
 
 

Delft University of Technology

Applications of Hilfer-Prabhakar operator to option pricing financial model

Tomovski, Živorad; Dubbeldam, Johan L.A.; Korbel, Jan

DOI
10.1515/fca-2020-0052
Publication date
2020
Document Version
Final published version
Published in
Fractional Calculus and Applied Analysis

Citation (APA)
Tomovski, Ž., Dubbeldam, J. L. A., & Korbel, J. (2020). Applications of Hilfer-Prabhakar operator to option
pricing financial model. Fractional Calculus and Applied Analysis, 23(4), 996-1012.
https://doi.org/10.1515/fca-2020-0052

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1515/fca-2020-0052
https://doi.org/10.1515/fca-2020-0052


RESEARCH PAPER

APPLICATIONS OF HILFER-PRABHAKAR OPERATOR

TO OPTION PRICING FINANCIAL MODEL

Živorad Tomovski 1, Johan L. A. Dubbeldam 2,

and Jan Korbel 3,4,5

Abstract

In this paper, we focus on option pricing models based on time-fractional
diffusion with generalized Hilfer-Prabhakar derivative. It is demonstrated
how the option is priced for fractional cases of European vanilla option
pricing models. Series representations of the pricing formulas and the risk-
neutral parameter under the time-fractional diffusion are also derived.

MSC 2010 : 26A33; 34A08; 91B25; 91G20

Key Words and Phrases: Hilfer-Prabhakar derivatives; Mittag-Leffler
functions; European pricing model; Cauchy problem; heat equation; frac-
tional diffusion

1. Introduction

Fractional calculus has celebrated great success in recent decades. It
is a powerful tool, which has been recently employed to model complex
biological systems with non-linear behavior and long-term memory. First
attempts on fractional calculus were made by Leibniz, Liouville, Riemann,
or Riesz. As it turns out, the fractional calculus does not provide a unique
definition of the fractional derivative operator. Therefore one can find
definitions according to Riemann and Liouville, Riesz and Feller, Caputo,
Gründwald and Letnikov, Hilfer, Prabhakar and many more, see, e.g., Refs.
[29, 31, 27, 11, 28]. As a result, different definitions of fractional deriva-
tive also have different properties in general; linearity is the only property
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that is always satisfied. The main application of the fractional operators is
to define a class of integrodifferential equations, called fractional diffusion
equations, where the ordinary first temporal and second spatial derivative
is replaced by various fractional derivatives. The main physical purpose
for adopting and investigating diffusion equations of fractional order is to
describe phenomena of anomalous diffusion usually met in transport pro-
cesses through complex or disordered systems, including fractal media. In
this paper, we will consider the fractional diffusion model involving frac-
tional operator in time. Fractional derivatives represent an interpolation
between various well-known classes of ordinary or partial differential equa-
tions. This enables to model processes with large jumps (fractional spa-
tial derivatives) or with memory (fractional temporal derivative). Let us
mention the famous space-time fractional diffusion equation introduced by
Mainardi, Pagnini, and Luchko [23]. This equation is equipped with a time
derivative of the Caputo type and space derivative of the Riesz-Feller type.

We generalize this fractional diffusion equation by considering a gen-
eralization of the Caputo derivative called Hilfer-Prabhakar derivative. It
combines the Hilfer derivative, which is a generalization of both Caputo
and Riemann-Liouville derivative with Prabhakar integral. The Hilfer-
Prabhakar derivative is then used as the temporal derivative operator as the
generalization of heat and wave equations. With the help of the Fourier-
Laplace transform, we derive two representations of the fundamental solu-
tion of this equation in terms of an infinite series. Both of the representa-
tions can be used in different situations and are complementary. Finally,
we apply these results to option pricing of the European vanilla options and
derive formulas for option prices under the diffusion with Hilfer-Prabhakar
derivatives.

2. Definitions of fractional derivatives

Before introducing the regularized and non-regularized Hilfer-Prabhakar
differential operators, we briefly review the definitions of the most com-
monly used operators of classical fractional calculus. In particular, the
classical Riemann-Liouville derivative and the Caputo derivative of frac-
tional order are introduced. For more information about these derivatives,
we refer the reader to classical references [15, 16, 19, 26].

