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ABSTRACT: Long waves are generated and transform when short-wave groups propagate into shallow water, but the gener-

ation and transformation processes are not fully understood. In this study we develop an analytical solution to the linearized

shallow-water equations at thewave-group scale, which decomposes the longwaves into a forced solution (a bound longwave) and

free solutions (free long waves). The solution relies on the hypothesis that free long waves are continuously generated as short-

wave groups propagate over a varying depth.We show that the superposition of free longwaves and a bound longwave results in a

shift of the phase between the short-wave group and the total long wave, as the depth decreases prior to short-wave breaking.

While it is known that short-wave breaking leads to free-long-wave generation, through breakpoint forcing and bound-wave

release mechanisms, we highlight the importance of an additional free-long-wave generation mechanism due to depth variations,

in the absence of breaking. This mechanism is important because as free long waves of different origins combine, the total free-

long-wave amplitude is dependent on their phase relationship.Our free and forced solutions are verified against a linear numerical

model, andwe show howour solution is consistent with prior theory that does not explicitly decouple free and forcedmotions.We

also validate the results with data from a nonlinear phase-resolving numerical wave model and experimental measurements,

demonstrating that our analytical model can explain trends observed in more complete representations of the hydrodynamics.

KEYWORDS: Ocean dynamics; Shallow-water equations; Wind waves

1. Introduction

As short-wave groups propagate into intermediate or shallow

water, they are accompanied by long waves with the same fre-

quency as the group, which are excited through nonlinear inter-

actions between all possible pairs of short-wave frequencies. These

‘‘bound’’ waves were first described theoretically by Longuet-

Higgins and Stewart (1962) as a response to gradients in radiation

stress at the scale of short-wave groups. Their analytical solution

was based on wave propagation in constant depth, in which case

the boundwaveswere locked and 1808 out of phasewith the group.
In varying depth, the phase relationship between the group and the

long wave has been observed to change, and in progressively

shallower water, the growth rate of the long waves is smaller than

expected according to the equilibriumsolution for a constant depth

(Elgar et al. 1992; Battjes et al. 2004; van Dongeren et al. 2007).

While Longuet-Higgins and Stewart (1962) did not provide an

analytical solution for wave groups propagating over varying

depth, several subsequent mathematical and numerical modeling

studies (Janssen et al. 2003, hereinafter J03; van Leeuwen 1992;

Mei and Benmoussa 1984; List 1992; Okihiro et al. 1992; van

Dongeren et al. 2003; Schäffer 1993; Roelvink et al. 1993) as well as

laboratory experiments (Battjes et al. 2004; van Noorloos 2003)

were conducted to investigate the hydrodynamic processes. These

studies have consistently shown that long waves increasingly lag the

wave group as they advance into shallower water, approaching a

phase lag of 908 as the depth tends to zero. Li et al. (2020) also noted
that the amplitude of long waves was still increasing on the plateau

of a shoalwhendepth variations ceased, highlighting the importance

of accounting for ‘‘wave history’’ to investigate long-wave trans-

formation. While mathematical and numerical models have been

able to provide reasonable estimates of the amplitude and phase of

long waves in the nearshore (J03; van Dongeren et al. 2003; van

Leeuwen 1992; Zou 2011), these modeling studies have not yet

provided a complete physical explanation for the long-wave trans-

formation across the surf zone (Bertin et al. 2018, 2020). For in-

stance, the perturbation approach chosen by J03 provides a solution

very close to the exact solution calculated through variation of pa-

rameters (van Leeuwen 1992; Schäffer 1993). While these mathe-

matical models are able to reproduce the phase shift and estimate

the wave growth, they do not provide a complete physical expla-

nation for why there is a phase shift, and why the observed growth

rate is larger than the growth rate of shoaling free waves (i.e., from

Green’s law) but less than the growth predicted by the equilibrium

bound wave solution (Longuet-Higgins and Stewart 1962).
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Hypotheses have been proposed in the literature to explain

the growth of long waves in the nearshore. J03 suggested that

the positive part of the correlation between wave groups and long

waves was due to free waves, referring to Molin (1982) and Mei

and Benmoussa (1984), who described the generation of free long

waves by depth variations. Nagase and Mizuguchi (1997) also

made similar arguments to explain free-wave generation during

the shoaling process, based on laboratory observations. More

recently, Nielsen and Baldock (2010) proposed a qualitative ex-

planation for the phase shift by considering the forcing of a

transient long wave generated by a single short-wave group. In a

more recent paper (Nielsen 2017), theNielsen andBaldock (2010)

flat bottom model was used to offer an intuitive explanation for

the case of a shoaling wave group. Nielsen (2017) explained how

the generation of successive incremental free long waves, in ad-

dition to the bound long wave, is required to allow for mass

conservation as a transient short-wave group propagates over a

sloping bottom. These results are supported by the numerical

model results of Moura and Baldock (2019) that highlight the

presence of free waves in the bound-long-wave shoaling process.

The earlier results presented by Lara et al. (2010) using a nu-

merical model and laboratory experiment are also qualitatively

consistent with the long-wave growth process of Nielsen (2017).

However, their numerical study, based on theReynolds averaged

Navier–Stokes equations which includes wave breaking and

dissipation, did not allow them to isolate the mechanisms asso-

ciatedwith depth variation. Thus, despite increased attention, the

transformation of long waves as nonbreaking wave groups

propagate over varying bathymetry is still not yet fully explained.

In contrast, there are two establishedmechanisms for the case

where wave groups break in shallow water, which have been

used to describe the generation of free long waves: bound-wave

release (Inch et al. 2017;Masselink 1995) and breakpoint forcing

(Symonds et al. 1982; Contardo et al. 2018; Contardo and

Symonds 2013, 2016; Moura and Baldock 2017; Pomeroy et al.

2012).While these additionalmechanisms relating specifically to

breaking are very important to long-wave generation in the

nearshore, in this study we focus on an alternative generation

mechanism of free long waves by nonbreaking wave groups in-

teracting with depth variations outside of the breaking region.

In this study, we propose a solution to the linearized shallow-

water equations at the short-wave group scale for the case of a

sloping bottom, which decomposes the water level into free

and forced components. Our total solution (addition of the free

and forced components) agrees with the results of a linearized

numerical model resolving the governing mass-momentum

equations and with J03’s solution, obtained with a perturba-

tion approach, but provides new insight into the (de)coupling

of the free and forced contributions. This demonstrates the

consistency of the approach and supports the physical inter-

pretation of the underlying mechanisms. Finally, we validate

the linearized results (both analytical and numerical model)

with results from a nonhydrostatic phase-resolving wave-flow

model Simulating Waves till Shore (SWASH; Zijlema et al.

2011; Rijnsdorp et al. 2014) as well as with laboratory wave

flume measurements. The validation supports that the linear-

ized model can explain the trends observed in more complete

representations of the hydrodynamics.

2. Background

The depth-integrated mass and momentum conservation

equations, averaged over short-wave periods, can be expressed

as (e.g., Schäffer 1993)

›z

›t
1
›[(h1 z)U]

›x
5 0, (1)

›U

›t
1U

›U

›x
1 g

›z

›x
52

1

r(h1 z)

›S
xx

›x
, (2)

where x is the cross-shore coordinate (positive offshore) with the

origin at the shoreline, t is the time, h is the still water depth, U is

the depth-integrated current velocity, z the sea surface elevation

relative to still water level, r the seawater density, and g the

gravitational acceleration. The term Sxx is the radiation stress

(excessmomentumflux due to the short waves) averaged over the

short-wave time scale that retains the wave-group time scale:

S
xx
5

1

2
rgA2

g

�
2c

g

c
2
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2

�
, (3)

where Ag(x, t) is the wave group envelope, cg(x) is the group ve-

locity, and c(x) the phase velocity of the short waves. Equations

(1) and (2) represent the nonlinear shallow-water equationswith a

forcing term incorporated in the momentum equation. Assuming

z � h, depths are slowly varying (mild slopes) and neglecting

nonlinear terms, we obtain the linearized shallow-water equations

(Longuet-Higgins and Stewart 1962; Schäffer 1993):
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›x
52
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›S
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›x
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By cross-differentiating Eqs. (4) and (5),U is eliminated and

we obtain (Longuet-Higgins and Stewart 1962; Schäffer 1993;
Mei and Benmoussa 1984)

›

›x

�
gh

›z

›x

�
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›2z

›t2
52

1

r

›2S
xx

›x2
. (6)

In the particular case of a flat bottom, this equation has a simple

analytical solution (Longuet-Higgins and Stewart 1962), which

gives the classic solution for the bound long wave (BLW) surface

elevation and current velocity:

z
BLW

52
1

r

 
S
xx

gh2 c2g

!
1 constant , (7)

U
BLW

52
1

rh

 
c
g
S
xx

gh2 c2g

!
1 constant: (8)

This solution is valid under the assumption that long waves are

in shallow water and has been validated in many studies (e.g.,

Battjes et al. 2004; van Dongeren et al. 2007; Herbers et al. 1994;

Lara et al. 2010; Torres-Freyermuth et al. 2010). In this paper, we

will refer to the BLWs as the flat bottom solution of Longuet-

Higgins and Stewart (1962). In contrast, the solution over varying
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bathymetry, sometimes referred to as ‘‘shoaling boundwave’’ (e.g.,

Battjes et al. 2004), will be referred to as the total longwave (TLW),

as we show below that the BLW (the flat bottom solution) is the

only component of the TLW that is strictly bound to the group and

propagates at the group velocity and out of phase with the wave

group envelope, with the rest of the TLW signal being FLWs

generated as thewave groups propagates over varying bathymetry.

