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0.1. ABSTRACT
This report examines the possibility of modeling the performance of profes-
sional cyclists of Team Sunweb using Bayesian Networks. This research has
an objective to see how these structures work and how they fit in the complex
world of cycling. We want to compare different cyclists of Team Sunweb in the
Grand Tours (Giro d’Italia, Tour de France and Vuelta a España) of the year 2016
and build a model for the leader - who is supported by a group of helpers - dur-
ing different stages in a given race and see if we can predict the pedal power in
the crucial part of the race, i.e. the sprint or a last difficult climb. We can con-
clude that the Bayesian network we created with the combination of help from
an expert and the data captures the most common relationships between all
variables, but that the model doesn’t reveal surprising relationships or good
predictions.
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1
INTRODUCTION

1.1. BACKGROUND IN CYCLING

1.1.1. IN GENERAL

Cycling is very popular in some major European countries like France and Ger-
many, but also in the Netherlands this sport is very attractive. Every year sport
fans are becoming glued to their tv screens when the Tour de France is held. Only
in the Netherlands there are every day 700.000 watchers on average!

Of course, the Tour de France is not the only big event in the world of cycling. It is
one of many. To name a few of them: Tour of Flanders, Paris-Roubaix, Critérium
du Dauphiné, Paris-Nice, Giro d’Italia, Vuelta a España and the Eneco Tour (our
Dutch "Grand Tour"!). About a year and a half ago TU Delft, and in particular
the department Sports Engineering, got in touch with the professional cycling
team Sunweb, named at the time team Giant Alpecin, that performed in the races
mentioned above. They were interested in the scientific contribution of TU Delft
to improve their performance in cycling. So what is behind team Sunweb?

1.1.2. TEAM SUNWEB

Team Sunweb is a professional German cycling team that participates in most big
cycling events through the year. But don’t underestimate the Dutch influence in
this crew; right now ten of the twenty-five riders under contract are Dutch! And
how could we forget? The team with the cyclist that won the Giro d’Italia 2017 a
few weeks ago! Tom Dumoulin, the first male Dutch rider that won the Giro and
by this victory the third Dutchman that won one of the Grand Tours ever. But
how about Warren Barguil, John Degenkolb and Nikias Arndt? Does these names
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ring a bell? If so, you are a fervent fan of team Sunweb and you have been follow-
ing these men in 2016! And if not, I can ensure you that you will know them after
reading this report. In any case I am sure you enjoy reading...

Mag ik dat zo zeggen? Ja, dat mag ik zo zeggen

Mart Smeets

1.2. OVERVIEW OF THE RESEARCH
The cyclists that I mentioned above are the men that are expected to win the
race for Sunweb with the help of the rest of the team. The roles vary from race
to race, but in 2016 these five riders were the leaders. The helpers, or so called
domestiques, bring water and food from team cars and shield teammates from
opponents, but the main job contains protection. This means that much of the
rest of the team’s effort is to push aside the air in front of them. In this way a
leader is riding in the slipstream of another rider and this is easier than taking
the lead. Consequently the leaders conserve energy until the last few hundred
meters or the last climb of the day. This resulted in an important question from
team Sunweb:

Main question:

How good is the performance of the leader during a race and

how is this influenced by the helpers?

Our main approach to solve this problem is to use a Bayesian Network to model
the performance of the leader and his helpers. This is possible because Team
Sunweb collected a huge amount of data of all races for every individual rider.
On the way we will run into some difficulties that arise from the data, but we
are going to discuss this in the next chapter. After this a comparison of networks
will be made when looking at different cyclists during one of the Grand Tours. At
last, but not least, we will perform some prediction. To know what is worth pre-
dicting we definitely need to have a look at the data. This will also be examined
in the next chapter. All this has the effect that we will answer the following sub
questions.
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Sub questions:

1 What is the influence on the structure of the data caused by

the three Grand Tours?

2 How does the structure of the data change when there is

a difference in race type?

3 Does the structure of the data change when we encounter a

different rider type? If so, how?

4 What is the influence on the structure of the number of days

riders are in succession in race?

1.3. DATA
The data that we have at our disposal consists of 63 days in total. In Table 1.1
we can see how the data is distributed over the Grand Tours: Giro d’Italia, Tour
de France and Vuelta a España. These three races are similar in format being
three week races with daily stages with two resting days. The stages have different
types. It can differ from mountain and hill climbs to flat races and team and
individual time trials.

Race Number of days Number of cyclists
Giro d’Italia 21 9
Tour de France 21 9
Vuelta a España 21 8

Table 1.1: Info about the different races where are examining; the number of days and cyclists in
every Grand Tour.

Luckily team Sunweb has been recording a lot of information about these races.
There is a small device on every bicycle. This device is from Pioneer and it mea-
sures details of the race like altitude and gps-data, but also specific cyclist activity
like heart rate and speed.

1.4. METHODOLOGY
To answer the questions that are stated in section 1.2 we are going to use the
help of Bayesian networks. A formal definition and a detailed description follow
in section 3.2, but let’s see what we can say about them in this stage.
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To model the complex world of cycling and especially the performance, we need
a framework that accounts for uncertainty and depicts relationships between
factors that influence each other. As described in Koller & Friedman (2009) [7]
a Bayesian network provides a way to do this compactly. In this way we can use a
graph-based representation as the basis for encoding a complex distribution. In
this representation (a first example can be found in Figure 3.1) the nodes corre-
spond to the variables and the edges to direct probabilistic interactions between
them.

A huge advantage of a Bayesian network is the effective construction by learning
the model from data. How this can be done is explained in chapter 3.2. The mod-
els that are created in this way are usually much better reflections than models
that are purely hand-constructed. Sometimes they can reveal surprising rela-
tionships. Another advantage is the fact that the distribution can we written very
clear, even in cases where the explicit representation of the joint distribution is
astronomically large [7].
The last advantage is the graphical representation. As we will see the type of rep-
resentation is transparent; a Bayesian networks provides us a accurate reflection
of our understanding in the ’real world’ and so can be used to give us new in-
sights, answers and predictions.

1.5. STRUCTURE OF THE THESIS
In chapter 2, an extensive introduction about the data of team Sunweb is given.
This chapter starts with an overview of the data and then the issues that arise
from the data are discussed. Chapter 3 is subdivided in the part where we treat
the theoretical background of Bayesian networks and the way how to build such
models from data and the part where we build our network. In the first part we
will discuss two methods for learning the structure of a Bayesian network. Be-
sides that we will investigate the differences between the two ways of learning
the structure. In the second part we will then build our own network in cycling
by the techniques we learned in this chapter. In chapter 5 we will - based on the
model build in section 4.5 - make predictions of the performance of the leader
during specific days and see how good these predictions are. In conclusion, the
formulated research questions that we presented in section 1.2 are answered in
chapter 6. In the appendix we summarize the information of our data in a com-
pact way. At last we put down our code that we used to produce (in Matlab and
R) all figures and results in the report.



2
DATA ANALYSIS

2.1. DESCRIPTION OF THE DATA
In this chapter we will have a closer look at the available data. As mentioned
before - in section 1.3 - there are 69 variables accessible. With the help of an
expert in the field of cycling, we decided to use the following 8 variables in the
analysis for the performance of cyclists. We make a distinction between variables
with details of the race:

• Riding Time: elapsed time from the moment a cyclist turned the device on,
in seconds [s].

• Altitude: height above sea level of a location, in meters [m].

• Distance: the total traveled distance so far in meters [m].

• Temperature: the temperature during the race in degrees Celsius [◦C]

These race activity variables should be the same for all riders. In this way we
are sure that we are comparing data from different cyclists for the same day and
race. But as we shall see, in the next section about data issues, this is not always
the case. The other group of variables consists of information about cyclist race
activity that is very specific to a personal riding style:

• Pedal Power: the activity of riding a bicycle, in Watt [W].

• Cadence: the rate at which a cyclist is turning the pedals, in rate per minute
[rpm].
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• Heart Rate: the number of contractions of the heart per minute, in beats
per minute [bpm].

• Speed: the speed of the cyclist, in kilometer per hour [km/h].

(a) Power profile (b) Cadence profile

(c) Heart rate profile (d) Speed profile

Figure 2.1: Illustration of the distribution of rider 1 his race activity variables on 8 May 2016.

In Figure 2.1 we plotted four variables: power, cadence, heart rate and speed
against time. The device from Pioneer evaluates all these variables every second,
so for one day we have around 16000 measurements. The power profile (a) of
rider 1 and of all other riders is very capricious. Notable is the fact that the device
measures a lot of zeros. This is because cyclists stop pedaling during a bend or
when they are drafting behind each other. In the cadence profile (b) is a clear
trend visible. The cadence circulates around 90 rounds per minute and falls back
to zero frequently. This is also caused by the lack of pedaling. The heart rate
profile (c) is very stable. There are only a few moments when the heart rate is
zero, but this is probably caused by a poor signal of the heart rate monitor. The
last figure with the speed profile (d) has also a capricious character. The mo-
ments when the speed drops to zero could be explained by facing a sharp turn or
mistakes from the device. Furthermore it is good to see that some obvious rela-
tionships are confirmed by these figures. At the half of the race the pedal power
increases, but so do the cadence, heart rate and speed. At the end the power
drops to 200 Watt, but such a drop occurs in cadence, heart and speed too.
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2.2. DATA ISSUES
The data of rider 1 in the last example was complete, i.e. for every variable we
have meaningful information. Unfortunately this is not the case in many data
samples; there is missing data. This does not mean a few missing measurements
on the whole day, but no information for this variable for the whole day. For ex-
ample, on 8 May 2016 we don’t have a heart rate for rider 4 and on 11 May 2016 we
don’t have the GPS-location of rider 1. In the case of no GPS-location we decided
to leave out this particular cyclist for this day, because of the following issue con-
cerning the device.

This important issue is the moment when a cyclist turns on the device. Every
rider can individually decide when to turn the device on, but we want to compare
for example the speed and the pedal at the same moment, so we need to align or
synchronize the data.

2.2.1. ALIGNMENT

As stated before; one of the more practical problems is that all riders turn the
device on the moment they want to. This means that the data is not aligned. For
example you can not compare the data in the beginning, because for some rid-
ers this is during their warming up and for others during the fifth kilometer in
the race. So we have to deal with this problem first.

Luckily we are in possession of the GPS data for every race for almost every rider.
Using this data we can find the first common GPS coordinates of all riders. So we
are looking for the first moment when they reach the same longitude and latitude
coordinates. We are looking for this moment in the first hour of the race, because
in this part of the race the riders are together in most races. Now we want to re-
mark that it is not possible to use the GPS coordinates of start and finish, since in
almost every race these points - remarkably - did not appear in the coordinates
of the riders. Let’s see how this works in practice. In Figure 2.2 the GPS coordi-
nates of all riders on 7 July 2016 and the first common point are drawn. For every
day we assume that this first common point (in Figure 2.2 the yellow point) is the
starting point for all riders. In the next figure, Figure 2.3, we zoom in on the GPS
coordinates. Here we can see all different paths for the cyclists and in this way
that you need some luck to find common coordinates and especially a common
point in the first part of the race.
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Figure 2.2: Full GPS coordinates of all riders on 7 July 2016 and the first common point.

In this figure only the last plotted coordinates, i.e. the coordinates from rider 2,
are visible, because the rest is behind this line. To see that this is really the case,
have a look at Figure 2.3.

Figure 2.3: Detailed zoom of the GPS data of 9 different cyclists on 7 July 2016.

A remark about the plots above: the legend contains all the names of the cyclists
and the starting point of the race. Figures 2.2 and 2.3 are also added to the ap-
pendix, Table A.1 and A.2, to have a better look at these figures. In the detailed
figure of the GPS data we can see how precise the GPS-coordinates are and how
difficult it can be to find a common point. However, in this way we were able to
find a starting point for all races and thus a solution for the alignment problem.

But how good does this alignment work? In Figure 2.5 we can make the compar-
ison between the original data and the aligned version based on synchronizing
the GPS-coordinates. We compared the altitude, because this is a typical race
variable and it should be the same for each rider for a given day. The following
two figures are also added to the appendix in Table A.3 and A.4.
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Figure 2.4: The original plot of the altitude on 7 July 2016

It looks like some cyclists turned their device earlier on than others. Compare
this figure with Figure 2.5 where we shifted the data based on the first part of the
race.

Figure 2.5: The aligned plot of the altitude based on the GPS coordinates on 7 July 2016.

