
Bachelor End Project:
FireFly Dating

Bachelor Thesis

Colin Geukes
Caspar Krijgsman
Steven Lambregts
Vincent Wijdeveld
Matthijs Wisboom

Bachelor End
Project: FireFly

Dating
Bachelor Thesis

by

Colin Geukes
Caspar Krijgsman
Steven Lambregts
Vincent Wijdeveld
Matthijs Wisboom

Project duration: April 20, 2020 – July 3, 2020
Thesis committee: Dr. H. Wang, TU Delft, Bachelor Project Coordinator

Ir. T.V. Aerts, TU Delft, Coach
M.S. Salarbux, Firefly, Client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Some content of this thesis is confidential and is therefore marked in black.

http://repository.tudelft.nl/

Preface
This report is for the Bachelor End Project (BEP). It is created by Colin Geukes, Caspar Krijgsman,
Steven Lambregts, Vincent Wijdeveld, Matthijs Wisboom as a part of the Bachelor Computer Science
program at the Delft University of Technology.

Over the course of ten weeks, we have built a new dating application where users can swipe and
go on a blind date via the application. This project was commissioned by FireFly.

Our sincerest thanks to everyone at FireFly for their support during the project. A special thanks to
Siraadj Salarbux, owner and contact person of FireFly, for taking the time to coordinate us.

Finally, we would like to thank our coach, Ir. Taico Aerts software developer and teacher at the Delft
University of Technology, for always finding time in his busy schedule to guide us and provide criticism
where it was needed.

Colin Geukes
Caspar Krijgsman
Steven Lambregts
Vincent Wijdeveld
Matthijs Wisboom
Delft, June 2020

v

Executive Summary
The FireFly company was created on the idea of blind dating. Most dating apps need the user to have
an extensive conversation through a chat box before settling for a date. The product of FireFly tries to
remedy that by having the first conversation be face to face. Over ten weeks, we have built the FireFly
Dating application.

We started researching other dating applications and matching algorithms to decide the require-
ments for FireFly Dating. After this, we implemented these requirements from scratch.

In the final product, users can register an account, like or dislike other users profiles to indicate
preferences for the matching algorithm, enroll for a blind date, and get matched. The application also
includes an automated emailing system and a full reporting and feedback system. Furthermore, the
system allows for an Administrator to get an overview of the application’s data. The Administrator can
insert, edit or archive Dating Establishments and Time Slots. As well as view user reports and ban
users if necessary. The final application is a product that portrays the Product Owner’s vision in that
dating should be easily accessible and offline. At the end of the project, together with the Product
Owner, it can be concluded that the FireFly Dating application was successful.

vii

Contents

1 Introduction 1

2 Problem definition and Analysis 3
2.1 Context . 3
2.2 Challenges for Stakeholders . 3

2.2.1 Users . 3
2.2.2 Dating Establishment Owners . 4
2.2.3 Product Owner & Administrator . 4

2.3 Conclusion . 4

3 Research 5
3.1 Requirements. 5

3.1.1 Stakeholders . 5
3.1.2 Functional Requirements. 6
3.1.3 Non-Functional Requirements . 6

3.2 Implementation . 6
3.3 Matching . 7
3.4 Framework Analysis . 7

3.4.1 Front-end . 7
3.4.2 Back-end . 7
3.4.3 Testing . 8

4 Design 9
4.1 Design Goals . 9
4.2 Design Process . 9

4.2.1 Design Goals and Initial Design . 10
4.2.2 Design by BEP Team. 10
4.2.3 Implementation Phase . 10
4.2.4 Final Design . 11

4.3 Reflection on Design Goals . 12
4.4 System . 12

4.4.1 Front-end Back-end Communication . 12
4.4.2 Choice of Programming Languages . 12

4.5 Conclusion . 13

5 Implementation 15
5.1 Overview . 15

5.1.1 Front-end . 15
5.1.2 Back-end . 17

5.2 Database Structure. 18
5.2.1 MySQL . 18
5.2.2 Building the Database . 19
5.2.3 Schemas and Relations . 19

5.3 Matching and Dates . 19
5.3.1 Constraints . 19
5.3.2 Swiping . 20
5.3.3 Matching . 20
5.3.4 Dates . 20

ix

6 Testing 21
6.1 Unit Testing . 21

6.1.1 Back-end . 22
6.1.2 Front-end . 22

6.2 Manual Testing . 23
6.3 User Testing . 23
6.4 Stress Testing. 24
6.5 Continuous Integration . 24

7 Final Product 25
7.1 Walkthrough . 25

7.1.1 User . 25
7.1.2 Administrator . 31

7.2 Completed requirements . 32
7.2.1 Functional Requirements. 32
7.2.2 Non-tracked Features . 34
7.2.3 Non-functional Requirements . 35

8 Ethics 37

9 Process 39
9.1 Communication . 39

9.1.1 Meetings with Product Owner . 39
9.1.2 Communication with Coach . 39
9.1.3 Team Communication . 39

9.2 Team Division. 40
9.3 Scrum . 40

9.3.1 Backlog . 40
9.3.2 Sprint Planning . 41
9.3.3 Daily Scrum. 41
9.3.4 Review and Retrospective . 41
9.3.5 Tracking . 41

9.4 Review of Original Plan . 42
9.5 Maintainability . 43

9.5.1 Testing . 43
9.5.2 Static Analysis . 43
9.5.3 Code Review . 44

9.6 Conclusion . 44

10 Conclusion 45

11 Discussion and Recommendation 47
11.1 Future Improvements. 47

11.1.1 Snapshot Testing . 47
11.1.2 Administrator UI Framework . 47
11.1.3 Database Integration Testing . 47
11.1.4 Python Testing . 48
11.1.5 Stress Testing. 48
11.1.6 Email Client . 48
11.1.7 Admin Login . 48
11.1.8 Terms of Service . 48

11.2 Maintainability . 48
11.3 Future additions . 48

11.3.1 User Images . 49
11.3.2 Phone Verification . 49
11.3.3 User Studies . 49
11.3.4 Establishment Application . 49
11.3.5 Time Slot Templates . 49

Contents xi

A Project Plan 51

B Research Report 65

C Flowchart 87

D Directory Tree 91

E SIG Feedback 93

F Database UML 97

G Database Tables 101

H Administrator Panels 109

I Project Description 113

J Info Sheet 115

K Routes 117

Bibliography 133

Glossary 137

Abbreviations 139

1
Introduction

In modern society, many people use dating applications [1]. Within the application, the users swipe
dozens of people, and once two users swipe each other to the right, they become a match and could
start a conversation. Chatting over the Internet is more convenient and efficient than trying to chat with
someone face to face [1]. Besides, by using dating applications, users can reach more people over
the Internet than they can in their local city [1, 2]. Dating applications also make it easier for people to
find what they are looking for, even if that is very concrete [3]. However, users will most likely not act
further than the apps chat functionality. According to Siraadj Salarbux, the client of this Bachelor End
Project (BEP), people waste their time in the chatroom and often have the same conversation again
but with a different person.

Online chatting has proven to result in social compensation. People are often too shy to meet new
people, but they do not have to show their faces with chatting. They need an ego boost to help them
to go on a date and meet new people. According to research, only a third of cyber friendships make
some form of offline contact, and only 6% form an intimate or romantic relationship [4].

Therefore, FireFly came up with the idea to move the conversation, that is usually held in the chat
window of the dating application, to the bar or the café. According to FireFly, the problem with modern
dating applications is that there is too much time spent in the chat window.

The team has created a new blind dating application from scratch. There was a design delivered
by the client, but the team was free to change it. The team delivered a Minimal Viable Product (MVP)
to the client that met the must-have requirements of this project.

In this report, the development process and the final design of the Bachelor End Project (BEP) of
FireFly Dating are documented. First of all, the problems that this BEP project addresses are described
in Chapter 2. The research conducted before implementation is summarized in Chapter 3 and can be
found in its entirety in Appendix B. Next, the design of the system is explained in Chapter 4. Then,
the implementation of the product is separated into the design and the back-end. The implementation
is fully described in Chapter 5. The testing systems used in this project are explained in Chapter 6.
Furthermore, the final product is shown in Chapter 7. Also the ethical implications will be discussed
in Chapter 8. The process and the application’s development are examined in Chapter 9, upon which
conclusions are drawn in Chapter 10. Finally, to finish it up, the discussion and recommendations can
be found in Chapter 11.

1

2
Problem definition and Analysis

This thesis attempts to solve a problem found in modern dating applications: people spend too much
time chatting and not meeting other people. This problem is further elaborated in this chapter by ex-
plaining the needs and motivation of the client and the challenges which each of the stakeholders
faces. First, the context of the problem will be addressed in Section 2.1. Secondly, the challenges
faced are described in Section 2.2. Finally, a conclusion about the problem and the analysis is given
in Section 2.3. Chapter 3 will elaborate on the research.

2.1. Context
A dating application is an online dating service that helps its users meet romantic partners. A user can,
among other things, set data such as their name, height, biography, and upload photos. Users can view
each other and eventually go on a date if both users show interest. Researching a variety of dating
applications, the following characteristics of the software could be found in all of them: Users were
able to swipe other users. By doing this, the algorithm learns about preferences of the appearance of
people according to the direction of their swipes [5]. These preferences tell the system if they like the
other user or if they do not. When both users like each other, they are a match, and they can talk to
each other. In some dating applications, users can specify their preferences and ask the system to go
on a date. However, the client has identified the following problem: Most dating apps have a low match
to date ratio. It is not uncommon that nearly all the users’ time ends up in the chatroom provided by the
dating app [6]. According to the client, users often have the same conversation repeatedly with people.
The client considers the chatroom to be an ineffective method of determining whether a person is a
suitable match. Thus, the client has set out to create a dating application that focuses on dating rather
than chatting. The goal of FireFly Dating is to make it easier for users to meet each other in person
through blind dates, rather than wasting time chatting online.

2.2. Challenges for Stakeholders
When considering how to solve people spending to much time in online chatrooms and not spending
enough time meeting each other, there are multiple stakeholders to consider. The three stakeholders
of this project are the user, the Dating Establishment Owners, and the client/product owner. In this
section, the unique challenges of the different stakeholders will be described. These challenges must
be taken into account when creating the final product to solve the problem.

2.2.1. Users
Users often have the experience of not gaining that many matches [7]. Finally, getting a match and
turning this match into a (successful) date can be a time-consuming process [8]. People often trust
third-party apps to find a good match with whom they can go on a date. It is shown that a user’s
swiping quantity does not guarantee more matches. Women usually have more matches than men
do, while men have to start the conversation, which does often not lead to a date [7]. Therefore, the
application must make it effortless to find a match and plan a date with another user. Only through this

3

method is it possible to minimize time spent online and maximize the time meeting new people.

2.2.2. Dating Establishment Owners
Dating Establishments want to receive more customers so they can increase their profits. However,
they must be able to track the number of people they expect to host at their establishment. Therefore,
they require a method of being notified when a new date will be visiting their establishment. Dating
Establishmentsmust not experience any downsides for participating in the ecosystem of the application.

2.2.3. Product Owner & Administrator
The Product Owner wants to run a business based on hosting a platform that allows users to match and
date with each other. On the other hand, the platform must keep the users satisfied and secure. The
product owner must be able to perform administrative actions to ensure satisfaction and security. These
tasks include banning users, adding new Dating Establishments, and ensuring the app’s correctness
of the information.

2.3. Conclusion
In conclusion, the system should allow users to date without chatting (too long) in the application itself.
The dates that are made for them should meet their preferences. The dates should take place in
Dating Establishments, and these Dating Establishments should not experience any disadvantage from
reserving a table specifically for users of the application. Finally, the Product Owner should have full
control over the system the ensure user satisfaction.

3
Research

Before implementation could begin, decisions had to be made to accomplish the requirements from the
problem definition in Chapter 2. Before this research, a list of requirements has been set with the client
and can be viewed in Appendix A. During the research phase, extensive research was done to deter-
mine the best systems for the application. A revised requirements list has also been established during
the research phase. After the coach reviewed the project plan, some requirements were changed in
priority. The changes were made because these requirements were not contributing to the vital com-
ponents of the MVP. The final list of requirements, combined with the research report, can be viewed
in Appendix B. For the research phase, the following research questions were formulated:

• What requirements does the client desire for the correct functioning of the product?

• How will the implementation challenges related to payment, refund, and reporting be solved?

• How will a matching algorithm that accurately matches people be created?

• What frameworks would best suit this project for different areas of implementation?

In this section, the research report’s findings are summarized, and conclusions from the research are
repeated.

3.1. Requirements
The requirements of the final application of FireFly Dating are split up into three parts. First, a list of
stakeholders lay the base of the participants that interact with the system. Secondly, the functional
requirements will be discussed. These are the features envisioned by the client and describe the
interaction with the various stakeholders. Lastly, the non-functional requirements are listed. This list
elaborates more on the requirements that are specific for the system and cannot directly be translated
into a single feature.

3.1.1. Stakeholders
This section explains the set of stakeholders that interact with the application. It also elaborates on the
roles these stakeholders have in the system.

User
Themost important stakeholder is the user of the application. The user should be able to easily navigate
and interact with the application. Also, the user should be able to participate in the various features like
setting up a profile, swiping, dating, and provide feedback on their dates.

Administrator
The Administrator is the stakeholder that is assigned to keep the application up and running. They will
deal with adding new Dating Establishments, locations, and Time Slots. As well as manage reporting,
and inspecting data.

5

Dating Establishment Owner
The Dating Establishment Owner (DEO) provides the application with locations at which dates can take
place. These DEOs will have contact with the Administrator, who will set up dates at their establish-
ments.

Product Owner
The Product Owner is the rightful owner of the FireFly Dating product and has a unique set of objectives
envisioned for the project to make it a successful and profitable business.

3.1.2. Functional Requirements
The functional requirements for the MVP have been established with the vision of the Product Owner
and the prediction of time required to finish the desired features of the project. For the MVP users must
be able to:

• Create and delete an account.

• Log in to the application.

• Set their dating preferences and user information.

• Be able to swipe other profiles.

• Apply for a blind date with locations and Time Slots.

• Receive notifications of an updated date status.

• Provide feedback on a date that has taken place.

• Cancel a date.

A more detailed list of these requirements can be viewed in Section B.2.2. Some of these requirements
include reporting, rescheduling, administrative tasks, and DEO tasks within the application. This list
also includes non-essential requirements. Some non-essential features that have not been imple-
mented in the final application are redacted on the request of the Product Owner.

3.1.3. Non-Functional Requirements
Some of the requirements do not translate directly into features. In consultation with the client, these
requirements are created to give the user a seamless experience when using the applications. It also
allows the application to grow, granting a user experience without noticeable errors and constant up-
time, as well as securing potentially profitable business. Users have to be able to access the application
securely from a mobile device or personal computer, and the Client App should be easy to use. The
user’s connection should have a secured layer that protects the user’s data from unauthorized use, to
achieve online safety.

As the team will only work on the project for ten weeks, the codebase should be well documented
so that future developers will have an easy time understanding and can continue further development
of the system. The codebase should also be migratable as it will start as a web application but could
also be transferred to a smartphone application.

3.2. Implementation
Some of the features in the functional requirements need to be researched in order to allow for a proper
implementation. One of these features is the payment system. For a user to enroll for a date, they will
need to pay a small fee. There are a few options for Payment Service Providers (PSPs), and the main
criteria for a suitable PSP are the ease of use, availability, and has to support IDEAL. In the end, the
decision was set to be between Stripe1 and Mollie2 as they both fit the criteria and are made for startup
applications such as this one. The final decision was left to the client.
1https://stripe.com/en-nl
2https://www.mollie.com/en

https://stripe.com/en-nl
https://www.mollie.com/en

3.3. Matching 7

If a date would be canceled, the participants require a refund of their payment. This refund could
be done in different ways, such as refunding money to the user’s bank account or turning the money
into tokens for the FireFly Dating application. Tokens would be more beneficial as it would require
less implementation, especially with third-party software. Tokens are also more cost beneficial as a
PSP requires a fee for every transaction. The legalities surrounding such a credit system could be an
obstacle if this feature were to be implemented, and therefore, a legal team’s consultancy would be
recommended.

Another point of research is the feature of moderation. To make the users feel safe, a user that
breaks the rules should be able to be reported and banned. The application will rely on the feedback
of users to bring attention to users that misbehave. An Administrator can then view this feedback and
decide on the validity of the feedback and take appropriate actions. The DEO could also provide their
input to get an unbiased view on the matter. FireFly Dating could reward DEOs for their supervision by
allocating more dates to their establishment, see Section B.3.3.

3.3. Matching
The matching algorithm is a significant part of a blind dating application. The application will need to
create dates based on the information it has, which is initially very little in the case of FireFly Dating.

First, the algorithm will need to use absolute filters like age range or gender preference to accom-
pany the user’s distinct preferences. After applying this filter, the only data available to make any
recommendation on is the feedback received from swiping and the feedback from a date at a Dating
Establishment.

Both swiping and date feedback are boolean values and are used to indicate when two users have
liked or disliked each other during swiping or when two users experienced a date as positive or nega-
tive. Furthermore,Collaborative Filtering (CF) could be used for this application as it works on sparse
and absolute data to calculate the likelihood of users liking each other, which should then be used to
recommend a date based on other users’ data.

The algorithm also has the option to take the popularity of people into account. When users
like/dislike ratio are closer together, they tend to be a better match than when the ratios are further
apart. So users that are liked often by people are more likely to be selected for a date. This ratio is
called the Elo score, see Section B.4.4.

Combining these implementations will result in a suitable matching algorithm for the application. A
complete report of the research of the complete algorithm can be found in Section B.4.

3.4. Framework Analysis
For the FireFly Dating application, a set of frameworks will be used to build the application. Therefore
research had to be conducted on front-end, back-end, and testing frameworks to choose themost suited
frameworks for the application. A detailed analysis of the frameworks can be found in Section B.5.

3.4.1. Front-end
The front-end frameworks that were considered were Angular3, React4, and VueJS5. A full report of
the comparison can be found in Section B.5.1. Angular was soon dismissed as the framework was
not adequately built for mobile and required more work to set up for smaller applications. React, and
VueJS both fit the application well. They both have high developer satisfaction, support the usage of
the majority of libraries, and proper mobile support. The final decision was to use the VueJS framework
as it allows for greater efficiency as well as prior experience of some team members.

3.4.2. Back-end
The back-end frameworks are split into three parts: the database, the server-side, and the matching
algorithm.

3www.angular.js
4www.reactjs.org
5www.vuejs.org

www.angular.js
www.reactjs.org
www.vuejs.org

Database
Several database structures were considered, and a full report can be found in Section B.5.2. The
application will rely on a relational database as the application will be static in its structure. Insertions
will only have values that match strong definitions such that queries are more straightforward and faster
to execute. MySQL6 and PostgreSQL7 comparison studies show that MySQL is more straightforward
to use, and better supported [9]. The size, scalability, speed, security, and plugins of MySQL suit the
application’s needs and all team members have had prior experience with the framework. Therefore,
MySQL was chosen.

Server-side
The server-side scripts will be written in JavaScript, with NodeJS as the runtime environment. NodeJS
provides excellent speed and reliability for executing queries. A detailed comparison with other runtime
environments can be viewed in Section B.5.2. The JavaScript language was also chosen to keep a
uniform language throughout the application and speed up the development.

Matching Algorithm
The matching algorithm will be developed in JavaScript to keep a uniform language across the applica-
tion. NodeJS was chosen for the best execution of heavy tasks. A comparison with other frameworks
can be viewed in Section B.5.2.

3.4.3. Testing
Since the previous decisions led to the entire application to be programmed in JavaScript, only one
testing framework is required for front- and back-end. Two different popular testing frameworks that
were compared were Jest8 and Mocha9. A detailed comparison can be found in Section B.5.3. How-
ever, to summarize, the significance of the application relies on a correctly behaving back-end. Mocha
operates better with NodeJS, and thus Mocha was chosen as the testing framework.

6www.mysql.com
7www.postgresql.org
8www.jestjs.io
9www.mochajs.org/

www.mysql.com
www.postgresql.org
www.jestjs.io
www.mochajs.org/

4
Design

FireFly Dating is a consumer-facing product. Therefore, in consultation with the Product Owner, the
team decided that it was essential to take special care to ensure that the app is designed with a good
User Experience (UX). Therefore, the team has made trade-offs between adding features and polishing
the design. This process will be discussed in this section.

4.1. Design Goals
When starting this project, it was essential to set crucial design goals to ensure that the product would
function in such a manner that it provides benefit to its users.

Clean User Interface
The User Interface (UI) was designed to be simplistic and easy to use by users. The goal was to ensure
that all user-facing screens of the Client App only show the minimal required amount of information, to
avoid screen clutter.

A second aspect concerning the UI is conscious of the location of each component. The goal was
to place the elements so that they do not feel crowded or claustrophobic to the user. Instead, they
should feel open and clear.

Mobile First Development
An essential part of the design process was to ensure that all screens would function well in a desktop
and mobile browser environment. Therefore, it was paramount to guarantee a pleasant UX on mobile
devices. When implementing the design, the teammust always use a mobile-first style of development.

Intuitive Interface
It is vital to make sure that the flow of the Client App is logical and intuitive. This flow helps the user to
enjoy the application’s experience. To make the app more logical, it should guide the user to the next
step.

Playful Design
As expressed by the Product Owner, he wanted the Client App to feel playful and informal rather than
severe and purely functional. The goal of this is to make the app appealing to the current college-age
target audience of the app. It also serves to make the usage of the app feel more enjoyable rather than
a chore.

4.2. Design Process
Throughout the development, there were different design stages. First, the team received an initial
design created by the Product Owner. After this, the team built their design in Adobe XD, and eventually,
after several revisions with the Product Owner, the team’s final design was implemented. These stages
and the resulting models are explained in this section. The process of creating a screen was similar
for all of them. Therefore we have chosen to only focus on the Swiping Page as an example.

9

4.2.1. Design Goals and Initial Design
During the first two weeks, the team, in consultation with the Product Owner, set the project’s design
goals. These goals are described in Section 4.1. These goals created the foundation of the design
aspects of this project. During this time, the team also discussed which color pallet1 to use. The
Product Owner provided the team with an initial design that he created in preparation for this project,
as seen in Fig. 4.1. This design gave the team a general idea of how the design should look and feel,
and functioned as the basis for the development. During this stage, a flow diagram was created in
which the general flow of the application is presented; this flow diagram can be found in Fig. C.1. With
this diagram, the team had a clear overview of what screens needed to be designed. Creating such a
flow diagram also provided an excellent tool to validate if the team and the client had the same design
vision in mind.

Figure 4.1: Swiping Page Design Provided by the Product Owner

4.2.2. Design by BEP Team
During the first week of actual development, one of the primary goals was to create a design that would
show the app’s general functionality. This design was created in Adobe XD as this is a tool that is
capable of creating a UI design in a quick manner, which is not possible when implementing in code
right away. The team was able to share these designs with the Product Owner and receive feedback on
them before implementation. It was a conscious choice to focus primarily on the main UI components
in this initial design: the swiping page and the dating page. The designs of the mobile version of the
swiping page can be seen in Fig. 4.2 & Fig. 4.3.

4.2.3. Implementation Phase
After creating and reviewing the designs in a non-implemented form, the team was ready to implement
the actual design. Each page’s design was initially done using sample data rather than having it already
be connected to the back-end. After the design had been implemented in VueJS/SCSS, the reviewing
process could begin. The pull request system used in GitHub was a crucial part of optimizing the
design. It allowed all team members to view and request changes to the design before becoming part

1https://colorhunt.co/palette/177867

https://colorhunt.co/palette/177867

4.2. Design Process 11

of the main branch. During the implementation phase, the team also discussed and demonstrated the
design to the Product Owner. Based on the Product Owner’s feedback, the team was able to further
improve and iterate on the design.

Figure 4.2: Mobile Device Swiping Page made with
Adobe XD

Figure 4.3: Mobile Device Swiping Page showing
Biography made with Adobe XD

Figure 4.4: Final Mobile Design of Swiping Page Figure 4.5: Final design of swiping page, showing
the bio, for mobile devices.

4.2.4. Final Design
After eight weeks of development, the team was able to create a design that met the majority of the
design goals; these goals will be reflected in the next section. The final results are quite similar to
the design, as can be seen in Fig. 4.4 & Fig. 4.5. The differences between the original design, shown
in Fig. 4.2 & Fig. 4.3, and the final product are shown in Fig. 4.4 & Fig. 4.5. These differences were
implemented because, during the implementation phase, it was discovered that these changes worked

better when using the application. To the eyes of the client, the team succeeded in creating a clean
and aesthetically pleasing design in the time that was set for this Bachelor End Project (BEP).

4.3. Reflection on Design Goals
At the start of this project, initial design goals were defined to ensure that the project design satisfied
the requirements of the Product Owner and, thus, the user’s needs. This section will reflect on how
well these design goals were accomplished.

Clean User Interface
The team succeeded in avoiding toomuch clutter on the different screens of the Client App. The screens
only have the necessary amount of information to allow the user to navigate the app effectively. The
team and the Product Owner consider this goal as achieved. In the future, when more user testing has
been done, this goal might have to be revised.

Mobile First Development
All screens function correctly in a mobile environment as far as we were able to test. Together with the
Product Owner, the team has concluded that this goal was achieved effectively. However, mobile-first
was only tested on browsers and not entirely onmobile devices. Thus some flawsmay be undiscovered;
this is because, with the authentication service, it was unable to view the application on the phone before
deploying it to a server.

Intuitive Interface
The screens implemented do follow a logical progression in the app. However, the team feels that if
there was more development time available, there could have been some additional improvements in
this regard. Such as automatically guiding the user to the next screen and allowing for more natural
gestures. The team would have liked to improve the intuitiveness of the final design, but the team
had to make a trade-off between implementing more crucial features of the MVP and designing the
application to be more intuitive. After discussing with the Product Owner, the team concluded that it
was more valuable to improve the application’s basic feature set.

Playful Design
The goal of achieving a playful design was achieved quite successfully in this app. the playfulness
is expressed through a few different ways: the color scheme2, the choice of icons3, and the informal
explanation texts. The Product Owner positively evaluated the app’s general look and found it to be an
enjoyable and fun experience. Therefore the team considers this design goal as successfully achieved.

4.4. System
Another aspect of design that was not ignored is the design choice made concerning the system design.
In this section, a few critical design decisions that were made during the project will be highlighted.
These design choices aided the development of the project and ensure successful future development.

4.4.1. Front-end Back-end Communication
In the early stages of the development, there was a conscious choice to make a sharp separation
between the front- and back-end. The only communication between these two sides of the project
would be done through Application Programming Interface (API) calls. The reason for this is that the
Product Owner expressed the desire to switch to a standalone mobile application in the future. For
this reason, front- and back-end must be separated so that a mobile app can make use of functionality
without altering the back-end.

4.4.2. Choice of Programming Languages
As described in Appendix B, the choice was made to primarily code in JavaScript. This decision was
made to minimize development and learning time because all team members had prior experience with
2https://colorhunt.co/palette/177867
3https://fontawesome.com/

https://colorhunt.co/palette/177867
https://fontawesome.com/

4.5. Conclusion 13

JavaScript. Using mainly one language, resulted in a minimal learning curve throughout this project for
all team members. In the end, an additional programming language was used for the matching algo-
rithm, namely Python. Using Python for this task optimized the IO infrastructure of NodeJS. Chapter 5
will elaborate on the use of Python.

4.5. Conclusion
In conclusion, at the start, the team cooperated with the Product Owner to set different design goals
for the project. These goals were taken into account when designing the final product. The process of
implementing the design happened in different phases. First, the design goals were set. Then an initial
design was created. Finally, the team implemented the design into the codebase. Overall, almost all
design goals were achieved. Only the intuitive design goal was not fully met due to time constraints.

Concerning the system design, the team made a conscious choice to keep the front- and back-end
separated as much as possible. This will allow for the creation of a standalone mobile application
in the future. Additionally, about system design, the team chose to use JavaScript as the primary
programming language to improve the efficiency of development due to familiarity. Overall the design
process was successful in this BEP project.

