP schematisation for dike section 1­6.

Figure D.10: SOS Schematisation for dike section 1­6.
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Figure D.11: GeoTOP schematisation for dike section 17­23 .

Figure D.12: GeoTOP schematisation for dike section 24­31.

Figure D.13: SOS Schematisation for dike section 16­31.
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Table D.2: Spatial correlations between soil layers in dike sections.

Dike sections Layers

DV1 & DV2 Dike material, silty sandy clay, silty clay, holocene sand
DV3 & DV4 Dike material, silty sandy clay, holocene sand
DV4 & DV5 Dike material, silty clay, silty sandy clay, holocene sand
DV5 & DV6 holocene sand
DV7 & DV8 Dike material, silty sandy clay, holocene sand
DV9 & DV10 Dike material, silty sandy clay, silty clay, holocene sand
DV11 & DV12 Holocene sand
DV12 & DV13 Holocene sand
DV14 & DV15 Holocene sand
DV18 & DV19 Holocene sand, silty sandy clay
DV19 & DV20 Silty sandy clay, holocene sand
DV20 & DV21 Holocene sand
DV21 & DV22 Holocene sand
DV22 & DV23 Dike material, silty sandy clay
DV24 & DV25 Dike material, silty sandy clay, holocene sand
DV25 & DV26 Silty sandy clay, holocene sand
DV26 & DV27 Silty sandy clay, holocene sand
DV28 & DV29 Dike material, silty clay, holocene sand
DV29 & DV30 Holocene sand
DV30 & DV31 Silty sandy clay, silty clay, holocene sand



E
Detailed Results

E.1. Correlations between Variables
E.1.1. Piping

Table E.1: Summary of the impact of several correlations on the failure probabilities of the piping sub­mechanisms.

Correlated parameters
Mean relative difference w.r.t. uncorrelated situation

Heave Uplift Backward erosion

𝜌 = 0.2 𝜌 = 0.8 𝜌 = 0.2 𝜌 = 0.8 𝜌 = 0.2 𝜌 = 0.8

𝑘 ­ 𝑑70 ­0.0015% +0.0058% +0.050% +0.12% ­43.2% ­11.3%
Φ𝑒𝑥𝑖𝑡 ­ ℎ𝑝 +6.3% +1.1% ­1.7% ­0.44% +0.28 +0.12%
Φ𝑒𝑥𝑖𝑡 ­ 𝑘 ­0.028% +0.017% +0.019% ­0.017% +0.13% ­0.30%
Φ𝑒𝑥𝑖𝑡 ­ 𝐷 ­0.023% ­0.012% +0.015% +0.056% ­0.022% ­0.29%
Φ𝑒𝑥𝑖𝑡 ­ 𝐷𝑐𝑜𝑣𝑒𝑟 +2.0% +0.33% ­5.7% ­1.2% +0.13% ­0.10%

1. Hydraulic conductivity 𝑘 ­ grain size 𝑑70

Figure E.1: Sensitivity analysis into the impact of different scenarios of the correlation between 𝑘 and 𝑑70 on the sectional
failure probabilities due to the sub­mechanisms of piping, conditional on a river discharge of 𝑄 = 16, 000 m3/s and for

𝑁 = 400, 000.
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Figure E.2: Relative differences in % between the situations with correlation between 𝑘 and 𝑑70, compared to the situation with
no correlation. The figures correspond to the sectional failure probabilities due to the sub­mechanisms uplift and heave and the

failure probabilities due to piping in total, conditional on 𝑄 = 16, 000 m3/s and 𝑁 = 400, 000.

2. ℎ𝑝 ­ Φ𝑒𝑥𝑖𝑡

Figure E.3: Sensitivity analysis for correlations between ℎ𝑝 and Φ𝑒𝑥𝑖𝑡 for the sub­mechanisms of piping, conditional on a
discharge 𝑄 = 16, 000 m3/s and 𝑁 = 400, 000.
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Figure E.4: Relative difference between the failure probabilities including correlation between ℎ𝑝 and Φ𝑒𝑥𝑖𝑡 for the
sub­mechanism backward erosion and the total failure mechanism piping, with respect to the situation with no correlation, in

percentages..