Definition 2.1. (Riemann-Liouville integral). Let f ∈ L1
loc[a, b],

where −∞≤a < t < b≤∞, be a locally integrable real-values function.
The Riemann-Liouville integral is defined as

(Iαa+f)(t) =
1

Γ(α)

∫ t

a

f(u)

(t− u)1−α
du = (f ∗ Φα)(t), α > 0, (2.1)
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where Φα(t) =
tα−1

Γ(α) .

Using this integral we can next define the Riemann-Liouville derivative.

Definition 2.2. (Riemann-Liouville derivative). Let f ∈ L1[a, b],
where −∞≤a < t < b≤∞, and f ∗ Φm−α ∈ Wm,1[a, b],m = �α� with
Wm,1[a, b] is the Sobolev space defined by

Wm,1[a, b] =

{
f ∈ L1[a, b] :

dm

dtm
f ∈ L1[a, b]

}
The Riemann-Liouville derivative of order α > 0 is defined as

(Dα
a+f)(t) =

dm

dtm
Im−α
a+ f(t) =

1

Γ(m− α)

dm

dtm

∫ t

a

f(u)

(t− u)m−1−α
du. (2.2)

For n ∈ N, we denote by ACn[a, b] the space of real-valued functions
with (n− 1) continuous derivatives on [a, b] such that fn−1(t) ∈ AC[a, b].

We now continue with the Caputo derivative in which definition the
differentiation proceeds integration.

Definition 2.3. (Caputo derivative). Let α > 0, m = �α�, and
f ∈ ACm[a, b]. The Caputo derivative of order α > 0 is the defined as

(CDα
a+f)(t) = (Im−α

a+
dm

dtm
f)(t) =

1

Γ(m− α)

∫ t

a
(t− s)m−1−α dm

dsm
f(s) ds.

(2.3)

In the space of functions belonging to ACm[a, b] the following relation
between the Riemann-Liouville and the Caputo derivative holds.

Theorem 2.1. For f ∈ ACm[a, b], m = �α�, α ∈ R
+, m ∈ N the

Riemann-Liouville derivative of order α exists almost everywhere and can
be written as

(Dα
a+f)(t) = (CDα

a+f)(t) +

m−1∑
k=0

(x− a)k−α

Γ(k − α+ 1)
f (k)(a+). (2.4)

2.1. Hilfer derivatives. Hilfer introduced a generalized fractional opera-
tor in [15, 16] which combines the Caputo and Riemann-Liouville deriva-
tives presented in the following definition.

Definition 2.4. (Hilfer Derivative) Let μ ∈ (0, 1), ν ∈ [0, 1] and
f ∈ L1[a, b], −∞≤ a < t < b≤∞, f ∗K(1−ν)(1−μ) ∈ AC1[a, b]. The Hilfer
derivative is defined as
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(Dμ,ν
a+

f)(t) =

(
I
(1−μ)ν
a+

d

dt
(I

(1−ν)(1−μ)
a+

f)

)
(t). (2.5)

We remark that Eq.(2.5) reduces to the Riemann-Liouville derivative
for ν = 0 and to the Caputo derivative for ν = 1. Furthermore, from now on
we will set a = 0 without loss of generality, for convenience. An important
issue is which initial conditions should be imposed when considering Cauchy
problems with involving Hilfer derivatives. The expression of the Laplace
transform of Eq.(2.5) [15, 16]

L [(Dμ,ν
0+

f)(t)
]
(s) = sμL[f(t)](s)− sν(μ−1)

(
I
(1−ν)(1−μ)
0+

f
)
(0+), (2.6)

shows that the initial conditions should be of the form
(
I
(1−ν)(1−μ)
0+

f
)
(0+),

which do not have a clear physical meaning except when ν = 1, that is,
in the Caputo case. However, we can regularize the Hilfer derivative by
restricting ourselves to the space of absolutely continuous function AC1[0, b]
and apply Theorem 2.1. We then obtain for μ ∈ (0, 1)

(Dμ,ν
0+

f)(t) =
(
I
(1−ν)μ
0+

d
dt(I

(1−ν)(1−μ)
0+

f)
)
(t) =

(
I
ν(1−μ)
0+

I
(1−ν)(1−μ)
0+

d
dtf
)
(t)

+I
ν(1−μ)
0+

tνμ−μ−νf(0+)
Γ(1−ν−μ+νμ) = I1−μ

0+
d
dtf(t) +

t−μf(0+)
Γ(1−μ)

= (CDμ
0+

f)(t) + t−μf(0+)
Γ(1−μ) . (2.7)

Hence the Hilfer derivative reduces to the Riemann-Liouville as defined
in (2.2) in the space AC[0, b]. We can regularize the Hilfer derivative by
subtracting the divergent term, which is commonly referred to as the reg-
ularized Hilfer derivative.

