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The Shape of Learning Curves: A Review

Tom Viering™ and Marco Loog

Abstract—Learning curves provide insight into the dependence of a learner’s generalization performance on the training set size. This
important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of
model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve,
and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape
of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power
law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors
influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance
with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All

in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.

Index Terms—Learning curve, training set size, supervised learning, classification, regression

1 INTRODUCTION

HE more often we are confronted with a particular prob-

lem to solve, the better we typically get at it. The same
goes for machines. A learning curve is an important, graphi-
cal representation that can provide insight into such learn-
ing behavior by plotting generalization performance against
the number of training examples. Two example curves are
shown in Fig. 1.

We review learning curves in the context of standard
supervised learning problems such as classification and
regression. The primary focus is on the shapes that learning
curves can take on. We make a distinction between well-
behaved learning curves that show improved performance
with more data and ill-behaved learning curves that, per-
haps surprisingly, do not. We discuss theoretical and empir-
ical evidence in favor of different shapes, underlying
assumptions made, how knowledge about those shapes can
be exploited, and further results of interest. In addition, we
provide the necessary background to interpret and use
learning curves as well as a comprehensive overview of the
important research directions.

1.1 Outline

The next section starts off with a definition of learning
curves and discusses how to estimate them in practice. It
also briefly considers so-called feature curves, which offer a
complementary view. Section 3 covers the use of learning
curves, such as the insight into model selection they can
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give us, and how they are employed, for instance, in meta-
learning and reducing the cost of labeling or computation.
Section 4 considers evidence supporting well-behaved
learning curves: curves that generally show improved per-
formance with more training data. We review the paramet-
ric models that have been studied empirically and cover the
theoretical findings in favor of some of these. Many of the
more theoretical results in the literature have been derived
particularly for Gaussian process regression as its learning
curve is more readily analyzed analytically. Section 5 is pri-
marily devoted to those specific results. Section 6 then fol-
lows with an overview of important cases of learning
curves that do not behave well and considers possible
causes. We believe that especially this section shows that
our understanding of the behavior of learners is more lim-
ited than one might expect. Section 7 provides an extensive
discussion. It also concludes our review. The remainder of
the current section goes into the origins and meanings of
the term “learning curve” and its synonyms.

1.2 Learning Curve Origins and Meanings

With his 1885 book Uber das Gediichtnis [1], Ebbinghaus is
generally considered to be the first to employ and qualita-
tively describe learning curves. These curves report on the
number of repetitions it takes a human to perfectly memo-
rize an increasing number of meaningless syllables. Such
learning curves have found widespread application for pre-
dicting human productivity, and are the focus of previous
surveys on learning curves [2], [3].

While Ebbinghaus is the originator of the learning curve
concept, it should be noted that the type of curves from [1],
[2], [3] are importantly different from the curves central to
this review. In the machine learning setting, we typically
care about the generalization performance, i.e., the learner’s
performance on new and unseen data. Instead, Ebbinghaus’s
subject goal is to recite exactly that string of syllables that
has been provided to him. Similarly, studies of human pro-
ductivity focus on the speed and cost of repetitions of the
same task. This means in a way that the performance on the
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Fig. 1. Two crossing learning curves. Red starts at a lower error, while
blue reaches a lower error rate given enough data. One number summa-
ries cannot characterize such behaviors. For more details see Sec-
tions 2.4 and 3.1.

training set is considered. This measure is also called the
resubstitution or apparent error in classification [4], [5], [6].
Indeed, as most often is the case for the training error as
well, memorization performance gets worse as the amount
of training data increases, i.e., it is more difficult to memo-
rize an increasing number of syllables.

The term learning curve considered in this review is dif-
ferent from the curve that displays the training error—or
the value of any objective function—as a function of the
number of epochs or iterations used for optimization. Espe-
cially in the neural network literature, this is what the learn-
ing curve often signiﬁesl [71, [8], [9]. What it has in common
with those of Ebbinghaus is that the performance is plotted
against the number of times that (part of) the data has been
revisited, which corresponds directly to the number of repe-
titions in [1]. These curves, used to monitor the optimality of
a learner in the training phase, are also referred to as train-
ing curves and this terminology can be traced back to [10].
We use training curve exclusively to refer to these curves
that visualize performance during training. Many research-
ers and practitioners, however, use the term learning curve
instead of training curve [8], which, at times, may lead to
confusion.