2. 𝑑 ­ Φ𝑒𝑥𝑖𝑡

Figure E.5: Sensitivity analysis for correlations between 𝑑 and Φ𝑒𝑥𝑖𝑡 for the sub­mechanisms of piping, conditional on a
discharge 𝑄 = 20, 000 m3/s and 𝑁 = 400, 000..
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Figure E.6: Relative difference between the failure probabilities for the sub­mechanism backward erosion and the total failure
mechanism piping including correlation between 𝑑 and Φ𝑒𝑥𝑖𝑡, with respect to the situation with no correlation, in percentages..

3. 𝐷 ­ Φ𝑒𝑥𝑖𝑡

Figure E.7: Sensitivity analysis for correlations between 𝐷 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism piping, conditional on a
discharge 𝑄 = 16, 000 m3/s, for 𝑁 = 400, 000.

Figure E.8: Relative difference in % between the piping failure probabilities including correlation between 𝐷 and Φ𝑒𝑥𝑖𝑡, with
respect to the situation with no correlation.
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Figure E.9: Sensitivity analysis for correlations between 𝐷 and Φ𝑒𝑥𝑖𝑡 for the sub­mechanisms of piping, conditional on a
discharge 𝑄 = 16, 000 m3/s and 𝑁 = 400, 000.

Figure E.10: Relative difference between the failure probabilities including correlation between 𝐷 and Φ𝑒𝑥𝑖𝑡 for the
sub­mechanisms of piping, with respect to the situation with no correlation, in percentages..
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3. 𝑘 ­ Φ𝑒𝑥𝑖𝑡

Figure E.11: Sensitivity analysis for correlations between 𝑘 and Φ𝑒𝑥𝑖𝑡 for the sub­mechanisms of piping, conditional on a
discharge 𝑄 = 16, 000 m3/s and 𝑁 = 400, 000.

Figure E.12: Relative difference between the failure probabilities of the sub­mechanisms of piping including correlation
between 𝑘 and Φ𝑒𝑥𝑖𝑡, with respect to the situation with no correlation, in percentages..
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4. 𝑘𝑣3 ­ Φ𝑒𝑥𝑖𝑡

Figure E.13: Sensitivity analysis for correlations between 𝑘𝑣3 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism piping, conditional on a
discharge 𝑄 = 20, 000 m3/s, for 𝑁 = 400, 000.

Figure E.14: Sensitivity analysis for correlations between 𝑘𝑣3 and Φ𝑒𝑥𝑖𝑡 for the failure mechanism macrostability, conditional on
a discharge 𝑄 = 20, 000 m3/s, for 𝑁 = 400, 000.

E.1.2. Macrostability

(a) Correlation of 𝜌 = 0.8 between 𝑆 and 𝛾. (b) Correlation 𝜌 = 0.8 between 𝜑 and 𝛾.

Figure E.15: Resulting dependencies between the failure mechanisms piping and macrostability for dike section 9, conditional
on a discharge 𝑄 = 20, 000 m3/s, for 𝑁 = 400, 000.
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E.1.3. Impact for varying water level

Figure E.16: Scatter plots of the realisations of 𝑘 and 𝑑70 for the uncorrelated case (left column) and for the correlated case
(𝜌 = 0.8, center column), for a water level of ℎ = 16 and ℎ = 18. The realisations that lead to a 𝑍 < 0 are shown in red. The
right column shows the histograms of the resulting 𝑍­values for piping, in orange for the correlated case and in blue for the
uncorrelated case. The red dotted line indicates the limit state 𝑍 = 0. A coefficient of variance of 𝐶𝑉 = 0.5 is used for 𝑘 .
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Abbreviations

BOI Beoordelings­ en Ontwerpinstrumentarium

CDF Cumulative distribution function

CSSM Critical State Soil Mechanics

FORM First Order Reliability Method

GABI Gras erosie binnentalud = erosion of the inner slope grass revetment

GEBU Gras erosie buitentalud = erosion of the grass revetment at the outer slope

GEKB Gras erosie kruin en binnentalud = Erosion of the crest and inner slope grass revetment

GEV Generalized Extreme Value distributions

GP Gaussian processes

GPR Gaussian Process Regression

GRADE Generator of Rainfall and Discharge Extremes

HBN Hydraulisch Belasting Niveau

HLCD Hydraulic Loads Configuration Database

KNMI Koninklijk Nederlands Meteorologisch Instituut = Dutch Institute for Meteorology