Definition 2.5. (Regularized Hilfer Derivative). Under the same
conditions as in definition of the Hilfer derivative we define the regularized
Hilfer derivative (D̄μ,ν

0+
f)(t) as

(D̄μ,ν
0+

f)(t) = (Dμ,ν
0+

f)(t)− t−μf(0+)

Γ(1 − μ)
. (2.8)

We immediately see from Eq. (2.8) that the regularized Hilfer derivative
is equal to the Caputo derivative and does hence not depend on ν.

2.2. Prabhakar derivative. We can further generalize the Hilfer deriv-
ative by replacing the integral kernel 1/tμ−1 occurring in the Riemann-
Liouville integrals by the function eγρ,μ,ω(t) with

eγρ,μ,ω(t) = tμ−1Eγ
ρ,μ(ωt

ρ), t ∈ R, ρ, μ, ω, γ ∈ C, R(ρ),R(μ) > 0,
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whereEγ
ρ,μ(ωtρ) is the generalized Mittag-Leffler (Prabhakar) function which

is defined as

Eγ
ρ,μ(t) =

∞∑
k=0

Γ(γ + k)

Γ(γ)Γ(ρk + μ)
tk.

By definition, it follows that

E1
ρ,μ(t) = Eρ,μ(t) =

∞∑
k=0

tk

Γ(ρk + μ)
,

and

E1
ρ,1(t) = Eρ(t) =

∞∑
k=0

tk

Γ(ρk + 1)
.

The Laplace transform of eγρ,μ,ω(t) is given by

L[eγρ,μ,ω(t)](s) = s−μ(1− ωs−ρ)−γ (
∣∣ωs−ρ

∣∣ < 1).

The following definition was put forward in a paper by Prabhakar [25]
and later investigated in [29, 31]. Using the integral kernel eγρ,μ,ω(t) enables
us to define so-called Prabhakar integral.

Definition 2.6. (Prabhakar integral). Let f ∈ L1[0, b], 0 < t < b≤∞.
The Prabhakar integral can be written as

(Eγ
ρ,μ,ω,0+

f)(t) =

∫ t

0
(t− y)μ−1Eγ

ρ,μ[ω(t− y)ρ]f(y)dy = f ∗ eγρ,μ,ω(t), (2.9)

where ρ, μ, ω, γ ∈ C, R(ρ),R(μ) > 0.

The inverse operation, the Prabhakar derivative, can now be introduced
in the following form.

Definition 2.7. (Prabhakar derivative). Let f ∈ L1[0, b], 0 < x <

b≤∞ and f ∗ e−γ
ρ,μ,ω(·) ∈ Wm,1[0, b], m = �μ�. The Prabhakar derivative is

defined as

(Dγ
ρ,μ,ω,0+

f)(x) =
dm

dxm
(E−γ

ρ,m−μ,ω,0+
f)(x), (2.10)

where ρ, μ, ω, γ ∈ C, R(ρ),R(μ) > 0.

2.3. Generalized Hilfer-Prabhakar derivative. We can next define the
generalized Hilfer-Prabhakar derivative (GHP).

Definition 2.8. Let 0 < ν ≤ 1, n − 1 < μ ≤ n, n ∈ N, ω, γ ∈
R, ρ > 0 and let f ∈ L1[0, b], f ∗ e−γ

ρ,μ,ω(·) ∈ AC1[0, b]. The generalized
Hilfer-Prabhakar derivative is defined by
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(Dγ,μ,ν
ρ,ω,0+

f)(t) =

(
E−γν

ρ,ν(n−μ),ω,0+

dn

dtn

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+f

))
(t), (2.11)

where (E0
ρ,0,ω,0+f)(t) = f.

The special case n = 1 of this definition, was introduced and considered
by Garra et al. [11]. We observe that (2.11) reduces to the generalized
Hilfer derivative for γ = 0, defined by Hilfer et al. [17]. We will introduce
an extended Laplace transform formula of the GHP derivative, which has
not yet appeared in the literature.