From now on we will use the aligned data, so that we can compare all the race
and cyclist variables for the same moment.

2.3. DEPENDENCIES

Now that we have aligned the data, we can return to our variables. Given the
selected variables, a first approach is to look at the existing dependencies in the
data (because it is an important tool in Bayesian networks). There are several
correlation coefficients, but we will have a look at the Pearson product-moment
correlation coefficient and Spearman’s rank correlation coefficient, because they
are generally used.
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2.3.1. PEARSON’S CORRELATION

The Pearson or product moment correlation is most widely used. The Pearson’s
correlation ρ between two random variables X and Y with expected values µX

and µY and standard deviations σX and σY is defined as

ρX ,Y = cov(X ,Y )

σXσY
= E [(X −µX )(Y −µY )]

σXσY

where cov stands for the covariance between X and Y and E is the expected value
operator. The Pearson correlation coefficient is sensitive only to a linear relation-
ship between two variables. So nonlinear relationships will not be reflected in
the correlation coefficient. One advantage is that it reflects the noisiness and the
direction of a linear relationship, but not the slope.

2.3.2. SPEARMAN’S CORRELATION

The power of the Spearman’s correlation coefficient is the fact that it does not
only takes into account linear relationships, but any monotonic relationship.
The Spearman correlation coefficient is defined as the Pearson correlation coef-
ficient between the ranked variables. Thus every element of the original data X
and Y is transformed to its rank rgX and rgY and the correlation coefficient is
calculated by

ρr gX ,r gY = cov(r gX ,r gY )

σr gX σr gX

The covariance and standard deviation are still defined as before, but applied to
the rank variables instead of the original data.

Both correlation coefficients meet three conditions: they are maximal 1 and min-
imal -1 and the correlation coefficient is 0 means that the variables are uncorre-
lated, but it needs to be emphasized that uncorrelatedness does not imply inde-
pendence.

To see if there are some linear or monotonic relationships we can have a look
at a scatterplot. This scatterplot is created for cyclist 3 on 8 May 2016, but the
same relationships occur in figures like this for all other cyclists. There is one
obvious linear relationship between riding time and distance and two monotonic
relationships, namely the one between pedal power and cadence and cadence
and speed. There seems to be a relationship between distance and temperature,
but unfortunately not linear or monotonic (as can be seen in Figure 2.6).



Dependencies 11

Figure 2.6: Scatterplot for all relevant variables of cyclist 3 on 8 May 2016.

The fact that the relationship between distance and temperature isn’t linear or
monotonic is captured in the following correlation plots (Figure 2.7).

(a) Pearson (b) Spearman

Figure 2.7: Correlation plots for the relevant variables for the performance of cyclist 3 on 8 May
2016.

Indeed, in this correlation figures our suspicions are confirmed as stated before
and seen in Figure 2.6, but other relationships between heart rate and distance
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or between altitude and temperature are clearly visible.

Let us make one last remark: the color intensity and the size of the circle in Figure
2.6 are proportional to the correlation coefficients. So we don’t get extra informa-
tion from the intensity if we have the size of the circles.



3
BAYESIAN NETWORKS

3.1. INTRODUCTION
In general a model becomes useful if it helps understanding the situation we are
modeling. Let’s say we want to make a probabilistic model in, for example, health
care. Everybody is sick sometimes and we really want to know what kind of ill-
ness we have. So given the symptoms you have, what is the probability that it is
just flu? Or the other way around. You have been told that you are suffering from
a disease and you are curious what symptoms you can expect. These are exam-
ples of questions that could be solved using a probabilistic network or so called
Bayesian network (BN). A BN relates variables, like the symptoms of a disease, by
a sort of dependency to other variables.

Suppose we have two kinds of variables that play a role indicating sickness. The
fact that you do have a sore throat (yes or no) and your temperature. The main
difference between these variables is that they are discrete and continuous. For
the question: "Do you have a sore throat?" there are only two possible answers:
yes and no. This means this is a discrete variable. For the question: "What is your
temperature?" there are much more possible answers. Every number between 35
and 421 could be given as an answer.

3.2. THEORY AND EXAMPLES
To illustrate this and to introduce some new terminology we will have a look at
a simple discrete BN. After that we will see how the theory changes, when we in-

1There could be extraordinary values like 33 or 44, which are taken into the analysis, but these
numbers are just to indicate that most measured temperatures will be in this region



14 Bayesian Networks

troduce continuous variables in a mixed BN, i.e. a network that consists of both
discrete and continuous random variables.

The numbers for the example are taken from Kjærulff & Madsen(2003) [3], but
we changed the context to health care. We have two possible indicators for sick-
ness: X1 and X2. The first indicator X1 represents a Sore Throat {yes,no} and X2

represents a Headache {yes,no} and a variable X3 that indicates if the person in
question is sick. So the possible answers are again {yes,no}.

Figure 3.1: A simple Bayesian network consisting of three random variables where X1, X2 both
represents sickness indicators and X3 a variable that states of the person in question is sick.

In our example we are working with only three variables. The theory for Bayesian
networks works - of course - also for n variables, where n ∈ N. So let’s see how
the theory works for n variables and then come back to the example. For a more
complete analysis we refer you to Jim Smith [1, p.179]). So let X = (X1, X2, . . . , Xn)
be a joint probability mass function or density function of a vector of random
variables. From the standard rules of probability the joint mass function or den-
sity p(x) of X can be written as the product of conditional mass functions or con-
ditional density functions. Thus

p(X) = p(X1)p2(X2|X1)p3(X3|X1, X2) . . . pn(Xn |X1, X2, . . . , Xn−1) (3.1)

where p1(X1) is the mass function of X1 while the other probabilities are condi-
tional probabilities based on the values before it. When all components of X are
independent this p(X) becomes the product of all pi (Xi ), i = 1. . .n.

In most interesting models not all variables are independent of each other, like
in our simple example. Variable X3 is clearly dependent on X1 and X2, see Figure
3.1. Many of the functions pi (Xi |X1, X2, . . . , Xi−1) will often be an explicit func-
tion of components of X whose indices lie in a proper subset Qi ⊂ {1,2, . . . , i −1}
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Thus suppose

pi (Xi |X1, . . . , Xi−1) = pi (Xi |X1,...,i−1) = pi (Xi |XQi ) (3.2)

where the parent set Qi ⊂ {1,2 . . . , i −1} and let the remainder set Ri ⊂ {{1,2, . . . , i −
1} \ Qi , where we allow both Qi and Ri to be empty. In the graph we call Xi a
parent of X j (where i 6= j if there is a direct edge from Xi to X j ). The other way
around we call, in this case, X j a child of Xi . From now we put the parents for a
variable Xi in the above defined set Xi . For example, in our simple example we
call X1 and X2 parents of X3. With our notation we obtain a new factorization
formula of (3.1)

p(X) = p1(X1)
n∏

i=2
pi (Xi |XQi ) (3.3)

Now return to our problem description. We are dealing with three variables, so
let X = (X1, X2, X3). So what is our joint probability function? We know that X1

and X2 don’t depend on other variables and X3 depends on both values. Thus we
find:

p(X) = p(X1, X2, X3) = p(X1)p(X2)p(X3|X1, X2) (3.4)

Assume that p(X1 = no) = p(X2 = no) = 0.9 and p(X1 = yes) = p(X2 = yes) = 0.1,
i.e. the probability of having a sore throat in the morning is equal to 0.1 and the
same holds for having a headache. For the conditional probability p(x3|x1, x2)
we put the information in a so called (conditional) probability table, because we
need the information of indicators X1 and X2 and this is displayed as follows: the
first two columns represent the outcomes of indicators X1 and X2 respectively
and the third and fourth column give the probability of the possible outcomes of
X3.

Sick
Sore Throat Headache no yes

no no 0.98 0.02
no yes 0.10 0.90
yes no 0.15 0.85
yes yes 0.05 0.95

Table 3.1: Conditional probability table for two discrete random variables; given the values
{yes,no} for Sore Throat and Headache we find the probability that the person is sick or not.

Now we can give a formal definition of a discrete BN. We cite the definition of a
Bayesian network (BN) from Jensen and Nielsen(2007) [2, p.33].
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Definition 3.2.1. A discrete Bayesian network consists of the following:

• A set of variables and a set of directed edges between variables.

• Each variable has a finite set of mutually exclusive states.

• The variables together with the directed edges form an acyclic directed
graph (traditionally abbreviated DAG); a directed graph is acyclic if there
is no directed path A1 → A2 → . . . → An so that A1 = An .

• To each variable A with parents B1, . . . ,Bn , a conditional probability table
P (A|B1, . . . ,Bn) is attached.

So far, we have considered Bayesian networks for discrete random variables. It is
time to extend our horizon and include continuous random variables in a mixed
type BN. The standard assumption for the distribution of continuous variables in
a BN is the Gaussian (normal) distribution. The density function for a Gaussian
distribution with mean µ and variance σ2 as

f (x) = 1p
2πσ

exp

(
− (x −µ)2

2σ2

)
(3.5)

We will focus on conditional linear Gaussian distributions. In Scutari & Denis
(2015) [5] we find some general info about working with Gaussian BN’s. The
conditioning effect of the parent nodes is given by an additive linear term in the
mean and does not affect the variance. This means that the variance of a random
variable does not depend on the values of the parents.

Suppose we have again three random variables X1, X2 and X3, but in this case
X2 and X3 are continuous variables. To stay in the world of health care we are
interested in the influence of the value of Sore Throat {yes,no} (X1) where we still
have p(X1 = no) = 0.9) and p(X1 = yes = 0.2) and Temperature (X2) on your Heart
Rate (X3). Assume that the marginal distribution of Temperature follows a nor-
mal distribution with mean 36 and variance 2 (i.e. X2 ∼N (36,2)), see Figure 3.2.

What do we need to fully describe a Gaussian BN? Instead of a conditional prob-
ability table we need, for example the following, conditional linear Gaussian dis-
tribution function for X3:

P (X3|no, x2) =N
(
70+ (−2 · x2),1.1

)
P (X3|yes, x2) =N

(
72+ (2 · x2),1.2

)
2

2The numbers in these distributions are fictional and not retrieved from any kind of study
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Figure 3.2: A simple Bayesian network consisting of three random variables where we are curious
of the influence of a Sore Throat (X1) and your Temperature X2 on your Heart Rate (X3). Notice
that X2 and X3 are continuous variables.

Definition 3.2.2. A conditional linear Gaussian Bayesian network consists of the
following:

• A set of variables and a set of directed edges between variables.

• Each discrete variable has a finite set of mutually exclusive states.

• The variables together with the directed edges form an acyclic directed
graph (traditionally abbreviated DAG); a directed graph is acyclic if there
is no directed path A1 → A2 → . . . → An so that A1 = An .

• To each discrete variable A with parents B1, . . . ,Bn , a conditional probabil-
ity table P (A|B1, . . . ,Bn) is attached.

• To each continuous variable C with parents D1, . . . ,Dn , a conditional linear
Gaussian probability density function.

A BN captures the independencies and conditional independencies in a network.
The d-separation concept describes the conditional independence statements in
the BN. Now that we have a formal definition of a BN, we want to be able to use
the d-separation theorem. This is an extremely helpful theorem that can help us
identifying the structure of a BN that we will discuss later. To state this theorem
we need more terminology.

The factorization (3.3) can be expressed as an irrelevance statement about the
relationship between the measurement Xi and its parents XQi and its remainder
XRi for i = 2, . . . ,n as

Xi qXRi |XQi , 2 ≤ i ≤ n, (3.6)
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where q represents independence. This relationship reads as follows: Xi is con-
ditional independent from XRi given XQi . This irrelevance statement can also be
explained using the Markov property. It essentially states the same; if the con-
ditional probability distribution of future states only depends upon the present
state and not on the sequence of events that preceded it, then it has the Markov
property. This is what we assumed earlier to come up with the representation in
factorization 3.3.

Earlier we introduced the terms child and parent, but we have also ancestor. We
call Z an ancestor of Y in a directed G if Z = Y or if there exists a directed path
in G from Z to Y . This can also be made to apply to all subsets of V (G). Let X
denote a subset of the vertices V (G) in G then the ancestral set of X - denoted
by A(X ) - is the set of all the vertices in V (G) that are ancestors of a vertex in X .
Let’s go back to our example (we used the same structure in every example, so it
doesn’t matter which example we go back to). Here X1 is an ancestor of X3. (It it
already a parent, so indeed an ancestor).