5
Implementation

This chapter focuses on the implementation of the application and its components. It starts by giving
an overview of the system as a whole and then focuses on the individual components. It opens with
the front-end systems, first the Client App, and after that, the Admin App. Next, it explains the workings
and the integration of both the back-end system and the matching. Lastly, it provides an overview and
explanation of the database structure and uses.

5.1. Overview
The overview describes the workings of the front- and back-end. The front-end section first covers the
Client App. After this, it moves on to the Admin App. The back-end section explores all the server-
sided systems that are in place, excluding the database and matching. For an overview of the directory
structure of the project see Appendix D.

5.1.1. Front-end
Both front-end systems have the VueJS framework at their core. VueJS is a reactive component-based
framework making it ideal for a large but maintainable codebase.

Client App
The Client App is a mobile-first web application using HTML, SCSS, and ECMAScript 6 (ES6) in the
VueJS framework. This web application serves as the primary interface between users and the FireFly
Dating app.

The application is designed as a single-page application. Single-page applications update the cur-
rent webpage with new content instead of moving to a new page [10]. By only partially changing the
content, it saves unchanged content from being reloaded1. So when a user moves from /𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 to
/𝑑𝑎𝑡𝑖𝑛𝑔 the page does not change to a new web page, it just loads the appropriate content. In order
to load the appropriate content, VueJS contains a router2. This router distinguishes between two types
of pages, namely, public and private pages. Private pages are only accessible after authentication. An
overview of the routes can be found in Fig. 5.1

Firebase, a development platform for mobile and web applications, provides the authentication flow
of the application. This platform allows us to link multiple OAuth services like those of Google and
Facebook to the application with relatively low effort3.

The application uses API calls to receive and send data. With the swiping page, multiple candidates
are prepared at the server-side while the client is swiping. By preloading theses candidates, the Client
App provides a smooth transition without the need for long waiting times.

1https://ozitag.com/blog/spa-advantages
2https://router.vuejs.org/guide/
3https://firebase.google.com/docs/auth/web/start

15

https://ozitag.com/blog/spa-advantages
https://router.vuejs.org/guide/
https://firebase.google.com/docs/auth/web/start

Figure 5.1: An Overview of Routes in the Client App

Admin App
The Admin App uses most of the same technologies as the Client App. The main difference is that
instead of the BootstrapVue4 library, the Admin App uses Vuetify5 library as this provides the needed
Create, Read, Update and Delete (CRUD) data-tables6,7.

Like in the Client App, the Admin App pages are managed by the router. For the Admin App, all
pages are private except for the login page. An overview of the Admin App routes can be found in
Fig. 5.2

The Admin App does not make use of the Firebase authentication service. Instead, it uses a token to
verify the session. On the login page, an Administrator can provide its token to create a verified session.

4https://bootstrap-vue.org/
5https://vuetifyjs.com/en/
6https://vuetifyjs.com/en/components/data-tables/#crud-actions
7https://www.codecademy.com/articles/what-is-crud

https://bootstrap-vue.org/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/components/data-tables/#crud-actions
https://www.codecademy.com/articles/what-is-crud

5.1. Overview 17

Figure 5.2: An Overview of Routes in the Admin App

This token is hardcoded in the back-end, see Section 11.1.7 Admin Login for more information.
In the Admin App, the Administrator can manage all the data needed for the FireFly Dating applica-

tion to function. They can perform CRUD operations on all kinds of data, such as time slots. The Admin
App is also the place where Administrators view report cases. These are provided with the information
related to each report. Based on this, they can judge a presented case and take appropriate actions.

5.1.2. Back-end
The back-end primarily consists of a NodeJS server. This server is responsible for communicating the
data to and from the clients. The communication is based on API calls using GET and POST requests8.

8https://www.w3schools.com/tags/ref_httpmethods.asp

https://www.w3schools.com/tags/ref_httpmethods.asp

Routing and Call Handling
These API calls or routes can be structured using the Express9 library for NodeJS. Express allows for
grouping these routes in routers giving the server a clear and easy to understand structure. For this
project, routes are grouped based on their interaction with objects. For example, a route that retrieves
the user data should, therefore, be located in the 𝑢𝑠𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑟 file. These routers then allow us to
assign prefixes to routes. A request to retrieve the user data would look like this: /𝑢𝑠𝑒𝑟/𝑔𝑒𝑡 where
/𝑢𝑠𝑒𝑟 refers to the user router and /𝑔𝑒𝑡 points to the 𝑔𝑒𝑡 method inside the user router. A full overview
of the call structure can be found in Appendix K.

Authentication
Not all routes should be accessible by everyone. Therefore, an authentication systemwas implemented
in order to guard routes from access. This system would assign users a session once they logged in.
This session object controlled access to routes and allowed us to identify users server-sided. For the
implementation of this authentication system, Firebase Authentication10 is used. Firebase Authentica-
tion will henceforth be referred to as just Firebase. Firebase is a service that allows the connection of a
multitude of OAuth 2.0 services without having to create specific implementations for each OAuth ser-
vice. OAuth is an authentication service provided by an external party, for example, Google. Firebase
allows users to log in to the application using their Facebook or Google account. Additional OAuth
providers can be added to the system without an implementation change. A provider can easily be
added by changing the Firebase configuration.

Object-Relational Mapping
Object-Relational Mapping (ORM) is a method of converting data from one system to another. In this
project, this was from MySQL data to a JavaScript object. The back-end uses BookshelfJS11 and
KnexJS12 to help with these conversions. KnexJS is a query builder for a multitude of DataBase Man-
agement Systems (DBMSs), including MySQL and MariaDB. KnexJS is the bridge between NodeJS
and the database. BookshelfJS, ORM library that uses KnexJS, allows database entries to be treated
as JavaScript objects and can fetch and save data to and from the database without the need for writ-
ing queries. Using BookshelfJS allows for implementing additional fields to a schema without having
to rewrite all the queries.

Mailing
The application relies on email for notifications. Therefore the emails must not end up in the spam
filter but land in the user’s inbox. The project uses SendGrid13 to provide legitimacy for analytics on
the emails. The SendGrid-NodeJS library was used to implement sending emails from the server,
that are created using Embedded JavaScript templating (EJS). EJS is a framework that allows building
HTML pages dynamically using JavaScript. The main template can be outfitted with one of the modules
depending on the type of email. Data is then passed on to this module to fill the email with the correct
information, like names, dates, and places. Once all the data and modules are in place, the NodeJS
server renders this page to create a plain HTML. It also generates a plain text version of the email to
provide support for mail clients that do not support HTML emails. The HTML and plain text are passed
on to the SendGrid library and are sent to the users.

5.2. Database Structure
This section describes the structure and implementation of the database technologies used in this
project.

5.2.1. MySQL
The database engine used for this project is MySQL 8.0.0. All the queries and libraries used are com-
patible with MariaDB 10.2.2, making the MySQL database interchangeable with MariaDB. Connection
9https://expressjs.com/
10https://firebase.google.com/docs/auth
11https://bookshelfjs.org/
12http://knexjs.org/
13https://sendgrid.com/

https://expressjs.com/
https://firebase.google.com/docs/auth
https://bookshelfjs.org/
http://knexjs.org/
https://sendgrid.com/

5.3. Matching and Dates 19

to the database is made through KnexJS and a configuration file. The default configuration uses the
root user without a password and connects to a database called 𝑓𝑖𝑟𝑒𝑓𝑙𝑦. If a secret configuration file
is locally present, then that configuration will be used instead.

5.2.2. Building the Database
The migration and seeding features of KnexJS are used to deploy and maintain the database structure.

Migration
Database migration (or schema migration) is a version control system for the structure of a database
[11]. The database tables can be constructed or updated to the latest version by executing a change-
list in chronological order. These change-list files also contain the instructions for downgrading the
database to the previous version. This construction of up- and downwards changes allows for jumping
to specific database versions during development. One has to keep in mind that migrating downwards
usually leads to loss of data.

Seeding
Seeding (or database seeding) is the act of filling the database with initial data. The seeding framework
consists of a list of chronologically executed commands that alter the content of the database. FireFly
Dating makes use of seeding to populate the default values for the gender, language, report, and
location tables. This project also uses seeding for manual testing. These testing seeds contain fake
users with their preferences, dating establishments, time slots, enrollments, and feedback. These
testing seeds allows for rapidly testing new features against a multitude of different users with their
settings.

5.2.3. Schemas and Relations
The database consists of 24 schemas. Of these 24, two are managed and created by KnexJS to keep
track of migrations. One is used to store the session data and is operated by Express and KnexJS.
The remaining 21 schemas form the core of all data used by FireFly Dating and are all connected in
some way. These connections are in the form of a foreign key14. Foreign keys are fields that point
to a field in another table. A description of all tables can be found in Appendix G. Not all the extra
constraints are displayed here, as some are derived from KnexJS. A full schematic overview, including
the relations, can be found in Fig. F.1 & Fig. F.2. These figures are spread out over two pages to improve
readability. Fig. F.1 is centered around the user table. Fig. F.2 is centered around the date table. The
line connecting the two pages represents links to the 𝑖𝑑 field in the 𝑢𝑠𝑒𝑟 table and the 𝑢𝑠𝑒𝑟_𝑖𝑑 fields
in other tables.

5.3. Matching and Dates
For an application focused on dating, it is essential to match people and create actual dates. In order to
improve the matching, users can specify their preferences and constraints. This section will cover the
list of constraints, the implementation of the swiping, creation of matches, and the eventual construction
of a date.

5.3.1. Constraints
In order to create suitable matches, a list of constraints is put in place. This list consists of the following
constraints.

Gender interest - makes sure that two users match each other’s sexual orientation

Languages capabilities - ensures that two users can have a conversation on their date.

Age range - makes sure that two users fall in each others age range

Available locations - make sure that two users can meet up at the same location

Available times - ensures that two users have a joined time when they can meet.
14https://www.w3schools.com/sql/sql_foreignkey.asp

https://www.w3schools.com/sql/sql_foreignkey.asp

Date planned - prevent users that already have a date linked to the enrollment to go on another
date for that enrollment.

Dated before - prevents users that already dated each other from going on another date.

Banned status - prevents banned users from going on a date.

These constraints ensure that users do not get matches that are outside of their general interests. If
one of these constraints is not met between two users, then they cannot be matched.

5.3.2. Swiping
The system uses swiping for preference indication. During this phase, users get a set of candidates
that match most of the constraints. The time and location constraints are ignored as these are not
present during this phase. The user can indicate for each candidate whether this is a good match or
not. Once a user has indicated their interest in a candidate, this candidate will then not show up in
swiping for four weeks, allowing users to re-swipe after an extended period. This gives them a chance
to reconsider and give the illusion of a larger candidate pool.

5.3.3. Matching
Before implementing the matching algorithm, more research into running substantial computational
functions in NodeJS was required. In an article by Gimeno [12], he explains how to use worker-threads
to prevent the blocking of the main thread while running computationally intensive calculations. These
claims are backed up by a guide on the official NodeJS website [13]. As programming language run
in such a worker-thread, Python was chosen. This choice was made due to the familiarity with Python
and its ease running scripts from the command line.

Once users choose to go on a date, they fill in their available time, and locations. With this data,
it creates an enrollment. Every night at a quarter to twelve, the server starts the matching algorithm.
This time was chosen as it is expected to be a time of low usage of the system. It starts by making a
list of each Time Slot, location and Dating Establishment that still has spots available. Then for every
one of these entries, it checks if there are users enrolled that are available at that time and location.
Every available user gets added to a list. It then constructs all the pairs from this list that would meet
the constraints specified in Section 5.3.1.

The algorithm uses the data from the swiping phase to rank this list. If user 𝐴 liked user 𝐵 during
the swiping phase, then that pair gets a plus one on their rank. The other way around works the same,
meaning that a pair could maximally have a rank of two and a minimal rank of zero. This ranked list is
sorted on rank. With 𝑖 as the number of available spaces, the first 𝑖 pairs of users get a date entry in
the database. The algorithm concludes by printing the date ids inserted in the date table, as shown in
Table G.2 as a result of matches. These ids then get processed by the server and turned into proper
dates.

5.3.4. Dates
Once the server receives the list of date ids, it starts to turn those into dates. Turning ids into dates
mean that both users need to be notified that they are matched. The user receives an email notification
of the match, and the icon on the dating page changes, as shown in Fig. 7.9. A match does not mean
a date. In order for a match to become a date, both users will need to accept the match. If both users
accepted, then the server sends an email to the Dating Establishment confirming the date. Both users
will then get an email with their reservation at said Dating Establishment. At this point, a date could still
be canceled by both users. Cancellation will notify all parties about the cancellation via email. It also
frees up the spot at the dating establishment. In the current state of writing, canceling can be done until
the start of the date. After the date took place, users can provide feedback and possibly share contact
information.

6
Testing

In order to create reliable software, it is of utmost importance that is has been thoroughly tested. Doing
so ensures that the created codebase has a high maintainability and a proven success rate. This
chapter will describe the testing flow of the project.

Figure 6.1: Testing Pyramid [14]

6.1. Unit Testing
Unit Testing focuses on testing the smallest pieces of code possible. Testing small pieces of code has
many different advantages. Firstly, according to Novoseltseva [15], it is easy to test the code, as each
method is split up into testable pieces, instead of a complex integration. Secondly, finding and locating
errors is done relatively quickly, as they are located in a small code section. Thirdly, it allows testing in
an early stage of the project. Lastly, it is a cost-effective method of testing, since failures can be found
early on and be addressed. If these failures happen later on in the process, it is difficult to locate these
errors. Thus embracing unit testing as the basis of the testing on this project is an excellent choice.
Unit Testing is the foundation of other testing methods, as seen in Fig. 6.1. Unit testing is the most
significant method of testing used within the project.

In the initial setup, the framework Mocha1 was selected as the testing framework of this project,
see Section B.5.3. Mocha was chosen because in theory it is supported by both NodeJS and VueJS.
1https://mochajs.org/

21

https://mochajs.org/

However, it turned out that Mocha was poorly integrated with VueJS; this made it impossible to run test
coverage checks with Mocha on the VueJS components. Such a bad interaction made it impossible
to use Mocha as the framework to test VueJS in this project. We stated earlier, see Section B.5.3,
that using multiple frameworks in a single project is not a practical choice and should be avoided.
However, since the front- and back-end are both separate sub-projects, it is possible to use multiple
testing frameworks and gain the benefits of both. After a single week of trying to get Mocha working
on the front-end, we switched to the testing framework Jest2, while Mocha maintains to be the testing
framework of the back-end. The combination of having both Mocha and Jest is the best suited for this
project as a whole.

All the percentages shown in this section are based on the coverage of unit tests. Other testing
methods are not described in this section.

6.1.1. Back-end
As of now, only JavaScript files are tested, the back-end also houses two Python3 files which are not
tested. Only one of those files has actual functionality. This file is responsible for finding matches
between people based on their availability, preferences, and swiping, as described in Section 5.3.3.
Matching is almost entirely done within a Structured Query Language (SQL) query. This query returns
a set of candidates. The only functionality that the Python script has is to wrap these retrieved can-
didates in a date object. Wrapping candidates in an object is not a complex function, but it should be
tested appropriately in future versions, see Chapter 11. Due to time constraints adding a third testing
framework for a single file was not feasible.

In the back-end, Mocha is used as the testing framework. This testing framework is accompanied
by Istanbul4 as the coverage reporter. The testing coverage passed for the back-end if the back-end
code was at least 80% covered by unit testing. This coverage combined with Continuous Integration
(CI) allowed the code to be automatically tested in each pull request. Doing so makes it more likely
that the main branch is always a correct runnable instance of the software. Throughout the project,
high testing coverage was achieved and maintained. The testing coverage of the back-end, excluding
the Python files, was greater than 99% throughout the project. Such a high coverage allows for good
maintainability and proven correctness of the created software.

6.1.2. Front-end
In the front-end Jest is used as the testing framework, VueJS has its own plugin5 to allow Jest to
function, including a built-in coverage reporter. In the initial phase of the project, the team opted that
no testing was required for the front-end as the result of testing front-end components is limited and
time-consuming. However, throughout this project, the team noticed that this was not true. Testing on
the front-end found and terminated several errors that were made. It does not cost more time to test
the front-end in comparison to the back-end. However, they both require a different way of testing,
thus switching between different testing frameworks can sometimes be time-consuming, as they feel
quite similar but act differently. The required testing coverage of the front-end is equal to the required
coverage of the back-end. Both need to achieve 80% individually to pass the minimum test coverage
requirements. Running these tests with CI ensures that the software on the main branch is always
stable and does what it is supposed to do. Jest also allows for End to End (E2E) testing. However, this
type of testing is slower and more expensive, as seen in Fig. 6.1. The option to test for E2E is still a
good feature that could be implemented in the future stages of the project. After switching from Mocha
to Jest, the front-end could be properly tested. Since implementing Mocha left the front-end at a 0%
testing coverage, switching to Jest significantly increased the testing coverage. The testing coverage
soared up to 99% and stayed there throughout the project. Such a high coverage of unit testing of the
front-end ensures that each component will function as expected.

2https://jestjs.io/
3https://www.python.org/
4https://istanbul.js.org/
5https://www.npmjs.com/package/@vue/cli-plugin-unit-jest

https://jestjs.io/
https://www.python.org/
https://istanbul.js.org/
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest

6.2. Manual Testing 23

6.2. Manual Testing
The entire project is tested by unit tests. While these tests are excellent, they do not test the correct
interaction between components. System testing is doing through the means of manual testing. This
testing proved to be quite sufficient as the back-end calls are routes that return a data object. The ma-
jority of browsers support some form of development tools [16]. With these tools, the network packets
can be viewed and checked if the correct packets were created and retrieved. If the wrong packets
were retrieved, then it was an issue on the back-end side. If the correct packets were retrieved, but
not correctly integrated on the front-end, it was caused by the front-end. This made it extremely easy
to isolate the source of the problem and resolve it. Doing manual tests instead of integration tests was
feasible as the logic on the front-end is quite limited and relied primarily on visual components.

Solving the errors on the front-end did not consume much time as VueJS allows for Hot Reloading6.
This hot reload allowed the team to alter the served page without reloading and rebuilding that page.
Altering a piece of code updates the rendered page immediately, thus allowing the developer to see if
the correct behavior was achieved by altering the code.

These tests were mostly done by the developers of the software; however, the Product Owner also
performed manual inspections to see if the software was up to his standard. The Product Owner rarely
requested a change. If a change was requested, then it was a relatively minor visual change. Manual
testing was a great asset to ensure that the Product Owner’s expectations were adequately addressed
and fulfilled.

6.3. User Testing
Even though the project reached the state where user testing was viable, no beta testing took place 7.
This was due to the situation surrounding COVID-19, making it hard to arrange meeting locations for
people and finding people willing to participate during this crisis [17].

To perform something close to user testing on the system, the team acted out user behaviors. For
these tests, each team member created one or more fake user-profiles and enrolled for a date. We
would then discuss the expected outcomes and sketched scenarios of these users. Once the scenarios
were created, the system would run the matching algorithm, and the results would be compared to the
expected results. Afterward, the scenarios would be carried out to see if the system would work for all
of them. By using this testing structure, a couple of small bugs were found and fixed. One of these
bugs included was being matched with banned users.

In order to gain a better understanding of the look and feel of the application, a small user study
was conducted. In this user study, a handful of users were asked to use our application. At first, this
was done with a minimal explanation of the app. These test results pointed out that the settings page
is not intuitively structured as some users were unclear on the meaning of the gender preference field.
After users had the chance to explore the app on their own, they got an explanation and were asked to
perform specific steps from the process. A few examples of these steps included updating their settings
and uploading photos, changing their photos and ordering them, and creating a date enrollment. The
full list of feedback is stated below.

• Some users did not like that there is only the option of connecting with a Google or Facebook
account.

• The logo icon does not redirect to the ’homepage’; this would be the expected behavior.

• The gender setting in the top part of the settings page had an unclear link to preference. Some
users thought that they had to set their gender twice.

• The file size of 500kb per picture is way too small.

• The settings page is very long. Maybe think about creating tabs for each section.

• The picture navigation arrows in the swiping screen are always visible, even if there is no picture
to move to.

6https://vue-loader.vuejs.org/guide/hot-reload.html
7https://www.softwaretestinghelp.com/beta-testing/

https://vue-loader.vuejs.org/guide/hot-reload.html
https://www.softwaretestinghelp.com/beta-testing/

• The message that shows when there are no matches is not clear. It should specify that it could
be due to strict preference settings.

• It is not indicated that the algorithm is searching after creating a date enrollment.

• It is unclear that swiping is optional.

• Some users are confused with a swiping option in a blind dating app.

• Deletion of photos does not work on all mobile phones.

• The registration menu is not entirely visible on all phones.

• The biography field is hard to read on smaller mobile devices.

• There is no scroll bar for some of the menus when the content does not fit.

6.4. Stress Testing
When FireFly Dating has a significant number of users, it still needs to function correctly without the
users experiencing delays. For this reason, stress-testing was implemented in the testing of the system.

Currently, the only part that is appropriately stress-tested is the fetching of candidates. This query
retrieves a bulk of candidates for the user to swipe through. Once this bulk is depleted, the query
will be called again to fill up the candidates’ backlog for the user to swipe through. This query was
stress-tested in a database with eight million users. The execution time of the query only took around
two seconds. This run-time happens in the background so that the user will not experience any delay.
Such a low execution time is excellent for such an extensive database.

It should be checked if this query does not take too long when multiple users are simultaneously
fetching new candidates. Currently, it is not possible to automatically log in with different stress-tests
accounts to call the database and time the interactions. Due to the required authentication with Firebase
to create a session on the back-end. In order to allow stress-testing to occur with multiple users, the
authentication service needs to be bypassed; this could cause a breach in security if done improperly.
In the future, it is possible to bypass this authentication service to allow stress-testing to occur.

Stress-testing with multiple users will provide insights into how the system handles high traffic situ-
ations; this is essential in the future for functions that are more complex and time-consuming.

6.5. Continuous Integration
The code that is located on the main branch of the GitHub of this project must always be correct and
free of known errors. This reliability is done via Continuous Integration (CI). If someone wants to merge
a branch with the main branch, all the tests must be run alongside the static analysis. These checks are
done before the developer is allowed to merge their branch with the main branch through the means
of automated testing. CI makes sure that these tests ran and were accepted or rejected. If these were
rejected, then the developer is denied the option to merge their branch with the main branch. If these
checks pass, then at least two other developers need to approve these changes. Not all errors are
found and addressed with these automated testing. Thus human supervision is required to ensure that
the added functionality does what it is supposed to do.

In the earlier stages, CircleCI8 was used for the CI. Working with CircleCI went okay until the project
had many pull requests simultaneously. CircleCI is free software in which each project has a certain
amount of free minutes to spend on their CI per week. These were quite a limited amount of minutes
and were quickly drained during a week, making it unable to merge any more code with the main branch
as all the checks failed since they could not be run. The second time we ran out of credits, the team
discontinued CircleCI and went with GitHub Actions9 for the remainder of the project. GitHub Actions
allows for CI the same way as CircleCI. However, GitHub Actions provide the project with more credits
and a more cost-friendly payment system to gain more credits for the scale of the project. The system
is a one-time buy option instead of a subscription. This change allowed the merges to occur once again
and assured that each pull request contained proper code.

8https://circleci.com/
9https://github.com/features/actions

https://circleci.com/
https://github.com/features/actions

7
Final Product

This chapter will elaborate on the final product as a deliverable for the BEP. First, a detailed walkthrough
will be given, which will be done in two parts. The first part will be a walkthrough of the Client App, and
the second part will be the Admin App. After this walkthrough, we reflect on the MoSCoW requirements
from Section B.2.2 and view whether or not the application meets the defined requirements.

The final user-flow of the application is visible in the flow diagram shown in Appendix C.

7.1. Walkthrough
In this section, a detailed explanation of all screens within the application will be given, elaborating
on each interactive element the user can interact with. This section is split up into two parts, the
first of which will show the application from the user’s perspective. The second part will focus on the
interactions an Administrator has in the Admin App.

7.1.1. User
This subsection explains the screens and interactions of the Client App. The user’s interactions will be
described, and the entire process from account creation to dating feedback is explained.

Login
Once the user connects to 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝑑𝑎𝑡𝑖𝑛𝑔.𝑎𝑝𝑝, user is presented with, is the Login screen, see Fig. 7.1.
If the user has already registered and has a stored session, the user will automatically be forwarded to
the Swiping page. Otherwise, the user can create an account or log in by choosing either Facebook
or Google to log in or create an account using Firebase, see Section 5.1.2. Furthermore, on this page,
the user will have the possibility to access the Frequently Asked Questions (FAQ) page in the top right
corner. When a user presses either option to log in, one of two things will happen. If the user has not
registered yet or has not completed the registration, the user will be forwarded to the Registration page.
If the user already has an account with valid information, they will be forwarded to the Swiping page.
However, if the user is banned, they will be shown a message indicating they have been banned.

Navigation
The navigation bar can be one of two variants. The first variant appears when the user is not logged in
to the system, allowing the user only to cycle between a few pages. However, when logged in, the user
can access multiple screens. These include access to the Swiping, Dates, Settings, FAQ, and Logout
page. The not logged-in navigation bar is visible in Fig. 7.1 and the logged-in navigation bar is visible
in Fig. 7.4.

Frequently Asked Questions
The FAQ page is displayed in Fig. 7.2. When a user has questions about the application, they can
access this page via the navigation bar to find an answer to their possibly frequently asked question.

25

Figure 7.1: Login Page of FireFly Dating

Figure 7.2: FAQ Page of FireFly Dating

Registration
After the user logs in for the first time, the Registration page is presented. In this screen, the user needs
to enter their information. These fields include their first name, last name, gender, and date of birth.
This information cannot be changed later by the user, therefore this screen was created. Users will
always return to this page after login if their provided information is incomplete. The user is not allowed
to enter numbers or emojis as first or last name or enter a date of birth that does not make them at
least eighteen or at most eighty years old. A message is displayed if specific fields are incorrectly filled
in, as can be seen in Fig. 7.3. After registration is complete, the user will be forwarded to the Settings
page.

Settings
The Settings page can be accessed through the drop-down menu on the right side of the navigation
bar, or automatically after registration is completed. From here, the user could set up their profile, set
preferences, or delete their account.

7.1. Walkthrough 27

Figure 7.3: Registration Page of FireFly Dating

■ Preferences
The preferences contain the user’s preferences used for swiping and dating. From this panel, Fig. 7.4,
the user could alter their gender interests, desired age range, and languages the user can date in.
When these fields are not filled, the user cannot take part in swiping or be considered for matching.

Figure 7.4: Preferences within the Settings Page of FireFly Dating

■ Photo Manager
For a user to be visible to other users while swiping, the user must have at least one photo uploaded.
The user can upload photos on the settings page, see Fig. 7.5. A user can add a photo by clicking
on one of the empty upload icons. A user could also upload multiple photos at once. Errors will be
displayed on the screen if, for any reason, the photos cannot be uploaded, for instance, if the file size
is too large. Once at least two photos are uploaded, the user could change the order of their pictures
by dragging one to the desired frame. Images can be removed by pressing the cross on the top right
of the image.

Figure 7.5: Photo Manager within the Settings Page of FireFly Dating

■ User Information
The user information shows the personal information of the user, which is visible in Fig. 7.6. Some
fields in this menu cannot be changed. These unchangeable fields were filled in at the Registration
page. A user could set a nickname, which is the name other users will see when they come across the
user in any way. The height of a user could also be set. However, as of now, this information is not
being used elsewhere. To complete the profile, a user could also set their biography. This biography
is the message other users will see in the biography section when they see the user during swiping.
Lastly, at the bottom of the Settings page, a user has the ability to delete their account. The deletion of
an account will remove all the information the user has ever given, adhering to the privacy policy. By
pressing the delete button, the user needs to re-authenticate to confirm the delete account action, to
prevent undesired account deletions.