Lemma 2.1. (Laplace transform of the GHP derivative). The Laplace
transform of the GHP derivative (2.11) with 0 < ν ≤ 1 and n−1 < μ ≤ n
and n ∈ N is given by

L
(
(Dγ,μ,ν

ρ,ω,0+
f)(t)

)
(s) = sμ(1− ωs−ρ)γL (f(t)) (s)− s−ν(n−μ)(1− ωs−ρ)γν

×
n∑

k=1

sn−k dk−1

dtk−1

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+

f
)
(t)

∣∣∣∣∣
t=0+

.

(2.12)

P r o o f. Using the convolution property for Laplace transform, we
obtain

L
(
(Dγ,μ,ν

ρ,ω,0+
f)(t)

)
(s) = L

[
e−γν
ρ,ν(n−μ),ω(t)

]
(s)

× L
[
dn

dtn

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+

f
)
(t)

]
(s)

= s−ν(n−μ)(1− ωs−ρ)γν
{
snL

[
e
−γ(1−ν)
ρ,(1−ν)(n−μ),ω(t)

]
(s)

×L (f(t)) (s)−
n∑

k=1

sn−k dk−1

dtk−1

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+

f
)
(t) |t=0+

}

= s−ν(n−μ)(1− ωs−ρ)γνsns−(1−ν)(n−μ)(1− ωs−ρ)γ(1−ν)L (f(t)) (s)

− s−ν(n−μ)(1− ωs−ρ)γν
n∑

k=1

sn−k dk−1

dtk−1

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+

f
)
(t) |t=0+

= sμ(1− ωs−ρ)γL (f(t)) (s)− sν(n−μ)(1− ωs−ρ)γν

×
n∑

k=1

sn−k dk−1

dtk−1

(
E

−γ(1−ν)
ρ,(1−ν)(n−μ),ω,0+

f
)
(t) |t=0+ .

�
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In order to consider Cauchy problems involving initial conditions de-
pending only on the function and its integer order derivatives, we use the
regularized version of the Hilfer-Prabhakar (RHP) derivative that we next
define.

Definition 2.9. (Regularized Hilfer Prabhakar derivative). For 0 <
ν≤ 1, n− 1 < μ≤n and n ∈ N the RHP of f ∈ ACn[0, b] is given as

(CDγ,μ
ρ,ω,0+

f)(t) =

(
E−γν

ρ,ν(n−μ),ω,0+
E

−γ(1−ν)
ρ,ν(n−μ),ω,0+

dn

dtn
f

)
(t)

=

(
E−γ

ρ,ν(n−μ),ω,0+
dn

dtn
f

)
(t). (2.13)

We proceed by calculating the Laplace transform of RHP, which we will
need in the next section.

Lemma 2.2. The Laplace transform of the RHP derivative (2.13) with
0 < ν ≤ 1 and n− 1 < μ ≤ n and n ∈ N is given by

L
(
(CDγ,μ,ν

ρ,ω,0+
f)(t)

)
(s) = sμ(1− ωs−ρ)γL (f(t)) (s)

− sμ−n(1− ωs−ρ)γ
n∑

k=1

sk−1f (n−k)(0+). (2.14)

P r o o f. Using the convolution property of Laplace transform, we ob-
tain

L
(
(CDγ,μ,ν

ρ,ω,0+f)(t)
)
(s) = L

[
e−γ
ρ,n−μ,ω(t)

]
(s)L

[
f (n)(t)

]
(s)

= sμ−n(1− ωs−ρ)γ

[
snL[f(t)](s)−

n∑
k=1

sk−1f (n−k)(0+)

]

= sμ(1− ωs−ρ)γL (f(t)) (s)− sμ−n(1− ωs−ρ)γ
n∑

k=1

sk−1f (n−k)(0+).