A graph is said to be mixed if some of its edges are directed and some undirected.
The moralised graph GM of a directed graph G has the same nodes and set of
directed edges as G but has an undirected edge between any two vertices Xi , X j ∈
V (G) for which there is no directed edges between them in G but are parents of
the same child Y in V (G). This is the case for variable X3: X1 and X2 are both
parents of X3, but there is no directed edge between them. So the moralized
graph is then given in the next figure. The skeleton S(H) of a mixed graph H is
one with the same nodes as H , but all directed edges are replaced by undirected
ones. To continue our example, we can take Figure (3.3a) as our H . Then the
skeleton of H is given below.
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(a) Moralized graph of the network in all
our examples

(b) Skeleton graph of the network in all our
examples

Figure 3.3: An illustration of the terms ’Moralized graph’ and ’Skeleton graph’ applied to our
examples.

Finally suppose A,B ,C are any three disjoint subsets of {1,2, . . . ,n} and X A , XB , XC

the corresponding sets of the vertices V (S) of an undirected graph S. Then XB is
said to separate XC from X A in S if and only if any path from any vertex Xa ∈
X A to any vertex Xc ∈ XC passes through a vertex Xb ∈ XB . In our example it
is immediately clear that this is not the case and this means we cannot use the
d-separation theorem. But what does it say?

Theorem 1. Let A,B ,C be any three disjoint subsets of {1,2, . . . ,n} and G be a
valid DAG whose vertices V (G) = {X1, X2, . . . , Xn}. Then if XB separates XC from
X A in the skeleton of the moralised graph GM (A(X A∪B∪C )) of the ancestral graph
G(A(X A∪B∪C )) then

XC qX A|XB

Now that we have seen the basics about Bayesian networks we would like to build
a BN based on our data! There are many ways of constructing a BN. In the exam-
ples above we worked with 3 variables. But what is the number of possible BN’s?
There are already 25 possibilities for a network with 3 variables and as can seen
in Table 3.2 the number of possible graphs grows very quickly as the number of
nodes increases, so it can be very hard to find a model that fits the data.
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Number of nodes Number of possible graphs
1 1
2 3
3 25
4 543
5 29,281
. . . . . .
10 4,175,098,976,430,598,143

Table 3.2: Copied from Jensen and Nielsen [2, p.240]. Shows the number of possible graphs for
the number of nodes and the corresponding number of possible graphs.

To do this we need to know how we can find the best BN based on the data. To
learn the structure of the data we have the disposal of two groups of algorithms:
constraint-based and score-based. In the Journal of Statistical Software [4] Marco
Scutari provides a clear description of constraint-based and score-based algo-
rithms:

• Constraint-based structure learning: they learn the network structures by
analyzing the probabilistic relations entailed by the Markov property of
Bayesian networks with conditional independence tests and then construct-
ing a graph which satisfies the corresponding d-separation statements.

• Score-based structure learning: these algorithms assign a score to each
candidate Bayesian network and try to maximize it with some heuristic
search algorithm. Greedy search algorithms (such as Hill-Climbing (HC)
or tabu search) are a common choice, but almost any kind of search pro-
cedure can be used.

We will have a closer look at both types, but first have a look how we can mitigate
the structure learning by these algorithms by the influence of an expert.

3.3. LEARNING THE STRUCTURE FROM EXPERTS
In section 1.4 we shortly mentioned the advantage of the data-driven approach
of Bayesian networks. It can be helpful to use an expert approach to provide
some rough guidelines on how to model a complex world. By cooperation with
Sunweb we have as our expert the scientific expert of team Sunweb Teun van Erp.
He would expect to see a strong relationship between power, cadence, heart rate
and speed. Furthermore he expects speed, distance and altitude to have some
sort of relationship and a strong influence of the temperature on power. This
information can be used to build a network more easily, however our first try is
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going to be based only on constraint-based or score-based structure learning.
Let’s see what this entails.

3.4. LEARNING THE STRUCTURE FROM DATA

3.4.1. CONSTRAINT-BASED STRUCTURE LEARNING

These algorithms try to build a network that best captures the conditional in-
dependence statements of the network. By these algorithms we mean popular
choices as Grow-Shrink (gs), Incremental Association (iamb) and two variants
of iamb named Fast Incremental Association (fast.iamb) and Interleaved Incre-
mental Association (inter.iamb). The algorithms for constraint-based learning
are looking for a graph with a desired set of conditional independencies and es-
pecially to a set with a minimal amount of edges. We are not going to discuss
these algorithms in details. For this we refer you to chapter 3 of Koller and Fried-
man (2009)[7], however we will give an overview on how the algorithms work in
general.

If we think about building such a network it is really time consuming if we would
have to check all possible networks. In Table 3.2 we saw that there were already
4 ·1018 possible graphs for ten nodes, so we need equivalence classes.

EQUIVALENCE CLASS

If two graphs have the same skeleton (an explanation can be found in Figure
3.3b) and the same set of v-structures, i.e. they have the same d-separation [2,
p.248], then they belong to the same equivalence class [7, p.77].

The term v-structure needs some explanation. Suppose we have three random
variables X ,Y and Z . If X and Y have a common effect on Z we call the structure
X → Z ← Y a v-structure. This is again displayed in Figure 3.4.

Figure 3.4: v-structure (also called common effect) of three random variables X ,Y and Z . Two
arcs point, so in the same direction, to the same node.

Now have a look at three other graphs.
If we compare the graphs in Figure 3.5 with the one in Figure 3.4 we notice that
these four graphs have the same skeleton, but the difference in the set of v-
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Figure 3.5: Three graphs that belong to an equivalence class.

structures. In Figure 3.4 we have one v-structure and in Figure 3.5 none. This
means that three graphs in Figure 3.5 belong to the same equivalence class and
the graph in Figure 3.4 not. To learn the structure faster, we use a partially di-
rected graph (PDAG), that is an acyclic graph with some edges undirected as an
equivalence class of a set of graph structures [3]. So if we have a way to find the
independencies we can find the structure of the Bayesian network using meth-
ods described in [7] and faster with the help of the equivalence classes.

INDEPENDENCE TESTS

Suppose we are working with a lot of random variables, then we would like to
answer questions like "Is X1 independent of X2 and X3 given X4?" or more simple
"Is X1 independent from X2?". This comes down to hypothesis testing. In the
case of marginal independence testing between X1 and X2, the null hypothesis

H0 : P (X1, X2) = P (X1)P (X2)

against the alternative hypothesis

H1 : P (X1, X2) 6= P (X1)P (X2)

Now the only thing we need is some measure of deviance from the null hypothe-
sis. Common measures are the χ2 statistic and the mutual information measure.
For details we refer you to Koller and Friedmann (2009) in Probabilistic Graphical
Models: principles and techniques[7].

3.4.2. SCORE-BASED STRUCTURE LEARNING

To learn the structure in the score-based approach the Hill Climbing and Tabu
search algorithms are common choices. Such algorithms works as follows: we
start with an initial structure and assign a score to it. Then generate a new set
of possible networks after performing a simple operation: add a directed edge,
reverse a directed edge or delete an edge. Compute the score of each structure in
the new set and select the one with the highest score. As long as this score cannot
be improved, we do these steps all over again.
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So far we mentioned the word ’score’ a few times, but what do we mean by that?
How do you assign a score to a Bayesian network? The first thing you need is a
measure of the quality or goodness of fit of your network as a representation of
the data. This measure should also take into account the complexity of the struc-
ture, i.e. you don’t want a score function that just gives a higher score when there
is an extra node or arc. So you need a good mix between quality and complexity.

As in Kjærulff & Madsen [3] we are going to use the Bayesian Information Crite-
rion (BIC) and we compute it as L−K

2 log N where L is the log-likelihood function
of the data given a structure, K is the number of free parameters in the network
and N is the number of cases in the database, also known as the sample size. In
this criterion we recognize the first term as a measure of goodness of fit, since it
maximizes the probability (likelihood) that the network represents the data. The
second term in this function penalizes the complexity of the structure. The log-
likelihood term will dominate the penalty score when the size of the database
grows. This is because the first term grows linearly with N and the second loga-
rithmically.

To see how the Hill Climbing algorithm and the BIC score function work we will
discuss the following example including three random variables X ,Y and Z . At
this point it doesn’t matter what the nodes represent, the purpose of the example
is explaining the algorithm and the score function.

Assume all variables can take two different values, so X can turn in x0 and x1,
Y in y0 and y1 and Z in z0 and z1. Let’s say we are given the joint probability
function and a sample of six different cases over X ,Y and Z . First we will put the
joint probability in Table 3.3 below.

Now we assume we have seen a sample of different cases over X ,Y and Z -
named ci , where i = 1. . .6 - of the experiment over X ,Y and Z . We put them
in a Table 3.4.

What is the best possible network that fits the data given this joint probability
function? We will examine one iteration step of the HC algorithm. We start with
an initial guess for the network, see Figure 3.6.

To compare this structure with other possible structures that we are going to ex-
amine in a bit, we need a score for the graph in Figure 3.6. Then we have to
compute the BIC-score for this current graph. Due to the fact that this is a BN we
can compute the probability of an event in the sample data quite easily. Name
the current graph G1. Then

PG1 (ci ) = P (X ) ·P (Z ) ·P (Y |X )
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X Y Z P(x,y,z)

x0 y0 z0 0.02
x0 y0 z1 0.005
x0 y1 z0 0.0075
x0 y1 z1 0.0675
x1 y0 z0 0.576
x1 y0 z1 0.144
x1 y1 z0 0.018
x1 y1 z1 0.162

Table 3.3: Joint probability table for three random variables X ,Y and Z . It gives for each combi-
nation of X ,Y and Z the probability that this event will happen. Notice that the sum of all these
probabilities sums to one.

ci X Y Z

c1 x0 y0 z0

c2 x0 y1 z0

c3 x1 y0 z1

c4 x1 y1 z1

c5 x1 z0 z0

c6 x0 y1 z1

Table 3.4: Sample data over X ,Y and Z . In this example we have six recordings, c1, . . . ,c6, of the
experiment, i.e. in each row we find the outcomes of a single recording.

Figure 3.6: Initial guess for a network that we need to assign a BIC-score to if we want to compare
this structure with other networks. These other networks appear in the next iteration step in the
Hill Climbing algorithm.

To compute this probability - and the rest - we need P (X ),P (Z ),P (Y |X ), P (Y |Z ),
P (X |Z ),P (Z |X ) and P (Z |Y ). These probabilities can be found by the use of Ta-
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ble 3.3. The probability of observing the value x0, unconditional on the other
variables, is the sum of the values that corresponds to a row where x0 pops up,
so P (x0) = 0.02+ 0.005+ 0.0075+ 0.0675 = 0.1. In general we will use the nota-
tion P (X ) = (0.1,0.9), i.e. the probability of observing x0 is 0.1 and x2 is 0.9. For
P (Z ) we find P (Z ) = (0.6215,0.3785). A conditional probability like P (Y |X ) can
be computed as follows. Suppose we observe x0, what is the probability of ob-
serving y0? Have a look at Table 3.3 again and find the rows where x0 pop up.
Search in these rows for the value y0 and sum these probabilities. Now we are
almost there. We only need to divide this sum by the sum of all probabilities in
the first case, so the sum of probabilities of the rows where we found a x0. In our
example

P (y0 | x0) = 0.02+0.005

0.02+0.005+0.0075+0.0675
= 0.25

To calculate the BIC we also need N , the sample size, and we assumed we had six
of them. So N = 6. The last thing we need is K , the number of parameters. We
need one for every node in the graph and for each arc an extra parameter. Thus
in this case K = 4.

B ICG1 =
6∑

i=1
log PG1 (ci )︸ ︷︷ ︸
-15.5847

− 4

2
log 6︸ ︷︷ ︸

3.5835

=−19.17

Now continue with the HC algorithm. The next step is to generate a new set of
possible networks. If we add, remove or reverse a single arc we find the following
six possibilities.

(a) (b) (c) (d) (e) (f)

Figure 3.7: A new generation of possible networks in the Hill Climbing Algorithm. We created
them by adding, removing or reversing a single arc in the original network (see Figure 3.6).