Figure 7.6: User Information within the Settings page of FireFly Dating

Swiping
After a user successfully logging in and has already correctly registered, the user is forwarded to the
Swiping page, as seen in Fig. 7.7. A user can only start to like or dislike other profiles when the
preferences have been set correctly in Settings. If these settings are incomplete or there is no profile
left that satisfies the preferences, a message will be shown to them.

7.1. Walkthrough 29

The Swiping page has been set up to gather useful matching data. Whether or not a user likes or
dislikes a profile indicates the dating algorithm in which other profiles the user is interested. Therefore it
is helpful for the user to swipe. Every swiping window displays another user’s profile that fits the user’s
preferences set on the settings page. From this window, the user can scroll through the pictures, read
the biography, report the profile, or like/dislike the profile. After a profile has been swiped, a new profile
is loaded.

Figure 7.7: Swiping Page of FireFly Dating

Dates
Once the user enters the Dates screen, they will be presented with the Availability screen. Availability,
dates, and enrollments are shown on the laptop screen’s left-hand side, or the top of the phone screen
like is visible in Fig. 7.10. The dating process is one of eight states. These states are indicated by
icons, and the meaning of said icon is explained in Fig. 7.9.

■ Availability
The ’plan a date’ dialog will be shown to the user once entering the Dates screen via the navigation
bar, visible in Fig. 7.8. This dialog allows the user to enroll for a date. The Time Slots shown are
fetched from the database that occur in the upcoming two weeks, starting two days from the day the
page was entered. This way, once enrolled, a user does not have to wait a long period to finally go on
a date. The user has to set a minimum of Time Slots that they are available for a date and at least one
location where the date could be located. The data is then be used by the matching algorithm so that
the participants could be considered for the next dating rounds.

■ Information
Once a user has a pending date with another user, they have the ability to accept the date by selecting
the date in the dates panel on the left of the laptop or top of the phone and either accept or cancel a date
in the future as shown in Fig. 7.10. This date will only show as long as it still has to take place. A date
can only be canceled once the date has been accepted. When either party of the date has canceled,
both parties will see the broken heart icon. They will also both receive an email stating the date has
been canceled. Parties will also receive emails when the state of a date changes from searching to a
heart, meaning a date has been found and could be accepted. The last confirmation mail the parties
will receive is when the heart changes from gray or yellow to red, meaning both parties have confirmed
the date. An overview of every icon is shown in Fig. 7.9.

■ Feedback
After a date has concluded, meaning the time the date took place is in the past, the user is confronted
with the empty dialog icon on the dates screen. Once clicked, a small questionnaire about the date

Figure 7.8: The dates page where you could set your availability of FireFly Dating

gray heart
This icon means that both users of a date have not accepted the date.

Red heart
This icon means that both users of a date have accepted the date and are thus
ready to go on said date.

Yellow heart
This icon means that only one user of the date has accepted. When the heart is
pulsing, it means the other user has not accepted yet.

Broken heart
A broken heart means the date has been canceled and will not take place.

Empty dialog
An empty dialog means the user can leave feedback on a date that took place.

Filled dialog
A filled dialog is shown when the user has provided feedback and is waiting for the
other party to also give feedback.

Searching
This icon means the user has enrolled for a date and will be included in the next
matching of dates.

Figure 7.9: The Various Date States

will be presented, as shown in Fig. 7.11. The user feedback has three outcomes: The first outcome is
when the user indicates the date was either good or bad but did not want to report the other user or
send them a message. The second outcome is the option to report the other user. Reporting should
be done when there was a problem with the date or if the date never showed up. After such a report
has been filled, an Administrator could review the report and take further action, more of this function
will be elaborated in Section 7.1.2. The last outcome is when the date went well. If this is the case,
the user can send the other user a message of their liking, such as sharing contact information. These
messages will only be emailed to each other when both parties have included a message.

7.1. Walkthrough 31

Figure 7.10: The dates page where a user can view their pending dates in FireFly Dating

Figure 7.11: The dates page where a user can leave feedback about a date in FireFly Dating

7.1.2. Administrator
The Admin App has been created to allow the Administrator to easily alter data used in the application,
take action on misbehaving users, and have a general overview of the statistics. An Administrator
can access the Admin App through 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝑑𝑎𝑡𝑖𝑛𝑔.𝑎𝑝𝑝/𝑎𝑑𝑚𝑖𝑛 using an Administrator password. The
screenshots for all the screens are located in Appendix H.

Dashboard
The dashboard is the main page of the Admin App, which can be viewed in Fig. H.5. The page gives
statistics on the data from the application. These statistics include:

Total users - The total amount of users registered to the Client App.

Total Pictures - The total amount of user pictures uploaded to the Client App.

Total Swipes - The total amount of likes and dislikes that have been given on the Client App.

Age of users - A bar graph representing the age of the users.

Gender Ratio - A pie chart displaying the ratio between male and female users.

Gender Interest Ratio - A pie chart displaying the ratio between gender interests of users.

Establishment Location Partition - A pie chart displaying number of Dating Establishments per
location.

Establishment availabilities - A bar graph of each Dating Establishment containing the number
of time slots assigned, the total number of dates hosted/assigned, and the total number of tables
assigned to the time slots combined.

Matching
The matching panel can be used to control and view the matching algorithm’s results, as shown in
Fig. H.4. From this panel, an Administrator can force the matching algorithm to run, outside of the
regular interval. This force running is mainly meant for testing purposes. After matching has concluded,
the list below will update with the latest dates that have been created. This table has references to user
ids and date id to find the entry in the database if needed. The refresh button is used to load the dates
list from the server.

Establishments
The establishment panel allows an Administrator to add, edit, search, archive and restore Dating Es-
tablishments for the application, see Fig. H.3. All changes will be directly updated to the database.
Also, the same pie chart as described in Section 7.1.2 is shown here.

Time Slots
The Time Slots panel allows the Administrator to add, edit, search, archive and restore Time Slots. As
well as linking Time Slots with Dating Establishments and allocate the number of available tables to
these entries. The changes made here will directly be updated to the database. Furthermore, the same
Dating Establishment availabilities graphs as described in Section 7.1.2 are shown here. A screenshot
of this page can be viewed in Fig. H.2.

Reports
The last panel in the Admin App allows the Administrator to view users that have been reported, called
report cases, shown in Fig. H.1. An overview of the user that has been reported is shown on this page,
including all user information, preferences and photos. The Administrator will see the report cases one
by one, receiving the user with the most pending reports first. From this page, the Administrator can
view the reports that have been submitted, compare them to the users information and ban the user if
the Administrator desires. If the Administrator does not ban the user then all their reports are discarded.
From this screen, the report types users can choose from can also be added, edited, archived or
restored.

7.2. Completed requirements
At the start of this project, a list of requirements was setup. These requirements include all the features
that could eventually be implemented in the application. A full list of these requirements can be found in
Section B.2. For this section, the achieved functional and non-functional requirements are presented,
and a conclusion will be reached whether this BEP has provided a sufficient implementation.

7.2.1. Functional Requirements
The following subsection will include a list of every feature that has been implemented from the require-
ments list from Section B.2.2. All must haves have been implemented, as well as 14/27 should haves
and 3/21 could haves. There have been some features implemented that are not tracked by the initial
requirements but were essential in making the application more conform. In Section B.3, the usage as
a payment system of PSPs is researched. However, the payment requirement was later discarded by
the Product Owner and was therefore not implemented in the final application.

Must Haves
The ”must haves” section contains the most critical parts. Without these parts, the application would
not function, and the project will fail.

7.2. Completed requirements 33

• As a user, I must be able to register my account so that I can use the app and store my data.

• As a user, I must be able to login to the application so that I can use the application.

• As a user, I must be able to set my general information such as name and birth date so that I can
be matched with other users of about my age.

• As a user, I must be able to upload photos so that I can use these on my profile.

• As a user, I must be able to edit my biography so that I can tell other users about myself.

• As a user, I must be able to set my gender so that the matching algorithm can use this data.

• As a user, I must be able to remove my account so that all my data is gone.

• As a user, I must be able to swipe a candidate so that I can indicate my preferences.

• As a user, I must be able to view details like biography and images of the candidate so that I can
make a more informed choice on my preferences.

• As a user, I must get candidates that follow the preferences I set so that it is a better candidate.

• As a user, I must be able to set the location(s) at which I am able to go on date so that I can make
sure that I am able go there.

• As a user, I must be able to set the languages I am able to date in so that I get better candidates.

• As a user, I must be able to set my age range preferences so that I get better candidates.

• As a user, I must be able to specify what genders I am interested in so that I get correct candidates.

• As a user, I must be able to provide feedback after the date so that I can indicate if it was a good
match.

• As a user, I must be able to the option to share my contact information so that we can continue
the conversation after the date.

• As a user, I must be able to specify in what fixed time slots I can date so that I can be on the date.

• As a user, I must get candidates that fall in my specified time frame so that I have the time to go
on a date.

• As a user, I must receive a reservation when I am matched so that I know that I am going on a
date.

• As a user, I must be able to cancel a date so that the date can be cancelled.

• As a Dating Establishment Owner, I must receive an e-mail with the date information for dates
planned at my establishment so that I know that users are coming.

Should Haves
”Should haves” are high-priority features. These features are not essential to launch but are improve-
ments on the app.

• As an administrator, I should be able to review the report cases so that I can deal with them.

• As an administrator, I should be able to ban any account for breaking the rules so that the platform
stays safe.

• As an administrator, I should be able to add new establishments to the system so that the platform
can expand.

• As an administrator, I should be able to set time slots available for establishments so that dates
can be scheduled.

• As a user, I should be able to verify my e-mail address so that my account is verified.

• As a user, I should be able to report the other users for untruthfulness if this is the case so that
this user can be punished.

• As a user, I should have a way to contact customer support via e-mail.

• As a user, I should not be able to receive inactive candidates during swiping so that I do not waste
time on them.

• As a user, I should be able to set my height so that the matching algorithm can use this data.

• As a user, I should not see the same candidate multiple times so that I do not have to swipe the
same person multiple times.

• As a user, I should be able to set how many dates I want when choosing the time frames so that
I can go on multiple dates in one matching session.

• As a user, I should have a FAQ page about the app so that I can look for answers about the app.

• As a Dating Establishment Owner, I should be able to provide availability for a date so that the
system knows if the location is available.

• As Dating Establishment Owner, I should receive a notification if a date is canceled so that I can
take this into account.

Could Haves
”Could haves” are features that are nice to have but not needed. This category is of lower importance
than the ”should haves” group.

• As a user, I could chose to register using a third party authentication so that I do not have to make
a new account.

• As a user, I could have questions to help me write my biography.

• As a user, I could be matched with someone even if the matching score is minimal, i.e., when
both users disliked each other.

7.2.2. Non-tracked Features
These are features that have not been established in the initial requirements but have been imple-
mented to make the application more conform.

• As a user, I could receive an email when a planned date has been canceled so that I know my
date is not going to happen.

• As a user, I could accept my date so that my date knows I have received the notification about
the planned date.

• As a user, I can add emojis to my biography and feedback messages so that I can express myself
better.

• As a user, I could set a nickname so that people do not see my real name in the application.

• As an administrator, I could view various statistics about the application’s data so that I have an
overview of the application’s data.

• As an administrator, I could archive certain entries in the database so that I do not need to per-
manently delete said entries.

• As an administrator, I could easily read, update, and archive Dating Establishments so that I do
not have to use an external program to do so.

• As an administrator, I could easily read, update, and archive Time Slots so that I do not have to
use an external program to do so..

7.2. Completed requirements 35

7.2.3. Non-functional Requirements
In this section, we reflect on the non-functional requirements set in the research report, Section B.2.3.

Accessibility
The Client App is easily accessible on a mobile device or personal computer. The Client App has
been developed in a mobile-first and scales well across various screen sizes. After user testing, see
Section 6.3, it has been concluded that the application can be used with ease without a technical
background. The system is responsive, and only small data packets are sent by each request. The
only limitation is the inability to use the application on Internet Explorer as VueJS does not support it.
However, as this is an older browser, we believe it will not significantly affect the users’ accessibility.

Agreements
The BEP client has set the requirement that users need to have at least one drink at the Dating Estab-
lishment. As of now, this is communicated to the user via the FAQ. Once an official Terms of Service
(TOS) has been created by the client, this can be easily added as confirmation to the acceptance of a
date. Also, the system allows participants of a date to share contact information through the application
when they both experience the date as positive instead of forcing them to share contact information on
the date.

Scalability
The non-functional requirement of the application is met. New locations and Dating Establishments
can easily be added to the Administrators application to allow the application to grow. If the application
becomes a success, and the website gets stressed, multiple websites could easily be set up to mitigate
the traffic between different servers. The same goes for the Admin Apps that could be hosted on a
separate website to reduce traffic to a single website host. As far as it goes for the database, it was
tested that this handles large amounts of users efficiently. Thus all the different parts of the applications
are made with scalability in mind, and scaling will be no issue for the Administrators and Product Owner.

Stability
The stability requirement is met since errors that occur are not shown to the user. The requested data
is merely unavailable at that moment, and by refreshing the data could be requested to solve it. An API
is implemented, and said API could efficiently utilize multiple versions1. Thus the older software does
not have a compatibility problem with the newer released software.

Security
The security aspects of the system are met. There are a different set of routes that guard unauthorized
access to the system, see Section 5.1. Each library implemented is the latest stable version of said
library, thus having limited security vulnerabilities. Routes that provide any private information can
only be seen by the adequately authorized user or authorized Administrator. Private information is
handled with care, and no memories are being kept in the memory, they are all safely stored inside the
database, if the information does not need to be stored, then it is discarded. Before the final release
of the software, all the rules created by the General Data Protection Regulation (GDPR) should be
checked appropriately. The project tries to be as much as possible compliant to these set of rules, but
it is likely that some rules were left unnoticed and are not adequately implemented in the product.

Maintainability
Version control is used to record the files’ changes, such that older versions of that file could still be
recalled. When an error occurred, the team could go back to an earlier stage and start rebuilding the
requested feature.

The feedback from the Software Improvement Group (SIG) was also used to increase maintainabil-
ity. The codebase fulfills a strict lint verification that increases the readability, helps prevent bugs, and
prevents structural errors, see Section 11.2.

1https://www.xmatters.com/blog/devops/blog-four-rest-api-versioning-strategies/

https://www.xmatters.com/blog/devops/blog-four-rest-api-versioning-strategies/

Migratable
To make the migration to the smartphone possible, the team has taken the mobile-friendly front-end
designs into account. In this way, the designs can easily be transformed into mobile applications. By
separating the front-end from the back-end, the team created the opportunity to reuse the back-end
calls when the front-end screens have to be migrated.

Uptime
The back-end is deployed on PM2 to ensure that in case of an error, the server will be restarted2.
Almost all of the back-end functions have, where needed, extensive catch cases to ensure that the
process keeps running. The computational intensive matching algorithm is only run at night to reduce
strain on the system and prevent it from going down due to being overloaded.

Robustness
Substantial effort has gone into securing the robustness of the applications. Therefore, unless the
back-end is shut down completely, the application will work without crashing. The user is also informed
of errors from the server so that the user knows a problem occurred. The application can also handle
erroneous input for any requests to the server by verifying the data in the back-end.

Documentation
All methods used in the system code have been commented, and a guide to get the application running
is described on the GitHub page of the product. Variables have been appropriately named not to cause
any confusion.

2https://pm2.keymetrics.io/

https://pm2.keymetrics.io/

8
Ethics

This chapter will discuss the ethical implications of the project and the final product of this BEP.
FireFly Dating has been developed for FireFly. The product has been created for deployment as a

blind dating application. The complete implementation is wholly owned by FireFly, and the developers
are not eligible for any profit the application will generate in the future. All developers are not entitled
to reuse or sell any of the software in projects outside those of FireFly.

FireFly Dating is used to match people and create blind dates at Dating Establishments. The users
being matched need to log in through Firebase using either a Google or Facebook account, see Sec-
tion 5.1. Therefore, FireFly Dating does not store any users’ passwords.

The application does store personal information such as email, name, nickname, date of birth,
gender, length, biography, sexuality, age preference, user photos, and both swiping and date feedback.
The application uses an SSL connection to encrypt incoming and outgoing data, ensuring the safety
of user information. Furthermore, only a user can access their data. The exceptions are swiping
and date information like biography, first name, nickname, profile photos, age, and sexuality. This
information is only used in swiping profiles and displaying a name for a matched user. Other data
stored in FireFly Dating is information regarding the Dating Establishment. This data is provided by
the Dating Establishment and includes, for example, name, email, phone, and location. However, this
information is not private and could easily be retrieved online.

The use of this personal information might impose on privacy regulations. Therefore, a legal team
should set up a Terms of Service agreement for the user to accept before completing the account
registration.

37

9
Process

In this chapter, we will explain the methodologies and the processes used to remain productive through-
out the project. First, there will be an explanation and review of the communication methods used by
the team and the BEP stakeholders. Secondly, we will explain the effect of working with the Scrum
method during the BEP. Finally, the initial planning made in the first week of the project will be reviewed
and show that the team strictly followed the initially set goals.

9.1. Communication
Due to the global pandemic that is happening during the time of this BEP project [17], team communi-
cation and collaboration were different than normal circumstances. The members have not seen each
other in person for the entire course of this project. During this time, all teammembers needed to adjust
to a remote working style with which they previously had minimal experience.

9.1.1. Meetings with Product Owner
To ensure that the product was developed according to the Product Owner’s wishes, the team had
regular meetings with the Product Owner to discuss the progress. Meetings were usually planned a
few days ahead of time and were held via Google Hangouts. Due to these meetings, the final result
fits the Product Owner’s needs and can be considered a successful BEP project.

During these meetings, there was a person who was assigned to record the minutes of that meeting,
as described in Section A.3. The recording of minutes was done effectively by the team. All meeting
minutes were stored on Google Drive.

9.1.2. Communication with Coach
The TU Delft coach guided us through the expectations that were set by the education program. Meet-
ings between the team and the coach were also held on Google Hangouts. However, it was not nec-
essary to hold these meetings on a weekly bases because the BEP was progressing smoothly without
any problems that needed consolation of the coach.

9.1.3. Team Communication
Team communication happened through two communication channels, namely: Discord and What-
sApp. Discord was the primary means of communication during the workday, whereas WhatsApp
functioned as the primary means of communication outside of work hours.

Office Hours
As described in Section A.3, the team had decided to hold work sessions from 10:00 till 18:00. During
this time, all members were inside a Discord voice channel with each other. By doing so, they were
able to communicate with each other easily. This method of being in constant communication with
each other actively promoted collaboration within the team. All team members believe that had we not
worked in such a manner, productivity would have been much lower.

39

At the start of the project, it was decided that if a team member were late without reason, there
would be a punishment of having to put a fine into a virtual jar. In the end, this system was no longer
required, as all team members arrived on time. There were only a few minor occurrences. Therefore
it was decided to disregard this rule.

9.2. Team Division
In this section, the division of labor between the team will be stated. Each team member had a specific
end role that was his main task during the project. Each team member contributed equally throughout
the project.

Colin Geukes
Colin had the role of lead testing. In his role, Colin was end responsible for the state and the quality of
the tests in the project, as well as the static analysis.

Colin was a front- and back-end developer for the project. His primary focus was on the implemen-
tation of the swiping, the admin panels, and the candidate selection algorithm.

Caspar Krijgsman
Caspar had the role of lead programmer. Being lead programmer means that he was responsible for
the quality of the code implemented in this project. He made sure that all code is thoroughly inspected
to meet the project standards.

Caspar was a back-end developer for the project. His primary focus was implementing back-end
code, including the server, matching algorithm, and database structures.

Steven Lambregts
As a team leader, Steven ensured that all team members were present during the meetings. He mo-
tivated the team to keep up the excellent work. Steven inspired, where needed, others to share their
opinion about the corresponding subject. Furthermore, he communicated the company goals and the
deadlines to the team.

Steven worked on setting up email interactions for the application and allowing users to upload
photos to the application.

Vincent Wijdeveld
Vincent had the role of lead UI/design. He transformed the initial ideas of the Product Owner into a
design that would eventually become the final look of the application.

Vincent, therefore mainly worked on front-end development. Vincent also had the role of Scrum
master. He ensured daily meetings were kept so that every member was up to date with each other.

Matthijs Wisboom
Matthijs had the role of lead communications. He was the primary contact point of the Coach, and if
needed, he will reach out to the coordinator.

During development, Matthijs worked in front- and back-end development. He mainly focused on
the integration between front- and back-end. Matthijs worked on the Settings page, as well as much of
the integration for the Dates screen.

9.3. Scrum
Throughout the development of this project, the team made use of the Scrum methodology for working
in an agile process. The Scrum methodology has provided us with a structure to continually focus on
what tasks are essential and how to improve our ways of working. This section describes what Scrum
activities were performed and how they affected the progress of the development.

9.3.1. Backlog
At the start of the project, a backlog document was created as an overview of the requirements. The
list of requirements can be found in Section B.2.2. Some non-essential features on that list that have
not been implemented in the final application are redacted on the request of the Product Owner. The
requirements were organized according to the MoSCoW method. There was a conscientious effort to

9.3. Scrum 41

focus on first completing the must-have requirements rather than working on the tasks that were the
most convenient at the time.

The backlog that was created was translated to a list of GitHub epics 1. Based on these epics, the
team created the sub-tasks that were required to complete each epic.

9.3.2. Sprint Planning
The Product Owner gave the team the freedom to decide what order tasks should be implemented.
The Product Owner’s only condition was that the product must have the required set of must-haves at
the end of week eight of the development period.

During the weekly sprint planning meeting, the team set what task should be completed by the end
of the week. The enrollment for tasks often included selecting relevant epics and creating the required
tasks to complete these epics. Doing this was essential to ensure high productivity throughout the week

9.3.3. Daily Scrum
As part of the Scrum activities, we performed the daily Scrum each morning at around 10:10 when all
team members had arrived and settled in. Each member shortly described what they were working on
and what issues they wanted to do next or needed help on. Allowing all team members to have a good
overview of the general status of the project. There were some days when the team forgot to perform
the daily Scrum. During these days, there was an evident lack of focus and purposeful development.
After evaluating this in the weekly retrospectives, the team was more determined to perform the daily
Scrum activities for optimal team functioning.

9.3.4. Review and Retrospective
The review and retrospective part of the Scrum methodology was observed in a slightly adapted man-
ner to suit the team’s working style. Both were often combined into one session. During the weekly
sprint review, the team discussed that week’s progress and reviewed what tasks were still pending to
achieve the goals set during that week. If necessary, those tasks were then moved to the next week.
Traditionally a sprint review includes a demo. Providing a demo was, however, usually not performed
during the weekly sprint review. The reason being that only the development team was present during
these meetings. The demo part was moved to whenever the next meeting with the Product Owner was
scheduled.

During the weekly retrospective, the team discussed how the team performed during the sprint.
The parts that went well and the parts that could be improved were evaluated. Then based on these
discussions, the team could implement changes and improve the following weeks.

9.3.5. Tracking
Throughout this BEP, GitHub was the version control host of choice. GitHub provides excellent tools
for issues tracking and management.

The initial backlog was created in Google Sheets. Working with Google Sheets worked for a first
version but could not be maintained for the entire project. As previously described, the product backlog
was stored in GitHub using GitHub issues 2. The tasks from the backlog functioned as epics.

The team made use of GitHub Boards3 to track the progress of the weekly sprint. The board was
used with Agile Software Development [18]. Instead of creating significant complex issues, each sig-
nificant issue was split into smaller workable issues [18]. These issues could be worked on in parallel,
meaning multiple developers could be working on the same epic issue, but have distinctive sub-issues.

During the sprint planning, the issues that should be completed were moved to the ”Current Sprint”
column in the sprint board. After a teammember has been assigned to an issue and has started working
on it, the relevant issues card can be moved to the ”In Progress” column. When the team member has
completed this task and has created a pull request, the issues should be moved into the ”Reviewing”
column. Finally, when the relevant pull request has been approved and merged into the main branch,
the issue can be closed and moved into the ”Done” column.

1https://www.zenhub.com/blog/how-to-use-epics-and-milestones/
2https://help.github.com/en/github/managing-your-work-on-github/about-issues
3https://help.github.com/en/github/managing-your-work-on-github/about-project-boards

https://www.zenhub.com/blog/how-to-use-epics-and-milestones/
https://help.github.com/en/github/managing-your-work-on-github/about-issues
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards

Using this system of columns allows for a clear overview of all tasks currently being worked on,
providing the team with a sense of direction and progress.

9.4. Review of Original Plan
During the first week of this BEP, the team created a project plan which described an overview of what
tasks should be completed. Overall the teammanaged to stay reasonably close to the original planning
and did not have to deviate much. This initial plan can be found in Table 9.1.

Week Tasks Deliverables
1 April 20 - April 24 Project plan

Start Research report
April 23 - Project plan

2 April 27 - May 1 Finish Research report
Setup work environment

May 1 - Research report

3 May 4 - May 8 Discover frameworks
Start Database design
Setup testing environment

4 May 11 - May 15 First design implementations
Back-end systems

5 May 18 - May 22 First visual working demo

6 May 25 - May 29 Wrapping up integrating front- and
back-end

First SIG upload

7 June 1 - June 5 Minimal Viable Product (MVP)

8 June 8 - June 12 Testing on audience

9 June 15 - June 19 Process feedback from testing Second SIG upload

10 June 22 - June 26 Finalize report June 24 - Final Report
June 24 - Info Sheet
June 29 - Final deliverable

11 June 29 - July 3 Presentation

Table 9.1: Original planning made in week 1 of the project

Week 1 & 2
The first two weeks went according to plan. During this time, we completed the Project Plan, Research
Report, and finished setting up the work environment. The team also managed to start the setup of the
testing environment.

Week 3 to 6
These weeks spent were the first phases of actual development. During this phase, the application
transitioned from nothing to almost a working MVP using the Scrum methodology. During the initial
planning, it was expected that the front- and back-end implementation would be separated. However,
it was possible to implement the front- and back-end alongside each other and connect them when the
necessary API calls were implemented. In week three, there were already visual components shown
to the Product Owner rather than the first visual demo given in week five. Throughout the remainder of
this period, the team was able to implement all features required for a functioning MVP similarly.

9.5. Maintainability 43

Week 7
This week the MVP was completed, and a demo of it was provided to the client. In this MVP, it was
possible to do a complete all be it crude walkthrough of the application. It was possible to show the
crucial features of the application.

Week 8 & 9
During weeks eight and nine, the project was finalized, and the first steps for the final report were taken.
In these last weeks of development, the team focused on completing the final fixes and improvements
required to deliver a product that would function as expected. The team was able to do user testing,
as described in Section 6.3. Finally, when all open issues and must-haves were complete, the primary
focus was shifted to complete the final report.

9.5. Maintainability
This section will discuss how the team kept the code maintainable by making use of the following
practices.

9.5.1. Testing
The code was tested to have at least an 80% unit test coverage. Such a test coverage ensures that the
individual units of the project would still be working as expected after code alterations. A more detailed
explanation of the testing process can be found in Chapter 6.

9.5.2. Static Analysis
Not only actual testing of the software increase the maintainability, but also static analysis [19]. Reduc-
ing the size and complexity of the project result in increasing the maintainability, allowing developers to
focus on writing new software instead of trying to maintain older pieces of code [19]. For this reason the
project embraced two types of static analysis tools, namely ESLint4 to conform the project to a correct
standard, and JavaScript Copy/Paste Detection (JSCPD)5 to reduce the amount of duplicated code.

ESLint
In other to increase maintainability, functions should not be too long and too complex. They should be
small and simple. Such functions are easier to test and apply [15]. To ensure that this was the case
throughout the entire project the team applied a strict set of rules to the linter, similar to the rules of
SIG6. If a single error was found, then the linter did not accept the code. If warnings and no errors are
raised then the code was accepted by the linter. These rules were also applied to the CI, so that each
time a developer tried to merge into the main branch it was checked by lint. If it did raise errors then
the merge was rejected and the code needed to be changed in order to be accepted.