3. Analytical approach

Here we formulate a solution to the linearized shallow-water

equations [Eqs. (4) and (5)] over a variable depth profile. Our

solution is based on the hypothesis that the total long wave is a

superposition of a BLW and FLWs as suggested in the literature

(Mei and Benmoussa 1984; Moura and Baldock 2019; Nielsen

2017;Zhanget al. 2020).Our objective is to calculate the long-wave

amplitude and phase relationshipwith the short-wave group, as the

wave group propagates over a sloping bottom. We start with the

simple case of a single depth variation (a single step) and then

extend this to a slope which we treat as a series of infinitesimally

small steps.

Here we provide expressions for a single-frequency long wave,

representing the difference interactions between two short-wave

frequencies within a spectral group. Since the process would be

repeated for every pair of short-wave frequency interactions, the

amplitude of a spectrum of long waves associated with an irreg-

ular short-wave spectrum can be estimated by integrating all of

the low-frequency contributions (Herbers et al. 1994; Ruessink

1998; Reniers et al. 2002; van Dongeren et al. 2003).

a. Single step case

We first calculate the amplitude of the incoming and outgoing

FLWs (denoted iFLW and oFLW, respectively) generated over a

single depth discontinuity (a single step). The step is treated as a

boundary between two zones: seaward and shoreward. We calcu-

late the elevation amplitude of the FLWs, as a function of the el-

evation amplitude of the BLWs, by matching the elevation and

momentum solutions along the boundary of the seaward and

shoreward zones (e.g., Symonds et al. 1982; Schäffer 1993). The
continuity of the long-wave elevation (zLW) and momentum

(MLW) at the bathymetric interface implies that at the step (x5 x0):

z
BLW,sea

(x
0
, t)1 z

oFLW
(x

0
, t)5 z

BLW,shore
(x

0
, t)1 z

iFLW
(x

0
, t),

(9)

and

M
BLW,sea

(x
0
, t)1M

oFLW
(x

0
, t)5M

BLW,shore
(x

0
, t)

1M
iFLW

(x
0
, t). (10)

The BLWs are in antiphase with the group [Eq. (7)] and we

hypothesize that the iFLW and the oFLW are respectively in

antiphase and in phase with the BLW (this will be verified in

section 4a).Wemake this hypothesis because the generation of

the FLWs coincides with the propagation of the wave group

(and the BLW) over the step, similar to the ‘‘abrupt onset’’ de-

scribed by Nielsen and Baldock (2010) where free waves are

generated to satisfy the flat surface condition when the radiation

stress forcing is instantaneously switched on: ziFLW 1 zoFLW 1
zBLW5 0. Based on these assumptions, the total surface elevation

on the seaward and shoreward sides can bewritten, respectively, as

z
sea

5A
BLW,sea

cos[k
b,sea

(x2 x
0
)2vt]

1A
oFLW

cos[k
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(x2 x
0
)1vt], (11)
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z
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cos[k
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(x2 x
0
)2vt]

2A
iFLW

cos[k
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(x2 x
0
)2vt]. (12)

Themomentum is describedbyM5 rhU (aswe havemade the

assumption z� h; Schäffer 1993), so the total momentum, on the

seaward and shoreward sides can be written, respectively,

M
sea

5
rgh

sea

v
fk

b,sea
A

BLW,sea
cos[k

b,sea
(x2 x

0
)2vt]

2 k
f ,sea

A
oFLW

cos[k
f ,sea

(x2 x
0
)1vt]g , (13)

and

M
shore

5
rgh
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v
fk

b,shore
A

BLW,shore
cos[k

b,shore
(x2 x

0
)2vt]

2k
f .shore

A
iFLW

cos[k
f ,sea

(x2 x
0
)2vt]g , (14)

where v is the long-wave angular frequency (which is equal to the

group angular frequency);AiFLW andAoFLW are the amplitudes

of the incoming (shoreward propagating) and outgoing (seaward

propagating) FLWs, respectively; ABLW,sea and ABLW,shore are

the amplitudes of the BLW; kb,sea and kb,shore are the wave-

numbers of the BLW; kf,sea and kf,shore are the wavenumbers of

the FLW; and hsea and hshore are the depths, seaward and

shoreward of the step, respectively.We thenmatch the solutions

at x5 x0 to obtain the constantsAiFLW, AoFLW, ABLW,shore, and

ABLW,sea. Equations (9) and (10) then become

A
BLW,sea

1A
oFLW

5A
BLW,shore

2A
iFLW

, (15)

and

k
b,sea

h
sea
A

BLW,sea
2 k

f ,sea
h
sea
A

oFLW
5k

b,shore
h
shore

A
BLW,shore

2k
f ,shore

h
shore

A
iFLW

.

(16)

Using this system of equations, we find solutions for AiFLW

and AoFLW:

A
iFLW

5
2A

BLW,sea
(k

f ,sea
1k

b,sea
)h

sea
1A

BLW,shore
(k

f ,sea
h
sea

1 k
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h
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)

k
f ,shore

h
shore

1 k
f ,sea

h
sea

, (17)
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A
oFLW

5
A

BLW,sea
(2k

f ,shore
h
shore

1k
b,sea

h
sea
)1A

BLW,shore
(k

f ,shore
2k

b,shore
)h

shore

k
f ,shore

h
shore

1k
f ,sea

h
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b. Slope case

For the case of a seabed with constant slope (i.e., a plane

beach), which can be represented as a succession of infinitesi-

mally small steps, the processwe described for the single step case

repeats for each depth increment. Therefore, the process where a

single iFLW and smaller oFLW are generated in the step case,

repeatedly occurs along the slope. The progression of the group

over the first depth variation (a step of length dx) is schematically

represented in Fig. 1, showing the initial iFLW and oFLW gen-

erated at this initial time t1. The propagation over the second depth

change is also represented at t2. Theprocess is the same, except that

at t2, an iFLWand an oFLW already exist (generated earlier at t1).

This initial iFLW is now ahead of the group and overlaps with a

larger newly generated iFLW. These overlapping iFLWs form a

combined FLW (denoted cFLW). The oFLW generated at t1 does

FIG. 1. Schematic description of the generation of FLWs at step 1 (at time t1) and step 2 (at

time t2). The dashed green line represents the cFLW (iFLW1 and iFLW2 combined). In this

figure, we do not represent short-wave shoaling.
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not overlapwith the newly generated oFLW, as it propagates away

from the group into deeper water. Since the successive oFLWs do

not overlap and the oFLWs are smaller than the iFLW, their

contribution to the total FLW amplitude is negligible, as will be

confirmed by the numerical model in section 4.

Based on this approach, we can calculate the amplitude of the

cFLW as a lagged summation of the amplitude of the iFLWs

generated successively at each small single step of the slope. The

expression of the amplitude of the cFLW for the slope case is,

therefore, based on the superposition of the amplitude and

phases of the iFLW generated in the single step case [Eq. (17)].

At each grid cell, the amplitude of the cFLW is the combined

amplitude of the shoaling lagged FLW:

A
cFLW,nx

5 �
nx

nw51

A
FLW,nw

�
gh

nw

gh
nx

�1/4

cosu
FLW,nw,nx

, (19)

where nx represents the grid cell number under consideration,

nw refers to each individual FLW generated (i.e., nw 5 1 is

generated at nx5 1, nw5 2 at nx5 2, etc), andAFLW,nw is the

amplitude of the wave nw generated at nx 5 nw. Here

uFLW,nw,nx is the phase lag between each individual FLW and

the group present at grid cell nx:

u
FLW,nw,nx

5vdx �
nx

i5nw

 
1ffiffiffiffiffiffiffi
gh

i

p 2
1

c
g,i

!
. (20)

Given that the oFLWs are negligible, we only need one

equation [Eq. (9)] to calculate the amplitude of the individual

iFLWs. The amplitude of each iFLW is calculated as in the

single step case. Each grid cell has its own set of boundary

conditions, and the amplitude of the FLW generated is ob-

tained using Eq. (17) as

A
FLW,nw

5 [2A
BLW,nw21

(k
f ,nw21

1 k
b,nw21

)h
nw21

1A
BLW,nw

(k
f ,nw21

h
nw21

1k
b,nw

h
nw
)]

1

(k
f ,nw

h
nw

1k
f ,nw21

h
nw21

)
. (21)

In Eq. (21), the amplitude of the BLW (ABLW) is calcu-

lated from the amplitude of the short-wave group based on

Eqs. (3) and (7). Hence, this set of equations [Eqs. (19)–

(21)] can be forced by a wave group of specified amplitude.