In the machine learning literature synonyms for learning
curve are error curve, experience curve, improvement curve and
generalization curve [8], [11], [12]. Improvement curve can be
traced back to a 1897 study, on learning the telegraphic lan-
guage [13]. Generalization curve was first used in machine
learning in 1990 [11], [12]. Decades earlier, the term was
already used to indicate the plot of the intensity of an ani-
mal’s response against stimulus size [14]. Learning curve
or, rather, its German equivalent was not used as an actual
term in the original work of Ebbinghaus [1]. The English
variant seems to appear 18 years later, in 1903 [15]. Lehrkurve
follows a year after [16].

We traced back the first mention of learning curve in con-
nection to learning machines to a discussion in an 1957 issue
of Philosophy [17]. A year later, Rosenblatt, in his famous 1958
work [18], uses learning curves in the analysis of his percep-
tron. Following this review’s terminology, he uses this term

1. It should be noted that such plots have to be interpreted with care,
as the number of optimization steps or similar quantities can dependent
on the training set size, the batch size, etc. Precise specifications are key
therefore.
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to refer to a training curve. Foley [19] was possibly the first to
use a learning curve, as it is defined in this review, in an
experimental setting such as is common nowadays. The theo-
retical study of learning curves for supervised learners dates
back at least to 1965 [20].

2 DEFINITION, ESTIMATION, FEATURE CURVES

This section makes the notion of a learning curve more pre-
cise and describes how learning curves can be estimated
from data. We give some recommendations when it comes
to plotting learning curves and summarizing them. Finally,
feature curves offer a view on learners that is complemen-
tary to that of learning curves. These and combined learn-
ing-feature curves are covered at the end of this section.

2.1 Definition of Learning Curves

Let S, indicate a training set of size n, which acts as input to
some learning algorithm A. In standard classification and
regression, S, consists of (z,y) pairs, where z € R? is the
d-dimensional input vector (i.e., the features, measure-
ments, or covariates) and y is the corresponding output
(e.g., a class label or regression target). X denotes the input
space and ) the output space. The (z, y) pairs of the training
set are i.i.d. samples of an unknown probability distribution
Pxy over X x ). Predictors h come from the hypothesis
class H, which contains all models that can be returned by
the learner A. An example of a hypothesis class is the set of
all linear models {h : z — a”x 4 bla € R, b € R}.

When £ is evaluated on a sample z, its prediction for the
corresponding y is given by § = h(z). The performance of a
particular hypothesis h is measured by a loss function L
that compares y to . Examples are the squared loss for
regression, where ) C R and Lgq(y, 7)) = (y — Q)2 and the
zero-one loss for (binary) classification Ly (v, 9) =3 (1 — yg)
when Y = {-1,+1}.

The typical goal is that our predictor performs well on
average on all new and unseen observations. Ideally, this is
measured by the expected loss or risk R over the true distri-
bution P, XY

R(h) = / L(y, h(x))dP(x,1). M

Here, as in most that follows, we omit the subscript XY

Now, an individual learning curve considers a single
training set S, for every n and calculates its corresponding
risk R(A(S,)) as a function of n. Note that training sets can
be partially ordered, meaning 5,1 C S,,. However, a single
S, may deviate significantly from the expected behavior.
Therefore, we are often interested in an averaging over
many different sets S, and ideally the expectation

Ry(A) = L R(A(S)). ()

Sp~Pn
The plot of R, (A) against the training set size n gives us the
(expected) learning curve. From this point onward, when
we talk about the learning curve, this is what is meant.

The preceding learning curve is defined for a single prob-
lem P. Sometimes we wish to study how a model performs
over a range of problems or, more generally, a full distribu-
tion P over problems. The learning curve that considers
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such averaged performance is referred to as the problem-
average (PA) learning curve

RyMA) = B R(A). 3)
The general term problem-average was coined in [21]. PA
learning curves make sense for Bayesian approaches in par-
ticular, where an assumed prior over possible problems
often arises naturally. As GP’s are Bayesian, their PA curve
is frequently studied, see Section 5. The risk integrated over
the prior, in the Bayesian literature, is also called the Bayes
risk, integrated risk, or preposterior risk [22, page 195]. The
term preposterior signifies that, in principle, we can deter-
mine this quantity without observing any data.