In the initial stages of the project the linter was not strict. The default applied lint rules were weak.
Thus the project did not have a strict set of rules to allow for good maintainability. As a result, each
request to merge with the main branch was tied with a large quantity of errors that should have been
addressed by the linter. In the middle of the project the lint rules were addressed and fixed. At the
end of the project, after the first results were retrieved from SIG it was made stricter once again. In
the final stage of the project, the code had a proper structure that allowed for correct behaviour, easy
understanding and good maintainability.

The addition of ESLint to the project resulted in code that is: not unreasonably long, this means that
the lines are not too long and each function does not have too many lines; not unreasonably complex,
meaning that each function has amax amount of branches, input, and scopes; properly documented, as
each functionmust be documented with JSDoc7. All these rulesmake sure that the code ismaintainable
and developer-friendly. The addition of JSDoc removes the downsides of JavaScript being a loosely
typed language [20]. This means that functions can be called with different types of objects. JSDoc
made sure that each parameter was properly described, so that using the function was not difficult at
all, as it was properly stated what the specific function requires, does, and returns.
4https://eslint.org/
5https://www.npmjs.com/package/jscpd
6https://www.softwareimprovementgroup.com/
7https://jsdoc.app/about-getting-started.html

https://eslint.org/
https://www.npmjs.com/package/jscpd
https://www.softwareimprovementgroup.com/
https://jsdoc.app/about-getting-started.html

Code Duplication
Having the same functionality at different locations in the project is generally a harmful design flaw
[21]. If the code is only changed at one location, and the other location is being neglected, then these
two parts perform differently, while they should perform equally. This, of course, does not always raise
issues, as sometimes these codes should perform differently [21]. However for this early stage project,
code duplication does raise issues as the code changes rather frequently. If these changes are not
applied everywhere then the projects tends to have flaws in the integration of different components
[22].

To address the code duplication and the errors accompanied by it, JSCPD was added to the project.
If a piece of code of five lines or more is duplicated, then this raises an error that should be addressed.
This code duplication reporter was implemented shortly after the first SIG results. This practice kept
the project maintainable.

9.5.3. Code Review
Manual inspection of code was an essential practice during the development, see Section 6.2. It made
sure that unnoticed errors or incorrectly implemented functionality were not merged with the main
branch. Consequently, the main branch was locked, disallowing the change of files in that branch
directly.

In order to update the main branch, teammembers created amerge request. Thesemerge requests
have an automatic template that had to be filled in, so that other developers would know what the merge
request was about and whether all the checks had been appropriately conducted. The developer that
reviewed the merge request pulls the branch locally and checks the branch’s added functionality. If
everything worked, then the reviewer would accept the merge request. If something were not right,
then the reviewer would request changes and reject. At least two developers, excluding the creator
of the merge request, had to approve the merge request before merging into the main branch. If the
branch was updated, then all the approvals are discarded. The discarding ensures that all the reviewers
that had already approved it must view the merge request again. The issues that the merge requests
solve are linked to issues of the project 8.

This system of code review through the use of merge requests had multiple significant advantages
to improving the project’s maintainability. Firstly, by multiple developers reviewing and inspecting code
changes, errors could be caught before entering the main codebase. Secondly, more team members
were aware of how certain parts of the code functioned, allowing all members to work more effectively
on all parts of the code.

9.6. Conclusion
In conclusion, the team believes that this BEP project was completed successfully. This conclusion
is drawn due to the performance of the team and processes that were put in place. Communication
functioned effectively, even when working remotely, through Discord and Google Hangouts. By using
the Scrum methodology, the team worked in a structured and focused manner. Working with these
methods of communication ensured high productivity throughout the weeks. Regarding the original
plan made in the first week of the project, the team was able to stick to this plan fairly well and complete
the critical tasks on time. To guarantee high code maintainability throughout the project, the teammade
use of multiple code improvement techniques, namely: static analysis, code testing, and code review.

8https://help.github.com/en/github/managing-your-work-on-github/about-issues

https://help.github.com/en/github/managing-your-work-on-github/about-issues

10
Conclusion

This project started with FireFly describing their vision for a blind dating application. This application
should enable its users to go on dates without wasting time chatting in an online environment. In order
to accurately match users with one another, swiping should be implemented. Swiping collects data on
the users’ preferences to allow for accurate matching.

The product was built from scratch in ten weeks. During this period, the provided designs were
reworked, improved, and finally, the system was implemented, tested, and deployed. Every state
was discussed and evaluated extensively with the client. During the implementation, a few of the
requirements were altered to fit the final product better.

Near the end of the project, the application was ready for user testing. Sadly, this could not take
place due to the circumstances surrounding COVID-19. As a supplement for user testing, we simulated
user behavior through fake users and their interactions. With these self-performed testing, many sce-
narios were covered, giving insight into how the application functions. Later, besides the development
team, users performed a similar style of testing to provide the team with an outside perspective.

In the end, all must-haves, a couple of should-haves, and even a few could-haves were imple-
mented. All the users that tested the application gave positive feedback. The client indicated to be
extremely satisfied with the progress made and the final product.

From all of the points described above, it can be concluded that the FireFly Dating project was
successful.

45

11
Discussion and Recommendation

This final chapter will discuss some parts of the system that could be improved. These improvements
are not crucial for the MVP. However, they could improve the software.

An important recommendation is to continue similarly to what is described in Chapter 9. The process
proved to be very efficient. Continuing this process will most likely result in a profitable future for this
project.

11.1. Future Improvements
In this section, some improvements are provided that can be implemented right away. Most of these
improvements are based on testing to ensure that the system has the correct behavior.

11.1.1. Snapshot Testing
In the front-end, Jest1 is used as the testing framework, see Chapter 6. Jest is a robust framework
that works well with automatic UI testing. Jest has a feature called Snapshot Testing2, which makes it
possible to create a snapshot of a particular component and check if it did not visually change.

This feature is currently not implemented in the project as Snapshot Testing is a time-consuming
practice. Each component was rapidly evolving into a newer state, making snapshot testing not useful
at this time of the project, as each component did not change.

It could have served the project during the time that BootstrapVue3 was implemented in combination
with Vuetify. These are both UI frameworks allowing the creation of remarkable and useful pages.
However, sadly, they do not work well together as they both override each other’s grid system. This
incompatibility would have been discovered early on if Snapshot Testing was fully implemented.

11.1.2. Administrator UI Framework
BootstrapVue looks excellent, and is easier to work with judging from our experience. Vuetify is ex-
cellent for working with data. Therefore, BootstrapVue is a better-suited framework for the Client App,
while Vuetify is better suited for the Admin App. As stated earlier, BootstrapVue and Vuetify do not
work well together, so they should not be implemented in the same part of the application.

Currently, Vuetify is not used in the Client App. Only the Admin App still implements BootstrapVue.
It is recommended that BootstrapVue is removed from the Admin App.

11.1.3. Database Integration Testing
The majority of testing of the project was done with Unit Testing, see Section 6.1. Unit tests are good
practice for many components. However, these tests are not for the database components. The result
retrieved from the database is mocked with the Unit Tests 4. Meaning that it is currently unknown if the
1https://jestjs.io/
2https://jestjs.io/docs/en/snapshot-testing
3https://bootstrap-vue.org/
4https://sinonjs.org/releases/latest/mocks/

47

https://jestjs.io/
https://jestjs.io/docs/en/snapshot-testing
https://bootstrap-vue.org/
https://sinonjs.org/releases/latest/mocks/

database correctly returns information. It could be the case that the database structure was updated,
and the test still passes because of fake data to ensure that the database is fully functional. There
should be database integration testing implemented.

11.1.4. Python Testing
Only JavaScript files are tested. However, the project has two Python files, one of which is a functional
file for creating dates between users. This file should be tested in the future. The file currently houses
a basic implementation for the matching algorithm that matches the user based on availability and
swiping behavior. However, if more complex connections are implemented between users, it should be
properly tested to ensure the correct behavior. As in the end, the actual users of the system do want a
proper date. Implementing testing for Python is not a difficult task. As there are many testing platforms
for Python available [23].

11.1.5. Stress Testing
The structure of stress testing is already present in the project. However, it is not possible to perform
stress testing with multiple active users, see Section 6.4. It is useful to know how the system will handle
high traffic situations. Currently, it is not possible to test this because the authentication service of
Firebase prevents stress testing. Another login system must be created to allow test bots to access the
server and make stress test calls. This access of bots must be carefully implemented, since bypassing
the authentication service could cause a severe security issue if done improperly.

11.1.6. Email Client
The email client that is currently used is SendGrid5, which allows the app to send emails securely.
However, this email client is not entirely free. It can only send a fixed amount of emails per day. As
a result, it could occur that the application cannot send any more emails without purchasing a sub-
scription. There are free alternatives to SendGrid. However, these alternatives have a less complete
feature set. One example of such an alternative is Nodemailer6.

11.1.7. Admin Login
In the current stage of the project, an admin panel is created with embedded credentials. Thus gaining
unauthorized access to this Admin App is not too difficult. A proper login system should be put in place
to grant administrators access to all the administrator tools. Allowing multiple personal administrator
accounts would be an excellent addition, especially for keeping track of what each administrator does,
or changes to the system.

11.1.8. Terms of Service
FireFly Dating contains personal data of its users, and should, therefore, adhere to all applicable privacy
regulations. Before the official deployment of the application, a thorough analysis of privacy regulation
should be conducted for FireFly Dating to ensure no law has been broken.

11.2. Maintainability
Throughout the development of this BEP, the team has been striving to maintain a high level of code
quality and maintainability. This maintainability has been achieved through rigorous unit testing, see
Chapter 6, and carefully maintained code improvement practices described in Section 9.5. The team
would strongly recommend that these practices continue in future development to ensure the same,
high level, code quality.

11.3. Future additions
Some features were not implemented in the final product due to time constraints and external factors
such as COVID-19. However, there is already a structure present to accompany these features. All
these future additions are recommendations, and it is not required that they are implemented.

5https://sendgrid.com/
6https://nodemailer.com/about/

https://sendgrid.com/
https://nodemailer.com/about/

11.3. Future additions 49

11.3.1. User Images
The images the user is allowed to upload are quite small, and the maximum allowed file size is 500
kilobytes. Most images that are made today are more massive than this size limit. It is essential not to
overflow the server with large pictures, as it can quickly soak up all the storage. For this reason, the
user should be allowed to upload larger images. However, these images need to be compressed on
the server, or even on the client-side to reduce the load on the server.

11.3.2. Phone Verification
In the early stages of the project, the Product Owner wanted to include phone verification. Phone veri-
fication is possible, as the authentication of the users is handled with Firebase Authentication Service,
see Section 5.1.2. This service also include a mobile phone authentication service7. This feature is
mostly free, as the application is allowed to have 10k users per month authenticated via a mobile de-
vice8. Since the project already uses Firebase, implementing the phone authentication service should
not provide many difficulties.

11.3.3. User Studies
The application design and layout have only been tested by the developers, the client, and a handful of
users. Thus it is unclear if the majority of the users that will use the application will be satisfied. In order
to test if FireFly Dating meets the user’s expectations, it is recommended that a more exhaustive user
study should be performed. In such research, a user is given some time, around ten minutes, to explore
the application. During this time, the user needs to use the application as they would without any help
from the conductor. The conductor will write a report on all their actions. By combining multiple reports,
it becomes visible which features are not frequently used and where the users experience difficulties.
These user studies provide a view of the user interaction with the system, which is essential to test if
the application meets the user’s expectations.

11.3.4. Establishment Application
Currently, there are two different front-end applications, namely the Client App and the Admin App.
Effectively a third could be created, namely the Establishment App. If created, the Establishment can
fill their data, instead of the Administrator. This change releases a massive load from the Administra-
tor, as each Dating Establishment could fill in their data instead of contacting the Administrator. The
effectiveness of such a third application is partially described in Section B.3.3.

11.3.5. Time Slot Templates
As described above, the Administrator currently needs to fill in all the data of the Dating Establishments.
This task also includes assigning Time Slots to each Dating Establishment. This assigning is a very
laborious task, as each Time Slot needs to bemanually created and assigned to a Dating Establishment
with the number of available tables. It will be ideal if each Dating Establishment has a template that
they could fill in per week. If the week is finished, then the same template is used to fill in the Time
Slots for the next week. Doing so only requires the Dating Establishment to fill in the Time Slots a single
time. This idea, combined with the Establishment App, is an efficient method to generate the new data
needed for the entire application to continue running.

7https://firebase.google.com/docs/auth/web/phone-auth
8https://firebase.google.com/pricing

https://firebase.google.com/docs/auth/web/phone-auth
https://firebase.google.com/pricing

A
Project Plan

51

Bachelor End
Project: FireFly

Dating
Project Plan

by

Colin Geukes
Caspar Krijgsman
Steven Lambregts
Vincent Wijdeveld
Matthijs Wisboom

Project duration: April 20, 2020 – July 3, 2020
Thesis committee: Dr. H. Wang, TU Delft, Bachelor Project Coordinator

Ir. T.V. Aerts, TU Delft, Coach
M.S. Salarbux, Firefly, Client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Some content of this thesis is confidential and is therefore marked in black.

http://repository.tudelft.nl/

Contents

A.1 Introduction . 56
A.2 Project Scope. 56

A.2.1 Company description . 56
A.2.2 Project description . 56

A.3 Project management . 60
A.3.1 Client . 60
A.3.2 Coach . 61
A.3.3 Project team . 61
A.3.4 Meetings . 61

A.4 Project Timeline . 63

55

A.1. Introduction
FireFly Dating is a new dating application that solves a particular issue, this said issue is to minimize
the time spent chatting and maximize the time spent on actually dating. This maximization process is
the result of the application being centered around blind dates. Instead of continuously communicating
online there should have been a date between the persons. Not only does it solve a particular issue in
the mobile dating scene, .

This written project plan is the centralized guideline during the project andwill serve as an agreement
between all parties, namely the Bachelor Project coordinators, the TU Delft coach, the client and the
project team.

In the project plan, information about several different parts is explained. The first part is the Project
Scope in which the company and project are described. Secondly, in Section A.3, Project management,
different aforementioned parties and the way to create a solid final product are explained. Finally, in
Project Timeline the timeline of the project is displayed. In that section, the tasks per week accompanied
with the weekly deliverables are shown.

A.2. Project Scope
To understand the reach of this project, we first need to understand the company and its values. We
examine the vision of the project owner and elaborate on the features and systems he desires for
FireFly Dating.

A.2.1. Company description
FireFly was created for the people that don’t have the time to swipe and chat all day, but still want to
experience the everyday dating scene. The founders of FireFly believe that dating has lost some of its
human element. Most dates start out through an online chat. The founders want to reduce this online
factor as much as possible. Therefore they resorted to short blind dates, in which participants are only
obligated to have a single drink of choice.

At the start of this project, FireFly was still at the idea, solution and validation stage, with some
outlined features. Our goal is to develop a Minimal Valuable Product such that the software can go
online in the summer of 2020.

A.2.2. Project description
In this section we explain what the company is about and what the ideas are for the web application
we are going to create.

Requirements overview
Here we will list the main top-level requirements for the FireFly project. During the creation of the
backlog by the MoSCoW method, these requirements get divided into smaller features.

Account System
Like almost every application nowadays, FireFly Dating will need a user account system. The focus of
this system will be on ways to verify users, like e-mail and phone number verification. User accounts
must be able to hold personal data and optionally a .
During the research phase, we will look into the possibility of third-party authentication and its pros and
cons.

Matching
An essential part of a dating app is matching. The user interaction linked to matching is swiping, as this
is a wildly used method. In order to improve both the matching algorithm and the people visible during
swiping, the user must be able to state its preferences like location and gender.

As a match will lead to a blind date, the user will have to pay a small fee before starting the matching
action. If the user doesn’t get a match, the payment gets refunded.

Matching algorithm
A matching algorithm is incorporated to supply the user with matches. The original matching restrains,
proposed by the client, are persons’ length and the available timeslots.

During the research phase, we will look into more approaches to achieve suitable matches.

A.2. Project Scope 57

Reservation
Once the matching algorithm has matched two people for a date and time, a reservation to a cafe/bar
should be made. The reservation system will have a number of slots at various bars/restaurants where
the matching algorithm can choose to reserve a spot. The establishments will receive a e-mail about
the reservation and could later be extended via a reservation systems. All participants of the date will be
informed of their meeting location, day, and time. If a user is not able to show up due to circumstances,
he/she will be able to cancel the date at least 24 hours before the date occurs. Possibly, if the user
cancels too many reservations, some form of punishment will be given to discourage cancellation of
dates.

Contact and review
A yet to be determined amount of time after the date, a notification will pop up. This notification leads
to a contact interface where the user and their date are connected. The user can also review their date
to tell others how the date went, and tell the system if they did match or not. The user is also able to
report the other user if the one they went on a date with does not match with the one represented in
the application. The manner of specific implementation of this feature will further be researched in the
research report, as we will need to handle with misuse of the system.

The contact functionality will be open for about 48 hours, such that users can share their contact
details and move on to set their relation forward. In the scope of this project, an interface will be
displayed where the users can share various contact details. Think about phone numbers, Snapchat,
Instagram, etc. Whatever platform the users feel comfortable sharing. In the future, this functionality
can be extended to include a chat functionality.

General requirements
The privacy of the users concerns the data that is stored in the application. This data should, under no
circumstances, be released to the public. The application must be GDPR compliant. Meaning that, for
example, people need to be informed and asked for consent before we can store their data, the data
needs to be secure and must be deleted on request.

The application will have a clean user interface such that users can easily access all tools and do
not get scared of complicated screens.

The product will be reliable and stable, undesired crashes will be avoided at all cost. If the product
tends to crash it will restore from the point where it left and will not block the user from the system
somehow. The system runs as expected and will let the user know if something went wrong, all errors
will be caught and not be exposed to the user.

MoSCoW method
Below is the list of all the currently researched features divided into the MoSCoW division. As we are
still in the research phase of the project, this list might be incomplete and incorrect. A revised and
improved version of this list will be placed in the research report.

Glossary
• An administrator is a person that has administration rights over the application and is able to
check the reports of users.

• A user is a person using the application that is not the administrator.

• A dating establishment owner is the owner of a restaurant or bar at which a date between users
can take place through the usage of the application.

Must haves
The ”Must have” section contains the most critical parts. Without these parts, the application would not
function, and the project will fail.

• As an administrator, I must be able to review the report cases so that I can deal with them.

• As an administrator, I must be able to ban any account for breaking the rules so that the platform
stays safe.

• As an administrator, I must be able to add new establishments to the system so that the platform
can expand.

• As an administrator, I must be able to set timeslots available for establishments so that dates can
be scheduled.

• As a user, I must be able to register my account so that I can use the app and store my data.

• As a user, I must be able to verify my e-mail address so that my account is verified.

• As a user, I must be able to login to the application so that I can use the application.

• As a user, I must be able to set my general information such as name and birthdate so that I can
be matched with other users of about my age.

• As a user, I must be able to upload photos so that I can use these on my profile.

• As a user, I must be able to edit my biography so that I can tell other users about myself.

• As a user, I must be able to set my gender so that the matching algorithm can use this data.

• As a user, I must be able to remove my account so that all my data is gone.

• As a user, I must be able to provide feedback the morning after the date so that I can indicate if
it was indeed a good match.

• As a user, I must be able to report the other users for untruthfulness if this is the case so that this
user can be punished.

• As a user, I must be able to provide feedback the morning after the date so that I can indicate the
general mood and my sense of safety of the date.

• As a user, I must be able to the option to share my contact information so that we can continue
the conversation after the date.

• As a user, I must have a way to contact customer support via e-mail.

• As a user, I must be able to swipe a candidate so that I can indicate my preferences.

• As a user, I must be able to view details like biography and images of the candidate so that I can
make a more informed choice on my preferences.

• As a user, I must not be able to receive inactive candidates during swiping so that I do not waste
time on them.

• As a user, I must be able to indicate that I only want verified users as candidates so that I feel
more confident going on a date.

• As a user, I must get candidates that follow the preferences I set so that it is a better candidate.

• As a user, I must be able to set the location(s) at which I am able to go on date so that I can make
sure that I am able go there.

• As a user, I must be able to set the languages I am able to date in so that I get better candidates.

• As a user, I must be able to set my age range preferences so that I get better candidates.

• As a user, I must be able to specify what genders I am interested in so that I get correct candidates.

• As a user, I must be able to specify in what fixed timeslots I can date so that I can be on the date.

• As a user, I must get candidates that fall in my specified time frame so that I have the time to go
on a date.

• As a user, I must receive a reservation when I am matched so that I know that I am going on a
date.

A.2. Project Scope 59

• As a user, I must be able to cancel 24 hours in advance so that the date can be canceled.

• As a user, I must be able to specify the social media that I will share if I choose to share my
contact information so that users only contact me at the desired platform.

• As a dating establishment owner, I must receive an e-mail with the date information for dates
planned at my establishment so that I know that users are coming.

Should have
”Should haves” are high-priority features. These features are not essential to launch but are improve-
ments on the app.

• As a user, I should be able to verify my phone number so that my account is verified.

• As a user, I should be able to set my height so that the matching algorithm can use this data.

• As a user, I should be able to chat with the person I went on a date with if we both liked the date
so that we can develop our relationship.

• As a user, I should not see the same candidate multiple times so that I do not have to swipe the
same person multiple times.

• As a user, I should be notified if and when I matched with someone so that I know I have a match.

• As a user, I should be able to use a digital payment option so that I can participate in a dating
round.

• As a user, I should be able to get a refund if the system does not match me so that I can get my
money back.

• As a user, I should get candidates that fall in my height category so that it is a more suitable
candidate for me candidate.

• As a user, I should have a FAQ page about the app so that I can look for answers about the app.

• As a user, I should receive a bit of information on my date (interests of the other) shortly before
the date so that I know who I am meeting.

• As a dating establishment owner, I should receive requests for dates to partake in my establish-
ment so that I can check the availability.

• As a dating establishment owner, I should be able to provide availability for a date so that the
system knows if the location is available.

• As a dating establishment owner, I should receive a notification if a date is canceled so that I can
take this into account.

Could haves
”Could haves” are features that are nice to have but not needed. This category is of lower importance
than the ”should have” group.

• As an administrator, I could review users’ photos to verify them so that they can have the verified
status.

• As a user, I could chose to register using a third party authentication so that I do not have to make
a new account.

• As a user, I could set my hair color so that the matching algorithm can use this data.

• As a user, I could set my eye color so that the matching algorithm can use this data.

• As a user, I could have questions to help me write my biography.

• As a user, I could
.

• As a user, I could .

• As a user, I could set the application language so that I can use the application in my preferred
language.

• As a user, I could have a chat window that closes after 48 hours so that there is a time window
to make decisions in.

• As a user, I could .

• As a user, I could
.

• As a user, I could have it so that other users’ popularity is taken into account when matching so
that I find partners that better fit me.

• As a user, I could be matched with users that do not frequently cancel their dates.

• As a user, I could request a reschedule for a canceled date so that I have another chance to go
on that date.

• As a user, I could be reminded of the time and location shortly before the date so that I do not
forget it.

• As a dating establishment owner, I could have it so that reservations are integrated into my current
reservation system.

Won’t have
These are requirements that are out the scope of our project, but might be included later.

• As a user, I will not be able to download the app in the app store (ios and android).

• As a user, I will not be viewing any advertisements in between swipes.

• As a user, I will not be able to join multiple date rounds at once.

• As a user, I will not be notified if a date has been found in a timeslot that I did not choose. So I
can reschedule other things.

• As a user, I will not be able to set up a second date through the app.

• As a dating establishment owner, I will not be able to control timeslots in the application.

A.3. Project management
To ensure an effective workflow during this project, we define the key responsibilities of each stake-
holder. The client is the product owner. His role is to guide the design vision and communicate the
requirements to the team. Our coach, Taico Aerts, is the representative of the TU Delft, his task is to
uphold the interests of the university. Finally, the team, consisting of five TU Delft students in their final
stage of their bachelor, is responsible for the development of the product.

A.3.1. Client
The client of this bachelor project is FireFly, a trademark of DevBux. As DevBux is a proprietorship,
this means that Siraadj Salarbux, the owner of DevBux, is our client. Siraadj has already laid some
groundwork on the FireFly project in the form of designs and a feature list. As a visionary, he will steer
the development to make FireFly Dating live up to his visions.

A.3. Project management 61

A.3.2. Coach
Taico Aerts will be our coach during this project. As a coach, he will help us to uphold the interests
of the TU Delft. His focus is not on the contents of the project, but on the team dynamics, software
development methods, and effectiveness of the team. He is responsible for the approval of deliverables
like the project planning and will provide feedback on the final report and presentation.

A.3.3. Project team
The project team consists of five bachelor students of the TU Delft. All team members contribute equal
parts to the project, this will be checked by peer reviewing and analytical data from code commits such
as the ones GitHub offers. During the beginning phases of the project, all team members will work on
research and setup of frameworks together to ensure that all members have a thorough understand-
ing of the underlying research and technology. After the initial setup phase, members will specialize
in certain areas of the project. We refrain from assigning too specific focus areas for team members
as we wish to remain flexible during the development process and assign tasks as necessary. Team
member focus areas:

Team Member Focus area
Colin Geukes Front-end
Caspar Krijgsman Back-end
Steven Lambregts Back-end
Vincent Wijdeveld Front-end and Matching algorithm
Matthijs Wisboom Front-end

Scrum
We will work according to the Scrum methodology. The Scrum methodology provides a good working
framework for the teammembers to ensure that progress is beingmade while remaining flexible enough
to implement changes as necessary in the product. The client, Siraadj Salarbux, is the product owner, in
communication with him the scrum master will ensure that the product meets all requirements. Vincent
Wijdeveld, will act as scrum master during the weekly sprints. The scrum master will communicate
with the product owner about the requirements and plan the weekly sprints together with the rest of
the team. We will work in weekly sprints, each sprint will have the classic elements of a scrum sprint:
sprint planning, daily scrum meeting, sprint review and sprint retrospective.

A.3.4. Meetings
In ten weeks, we will develop a web application commissioned by the client. We planned several
meetings with the client and the coach to ensure that we keep on track. Within the team, we have daily
meetings to clarify the daily schedule.

Team
Within the team, we have planned a daily meeting at 10:00 am. During this meeting, we will discuss
what we are going to do that day and if there are any problems someone encountered. Due to COVID-
19 all sessions will use Discord as a tool for communication, in this way, we can to talk and share
data without having to meet in person. When someone has a valid reason not to attend the meeting,
he is allowed to miss it. However, when someone is late for some reason, they must put a fine in a
(virtual) jar, such that we can buy a cake or have a nice excursion. This fine will start at 3 Euro when
the subject in question is 10 minutes late. Every 10 minutes after this, 1 Euro will be added to this fine
if he continues to be late. The team will work at least 8 hours a day to fulfill the 42 hours a week work
stated for this project.

Before the meetings, a team member is also urged to prepare the meeting to ensure it proceeds
smoothly. Questions for the coach and/or the client will be discussed and, if needed, the concerning
party is contacted by e-mail.

Every week on Monday (or the first business day of the week), the team will meet in a structured
form, including an agenda. Mainly, the subjects will include retrospecting the last week and planning
what will come the coming week. These weekly meetings will be documented, of which a schedule is
created for taking minutes. The schedule for the coming weeks, starting from week 2, is defined as

follows:

Week Taking minutes
2 Colin Geukes
3 Caspar Krijgsman
4 Steven Lambregts
5 Vincent Wijdeveld
6 Matthijs Wisboom
7 Colin Geukes
8 Caspar Krijgsman
9 Steven Lambregts
10 Vincent Wijdeveld
11 Matthijs Wisboom

Client
We planned to have a weekly meeting such that we can present our progress and, if possible a demo,
such that he can share his opinions and give us feedback. These meetings will align with the weekly
sprint retrospectives.

Coach
The team and the coach do not have a fixed meeting time. The team will communicate with the coach
about their progress and when they would like to have a meeting. During this meeting, the deliverables,
and any issues that might have been encountered are discussed. These meetings are online as well
and done in the presence of all the team members.

A.4. Project Timeline 63

A.4. Project Timeline
The project timeline consists of tasks and deliverables. Every week, the tasks will outline what will be
worked on for that week. Deliverables are deadlines that need to be met as required by the Bachelor
End Project. The team will be working in sprints using a Scrum methodology. The length of one sprint
will be one week.