LEM Limit Equilibrium Models

LHS Latin hypercube sampling

MCS Monte Carlo simulations

NAP Normaal Amsterdams Peil = mean sea level

OAT One­At­a­Time method for sensitivity analysis

PDF Probability density function

RMSE Root Mean Square Error

SHANSEP Stress History and Normalised Soil Engineering Properties

SOS Stochastische Ondergrond Schematisatie = Stochastic suboil schematisation

STBI Stabiliteit binnenwaarts = inner slope stability

STMI Micro­instability

STPH Stabiliteit na piping en opbarsten (heave) = stability after piping and heave

SWL Still water level

TAW Technische adviescommissie voor de waterkeringen

TRWD Technisch Rapport Waterspanningen bij Dijken

WBI Wettelijk Beoordelingsinstrumentarium

WSRL Waterschap Rivierenland

WTI Wettelijk Toets Instrumentarium
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Symbols

𝛼 Slope angle of the dike [∘]

𝛼𝑖 FORM influence coefficient of parameter 𝑖 ­

𝛼𝑀,𝑧 Factor for increased load at transitions and objects, 𝛼𝑀,𝑧 ≥ 1 (1.0 by default) ­

𝛼𝑆,𝑧 Factor for decreased strength at transitions and objects, 𝛼𝑆,𝑧 ≥ 1 (1.0 by default) ­

𝛽 Angle of wave attack. 𝛽 = 0 for perpendicular wave attack [∘]

𝛽𝑇 Target reliability index ­

𝛽𝑛𝑜𝑟𝑚 Required reliability index of the dike trajectory ­

Δℎ∗ Error in the local water level [𝑚]
Δℎ𝑐 Additional height for overflow to occur [𝑚]
Δ𝑇 Time interval [ℎ𝑟]
ΔΦ Critical head difference for uplift [𝑚]
𝜖 Error term in regression ­

𝜂 Drag factor coefficient ­

𝛾 Volumetric weight of the soil [𝑘𝑁/𝑚3]
𝛾𝑏 Reduction factor for the presence of a berm ­

𝛾𝑑 Model factor ­

𝛾𝑓 Reduction factor for the roughness of the slope ­

𝛾𝑖 Safety factor of parameter 𝑖 ­

𝛾𝑠 Volumetric weight of sand grains ( = 26.5) [𝑘𝑁/𝑚3]
𝛾𝑣 Reduction factor for the presence of a wall ­

𝛾𝑤 Saturated volumetric weight of water ( = 10) [𝑘𝑁/𝑚3]
𝛾𝛽 Reduction factor for oblique waves ­

𝛾𝑠𝑎𝑡 Saturated volumetric weight of the aquitard [𝑘𝑁/𝑚3]
𝐵̂ Intersection point for breaking and non­breaking waves [𝑚 +𝑁𝐴𝑃]
𝜆 Damping factor ­

𝜆ℎ Leakage­factor for the hinterland section [𝑚]
𝜇 Mean value ­

𝜔𝑗 Contribution of failure mechanism 𝑗 to the failure probability ­

cov(𝑋𝑌) Covariance batween the stochastic variables 𝑋 and 𝑌 ­

Φ Standard (cumulative) normal distribution ­

Φ𝑒𝑥𝑖𝑡 Potential at the exit point [𝑚]
𝜓 Angle of dilatancy [∘]

𝜓 Orientation of the dike normal [∘𝑁]
𝜌 Pearson’s correlation­coefficient ­

𝜌𝑘(Δ𝑥) Correlation of stochastic variable 𝑋𝑘 between cross­sections with distance Δ𝑥 ­

𝜌𝑥,𝑘 Residual correlation of variable 𝑋𝑘 ­

Σ Covariance matrix ­
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𝜎 Standard deviation ­

𝜎′ Vertical effective stress along a slip plan [𝑘𝑃𝑎]
𝜎′𝑣,𝑖 In­situ effective vertical stress [𝑘𝑃𝑎]
𝜎′𝑣,𝑦 Vertical yield stress [𝑘𝑃𝑎]
𝜏 Kendall’s correlation coefficient ­

𝜏 Shear stress of the soil [𝑘𝑃𝑎]
𝜃 Bedding angle [∘]

𝜐 kinematic viscosity of water (= 1.33 ⋅ 10−6) [𝑚2/𝑠]
𝜑 Friction angle of the soil [∘]