�

3. Fractional-diffusion equation with Hilfer-Prakhbar derivative

The theory developed in the previous section will next be applied to
a few problems that are of interest in finance and mathematical physics.
Let us study a generalization of the ordinary fractional wave equation, by
generalizing the time derivative to a Hilfer-Prabhakar derivative. We then
find the following theorem.
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Theorem 3.1. The solution to the Cauchy problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Dγ,μ,ν
ρ,ω,0+

u)(x, t) = K ∂2

∂x2u(x, t), t > 0, x ∈ R,[
E

−γ(1−ν)
ρ(1−ν)(2−μ),ω,0+

u(x, t)
]
t=0+

= g(x)[
∂
∂tE

−γ(1−ν)
ρ(1−ν)(2−μ),ω,0+

u(x, t)
]
t=0+

= 0

limx→±∞ u(x, t) = 0,

(3.1)

where μ ∈ (1, 2), ν ∈ [0, 1], ω ∈ R, K, ρ > 0, γ ≥ 0 is given by

u(x, t) =
1

2π

∞∑
n=0

(−1)n

Kn+1
e
−γ(n+2)
ρ,ν(2−μ)−μn−1,ω(t)

∫ ∞

−∞

ĝ(k)e−iκx

κ2n+2
dκ. (3.2)

P r o o f. We let ũ(x, s) denote the Laplace transform (with respect to
time) of u(x, t), that is ũ(x, s) = L[u(x, t)]. The Fourier transform (with
respect to x) is designated by û(κ, t) = F [u(x, t)]. We calculate the solution
of Eq. (3.1) by taking the Laplace-Fourier transform of Eq. (3.1) and using
Lemma 1 (Eq. (2.12). This yields:

sμ(1− ωs−ρ)γ ˆ̃u(κ, s) − s−ν(2−μ)(1− ωs−ρ)2γsĝ(κ) = −Kκ2 ˆ̃u(κ, s). (3.3)

From Eq. (3.3) we derive the following power series representation for
ˆ̃u(κ, s):

ˆ̃u(κ, s) =
s−ν(2−μ)+1(1− ωs−ρ)2γ

sμ(1− ωs−ρ)γ +Kκ2
ĝ(κ) =

1

Kκ2
s−ν(2−μ)+1(1− ωs−ρ)2ν

1 + sμ(1−ωs−ρ)γ

Kκ2

ĝ(κ)

=
s−ν(2−μ)+1(1− ωs−ρ)2ν

Kκ2

∞∑
n=0

(
− 1

Kκ2

)n

sμn(1− ωs−ρ)γnĝ(κ)

=

∞∑
n=0

(−1)n

Kn+1
sμn−ν(2−μ)+1(1− ωs−ρ)γ(n+2) ĝ(κ)

κ2n+2
. (3.4)

Eq. (3.4) is valid when the sum converges, that is when∣∣∣∣sμ(1− ωs−ρ)γ

Kκ2

∣∣∣∣ < 1.

We conclude the proof by applying the inverse Fourier transform to Eq. (3.4)
to obtain

u(x, t) =
1

2π

∞∑
n=0

(−1)n

Kn+1
e
−γ(n+2)
ρ,ν(2−μ)−μn−1,ω(t)

∫ ∞

−∞

ĝ(k)e−iκx

κ2n+2
dκ.

�

Example 1. For the initial condition g(x) = δ(x), where δ is the Dirac
delta function, expression (3.2) reduces to
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u(x, t) =
1

2

∞∑
n=0

|x|2n+1

(2n+ 1)!Kn+1
e
−γ(n+2)
ρ,ν(2−μ)−μn−1,ω(t).

In order to consider Cauchy problems involving initial conditions de-
pending only on the function and its integer order derivatives, we calculate
the solution to problem similar to the first problem, but this time with a
RHP derivative. The solution can again be expressed in power series and
is presented in the following theorem.

Theorem 3.2. The solution to the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩

(CDγ,μ,ν
ρ,ω,0+

u)(x, t) = K ∂2

∂x2u(x, t), t > 0, x ∈ R,

u(x, 0+) = g(x)
∂
∂tu(x, t)

∣∣
t=0+

= h(x)
limx→±∞ u(x, t) = 0,

(3.5)

where μ ∈ (1, 2), ν ∈ [0, 1], ω ∈ R, K, ρ > 0, γ ≥ 0 is given by

u(x, t) =
1

2π

[ ∞∑
n=0

(−1)n

Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+2,ω(t)

∫ ∞

−∞

ĥ(k)e−iκx

κ2n+2
dκ

+

∞∑
n=0

(−1)n

Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(t)

∫ ∞

−∞

ĝ(k)e−iκx

κ2n+2
dκ

]
. (3.6)