Week Tasks Deliverables
1 April 20 - April 24 Project plan

Start Research report
April 23 - Project plan

2 April 27 - May 1 Finish Research report
Setup work environment

May 1 - Research report

3 May 4 - May 8 Discover frameworks
Start Database design
Setup testing environment

4 May 11 - May 15 First design implementations
Back-end systems

5 May 18 - May 22 First visual working demo

6 May 25 - May 29 Wrapping up integrating front- and
back-end

First SIG upload

7 June 1 - June 5 Minimal Viable Product (MVP)

8 June 8 - June 12 Testing on audience

9 June 15 - June 19 Process feedback from testing Second SIG upload

10 June 22 - June 26 Finalize report June 24 - Final Report
June 24 - Info Sheet
June 29 - Final deliverable

11 June 29 - July 3 Presentation

B
Research Report

65

Bachelor End
Project: FireFly

Dating
Research Report

by

Colin Geukes
Caspar Krijgsman
Steven Lambregts
Vincent Wijdeveld
Matthijs Wisboom

Project duration: April 20, 2020 – July 3, 2020
Thesis committee: Dr. H. Wang, TU Delft, Bachelor Project Coordinator

Ir. T.V. Aerts, TU Delft, Coach
M.S. Salarbux, Firefly, Client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Some content of this thesis is confidential and is therefore marked in black.

http://repository.tudelft.nl/

Contents

B.1 Introduction . 70
B.1.1 Problem Analysis . 70
B.1.2 Research Questions . 70

B.2 Requirements Analysis. 71
B.2.1 Stakeholders . 71
B.2.2 Functional Requirements. 72
B.2.3 Non-Functional Requirements . 75

B.3 Implementation Research . 76
B.3.1 Payment . 76
B.3.2 Refund . 77
B.3.3 Reporting . 77

B.4 Matching Algorithm . 78
B.4.1 Problem Definition . 78
B.4.2 Research . 79
B.4.3 Collaborative Filtering . 79
B.4.4 Elo. 80
B.4.5 Conclusion . 80

B.5 Framework Analysis . 81
B.5.1 Front-End . 81
B.5.2 Back-End . 82
B.5.3 Testing . 85

B.6 Conclusion . 86

69

B.1. Introduction
To ensure the success of this BEP project, we have researched all aspects of the scope of the FireFly
Dating app. All elements of the project have been carefully considered before the start of the imple-
mentation. This research report details how we have researched the different aspects of the project.
We completed the research in chronological succession. This guarantees that all parts build on each
other and use the knowledge obtained in the previous section to make better-informed decisions about
the implementation.

We start by defining the problem that FireFly Dating is meant to solve in section Problem Analysis.
After defining the problem, we establish a list of questions that need to be answered. After the questions
we state the list of requirements, which have been created in collaboration with the project owner.
Based on the established list of requirements, we can start to make decisions about the implementation.
One of the most crucial elements of FireFly Dating is the matching algorithm. In this research report,
we analyze what previous research has been done about matching algorithms of a dating application.
We then use this knowledge to define how we are going to implement the matching algorithm in this
project. The last part of this research report describes the analysis of different possible frameworks to
determine what framework would best suit the needs of this application.

B.1.1. Problem Analysis
There are already many dating apps on the market, many of which work on a swiping basis. Apps like
Tinder and Bumble allow matches to chat with one another. Chatting is versatile and can go in various
directions. Users of these simple dating apps have different intentions in the use of such services.
For some, it is an ego-boost, some are looking for love, a hookup, or just a simple conversation. In
practice very few dates come from matches, and if it happens, from the moment the match occurs to
meeting in the real world, it often takes multiple weeks. From a Canadian study, 81% of people had
less than six dates while using dating apps, of which 40% planned the date after more than two weeks
of chatting [24]. While possible, a connection is hard to establish through a chatroom, and most of the
conversations end up dead. This manner of dating can be slow and often repetitive.

Other dating sites that allow you to view extensive profiles, where people spend time online search-
ing traits they like in a match also shows its flaws. Users of dating sites spend seven times more time
researching his/her date than on the actual date. While it has been shown that a significant portion
of people’s preference in a significant other is based on experiential aspects rather than search-able
aspects like job, income, hobbies, etc. [25].

The FireFly Dating concept is one that tries to encompass these problems of extensive searching
or having first to build up a relationship based on text messages for weeks before giving a shot on a
real-life date. The FireFly Dating app will try to create a single expectation towards the user. To be
able to meet new people and, in the ideal situation, help people find love. Based on an interactive and
straightforward swiping method, a user will be able to give the matching algorithm a simple preference,
and the application will set up a date between two matches. No repetitive chats, no extensive research
before a date. A simple blind date.

B.1.2. Research Questions
Throughout this report, we attempt to answer several research questions. Answering these research
questions will guide us to make the correct design and implementation decisions for the FireFly Dating
app. Each section answers a main-research question; each of these sections has its own set of sub-
questions to support the main-question. As a group, we have decided that we need to answer the
following research questions:

Section B.2 Requirements Analysis
What requirements does the client desire for the correct functioning of the product?

• What are the functional system requirements, organized in the MoSCoW method, needed to
create an MVP?

• What are the non-functional system requirements needed to create an MVP?

Section B.3 Implementation Research
How will we solve the implementation challenges related to payment, refund and reporting?

B.2. Requirements Analysis 71

• What are the best options to handle payment in an online application?

• How will the application handle refunds?

• How will the application prevent misuse of the reporting system?

Section B.4 Matching Algorithm
How can we create a matching algorithm that accurately matches potential partners?

• How have other researchers attempted to solve this problem?

• How can we implement the matching algorithm?

Section B.5 Framework Analysis
What frameworks would best suit this project for the different areas of implementation?

• What framework is best suited for the implementation of the front-end?

• What framework is best suited for implementation of the back-end?

• What database system is best suited for the scope of this project?

• What testing framework is best suited for testing both the back-end and the front-end implemen-
tation?

B.2. Requirements Analysis
In this section, the requirements of the designed system will be analyzed. First, all the stakeholders are
stated, accompanied by their interest in the system. Afterward, the functionality of these stakeholders
is explained to its fullest in Functional Requirements. Finally, in the last subsection, Non-Functional
Requirements, the requirements that are important for the correct development of the system are stated.

B.2.1. Stakeholders
In the final product, there will be entirely different independent parties, the stakeholders. They have an
interest in the product, its activities, or the business. The stakeholders for this phase of the product are
described below.

User
The first and most important group of the project will be the users of the application. The main objective
of these users is to find a date, and therefore they are called the daters. When they start the app for
their first time, they do not possess any knowledge of how to use the application. For this reason, the
application should be as straightforward and simplistic that every user could use it properly. These
daters can run the application on completely independent devices such as their personal computer,
laptop, tablet, or phone.

In Fig. C.1, a flowchart is shown in which all steps a user can run through are visualized. The start
of the application is on the top right, where a user has to register for an account. After this, the user
can set up his account and start swiping if they want. If the user decides to go on a date, they enters a
paywall, and the algorithm begins running. If it does not find a matching person or a suitable location
for the date, the program will refund the entry fee, and the user can restart the process. If the matching
algorithm finds a date and a location, the user receives a reservation and goes on a date. After this
date the user accesses a feedback screen in which they can share their contact details or provide other
feedback about their intended match.

Dating Establishment Owners
When a match has is created between daters they need a location to go on the blind date. The Dating
Establishment Owners are the owners of restaurants or bars at which a date can take place. Before the
date, these establishment owners are informed that they should have a spot reserved for the date, to
ensure that it can properly take place at the location. These establishment owners will not be in contact
with the daters before the date itself. They will only be contacted through the administrator stakeholder.

Administrator
The administrator is the stakeholder that is required to keep the application up and running. They will
find establishments at which blind dates could take place. The administrator is the essential stakeholder
to increase the scalability of the project. Without new locations for blind dates, the entire project could
be at risk of the bottleneck effect because of limited capacity. The administrator could also serve as
customer support. The support department could eventually be a separate stakeholder. However, that
is outside the scope of the project.

Product Owner
The last stakeholder is the product owner, this entire project is his product, and the product owner has
a unique set of objectives envisioned for the project. Completing these objectives will result in a reliable
product and a successful, profitable business.

B.2.2. Functional Requirements
This section will cover the aspects that are required tomake the program function. For the requirements,
we used the user story notation and ranked them according to the MoSCoW method [26].

Must Haves
The ”must haves” section contains the most critical parts. Without these parts, the application would
not function, and the project will fail.

• As a user, I must be able to register my account so that I can use the app and store my data.

• As a user, I must be able to login to the application so that I can use the application.

• As a user, I must be able to set my general information such as name and birthdate so that I can
be matched with other users of about my age.

• As a user, I must be able to upload photos so that I can use these on my profile.

• As a user, I must be able to edit my biography so that I can tell other users about myself.

• As a user, I must be able to set my gender so that the matching algorithm can use this data.

• As a user, I must be able to remove my account so that all my data is gone.

• As a user, I must be able to swipe a candidate so that I can indicate my preferences.

• As a user, I must be able to view details like biography and images of the candidate so that I can
make a more informed choice on my preferences.

• As a user, I must get candidates that follow the preferences I set so that it is a better candidate.

• As a user, I must be able to set the location(s) at which I am able to go on date so that I can make
sure that I am able go there.

• As a user, I must be able to set the languages I am able to date in so that I get better candidates.

• As a user, I must be able to set my age range preferences so that I get better candidates.

• As a user, I must be able to specify what genders I am interested in so that I get correct candidates.

• As a user, I must be able to provide feedback after the date so that I can indicate if it was a good
match.

• As a user, I must be able to the option to share my contact information so that we can continue
the conversation after the date.

• As a user, I must be able to specify in what fixed time slots I can date so that I can be on the date.

• As a user, I must get candidates that fall in my specified time frame so that I have the time to go
on a date.

B.2. Requirements Analysis 73

• As a user, I must receive a reservation when I am matched so that I know that I am going on a
date.

• As a user, I must be able to cancel a date so that the date can be cancelled.

• As a Dating Establishment Owner, I must receive an e-mail with the date information for dates
planned at my establishment so that I know that users are coming.

Should Haves
”Should haves” are high-priority features. These features are not essential to launch but are improve-
ments on the app.

• As an administrator, I should be able to review the report cases so that I can deal with them.

• As an administrator, I should be able to ban any account for breaking the rules so that the platform
stays safe.

• As an administrator, I should be able to add new establishments to the system so that the platform
can expand.

• As an administrator, I should be able to set time slots available for establishments so that dates
can be scheduled.

• As a user, I should be able to verify my e-mail address so that my account is verified.

• As a user, I should be able to report the other users for untruthfulness if this is the case so that
this user can be punished.

• As a user, I should be able to verify my phone number so that my account is verified.

• As a user, I should have a way to contact customer support via e-mail.

• As a user, I should not be able to receive inactive candidates during swiping so that I do not waste
time on them.

• As a user, I should be able to indicate that I only want verified users as candidates so that I feel
more confident going on a date.

• As a user, I should be able to specify the social media that I will share if I choose to share my
contact information so that users only contact me at the desired platform.

• As a user, I should be able to set my height so that the matching algorithm can use this data.

• As a user, I should be able to chat with the person I went on a date with if we both liked the date
so that we can develop our relationship.

• As a user, I should not see the same candidate multiple times so that I do not have to swipe the
same person multiple times.

• As a user, I should be notified if and when I matched with someone so that I know I have a match.

• As a user, I should be able to set how many dates I want when choosing the time frames so that
I can go on multiple dates in one matching session.

• As a user, I should not be scheduled for two or more dates on the same day in different cities so
that I can partake in all of the dates.

• As a user, I should be prioritized over users that already have a date planned.

• As a user, I should be able to indicate to only date verified users, so that I feel safer.

• As a user, I should be able to use a digital payment option so that I can participate in a dating
round.

• As a user, I should be able to get a refund if the system does not match me so that I can get my
money back.

• As a user, I should get candidates that fall in my height category so that it is a more suitable
candidate for me.

• As a user, I should have a FAQ page about the app so that I can look for answers about the app.

• As a user, I should receive a bit of information on my date (interests of the other) shortly before
the date so that I know who I am meeting.

• As a Dating Establishment Owner, I should receive requests for dates to partake in my establish-
ment so that I can check the availability.

• As a Dating Establishment Owner, I should be able to provide availability for a date so that the
system knows if the location is available.

• As Dating Establishment Owner, I should receive a notification if a date is canceled so that I can
take this into account.

Could Haves
”Could haves” are features that are nice to have but not needed. This category is of lower importance
than the ”should haves” group.

• As an administrator, I could review users’ photos to verify them so that they can have the verified
status.

• As a user, I could
.

• As a user, I could .

• As a user, I could .

• As a user, I could
.

• As a user, I could chose to register using a third party authentication so that I do not have to make
a new account.

• As a user, I could set my hair color so that the matching algorithm can use this data.

• As a user, I could set my eye color so that the matching algorithm can use this data.

• As a user, I could have questions to help me write my biography.

• As a user, I could set the application language so that I can use the application in my preferred
language.

• As a user, I could have a chat window that closes after 48 hours so that there is a time window
to make decisions in.

• As a user, I could have it so that other users’ popularity is taken into account when matching so
that I find partners that better fit me.

• As a user, I could be matched with users that do not frequently cancel their dates.

• As a user, I could request a reschedule for a canceled date so that I have another chance to go
on that date.

• As a user, I could be reminded of the time and location shortly before the date so that I do not
forget it.

• As a user, I could be matched with people with a similar desirability score.

B.2. Requirements Analysis 75

• As a user, I could be matched with someone even if the matching score is minimal, i.e., when
both users disliked each other.

• As a user, I could be matched on appearances I like when swiping, i.e., using hair/eye color so
that I get better matches.

• As a user, I could be matched with people that share the same interests/hobbies so that I get
better matches.

• As a user, I could be able to set my relationship preference so that the matching algorithm can
take this into account.

• As a Dating Establishment Owner, I could have it so that reservations are integrated into my
current reservation system.

Won’t Haves
These are requirements that are out the scope of our project, but might be included later.

• As a user, I will not be able to download the app in the app store (ios and android).

• As a user, I will not be viewing any advertisements in between swipes.

• As a user, I will not be able to join multiple date rounds at once.

• As a user, I will not be notified if a date has been found in a timeslot that I did not choose. So I
can reschedule other things.

• As a user, I will not be able to set up a second date through the app.

• As a Dating Establishment Owner, I will not be able to control timeslots in the application.

B.2.3. Non-Functional Requirements
In this section, we will elaborate more on the requirements that are specific for the system and cannot
be directly translated into a feature.

Accessibility
The application should be accessible for all types of users; everyone without a technical background
can create an account without any trouble. Users with a mobile device will be able to access the
application. Even users with a slow network connection will also be able to reach the server since the
system will be using Vue, which is a lightweight framework. The data packages that will be sent over
the network will be as small as possible since the system will only submit the bare minimum.

Agreements
The users agree to have at least one drink at the planned date with their matched partner. This way,
the Dating Establishment Owner will earn money from the date. The users also agree not to share
their contact details such that they do not feel obligated somehow. They can share their details in the
morning after the date.

Scalability
The system should be able to grow such that it can handle more people and attract a broader audience.
In the beginning, the main focus will be on three cities, namely Delft, The Hague, and Leiden. We do
this to make sure to have a working version. The owner of the project will be able to expand to more
cities after the project is finished.

Stability
The system should be stable and should not crash when a user is using it. Older software is still
compatible with newer releases.

Security
The system should have a working security layer that protects the data of the users from unauthorized
use of data. The security of the system should be up-to-date, such that no perpetrator hacks the system
and retrieves confidential data. All privacy sensitive information should be handled with care on the
application. It is not allowed to store these data in an insecure manner temporarily. All confidential
privacy information that is not needed any longer should be entirely discarded. The application should
be designed in such a manner that it is GDPR compliant.

Maintainability
When the system fails, it should allow itself to be restored to its normal operating state as soon as
possible. The defect that causes the system to fail should be corrected after the system restored to its
working state, but with the highest priority such that it will not happen again any time soon after. The
code evaluation from the SIG can be used in these metrics. The project will be using version control,
recording all changes and improvements in the codebase on a single location. The project could always
be restored to a stable earlier version.

Migratable
The system will start as a web application. Still, when it starts getting brand awareness, it will be
redeployed to a smartphone application such that users can access the application easier. For this
matter, the system should be easily transferred to another platform. The migration will, however, not
be performed as part of this project.

Uptime
The system should always be up and running even when it needs to be updated; the users should not
notice it, or the system should disable the functionality for some time.

Robustness
The system should contain the ability to deal with errors while it is running and stay online when an
error occurs. It should be able to handle erroneous input, on which it does not crash because it is safely
handled.

Documentation
The system should be documented such that other developers can upgrade or change the system
without having them read through all the code. Since the project lasts only ten weeks, other developers
will add or change functionality that have been created by the project team.

B.3. Implementation Research
This section will take a few of the features described in the requirements analysis and explore some
potential challenges. Here we will answer the questions about the payment system, refund policy, and
the report system.

B.3.1. Payment
When building a web application, it is essential to make sure that everything works, but it also needs to
create revenue. Our client indicated not to want any advertisements but instead prefers a credit system
where features are behind a paywall. This paywall means that the app will need a payment option.
Implementing all these payment options yourself is a full-time job. That is why almost all companies
use a PSP. These PSPs help you manage the payment environment by providing prebuild payment
solutions. Most PSPs support a wide variety of payment options. PSPs often allow developers to
customize the style of these solutions while still ensuring security.

Payment Service Providers
For the scope of this project, the focus of finding a payment solution is on ease of use and availability.
Another essential feature is the support of IDEAL, as this is the most popular online payment option in
the Netherlands [27]. Our research shows that Stripe is more focused on startups and has a lot of help
and documentation on development with Stripe [28]. Our client has experience with PSP Mollie. Mollie
is very comparable to Stripe in its size and focus [29]. Both Mollie and Stripe provide solutions that fit

B.3. Implementation Research 77

within the frameworks that we are considering. In the end, we left the decision of the PSP to our client
after we recommended Stripe or Mollie.

B.3.2. Refund
Most of the PSPs that we described in the previous section allow for refunds on almost all their payment
options, excluding the gift cards. However, during one of our meetings, the question arose, should we
refund the money or gift credits instead?

From amarketing perspective, using the credit system is beneficial. This implementation will ensure
that even if the system does not find a user a match this round, the users would still have a chance
during the next round. It would also mean that it is not required to implement a refund system for all
the transactions. A single withdrawal interface will suffice to retrieve money back from the application.

Although it is unclear whether we can take this approach as we do not know for sure whether or
not the legal reflection period applies to this application. When you pay for a date that takes place at
a specific time and place, this law probably does not apply. However, if we use the credit system, it is
not entirely clear whether or not this is the case. To create an MVP product under European law, we
will assume that the legal reflection period applies to this product, as it is better to be safe than sorry.

B.3.3. Reporting
Every application that allows users to express themselves in any form requires moderation. The most
common way of moderation is to enable users to report each other in cases of inappropriate behavior.
But can we trust users to report fairly, and how do we deal with reported cases? This section will explore
some of the best practices in moderation.

Supervisor Moderation
One of the most used forms of moderating is supervisor moderation. In this system, there are mul-
tiple users appointed to be moderators. These moderators have special privileges, like deleting or
editing content of other users. Most social media platforms use a system called Commercial Content
Moderation (CCM) [30]. This term, as described by Dr. Sarah T. Roberts, describes the activities of
monitoring User-Generated Content (UGC) on social media platforms and ensuring they are conform-
ing to the rules and laws that apply to that platform [30]. Either volunteers do this monitoring, or as in
most cases, it is outsourced to a third party.

This supervisor moderation model is most likely not suited for this project. For a moderator to asses
the situation, they need to observe the problematic behavior. In the case of the user profile as presented
during the swiping action, moderators can check for inappropriate content. Validation of truthfulness is
harder to moderate as it takes place on a date location, a place where the moderator is not present.

Distributed Moderation
Distributed moderation has two forms, user moderation, and spontaneous moderation. User modera-
tion, as the name suggests, allows users to moderate each other [31]. These systems rely on users
voting content that does not abide by the rules creating a low effort moderation system. The main
downside is that for this system to function correctly, you need a lot of users and multiple votes before
you can act on it [31].

As the final product is a dating application, users will get a limited amount of feedback, meaning
that we need to act on a small amount of feedback. The danger of using small amounts of feedback is
that users with malicious intends can disturb innocent users. Therefore we will need to find the balance
between filtering out untruthful users without endangering innocent users.

Spontaneous moderation is an effect of human behavior, where people will ignore and comment on
inappropriate content creating a natural sense of moderation [31]. We expect spontaneous moderation
to have little to no effect on this application as users have little input on one another.

Dating Establishment
It is challenging to trust the users by providing accurate reports blindly. Since it is easy to submit false
reports when a date went horribly, a user could claim that the other user never showed up and apply
for a refund, even though the date happened, and both parties showed up. This behavior is not what
should be permitted. There should be an external party that moderates the date while it is happening.
The Dating Establishment could fulfill this exact role.

The Dating Establishment already functions as a safeguard for the date. They keep an eye out on
their customers, thus also on the users during the date. This responsibility could be made broader by
keeping track of which people showed up and especially did not show up. This could be done by simply
writing down who does not show up, this is not too tricky and bothersome for a Dating Establishment
to perform. Applying these tasks is beneficial for the Dating Establishment as well since they generate
revenue when both users show up and they could be selected as a trusted Dating Establishment. It
will also increase the sense of safety, resulting in more users feeling comfortable to use the application
and go on a blind date.

If a user reports another user for some reason, then this should be forwarded to the Dating Es-
tablishment, where the date took place. The Dating Establishment could reply and verify the report.
However, the Dating Establishment is not required to do so. If the Dating Establishment did not re-
spond to a report within a certain amount of time, then the report could not be reviewed any longer by
the Dating Establishment.

When enough Dating Establishments are connected to FireFly Dating, it is possible to have a per-
sonal trust ranking among these Dating Establishments. If a Dating Establishment provides proper
moderation through feedback, then their trust ranking rises. Dating Establishments with a high trust
ranking are safer for blind dates, and they should receive more dates at their Dating Establishment.
This provides benefits for correctly moderating and safeguarding a date. The inner rankings should be
visible for the Dating Establishment, so they know how to improve and what a low ranking does.

It is not feasible to enforce the Dating Establishment to cooperate with their moderating respon-
sibilities. With the benefits system described above, in place, then it is more likely that the Dating
Establishment uses their moderation responsibilities properly.

Conclusion
In an ideal situation, every user will be truthful and follow the rules. Sadly this is not the case, so we
will need to moderate. We decided to go for a combination of systems as no single method provides a
full solution.

We will rely on the feedback of users to bring attention to users that misbehave. A moderator will
look at this feedback and decide on the validity of this feedback and take the appropriate action. In an
optimal version, establishment owners would provide their input to get an unbiased view on the matter,
although we realize that this would not always be feasible. For that reason, a reward system for Dating
Establishments could be put in place. The Dating Establishments that provide their unbiased supervi-
sion will be rewarded with more dates assigned to their Dating Establishment. However, implementing
such a reward system for Dating Establishments is outside of the scope of this project.

B.4. Matching Algorithm
The matching algorithm is a crucial part of a blind dating application. After the user has specified their
preference and availability, the algorithm attempts to find the user a date. The algorithm takes different
data points into account in order to determine a match for the user. In this section, we will discuss the
different possibilities for the algorithm. We start by giving a formal definition of the problem. Afterwards
this, we provide a brief overview of the current literature on matching algorithms for dating sites. Finally,
we show how we plan to implement the algorithm, detailing what the minimum requirements are and
how we can expand on this.

B.4.1. Problem Definition
The FireFly Dating application will make use of a matching algorithm to match users for blind dates.
Unlike other dating applications, FireFly Dating will only use a small amount of user data. The main
ideas to set preferences are: specifying age range, swiping candidates, and feedback after a date. The
application will not ask the user for a massive amount of information for a matching algorithm, yet the
algorithm of FireFly Dating should schedule the best match with the information given, and take into
account other users that also need to be matched, which reduces to the Stable Marriage Problem [32].
CF in a recommender system like ones used on Amazon [33], uses user to item filtering. User 𝑋 rates
an item 𝐼 with a score. This can then be used to predict the similar score of user 𝑌 on item 𝐼. The
problem with this method is that matchmaking is different from item recommendation in that an item
cannot choose its user. However, dating services will need to score users in both ways [34].

B.4. Matching Algorithm 79

B.4.2. Research
Much research has been done into how matching algorithms work best in dating applications. These
matching algorithms claim that they match users based on different aspects to find partners that suits
best together. While most dating applications make use of some form of matching algorithm, re-
searchers have expressed doubts about whether matching algorithms provide better long-term rela-
tionship results [35].

However, in practice, many dating sites still make use of some form of matching algorithm because
they provide a reasonable prediction of a user’s preference for partners [34]. The actual implementation
of the algorithms used by different dating sites is often not made public. A Fast Company journalist
revealed that Tinder makes use of a “desirability score” that functions similarly to Elo scores [36]. While
Tinder claims to no longer use this algorithm [37], it can still be used as an initial way to achieve a
desirability score for the user.

For the actual matching of users, a recommender system should be put in place. These systems
take different parameters of the user’s profile into account in order to match them with similar profiles.
The two types of recommender systems that are primarily used are content-based systems and CF
based systems [38].

Since the project will run with only a few inputs per profile (e.g. age, gender, location, etc.) which
will mainly be used as absolute filters. For now, a content-based recommendation system will be ruled
out of this project scope, as all attributes on profiles are absolute filters. It is also important to note that
multiple researchers have found that CF based approaches outperform content-based approaches [38,
39]. Therefore we have chosen to create a CF based implementation for this project.

B.4.3. Collaborative Filtering
User-user CF can be implemented using different metrics to determine how similar two users’ tastes
are. A straightforward distance metric is Jaccard similarity [40], which takes two user ratings and com-
pares them. However, Jaccard similarity only looks at which profiles the user has rated, not if this
rating was positive or negative. An option here is not to include a negative swipe and only include
positive swipes. However, this does limit the algorithm not to match frequent users and users that only
sometimes swipe even though they might have the same taste. A solution to unknown ratings and a
sparsely filled data collection is a Pearson Correlation [41]. This correlation uses Cosine similarity with
a centering of the rankings around 0. This way, an unknown rating is considered as the mean of all the
scores for a profile. The Pearson Correlation is displayed by the following formula:

𝑠𝑖𝑚(𝑥, 𝑦) =
∑፬∈ፒᑩᑪ(𝑟፱፬ − 𝑟፱)(𝑟፲፬ − 𝑟፲)

√∑፬∈ፒᑩᑪ(𝑟፱፬ − 𝑟፱)ኼ√∑፬∈ፒᑩᑪ(𝑟፲፬ − 𝑟፲)ኼ
(Pearson Correlation [40])

Where 𝑆፱፲ are the profiles rated by both users x and y, 𝑟፱፬ and 𝑟፲፬ are the ratings 𝑟 for profile 𝑥 and 𝑦
respectively, 𝑟፱ and 𝑟፲ are the average rating of user x and y.

this formula also takes the pickiness of users into account. For users that tend to give many bad
ratings, the score for an unknown profile will be relatively low. While a user that tends to like many user
profiles will have a higher score on unknowns, taking into account user swiping manners. When there
is an unknown profile rating for a user 𝑥, the algorithm will be able to take users that are most similar to
user 𝑥 and have rated the profile, and take the weighted average to predict a score for the user using
the following formula:

𝑟።፱ =
∑፣∈ፍ(።;፱) 𝑠።፣ ⋅ 𝑟፱፣
∑፣∈ፍ(።;፱) 𝑠።፣

(Weighted Average [40])

Where 𝑟።፱ is the predicted rating on profile 𝑖 of user 𝑥, 𝑠።፣ is the similarity of profile 𝑖 and 𝑗, 𝑟፱፣ is the
rating on user 𝑢 on profile 𝑗, 𝑁(𝑖; 𝑥) are the set profiles rated by 𝑥 similar to 𝑖.