𝜑 Wave direction [∘𝑁]
𝜉𝑚−1,0 Breaker parameter based on the spectral period ­

𝐵 Width of the dike [𝑚]
𝐵𝑡 Width of the erosion terrace of a sandy dike [𝑚]
𝑐 Cohesive strength of the soil [𝑘𝑃𝑎]
𝐶(𝑢, 𝑣; 𝜃) Copula with parameter 𝜃 representing the dependence structure ­

𝑐𝑑 Correction factor for the sand content of the clay ­

𝐶𝑉 Coefficient of variation ­

𝐷 Thickness of the aquifer [𝑚]
𝑑 Thickness of the hinterland aquitard at the exit point [𝑚]
𝑑 Water depth [𝑚]
𝑑𝑐 Thickness of the top and underlying clay layer [𝑚]
𝑑𝑒 Erosion depth [𝑚]
𝐷𝑓 The unsafe domain ­

𝑑70𝑚 Reference value for 𝑑70 [𝑚]
𝑑70 70%­fraction of the grain size distribution [𝑚]
𝐷𝑐𝑟𝑖𝑡 Critical value for the cumulative overload for wave run­up [𝑚2/𝑠2]
𝐷𝑙𝑜𝑎𝑑,𝑧 Cumulative overload at level 𝑧 [𝑚2/𝑠2]
𝑑𝑥,𝑘 Correlation length [𝑚]
𝐸(𝑋𝑌) Expectation or mean of 𝑋 ­

𝐹 Effective fetch length [𝑚]
𝑓𝑏 Model factor for breaking waves ­

𝑓𝑛 Model factor for non­breaking waves ­

𝑓𝑆(𝑥) Sampling probability density function for importance sampling in MCS ­

𝐹𝑋 Cumulative distribution function of 𝑋 ­

𝑓𝛽 Reduction factor for the angle of wave attack ­

𝐹𝑓,𝑐𝑚𝑏,𝑧𝑗 ,𝑡𝑖 Failure fraction of the combination of top + sub layer at level 𝑧𝑗 for time interval 𝑡𝑖 ­

𝐹𝑓,𝑐𝑢𝑚,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 Cumulative failure fraction of top layer for level 𝑧𝑗 for all time intervals before 𝑡𝑖 ­
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𝐹𝑓,𝑠𝑡𝑜𝑟𝑚,𝑧𝑗 Cumulative failure fraction over the time intervals of a storm, for evaluation level 𝑧𝑗 ­

𝐹𝑓,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 Contribution of time interval 𝑡𝑖 to failure fraction of top layer at evaluation level 𝑧𝑗 ­

𝑓𝑅𝑆(𝑟, 𝑠) Joint probability density function of the resistance and load ­

𝑓𝑟𝑢𝑛𝑢𝑝𝑖 Model factors for wave run­up ­

𝐹𝑠𝑎𝑛𝑑 Sand fraction in the clay ­

𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤 Model factor for shallow water waves ­

𝐹𝑜𝑆 Factor of safety ­

𝐹𝑜𝑆ℎ Factor of safety for heave ­

𝐹𝑜𝑆𝑝 Factor of safety for backward erosion ­

𝐹𝑜𝑆𝑢 Factor of safety for uplift ­

𝐹𝑜𝑆𝑑;𝑖 Stability factor for scenario 𝑖, based on the design value for the shear strength ­

𝑔 Gravitational acceleration [𝑚/𝑠2]
𝐻 Head difference between the water and land side [𝑚]
ℎ Still river water level with respect to mean sea level [𝑚 +𝑁𝐴𝑃]
𝐻(𝑥, 𝑦) Joint cumulative distribution function of random vector (𝑋, 𝑌) of continuous variables ­

ℎ𝑎 Actual water level [𝑚]
𝐻𝑐 Critical head difference [𝑚]
ℎ𝑐 Crest height of the dike [𝑚]
ℎ𝑝 Phreatic level of the hinterland with respect to mean sea level [𝑚 +𝑁𝐴𝑃]
𝐻𝑚0 Spectral significant wave height [𝑚]
𝑖𝑐,ℎ Critical heave gradient ­

𝑘 Hydraulic conductivity of the aquifer [𝑚/𝑠]
𝑘(𝑥𝑖 , 𝑥𝑗) Covariance / kernel function ­