What are the BIC-scores for networks a to f? To compare all the scores give these
structures the names G2 to G7.
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Gi Figure B ICGi

G1 3.6 -19.17
G2 3.7a -17.99
G3 3.7b -19.17
G4 3.7c -19.23
G5 3.7d -21.19
G6 3.7e -21.19
G7 3.7f -20.05

Table 3.5: All BIC-scores, i.e. the BIC-score of the original graph (G1) and the BIC-scores of the
graphs in the next generation (G2, . . . ,G7), compared to each other.

The graph with the highest score is G2. Now we would have to run the same
procedure all over again and see if we can improve this score. In this way we will
find a network that fits the data best.



4
CYCLING NETWORK

If we would like to learn the structure of the BN that describes the performance of
a cyclist we need a set of random variables that describe or influence this perfor-
mance. The constraint- and score based structure learning algorithms that we
are going to use are implemented in R. We will use one score based algorithm:
Hill Climbing (hc) and four constraint based algorithms: Grow-Shrink (gs), In-
cremental Association (iamb) and two variants of iamb named Fast Incremental
Association (fast.iamb) and Interleaved Incremental Association (inter.iamb).

The initial random variables that we are going to consider are the variables that
were stored in the data of team Sunweb, i.e. riding time [s], pedal power [W],
cadence [rpm], heart rate [bpm], altitude [m], speed [km/h], distance [m] and
temperature [◦C]. The riding time is only used for finding the starting point of
the race.

In the first stage of building this network we will only have a look at one cyclist
and his pedal power, cadence, heart rate, altitude, speed, distance and tempera-
ture. In the second part we will incorporate the influences of the performances
of the other riders.

Thinking about the performance of the leader in the final sprint or on the last
climb of the day we could be wondering if it is beneficial to include the following
variables:

• Grand Tour, i.e. Giro, Tour and Vuelta.

• Type of race, i.e. flat, hills, mountain and arrival uphill.
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• Number of days (in succession) in the race

Thus we are going to model the performance of these cyclists by a Bayesian net-
work and investigate if and how these new variables (Grand Tour, type or race
and number of days (in succession) in the race) influence the structure. Since all
our data-driven variables are continuous, let’s see first if we violate our assump-
tion of normality.

4.1. NORMALITY ASSUMPTION
Like we said before we have to work with continuous variables that we assume to
be normally distributed, but is this assumption reasonable? To test this we can
use multivariate normal tests like Mardia’s, Royston’s and Henze-Zirkler’s tests. A
multivariate normal distribution is just a generalization of the one-dimensional
normal distribution to higher dimensions. According to these test the data is not
normal distributed. This can also be seen if we plot the histograms with a fitted
normal curve for all the variables, see Figure 4.1.

Figure 4.1: Histogram of all 7 variables where each figure has an fitted normal curve over the
histogram to check whether the normality assumption is reasonable or not.

One could argue that the variables speed and heart rate are normal distributed,



Structures on a local scale 29

but the rest of the variables definitely not. So this is a strong violation of the as-
sumption for building a BN.

Despite the violation, we still want to model the performance by a Bayesian net-
work. At first stage we are trying to find some general model for a single rider on a
single day on a very local scale. If we could find such a model, we can easily build
a model for the whole team, by adding all these small BN’s together and find the
correlations between the variables of different cyclists to include arcs between
the small BN’s. If this is not the case, we will have to study the structure on a
larger scale, so for example the data of all cyclist during the Tour de France. In
this approach we could lose the information that is specific to each rider, but a
more general model for the performance of a random cyclist could be an usefull
result.

4.2. STRUCTURES ON A LOCAL SCALE

GENERAL REMARK

In Chapter 2 we made the distinction between variables that give details for the
race (altitude, distance and temperature) and cyclist race activity variables (pedal
power, cadence, heart rate, speed). It doesn’t make sense that any of the personal
race activity variables could influence the variables that say something about the
race. Thus we don’t take these possible arcs into account during the analysis.

ONE DAY ONE RIDER

If we examine the structure for one rider in a single day, we come to the con-
clusion that there is no general network for the data of one cyclists on a single
day. What could be the reason for this? The first thing we thought about is the
fact that the data is too sensitive on noise; if there happened something weird
during a race it is immediately captured in this network. The second thing con-
cerns the algorithms we are working with. These algorithms are very sensitive, if
one test indicate independence where the the same test in the last structure in-
dicated dependence it changes the whole structure of the network. To avoid the
first problem we could make use of more data, so that extraordinary moments in
the race disappear by the influence of a huge amount of natural data.

ONE DAY ALL RIDERS

Is there a common structure for all riders for one specific day? Hopefully this is
the case, since all cyclists from team Sunweb took part in the same race and they
have followed the same tactics - except the leader - during the race, so we would



30 Cycling network

expect during the same the day the same structure in the BN. And if not, is this
caused by the structure of the data of the leader?

For example; for day 1655 we built for every cyclist a BN and checked which arcs
are present in every BN for that specific day. The same procedure is applied for
the other days and the results can be seen in Table 4.1.

1652 1655

From To From To
Distance Cadence Altitude Cadence
Distance Pedal power Altitude Distance
Distance Speed Altitude Temperature
Distance Temperature Distance Temperature
Pedal power Cadence Temperature Speed
Temperature Speed

1657 1663

From To From To
Altitude Distance Altitude Pedal power
Altitude Pedal power Altitude Temperature
Altitude Speed Temperature Speed
Altitude Temperature
Distance Pedal power
Pedal power Cadence
Temperature Speed

Table 4.1: Comparison of common arcs for all riders during four specific days.

On day 1652,1655,1657 and 1663 rider 4 was the leader of the team and as you
can see the only arc that is present every day (Table 4.1) is the arc Temperature -
Speed. The rest of the structure is showing a great deal of variety. Below (Figure
4.2) we put two BN’s for a given day. For this example we choose day 1652.
It is quite surprising that the node Heart Rate isn’t included in the networks at
first sight, but when we have a look at the data we see that there is no data avail-
able for the heart rates of rider 4 or rider 5. That means we have a column of
zeros in the data, so - of course - no correlation with any other variable.

Thus remains the question if there are more common arcs when we leave the
data of the leader, in this case rider 4, out. The difference is negligible, only the
arc Altitude - Pedal power on day 1657 should be added to the common arcs.
This is also the case for other days. From this we might think the structures of
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(a) Rider 4 (b) Rider 5

Figure 4.2: Bayesian networks - on day 1652 - that we created using the Hill Climbing algorithm.
These figures are included to give an idea how the structures look like.

networks for leaders and helpers are the same, but we will have a look at this in
section 4.3 when we are dealing with the rider type. So multiple cyclists on one
day didn’t result in a clear model for the performance, but maybe are the rela-
tionships between all the variables more personal? Does the structure depend
on the riding style and performance?

ONE RIDER MULTIPLE DAYS

Let’s have a look at the structure for a specific cyclist at different days. Is there a
pattern? As said before we expect a pattern, but unfortunately we can’t find one
in this way.

For the comparison of networks for cyclists on different days we used five days in
the Giro, namely day 1652, 1654, 1655, 1657 and 1663. The BN’s for these riders
consists of about 12 arcs and the arcs they have in common are in most cases,
as can be seen in Table 4.2, arcs that point from race variables to specific rider
variables. So for example; for rider 4 we built for every day a BN and checked
which arcs are present in every BN for that specific cyclist. The same procedure
is applied for the other riders. As it turns out this is on a too local scale, we would
like to have a more general model.
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Rider 4 Rider 5

From To From To
Altitude Distance Altitude Distance
Altitude Speed Altitude Speed
Distance Speed Altitude Temperature
Distance Temperature Distance Pedal power
Pedal power Cadence Pedal power Cadence
Temperature Pedal power Temperature Speed
Temperature Speed

Rider 6 Rider 3

From To From To
Altitude Distance Altitude Distance
Altitude Pedal power Altitude Pedal power
Distance Cadence Altitude Speed
Distance Temperature Altitude Temperature
Pedal power Cadence Distance Pedal power
Pedal power Speed Temperature Speed
Temperature Speed

Table 4.2: Comparison of common arcs for one rider during five specific days in the Giro.
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4.3. STRUCTURES ON A LARGER SCALE
To start rigorous let’s combine all possible data, i.e. all data from all riders of all
days.

Figure 4.3: Bayesian network based on all possible information via the Hill Climbing algorithm.

The structure doesn’t change when we use constraint-based algorithms, so this
network is quite consistent. Even when we don’t take all measurements into ac-
count, so instead of every second a evaluation, every 5, 10 or 20 seconds a mea-
surement the structure doesn’t change. In this way we could get rid of ’noise’, but
since the network doesn’t change, we are confident that it doesn’t matter if we
use all measurements or for example the measurements every 5 seconds. Now
it is time to return to our sub questions from section 1.2. All these networks are
still be learned from data. There is no expert knowledge used so far.
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1 GRAND TOURS

What is the influence on the structure of the data (4.1)

caused by the three Grand Tours?

Despite the fact that the three Grand Tours are different races in different coun-
tries, we still expect to see major similarities between the structures. All cyclists
need to divide their energy over three weeks, but they need to perform each day
and the tactics over the Grand Tours are more or less the same if there are no
dropouts in team Sunweb.

Giro d’Italia

In the following figures we find the structure of the network based on all the avail-
able data in the Giro.

(a) Hill Climbing (b) Grow Shrink

Figure 4.4: Side by side comparison of the netwerk structures learned from all the available data
in the Giro by the Hill Climbing algorithm (on the left) and by the Grow Shrink algorith (on the
right). The arcs present in both networks are highlighted in red.

In Figure 4.4 we can compare the networks generated by the Hill Climbing al-
gorithm and by the Grow Shrink algorithm. All the IAMB algorithms return the
same network as Grow Shrink, which is given in Figure 4.4b.

Tour de France

The different networks we get from the constraint-based and score-based algo-
rithms don’t differ much from each other, actually the structures for the constraint-
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based algorithms are exactly the same. In the following table (Table 4.3) we sum-
marize the performance of the algorithms on the data from the Tour.

hc gs iamb inter.iamb fast.iamb

independence tests / 151 109 102 102 68
network comparisons
learned arcs 21 19 19 19 19
(directed/undirected) (21/0) (12/7) (12/7) (12/7) (12/7)
execution time (sec) 45.81669 52.43766 52.05447 57.20332 54.32263

Table 4.3: Performance of learning algorithms on all the available data on the Tour de France,
measured in the number of conditional independence tests (for constraint-based algorithms) or
network score comparisons (for score-based algorithms), the number of arcs and the execution
time [4].

In a score-based approach we used network comparisons to find the network
that fits the data best, see section 3.4.2. In this particular example we needed 151
comparisons to get the optimal structure. Instead of network comparisons we
need conditional independence tests in the constraint-based algorithms and the
number of tests is approximately the same for Grow Shrink, iamb and inter.iamb,
but fast.iamb needs significantly less tests to find the same network. As regards
execution time; Hill Climbing is the fastest, but there are not very big differences
in time.

Vuelta a España
Also in the data of the Vuelta we experience the same behaviour: there are some
small differences between the networks created by the score-based approach
and the constraint-based algorithms and the algorithms Grow Shrink, IAMB, Inter-
IAMB and Fast-IAMB return the same network.

INFLUENCE OF A GRAND TOUR

Are there huge differences between the structures in the Grand Tours? The an-
swer to this question is no! If we compare the structures for each Grand Tour
generated by the Hill Climbing algorithm we find 15 common arcs and the arcs
that are different are the relationships between the variables that are specific to
each cyclist, so this could be a possible framework to use in prediction.
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2 RACE TYPES

How does the structure of the data change when (4.2)

there is a difference in race type?

All data

(a) Flat (b) Hills

(a) Mountain (b) Arrival uphill

Figure 4.5: Side by side comparison of the network structures learned from all the available data
for different race types: flat (a), hills (b), mountain (c) and arrival uphill (d).

To come straight to the point; in Figure 4.5 we put the BN’s built for each race
type. By race type we mean four different types: flat, hills, mountains and arrival
uphill. Each race in the Grand Tours is subdivided into one of these categories.
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Normally there are also time trials, but for the purpose of this report it is not very
help full to have a look at races where you don’t have any help from your team-
mates.

Per Grand Tour

If we have a look at the race types per grand tour, we find a lot of similarities be-
tween these networks. The Hamming distance measures the minimum number
of substitutions required to change one skeleton in the other and as can be seen
the maximum number of turns is 5. Compared to the 20 arcs in total this is not
much. In fact there are a lot of common arcs. To see which arcs are in common
we refer you to Table B.1 in the appendix.