Using a constant short-wave amplitude is useful, as we show

below, to highlight the effect of depth variations on long-

wave generation. However, shoaling of the short-wave

groups can readily be accounted for in Eq. (3). For realis-

tic cases (measured or numerically simulated) short-wave

amplitudes may also be used. This allows for comparison

with laboratory data and hydrodynamic model results. This

is the approach we take in the paper to validate our ana-

lytical model (see section 6).

4. Verification of the analytical approach with full
numerical solutions

In the previous section, we formulated the analytical solu-

tions to the linearized shallow-water equations [Eqs. (4) and

(5)]. Here we verify that these solutions are robust and that the

assumptions made are reasonable by comparing the analytical

solutions to full numerical solutions. Through this application,

we also use the results to examine the responses of the long

waves in further detail.

The model is based on numerically solving Eqs. (4) and

(5) using a finite difference scheme in the x (cross-shore)

direction, analogous to the model described in List (1992).

We obtain the total surface elevation of the long waves

generated, which we refer to as the TLW. In appendix A, we

confirm that the numerical model conserves total wave en-

ergy, including the exchange of energy between short-wave

groups and long waves.

The model is forced with a single (transient) wave group,

resulting in radiation stresses at the wave-group time scale

[Eq. (3)]. Such a transient wave group (as opposed to re-

peated periodic wave groups) allows for a straightforward

visualization of the individual FLW and BLW components.

At t . 0, the single wave group starts propagating from the

offshore boundary such that the initial conditions, at t 5 0, for

z and M are zero. The single wave group is chosen to have a

bichromatic form, representing one pair of short-wave fre-

quencies. From trigonometry the amplitude of the group en-

velope is

A
g
(x, t)5 fa21 1 a22 1 2a

1
a
2
cos[u(x)2vt]g1/2 , (22)

where a1 and a2 are the amplitudes of the two short waves that

form the bichromatic wave group and u is the phase function,

used to define the local wavenumber. Here u varies with x due

to the depth variations and is related to the group wavenumber

(kb) as in J03:

du
dx

5k
b
(x) . (23)

At the offshore boundary, the momentum M and surface

elevation z are initially prescribed using the flat-bottom ana-

lytical solution [Eqs. (7) and (8)]. There is no incoming FLW at

the offshore boundary. This is equivalent to assuming that

there is a flat-bed section preceding the slope or that the FLW

generated outside the domain are negligible, which is reason-

able to assume since the depth variations are small compared

to the total depth.

We apply the model in two configurations: 1) a single step

case, with a deeper region on the seaward side, and 2) a

slope case where the depth decreases linearly with the slope

b. The model runs are stopped before the wave group rea-

ches the shoreline boundary (h 5 0) so we can focus on the

incoming signal.
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As illustrative examples of each case, for the step case we

consider a bathymetry where the step transitions from a depth of

10 to 5m, and for the slope case, where the slope is b5 0.05. The

bichromatic group is composed of two interacting 1m short

waves of frequencies f1 5 0.125Hz and f2 5 0.115Hz, such that

the group frequency difference (f5 f12 f2) is 0.01Hz (Table 1).

While we focus on this specific set of parameters in this example,

we verify that the results display the same general responses,

including good agreement between the analytical model and the

numerical model, when considering a range of other parameter

values (see appendix B). The time step dt is taken as 0.1 s and the

spatial step in the cross-shore direction dx is variable, taken as

5m at the offshore boundary and adjusted so that dx/L remains

constant throughout the domain, while satisfying the Courant

condition to ensure stability.We note that different gridcell sizes

were initially tested (dx between 1 and 20m) and we found the

amplitude and phase lag responses were negligibly affected

(not shown).

While the runs are set in dimensional variables, we will

present the results using nondimensional parameters.

Spatial parameters are scaled by the group wavelength L.

Thus, the nondimensional depth is h* 5 h/L, the nondi-

mensional cross-shore distance is x*5 (x0 2 x)/L, with x0 a

reference cross-shore location, and the nondimensional

amplitude is A* 5 A/L. The temporal parameters are

scaled by the wave group angular frequency, i.e., t* 5 vt.

The nondimensional radiation stress is defined as S* 5
Sxx/rgL

2.

a. Single step case

In the single step configuration, we aim to isolate the pro-

cesses responsible for the generation of an iFLW and an oFLW

for a given finite depth change. By applying the numerical

model in this configuration, we obtain values of elevation and

velocity at the group scale. In Fig. 2, we represent the wave

group envelope and the surface elevation of the resulting long

waves when a single wave group propagates over an initially

flat bottom (hsea* , x* , 0), which then interacts with a step at

x*5 0, where the depth changes to hshore* (hshore* , hsea* , x*. 0).

While the amplitude of the group is constant over the domain

(in this simplified model), the nondimensional amplitude var-

ies with L and therefore with h. The surface elevation of the

TLW (Fig. 2b) is obtained from the numerical model and the

surface elevation of the BLW (Fig. 2c) is calculated using

Eq. (7). As the group propagates within the deeper region prior

to reaching the step (x* , 0), the TLW observed is equivalent

to the ‘‘flat bottom’’ solution only [Eqs. (7) and (8)], i.e., the

BLW is ‘‘locked’’ to the wave group, such that TLW 5 BLW

(Figs. 2b,c). After the step (x*. 0), the TLW is composed of a

negative signal preceded by a positive signal (Fig. 2b). We

decompose this signal by removing the BLW signal from the

TLW signal (Fig. 2d). The decomposition shows that the pos-

itive signal observed in Fig. 2b corresponds to a FLW propa-

gating at
ffiffiffiffiffiffi
gh

p
(Fig. 2d). The pattern of the TLW arises in this

region due to the superposition of a negative signal, repre-

senting the BLW (Fig. 2c), and a positive signal (Fig. 2d) in the

shallower region. In the deeper region (x* , 0), a negative

signal is also present (Figs. 2b,d), propagating as a free wave

away from the step. This is the signal of the oFLW, which is

small compared to the iFLW. The numerical simulation thus

shows a shoreward- and a seaward-propagating FLWs propa-

gating away from the step as the short-wave group propagates

over the step, as was hypothesized earlier in section 3a.

We investigate the role of the radiation stress in the eleva-

tion of long waves by comparing time series of radiation stress

variations with time series of the wave group envelope and

long-wave elevations, at different cross-shore locations: on the

seaward (deeper) side of the step, at the step (but shifted very

slightly on either side) and on the shoreward (shallower) side

(Fig. 3). The radiation stress gradient over the flat bottom re-

gion is associated with the wave-group forcing. The sinusoidal

radiation stress gradient is first negative, then positive as the

wave group propagates within these flat regions (Figs. 3a,j),

averaging to zero over time. At the step, the radiation stress

gradient associated with the group is eclipsed by a stronger

positive gradient of radiation stress (Figs. 3d,g compared to

Figs. 3a,j) resulting from the difference of amplitudes between

the BLW on the seaward and shoreward sides as a result of the

depth difference. In contrast to the flat bottom case, the radiation

stress variation at the step is not zero on average. It is at this stage

that both an iFLWand an oFLWare generated. Therefore, when

the radiation stress gradient averages to zero over a wave-group

period, only BLWs are generated; however, when the time-

averaged radiation stress becomes nonzero, FLWs are generated

so that mass and momentum are conserved.

When inspecting the TLW signal on the seaward side, two

negative signals separated in time are visible (Fig. 3c). The signal

centered on t* 5 5.3 represents the BLW propagating at the

group and the one at t*5 7.7 is the oFLW.At the step (Figs. 3f,i),

the TLW is composed of the BLW and the corresponding oFLW

immediately on the seaward side, and of the BLW and the cor-

responding iFLW immediately on the shoreward side. On the

shoreward side of the step (Fig. 3i), the iFLW and the BLW

overlap, as they propagate in the same direction.