Ideally, when two users have liked each other, they are marked as a positive match. However, if
either of the users have not rated the other, a positive match could still occur. Using swiping, this data
can be populated relatively fast. This is not the case for data that comes from the feedback of dates,
as there will be relatively much fewer dates than swipes. This will likely cause the data to take a long
time to populate and requires the user to enter many dates before the algorithm can provide a decent
match. Applying CF to match on appearance preference will likely work as intended.

As the profile will not contain experiential traits, matching personality will have to be done with
different data. An option is to use the feedback from previous dates. However, matching dates with
other users that have the same interests will suffer from a cold start as the profiles will have to be build
up on both sides of the sexual preference. To remedy this effect, the data of swiping can be used for
the matchmaking instead when dating feedback is sparse. CF is too expensive to run on every event.
Therefore, it would be better if for example the application only computes this data every twelve hours.

B.4.4. Elo
To assist in the CF process we assign score based on their desirability derived from swiping behavior.
Similarly to the scores used in chess ranking, we assign all users what is called an Elo score [42]. A
similar method of scoring has been used by Tinder for a long time [36]. The Elo score indicates the
desirability of users. While it might not be the perfect method of ranking people’s desirability, it provides
a basis to start the matching process with relatively little data.
The Elo score of a user is updated when users swipe each other on the swiping section of the app.
When user 𝑢ኻ swipes on user 𝑢ኼ, the Elo Score for both of them is updated. When a user is liked by
another user, the score of the person being liked is increased, and the score of the liker is decreased.
The amount with which the score is changed is dependent on the scores of the users. If a user is liked
by another user with a higher score then more points are transferred than when the user was liked by a
user with a lower score. This system of transferring points from one user to the other causes similarly
rated users to trend towards each other. The Elo scores of the users is used to calculate the probability
of whether user 𝑢ኻ will like or dislike user 𝑢ኼ. Each user 𝑢፱ has score 𝑠፱. The probability is calculated
using the following formula:

𝑃ኻ =
1.0

1.0 + 10
ᑤᎳᎽᑤᎴ
ᎶᎲᎲ

(Probability of 𝑢ኻ liking 𝑢ኼ [42])

𝑃ኼ =
1.0

1.0 + 10
ᑤᎴᎽᑤᎳ
ᎶᎲᎲ

(Probability of 𝑢ኼ disliking 𝑢ኼ [42])

𝑃ኻ + 𝑃ኼ = 1

Then after this probability is calculated the result 𝑟 ∈ {0, 1} of swiping is used to update the score of
each user according to the following formula:

𝑠፱ = 𝑠፱ + 𝑘(𝑟 − 𝑃፱))

In which the 𝑘-factor is a constant. The value of 𝑘 can best be determined during testing of the algorithm
to see how it influences the way that matches are made.

B.4.5. Conclusion
As this application uses very little data, recommendation systems such as Netflix will be used to recom-
mend matches with only the use of swiping data and date feedback using CF. This system can then be
improved by using an Elo score per user. This Elo score can then be applied as the weights for the CF
part of the Algorithm. This will result in the best match that can be made from the data the application
provides. The swiping functionality will not be based on recommender systems, as leaving this random
will prevent first time users from being excluded in the number of appearances, which is desirable for
the FireFly Dating application.

B.5. Framework Analysis 81

B.5. Framework Analysis
Nowadays, a lot of applications use frameworks to help do the heavy lifting, especially in web devel-
opment. For front-end alone, there are over 20 different frameworks, so picking one suited for your
project can be challenging. It is important to do sufficient research about the different possibilities to
be able to make an informed decision about these frameworks. In this chapter, we will explore a set of
options for both back- and front-end frameworks.

B.5.1. Front-End
To select the best framework for this specific project, three entirely independent frameworks are con-
sidered. These discussed frameworks are Angular, React, and VueJS. Each framework is discussed
on the same criteria questions, namely: Is the framework convenient to use by the developer? How
will the framework perform? Is the framework reliable for all the targeted devices?

Angular
Angular [43], developed by Google, was the first framework on the market. Angular is known for being
a difficult platform to use. Therefore, it will take a while to learn Angular and use it to its full potential.
These difficulties arise from Angular being enterprise-focused. Especially the applications of large
enterprises. However, for smaller applications, this will provide more disadvantages than advantages.
The documentation of each of the Angular components is adequately described. One feature of Angular
is that it uses TypeScript [44]. TypeScript is an enhancement of JavaScript, providing a type-based and
object-oriented implementation of JavaScript.

The performance of Angular is excellent; it is a reliable platform and has a consistent performance
no matter the size of the project. However, as stated earlier for the smaller applications, the usage
of Angular will most likely result in more overhead added to the project. The impact of this overhead
is minimal but would result in unneeded work for our project. There already exist many tremendous
and easy installable libraries. However, this is not the case with Angular. One of the most significant
drawbacks of Angular is that most used libraries can not be added. They need to be ported to work
with Angular specifically. Making a broad set of libraries inaccessible for the Angular platform.

The project will eventually be accessible from a wide range of different devices, including phones.
Thus the platform must allow for correct phone behavior. Angular is most of the time used for desktop
applications, and forwarding to a phone environment is more complicated than should be the case. In-
convenient workarounds must be created to get it properly working on all devices, which is not desirable
for this project.

Some members of the project team have prior experience with Angular. These experiences are
mostly negative. For this reason and the disadvantages outweighing the advantages, the project will
not be using Angular as its framework.

React
React is a JavaScript library for designing user components and interfaces [45]. The library is designed
by Facebook and allows for a rich mobile user interface [46].

React is known for its outstanding developer friendliness. This friendliness is the result of a platform
that is easy to learn and use. React consists of standalone components with interactability. Prevent-
ing elements from becoming too broad and too complicated, but still being able to embrace the great
interactability between different independent parts. Unlike Angular, which relies on complex code un-
derneath the elements. The documentation of React is proper and does not form any difficulties while
developing with the platform. One of the features of React is that it uses JSX[47] instead of JavaScript.
JSX is a template language and a super-set of JavaScript. It enables excellent interactability between
the renderer and the data residing in the code.

The Framework allows using all known libraries, which is a massive advantage in comparison to
Angular. The React library, however, is rather extensive, which is not the best performance-wise. React
is also known to be backward compatible, which is a useful feature for development after the project is
finished.

The selling point of React is that it allows for seamless mobile device implementation, which is
another significant improvement in comparison to Angular since the project will be exported to mobile
devices.

VueJS
VueJS is an open-source community supported andmaintained framework [48]. Both VueJS and React
are more popular frameworks in comparison to Angular. Using VueJS or React results in almost the
same advantages in contrast with Angular. However, they still have their differences.

VueJS has even better ease of use compared to React. It is beloved by many developers, and
most developers that worked with VueJS want to continue using it for other projects, unlike Angular
[49]. VueJS is easier to use than React and thus allows us to maximize time spent on the product
rather than on learning a framework, which is an excellent advantage for a project with a limited time
period. The framework is open-source. This allows for the documentation to be perfect, improved
versions come with enhanced documentation, and the community can always provide more in-depth
updates of said documentation. One could use the JSX language like React. However, it is entirely
optional for the developer.

The performance of VueJS is excellent. It is a relatively small library and thus is more efficient to
use across all devices. The developer is allowed to use all libraries, just as React. VueJS is backward
compatible as long as the project follows the proper guidelines. Since VueJS is a lightweight framework,
it is excellent to use as a mobile application [50], which is a great advantage for this specific process.

Some developers of the team have prior knowledge with Vue and recommend it as it is an excellent
platform.

Conclusion
Angular is a framework suited for larger enterprises, making it more difficult for our project. It does not
provide proper mobile support, and the majority of the already existing libraries cannot be used. For
the reasons stated above, Angular does not fit as a framework for this project, so the choice remains
between React and VueJS. Our comparison shows that both React and VueJS, fit the project well.
They both have high developer satisfaction, support the usage of the majority of libraries, and have
proper mobile support. In that sense, they do not differ remarkably from one another. However, using
VueJS has a few more benefits than React, namely that it is a smaller, lightweight library in comparison
to React. VueJS as a framework allows for greater efficiency, and for that reason, we choose VueJS
as the front-end framework for this project. In conclusion, VueJS is the most advantageous for this
specific application. Not only does it support the implementation of the project, but it also enhances it
to its fullest potential.

B.5.2. Back-End
We decided to divide the back-end of the project consists of the database, the server-side, and the
matching algorithm. We will start by discussing which database to choose from. Next, we will elaborate
more on the server-side scripts. Finally, we will talk about the ways of implementing the matching
algorithm.

Database
One of the first questions that need to be answered when selecting a database is if we need to choose a
relational or a non-relational database. Next, we have to compare the database schemes that remain
to find out which one suits the best for this project in terms of size, scalability, speed, plugins, and
security.

(Non)-Relational Database
Relational databases are the most known and operate on SQL. Some examples of these databases
are MySQL, PostgreSQL, and Oracle. The essential characteristic of relational databases is that they
rely on strict definitions and relations. Most systems store their data using tables in which columns
represent the data type. Every row is a record that has, in its columns, the values for that record.
These tables have strong definitions meaning that a table meant for storing booleans can only store
booleans. Most SQL databases will uphold the ACID principles making them very reliable.

Non-relational databases allow for a lot more flexibility. Instead of having defined table structures,
these databases contain documents. The structure of these documents can be described but not
enforced, which means that when a different version of data, which is in the same style but with different
values i.e., JSON, is uploaded, it will still be accepted. The other characteristic of this open structure is

B.5. Framework Analysis 83

the scalability it provides. These properties make non-relational databases ideal for applications that
are rapidly changing and fast-growing.

As our application will be static in its structure, it benefits more from the relational databases. We
plan to insert only values that match the strong definitions, such that we can query the data more
straightforward and access the data as fast as we can. Therefore this project will use a relational
database.

Size
As we decided to use a relational database, we did research about which one to use. MySQL and
PostgreSQL are compared in this study [9], and they show several differences that we can use. They
concluded that MySQL is more popular and easier to use and thus makes up for the shortage of func-
tions. Because of the higher reputation of MySQL, people tend to believe that by using it, they can
improve their projects and work in a higher advanced level of development. The most significant dif-
ference between the two database systems that could matter for this project is the maximum database
size and the maximum table size, as shown in Table B.1. But since these sizes are this large that we
will not reach the maximum in this project, we decided that in this case, the choice between these two
does not matter to us.

DBMS MySQL PostgreSQL
Maximum Database Size Theoretical Unlimited(256TB) Unlimited

Maximum Table Size MyISAM: 256 TB;
InnoDB: 64 TB 32 TB

Table B.1: Differences between MySQL and PostgreSQL [9]

Scalability and Speed
MySQL as a database server provides ultimate scalability. It can handle large capacities of data for
example run an entire warehouse, which holds terabytes of information [51]. That study shows that
the execution time and the memory utilization of MySQL in the compared DBMS is one of the lowest.
Which is supported by running some select queries as shown in Fig. B.1 and Fig. B.2.

Figure B.1: Average CPU utilization [51] Figure B.2: Average memory usage [51]

■ Plugins
MySQL provides support for a lot of application development needs. Since several programming lan-
guages already contain plugin libraries to support MySQL database support into nearly any application
[52]. These plugins include stored procedures, functions, cursors, triggers, views, and more. These
possibilities offer developers everything they need to be successful in building their database system.

■ Security
Security is also one of the reasons we will use MySQL in this project. Since MySQL provides functions
to encrypt and decrypt the value of the data, it cannot be read by perpetrators if they hack into the
database. The connection between the database and the server is unencrypted by default, but it uses
an authentication procedure to verify if the server is accessed correctly. The unencrypted connection is
not a problem, since they run on the same system, causing the connection to be internally. The MySQL
server checks three scopes: client name accompanied by the corresponding IP address, username and
password [53].

Server Side
NodeJS [54] will be used to run scripts on the server-side to produce dynamic web page content.
NodeJS is a JavaScript framework that makes it easier to have a clear overview of languages, since
web pages use JavaScript to get their content loaded and visible to the users. We prefer to have the
same style for client-side and server-side scripts.

NodeJS is mainly a framework that is used for developing high-performance that does not have
the best interest in using the mainstream multithreading approach but prefer to use asynchronous
I/O models, which are event-driven [55]. NodeJS performs significantly better in high concurrency
situations than PHP and python [56]. NodeJS is also a relatively new technique in comparison to PHP,
for example, which is used for small and middle scale websites. FireFly Dating application will contain a
large number of users to match them at best. Therefore it seems to be the best programming language
for the server-side scripts. The number of request per second for a select operation in a database is
shown in Fig. B.3 and the time it takes with multiple users to run a script with a select query is visible in
Fig. B.4. We followed the preferences of the paper in which they compared PHP, Python, and NodeJS
to make our final decision and choosing for NodeJS as our server-side script language.

Figure B.3: Results for “Select Operation of DB” mean
requests per second [56]

Figure B.4: Results for “Select Operation of DB” mean
time per request [56]

The Matching Algorithm
As said in the previous section, NodeJS performs best in executing a task with a large number of users.
In Fig. B.5 and Fig. B.6 it is shown that NodeJS performs best in executing heavy tasks, but they were
not extraordinary. In Table B.2, it can be seen that NodeJS performs best in calculating the values of
Fibonacci in requests per second and the meantime. From this, we can determine that NodeJS can
perform best under heavy load, which is suitable for our matching algorithm.

On top of that, the team wants to use the same language in the matching algorithm as with server-
side scripts. It will be easier to test the single parts and to connect them. Using a single language for
several components is preferred by the team in terms of confusing languages.

Figure B.5: Results for “Calculate Fibonacci(10)” mean
requests per second [56]

Figure B.6: Results for “Calculate Fibonacci(10)” mean
time per request [56]

B.5. Framework Analysis 85

Web development tech-
nology

Calculate value of Fi-
bonacci

Mean requests per sec-
ond [#/sec]

Mean time per request
[ms]

NodeJS Fib (10/20/30) 2491.77/ 1529.4/ 58.85 0.401/ 0.654/ 16.993
Python-Web Fib (10/20/30) 633.68/ 209.89/ 2.9 1.578/ 4.764/ 345.307
PHP Fib (10/20/30) 2051.22/ 168.8/ 1.78 0.488/ 5.942/ 560.553

Table B.2: Results for ”Calculate Fibonacci (10/20/30))” [56]

Conclusion
The back-end is divided into three different elements: the database, server-side scripts, and the match-
ing algorithm. For each of these parts, we have examined what the best framework is.

MySQL is the DBMS that will be used in this project since it is a relational database with the best use
of sizes, speed, scalability, and security. Another reason for us to use MySQL is that all the members
of the project group already have previous experience with MySQL.

The server-side scripts will be written in JavaScript, with NodeJS as the runtime environment. The
reason for this is that NodeJS provides the speed and reliability desired for executing queries.

The matching algorithm will be written in JavaScript as well. The speed and reliability of NodeJS,
together with the fact that NodeJS is already used in other parts of the system, made us decide to use
NodeJS for the matching algorithm.

B.5.3. Testing
This section discusses different testing platforms for the project. Only one testing framework is required
as it will run entirely on JavaScript for the front- and back-end. Two different testing frameworks that
are currently highly popular are Jest [57] and Mocha [58]. There are many more testing frameworks
for JavaScript. However, Jest and Mocha seem to fit our project the best [59]. Both testing platforms
embracemocking as a testing implementation, have reliable documentation, and havemeaningful code
coverage reports [57, 58, 59]. Using multiple testing platforms simultaneously is not common enough
to do, the benefits will be easily outweighed by the drawbacks. Thus using both Jest and Mocha is not
what we want. A choice must be made, after all. Below, we will go more in-depth on the features of the
different testing platforms.

Jest
Jest is a testing framework that focuses on simplicity and works well with Vue [57]. The front-end
will be written in VueJS, making it efficient to test the front-end properly. Jest uses snapshot testing
as regression testing to ensure that the front-end did not change unexpectedly [60]. This is done by
creating a snapshot of the component and checking if it did not change, which is useful for keeping
the front-end visually correct. Jest has a good testing experience, even inexperienced testers could
implement proper testing with Jest [59].

Mocha
Mocha is a testing framework that operates on NodeJS [58], which is excellent as it is our back-end
language. A more substantial part of the project is the back-end, thus Mocha fits this project well.
Mocha allows support for all browsers, including headless browsers [59]. Headless browsers allow
for automation testing [61], which is undoubtedly a feature that is significant for choosing the correct
testing framework. It is a bit more complicated than Jest to set up and work with. However, since some
members of the project team already has prior experience with Mocha, this does not apply to us.

Conclusion
The choice for the testing framework was between Jest and Mocha, as they are the more popular
testing frameworks of this moment. Generally speaking, Jest has its focus on the front-end and Mocha
on the back-end. Using both frameworks simultaneously is out of the question. The project will be more
focused on the back-end than on the front-end, and the front-end features of Jest are quite limited. Thus
Mocha fits the project better than Jest, and for that reason, Mocha will be used as the testing framework
for this project.

B.6. Conclusion
We have explored and answered all questions mentioned in the Introduction. To conclude this report
we give an overview of the answers to all the main research questions.

Functionality
Our client desires to have an MVP. A few of the main components of this MVP are user accounts, user
preferences, matching users, supplying dates, and have feedback options after the date. Our client
values a stable application that has a focus on providing a comfortable environment for the user. This
comfortable environment should reassure the user to trust the app and go on a date.

Payment and moderation
The exact PSP is yet to be determined by our client. All the PSPs we consider do contain a solution
for the project.
For the refund system, we will provide a way to refund purchased credits. We will, however, not refund
the payment of an unavailable match, canceled date or no-show with money but rather with credits.
This method will ensure that users stick with the application.
For moderation, we will use a hybrid implementation between user moderation and supervisor moder-
ation. Users can report other users at two moments, during swiping and after a date. Moderators will
review these reports and have the final judgment.

Matching algorithm
Due to the data sparsity of the application, a recommender system using CF creates matches based
on the swiping data and the feedback. To improve on this system, every user gets an Elo score. These
scores function as weights for CF.
Swiping will not be based on recommender systems. By making swiping random, we prevent first time
users from being excluded due to lack of data.

Frameworks
We decided to go with JavaScript as our primary language, for both front- and back-end.
For our back-end framework, we choose NodeJS as it allows for high performance and aligns with the
JavaScript preferences we stated before.
The front-end framework of choice is Vue. Vue supports all our needs and seems to be the best for our
project in comparison to the other discussed front-end frameworks.
For our database system, we decide to go with MySQL as it is the system we have the most experience
with and it had good results in performance tests.

C
Flowchart

87

Figure C.1: Initial Functional Flow Diagram for the Minimal Viable Product

89

Figure C.2: Final Functional Flow Diagram for the Minimal Viable Product

D
Directory Tree

root/
backend/
frontend/
node_modules/

Figure D.1: The Directory Structure of the Root Directory

frontend/
node_modules/
public/
src/

administrator/
components/

dashboard/
establishments/
genders/
reports/
timeslots/
utils/

client/
components/

dating/
profile/
questions/
setup/
swiping/

common/
components/

navigation/
utils/

alerts/
scss/

tests/

Figure D.2: The Directory Structure of the Front-end Directory

91

backend/
bin/
configs/
node_modules/
photos/

profiles/
<userID>/

public/
images/
mail/

plainText/
user/

views/
user/

scraper/
src/

authenticate/
database/

config/
knex/

massSeedingData/
migrations/
placeholders/
seeds/

model/
query/

mail/
matching/

query/
sendMail/

routers/
query/

test/

Figure D.3: The Directory Structure of the Back-end Directory

E
SIG Feedback

In weeks 6 and 9 of the course, the project team was required to submit their codebase to the Software
Improvement Group (SIG). These times are respectively with week 4 and 7 of the development process.
The team received feedback after the first submission with advice on how to improve the maintainability
of the code. This feedback is as much as possible applied and can be seen in the second round of SIG
feedback.

E.1. First Upload
The first time the code was uploaded on Sunday, May 31, 2020. The feedback was received on Friday,
June 5, 2020. This feedback consists of advice in duplication, unit size, unit complexity, unit interfacing,
and module coupling.

E.1.1. SIG Feedback
The codebase scores a 4 out of 5.5 stars on the maintainability model. As can be seen in Fig. E.1,
the Unit size scores 0.5 stars while the majority of the other rating score around 5.0. The team can
conclude that the unit size, because of the lower subscores, is a possible point of improvement.

SIG says that when they look at the unit size, they look at the percentage of code that has a length
above average. These above-average lengths can have several causes, but the most common is
that a method contains too much functionality. Often the method used to be small, but over time the
method was expanded further. The presence of comments separating the code could indicate that
this method is responsible for multiple things that can easily be separated. An example of a file is the
massSeedingData/users.js that contained almost 8000 lines of code and only a single function.

When code is copied, the maintenance effort for fixing bugs or making changes increases. Bugs
can be introduced if changes in duplicated parts are not consistent. Although the duplication rates 5.1,
some files could be fixed to improve the maintenance.

Complex units have more execution paths, making them harder to understand and require more
test cases. Especially userRouter.js had a McCabe Complexity of 19, which is way too much and has
to be reduced to improve maintenance.

Figure E.1: First SIG Feedback

93

E.1.2. Actions taken
The unit size of the code was found to be too large and should be improved. The code found to be too
large mostly included functions handling input for both the back- and front-end. The team sharpened
the static code analysis tool such that these problems had to be fixed. These changes lead to improved
maintainability.

In the back-end, the router functions were taken out of the constructor, such that the functionality
remained. The number of parameters was reduced to a maximum of two; by doing this, it clarifies the
working of the function. For a couple of methods, the complexity was too high. Therefore the function
was split into multiple functions. Such that the complexity is separated over the functions and became
more maintainable.

In the front-end, the problems mostly occurred when parsing the data from the server; preforming
similar checks on the data caused duplicates with other functions. Creating a parse function that can
be used in multiple functions is more maintainable. On top of that, it is also easier to change something
instead of changing it multiple times, see Section 9.5.2.

With the addition of the stricter static code analysis tool, the team strives to improve the maintain-
ability of the codebase and their SIG score.

E.2. Second Upload
The second time the code was uploaded to SIG was on Tuesday, June 16, 2020. The feedback was
received on Monday, June 22, 2020. Due to a mistake on our side, the wrong file was uploaded,
which resulted in an incorrect review. SIG was contacted, and answered with the option to reupload
our submission. They also clarified the reason why the unit size of VueJS files was incorrect. This
incorrect size had to do with an attribute in the script tag of the files that would cause the correction
script to misbehave. We removed these attributes and took the opportunity to reupload our submission.
The feedback that is described below will be that of the reuploaded submission.

E.2.1. SIG Feedback
The second submission scores a 5.0 out of 5.5 stars on the maintainability model. As can be seen in
Fig. E.2, the unit size scores 3.7 stars, whereas other scores are above 5.0. The team can conclude
that the unit size has improved, but not as much as it should have been.

Code duplication is one of the things that the team worked on to improve. In the front-end, several
methods were moved such that they could be accessed globally. According to SIG, these files were
improved, but since the number of files grew, the total code duplication also increased. This resulted
in the number of stars received for duplication going from 5.1 to 4.3.

For unit complexity, 4.4 stars were given for the first upload. The McCabe Complexity of most of
the files are fixed, since there are only three files left. Matcher.py is the file with a McCabe Complexity
of 7, the others have 6. This results in 5.4 stars for unit complexity.

Figure E.2: Second SIG Feedback

E.2. Second Upload 95

E.2.2. Recommendations
Having a strict coding guideline to follow can be a nuisance, but in the end, it helps the creation of
elegant and readable code. The team agrees that on future projects, these strict guidelines will be
deployed from the start as having them at the beginning will improve a project. A point of improvement
for the current project is the code duplication due to its decrease in value, as stated in the previous
paragraph. This duplication is mostly present in the front-end Admin App, as this contains a lot of
similar screens that were not created with the reduction of code duplication in mind.