Giro Tour Vuelta

Giro (0,0,0,0) (2,3,3,x) (2,1,5,x)
Tour (2,3,3,x) (0,0,0,0) (4,2,4,1)
Vuelta (2,1,5,x) (4,2,4,1) (0,0,0,0)

Table 4.4: Comparison of the four BN’s - based on race type (flat, hills, mountain, arrival uphill) -
created for each Grand Tour measured by the Hamming Distance.

In the Giro there is no stage classified as arrival uphill. This means that we can’t
compute the hamming distance between this race type in the Giro. That is the
reason there are x’s in Table 4.4.

INFLUENCE OF THE RACE TYPE

Does the structures above surprise us? No, all arcs that these networks have in
common are also present in the global structure we began with in section 4.3.
The number of common arcs between the different types is quite low, only 9 of
the 20 arcs, but as expected. For example, the performance of a sprinter in a race
with a lot of climbs is certainly different from a flat race. This is mainly caused
by the fact that the sink nodes, nodes with no outgoing arcs, are different. This
means that the direction of the arcs is not the same. However, the hamming
distance showed that the difference in structure is not so big if we neglect the
direction of the arcs. So it seems that race type definitely influences the direction
of the arcs and thus the structure of the BN’s.
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3 RIDER TYPE

Does the structure of the data change (4.3)

when we encounter a different rider type? If so, how?

Leader and helpers
In section 1.2 we discussed the difference between the role of the leader and
helpers. The helpers bring water and food from team cars and shield teammates
from opponents, but the main job contains protection from the wind. So we def-
initely expect a different structure in the BN’s for the leader and the helper; if this
remains invisible from the structure we would expect to see a different behaviour
when predicting their speeds or pedal powers.

(a) Leader (b) Helper

These BN’s are based on the days where team Sunweb assigned a leader to a race
day. It is interesting to see whether the structure changes if there is no leader as-
signed. There are 14 days without a leader and all of these days are in the Vuelta.
Rider 7, the potential leader during hills- and climbing days in this race stopped
after the first three days. So does the network change for the leader in the sprint
stages? And for the helpers? Unfortunately we can’t study this problem thor-
oughly, because for the leader the amount of available data is going to be a prob-
lem again. Is the difference in structure caused by the lack of data or by a real
difference in performance on these days? If we compare the data of rider 4 with
the data of days where there is no leader assigned we lose all information about
the heart rates, because there is almost no heart rate for rider 4 and we find only
8 out of 20 common arcs. For the rest of the cyclists, i.e. the helpers, the structure
doesn’t change.
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INFLUENCE OF RIDER TYPE

We expected a difference between the networks of the leader and the helpers, but
this did not appear in the BN’s. Furthermore the absence of a leader didn’t seem
to influence the structure for the helpers and for the leader we can’t say anything
about it at this moment.
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4 DAYS OF ACTIVITY

What is the influence on the structure of the number of days (4.4)

riders are in succession in race?

The number of days in succession in the race should definitely have an influence
on the performance. Towards the end of a Grand Tour the performances of cy-
clists decline, but is this reflected in the Bayesian networks or is this only visible
in predictions?

(a) Week 1 (b) Week 2

(a) Week 3

Figure 4.6: Bayesian network based on all possible information for each week in the Grand Tours
based on the Hill Climbing algorithm.

We divided each Grand Tour into three weeks, because there is too little data to
divide the races in separate days. When we combine all information for these
Grand Tours in three sets - one for each week - we end up with the BN’s above.
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The similarities between the three weeks are big; 14 out of 20 arcs are present in
every week.

INFLUENCE OF NUMBER OF DAYS IN SUCCESSION

Although this influence doesn’t stand out in the Bayesian networks, from a prac-
tical kind of view this in one of the most important variables in the model. In this
way the term ’fatigue’ is somewhat incorporated in the model; of course this is
not a perfect measure for fatigue, but it is a start.

4.4. VIEW OF AN EXPERT
One of the advantages of Bayesian networks we mentioned in 1.4 is the fact that
the framework makes it possible to construct a model by a human expert or auto-
matically. In chapter 3.3 we summarized the relationships our expert suspected
and the network that follows from these comments is given in the figure below.

EXPERT ONLY

Figure 4.7: Bayesian network purely based on an expert view.

However, we will use the human knowledge by specifying the attributes that the
model should contain and the details are filled in automatically, by fitting the
data to the model. The attributes that should be in the model can be found
in chapter 3.3 and are given in Table 4.5. It is hard to say something about the
connections between the rider variables, so these will represent our details and
based on structures created from all data.
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EXPERT AND DATA

The framework where the network is build on is given in Table 4.5. We included
both the arc Pedal power - Cadence and Cadence - Pedal power, since the direc-
tion of this arc was not clear from the info of the expert or from previous net-
works.

From To

Temperature Speed
Cadence Speed
Pedal power Cadence
Cadence Pedal power
Altitude Distance
Altitude Speed
Distance Speed

Table 4.5: The whitelist (list of arcs that are definitely included) of the Bayesian network based on
expert view and data.

The created BN has the following structure:

Figure 4.8: Bayesian network based on an expert view and data.

The structure between the race variables is the same as in most BN’s we have
seen so far, but the structure between the rider variables is again different. In
Figure 4.5(d) we find almost the same structure, since the sink node is speed too.

4.5. MULTIPLE RIDERS
To get a feeling of the interaction between different cyclists we are going to have
a look at the correlation plot where we compare all (data driven) variables with
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each other.

(a) All riders (b) Two riders compared

Figure 4.9: Correlation plot to find interaction between riders

Although this is the correlation plot for one day, it gives us a reliable image of
the structure of all days, since it is for each day more or less the same, see Figure
4.9a. This gives us a lot of information, because the pattern between two differ-
ent cyclists is always the same! For example, have a look at the correlation plot
between cyclists 1 and 2 in Figure 4.9b.

This figure makes us suspect that there is some strong monotonic relationship
between the speeds of different cyclists and the altitude and temperature. This
last arc between altitude and temperature consists of our external factors which
should be the same for all riders, so also no extra information. The correlation
between the speed of different riders is clearly visible, but we would suspect the
same behaviour between the power and the cadence. Is this the case?
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(a) Pedal power (b) Speed (c) Cadence

Figure 4.10: Correlation plot for power, speed and cadence

It is remarkable that the correlation between the power and cadence of different
riders is this low. This means that we definitely have to include arcs from the
node ’Speed’ from one to another in our BN for multiple riders and for ’Pedal
power’ it could be a good addition to the network if this is learned by the data.

After answering the sub questions, we believe it is beneficial to include four extra
discrete variables:

• Grand Tour: Giro, Tour and Vuelta.

• Leader: rider 4, rider 7, rider 8, rider 5 and no leader.

• Week: week 1, week 2 and week 3.

• Race type: flat, hills, mountain and arrival uphill.

The Bayesian network based on the data with the extra variables get really com-
plicated and to emphasize this we included the BN in Figure 4.11. The model we
are going to use for predicting in R is based on all measurements except for the
ones without any information about heart rate.



Multiple riders 45

Figure 4.11: Bayesian network for a single cyclist during a specific day in one of the Grand Tours
based on the Hill Climbing algorithm.

Luckily in Uninet1 we are able to create our own BN. We are going to use the net-
work based on the expert and the data found in section 4.4, supplemented by the
extra variables for a BN that contains only the variables for the leader and for a
BN that takes the influence of two helpers into account.

(a) Race variables (b) All variables

Figure 4.12: Correlation plot to find interaction between race variables and three cyclists consist-
ing of one leader and two helpers.

1Uninet is a statistical software package from the TU Delft[8]
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The structure between the four extra variables is based on Figure 4.12a and our
view. The structure presented by R was slightly different from this one, but be-
cause of the simplicity we preferred our structure, as in Figure 4.13.

Figure 4.13: Bayesian network for a single cyclist during a specific day in one of the Grand Tours.

The variables that are specific to a cyclist are highlighted in blue. Furthermore
the arcs are quantified by rank correlations. For example, ρ(Race_type,Leader) =
0.31 means that the rank correlation between Race_type and leader is 0.31. The
correlations are overall quite low and even negative. For example, the rank cor-
relation between Pedal power and Speed is -0.24. This means that if the Pedal
power goes up, Speed goes down. We think this is caused by mountain and hills
stages, where the cyclists probably need more power to climb the mountain with
a lower speed.
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The major part of the BN is copied from the Bayesian network for the leader in
Figure 4.13. We decided to use Figure 4.10 and Figure 4.12b to complete this
BN. When the correlation between two nodes is high, there is an arc added to
the existing network. This has led to the following: the influence of the help of
two riders in the performance of the leader is modeled by the following Bayesian
network:

Figure 4.14: Bayesian network for the leader with the assistance of two helpers during a specific
day in one of the Grand Tours.

In Figure 4.14 the nodes express the marginal distributions. For the discrete
nodes we find bars that indicate the relative frequency in which the factors oc-
cur. For the continuous variables we find histograms. Notice that the histograms
for the rider variables, except for Speed, are displayed very small. This is because
there are a lot of zeros in the other rider variables, which is hard to see in the
histograms.





5
PREDICTING PERFORMANCE

5.1. GENERAL INFORMATION
Prediction with Bayesian networks. How does it work? Once we have learned the
full structure from data, or from expert judgement or a combination of both we
can use the network for prediction and diagnostics (there are other tasks that can
be performed, but we will focus on these two features).

We will use the statistical software packages R and Uninet to do this. Both R and
Uninet support discrete and continuous data, but R can’t handle a combination
of the two. In our case it will treat the discrete variables as Grand Tour and Leader
as continuous variables, but we can still do some prediction. However, the main
difference between R and Uninet is the fact that Uninet supports non-parametric
continuous and discrete BN’s[8]. Non-parametric means that the model doesn’t
involve any assumptions for the distributions of the random variables. This is not
the case in R. Earlier we spend some time on the normality assumption when we
introduced continuous variables, because the package bnlearn in R assumed a
multivariate normal distribution. Besides that, the user-friendliness and inter-
face of Uninet is a huge advantage over that of R’s.

5.2. PREDICTION WITH R
In section 4.3 we discussed our four sub questions and we mentioned that the
structures didn’t give us satisfactory results. For the race types, rider type and
number of days of activity we are going to study if the performance for different
factors is different by using the Bayesian networks presented in the correspond-
ing subsections in section 4.3. At last we will make some predictions based on
a Bayesian network created by all complete measurements. This means that we
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don’t take measurements into account without a heart rate.

Our approach for predictions in R is called cross validation. First we split the data
in two random subsets: training(60%) and testing(40%). We build the Bayesian
network for the data in the training set and we predict the values for speed in the
testing set. In this way we can compare the predictions with the actual values.
The first case we are going to discuss is race type.

5.2.1. RACE TYPES

In this section some very obvious and clear relationships emerge. The first thing
that stands out is that the predicted average speed during a flat stage is higher
than during a stage where we encounter hills, mountains or an arrival uphill.
Furthermore the standard deviation shows a bigger variation from the average
speed in mountain stages than in flat races, which makes sense.

Figure 5.1: Histograms of the predicted values in speed for each race type.

Race Type Mean Standard deviation

Flat 39.51198 2.529824
Hills 34.80254 2.436338
Mountain 34.04441 8.869015
Arrival uphill 34.20073 7.548717

Table 5.1: Mean and standard deviation for each race type in the predictions for the speed.
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But how are the predictions in comparison with the real values? The measures we
are going to use are the Root Mean Squared Error and the Mean Absolute Error.
The first one is the square root of the average of squared errors and the second
one computes the mean absolute values of errors. So that is:

RMSE =
√∑n

i=1

(
ŷi − yi

)2

n
,

And really straightforward:

M AE = 1

n

n∑
i=1

|ŷi − yi |,

where ŷi are the predicted values, yi the real values and n the number of mea-
surements.

Race Type RMSE MAE

Flat 13.65144 10.38366
Hills 18.23249 14.56888
Mountain 15.32191 11.82034
Arrival uphill 16.73998 13.41917

Table 5.2: Errors in the predictions for the speed.

If we compare these errors with the magnitude of speed in most races, both mea-
sures indicate that the error is large. If we do the same for the pedal power we find
extremely large errors. The RSME is 129.4701 and the MAE is 91.3816. We will see
in Figure 5.4 that the difference between the predicted values for pedal power
and the real values are huge.