P r o o f. We first take the Laplace transform of (3.5) and use Lemma
2.2, (2.14). This yields

sμ(1− ωs−ρ)γ ˆ̃u(κ, s)− sμ−2(1− ωs−ρ)γ
[
ĥ(κ) + sĝ(κ)

]
= −Kκ2 ˆ̃u(κ, s),

(3.7)

from which we can express ˆ̃u(κ, s) in term of the Fourier transforms of the
functions g and h

ˆ̃u(κ, s) =
sμ−2(1− ωs−ρ)γ ĥ(κ) + sμ−1(1− ωs−ρ)γ ĝ(κ)

sμ(1− ωs−ρ)γ +Kκ2
. (3.8)

Under the condition ∣∣∣∣sμ(1− ωs−ρ)γ

Kκ2

∣∣∣∣ < 1,

we can expand the denominator of Eq. (3.8), which gives
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ˆ̃u(κ, s) =
1

Kκ2

[ ∞∑
n=0

(
− 1

Kκ2

)n

sμ(n+1)−2(1− ωs−ρ)γ(n+1)ĥ(κ)

+
∞∑
n=0

(
− 1

Kκ2

)n

sμ(n+1)−1(1− ωs−ρ)γ(n+1)ĝ(κ)

]
. (3.9)

Taking the inverse Laplace transform results in

û(κ, t) =

∞∑
n=0

(−1)n

Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+2,ω(t)

ĥ(κ)

κ2n+2

+

∞∑
n=0

(−1)n

Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(t)

ĝ(κ)

κ2n+2
. (3.10)

By next applying the inverse Fourier transform on û(κ, t) we obtain result
Eq. (3.6). �

Example 2. Similarly to the previous case, when g(x) = δ(x) and
h(x) = 0, we obtain

u(x, t) =
∞∑
n=0

|x|2n+1

(2n + 1)!Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(t). (3.11)

Alternatively, we can derive another representation for this example.
Let us rewrite the fundamental solution in the Fourier-Laplace representa-
tion (Eq. 3.8) as

ˆ̃u(κ, s) =
s−1

1 +Kκ2
(

sργ−μ

(sρ−ω)γ

) . (3.12)

Let us now apply the series expansion, in contrast to the previous section,

directly to −Kκ2
(

sργ−μ

(sρ−ω)γ

)
The reason for that is that while the former

representation is good for direct calculations with the fundamental solution,
the latter is better for integration over initial conditions. Moreover, the two
representations are complimentary.

Thus we can write

û(κ, t) =

∞∑
n=0

(−K)nκ2neγnρ,μn+1,ω(t). (3.13)

By taking the inverse Fourier transform, we obtain the expansion in
terms of the integration kernel Φα(x) function, as defined in Eq. (2.1) so
we have

u(x, t) =

∞∑
n=0

Φ−2n(x)(−K)neγnρ,μn+1,ω(t). (3.14)
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We note that for n ∈ N we have according to [12]

Φ−n = lim
α→n

Φ−α(x) = δ(n)(x). (3.15)

Of course, both representations have a different range of validity. In
the next section we will show that we can combine both representations to
obtain the correct option pricing formula.

4. Applications to option pricing model

Applications of fractional calculus in option pricing started in connec-
tion with stable distributions, which can be naturally described by frac-
tional diffusion equation with Riesz-Feller derivative. The first generaliza-
tion of Black-Scholes model [5, 6] to the model with stable distributions
was the Finite moment log-stable option pricing model introduced by Carr
and Wu [7]. Later several other models were introduced that included time-
fractional [13, 21, 10] derivatives, space-fractional derivatives, [8] space-time
fractional derivatives [20, 1, 2, 3, 4] derivatives of fractional order [22], etc.
It has been shown that the orders of fractional derivatives play the role of
risk redistribution parameters in price and time [20].

Let us now consider an option O, which is a function of the underlying
asset price St, strike price K, maturity time τ = T − t (and then other
market parameters and parameters of the underlying distribution) which
price is given by integration over the initial condition

O(St,K, τ) =

∫
dStO(ST ,K)u(ST , 0|St, τ). (4.1)

This can be rewritten as

O(St,K, τ, r, q) =

∫
dxF (Ste

(r+q)τ+x,K)u(x, τ), (4.2)

where r is the interest rate and q is the risk-neutral factor. The reason
for introduction of the risk neutral factor is transform from the log-returns,
which are described by the diffusion equations to prices. We obtain it as the
Radon-Nikodyn derivate of the equivalent martingale measure with respect
to the original measure. The risk-neutral parameter can be expressed as:

q = − logEP[eSt−1 ]. (4.3)