Last, to further verify the analytical model, we also consider

results over a broader range of depth changes over the step.We

specifically calculate the amplitudes of the FLWs for different

nondimensional depth changes (h* 5 10 3 1023 seaward and

between 43 1023 and 103 1023 shoreward), both analytically

[using Eqs. (17) and (18)] and numerically. The amplitudes of

the FLWs for these cases are represented in Fig. 4, with the

analytical solutions and the numerical predictions in very good

TABLE 1. Characteristics of step and slope examples using the linear model runs.

Case a1 (m) f (Hz) f1 (Hz) hmax (m) hmin (m) b dx (m) Dt (s)

Step 1.0 0.010 0.125 10 5 1 5 0.1

Slope 1.0 0.010 0.125 50 0 0.01 5 0.1
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agreement. These results emphasize that the analytical model

can be used as a simple tool to assess the generation mecha-

nisms of the long waves.

b. Slope case

The numerical model is next applied to the linear slope case,

which in appendix C we verify that the slope can be treated as a

succession of discrete steps when the steps are sufficiently

small.We obtain elevations and velocities for the TLW and the

BLW elevation and then subtract the BLW from the TLW

elevation to obtain the cFLW signal.

In Fig. 5, we represent the envelope of the wave group and the

response of the TLW. The resulting TLW signal is composed of a

positive part and a negative part, with the positive component of

theTLWpropagating ahead of the negative component (Fig. 5b).

The signal from theBLW is negative and propagates at the group

velocity. The cFLWsignal is consistently positive (Fig. 5d). FLWs

are generated successively at each depth variation as the group

advances at Cg. The most recently generated FLW is larger than

the previous one as it is generated in shallowerwater. Basedon its

local generation with the wave group, this can suggest that the

cFLW propagates at Cg; however, it is a superposition of FLWs

generated at different times along the path of thewavegroup that

propagate at
ffiffiffiffiffi
gh

p
. This is illustrated in Fig. 5d, where the paths

of a few of the FLWs generated along the path of the wave group

are represented (dashed red line crossing x* 5 0, t* 5 0).

The nondimensional radiation stress gradient versus time is

represented in Fig. 6 (top row) at two cross-shore locations on

the slope. Aswith the signal in the flat bottom region of the step

case (Figs. 3a,d), the signal is sinusoidal (first negative and then

positive). However, unlike over a flat bottom, the time-

averaged value is not zero ( ›Sxx* /›x* 5 2 3 1025 and 3 3
1025 at x* 5 0.5 and x* 5 5.5, respectively) and FLWs are

generated that are superimposed on the BLW. The time-

averaged radiation stress difference increases as the depth

decreases, and the amplitude of the FLW generated likewise

increases.

The results also indicate a growing phase shift between the

wave-group envelope and the TLW as the depth decreases

(Figs. 6c,f). At x*5 0.5, where h*5 153 1023, the amplitudes

of the TLW and BLWare very similar, such that the TLW is still

approximately in antiphase with the group (only ;108 behind
theBLW).The cFLWis small and propagates well in front of the

group (phase shift;708). The cFLW is not symmetric around its

FIG. 2. Nondimensional (a) wave-group envelope; (b) TLWelevation, (c) BLWelevation, and (d) FLWelevation

vs time and cross-shore direction. The dashed red lines represent the path of FLW (propagating at the linear

shallow-water wave speed
ffiffiffiffiffiffi
gh

p
, and the solid red lines represent the path of a BLW (propagating at the group

velocity), generated at the step located at x* 5 0 (indicated by the horizontal dashed line). For this example, h*5
10 3 1023 for x* # 0, and h*5 5 3 1023 for x* . 0.
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peak because of the small FLWs generated offshore, which are

older (generated earlier). These older FLWs propagate faster

than the group and they gradually move out in front. They

overlap with the locally generated FLW, but their peaks are

shifted toward smaller t*. At x*5 5.5, where h*5 83 1023, the

amplitude of the cFLW is almost equal to the amplitude of

the BLW, and it is almost in antiphase with the BLW, such that

the amplitude of the TLW is smaller than the amplitude of the

BLW. The cFLW is still shifted in front of the group (phase shift

;408), so the phase between theTLWand the group shifts closer

to 908 (1108, versus 1708 at x* 5 0.5).

Using Figs. 5 and 6, we have illustrated how the total solu-

tion (the TLW) is a superposition of a BLW and a cFLW.

Ignoring the small oFLWs, the generation of the cFLW signal

is interpreted as follows. At the offshore end of the slope, a

small FLW is initially generated. The BLW that is present is

much larger than the FLW, so the amplitude of the TLW is

almost equal to the amplitude of the BLW (Fig. 6c). At the next

finite decrease in depth, a new FLW contribution is generated.

This FLW is larger than the previous FLW and lags behind it,

due to the preceding FLW propagating faster at the free wave

velocity (as opposed to the group velocity associated with

the short-wave group). This process occurs successively as the

group propagates over the sloping bottom. Eventually, the

amplitude of the FLW generated in shallow water is compa-

rable to the amplitude of the BLW (Fig. 6f). Given that each

FLW generated earlier propagates faster, yet are smaller in

amplitude, the cFLW signal is not symmetric around its peak

and has an extended tail on the shoreward side (toward smaller

t*) (Fig. 6c, green line).

We now compare the analytical model with the numerical

results. We calculate the phase lags and the amplitude of the

long waves from the analytical model [Eqs. (19) and (20)], and

the phase lags and the amplitude of the long waves from the

numerical model, by cross-correlating the long-wave elevation

and the group envelope and identifying the maxima and

minima of elevation (Fig. 7). We find close agreement be-

tween the numerical model and the analytical solution, thus

providing further support that the analytical model captures

the dominant mechanisms responsible for the FLW gener-

ation. Note that while Fig. 7 focuses on the long-wave re-

sponse for a particular slope and wave condition as an

illustrative example, in appendix B we also consider a range

of b and wave-group frequencies and find the analytical

model to be similarly robust. This also further reinforces

that the assumptions made in the analytical model are rea-

sonable, including neglecting the generation of an oFLW

within the analytical solution.

FIG. 4. Amplitude of the iFLW and oFLW as a function of step

depth variations (seaward depth h* 5 15 3 1023 and varying on-

shore depth, where Dh* is the depth difference), comparing the

numerical solutions (crosses) and analytical solutions (solid lines).

FIG. 3. Temporal evolution of (top) radiation stress gradient, (middle) wave-group envelope, and (bottom) long-wave elevation vs time

at four different cross-shore locations: (a)–(c) on the seaward side, (d)–(f) at the step on the deeper seaward side, (g)–(i) at the step on the

shallower side, and (j)–(l) on the shallower shoreward side.
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5. Comparison with J03

Our approach assumes that at each location the total long-

wave solution is a combination of a particular solution, the

(forced) BLW and homogenous solutions, the FLWs. This

approach is different to that of J03, and other studies (Guérin
et al. 2019; Zhang et al. 2020), who calculate one unique so-

lution, referred to as shoaling BLW. We compare our total

solution (TLW) to the shoaling BLW solution and find a very

good agreement in terms of phase relationship and shoaling

exponent (Fig. 8) with J03’s solution, who used a perturbation

approach and with exact solutions obtained by variation of

parameters.

In Fig. 8, we also represent the phase shift and the shoaling

exponent for the BLW and FLW components. For kfh , 0.4,

the total shoaling exponent is almost equal to the BLW

shoaling exponent, since BLW are dominant over FLWs. As

the depth decreases, the shoaling exponent of the TLW de-

creases, becoming smaller than the shoaling exponent of the

BLW, as the FLWs are not negligible anymore. The addition of

FLWs, in antiphase to the BLW, lowers the total amplitude.

This shows how the growth of shoaling BLW is limited by the

presence of FLWs.

6. Validation: Comparison with experimental data and
phase-resolving wave model output

We have confirmed that the analytical model can reproduce

the long-wave response predicted by the linear numerical

model to describe the generation of FLWs by nonbreaking

wave groups. Given that nonlinear dynamics have the potential

to influence the results, which would not be captured by the

linearized model, we further assess the solutions against ex-

perimental data. In this section, we validate our analytical so-

lutions against measurements from laboratory experiments

(van Noorloos 2003), which consisted of bichromatic wave

groups shoaling on a plane beach, and with numerical simu-

lations of the same van Noorloos (2003) experiment using a

nonhydrostatic wave-flow model based on the Reynolds-

averaged Navier–Stokes equations.