In semi-supervised learning [23] and active learning [24],
it can be of additional interest to study the learning behavior
as a function of the number of unlabeled and actively selected
samples, respectively.

2.2 Estimating Learning Curves

In practice, we merely have a finite sample from P and we
cannot measure R(h) or consider all possible training sets
sampled from P. We can only get an estimate of the learning
curve. Popular approaches are to use a hold-out dataset or
k-fold cross validation for this [25], [26], [27], [28] as also
apparent from the Weka documentation [29] and Scikit-
learn documentation [30]. Using cross validation, k folds are
generated from the dataset. For each split, a training set and
a test set are formed. The size of the training set .S, is varied
over a range of values by removing samples from the origi-
nally formed training set. For each size the learning algo-
rithm is trained and the performance is measured on the
test fold. The process is repeated for all % folds, leading to k&
individual learning curves. The final estimate is their aver-
age. The variance of the estimated curve can be reduced by
carrying out the k-fold cross validation multiple times [31].
This is done, for instance, in [25], [26], [27], [32].

Using cross validation to estimate the learning curve has
some drawbacks. For one, when making the training set
smaller, not using the discarded samples for testing seems
wasteful. Also note that the training fold size limits the range
of the estimated learning curve, especially if k is small
Directly taking a random training set of the preferred size
and leaving the remainder as a test set can be a good alterna-
tive. This can be repeated to come to an averaged learning
curve. This recipe—employed, for instance in [32], [33]—
allows for easy use of any range of n, leaving no sample
unused. Note that the test risks are not independent for this
approach. Alternatively, drawing samples from the data
with replacement can also be used to come to to variable
sized training sets (e.g., similar to bootstrapping [34], [35]).
For classification, often a learning curve is made with strati-
fied training sets to reduce the variance further.

A learner A often depends on hyperparameters. Tuning
once and fixing them to create the learning curve will result
in suboptimal curves, since the optimal hyperparameter
values can strongly depend on n. Therefore, ideally, the
learner should internally use cross validation (or the like) to
tune hyperparameters for each training set it receives.

An altogether different way to learning curve estimation
is to assume an underlying parametric model for the learning
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curve and fit this to the learning curves estimates obtained
via approaches described previously. The approach is not
widespread under practitioners, but is largely confined to
the research work that studies and exploits the general shape
of learning curves (see Section 4.1).

Finally, note that all of the foregoing pertains to PA learn-
ing curves as well. In that setting, we may occasionally be
able to exploit the special structure of the assumed problem
prior. This is the case, for instance, with Gaussian process
regression, where problem averages can sometimes be com-
puted with no additional cost (Section 5).

2.3 Plotting Considerations

When plotting the learning curve, it can be useful to con-
sider logarithmic axes. Plotting » linearly may mask small
but non-trivial gains [36]. Also from a computational stand-
point it often makes sense to have n traverse a logarithmic
scale [37] (see also Section 3.2). A log-log or semi-log plot
can be useful if we expect the learning curve to display
power-law or exponential behavior (Section 4), as the curve
becomes straight in that case. In such a plot, it can also be
easier to discern small deviation from such behavior.
Finally, it is common to use error bars to indicate the stan-
dard deviation over the folds to give an estimate of the vari-
ability of the individual curves.

2.4 Summarizing Learning Curves

It may be useful at times, to summarize learning curves into
a single number. A popular metric to that end is the area
under the learning curve (AULC) [38], [39], [40] (see [41] for
early use). To compute this metric, one needs to settle at a
number of sample sizes. One then averages the performance
at all those sample sizes to get to the area of the learning
curve. The AULC thus makes the curious assumption that
all sample sizes are equally likely.

Important information can get lost when summarizing.
The measure is, for instance, not able to distinguish between
two methods whose learning curves cross (Fig. 1), ie,
where the one method is better in the small sample regime,
while the other is in the large sample setting. Others have
proposed to report the asymptotic value of the learning
curve and the number of samples to reach it [42] or the
exponent of the power-law fit [43].

Depending on the application at hand, particularly in
view of the large diversity in learning curve shapes, these
summaries are likely inadequate. Recently, [44] suggested
to summarize using all fit parameters, which should suffice
for most applications. However, we want to emphasize
one should try multiple parametric models and report
the parameters of the best fit and the fit quality (e.g., MSE).