The expectation in definition (4.3) over the probability measure P is called
Esscher’s transform [9], which can be calculated in terms of its probability
densities u(x, τ), that is [1]

q = − log

∫
exp(x)u(x, τ = 1)dx. (4.4)

We consider the fundamental solution in the following form:
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u(x, t) = c+u+(x, t)ξx≥0(x) + c−u−(x, t)ξx<0(x)

= c+ξx≥0(x)
∞∑
n=0

Φ−2n(x)(−K)neγnρ,μn+1,ω(t)

+c−ξx<0(x)

∞∑
n=0

|x|2n+1

(2n+ 1)!Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(t). (4.5)

Let us consider the European option, where F (ST ,K) = max{ST −K, 0}.
Let us divide the calculation to two parts, so O = c+O++c−O−, which

we obtain from integration over positive or negative x. From the first part,
we get

O+(St,K, τ, r, q, μ, γ, ρ, ω,K) =
∞∑
n=0

∂2nF (ST ,K)

∂x2n
|x=0(−K)neγnρ,μn+1,ω(τ),

(4.6)

O+(F ,K, τ, μ, γ, ρ, ω,K) = max{F − K, 0}

+φK(F)
∞∑
n=1

(−K)neγnρ,μn+1,ω(τ), (4.7)

where F = Ste
(r+q)τ , φK(x) = x if x > K and φK(x) = 0 if x < K.

For the second part, we get

O−(St,K, τ, r, q, μ, γ, ρ, ω,K) =

∞∑
n=0

1

(2n+ 1)!Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(τ)

×
∫ 0

−(r+q)τ+log(K/St)
dx|x|2n+1

(
e(r+q)τ+x −K

)
(4.8)

which can be expressed as

O−(F ,K, τ, μ, γ, ρ, ω,K) =

∞∑
n=0

1

(2n + 1)!Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(τ)

×
(
(F/St)γ(2(n + 1), log(F/K)) − K (log(F/K))2(n+1)

2(n + 1)

)
, (4.9)

where

γ(s, x) =

∫ x

0
ts−1 exp(−t)dt

denotes the incomplete Gamma function. Note that the constants c± have
to be chosen in order to fit the data. Since O+ is linear in S and O− might
not converge for certain values, the constants should be chosen carefully
from the data to describe the prices accurately.
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The risk-neutral factor can be calculated in the similar way. We express
it in the following way:

q = − log

(∫ 0

−∞
dx exp(x)c−u−(x) +

∫ ∞

0
dx exp(x)c+u+(x)

)
= − log(c−q− + c+q+), (4.10)

where

q− =

∞∑
n=0

1

Kn+1
e
−γ(n+1)
ρ,−μ(n+1)+1,ω(1) (4.11)

and

q+ =

∞∑
n=0

(−K)neγnρ,μn+1,ω(1). (4.12)

Example 3. Let us calculate the value of q+ for a special configuration
of parameters μ = 2ρ, γ = 1 and ω2 > 4K. Then we get rewrite q+ as

q+ =

∞∑
n=0

(−K)nEn
ρ,2ρn+1(ω) = 1−K

∞∑
n=0

(−K)nEn+1
ρ,2ρ(n+1)+1(ω). (4.13)

Here we can apply the straightforward formula
∞∑
n=0

(−xy)nEn+1
α,2αn+β(x+ y) =

xEα,β(x)− yEα,β(y)

x− y
(x 
= y), (4.14)

where we identify α = ρ, β = 2α+1, xy = K and x+ y = ω. Thus, we get
the expressions

x =
ω +

√
ω2 − 4K

2
(4.15)

y =
ω −√

ω2 − 4K

2
(4.16)

and express q+ as

q+ = 1− K√
ω2 − 4K

[
ω +

√
ω2 − 4K

2
Eρ,2ρ+1

(
ω +

√
ω2 − 4K

2

)

−ω −√
ω2 − 4K

2
Eρ,2ρ+1

(
ω −√

ω2 − 4K

2

)]
. (4.17)

Example 4. Similarly, we can calculate the value of q− for the similar
conditions, i.e., μ = 2ρ, γ = 1. Going back to the Laplace image, we can
write