FIG. 5. Nondimensional (a) wave-group envelope, (b) TLW elevation, (c) BLW elevation, and (d) cFLW ele-

vation vs time and cross-shore direction. The solid red lines represent the path of a BLW (propagating at the group

velocity) and the dashed red lines represent the path of FLW (propagating at the shallow-water wave speed
ffiffiffiffiffiffi
gh

p
,

generated at x* 5 0). In addition, in (d) the path of a few FLWs, generated along the path of the wave group are

represented in dashed red lines (in reality, FLWs generated at each depth variation, but only a small number of

them are represented here).
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a. Experimental measurements

The van Noorloos (2003) dataset is used to compare the evo-

lution of the incoming long waves over a sloping bed prior to

breaking, which are compared to the analytical model. In the van

Noorloos (2003) experiment, nine bichromatic cases were tested,

where the amplitude of the wave-group envelope varied between

0.022 and 0.072mand the group frequency varied between 0.0977

and 0.1953Hz, which were generated by a wave maker with ac-

tive reflection compensation. The plane slope was 1:35 and the

maximum offshore depth was 0.7m. The wave gauges were

regularly spaced every 0.5m seaward of the surf zone and were

reduced to every 0.3m within the surf zone.

b. Phase-resolving wave model simulations

SWASH is a nonhydrostatic wave-flow model that numeri-

cally solves the incompressible Reynolds-averaged Navier–

Stokes equations (Zijlema et al. 2011). In recent years,

nonhydrostatic models such as SWASH have proven to be

powerful tools to resolve the nonlinear evolution of waves in

coastal regions at both laboratory and field scales (García-
Medina et al. 2017; Gomes et al. 2016; Smit et al. 2013), including

the nearshore dynamics of infragravity waves (Rijnsdorp et al.

2014, 2015; de Bakker et al. 2016). Given its capabilities in re-

solving such nonlinear wave dynamics, several recent studies

have adopted this modeling framework to further explore near-

shore infragravity-wave processes (deBakker et al. 2016;Mendes

et al. 2018; Ruju et al. 2019).

We apply SWASH with forcing that matches the bichromatic

wave conditions in the van Noorloos (2003) experiments. The

model was run with two vertical layers, with default values for

bottom friction dissipation and breaking. To mimic the active

absorption of the laboratory wavemaker, a weakly reflective

wavemaker was used in the model simulations to generate in-

coming waves and absorb reflected waves (Zijlema et al. 2011). A

second-order boundary condition was used to properly generate

incoming bound waves and suppress the generation of spurious

free infragravity waves (Rijnsdorp et al. 2014). The settings were

chosen based on Rijnsdorp et al. (2014), who validated SWASH

against the van Noorloos (2003) experiment.

c. Comparisons with the analytical model

We investigate how the analytical model compares with the

laboratory experiments and SWASH modeling results, in

terms of free and forced components of the long wave. In this

section, we present the results of the comparison for two se-

lected cases, A2 and B4 (Table 2). However, the results for the

other cases are presented in appendix D.

The experimental data and SWASH output are processed in

the same way. We filter elevation measurements using a cutoff

frequency of 0.25Hz, chosen between the short-wave fre-

quencies ( f1 and f2) and wave-group frequency ( f ), in order to

FIG. 7. (a) Phase lags between the wave-group envelope and the

different long-wave contributions and (b) amplitude of the long

wave, calculated numerically and analytically.

FIG. 6. Temporal evolution of (a),(d) radiation stress gradient, (b),(e) wave-group envelope,

and (c),(f) long-wave elevation at two different cross-shore locations: (left) x*5 0.5 (h*5 153
1023) and (right) x* 5 5.5 (h* 5 8 3 1023).

1474 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by TU DELFT | Unauthenticated | Downloaded 06/21/21 12:09 PM UTC



separate the low-frequency (LF) and the high-frequency (HF)

signals. We further decompose the LF signal into iFLW,

oFLW, and BLW as follows. The amplitude of the BLW is

computed from the measured wave-group amplitude using

Eqs. (3) and (7). Once the BLW is removed from the LF signal,

we obtain the total FLW signal. We then decompose the FLW

elevation into its iFLW and oFLW contributions following the

method described in appendix E.

We next apply Eqs. (19)–(21) to calculate the amplitude and

phase of the long waves from the wave-group envelope and

local depth. We calculate the wave-group envelope as the low-

pass-filtered (with cutoff frequency 0.25Hz) absolute value of

the Hilbert transform of the high-frequency (short-wave) ele-

vation. The wave-group envelope (Fig. 9) is used to first cal-

culate the amplitude and phase of the BLW and, from these,

the amplitudes of the FLW and TLW.

We decompose the TLW from all datasets (analytical model,

experimental observations, and SWASHmodel results) into its

free incoming (iFLW), free outgoing (oFLW) and bound

(BWL) components (as described previously), and we present

the values of the correlation function between the envelope of

the short-wave group and the elevation of the long waves in

Fig. 10. The BLW is strongly correlated with the wave group

envelope and the time lag associated with the minimum neg-

ative correlation is zero for all cases, which is expected because

the BLWelevation is calculated from the wave-group envelope

[Eqs. (3) and (7)]. For the TLW, the time lag associated with

the negative correlation (white dash–dot line) is close to zero at

the bottom of the slope and shifts slightly away from zero as

waves propagate over the slope, until breaking occurs at about

x 5 23m. FLWs are already present before the start of the

slope (i.e., before x 5 7.5m), which indicates the presence of

spurious FLWs generated at the wave maker, as no FLWs are

otherwise expected on the flat bottom section. However, at

approximately x5 15m, the FLWs generated along the slope

are large enough to dominate over the signal from the spu-

rious waves. From x 5 15m to the breakpoint, the maximum

correlation between the envelope and the FLW shifts closer

toward zero, causing the shift in time lag observed in the

TLW compared to the BLW. While we are not studying the

effect of breaking, we note that in case A2, the correlation

between the BLWs and the envelope is much smaller after

breaking, particularly with the SWASH run (Figs. 10b,e)

while the correlation is well conserved in case B4, indicating

that wave groups are likely destroyed in case A2 but sub-

stantial groupiness remains in case B4. When groupiness

remains, the time lag between the envelope and the FLW

changes and becomes zero, possibly indicating breaking of

the FLW, and generation of new FLWs after breaking, as the

depth keeps decreasing.

Based on the cross-correlation time lags, we calculate the

phase lags between the wave-group envelope and the long

waves.We also calculate the amplitude of the long waves as the

mean difference between the elevation maxima and minima

divided by two. Comparisons between the laboratory experi-

ment, the SWASH runs and the analytical model are presented

in Fig. 11. The analytical model, forced with the measured

wave-group envelope (Fig. 9), generally reproduces the am-

plitude and phase lag of the iFLWandTLW(Fig. 11)measured

in the experiment very well. We note, however, that for the

specific iFLW component, the phase lag is not well predicted in

deeper water (x , 12m which corresponds to h . 0.5m) and

the measured phase lag tends toward 1808 (i.e., in antiphase

with the wave group) as the depth increases, which may again

indicate the presence of some spurious FLW energy that is in

phase with the group before the start of the slope, i.e., at the

boundary. This may happen at the wavemaker boundary for

both the experiments and the SWASHmodel if the boundary is

not fully absorbing. However, it is important to emphasize that

the iFLW signal is extremely small in this deep region, which

adds large uncertainty to the phase calculations for the FLW.

Any perturbation of the short-wave group may lead to the

generation of FLW, which can alter the phase relationship for

these extremely small FLWs. As depth decreases, the FLWs

rapidly become larger and are therefore much less affected by

noise. The oFLWs remain small in both the measurements and

SWASH, which further supports neglecting them in the ana-

lytical model. We note that the short waves in this experiment

are nonlinear second-order Stokes waves (Le Mehauté 1976),

for x , 23m. While we do not expect the linear model to re-

produce nonlinear effects, the results presented in Fig. 11 show

that the linear model reproduces the trends observed in the

TABLE 2. Amplitudes and frequencies of the short waves in the van

Noorloos (2003) bichromatic wave experiments.

Case a1 (m) a2 (m) f1 (Hz) f2 (Hz) f (Hz) b/(2pf )

A2 0.06 0.012 0.6470 0.5005 0.1465 0.0310

B4 0.06 0.030 0.6470 0.5005 0.1465 0.0310

FIG. 8. (a) Phase lags between the wave-group envelope and the

different long-wave contributions and (b) the shoaling exponent

(a). Solid lines: analytical results, squares: J03’s analytical solution,

amplitude evolution response (AER), dashed lines: J03’s numeri-

cal solution, exact linear response (ELR) solution, dashed hori-

zontal gray lines represent a according to Green’s law (a 5 0.25)

and for the shallow-water equilibrium BLW solution (a 5 2.5).
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laboratory experiment and SWASH runs with remarkable

agreement with waves nonlinear at the second order.