5.2.2. RIDER TYPE

The histograms for the predicted values for speed are almost the same, see Figure
5.2. The average speed for the leader appears to be higher, but that’s the only
big difference between rider type. So also in the predictions we don’t find big
differences when comparing the speed of the leader and the helpers.

Rider type Mean Standard deviation

Leader 39.11687 3.008775
Helper 36.8803 3.370341

Table 5.3: Mean and standard deviation for each rider type in the predictions for the speed.
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Figure 5.2: Histograms of the predicted values in speed for each rider type.

How about the errors? They are approximately the same as in race types, so it is
questionable if we could use the predictions.

Rider type RMSE MAE

Leader 14.41618 11.42236
Helper 16.36893 12.69249

Table 5.4: Errors in the predictions for the speed.

5.2.3. DAYS OF ACTIVITY

The shape of the histograms is the same, but it is remarkable that the predicted
average speed increases as the number of weeks increases. We expected this the
other way around, because of fatigue during a Grand Tour.

Week Mean Standard deviation

1 35.35869 4.946916
2 36.61161 6.779316
3 37.05577 7.822147

Table 5.5: Mean and standard deviation for every week in the predictions for the speed.
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Figure 5.3: Histograms of the predicted values in speed for every week.

The behaviour of the errors is the same as with race- and rider type.

Week RMSE MAE

1 16.78276 13.13618
2 15.18715 12.05252
3 14.40703 11.25932

Table 5.6: Errors in the predictions for the speed

If we come back to our original data with the complete measurements we can
compare the predictions in speed, cadence, heart rate and pedal power visually
in Figure 5.4. In the histogram of pedal power the predicted values are in white
instead of blue.
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Figure 5.4: Histograms of the rider variables speed, cadence, heart rate and pedal power where
we can compare the predicted values (in blue) with the real values (in red).

As mentioned before, the predictions for pedal power stand out. This could be
caused by the capricious character of the pedal power that we saw in 2.1 or the
violation of the normality assumption. The predicted values for speed, cadence
and heart rate don’t follow the same distributions as the real values. This can also
be seen in the errors in Table 5.7.

Variable RMSE MAE

Speed 17.11918 13.61947
Cadence 28.31759 24.17755
Heart rate 21.80642 17.22127
Pedal power 166.2087 133.8682

Table 5.7: Errors in the predictions for the speed, cadence, heart rate and pedal pedal.
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5.3. PREDICTION WITH UNINET

5.3.1. PREDICTIONS

The advantage of using Uninet in prediction is the fact that we can conditional-
ize on the parameters we want. Let’s create a setting.

While writing the thesis, the Tour de France 2017 started a few days ago. In the
last week of the Tour there are some heavy stages scheduled. On the 19th of July
the riders travel from La Mure to Serre Chevalier and they come across moun-
tains like de Col de la Croix de Fer, Col du Télégraphe and Col du Galibier. The
top of the last mountain on 2610 meters is reached after approximately 134 kilo-
meters. Assume the weather forecast is very positive about this day and they
forecaste a temperature of 25 ◦C. Suppose team Sunweb decided to include rider
7 again in their team for the Tour and they assigned him as leader for this stage.
What is the influence of these conditions on for example the speed, pedal power
or the heart rate of his helpers?

Figure 5.5: Conditionalized Bayesian network for the leader with the assistance of two helpers on
the race variables.

In the Bayesian network we can see the consequences of our setting. While the
predicted values for rider 7’s speed and cadence decline, his pedal power and
heart rate increase. For example, the average Pedal power increased from 210
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to 255, while the standard deviation changed from 171 to 182. The speed and
cadence of the helpers show the same behaviour, but the pedal power and heart
rate don’t. The pedal powers remain the same and the heart rates decline. We
think these last observations are caused by the fact that the there is only one link
between the race variables and the variables of helpers.

5.3.2. DIAGNOSTICS

Another feature of prediction is called diagnostics. In cycling this is not an ob-
vious choice, but in for example health care this is an extremely import topic to
discover the causes or symptoms of a disease. To create another setting: let’s say
we lost the information about all race variables, all information that we have left
concerns the rider variables. Is the data most likely from rider 4 in the second
week of Giro d’Italia? Or from rider 7 in the first week of the Vuelta?

Figure 5.6: Conditionalized Bayesian network for the leader with the assistance of two helpers on
the rider variables.

So it is not exactly clear in which Grand Tour, week and race type the leader per-
formed, but is more likely this situation happened at the end of the race and a
relative high altitude.



6
CONCLUSION AND

RECOMMENDATIONS

6.1. CONCLUSION
In this thesis, the performance of a single rider in one of the Grand Tours and
especially with the help of his team was investigated. The research focused on
the main question:

How good is the performance of the leader during a race and

how is this influenced by the helpers?

We investigated this by the following sub questions:

1. What is the influence on the structure of the data caused by the three Grand
Tours?

2. How does the structure of the data change when there is a difference in
race type?

3. Does the structure of the data change when we encounter a different rider
type? If so, how?

4. What is the influence on the structure of the number of days riders are in
succession in race?

We can draw several conclusions from the analysis on the Bayesian networks in
cycling, but unfortunately not all of them to our satisfaction. We compared the
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different BN’s that we created for every Grand Tour. The differences were min-
imal, so the influence on the structure of the data caused by a Grand Tour is
minimal. This was a result that met our expectations.

On the other hand the influence of the race type is not so clear. The differences
in the BN’s were big, but this did not appear in the predictions. With this in mind
we are not sure if the differences in the networks are caused by the algorithms
the networks are build with or that there are really different structures.

There doesn’t seem to be an influence of the rider type on the Bayesian networks
we created. Also in the predictions there was no clear difference. The same hap-
pened for the number of days in activity. The influence of this variable appears
to be minimal in the creation of the BN’s too.

Overall we can say that the Bayesian network we created with the help of an ex-
pert and the data captures the most common relationships between all variables,
but that the model doesn’t reveal surprising relationships or good predictions. It
does however provide a graphical tool to visualize the dependencies between
random variables.

6.2. RECOMMENDATIONS
Based on the insights gained during this thesis, we are able to make a few recom-
mendations for further research and for team Sunweb. To begin with a general
remark: the world of cycling is definitely more complicated than we thought at
the beginning of the thesis and we believe there is a way to find the performance
of a cyclist. Maybe with other models that account for uncertainty and depen-
dence the performance can be described.

The only thing we were not able to do in the analysis is to find the influence of the
fact that there isn’t a leader assigned to a stage. This could also be an interesting
subject.

Furthermore we want to emphasize that for following studies it is helpfull that
there is a heart rate for every rider each day and that the alignment problem
could be easily fixed by turning the device for every cyclist on at the same time.



Appendices





A
DESCRIPTION

Some figures from the description of the data are also added here. This concerns
the full and detailed GPS coordinates and the original and shifted data to see how
the alignment works.
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Figure A.1: Full GPS coordinates of all riders on 7 July 2016 and the first common point.
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Figure A.2: Detailed zoom of the GPS data of 9 different cyclists on 7 July 2016.
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Figure A.3: The original plot of the GPS coordinates.
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Figure A.4: The aligned plot of the GPS coordinates.





B
CYCLING NETWORK

For completion the common arcs from the different race types in section 4.3. For
each Grand Tour four different BN’s are created (flat, hills, mountain and arrival
uphill) and the common arcs are represented in the table below.
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Giro Tour Vuelta

From To From To

Altitude Distance Altitude Distance Altitude Cadence
Altitude Heart rate Altitude Heart rate Altitude Pedal power
Altitude Pedal power Altitude Speed Altitude Speed
Altitude Speed Altitude Temperature Distance Cadence
Altitude Temperature Cadence Heart rate Distance Heart rate
Distance Cadence Cadence Speed Distance Pedal power
Distance Heart rate Distance Cadence Distance Speed
Distance Pedal power Distance Pedal power Distance Temperature
Distance Speed Distance Speed Speed Heart rate
Temperature Cadence Pedal power Cadence Temperature Cadence
Temperature Heart rate Pedal power Speed Temperature Heart rate
Temperature Pedal power Temperature Cadence Temperature Pedal power
Temperature Speed Temperature Heart rate

Temperature Pedal power
Temperature Speed

Table B.1: Comparison of the network structures learned from all the available data for different race types. For each Grand Tour four different
BN’s are created (flat, hills, mountain and arrival uphill) and the common arcs are represented in this table.
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C.1. MAIN.M

1 clear a l l
2

3 %%%
4 % Main f i l e of synchronization based on gps−data
5 %%%
6

7 race = ’TDF ’ ;
8 day = 1712;
9

10 % Get directory to speci f ied race and day
11 directory = s p r i n t f ( ’C: / Users/mark/Documents/MATLAB/BEP/%s/%d ’ , race , day ) ;
12 cd ( directory )
13 vals = g e t F i l e s ( ) ;
14

15 %% Find the f i r s t common gps−data and index for a l l r i d e r s
16 [ vals ,H, B, N_vector ] = gps_shi f t ( vals ) ;
17 [ index_al l ] = findIndex ( vals ,H, N_vector ) ;
18 fnames = dir ( ’ * . mat ’ ) ;
19

20 %% Plot gps−data with common s t a r t i n g point
21 f i g u r e
22 legendInfo = new_legend ( fnames , N_vector ) ;
23 rand ( ’ s t a t e ’ ,149)
24 C = rand (10 ,3) ;
25

26 for K = N_vector
27 x = vals {K } . data_pioneer ( : , 6 1 ) ; x ( x==0) = NaN;
28 y = vals {K } . data_pioneer ( : , 6 2 ) ; y ( y==0) = NaN;
29 plot ( x , y , ’ Color ’ ,C(K , : ) ) ;
30 hold on
31 end
32

33 % Find f i r s t overlapping gps−coordinates
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34 h = p l o t _ f i r s t _ p o i n t ( vals , index_all ,H) ;
35

36 % Plot s t a r t i n g point ( i f e x i s t s )
37 i f s i z e (H, 1 ) ~= 0
38 plot (H(h( 1 ) , 1 ) ,H(h( 1 ) , 2 ) , ’ . ’ , ’ Markersize ’ ,20)
39 legendInfo { length ( N_vector ) +1} = ’ s t a r t i n g point ( in common) ’ ;
40 end
41

42 t i t l e ( ’GPS−data ’ )
43 xlabel ( ’ Latitude ’ )
44 ylabel ( ’ Longitude ’ )
45 legend ( legendInfo , ’ Location ’ , ’ eastoutside ’ )
46

47 %% Look at a l t i t u d e i f synchronization on gps−data works
48

49 f i g u r e
50 N_legend = new_legend ( fnames , N_vector ) ;
51

52 gps = gpxread ( ’ TDF2016_stage2 ’ ) ;
53 [ s t a r t , f i n i s h ] = gpx ( vals , gps , N_vector ) ;
54 d i s t = zeros ( 1 , s i z e ( vals , 2 ) ) ;
55

56 for i = N_vector
57 plot ( vals { i } . data_pioneer ( index_al l ( i ) : end , 6 3 ) − . . .
58 mean( vals { i } . data_pioneer ( index_al l ( i ) : end , 6 3 ) ) , ’ Color ’ ,C( i , : ) )
59 hold on
60 i f f i n i s h ( i ) == 0
61 d i s t ( i ) = 0 ;
62 continue
63 else
64 d i s t ( i ) = vals { i } . data_pioneer ( f i n i s h ( i ) ,65)−vals { i } . data_pioneer ( index_al l ( i

) ,65) ;
65 end
66 end
67

68 t i t l e ( ’ Al t i tude ’ )
69 xlabel ( ’Number of seconds ’ )
70 ylabel ( ’ Al t i tude ’ )
71 legend ( N_legend , ’ Location ’ , ’ eastoutside ’ )
72

73 for i = N_vector
74 plot ( [ f i n i s h ( i ) f i n i s h ( i ) ] , get ( gca , ’ ylim ’ ) , ’ Color ’ ,C( i , : ) )
75 end

C.2. GETFILES.M

1 function vals = g e t F i l e s ( )
2 % Get a l l matlab f i l e s from current directory
3

4 fnames = dir ( ’ * . mat ’ ) ;
5 numfids = length ( fnames ) ;
6 vals = c e l l ( 1 , numfids ) ;
7 for K = 1 : numfids
8 vals {K} = load ( fnames (K) .name) ;
9 end