2.5 Fitting Considerations

Popular parametric forms for fitting learning curves are
given in Table 1 and their performance is discussed in Sec-
tion 4.1. Here, we make a few general remarks.

Some works [45], [46], [47], [48] seem to perform simple
least squares fitting on log-values in order to fit power laws
or exponentials. If, however, one would like to find the opti-
mal parameters in the original space in terms of the mean
squared error, non-linear curve fitting is necessary (for
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TABLE 1

Parametric Learning Curve Models
Reference Formula Used in
POW2 an™? [46]* [47], [48], [49]
POW3 an™’ +c [491*[501* [45], [102]
LOG2 —alog (n) + ¢ [471* [46], [48], [49], [102]
EXP3 aexp(—bn) + ¢ [102]* [50]
EXP2 aexp(—bn) [46], [47], [48]
LIN2 —an+b [46], [47], [48], [102]
VAP3 exp(a + b/n + clog (n)) [49]
MMF4 (ab+cn®)/ (b + n? [49]
WBL4 c— bexp(—and) [49]
EXP4 ¢ —exp(—an® +b) [50]
EXPP3 c—exp((n — b)) [50]
POW4 c—(—an+b)"" [50]
ILOG2 ¢ — (a/log(n)) [50]
EXPD3 ¢ — (c—a)exp(—bn) [103]

Note that some curves model performance increase rather than loss decease.
The first column gives the abbreviation used and the number of parameters.
Bold and asterisk marks the paper this model came out as the best fit.

example using Levenberg-Marquardt [49]). Then again,
assuming Gaussian errors in the original space may be
questionable, since the loss is typically non-negative. There-
fore, confidence intervals, hypothesis tests, and p-values
should be interpreted with care.

For many problems, one should consider a model that
allows for nonzero asymptotic error (like POW3 and EXP3
in Table 1). Also, often the goal is to interpolate or extrapo-
late to previously unseen training set sizes. This is a generali-
zation task and we have to deal with the problems that this
may entail, such as overfitting to learning curve data [49],
[50]. Thus, learning curve data should also be split in train
and test sets for a fair evaluation.

2.6 Feature Curves and Complexity

The word feature refers to the d measurements that consti-
tutes an input vector x. A feature curve is obtained by plot-
ting the performance of a machine learning algorithm A
against the varying number of measurements it is trained
on [51], [52]. To be a bit more specific, let ¢, be a procedure
that selects d’ of the original d features, hence reducing the
dimensionality of the data to d’. A feature curve is then
obtained by plotting R(A(s,(S,))) versus d’, while n is now
the quantity that is fixed. As such, it gives a view comple-
mentary to the learning curve.

The selection of d’ features as carried out by means of ¢,
can be performed in various ways. Sometimes features have
some sort of inherent ordering. In other cases PCA or fea-
ture selection can provide such ordering. When no ordering
can be assumed, ¢y samples d' random features from the
data—possibly even with replacement. In this scenario, it is
sensible to construct a large number of different feature
curves, based on different random subsets, and report their
average as the final curve.

Typically, an increase in the number of input dimensions
means that the complexity of the learner also increases. As
such it can, more generally, be of interest to plot performance
against any actual, approximate, or substitute measure of the
complexity. Instead of changing the dimensionality, chang-
ing parameters of the learner, such as the smoothness of a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 6, JUNE 2023

kernel or the amount of filters in a CNN, can also be used to
vary the complexity to obtain similar curves [51], [53], [54],
[55], [56]. Such curves are sometimes called complexity
curves [55], parameter curves [57] or generalization curves [58].

One of the better known phenomena of feature curves is
the so-called peaking phenomenon (also the peak effect,
peaking or Hughes phenomenon [4], [59], [60], [61]). The
peaking phenomenon of feature curves is related to the
curse of dimensionality and illustrates that adding features
may actually degrade the performance of a classifier, lead-
ing to the classical U-shaped feature curve. Behavior more
complex than the simple U-shape has been observed as
well [62], [63], [64] and has recently been referred to as dou-
ble descent [65] (see Fig. 2a). This is closely related to peak-
ing of (ill-behaving) learning curves (Section 6.2).