7. Discussion

This study investigated the decomposition of total long-

wave motions in the nearshore zone into free and forced

components by use of the linearized shallow-water equations

at the short-wave group scale with radiation stress forcing. The

total solution we propose, the TLW, is equivalent to the

shoaling BLW solution that has been previously described

(J03; Guérin et al. 2019; Zhang et al. 2020). However, by de-

composing the TLW into free and forced components, the

present approach provides insight into the physical processes re-

sponsible for the TLW signal. This approach provides additional

insight into a mechanism generating FLWs when nonbreaking

short-wave groups propagate over changing bathymetry (Mei and

Benmoussa 1984; Nielsen 2017; Moura and Baldock 2019) and it

explains why the TLW growth is less than the wave growth of a

(locked) BLW and more than that of a shoaling FLW, and why

the phase between TLWs and the short-wave groups shifts as

groups propagate over a slope. In particular, when wave groups

enter shallow water, the BLWs are expected to approach a reso-

nance condition based on Eq. (7), when the group velocity tends

to
ffiffiffiffiffi
gh

p
and the denominator approaches zero. However, our

study shows that a FLW of the same amplitude and opposite

phase adds to the BLW signal, which prevents the TLW ampli-

tude from increasing dramatically.

a. FLW generation

The FLWs generated through the depth-variation mecha-

nism propagate independently from the short-wave group, and

this mechanism may be compared to other mechanisms known

to generate FLWs in the nearshore by short-wave breaking,

i.e., breakpoint forcing (Symonds et al. 1982) and bound-wave

release (Masselink 1995). We compare schematically the re-

sponse of FLWs to generation from depth variation, break-

point forcing and bound-wave release in Fig. 12. The FLWs

generated through depth variation and breakpoint forcing are

expected to be in phase with each other, while the shoreward

propagating FLW generated through bound-wave release

should be in antiphase with them. The amplitude of the

breakpoint-forced FLWs will be enhanced by the FLWs gen-

erated through depth variations. In contrast, the amplitude of

released bound waves will be diminished by the presence of

FLWs generated through depth variations.

Radiation stress gradients are important to the generation of

FLWs, given that they provide the source term in the mo-

mentum conservation equation [Eq. (2)]. When the average

value of the radiation stress gradient over a wave-group period

is zero, the system is in equilibrium and only BLWs are gen-

erated. However, when the average value is not zero, FLWs are

generated. This is well known to be the case within the surf

zone when the amplitude of the wave-group envelope changes

during short-wave breaking, which leads to breakpoint forcing

(Symonds et al. 1982). However, it is also the case when non-

breaking waves encounter depth changes, which is the mech-

anism we focus on here. This highlights similarities between

the single step case and breakpoint forcing, as in both cases,

both an iFLW and an oFLW are generated.

Although the primarymotivation for introducing the step case

was to apply it successively to understand mild slope cases, the

mechanism of FLWs generation in response to depth changes is

also in place when the depth changes abruptly, such as the steep

slopes of coral reefs, where strong infragravity wave signals have

been measured (Pomeroy et al. 2012; Péquignet et al. 2014;

Beetham and Kench 2011; Buckley et al. 2015; Masselink et al.

2019). In the case of a step, an iFLW is generatedwhere the depth

changes and propagates toward the shore, ahead of the BLW.At

the same time, an oFLW is generated and propagates seaward.

This oFLW is smaller than the iFLW but not negligible, on a

steep slope, and is in antiphase with the group (not taking the

propagating time lag into account). This same pattern is usually

considered as the signature of the breakpoint forcing mechanism

(Symonds et al. 1982) and thus it raises questions about how to

identify and distinguish these two long-wave generation mecha-

nisms in the case of a very steep slope. For instance, a strong

breakpoint forcing signal is usually described on fringing reefs

(Pomeroy et al. 2012); in such cases the depth variation is very

steep, whichwould cause strong radiation stress gradients, and thus

would also be expected to generate large FLWs propagating both

shoreward and seaward through the mechanism described in this

paper, although further investigationwill be needed to estimate the

amplitude and phase relationships of the FLWs generated.

FIG. 9. Amplitude of the wave-group envelope, vs cross-shore position, for two cases: (a)A2 and (b) B4. The dashed

vertical gray line indicates the start of the slope.
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FIG. 10. Correlation functions (R) between the wave-group envelope and long waves for (a)–(f) A2 case and (g)–(l) B4 case showing

laboratory results in (a)–(c) and (g)–(i) and SWASH run results in (d)–(f) and (j)–(l): (left) TLW, (center) BLW, and (right) FLW. The

dashed black line indicates a local maximum correlation, and the dash–dot white line indicates a local minimum correlation.
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b. Phase shift and growth rate

The linearized models (numerical and analytical) were

found to reproduce the dominant trends in both an experimental

dataset and output from a fully nonlinear phase-resolving wave

model. Importantly, through use of the approach detailed here,

we were able to clarify the dominant physical processes respon-

sible for the evolution of long waves in the nearshore. As a wave

group propagates into shallowerwater, each finite depth variation

causes the generation of two FLWs, one incoming and one out-

going. The iFLW is in phase with the group envelope, while the

oFLW is in antiphase. The oFLW is small compared to the iFLW

and propagates away from the group, so its contribution to the

TLW is negligible. The iFLWpropagates in the same direction as

the group, but faster than the group. As iFLWs are successively

generated, they lag each other. These FLW components overlap

to create a cFLW, where the smaller iFLWs propagate ahead of

larger iFLWs. The TLW is then a superposition of a BLW and a

cFLW. The amplitude and phase relationships of the TLW

depend on the relative amplitude (relative to depth and group

frequency) of the depth variation, as described below and

summarized in Table 3. For the purpose of discussion, Zhang

et al. (2020) investigated the effect on the phase relationship of

the addition of a FLW to the BLW, in antiphase with the wave

group. They suggested that the FLW is likely to shift the phase

between the long wave and the wave group. However, in their

example, the origin of the FLW is not specified and is added (at

the toe of the slope) to the shoaling BLW (TLW), while in this

present study we consider the addition of a FLW generated

fromdepth variation to the (locked) BLW.Moura andBaldock

(2017) also noted that adding FLWs to the BLW shoaling

process could alter the phase relationship between long waves

and wave groups.

While the evolution of long waves has been considered

analytically/numerically in a number of prior studies (J03; List

1992; Battjes et al. 2004; Zhang et al. 2020) these prior studies

have not explained all of the relevant physics, as there was no

distinction between BLW and FLW components. Indeed,

Battjes et al. (2004) had pointed out that the amplitude of BLW

in shallow water was ‘‘less than it would be if the equilibrium

theory of Longuet-Higgins and Stewart (1962) were applied

over a sloping bed’’ andOkihiro et al. (1992) acknowledged that

the shallow water limit of applicability for bound wave theory is

not well understood. Here we found that the combination of

those two waves of almost the same amplitude and almost in

antiphase keeps the growth rate of the TLWmuchmilder than it

would be in the absence of FLWs. This helps explain why the

theoretical prediction of a dramatic increase of long-wave am-

plitude for BLWs as they enter resonance with Cg tending toffiffiffiffiffi
gh

p
[Eq. (7)] is not realized, due to the presence of FLWs.

c. Propagation of FLWs

If the slope is followed by a flat region and the generation of

FLWs consequently ceases, the FLWs propagate faster than the

BLW, implying that the BLW and the latest generated FLW are

no longer in antiphase. Li et al. (2020) recognized the effect of

wave history on the long-wave amplitude, as they identified an

increase of amplitude over the flat portion of a shoal. Following

our reasoning, we can help explain the observation made by

FIG. 11. Phase lag between long wave and wave-group envelope for (a) case A2 and (b) case B4, and long-wave

amplitude, relative to the BLW amplitude at the start of the slope, for (c) case A2 and (d) case B4. Note that the

vertical dashed gray line indicates the start of the slope, and the dash–dot gray vertical line indicates the approx-

imate location of the short-wave breakpoint. Data are smoothed using a moving average over 3m.
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Li et al. (2020). We run our numerical model with the conditions

described in Li et al. (2020), except the length of the plateau is

extended to 1200m instead of 20m (Fig. 13). As the wave group

reaches the end of the slope and the start of the plateau, a large

FLW is generated. At that point, the crest of the FLW is aligned

with the trough of the BLW (they are locally in antiphase), so the

amplitudeof theTLWis relatively small (Fig. 13d, x5 75m). In the

case of continuous forcing, as the BLW and the FLW propagate

over the flat portion of the shoal, their respective amplitudes do not

vary, but theFLWpropagates faster than theBLW, so the crest and

the trough are no longer aligned (the phase lag between them is

different from 1808), and the amplitude of the TLW increases

(reaching amaximumatx’ 300m).This is similar to abichromatic

wave group composed of two waves of different frequencies. At

locations where the crest of one wave is aligned with the trough of

theotherwave, the amplitudeof the group isminimum(Figs. 13d,h,

x5 450m), and when both crests are aligned, the amplitude of the

group is maximum (Figs. 13d,h, x 5 250m and x 5 650m). Here

FIG. 12. Schematic representation of the FLW crests and troughs, associated with the crest of a

wave-group envelope.