10 end
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C.3. gps_shift.M

1 function [ vals ,H, B, N_vector ] = gps_shi f t ( vals )
2 %%%
3 % Find out which r i d e r s are i n t e r e s t i n g to examine and then t r y to
4 % find a l l overlapping gps−coordinates for given speci f ied race
5 % and day .
6 %
7 % Args :
8 % vals : the current dataset where we need to find matches ( c e l l )
9 %

10 % Returns :
11 % L i s t : containing the l a t i t u d e and longitude of overlapping
12 % gps−coordinates .
13 %%%
14

15 % % Get directory to speci f ied race and day
16 % directory = s p r i n t f ( ’C: / Users/mark/Documents/MATLAB/BEP/%s/%d ’ , race , day ) ;
17 % cd ( directory )
18 % vals = g e t F i l e s ( ) ;
19

20 % I n i t i a l i z e
21 t = 3600; % maximum time in [ sec ] to find matches
22 L = s i z e ( vals , 2 ) ; % number of r i d e r s t h i s day
23 nullvec = zeros ( 1 , L ) ; % dummy variable to t e s t for no gps−data
24

25 for i = 1 : L
26 % Check i f a l l r i d e r s drove more than 3600 seconds and i f there i s any
27 % gps−data
28 i f length ( vals { i } . data_pioneer ( : , 6 1 ) ) > t &&. . .
29 isequal ( vals { i } . data_pioneer ( 1 : t , 6 1 ) , zeros ( t , 1 ) ) == 0 ;
30 nullvec ( i ) = i ;
31 end
32 end
33

34 % Index of r i d e r s with ’ interest ing ’ values
35 N_vector = nullvec ( nullvec ~= 0) ;
36

37 [H, vals ] = intersect ion ( vals , N_vector , t ) ;
38 % [B, vals ] = l a s t _ i n t e r s e c t ( vals , N_vector ) ;
39 B = [ ] ;
40 end

C.4. FINDINDEX.M

1 function [ index_al l ] = findIndex ( vals ,H, N_vector )
2 %%%
3 % Find index of s t a r t i n g point for a l l r i d e r s given a l l overlapping
4 % gps−coordinates .
5 %
6 % Args :
7 % vals : c e l l with a l l data of r i d e r s
8 % H: l i s t of matching gps−coordinates
9 % N_vector : l i s t of ’ interest ing ’ r i d e r s

10 %
11 % Returns :
12 % index_al l : l i s t of a l l indices of s t a r t i n g points .
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13 %%%
14

15 index_al l = zeros ( 1 , s i z e ( vals , 2 ) ) ;
16

17 for j = N_vector
18 [~ , index ] = ismember(H, vals { j } . data_pioneer ( : , 6 1 : 6 2 ) , ’ rows ’ ) ;
19 index_al l ( j ) = min( index ) ;
20 end
21 end

C.5. new_legend.M

1 function legendInfo = new_legend ( fnames , N_vector )
2

3 legendInfo = c e l l ( 1 , length ( fnames ) ) ;
4

5 for i = 1 : length ( fnames )
6 i f ismember ( i , N_vector ) == 1
7 legendInfo { i } = fnames ( i ) .name;
8 end
9 end

10

11 legendInfo = legendInfo (~ c e l l fu n ( @isempty , legendInfo ) ) ;
12 end

C.6. plot_first_point.M

1 function h = p l o t _ f i r s t _ p o i n t ( vals , index , overlap )
2 [~ ,F ] = find ( index ~= 0) ;
3 f i r s t = min(F) ;
4 I = vals { f i r s t } . data_pioneer ( index ( f i r s t ) ,61) ;
5 h = find ( overlap == I ) ;
6 end
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D.1. DATA IMPORT

1

2 ## A l l data i s imported , but to save some space we only put down the f i r s t and l a s t
data set .

3 day1651 = read . csv ( "C: /Users/mark/Documents/MATLAB/Bep/ Giro /1652/ testdata1 . csv " ,
header = TRUE) ; day1651 = col _names( day1651 )

4 . . .
5 day1767 = read . csv ( "C: /Users/mark/Documents/MATLAB/Bep/ Vuelta /1767/ testdata1 . csv " ,

header = TRUE) ; day1767 = col _names( day1767 )
6

7 ## The data i s s p l i t per day
8 day1707_ t d f = l i s t ( day1707 [ , 2 : 8 ] , day1707 [ , 1 0 : 1 6 ] , day1707 [ , 1 8 : 2 4 ] , day1707 [ , 2 6 : 3 2 ] ,

day1707 [ , 3 4 : 4 0 ] , day1707 [ , 4 2 : 4 8 ] , day1707 [ , 5 0 : 5 6 ] , day1707 [ , 5 8 : 6 4 ] , day1707 [ , 6 6 : 7 2 ] ) ;
9 . . .

10 day1777_ vuelta = l i s t ( day1777 [ , 2 : 8 ] , day1777 [ , 1 0 : 1 6 ] , day1777 [ , 1 8 : 2 4 ] , day1777 [ , 2 6 : 3 2 ] ,
day1777 [ , 3 4 : 4 0 ] , day1777 [ , 4 2 : 4 8 ] ) ;

D.2. MAIN

1 # Clear the current workspace
2

3 rm( l i s t = l s ( ) )
4

5 l i b r a r y ( bnlearn )
6 l i b r a r y ( lmtest )
7 l i b r a r y ( forecast )
8

9 ## TDF
10 t d f = c ( day1707_ tdf , day1708_ tdf , day1709_ tdf , day1710_ tdf , day1711_ tdf , day1712_ tdf ,

day1713_ tdf , day1714_ tdf , day1715_ tdf , day1717_ tdf , day1718_ tdf , day1719_ tdf , day1721_
tdf , day1722_ tdf , day1723_ tdf , day1725_ t d f ) ;

11

12 bn . t d f = BN_ r i d e r ( t d f ) ; graphviz . plot (bn . t d f ) # H i l l climbing
13 bn . tdf1 = BN_ r i d e r ( tdf , algo = gs ) ; graphviz . plot (bn . tdf1 )
14 bn . tdf2 = BN_ r i d e r ( tdf , algo = iamb) ; graphviz . plot (bn . tdf2 )
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15 bn . tdf3 = BN_ r i d e r ( tdf , algo = i n t e r . iamb) ; graphviz . plot (bn . tdf3 )
16 bn . tdf4 = BN_ r i d e r ( tdf , algo = f a s t . iamb) ; graphviz . plot (bn . tdf4 )
17

18 ## Giro
19 giro = c ( day1651_ giro , day1652_ giro , day1654_ giro , day1655_ giro , day1656_ giro , day1657_

giro , day1658_ giro , day1663_ giro , day1669_ giro ) ;
20 highl ight . opts = l i s t ( arcs = c ( "Heart_ rate " , "Speed" , " Alt i tude " , "Speed" , " Distance " , "

Cadence" , " Alt i tude " , "Heart_ rate " , " Alt i tude " , "Cadence" ,
21 " Distance " , "Speed" , " Alt i tude " , " Pedal_power" , "

Temperature" , "Cadence" , " Distance " , " Pedal_power" , "
Temperature" , "Heart_ rate " ) )

22

23 bn . giro = BN_ r i d e r ( giro ) ; graphviz . plot (bn . giro , highl ight = highl ight . opts ) ## HC
24

25 bn . giro1 = BN_ r i d e r ( giro , algo = gs ) ; graphviz . plot (bn . giro1 , highl ight = highl ight .
opts )

26 bn . giro2 = BN_ r i d e r ( giro , algo = iamb) ; graphviz . plot (bn . giro2 )
27 bn . giro3 = BN_ r i d e r ( giro , algo = i n t e r . iamb) ; graphviz . plot (bn . giro3 )
28 bn . giro4 = BN_ r i d e r ( giro , algo = f a s t . iamb) ; graphviz . plot (bn . giro4 )
29

30 ## Vuelta
31 vuelta = c ( day1757_ vuelta , day1758_ vuelta , day1759_ vuelta , day1760_ vuelta , day1761_ vuelta

, day1762_ vuelta , day1763_ vuelta , day1764_ vuelta , day1765_ vuelta , day1767_ vuelta ,
day1768_ vuelta , day1769_ vuelta , day1770_ vuelta , day1771_ vuelta , day1772_ vuelta ,
day1774_ vuelta , day1775_ vuelta , day1777_ vuelta )

32 bn . vuelta = BN_ r i d e r ( vuelta ) ; graphviz . plot (bn . vuelta )
33

34 bn . vuelta1 = BN_ r i d e r ( vuelta , algo = gs ) ; graphviz . plot (bn . vuelta1 )
35 bn . vuelta2 = BN_ r i d e r ( vuelta , algo = iamb) ; graphviz . plot (bn . vuelta2 )
36 bn . vuelta3 = BN_ r i d e r ( vuelta , algo = i n t e r . iamb) ; graphviz . plot (bn . vuelta3 )
37 bn . vuelta4 = BN_ r i d e r ( vuelta , algo = f a s t . iamb) ; graphviz . plot (bn . vuelta4 )
38

39 ## A l l
40 a l l _data = c ( tdf , giro , vuelta )
41 bn . a l l = BN_ r i d e r ( a l l _data ) ; graphviz . plot (bn . a l l )
42

43 bn . a l l _5 = BN_ r i d e r ( a l l _data , inc = 5) ; plot (bn . a l l _ 5)
44 bn . a l l _10 = BN_ r i d e r ( a l l _data , inc= 10) ; plot (bn . a l l _ 10)
45 bn . a l l _20 = BN_ r i d e r ( a l l _data , inc= 20) ;
46 bn . a l l _30 = BN_ r i d e r ( a l l _data , inc= 30) ;
47

48 ### Race types
49

50 f l a t = c ( day1651_ giro , day1652_ giro , day1663_ giro , day1669_ giro , day1707_ tdf , day1708_ tdf ,
day1709_ tdf , day1710_ tdf ,

51 day1718_ tdf , day1721_ tdf , day1723_ tdf , day1757_ vuelta , day1760_ vuelta , day1772_
vuelta , day1775_ vuelta )

52 h i l l s = c ( day1654_ giro , day1655_ giro , day1657_ giro , day1658_ giro , day1711_ tdf , day1712_ tdf
, day1761_ vuelta , day1762_ vuelta ,

53 day1768_ vuelta , day1769_ vuelta , day1771_ vuelta )
54 mountain = c ( day1656_ giro , day1670_ giro , day1713_ tdf , day1714_ tdf , day1715_ tdf , day1717_

tdf , day1722_ tdf , day1725_ tdf ,
55 day1770_ vuelta , day1774_ vuelta , day1777_ vuelta )
56 a r r i v a l = c ( day1719_ tdf , day1758_ vuelta , day1759_ vuelta , day1763_ vuelta , day1764_ vuelta ,

day1765_ vuelta , day1767_ vuelta )
57

58 bn . f l a t = BN_ r i d e r ( f l a t ) ; graphviz . plot (bn . f l a t )
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59 bn . h i l l s = BN_ r i d e r ( h i l l s ) ; graphviz . plot (bn . h i l l s )
60 bn . mountain = BN_ r i d e r ( mountain ) ; graphviz . plot (bn . mountain )
61 bn . a r r i v a l = BN_ r i d e r ( a r r i v a l ) ; graphviz . plot (bn . a r r i v a l )
62

63 ### Predictions
64 pred_ f l a t = pred ( f l a t )
65 pred_ h i l l s = pred ( h i l l s )
66 pred_mountain = pred ( mountain )
67 pred_ a r r i v a l = pred ( a r r i v a l )
68

69 par (mfrow=c ( 2 , 2 ) )
70

71 h i s t ( pred_speed , col= ’ skyblue ’ , border = F , xlab="Speed" ,main = " F l a t " )
72 h i s t ( pred_speed1 , add=F , col= ’ skyblue ’ , border=F , xlab="Speed" ,main = " H i l l s " )
73 h i s t ( pred_speed2 , add=F , col= ’ skyblue ’ , border=F , xlab="Speed" ,main= "Mountain" )
74 h i s t ( pred_speed3 , add=F , col= ’ skyblue ’ , border=F , xlab="Speed" ,main= " A r r i v a l uphi l l " )
75

76 ### Leader and helpers
77

78 kopman_ giro = l i s t ( day1651 [ , 2 : 8 ] , day1652 [ , 2 : 8 ] , day1654 [ , 2 6 : 3 2 ] , day1657 [ , 2 : 8 ] , day1658
[ , 1 8 : 2 4 ] , day1663 [ , 2 : 8 ] , day1669 [ , 2 : 8 ] )