F
Database UML

97

Figure F.1: Database UML for the user

99

Figure F.2: Database UML for dating

G
Database Tables

The 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 table is used to store all the feedback provided on a swiping candidate.
𝑢𝑠𝑒𝑟_𝑖𝑑 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑢𝑠𝑒𝑟_𝑖𝑑 refer to the 𝑢𝑠𝑒𝑟 table.

candidate_feedback
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
candidate_user_id bigint unsigned NO PK NULL
liked tinyint(1) NO NULL
updated_at datetime NO CURRENT_TIMESTAMP DEFAULT_GENERATED on update CURRENT_TIMESTAMP

Table G.1: Table Representing Database Table ‘candidate_feedback‘

The 𝑑𝑎𝑡𝑒 table holds all the date data of the application. Every date has an unique id. 𝑢𝑠𝑒𝑟_𝑖𝑑_𝑎 and
𝑢𝑠𝑒𝑟_𝑖𝑑_𝑏 refer to the 𝑢𝑠𝑒𝑟 table. 𝑑𝑎𝑡𝑖𝑛𝑔_𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡_𝑖𝑑 refers to the 𝑑𝑎𝑡𝑖𝑛𝑔_𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡
table and 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡_𝑖𝑑 to the 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 table.

date
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
user_id_a bigint unsigned NO FK NULL
user_id_b bigint unsigned NO FK NULL
dating_establishment_id bigint unsigned NO FK NULL
time_slot_id bigint unsigned NO FK NULL
created_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
updated_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED

Table G.2: Table Representing Database Table ‘date‘

101

The 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡 table is used to keep track of users that are searching for a date. Each enrollment
has an unique id. 𝑢𝑠𝑒𝑟_𝑖𝑑 refers to the 𝑢𝑠𝑒𝑟 table. Once a date is found for an enrollment the 𝑑𝑎𝑡𝑒_𝑖𝑑
will be set. The 𝑑𝑎𝑡𝑒_𝑖𝑑 refers to the 𝑑𝑎𝑡𝑒 table.

date_enrolment
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
user_id bigint unsigned NO FK NULL
date_id bigint unsigned YES FK NULL
created_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
updated_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED

Table G.3: Table Representing Database Table ‘date_enrolment‘

The 𝑑𝑎𝑡𝑖𝑛𝑔_𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 table keeps track of all Dating Establishments that are registered to FireFly
Dating. It is linked to the 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 table via the 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 field.

dating_establishment
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
name varchar(128) NO NULL
description varchar(1024) YES NULL
location_id bigint unsigned YES FK NULL
address varchar(256) NO NULL
rating int YES NULL
email varchar(320) NO NULL
phone varchar(15) NO NULL
lat decimal(10,8) NO NULL
long decimal(11,8) NO NULL
archived tinyint(1) YES 0
url varchar(255) YES NULL

Table G.4: Table Representing Database Table ‘dating_establishment‘

The 𝑑𝑎𝑡𝑖𝑛𝑔_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 table is used to store all the feedback provided on a date. 𝑢𝑠𝑒𝑟_𝑖𝑑 and 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘_𝑢𝑠𝑒𝑟_𝑖𝑑
refer to the 𝑢𝑠𝑒𝑟 table. The 𝑑𝑎𝑡𝑒_𝑖𝑑 refers to the 𝑑𝑎𝑡𝑒 table

dating_feedback
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
feedback_user_id bigint unsigned NO FK NULL
date_id bigint unsigned NO PK NULL
accepted tinyint(1) YES 0
showed_up tinyint(1) YES NULL
successful tinyint(1) YES NULL
message varchar(1024) YES NULL
cancelled tinyint(1) YES 0

Table G.5: Table Representing Database Table ‘dating_feedback‘

103

The 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 table keeps track of all the Time Slots of Dating Establishments. It
does this by referencing a Time Slot via 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡_𝑖𝑑 in the 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 table. Each availability also
specifies the amount of dates that could happen at that time.

establishment_availability
Field Type Null Key Default Extra
dating_establishment_id bigint unsigned NO PK NULL
time_slot_id bigint unsigned NO PK NULL
amount_of_dates_possible int unsigned NO 1
archived tinyint(1) YES 0

Table G.6: Table Representing Database Table ‘establishment_availability‘

The 𝑔𝑒𝑛𝑑𝑒𝑟 table lists all the genders that are supported by the system. All entries have a unique id.

gender
Field Type Null Key Default Extra
id int unsigned NO PK NULL auto_increment
name varchar(32) YES NULL

Table G.7: Table Representing Database Table ‘gender‘

The 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛_𝑔𝑒𝑛𝑑𝑒𝑟 table lists the sexual preferences of a user. By linking the 𝑢𝑠𝑒𝑟_𝑖𝑑 with the
𝑔𝑒𝑛𝑑𝑒𝑟_𝑖𝑑 it means that user 𝑎 is interested in gender 𝑥. A user can have multiple interests. 𝑢𝑠𝑒𝑟_𝑖𝑑
references the 𝑢𝑠𝑒𝑟 table and 𝑔𝑒𝑛𝑑𝑒𝑟_𝑖𝑑 references the 𝑔𝑒𝑛𝑑𝑒𝑟 table.

interested_in_gender
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
gender_id int unsigned NO PK NULL

Table G.8: Table Representing Database Table ‘interested_in_gender‘

The 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 table lists the languages a user can date in. By linking the 𝑢𝑠𝑒𝑟_𝑖𝑑 with
the 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒_𝑖𝑑 it means that user 𝑎 is interested in language 𝑥. A user can have multiple interests.
𝑢𝑠𝑒𝑟_𝑖𝑑 references the 𝑢𝑠𝑒𝑟 table and 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒_𝑖𝑑 references the 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 table.

interested_in_language
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
language_id int unsigned NO PK NULL

Table G.9: Table Representing Database Table ‘interested_in_language‘

The 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 table lists the relationship types a user is looking for. By linking the
𝑢𝑠𝑒𝑟_𝑖𝑑 with the 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝_𝑡𝑦𝑝𝑒_𝑖𝑑 it means that user 𝑎 is looking for relationship type 𝑥. A user
can have multiple interests. 𝑢𝑠𝑒𝑟_𝑖𝑑 references the 𝑢𝑠𝑒𝑟 table and 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝_𝑡𝑦𝑝𝑒_𝑖𝑑 references
the 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝_𝑡𝑦𝑝𝑒 table.

interested_in_relation
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
relationship_type_id int unsigned NO PK NULL

Table G.10: Table Representing Database Table ‘interested_in_relation‘

The 𝑘𝑛𝑒𝑥_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠 table is used by the ORM to keep track of the migration state. These states are
used to upgrade or downgrade the database to a specific version.

knex_migrations
Field Type Null Key Default Extra
id int unsigned NO PK NULL auto_increment
name varchar(255) YES NULL
batch int YES NULL
migration_time timestamp YES NULL

Table G.11: Table Representing Database Table ‘knex_migrations‘

The 𝑘𝑛𝑒𝑥_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑙𝑜𝑐𝑘 table is used by the ORM to lock migrations to prevent running multiple
migrations at once 1.

knex_migrations_lock
Field Type Null Key Default Extra
index int unsigned NO PK NULL auto_increment
is_locked int YES NULL

Table G.12: Table Representing Database Table ‘knex_migrations_lock‘

The 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 table lists all the languages available in the system. These languages are used to
indicate what a user can speak and what languages they want to date in.

language
Field Type Null Key Default Extra
id int unsigned NO PK NULL auto_increment
name varchar(128) NO NULL
name_iso varchar(128) NO NULL
code varchar(6) YES NULL

Table G.13: Table Representing Database Table ‘language‘

The 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 table lists all the locations available in the system. These locations are used to facilitate
date locations and indicate where Dating Establishments are located.

location
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
place varchar(128) NO NULL
archived tinyint(1) YES 0

Table G.14: Table Representing Database Table ‘location‘

The 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝_𝑡𝑦𝑝𝑒 table list all the relationships types available in the system. These relationships
types are used by users to indicate their interest.

relationship_type
Field Type Null Key Default Extra
id int unsigned NO PK NULL auto_increment
name varchar(32) YES NULL

Table G.15: Table Representing Database Table ‘relationship_type‘

1http://knexjs.org/#Notes-about-locks

http://knexjs.org/#Notes-about-locks

105

The 𝑟𝑒𝑝𝑜𝑟𝑡 table lists all the types of cases a user can be reported for. Each entry has an unique id.

report
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
description varchar(256) YES NULL
archived tinyint(1) YES 0

Table G.16: Table Representing Database Table ‘report‘

The 𝑟𝑒𝑝𝑜𝑟𝑡_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 table links a report instance to a user. If a user is reported than this user is
the 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑_𝑢𝑠𝑒𝑟_𝑖𝑑, the user that created the report is the 𝑢𝑠𝑒𝑟_𝑖𝑑. 𝑟𝑒𝑝𝑜𝑟𝑡_𝑖𝑑 refers to the 𝑟𝑒𝑝𝑜𝑟𝑡
table.

report_feedback
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
reported_user_id bigint unsigned NO PK NULL
report_id bigint unsigned NO PK NULL
created_at timestamp YES CURRENT_TIMESTAMP DEFAULT_GENERATED
archived tinyint(1) YES 0

Table G.17: Table Representing Database Table ‘report_feedback‘

The 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 is used by the 𝑒𝑥𝑝𝑟𝑒𝑠𝑠-𝑠𝑒𝑠𝑠𝑖𝑜𝑛2 library and managed by the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡-𝑠𝑒𝑠𝑠𝑖𝑜𝑛-𝑘𝑛𝑒𝑥3
library. This table is used to store the user’s session data.

session
Field Type Null Key Default Extra
id varchar(255) NO PK NULL
sess json NO NULL
expired datetime NO FK NULL

Table G.18: Table Representing Database Table ‘session‘

The 𝑠𝑝𝑒𝑎𝑘𝑠_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 table indicates that a user can speak a language. By linking the 𝑢𝑠𝑒𝑟_𝑖𝑑 with
the 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒_𝑖𝑑 it means that user 𝑎 can speak language 𝑥. A user can speak multiple languages.
𝑢𝑠𝑒𝑟_𝑖𝑑 references the 𝑢𝑠𝑒𝑟 table and 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒_𝑖𝑑 references the 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 table.

speaks_language
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
language_id int unsigned NO PK NULL

Table G.19: Table Representing Database Table ‘speaks_language‘

2https://www.npmjs.com/package/express-session
3https://www.npmjs.com/package/connect-session-knex

https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/connect-session-knex

The 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 table lists all the Time Slots available in the system. Time Slots are used to indicate
when a user is available and when Dating Establishments have availability.

time_slot
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
tag varchar(32) NO NULL
time timestamp NO NULL
archived tinyint(1) YES 0

Table G.20: Table Representing Database Table ‘time_slot‘

The 𝑢𝑠𝑒𝑟 table lists all the users registered to FireFly Dating. This table contains most of the users’
information. It also contains an entry to indicate if a user is banned. 𝑔𝑒𝑛𝑑𝑒𝑟_𝑖𝑑 refers to the 𝑔𝑒𝑛𝑑𝑒𝑟
table and 𝑏𝑎𝑛𝑛𝑒𝑑_𝑟𝑒𝑝𝑜𝑟𝑡_𝑖𝑑 refers to the 𝑟𝑒𝑝𝑜𝑟𝑡 table.

user
Field Type Null Key Default Extra
id bigint unsigned NO PK NULL auto_increment
uid varchar(128) NO UK NULL
gender_id int unsigned YES FK NULL
first_name varchar(64) YES NULL
last_name varchar(64) YES NULL
biography varchar(2048) YES NULL
email varchar(320) NO NULL
birth_date date YES NULL
height int YES NULL
preference_min_age int YES NULL
preference_max_age int YES NULL
verified tinyint(1) YES 0
created_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
updated_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
logged_in_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
nickname varchar(64) YES NULL
banned_report_id bigint unsigned YES FK NULL

Table G.21: Table Representing Database Table ‘user‘

The 𝑢𝑠𝑒𝑟_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 table keeps track of all the available times a user has for a date enrollment.
If a user 𝑎 has an enrollment 𝑏 and is available on time 𝑥 then 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡_𝑖𝑑 𝑏 will link to
𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡_𝑖𝑑 𝑥. 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡_𝑖𝑑 refers to table 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡 and 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡_𝑖𝑑 refers to the
𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 table.

user_availability
Field Type Null Key Default Extra
date_enrolment_id bigint unsigned NO PK NULL
time_slot_id bigint unsigned NO PK NULL

Table G.22: Table Representing Database Table ‘user_availability‘

107

The 𝑢𝑠𝑒𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 table keeps track of all the locations a user can date at. If a user 𝑎 has an enrollment
𝑏 and can date at location 𝑥 then 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡_𝑖𝑑 𝑏 will link to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 𝑥. 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡_𝑖𝑑
refers to table 𝑑𝑎𝑡𝑒_𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 refers to the 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 table.

user_location
Field Type Null Key Default Extra
date_enrolment_id bigint unsigned NO PK NULL
location_id bigint unsigned NO PK NULL

Table G.23: Table Representing Database Table ‘user_location‘

The 𝑢𝑠𝑒𝑟_𝑝ℎ𝑜𝑡𝑜 table links the photos uploaded by users to their profile. The 𝑜𝑟𝑑𝑒𝑟 field is used to
order the photos in the application. 𝑢𝑠𝑒𝑟_𝑖𝑑 refers to table 𝑢𝑠𝑒𝑟.

user_photo
Field Type Null Key Default Extra
user_id bigint unsigned NO PK NULL
name varchar(64) NO PK NULL
order int NO NULL
created_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED
updated_at timestamp NO CURRENT_TIMESTAMP DEFAULT_GENERATED

Table G.24: Table Representing Database Table ‘user_photo‘

H
Administrator Panels

Figure H.1: Reports Panel of the Admin App

109

Figure H.2: Time Slots Panel of the Admin App

111

Figure H.3: Establishment Panel of the Admin App

Figure H.4: Matching Panel of the Admin App

Figure H.5: Dashboard Panel of the Admin App

I
Project Description

This appendix contains the original project description as viewed on the Project Forum1.

Create a blind dating web-application and automated date reser-
vations at bars
What are we working on
Most dating apps have a low matching to dating ratio. Most of the time you spend is on getting the date
itself, in the chatroom. And let’s face it, that’s not the best place to lit a spark or build a connection. We
want to eliminate this wasted time and have a nice dating experience for everyone involved. This will
be done with 1 on 1 blind dating. The web-application will reserve a spot for you and your date at a
cooperating cafe/bar by looking at the availability of everyone involved.

Instead of letting an algorithm do all the matches, we let our users build the ground layer of their
matches by swiping.

What the students will be developing
The students will be developing the matching and reserving system. Users should be able to change
their profile info. The system should use an algorithm that smartly uses the swiping information of the
user(s) and their availabilities to match people and reserve a spot at a cooperating place for their date.
Also, a payment system should be incorporated.

The technologies that will be needed
• Node.js (back-end)

• React.js or Angular2 (front-end)

• Database system of choice

Additional practical information
The project owners and lead developers will be available for questions all throughout the project time-
line. The developing work will happen in Delft.

1https://projectforum.tudelft.nl

113

https://projectforum.tudelft.nl

J
Info Sheet

115

Create a Blind Dating Web-Application
and Automated Date Reservations at Bars

FireFly Dating: Your Natural Guide in the Dark

Final presentation date: July 3rd, 2020

The �nal report for this project
can be found at repository.tudelft.nl

Project team members
Colin Geukes
Lead testing, front-end & back-end developer

Caspar Krijgsman
Lead programmer & back-end developer

Steven Lambregts
Team leader, front-end & back-end developer

Vincent Wijdeveld
Lead UI, Scrum master & front-end developer

Matthijs Wisboom
Lead communications, front-end & back-end developer

Contact

Client
Siraadj Salarbux
CEO of FireFly Dating

Coach
Ir. Taico Aerts

Matthijs Wisboom
matthijswisboom@gmail.com

Lecturer and Developer, TU Delft

All team members contributed to the report
and to preparing the final project presentation.

The problem in modern dating applications is that
users spend too much time in the chat window. At
FireFly, they believe that the endless chatting moves
away from the purpose of a dating application.
Dating should be done in the real world at a café, by
sharing a drink and a laugh. FireFly Dating is a blind
dating application that focuses on an offline experi-
ence rather than online.

During the research phase of the project, the team
established the list of the requirements that had to
be met in order for the product to be successful.
During this phase, the team also researched the best
methods to match users in dating applications. It was
concluded that a recommender system would be an
optimal method of matching users.

Throughout the project's implementation phase, the
team made use of the Scrum development method-
ology to implement all requirements. Due to the
COVID-19 outbreak, the team had to deal with the

difficulties of online collaboration. However, through
the use of Discord, the team was able to overcome
these difficulties mostly. The client preferred to have
a working proof-of-concept. Thus, it was decided to
focus on implementing the must-have requirements
rather than implementing an advanced matching
algorithm.

The final product is a web application that is accessi-
ble on many different platforms and devices. Users
can enter their dating preferences, swipe other
users, and get matched to go on a blind date. The
application is thoroughly tested with unit testing,
and the beta testing will start after the project is
finished.

The project team recommended that the product
owner tests the product in live beta tests and imple-
ment the insights gained from this. If this is done,
the team believes that the FireFly dating app has
great potential to be used in the real world.

K
Routes

117

RoutingRouting
In this wiki page all the routes of the application are described. These routes are split into separate front- and backend routing.

Backend RoutingBackend Routing

In this section all the routing of the backend will be described.

There are several starting routes that house all the data requests of the concering part.

RouteRoute DescriptionDescription sectionsection

/user The requests concerning the users User

/gender The requests concerning the genders Gender

/candidate The requests concerning the candidates Candidate

/location The requests concerning the locations Location

/language The requests concerning the languages Language

/time-slot The requests concerning the time-slots Time Slot

/image The requests concerning the images Image

/report The requests concerning the reports Report

/report-type The requests concerning the report-types Report Type

/admin The requests concerning the admin Admin

/establishment The requests concerning the establishments Establishment

/establishment/availability
The requests concerning the establishment
availabilities

Establishment
Availability

/dating-feedback The requests concerning the dating-feedback Dating Feedback

/matching The requests concerning the matching Matching

EstablishmentEstablishment

The route /establishment houses all the data requests concerning the establishments.

AuthAuth TypeType RouteRoute DescriptionDescription

admin get /establishment/get Retrieves all the establishment entries.

admin post /establishment/create Create a single establishment entry.

admin post /establishment/update Updates a single establishment entry.

admin post /establishment/archive
(Un)archives a single establishment
entry

/establishment/get/establishment/get getget adminadmin

Basic get request to retrieve all the establishments. Only admin authentication is required, no further params are needed.

/establishment/create/establishment/create postpost adminadmin

The route to creating a new establishment entry. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

name String The name of the establishment.

locationId Number The location id of the establishment.

address String The address of the establishment.

rating Number The rating of the establishment.

email String The email of the establishment.

phone String The phone number of the establishment.

lat Number Latitude of the establishment, used for maps.

long Number Longitude of the establishment, used for
maps.

ParamParam TypeType DescriptionDescription

/establishment/update/establishment/update postpost adminadmin

The route to update an existing establishment entry. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the establishment you want to
update.

name String The name of the establishment.

locationId Number The location id of the establishment.

address String The address of the establishment.

rating Number The rating of the establishment

email String The email of the establishment.

phone String The phone number of the establishment.

lat Number Latitude of the establishment, used for maps.

long Number Longitude of the establishment, used for
maps.

/establishment/archive/establishment/archive postpost adminadmin

The route to (un)archive an existing establishment entry. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the establishment you want to update.

archived Boolean The new archive status of the establishment
entry.

UserUser

The route /user houses all the data requests concerning the user.

AuthAuth TypeType RouteRoute DescriptionDescription

user get /user/get Retrieves all data of the user.

admin get /user/amount Get the amount of users

119

admin get /user/date-amount Get the amount of dates

admin get /user/ages
Get the amount of ages accompanied by their number of
occurrences.

user post /user/configure Configures the user with the data supplied.

user post /user/set Updates the user with the data supplied.

user post /user/date-enrol Enroll the user for a date.

user post /user/delete Delete the user and all of its content from the server.

user post /user/set-gender-interest Set the gender interest for the user.

user post /user/set-language Set the language interest for the user.

AuthAuth TypeType RouteRoute DescriptionDescription

/user/get/user/get getget useruser

Basic get request to retrieve the data of the user. Only user authentication is required, no further params are needed.

/user/amount/user/amount getget adminadmin

Basic get request to retrieve the amount of users. Only admin authentication is required, no further params are needed.

/user/date-amount/user/date-amount getget adminadmin

Basic get request to retrieve the amount of dates. Only admin authentication is required, no further params are needed.

/user/ages/user/ages getget adminadmin

Basic get request to retrieve the amount of ages. Only admin authentication is required, no further params are needed.

/user/configure/user/configure postpost useruser

The route to configure the users basic data. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

first_name String The first name of the user.

last_name String The last name of the user.

birthDate String The birth date of the user.

gender_id Number The gender id of the user.

/user/set/user/set postpost useruser

The route to set the users settings. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

height Number The height of the user.

preferenceMinAge Number The prefered minimal age of candidates of the user.

preferenceMaxAge Number The prefered maximal age of candidates of the
user.

nickname String The nickname of the user.

biography String The biography set by the user.

/user/date-enrol/user/date-enrol postpost useruser

The route to enrol the user for potential dates. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

- - -

/user/delete/user/delete postpost useruser

The route to delete the users account. This can only take place when the user is authenticated. The user has to login again beforehand to renew the token.

ParamParam TypeType DescriptionDescription

- - -

/user/set-gender-interest/user/set-gender-interest postpost useruser

The route to set the users gender interest. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

interests array<Number> The gender ids the user is interested
in.

/user/set-language/user/set-language postpost useruser

The route to set the users language he speaks and is interested in. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

languages array<Number> The language ids the user speaks and is interested
in.

AdminAdmin

The route /admin houses all the data requests concerning the administration panel.

AuthAuth TypeType RouteRoute DescriptionDescription

admin post /admin/login Logs the admin in in the panel.

admin post /admin/logout
Logs the admin out from the
panel.

/admin/login/admin/login postpost adminadmin

Login request to login in the admin panel. This will grand the admin privileges.

ParamParam TypeType DescriptionDescription

token String The login token of the
administrator.

/admin/logout/admin/logout postpost adminadmin

Logout request to logout from the admin panel. This will take the admin privileges.

ParamParam TypeType DescriptionDescription

- - -

CandidateCandidate

The route /candidate houses all the data requests concerning the candidates of the user.

121

AuthAuth TypeType RouteRoute DescriptionDescription

user post /candidate/feedback
Sets the users feedback to the candidate and creates a new queue with
candidates.

user post /candidate/populate (Re)populates the user with his candidates.

/candidate/feedback/candidate/feedback postpost useruser

Sets the users preferences for a candidate. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

id Number The id of the candidate.

liked Boolean The boolean if the user liked the
candidate.

/candidate/populate/candidate/populate postpost useruser

Gets the users candidates. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

- - -

Dating FeedbackDating Feedback

The route /dating-feedback houses all the data requests concerning the feedback of the candidates of the user.

AuthAuth TypeType RouteRoute DescriptionDescription

admin get /dating-feedback/amount Gets the amount of feedback of the dates.

user post /dating-feedback/accept Accepts the date a user got.

user post /dating-feedback/cancel Cancels the date a user got.

user post /dating-feedback/report Report the user after the date has taken place.

user post /dating-feedback/message Sends a message after the date was successful.

user post /dating-feedback/incorrect-match
Sets the date as unsuccessful after the date has taken
place.

/dating-feedback/amount/dating-feedback/amount getget adminadmin

Basic get request to retrieve the amount of dating feedback. Only admin authentication is required, no further params are needed.

/dating-feedback/accept/dating-feedback/accept postpost useruser

Sets the date as accepted from this user. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

date_id Number The id of the
date.

/dating-feedback/cancel/dating-feedback/cancel postpost useruser

Sets the date to cancelled from this user. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

date_id Number
The id of the
date.

ParamParam TypeType DescriptionDescription

/dating-feedback/report/dating-feedback/report postpost useruser

Report the other user after the date, because he did something wrong. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

date_id Number The id of the date.

reasons array<Object> The reasons the user has to report the candidate. Can contain a reason that does not exist
yet.

/dating-feedback/message/dating-feedback/message postpost useruser

Sends a message to the user after both decided to send the message. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

date_id Number The id of the date.

message String The message that will be send after both thought the date was
successful.

/dating-feedback/incorrect-match/dating-feedback/incorrect-match postpost useruser

Sets the date to unsuccessful for the user. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

date_id Number The id of the
date.

Establishment AvailabilityEstablishment Availability

The route /establishment/availability houses all the data requests concerning the establishment availabilities.

AuthAuth TypeType RouteRoute DescriptionDescription

admin get /establishment/availability/get
Get all the establishment
availabilities.

admin post /establishment/availability/create Create an establishment availability.

admin post /establishment/availability/update Update an establishment availability.

admin post /establishment/availability/archive Archive an establishment availability.

/establishment/availability/get/establishment/availability/get getget adminadmin

The route to get the establishment availabilities. This can only take place with admin privileges.

/establishment/availability/create/establishment/availability/create postpost adminadmin

The route to creating a new establishment availability. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

datingEstablishmentId Number The id of the dating establishment.

timeSlotId Number The id of the time slot.

123

places Number The number of tables available at that timeslot in that
establishment.

ParamParam TypeType DescriptionDescription

/establishment/availability/update/establishment/availability/update postpost adminadmin

The route to update a establishment availability. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

datingEstablishmentId Number The id of the dating establishment.

timeSlotId Number The id of the time slot.

places Number The number of tables available at that timeslot in that
establishment.

/establishment/availability/archive/establishment/availability/archive postpost adminadmin

The route to update a establishment availability. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

datingEstablishmentId Number The id of the dating establishment.

timeSlotId Number The id of the time slot.

archived Boolean The boolean if the dating establishment availability is
archived.

GenderGender

The route /gender houses all the data requests concerning the genders.

AuthAuth TypeType RouteRoute DescriptionDescription

none get /gender/get Gets all the genders.

admin get /gender/amount Gets the amount of genders.

admin get /gender/interest-amount Gets the amount of interests.

/gender/get/gender/get getget

Gets all the genders

/gender/amount/gender/amount getget useruser

Gets the amount of genders by the amount of matches. This can only take place with admin privileges.

/gender/interest-amount/gender/interest-amount getget useruser

Gets the amount of gender interests by the amount of matches. This can only take place with admin privileges.

ImageImage

The route /image houses all the data requests concerning the image of the user.

AuthAuth TypeType RouteRoute DescriptionDescription

user get /image/all Gets all the images of the user.

admin get /image/amount Get the amount of images.

user get /image/:name Get the image with a specific name.

admin get /image/:id/:name Get the image with a specific name and id.

user get /image/candidate/:candidateId/:file
Get the images with a specific name from a
candidate.

user post /image/upload Upload a photo.

user post /image/delete/:photoObject Delete a photo.

user post /image/ordering Order the photos.

AuthAuth TypeType RouteRoute DescriptionDescription

/image/all/image/all getget useruser

Gets all the images a user has. This can only take place when the user is authenticated.

/image/amount/image/amount getget adminadmin

Gets the amount of images. This can only take place with admin privileges.

/image/:name/image/:name getget useruser

Gets the image with a specific name. This can only take place when the user is authenticated.

/image/:id/:name/image/:id/:name getget useruser

Gets the image with a specific name and id. This can only take place when the user is authenticated.

/image/:id/:name/image/:id/:name getget adminadmin

Gets the image with a specific name and id. This can only take place with admin privileges.

/image/candidate/:candidateId/:file/image/candidate/:candidateId/:file getget useruser

Get the images from a candidate This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

candidateId Number The id of the candidate

file String The filename of the image of the
candidate.

/image/upload/image/upload postpost useruser

Uploads an image to the server. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

files array<File> The files
uploaded.

/image/delete/:photoObject/image/delete/:photoObject postpost useruser

Deletes a specific photo. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

photoObject String The file name to be
deleted.

/image/ordering/image/ordering postpost useruser

Orders the images in the way he set them. This can only take place when the user is authenticated.

125

ParamParam TypeType DescriptionDescription

files array<{name: String, order:
Number}>

The files with their new
ordering.

LanguageLanguage

The route /language houses all the data requests concerning the languages of the system.

AuthAuth TypeType RouteRoute DescriptionDescription

none get /language/get
Gets the languages that are defined in the
database

/language/get/language/get getget

Gets the languages of the system from the database.

LocationLocation

The route /location houses all the data requests concerning the locations of the system.

AuthAuth TypeType RouteRoute DescriptionDescription

none get /location/get
Gets the locations that are defined in the
database

/location/get/location/get getget

Gets the locations of the system from the database.

MatchingMatching

The route /matching houses all the data requests concerning the matching of the system.

AuthAuth TypeType RouteRoute DescriptionDescription

admin get /matching/match
Run the matching
algorithm

admin get /matching/logs Get the matching logs

/matching/get/matching/get getget adminadmin

Start the matching algorithm. This can only take place with admin privileges.

/matching/logs/matching/logs getget adminadmin

Get the matching logs. This can only take place with admin privileges.

ReportReport

The route /report houses all the data requests concerning the report about users.

AuthAuth TypeType RouteRoute DescriptionDescription

user get /report/get Get the report if the user is banned.

admin get /report/pending
Get all the pending reports, without the banned
users.

admin get /report/case Get all the information about the reported user

admin post /report/feedback Report a user with a specific report id.

user post /report/case-feedback Possibility to ban a user after they are reported.

AuthAuth TypeType RouteRoute DescriptionDescription

/report/get/report/get getget useruser

Basic get request to retrieve the report reason if the user is banned. This can only take place when the user is authenticated.

/report/pending/report/pending getget adminadmin

Get the pending reported users that are not banned yet. This can only take place with admin privileges.

/report/case/report/case getget adminadmin

Get all the information about the reported user. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

reportedUserId Number The id of the
user.

/report/feedback/report/feedback postpost adminadmin

Report a user. This can only take place when the user is authenticated.

ParamParam TypeType DescriptionDescription

reportedUserId Number The id of the user.

reportType Number The id of the report why the user is
reported.

/report/case-feedback/report/case-feedback postpost useruser

Taken action for a reported user. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

reported_user_id Number The id of the user.

banned_report_id Number The id of the report why the user is
banned.

latest_report Date The time the user was last reported.

Report TypeReport Type

The route /report-type houses all the data requests concerning the report types.

AuthAuth TypeType RouteRoute DescriptionDescription

admin get /report-type/get Get the report types from the database.

user get /report-type/get-non-archived
Get the report types that are not archived and allowed to see by the
user.

admin post /report-type/create Create a new report type.

admin post /report-type/update Update an existing report type.

admin post /report-type/archive Archive an existing report type.

/report-type/get/report-type/get getget adminadmin

Basic get request to retrieve all the report types. This can only take place with admin privileges.

127

/report-type/get-non-archived/report-type/get-non-archived getget useruser

Basic get request to retrieve all the report types that are not archived and that are applicable for the user. This can only take place when the user is authenticated.

/report-type/create/report-type/create postpost adminadmin

Create a new report type. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

description String The description of the report
type.

/report-type/update/report-type/update postpost adminadmin

Update an existing report type. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the report type.

description String The description of the report
type.

/report-type/archive/report-type/archive postpost adminadmin

(Un)Archive an existing report type. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the report type.

archived Boolean Whether the report type is archived or
not.

Time SlotTime Slot

The route /time-slot houses all the data requests concerning the time slots.

AuthAuth TypeType RouteRoute DescriptionDescription

none get /time-slot/get Get the time slots from the database.

none get /time-slot/get-
next

Get the time slots that are in the future.

admin get /time-
slot/partition

Get the time slot partitions of the establishments. These partitions are the amount of entries and
the total amount of places.

admin post /time-
slot/create

Create a new time slot.

admin post /time-
slot/update

Update an existing time slot.

admin post
/time-
slot/archive Archive an existing time slot.