𝑘ℎ Hydraulic conductivity of the hinterland section [𝑚/𝑠]
𝐿 Seepage length [𝑚]
𝐿𝑓 Length of the effective foreshore [𝑚]
𝑚 Strength increase exponent ­

𝑚3/𝑠 Erosion coefficient of the clay type [𝑚3/𝑠]
𝑚𝑎 Model factor for the actual overtopping discharge ­

𝑚𝑐 Model factor for the critical overtopping discharge ­

𝑚𝑑 Model uncertainty factor for macrostability ­

𝑚𝑝 Model factor for backward erosion ­

𝑀𝑅 Resisting moment for slope stability [𝑘𝑁𝑚]
𝑀𝑆 Driving moment for slope stability [𝑘𝑁𝑚]
𝑚𝑢 Model factor for uplift ­

𝑚𝑧2 Model factor describing the uncertainty of the wave run up 𝑧2% ­

𝑁 Number of incident waves ­
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𝑁 Number of iterations of the Monte Carlo simulation ­

𝑛 Porosity ­

𝑁𝑓 Number of realisations of the Monte Carlo simulation that lead to failure ­

𝑁𝑗 Length­effect factor of element 𝑗 ­

𝑂𝐶𝑅 Over­consolidation ratio ­

𝑃(𝑄𝑖) Probability of occurrence of river discharge 𝑄𝑖 [1/𝑦𝑒𝑎𝑟]
𝑃(𝑆𝑖) Probability of occurrence of scenario 𝑖 [1/𝑦𝑒𝑎𝑟]
𝑃𝑓,𝑖 Failure probability of element 𝑖 [1/𝑦𝑒𝑎𝑟]
𝑃𝑓;𝑐𝑠 Failure probability per cross­section [1/𝑦𝑒𝑎𝑟]
𝑃𝑓;𝑖 Probability of failure of scenario / element / mechanism 𝑖 [1/𝑦𝑒𝑎𝑟]
𝑃𝑓;𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 Failure probability of a dike trajectory [1/𝑦𝑒𝑎𝑟]
𝑃𝑟𝑒𝑞 Required failure probability for an entire flood defence system [1/𝑦𝑒𝑎𝑟]
𝑃𝑂𝑃 Pre­overburden pressure [𝑘𝑃𝑎]
𝑞𝑎 Actual overtopping discharge [𝑚3/𝑠/𝑚]
𝑄𝑏 Dimensionless overtopping discharge for breaking waves ­

𝑞𝑐 Critical overtopping discharge [𝑚3/𝑠/𝑚]
𝑄𝑛 Dimensionless overtopping discharge for non­breaking waves ­

𝑅 Resistance ­

𝑅𝑐 Crest freeboard [𝑚]
𝑟𝑋,𝑌 Spearman’s tank correlation coefficient between two stochastic variables 𝑋 and 𝑌 ­

𝑅𝑢𝑖 Run­up level with respect to the still water level [𝑚]
𝑅𝑢2% 2% run­up height, relative to the still water level [𝑚]
𝑆 Load ­

𝑆 Undrained shear strength ratio (normally consolidated) ­

𝑠𝑢 Undrained shear strength of soils according to CSSM [𝑘𝑃𝑎]
𝑠𝑜𝑝 Wave steepness ­

𝑡𝑖 Time interval 𝑖 of stationary hydraulic loads at the toe of the dike [𝑠]
𝑇𝑚 Mean wave period [𝑠]
𝑇𝑝 Wave spectral peak period [𝑠]
𝑡𝑙𝑜𝑎𝑑,𝑧𝑗 ,𝑡𝑖 Load duration of time interval 𝑡𝑖 at evaluation level 𝑧𝑗 [ℎ𝑟]
𝑇𝑚−1,0 Spectral wave period [𝑠]
𝑡𝑠,𝑠𝑢𝑏,𝑧𝑗 ,𝑡𝑖 Strength duration of the sub layer during time interval 𝑡𝑖 at evaluation level 𝑧𝑗 [ℎ𝑟]
𝑡𝑠,𝑡𝑜𝑝,𝑧𝑗 ,𝑡𝑖 Strength duration of top layer in time interval 𝑡𝑖 at evaluation level 𝑧𝑗 [ℎ𝑟]
𝑈 Standard normal space ­

𝑢 Wind speed m/s

𝑈𝑐 Critical front velocity along the dike slope [𝑚/𝑠]
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