79 kopman_ t d f = l i s t ( day1707 [ , 2 6 : 3 2 ] , day1708 [ , 2 : 8 ] , day1709 [ , 2 6 : 3 2 ] , day1710 [ , 2 : 8 ] , day1711
[ , 2 : 8 ] , day1712 [ , 2 6 : 3 2 ] , day1713 [ , 2 : 8 ] , day1714 [ , 2 : 8 ] , day1715 [ , 2 : 8 ] , day1717 [ , 2 : 8 ] ,
day1718 [ , 2 6 : 3 2 ] , day1719 [ , 2 : 8 ] , day1721 [ , 2 6 : 3 2 ] , day1722 [ , 2 : 8 ] , day1723 [ , 1 8 : 2 4 ] ,
day1725 [ , 2 : 8 ] )

80 kopman_ vuelta = l i s t ( day1757 [ , 2 : 8 ] , day1760 [ , 2 : 8 ] , day1762 [ , 2 : 8 ] , day1772 [ , 2 : 8 ] , day1775
[ , 2 : 8 ] )

81

82 kopman = c (kopman_ giro ,kopman_ tdf ,kopman_ vuelta ) ;
83 bn .kopman = BN_ r i d e r (kopman) ; graphviz . plot (bn .kopman)
84 bn .kopman_gs = BN_ r i d e r (kopman, algo=gs )
85

86 helper _ giro = c ( day1651_ giro [−1] , day1652_ giro [−1] , day1654_ giro [−4] , day1655_ giro [−1] ,
day1657_ giro [−1] , day1658_ giro [−3] , day1663_ giro [−1] , day1669_ giro [−1]) ;

87 helper _ t d f = c ( day1707_ t d f [−4] , day1708_ t d f [−1] , day1709_ t d f [−4] , day1710_ t d f [−1] ,
day1711_ t d f [−1] , day1712_ t d f [−4] , day1713_ t d f [−1] , day1714_ t d f [−1] , day1715_ t d f [−1] ,
day1717_ t d f [−1] , day1718_ t d f [−4] , day1719_ t d f [−1] , day1721_ t d f [−4] , day1722_ t d f [−1] ,
day1723_ t d f [−4] , day1725_ t d f [−1]) ;

88 helper _ vuelta = c ( day1757_ vuelta [−1] , day1760_ vuelta [−1] , day1762_ vuelta [−1] , day1772_
vuelta [−1] , day1775_ vuelta [−1]) ;

89

90 helper = c ( helper _ giro , helper _ tdf , helper _ vuelta )
91 bn . helper = BN_ r i d e r ( helper ) ; graphviz . plot (bn . helper )
92

93 pred_kopman = pred (kopman)
94 pred_ helper = pred ( helper )
95

96 par (mfrow=c ( 1 , 2 ) )
97 h i s t ( pred_kopman, col= ’ skyblue ’ , border = F , xlab="Speed" ,main = "Leader" )
98 h i s t ( pred_helper , add=F , col= ’ skyblue ’ , border=F , xlab="Speed" ,main = "Helper" )
99

100 ### Weeks
101

102 week1_ giro = c ( day1651_ giro , day1652_ giro , day1654_ giro , day1655_ giro , day1656_ giro ,
day1657_ giro )

103 week2_ giro = c ( day1658_ giro , day1663_ giro )
104 week3_ giro = c ( day1669_ giro , day1670_ giro )
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105

106 week1_ t d f = c ( day1707_ tdf , day1708_ tdf , day1709_ tdf , day1710_ tdf , day1711_ tdf , day1712_ tdf
, day1713_ t d f )

107 week2_ t d f = c ( day1714_ tdf , day1715_ tdf , day1717_ tdf , day1718_ tdf , day1719_ tdf , day1721_ t d f
)

108 week3_ t d f = c ( day1722_ tdf , day1723_ tdf , day1725_ t d f )
109

110 week1_ vuelta = c ( day1757_ vuelta , day1758_ vuelta , day1759_ vuelta , day1760_ vuelta , day1761_
vuelta , day1762_ vuelta )

111 week2_ vuelta = c ( day1763_ vuelta , day1764_ vuelta , day1765_ vuelta , day1767_ vuelta , day1768_
vuelta , day1769_ vuelta , day1770_ vuelta )

112 week3_ vuelta = c ( day1771_ vuelta , day1772_ vuelta , day1774_ vuelta , day1775_ vuelta , day1777_
vuelta )

113

114 week1 = c ( week1_ giro , week1_ tdf , week1_ vuelta )
115 week2 = c ( week2_ giro , week2_ tdf , week2_ vuelta )
116 week3 = c ( week3_ giro , week3_ tdf , week3_ vuelta )
117

118 bn . week1 = BN_ r i d e r ( week1 )
119 bn . week2 = BN_ r i d e r ( week2 )
120 bn . week3 = BN_ r i d e r ( week3 )
121

122 pred_week1 = pred ( week1 )
123 pred_week2 = pred ( week2 )
124 pred_week3 = pred ( week3 )
125

126 par (mfrow=c ( 1 , 3 ) )
127 h i s t ( pred_week1 , col= ’ skyblue ’ , border = F , xlab="Speed" ,main = "Week 1" )
128 h i s t ( pred_week2 , add=F , col= ’ skyblue ’ , border=F , xlab="Speed" ,main = "Week 2" )
129 h i s t ( pred_week3 , col= ’ skyblue ’ , border = F , xlab="Speed" ,main = "Week 3" )
130

131 #### Expert view
132 e = empty . graph ( c ( " Alt i tude " , " Pedal_power" , " Distance " , "Heart_ rate " , "Temperature" , "

Cadence" , "Speed" ) )
133 bn_ expert = c ( " Alt i tude " , " Pedal_power" , " Alt i tude " , "Heart_ rate " , " Alt i tude " , "

Distance " ,
134 " Distance " , " Pedal_power" , " Distance " , "Heart_ rate " , " Distance " , "Speed" ,
135 " Pedal_power" , "Heart_ rate " , " Pedal_power" , "Speed" , "Heart_ rate " , "Speed" ,

"Temperature" , " Distance " ,
136 "Temperature" , "Heart_ rate " , "Temperature" , "Speed" , "Cadence" , " Pedal_power

" , "Cadence" , "Speed" , " Alt i tude " , "Cadence" )
137

138 arc . set = matrix (bn_expert , ncol = 2 , byrow = TRUE, dimnames = l i s t (NULL, c ( "from" , " to
" ) ) )

139 arcs ( e ) = arc . set
140

141 graphviz . plot ( e )
142

143 From = c ( "Temperature" , "Cadence" , " Pedal_power" , "Cadence" , " Alt i tude " , " Alt i tude " , "
Distance " )

144 To = c ( "Speed" , "Speed" , "Cadence" , " Pedal_power" , " Distance " , "Speed" , "Speed" )
145 wl=data . frame ( from = From, to = To)
146

147 From = rep ( c ( "Cadence" , "Speed" , " Pedal_power" , "Heart_ rate " ) , 3 )
148 To = c ( rep ( "Temperature" , 4 ) , rep ( " Distance " , 4 ) , rep ( " Alt i tude " , 4 ) )
149 bl=data . frame ( from = From, to = To)
150
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151 column_names = c ( " Pedal_power" , "Cadence" , "Heart_ rate " , " Alt i tude " , "Speed" , " Distance " , "
Temperature" )

152 network = lapply ( a l l _data , setNames , nm = column_names)
153

154 network = do . c a l l ( rbind , network )
155 names( network ) = column_names
156 network = na . omit ( network )
157 network = lapply ( network , as . numeric )
158 network = data . frame ( network )
159

160 bn_ expert _ a l l = hc ( network , w h i t e l i s t = wl , b l a c k l i s t = bl )

D.3. FUNCTIONS

1 col _names <− function ( dataset ) {
2 x=dim( dataset ) [ 2 ] ;
3 y=paste ( c ( " Pedal_power_" , "Cadence_" , "Heart_ rate _" , " Alt i tude _" , "Speed_" , " Distance_" ,

"Temperature_" , "Energy_" ) , rep ( 1 : ( x%/%8) , each=8) , sep=" " )
4

5 column_names = c ( "Day" , y , "Type" , " Succesive days" )
6 names( dataset ) = column_names
7 return ( dataset )
8 }
9

10 BN <− function ( day , c y c l i s t ) {
11 From = rep ( c ( "Cadence" , "Speed" , " Pedal_power" , "Heart_ rate " ) , 3 )
12 To = c ( rep ( "Temperature" , 4 ) , rep ( " Distance " , 4 ) , rep ( " Alt i tude " , 4 ) )
13 bl=data . frame ( from = From, to = To)
14

15 z = 8* c y c l i s t
16 End = Find . na ( day , z )
17 network = day [ 1 : End , ( z−6) : z ]
18 names( network ) = c ( " Pedal_power" , "Cadence" , "Heart_ rate " , " Alt i tude " , "Speed" , "

Distance " , "Temperature" )
19 network = lapply ( network , as . numeric )
20 network = data . frame ( network )
21

22 bn . network = hc ( network , b l a c k l i s t = bl )
23 }
24

25 Compare <− function ( networks ) {
26 y = compare( networks [ [ 2 , 1 ] ] , networks [ [ 3 , 1 ] ] , arcs=TRUE) $tp
27 for ( i in 2 : ( dim( networks ) [1]−1) ) {
28 for ( j in ( i +1) : dim( networks ) [ 1 ] ) {
29 x = compare( networks [ [ i , 1 ] ] , networks [ [ j , 1 ] ] , arcs=TRUE) $tp
30 y = merge ( x , y )
31 }
32 }
33 return ( y )
34 }
35

36

37 BN_ r i d e r <− function ( foo , algo = hc , inc = 1) {
38 From = rep ( c ( "Cadence" , "Speed" , " Pedal_power" , "Heart_ rate " ) , 3 )
39 To = c ( rep ( "Temperature" , 4 ) , rep ( " Distance " , 4 ) , rep ( " Alt i tude " , 4 ) )
40 bl=data . frame ( from = From, to = To)
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41 column_names = c ( " Pedal_power" , "Cadence" , "Heart_ rate " , " Alt i tude " , "Speed" , " Distance "
, "Temperature" )

42 network = lapply ( foo , setNames , nm = column_names)
43

44 network = do . c a l l ( rbind , network )
45 names( network ) = column_names
46 network = na . omit ( network )
47 network = lapply ( network , as . numeric )
48 network = data . frame ( network )
49 network = network [ seq ( 1 ,nrow( network ) , inc ) , ]
50

51 bn . network = algo ( network , b l a c k l i s t = bl )
52 return (bn . network )
53 }
54

55 pred <− function ( dataset ) {
56 set . seed (42)
57 spec = c ( t r a i n = . 6 , t e s t = . 2 , v a l i da te = . 2 )
58 column_names = c ( " Pedal_power" , "Cadence" , "Heart_ rate " , " Alt i tude " , "Speed" , " Distance "

, "Temperature" )
59 From = rep ( c ( "Cadence" , "Speed" , " Pedal_power" , "Heart_ rate " ) , 3 )
60 To = c ( rep ( "Temperature" , 4 ) , rep ( " Distance " , 4 ) , rep ( " Alt i tude " , 4 ) )
61 bl=data . frame ( from = From, to = To)
62 dataset = lapply ( dataset , setNames , nm = column_names)
63 dataset = do . c a l l ( rbind , dataset )
64 names( dataset ) = column_names
65 dataset = na . omit ( dataset )
66 dataset = lapply ( dataset , as . numeric )
67 dataset = data . frame ( dataset )
68 df = dataset
69

70 g = sample ( cut (
71 seq (nrow( df ) ) ,
72 nrow( df ) *cumsum( c ( 0 , spec ) ) ,
73 l a b e l s = names( spec )
74 ) )
75

76 res = s p l i t ( df , g )
77

78 bn_ dataset = hc ( res $ train , b l a c k l i s t = bl )
79 f i t t e d = bn . f i t (bn_ dataset , res $ t r a i n )
80

81 pred_speed = predict ( f i t t e d , "Speed" , res $ v a l i d at e )
82 #cbind ( pred_speed , res $ v a l i d a te [ , " Speed " ] )
83 return ( pred_speed )
84 }
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