/time-slot/get/time-slot/get getget

Basic get request to retrieve all the time slots.

/time-slot/get-next/time-slot/get-next getget

Basic get request to retrieve all the time slots that are in the future.

/time-slot/partition/time-slot/partition getget adminadmin

Get the time slot partitions of the establishments. These partitions are the amount of entries and the total amount of places. This can only take place with admin
privileges.

/time-slot/create/time-slot/create postpost adminadmin

Create a new time slot. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

time String The starting time of the time slot.

/time-slot/update/time-slot/update postpost adminadmin

Update an existing time slot. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the time slot.

time String The starting time of the time slot.

/time-slot/archive/time-slot/archive postpost adminadmin

(Un)Archive an existing time slot. This can only take place with admin privileges.

ParamParam TypeType DescriptionDescription

id Number The id of the time slot.

archived Boolean Whether the time slot is archived or
not.

129

Bibliography
[1] Monica Anderson, Emily A. Vogels, and Erica Turner. The Virtues and Downsides of Online Dat-

ing. May 2020. URL: https://www.pewresearch.org/internet/2020/02/06/the-
virtues-and-downsides-of-online-dating/ (visited on June 16, 2020).

[2] Brenda K Wiederhold. Internet Dating: Should You Try It? 2020.
[3] Roberto Ferdman. How well online dating works, according to someone who has been studying

it for years. Mar. 2016. URL: https://www.washingtonpost.com/news/wonk/wp/2016/
03/23/the-truth-about-online-dating-according-to-someone-who-has-
been-studying-it-for-years/.

[4] Judy A. McCown et al. “Internet Relationships: People Who Meet People”. In: CyberPsychology
& Behavior 4.5 (2001). PMID: 11725652, pp. 593–596. DOI: 10.1089/109493101753235188.
eprint: https://doi.org/10.1089/109493101753235188. URL: https://doi.org/
10.1089/109493101753235188.

[5] Janelle Ward. “Swiping, matching, chatting: Self-Presentation and self-disclosure on mobile dat-
ing apps”. In: Human IT: Journal for Information Technology Studies as a Human Science 13
(2016), pp. 81–95.

[6] Maarten H. W. Van Zalk et al. “Who Benefits From Chatting, and Why?: The Roles of Extraver-
sion and Supportiveness in Online Chatting and Emotional Adjustment”. In: Personality and
Social Psychology Bulletin 37.9 (2011). PMID: 21673194, pp. 1202–1215. DOI: 10 . 1177 /
0146167211409053. eprint: https://doi.org/10.1177/0146167211409053. URL:
https://doi.org/10.1177/0146167211409053.

[7] Elisabeth Timmermans and Cédric Courtois. “From swiping to casual sex and/or committed re-
lationships: Exploring the experiences of Tinder users”. In: The Information Society 34.2 (2018),
pp. 59–70. DOI: 10.1080/01972243.2017.1414093. eprint: https://doi.org/10.
1080/01972243.2017.1414093. URL: https://doi.org/10.1080/01972243.2017.
1414093.

[8] Jonathan D. D’Angelo and Catalina L. Toma. “There Are Plenty of Fish in the Sea: The Effects
of Choice Overload and Reversibility on Online Daters’ Satisfaction With Selected Partners”. In:
Media Psychology 20.1 (2017), pp. 1–27. DOI: 10.1080/15213269.2015.1121827. eprint:
https://doi.org/10.1080/15213269.2015.1121827. URL: https://doi.org/10.
1080/15213269.2015.1121827.

[9] Yang Xiaojie. “Analysis of DBMS: MySQL Vs PostgreSQL”. In: Kemi-Tornio University of Applied
Sciences Technology (2012), p. 66.

[10] Neoteric. Single-page application vs. multiple-page application. Mar. 2018. URL: https://
medium . com / @NeotericEU / single - page - application - vs - multiple - page -
application-2591588efe58.

[11] Pramod Sadalage and Martin Fowler. Evolutionary Database Design. May 2016. URL: https:
//martinfowler.com/articles/evodb.html.

[12] Alberto Gimeno. Node.js multithreading: What are Worker threads, and why do they matter? Jan.
2019. URL: https://blog.logrocket.com/node-js-multithreading-what-are-
worker-threads-and-why-do-they-matter-48ab102f8b10/.

[13] NodeJS. Don’t Block the Event Loop (or the Worker Pool). Feb. 2020. URL: https://nodejs.
org/en/docs/guides/dont-block-the-event-loop/.

[14] Jessie Leung. The Test Pyramid. May 2019. URL: https://medium.com/better-programming/
the-test-pyramid-80d77535573 (visited on June 16, 2020).

131

https://www.pewresearch.org/internet/2020/02/06/the-virtues-and-downsides-of-online-dating/
https://www.pewresearch.org/internet/2020/02/06/the-virtues-and-downsides-of-online-dating/
https://www.washingtonpost.com/news/wonk/wp/2016/03/23/the-truth-about-online-dating-according-to-someone-who-has-been-studying-it-for-years/
https://www.washingtonpost.com/news/wonk/wp/2016/03/23/the-truth-about-online-dating-according-to-someone-who-has-been-studying-it-for-years/
https://www.washingtonpost.com/news/wonk/wp/2016/03/23/the-truth-about-online-dating-according-to-someone-who-has-been-studying-it-for-years/
https://doi.org/10.1089/109493101753235188
https://doi.org/10.1089/109493101753235188
https://doi.org/10.1089/109493101753235188
https://doi.org/10.1089/109493101753235188
https://doi.org/10.1177/0146167211409053
https://doi.org/10.1177/0146167211409053
https://doi.org/10.1177/0146167211409053
https://doi.org/10.1177/0146167211409053
https://doi.org/10.1080/01972243.2017.1414093
https://doi.org/10.1080/01972243.2017.1414093
https://doi.org/10.1080/01972243.2017.1414093
https://doi.org/10.1080/01972243.2017.1414093
https://doi.org/10.1080/01972243.2017.1414093
https://doi.org/10.1080/15213269.2015.1121827
https://doi.org/10.1080/15213269.2015.1121827
https://doi.org/10.1080/15213269.2015.1121827
https://doi.org/10.1080/15213269.2015.1121827
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://martinfowler.com/articles/evodb.html
https://martinfowler.com/articles/evodb.html
https://blog.logrocket.com/node-js-multithreading-what-are-worker-threads-and-why-do-they-matter-48ab102f8b10/
https://blog.logrocket.com/node-js-multithreading-what-are-worker-threads-and-why-do-they-matter-48ab102f8b10/
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://medium.com/better-programming/the-test-pyramid-80d77535573
https://medium.com/better-programming/the-test-pyramid-80d77535573

[15] Ekaterina Novoseltseva. 8 Benefits of Unit Testing. Jan. 2017. URL: https://dzone.com/
articles/top-8-benefits-of-unit-testing (visited on June 16, 2020).

[16] What are browser developer tools? URL: https://developer.mozilla.org/en-US/
docs/Learn/Common_questions/What_are_browser_developer_tools (visited on
June 16, 2020).

[17] World Health Organization. Coronavirus. URL: https://www.who.int/emergencies/
diseases/novel-coronavirus-2019 (visited on June 19, 2020).

[18] Pekka Abrahamsson et al. “Agile Software Development Methods: Review and Analysis”. In: VTT
publication (2002).

[19] Pete Pizzutillo. Static analysis: Leveraging source code analysis to reign in application main-
tenance cost. Dec. 2013. URL: https : / / www . castsoftware . com / blog / static -
analysis- leveraging- source- code- analysis- to- reign- in- application-
maintenance-cost (visited on June 16, 2020).

[20] Xiaoyun Yang. JavaScript is a loosely typed language, meaning you don’t have to specify what
type of information. Jan. 2018. URL: https://medium.com/@xiaoyunyang/javascript-
is-a-loosely-typed-language-meaning-you-dont-have-to-specify-what-
type-of-information-137408d54fc7 (visited on June 16, 2020).

[21] Cory Kapser and Michael Godfrey. “”Cloning Considered Harmful” Considered Harmful”. In: 2006
13th Working Conference on Reverse Engineering (2006). DOI: 10.1109/wcre.2006.1.

[22] What is duplicate code? May 2020. URL: https://www.codegrip.tech/productivity/
what-is-duplicate-code/ (visited on June 16, 2020).

[23] Software Testing Help. Top 6 BEST Python Testing Frameworks. Feb. 2020. URL: https://
www.softwaretestinghelp.com/python-testing-frameworks/ (visited on Apr. 22,
2020).

[24] Robert J Brym and Rhonda L Lenton. “Love online: A report on digital dating in Canada”. In:
MSN. ca, February 6 (2001).

[25] Jeana H Frost et al. “People are experience goods: Improving online dating with virtual dates”.
In: Journal of Interactive Marketing 22.1 (2008), pp. 51–61.

[26] Amjad Hudaib et al. “Requirements prioritization techniques comparison”. In: Modern Applied
Science 12.2 (2018), p. 62.

[27] Klanten betalen het liefst online: CCV. Sept. 2019. URL: https://www.ccv.eu/nl/2018/
hoe-betalen-klanten-liefst-online-ideal-paypal-tot-creditcard/ (visited
on Apr. 28, 2020).

[28] Stripe. URL: https://stripe.com/en-nl/about (visited on Apr. 28, 2020).
[29] Mollie. URL: https://www.mollie.com/nl/developers (visited on Apr. 28, 2020).
[30] Sarah T Roberts. Content moderation. 2017.
[31] Andreas Veglis. “Moderation techniques for social media content”. In: International Conference

on Social Computing and Social Media. Springer. 2014, pp. 137–148.
[32] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms. MIT

press, 1989.
[33] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Recommender systems: introduction and

challenges”. In: Recommender systems handbook. Springer, 2015, pp. 1–34.
[34] Richi Nayak, Meng Zhang, and Lin Chen. “A social matching system for an online dating network:

A preliminary study”. In: 2010 IEEE International Conference on Data Mining Workshops. IEEE.
2010, pp. 352–357.

[35] Eli J Finkel et al. “Online dating: A critical analysis from the perspective of psychological science”.
In: Psychological Science in the Public interest 13.1 (2012), pp. 3–66.

[36] Austin Carr. “I found out my secret internal Tinder rating and now I wish I hadn’t”. In: Fast Com-
pany (2016).

https://dzone.com/articles/top-8-benefits-of-unit-testing
https://dzone.com/articles/top-8-benefits-of-unit-testing
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.castsoftware.com/blog/static-analysis-leveraging-source-code-analysis-to-reign-in-application-maintenance-cost
https://www.castsoftware.com/blog/static-analysis-leveraging-source-code-analysis-to-reign-in-application-maintenance-cost
https://www.castsoftware.com/blog/static-analysis-leveraging-source-code-analysis-to-reign-in-application-maintenance-cost
https://medium.com/@xiaoyunyang/javascript-is-a-loosely-typed-language-meaning-you-dont-have-to-specify-what-type-of-information-137408d54fc7
https://medium.com/@xiaoyunyang/javascript-is-a-loosely-typed-language-meaning-you-dont-have-to-specify-what-type-of-information-137408d54fc7
https://medium.com/@xiaoyunyang/javascript-is-a-loosely-typed-language-meaning-you-dont-have-to-specify-what-type-of-information-137408d54fc7
https://doi.org/10.1109/wcre.2006.1
https://www.codegrip.tech/productivity/what-is-duplicate-code/
https://www.codegrip.tech/productivity/what-is-duplicate-code/
https://www.softwaretestinghelp.com/python-testing-frameworks/
https://www.softwaretestinghelp.com/python-testing-frameworks/
https://www.ccv.eu/nl/2018/hoe-betalen-klanten-liefst-online-ideal-paypal-tot-creditcard/
https://www.ccv.eu/nl/2018/hoe-betalen-klanten-liefst-online-ideal-paypal-tot-creditcard/
https://stripe.com/en-nl/about
https://www.mollie.com/nl/developers

Bibliography 133

[37] Powering Tinder® - The Method Behind Our Matching. Mar. 2019. URL: https://blog.
gotinder.com/powering-tinder-r-the-method-behind-our-matching/ (visited
on Apr. 22, 2020).

[38] Lukas Brozovsky and Vaclav Petricek. “Recommender System for Online Dating Service”. In:
CoRR abs/cs/0703042 (2007). arXiv: cs/0703042. URL: http://arxiv.org/abs/cs/
0703042.

[39] P. Xia et al. “Reciprocal recommendation system for online dating”. In: 2015 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining (ASONAM). 2015,
pp. 234–241.

[40] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

[41] Karl Pearson. “LIII. On lines and planes of closest fit to systems of points in space”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1901),
pp. 559–572.

[42] A.E. Elo. The Rating of Chess Players, Past and Present. Ishi Press International, 2008. ISBN:
9780923891275. URL: https://books.google.nl/books?id=syjcPQAACAAJ.

[43] Angular. URL: https://angular.io/ (visited on Apr. 22, 2020).
[44] TypeScript. URL: https://www.typescriptlang.org/ (visited on Apr. 22, 2020).
[45] React. URL: https://reactjs.org/ (visited on Apr. 22, 2020).
[46] Nitin Pandit. What and Why React.js. URL: https://www.c-sharpcorner.com/article/

what-and-why-reactjs/ (visited on Apr. 22, 2020).
[47] Introducing JSX. URL: https://reactjs.org/docs/introducing-jsx.html (visited on

Apr. 22, 2020).
[48] Vue.js. URL: https://vuejs.org/ (visited on Apr. 22, 2020).
[49] Angular vs React vs Vue: Which is the Best Choice for 2019? Aug. 2019. URL: https://

hackernoon.com/angular-vs-react-vs-vue-which-is-the-best-choice-for-
2019-16ce0deb3847 (visited on Apr. 22, 2020).

[50] Build Truly Native Mobile Apps with Vue: NativeScript. URL: https://www.nativescript.
org/vue (visited on Apr. 22, 2020).

[51] Youssef Bassil. A Comparative Study on the Performance of the Top DBMS Systems. 2012.
arXiv: 1205.2889 [cs.DB].

[52] Steven A Gabarró and Steven A Gabarrâo.Web Application Design and Implementation: Apache
2, PHP5, MySQL, JavaScript, and Linux/UNIX. Wiley-Interscience, 2007.

[53] Ivan Zoratti. “MYSQL security best practices”. In: (2006).
[54] Node.js. URL: https://nodejs.org/ (visited on Apr. 29, 2020).
[55] S. Tilkov and S. Vinoski. “Node.js: Using JavaScript to Build High-Performance Network Pro-

grams”. In: IEEE Internet Computing 14.6 (2010), pp. 80–83.
[56] K. Lei, Y. Ma, and Z. Tan. “Performance Comparison and Evaluation of Web Development Tech-

nologies in PHP, Python, and Node.js”. In: 2014 IEEE 17th International Conference on Compu-
tational Science and Engineering. 2014, pp. 661–668.

[57] Jest · Delightful JavaScript Testing. URL: https://jestjs.io/ (visited on Apr. 24, 2020).
[58] the fun, simple, flexible JavaScript test framework. URL: https://mochajs.org/ (visited on

Apr. 24, 2020).
[59] Top 5 Javascript Testing Frameworks. Oct. 2019. URL: https://www.browserstack.com/

guide/top-javascript-testing-frameworks (visited on Apr. 24, 2020).
[60] Snapshot Testing · Jest. URL: https://jestjs.io/docs/en/snapshot-testing (visited

on Apr. 24, 2020).
[61] Headless Browser Testing Awesomeness Pros andCons. Nov. 2018. URL: https://testguild.

com/headless-browser-testing-pros-cons/ (visited on Apr. 24, 2020).

https://blog.gotinder.com/powering-tinder-r-the-method-behind-our-matching/
https://blog.gotinder.com/powering-tinder-r-the-method-behind-our-matching/
https://arxiv.org/abs/cs/0703042
http://arxiv.org/abs/cs/0703042
http://arxiv.org/abs/cs/0703042
https://books.google.nl/books?id=syjcPQAACAAJ
https://angular.io/
https://www.typescriptlang.org/
https://reactjs.org/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://reactjs.org/docs/introducing-jsx.html
https://vuejs.org/
https://hackernoon.com/angular-vs-react-vs-vue-which-is-the-best-choice-for-2019-16ce0deb3847
https://hackernoon.com/angular-vs-react-vs-vue-which-is-the-best-choice-for-2019-16ce0deb3847
https://hackernoon.com/angular-vs-react-vs-vue-which-is-the-best-choice-for-2019-16ce0deb3847
https://www.nativescript.org/vue
https://www.nativescript.org/vue
https://arxiv.org/abs/1205.2889
https://nodejs.org/
https://jestjs.io/
https://mochajs.org/
https://www.browserstack.com/guide/top-javascript-testing-frameworks
https://www.browserstack.com/guide/top-javascript-testing-frameworks
https://jestjs.io/docs/en/snapshot-testing
https://testguild.com/headless-browser-testing-pros-cons/
https://testguild.com/headless-browser-testing-pros-cons/

Glossary

Admin App The front-end VueJS application that is used by the Administrator, with the
Vuetify UI framework as the main framework. 15–17, 25, 31, 32, 35, 47–49,
95, 109–112, 135, 137

Administrator A stakeholder that will use the Admin App. vii, 5–7, 16, 17, 25, 30–32, 35, 49
Adobe XD Adobe XD is the design tool that was used to create the initial designs for the

application. 9–11
Angular Angular is a researched framework for this project, like VueJS. Angular did not

seem like a good fit for this project and was not selected to work with. 7, 81,
82

API Application Programming Interface; Software that acts as middle-ware. It al-
lows two independent applications to send and retrieve data of each other. 12,
15, 17, 18, 35, 42

BookshelfJS A JavaScript ORM for NodeJS, it utilizes KnexJS for its functionality. 18
BootstrapVue BoostrapVue is the bootstrap library for VueJS. It allows the creation of prop-

erly styled pages to a professional standard. 16, 47, 135, 137

CircleCI Continuous Integration & Deployment Service that the project used in the early
stages for the CI. It was however dropped and changed to GitHub Actions. 24

Client App The front-end VueJS application that is used by the client, with the Boot-
strapVue UI framework. 6, 9, 12, 15, 16, 25, 31, 35, 47, 49, 137

CSS Cascading Style Sheets; Is the styling sheet for pages written in markup lan-
guage like HTML. 137

Dating Establishment The establishment at which dates could take place, these establishments are
owned by the external Dating Establishment. vii, 4, 5, 7, 20, 32, 34, 35, 37,
49, 102–104, 106, 135, 137

DEO Dating Establishment Owner; a stakeholder that connects to the application to
provide dating locations with their Dating Establishment. 6, 7

Discord Application that allows voice calls and screen sharing. Discord was used to
allow the developers work virtually together. No physical meetings could take
place due to COVID-19. 39, 44

ES6 ECMAScript 6; A programming languages that is inspired on JavaScript. 15
ESLint Linter for locating static errors in JavaScript code. 43
Establishment App The front-end VueJS application that is used by the Establishment, this is not

an actual component, but could be implemented in the future. 49
Express The web server framework for NodeJS, that allows the web pages to be hosted

on a server. 18, 19

Firebase Platform that allows implementation of several features. The feature that this
project uses is the Authentication Services. 15, 16, 18, 24, 25, 37, 48, 49

FireFly The company that ordered the creation of the entire application. v, vii, 1, 37,
45, 56, 60, 135

FireFly Dating The name of the application that was commissioned by the FireFly company.
vii, 1, 3, 5–7, 9, 15, 17, 19, 24, 26–31, 37, 45, 48, 49, 56, 60, 70, 78, 80, 84,
102, 106

Git Git is a version-control system that is used for software development. A key
feature is that it tracks changes in the code base. 136

135

GitHub The hosting platform on which the application version control is hosted. This
hosting platform uses Git. 10, 24, 36, 41, 136

GitHub Actions Continuous Integration Software for GitHub Projects. 24, 135
GitHub Boards Project board of GitHub. These boards help organize and distribute different

tasks within the team. The usage of boards lead to efficient and effective team
cooperation. 41

Google Drive Storge platform in the cloud that houses many different notes taken by the
team. 39, 136

Google Hangouts Video conferencing, which was used to have video calls instead of physical
meetings, due to COVID-19. 39, 44

Google Sheets Google Sheets is a spreadsheet tool that is accessable within Google Drive.
41

HTML HyperText Markup Language; The standard markup language for pages of
your web browser. 15, 18, 135, 136

JavaScript The main programming language that is being used within this application. It
has first-class citizens and is object-oriented. 8, 12, 13, 18, 22, 43, 48, 81, 85,
135–137

Jest JavaScript testing framework that is being used in the front-end. Initially Mocha
was being used as the testing framework in the front-end, but was unsuitable
and was dropped. 8, 22, 47, 85

JSDoc Markup language of JavaScript. It allows to explain what each function does
and what the parameters are. 43

JSX It stands for JavaScript XML. It allows to write HTML and JavaScript properly
together. 81, 82

KnexJS ASQL query builder that allows the creation ofmaintainable queries in JavaScript
for MySQL and other databases. 18, 19, 135

linter A static analysis tool, that checks if the code base is conform to the set of rules.
43, 135

MariaDB A MySQL relational DBMS, that allows a Graphical User Interface instead of
Command Line. 18

McCabe Complexity Cyclomatic complexity, is a tool that indicates how complex a function is. Func-
tions with a large McCabe Complexity are complex and difficult to test, and
should thus be avoided if possible. 93, 94

Mocha Test framework for JavaScript that focuses on NodeJS programs. Initially it
was used in the front- and back-end, but was later changed to only be included
in the back-end. 8, 21, 22, 85, 136

MoSCoW These are the requirements for the applications, separated inMust have, Should
have, Could have and Won’t have. 25, 40

MySQL MySQL is the DBMS that is being used within the application. MySQL uses
SQL. 8, 18, 136

NodeJS JavaScript runtime environment that allows the creation of a dynamic server.
It runs the script outside the web browser that created requests. 8, 13, 17, 18,
20, 21, 85, 135, 136

Nodemailer A library for NodeJS that allows applications to send emails. This is a more
basic mail client in comparison to SendGrid. 48

OAuth A standard for authentication by using third party accounts. 15, 18

PM2 PM2 is a tool that enforces the up-time of the JavaScript runtime NodeJS. 36
PostgreSQL PostgreSQL as a DBMS like MySQL. PostgreSQL is not being used in this

application.. 8

Glossary 137

Product Owner The stakeholder that owns the entire application. vii, 4, 6, 9–13, 23, 32, 35,
39–42, 49

Python A programming language that has many efficient libraries and excellent tools
available. It is used in the application for the matching of users. 13, 20, 22, 48

React React is a researched framework for this project, like VueJS. React did seem
like a good fit for this project, but was not selected as VueJS was slightly better.
7, 81, 82

Scrum Scrum is a practise to allow developing of systems on an uniform manner. It
relies on the agile principles. 39–42, 44

SCSS Sassy CSS is a superset of CSS. It introduces variables and conditional styling.
10, 15

SendGrid Mail Service that allows sending of email with many additional functionalities.
18, 48, 136

Time Slot A Time Slot reserved at a Dating Establishment at which a date could take
place. vii, 5, 6, 20, 29, 32, 34, 49, 103, 106, 110

TypeScript TypeScript is a superset of JavaScript. It tries to make the language stricter.
81

user A stakeholder that will use the Client App. vii, 1, 3–7, 9, 12, 15, 18–20, 23–32,
35–37, 45, 49, 102–107, 137

VueJS The model-view framework that utilizes JavaScript framework. It is used for
building the entire front-end side of the application. 7, 10, 15, 21–23, 35, 82,
85, 94, 135, 137

Vuetify A VueJS UI library that is similair to BootstrapVue. This library houses more
functionality for working with data in comparison to BootstrapVue. It is used
on the Admin App. 16, 47, 135

WhatsApp WhatsApp is a communication tool that was used in this project to communi-
cate after the work hours. 39

Abbreviations

ACID Atomicity, Consistency, Isolation, and Durability. 82

BEP Bachelor End Project. v, 1, 12, 13, 25, 32, 35, 37, 39, 41, 42, 44, 48, 70

CCM Commercial Content Moderation. 77
CF Collaborative Filtering. 7, 78–80, 86
CI Continuous Integration. 22, 24, 43, 135
CRUD Create, Read, Update and Delete. 16, 17

DBMS DataBase Management System. 18, 83, 85, 136

E2E End to End. 22
EJS Embedded JavaScript templating. 18

FAQ Frequently Asked Questions. 25, 26, 34, 35

GDPR General Data Protection Regulation. 35, 76

JSCPD JavaScript Copy/Paste Detection. 43, 44
JSON JavaScript Object Notation. 82

MVP Minimal Viable Product. 1, 5, 6, 12, 42, 43, 47, 70, 77, 86, 88, 89

ORM Object-Relational Mapping. 18, 104, 135

PSP Payment Service Provider. 6, 7, 32, 76, 77, 86

SIG Software Improvement Group. 35, 43, 44, 76, 93, 94
SQL Structured Query Language. 22, 82, 83, 86, 136

TOS Terms of Service. 35, 37

UGC User-Generated Content. 77
UI User Interface. 9, 10, 40, 47, 135, 137
UML Unified Modeling Language. 98, 99
UX User Experience. 9

139

	Introduction
	Problem definition and Analysis
	Context
	Challenges for Stakeholders
	Users
	Dating Establishment Owners
	Product Owner & Administrator

	Conclusion

	Research
	Requirements
	Stakeholders
	Functional Requirements
	Non-Functional Requirements

	Implementation
	Matching
	Framework Analysis
	Front-end
	Back-end
	Testing

	Design
	Design Goals
	Design Process
	Design Goals and Initial Design
	Design by BEP Team
	Implementation Phase
	Final Design

	Reflection on Design Goals
	System
	Front-end Back-end Communication
	Choice of Programming Languages

	Conclusion

	Implementation
	Overview
	Front-end
	Back-end

	Database Structure
	MySQL
	Building the Database
	Schemas and Relations

	Matching and Dates
	Constraints
	Swiping
	Matching
	Dates

	Testing
	Unit Testing
	Back-end
	Front-end

	Manual Testing
	User Testing
	Stress Testing
	Continuous Integration

	Final Product
	Walkthrough
	User
	Administrator

	Completed requirements
	Functional Requirements
	Non-tracked Features
	Non-functional Requirements

	Ethics
	Process
	Communication
	Meetings with Product Owner
	Communication with Coach
	Team Communication

	Team Division
	Scrum
	Backlog
	Sprint Planning
	Daily Scrum
	Review and Retrospective
	Tracking

	Review of Original Plan
	Maintainability
	Testing
	Static Analysis
	Code Review

	Conclusion

	Conclusion
	Discussion and Recommendation
	Future Improvements
	Snapshot Testing
	Administrator UI Framework
	Database Integration Testing
	Python Testing
	Stress Testing
	Email Client
	Admin Login
	Terms of Service

	Maintainability
	Future additions
	User Images
	Phone Verification
	User Studies
	Establishment Application
	Time Slot Templates

	Project Plan
	Introduction
	Project Scope
	Company description
	Project description

	Project management
	Client
	Coach
	Project team
	Meetings

	Project Timeline

	Research Report
	Introduction
	Problem Analysis
	Research Questions

	Requirements Analysis
	Stakeholders
	Functional Requirements
	Non-Functional Requirements

	Implementation Research
	Payment
	Refund
	Reporting

	Matching Algorithm
	Problem Definition
	Research
	Collaborative Filtering
	Elo
	Conclusion

	Framework Analysis
	Front-End
	Back-End
	Testing

	Conclusion

	Flowchart
	Directory Tree
	SIG Feedback
	First Upload
	SIG Feedback
	Actions taken

	Second Upload
	SIG Feedback
	Recommendations

	Database UML
	Database Tables
	Administrator Panels
	Project Description
	Info Sheet
	Routes
	Bibliography
	Glossary
	Abbreviations