L[q−](s) = 1

s

∞∑
n=0

1

Kn+1
s2ρ(n+1)(1− ωs−ρ)n+1
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=
1

s

∞∑
n=0

(
s2ρ − ωsρ

K

)n+1

=
s2ρ−1 − ωsρ−1

ωsρ − s2ρ +K
. (4.18)

The roots of the denominator can be calculated as

u =
ω +

√
ω2 + 4K

2
, (4.19)

v =
ω −√

ω2 + 4K

2
, (4.20)

so we can write

L[q−](s) = 1

s
− uv

u− v

(
s−1

sρ − u
− s−1

sρ − v

)
. (4.21)

With the inverse Laplace transform, we finally get

q− =
uEρ(v)− vEρ(u)

u− v

=

ω+
√
ω2+4K
2 Eρ

(
ω−√

ω2+4K
2

)
− ω−√

ω2+4K
2 Eρ

(
ω+

√
ω2+4K
2

)
√
ω2 + 4K

. (4.22)

5. Conclusions

In this paper, we have calculated fundamental solutions of diffusion
equations with Hilfer-Prabhakar time-fractional derivative and applied them
to the problem of option pricing. We have shown two representations of
the fundamental solutions, one expressed in a series of xn, one in a series of
δ(n)(x). Each representation has its range of validity. Therefore, it is con-
venient to describe the resulting fundamental solution as a general linear
combination of both representations. Since fractional calculus also appears
in other parts of finance [18, 14, 24, 30] it will also be natural to consider
the Hilfer-Prabhakar derivative in other financial applications. The param-
eters of Hilfer-Prabhakar derivative enable one to model a large scale of
different aspects of financial processes, including scaling, large jumps, or
different types of memory effects.
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[17] R. Hilfer, Y. Luchko, Ž. Tomovski, Operational method for the solution
of fractional differential equations with generalized Riemann-Liouville
fractional derivatives. Fract. Calc. Appl. Anal. 12, No 3 (2009), 299–
318; at http://www.math.bas.bg/complan/fcaa.

[18] A. Kerss, N.N. Leonenko, A. Sikorskii, Fractional Skellam processes
with applications to finance. Fract. Calc. Appl. Anal. 17, No 2 (2014),
532–551; DOI:10.2478/s13540-014-0184-2;
https://www.degruyter.com/view/journals/fca/17/2/

fca.17.issue-2.xml.
[19] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications

of Fractional Differential Equations. Elsevier, North Holland (2006).
[20] H. Kleinert, J. Korbel, Option pricing beyond Black-Scholes based

on double-fractional diffusion. Physica A 449 (2016), 200–214;
DOI:10.1016/j.physa.2015.12.125.

[21] K. Koleva, L. Vulkov, Numerical solution of time-fractional
Black–Scholes equation. Comput. Appl. Math. 36 (2017); 1699–1715;
DOI:10.1007/s40314-016-0330-z.

[22] J. Korbel, Y. Luchko, Modeling of financial processes with a space-
time fractional diffusion equation of varying order. Fract. Calc. Appl.
Anal. 19, No 6 (2016), 1414–1433; DOI:10.1515/fca-2016-0073;
https://www.degruyter.com/view/journals/fca/19/6/

fca.19.issue-6.xml.
[23] F. Mainardi, Yu. Luchko and G. Pagnini, The fundamental solution of

the space-time fractional diffusion equation. Fract. Calc. Appl. Anal.
4, No 2 (2001), 153–192.

[24] R. Panini, R. Srivastav, Option pricing with Mellin trans-
forms. Math. Comput. Modeling 40, No 1-2 (2004), 43–56;
DOI:10.1016/j.mcm.2004.07.008.

[25] T.R. Prabhakar, A singular integral equation with a generalized
Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971),
7–15.

[26] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and
Derivatives: Theory and Applications. Gordon and Breach, Yverdon
(1993).

http://www.math.bas.bg/complan/fcaa
https://www.degruyter.com/view/journals/fca/17/2/fca.17.issue-2.xml
https://www.degruyter.com/view/journals/fca/19/6/fca.19.issue-6.xml
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[28] T. Sandev, Ž. Tomovski, Fractional Equations and Models. Springer
Nature, Switzerland (2019).
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Josefstädterstrasse 39, 1080 Vienna, AUSTRIA

5 Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague, Břehová 7
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