TABLE 3. Characteristics of the long wave for small and large relative depth variations.

Depth variation

No depth variation

(flat bottom)

Small relative

depth variations

(i.e., deep end)

Large relative depth variations

(i.e., shallow end)

Characteristic of FLW signal No generation of FLW cFLW asymmetrical Locally generated iFLW � iFLW previously

generated in deeper water

cFLW ’ iFLW

Amplitude and phase relationship

(relative to group)

AiFLW 5 0 AiFLW � ABLW AiFLW ’ ABLW (in antiphase)

uTLW 5 uBLW 5 1808 uTLW ’ uBLW’ 1808 uTLW ’ 908
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the frequencies of both waves are the same, so the group (super-

group) only exists in the spatial domain and the supergroup

wavenumber is the difference between the wavenumber of the

BLW and the wavenumber of the FLW. Here the wavelength of

the supergroup is about 500m, so with a plateau only 20m long, Li

et al. (2020) are only seeing a very small portion of the supergroup.

This example is interesting because this cannot be predicted using

an analytical model, such as J03’s, which does not identify FLWs.

This phenomenon may have been observed in the field by Bertin

et al. (2020) who interpreted it as the ‘‘merging’’ of a BLW and a

FLW, propagating at different velocities until reaching shallow

water where their respective velocities were equal.

This example with a long, shallow plateau after a slope also

allows us to show that the transformation of BLWs involves the

generation of FLWs as they are still present past the end of the

slope and propagating away from the group, as illustrated in

Figs. 13d and 13h, where the FLWs are ahead of the group by

two wavelengths. By forcing the model with a single group

rather than a continuous group, we observe the independent

propagation of the FLWs away from the group past the end of

the slope (Figs. 13c,d, x . 750m). This confirms the physical

presence of the FLWs that we predicted.

d. Shoaling of long waves

In the case of shoaling free waves only (no forcedwaves), the

variation of the wave amplitude can be determined from the

long-wave energy balance:

›E

›t
1 rgh

›U
FLW

z
FLW

›x
5 0, (24)

whereE is the long-wave energy. For harmonicwaves, this leads to

›

›x
(C

g
hE

FLW
i)5 0, (25)

where the angle brackets represent time average over a long-

wave period. The energy flux F 5 cgEFLW, averaged over a

long-wave period, is constant. In the case a wave propagating

over a depth variation: E2Cg,2 5 E1Cg,1, where E1 and Cg,1 are

the energy and group velocity of the wave on one side and E2

and Cg,2 the amplitude and group velocity on the other side.

Assuming a mild slope, the reflected signal may be ignored

(Svendsen andHansen 1977; LeMehauté 1976), which leads to

A2

ffiffiffiffiffiffiffiffi
Cg,2

p
5A1

ffiffiffiffiffiffiffiffi
Cg,1

p
, whereA1 is the amplitude of the wave on

one side and A2 the amplitude on the other side.

FIG. 13. (a),(b) Wave-group envelope; (c),(d) long-wave elevation, after a wave group has propagated over a flat

bottom (0.55-m depth), followed by a slope (b5 1/80), then a shallower flat bottom (h5 0.3m); (e),(f) bathymetry

profile; and (g),(h) TLW elevation vs time and cross-shore direction. The dash–dot white lines represent the path of

a BLW (propagating at the group velocity), and the dashed red lines represent the path of FLW (propagating at the

shallow water wave speed
ffiffiffiffiffiffi
gh

p
, generated at the end of the slope) Dashed gray horizontal lines indicate the start

and the end of the slope. (left) Forcing with a single group and (right) forcing with a continuous group.

1480 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by TU DELFT | Unauthenticated | Downloaded 06/21/21 12:09 PM UTC



However, in the case of BLWs, the amplitude is imposed by

the wave group, so the amplitude of the BLWs cannot be ad-

justed to conserve the energy as depth changes. FLWs are

generated to allow the conservation of energy in the system as

short-wave groups propagate over varying depth. It is there-

fore consistent to relate the present approach to ‘‘shoaling of

BLWs,’’ as done in literature (Battjes et al. 2004; J03; Zhang

et al. 2020; van Dongeren et al. 2007), to describe the phe-

nomenon by which FLWs are generated along BLWs as short-

wave groups propagate over varying depth.

e. Limits of the study

Our analytical solution is limited to the mild-slope ap-

proximation and we run the numerical model with the mild-

slope approximation to verify the analytical model. However,

the linear numerical model can be run without the mild-slope

approximation, by retaining the term in dh/dx in Eq. (1). We

show a comparison of the phase lags and amplitude of the

FLWs in those two cases (Fig. 14), and find a reasonable

agreement.

In the linear numerical modeling we presented, wave groups

do not break so BLWs propagate further into shallower water

than they normally would. The purpose of our study was only

to demonstrate the generation of FLWs as wave groups

propagate over changing depth. However, the effect of short-

wave breaking within a group can be taken into account to

some respect since the linear model is forced directly with the

wave-group amplitude and the formulations to calculate

the FLW amplitude and phase [Eqs. (19)–(21)] are based on

the elevation amplitude of the BLW, which depends on the

wave-group amplitude [Eqs. (3) and (7)]. When validating

our results with the van Noorloos (2003) laboratory ex-

periments and output from the SWASH model, in which

wave breaking occurred, we used the measured envelope of

the short-wave group such that breaking is accounted for in

terms of the changes to the short-wave amplitude. However,

nonlinear effects, after the wave groups break, would be

strong and not accounted for by the linear model. In addi-

tion, the present study only considers bichromatic unidi-

rectional wave groups. Using the linearmodel, the low-frequency

spectrum can be estimated by integrating the contributions

of all interactions between high-frequency pairs, low fre-

quencies and directions (Herbers et al. 1994). However, in

the ocean, random waves with broad-banded spectra are

typical and would need to be further investigated to fully

understand all of the potential responses of the interacting

short waves.

8. Conclusions

In this paper, we proposed an analytical solution to the lin-

earized shallow-water equations with radiation stress forcing.

This solution is verified numerically and is consistent with J03’s

solution. However, the approach we propose that decomposes

the total long wave into forced (BLWs) and free wave com-

ponents (FLWs) provides further insight into the generation

mechanisms.

The continuous generation of increasingly large FLWs in

response to depth gradients, as wave groups propagate toward

the shore, reveals why the phase between the TLW and the wave

group shifts from 1808 offshore and toward 908 in shallower wa-

ter. The combined FLWsignal superimposes on the conventional

(locked) BLW solution for a flat bottom (Longuet-Higgins and

Stewart 1962), to form the TLW signal, usually referred to as the

shoaling BLW.

The FLW component of the solution is important because,

depending on phase relationships, it will either be added to or

subtracted from the FLWs generated through breakpoint forcing

(Symonds et al. 1982) or bound-wave release (Masselink 1995).
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APPENDIX A

Energy Conservation

In this section, we verify that the model satisfies the en-

ergy balance equation. The energy balance equation can be

extracted from the equations of mass and momentum con-

servation [Eqs. (4) and (5)].

The wave-induced potential energy and kinetic energy per

unit horizontal area, integrated over the depth, are, respec-

tively (e.g., Holthuijsen, 2007):

E
p
5

ðz
0

rgz dz 5
1

2
rgz2 , (A1)

E
k
5

ð0
2h

1

2
ru2 dz , (A2)

FIG. 14. (a) Phase lags between the wave-group envelope and the

different long-wave contributions and (b) amplitude of the long wave,

calculated numerically, with andwithout themild-slope approximation.
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where z is the long-wave elevation and u is the wave particle

velocity, and z is the vertical direction (positive upward). The

total long-wave energy E 5 Ep 1 Ek. Note, the upper inte-

gration limit of the kinetic energy is 0 and not z, because we

calculate the energy to the second order, both for kinetic and

potential energy (e.g., Pedlosky 2003).

Since the waves are long compared to the depth, u is as-

sumed constant over the water column, so we use the depth-

integrated velocity U (including Stokes drift):

E
k
5

1

2
rU2h . (A3)

To extract the energy components, we express the mass and

momentum conservation equations [Eqs. (4) and (5)] in terms

of potential and kinetic energy, so

›z

›t
1h

›U

›x
5 0,

rgz
›z

›t
1 rghz

›U

›x
5 0,

1

2
rg

›z2

›t
1 rghz

›U

›x
5 0,

›E
p

›t
1 rghz

›U

›x
5 0, (A4)

and

rh
›U

›t
1 rgh

›z

›x
52

›S
xx

›x
,

1

2
rh

›U2

›t
1 rghU

›z

›x
52U

›S
xx

›x
,

›E
k

›t
1 rghU

›z

›x
52U

›S
xx

›x
, (A5)

By adding the two equations, we obtain the energy balance

equation for the long waves, including a source term from ra-

diation stress:

›E

›t
1 rgh

›Uz

›x
52U

›S
xx

›x
. (A6)

Since the long waves are sinusoidal, ›E/›t, averaged over a

wave period is zero so the time-averaged energy balance

equation is

rgh
›Uz

›x
52U

›S
xx

›x
. (A7)

The term on the left is the energy flux gradient and the

term on the right represents the nonlinear (NL) energy

transfers.

a. Single step case

We calculate the energy flux gradient and forcing terms in

Eq. (A7) from the model, for each x of the step case, to verify

that the model respects the energy balance equation. The re-

sults are shown in Fig. A1.

In Fig. A1, the time-averaged energy flux gradient and

nonlinear energy transfer terms of the energy balance

equation [Eq. (16)] are plotted as a function of the cross-

shore position. Both terms are equal, showing that the

forcing term (the nonlinear energy transfer term) balances

the energy flux gradient.

b. Slope case

We verified in the single step case, that energy was con-

served in the model. We do the same here for the slope case.

We calculate the time-averaged energy flux gradient and the

nonlinear energy transfer terms from the model output us-

ing Eq. (A6).

FIG. A1. Nondimensional time-averaged terms of energy bal-

ance equation vs x*. Solid blue line is ›h*U*z*/›x* (the energy flux

gradient), dashed red line is 2U*›S*/›x* (the nonlinear energy

transfer term), for the step case (xstep 5 0).

FIG. A2. Nondimensional time-averaged terms of energy bal-

ance equation vs x*. Solid blue line is ›h*U*z*/›x* (the energy flux

gradient), dashed red line is 2U*›S*/›x* (the nonlinear energy

transfer term), for the slope case.
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For the slope case, the energy flux gradient and the energy

transfer terms are equal (Fig. A2), so the model correctly

conserves energy. The terms are positive and increase as the

depth decreases. This is similar to what Ruju et al. (2012)

found using a RANS model, except here the terms keep

increasing, because there is no transfer of energy back to the

short waves, as short waves do not break in our model. The

negative energy flux values on the seaside of the step case

(Fig. A1) does not appear here, as the signal from oFLW are

small compared to the iFLW. The energy flux gradient in-

creases as depth decreases due to the energy transfer from

wave groups to FLW.

APPENDIX B

Numerical Model and Analytical Solutions Comparison for
Different b and Different Frequency Differences

We run the linear model and calculate the analytical

solutions for two different values of b (0.002 and 0.05) and

f (0.005 and 0.05 Hz) in order to allow the verification of

the model to cover a range of realistic cases (Fig. B1). The

numerical and analytical model results agree well. We note

that when the amplitude of the FLW is very small, noise can

easily affect the estimation of the phase lag between the

FLWs and the wave group; however, the estimation of the

phase lag of the TLW is not noticeably affected. In the steep

cases (Fig. B1, right column), the amplitude of the TLW

increases dramatically and the phase lag of the TLW tends

toward 908, as depth decreases. In the mild cases (Fig. B1,

left), the effect of older FLWs is visible, with the phase lag

of the TLW only slowly tending toward 908 as depth de-

creases. The values of amplitude and phase cannot be cal-

culated close to the shoreline, as peaks of elevation cannot

FIG. B1. (a),(c),(e),(g) Phase lags between the wave-group and the long waves and (b),(d),(f),(h) amplitude of

the long wave, modeled numerically and analytically. Shown are b 5 0.002, f 5 0.005 Hz in (a) and

(b); b 5 0.002, f 5 0.05 Hz in (c) and (d); b 5 0.05, f 5 0.005 Hz in (e) and (f); b 5 0.05, f 5 0.05 Hz in

(g) and (h).

FIG. C1. (a) Phase lag between long wave and wave group and

(b) amplitude of long wave relative to BLW amplitude, vs number

of steps. Black: TLW, green cFLW.
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be identified if the distance to the shoreline is less than

half a wavelength.

APPENDIX C

Succession of Single Steps

We aim to test how the number of steps, over a same dis-

tance affects the amplitude of the long wave and the phase lag

between the long wave and the wave group. We calculate the

amplitude of a cFLW generated through a succession of sin-

gle steps of equal length Dx, from 1 step to the maximum

number of steps (minimum step length Dx 5 dx). The results

(Fig. C1) show that the final phase and amplitude of the long

wave (on the shallowest level) vary depending on the number

of steps.

If the depth variation happens in one single step, the am-

plitude of the (c)FLW is larger than with any other number of

steps because there is only one large FLW (in antiphase with

the group) instead of a superposition of smaller FLWs lagging

each other. In the case of a single large step, the FLW is in

antiphase with the BLW, so the amplitude of the TLW is the

smallest even though the amplitude of the cFLW is the largest.

However, it is important to note that, as the FLWand the BLW

propagate on the flat part, the FLW propagates faster than the

BLW. They behave as a bichromatic group, and when the

FIG. D1. Phase lag between long wave and wave-group envelope for (a) case A2, (b) case A3, (c) case A4, (g) case B2, (h) case B3, (i)

case B5, and long-wave amplitude, relative to the BLWamplitude at the start of the slope, for (d) case A1, (e) case A3, (f) caseA4, (j) case

B2, (k) case B3, and (l) case B5. Note that the vertical dashed gray line indicates the start of the slope, and the dash–dot gray vertical line

indicates the approximate location of the short-wave breakpoint. Data are smoothed using a moving average over 3m.
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crests of both long waves correspond, the total amplitude is

equal to the sum of the amplitudes (of the BLW and of

the FLW).

As the number of steps increases (and dx decreases), the

amplitude of the cFLW decreases while the amplitude of the

TLW increases, and they converge toward a minimum and

maximum amplitudes, respectively. In the same way, the ab-

solute value of the phase lag of the cFLW increases and the

absolute value of the phase lag of the TLW decreases, and they

converge toward a maximum and minimum phase lags, re-

spectively. The convergence shows that if dx is sufficiently

small (i.e., a large number of small steps are used to represent a

slope), then a discrete slope can be assimilated to a continuous

slope. The absolute value of the phase lag of the cFLW in-

creases slightly, because of the presence of the smaller FLWs

previously generated.

APPENDIX D

Validation (Additional Cases)

In section 6 we presented a comparison of the analytical

model with numerical simulations using SWASHand laboratory

experiment results, for two cases. Here (Fig. D1) we show the

same results as in Fig. 11 but for the other case (Table D1).

APPENDIX E

Decomposition Method

Consider a bichromatic wave group, with an incoming wave

and an outgoing wave at the frequency f. We assume that all

wave components are progressive and of constant form. For a

wave propagating in positive x direction, the surface elevation

z1 in space x and time t can then be written as

z
1

a
1

5 sin(kx2vt) , (E1)

with a1 the wave amplitude, v the wave radial frequency, k

the wavenumber. In the same way, for a wave propagating in

negative x direction, the surface elevation z2 can be written

z
2

a
2

5 sin(kx1vt) . (E2)

Based on this, the total wave signal can be written as

z5 z
1
1 z

2
. (E3)

Based on this equation we will now decompose the wave

field into its two components. With two unknowns [z1(x, t) and

z_(x, t)], we need one more equation to solve for the two sur-

face elevation signals of the wave components. For all wave

components, we can readily find an additional equation by

taking derivatives in time or space. For example, for the in-

coming wave component we can find,

›
x
z
1

a
1

52(k1k
x
x) cos(kx2vt) , (E4)

›
xt
z
1

a
1

52v(k1k
x
x) sin(kx2vt) , (E5)

From the above, it can be recognized that we can use the

second equation to construct a system of equations to find the

time signals of the two wave components.

z5 z
1
1 z

2
, (E6)

›
xt
z5 ›

xt
z
1
1 ›

xt
z
2
5 2v(k1 k

x
x)z

1
1v(k1k

x
x)z

2
. (E7)

Note that all surface elevation parameters are signals in the

time domain. In matrix form, this system of equations reads

�
1 1

(k1 k
x
x)v 2(k1 k

x
x)v

��
z
1

z
2

�
5

�
z

z
xt

�
. (E8)

Inverting the matrix yields the following equations for the

two wave components,

z
1
5
1

2

�
z1

1

(k1k
x
x)v

›
xt
z

�
(E9)

z
2
5
1

2

�
z2

1

(k1k
x
x)v

›
xt
z

�
. (E10)

This method is similar to themethod proposed byGuza et al.

(1985), but it has the advantage of being valid on a slope be-

cause it accounts for a wavenumber varying with x and it can be

used when current velocity measurements are not available.
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