2.7 Combined Feature and Learning Curves
Generally, the performance of a learner A is not influenced
independently by the the number of training samples n and
the number of features d. In fact, several theoretical works
suggest that the fraction o :% is essential (see, e.g., [66],
[67], [68]). Because of the feature-sample interaction, it can
be insightful to plot multiple learning curves for a variable
number of input dimensions or multiple feature curves for
different training set sizes. Another option is to make a 3D
plot—e.g., a surface plot—or a 2D image of the performance
against both n and d directly. Instead of the number of fea-
tures any other complexity measure can be used.

Fig. 2a shows such a plot for pseudo-Fisher’s linear dis-
criminant (PFLD; see Section 6.2) when varying both n and
d'. Taking a section of this surface, we obtain either a learn-
ing curve in Fig. 2b (horizontal, fixed d) or a feature curve in
Fig. 2c (vertical, fixed n). Fig. 2a gives a more complete view
of the interaction between n and d. In Fig. 2d we can see
that the optimal d’ depends on n. Likewise, for this model,
there is an optimal n for each d, i.e., the largest possible
value of n is not necessarily the best.

Duin [63] is possibly the first to include such 3D plot,
though already since the work of Hughes [51], figures that
combine multiple learning or feature curves have been used,
see for example [69], [70], and for combinations with com-
plexity curves see [53], [54], [71], [72]. More recently, [56],
[73] gives 2D images of the performance of deep neural net-
works as a function of both model and training set size.

3 GENERAL PRACTICAL USAGE

The study of learning curves has both practical and
research/theoretical value. While we do not necessarily aim
to make a very strict separation between the two, more
emphasis is put on the latter further on. This section focuses
on part of the former and covers the current, most important
uses of learning curves when it comes to applications, i.e.,
model selection and extrapolation to reduce data collection
and computational costs. For a valuable, complementary
review that delves specifically into how learning curves are
deployed for decision making, we refer to [74].

3.1 Better Model Selection and Crossing Curves

Machine learning as a field has shifted more and more to
benchmarking learning algorithms, e.g., in the last 20 years,
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(a) contour plot of error rate
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(c) feature curve
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Fig. 2. (a) Image of the error for varying sample size n and dimensionality d’, for the pseudo-Fisher learning algorithm (without intercept) on a toy
dataset with two Gaussian classes having identity covariance matrices. Their means are a distance of 6 apart in 100 dimensions, with every dimen-
sion adding a same amount to the overall distance. (b) By fixing d' and varying n, i.e., taking a horizontal section, we obtain a learning curve (red).
We also show the curve where d' is chosen optimally for each n (blue). (c) This plot is rotated by 90 degrees. By fixing n and varying d', i.e., a vertical
section, we obtain a feature curve (purple). We also show the curve where the optimal n is chosen for each d' (yellow). (d) Here we show the paths
taken through the image to obtain the curves. The learning curve and feature curves are the straight lines, while the curves that optimize n or d' take
other paths. The largest n and d are not always optimal. We note that Section 6 covers learning curves that do not necessarily improve with more

data. Section 6.2 discusses peaking (displayed here).

more than 2,000 benchmark datasets have been created
(see [75] for an overview). These benchmarks are often set
up as competitions [76] and investigate which algorithms
are better or which novel procedure outperforms existing
ones [36]. Typically, a single number, summarizing perfor-
mance, is used as evaluation measure.

A recent meta-analysis indicates that the most popular
measures are accuracy, the F-measure, and precision [77].
An essential issue these metrics ignore is that sample
size can have a large influence on the relative ranking of
different learning algorithms. In a plot of learning curves
this would be visible as a crossing of the different curves
(see Fig. 1). In that light, it is beneficial if benchmarks
consider multiple sample sizes, to get a better picture of
the strengths and weaknesses of the approaches. The
learning curve provides a concise picture of this sample
size dependent behavior.

Crossing curves have also been referred to as the scissor
effect and have been investigated since the 1970s [70], [78],
[79] (see also [80]). Contrary to such evidence, there are
papers that suggest that learning curves do not cross [81],
[82]. [36] calls into question the claim of [81] as the datasets
may be too small to find the crossing point. The latter claim
by [82] is specific to deep learning, where, perhaps, excep-
tions may occur that are currently not understood.

Perhaps the most convincing evidence for crossing curves
is given in [36]. The paper compares logistic regression and
decision trees on 36 datasets. In 15 of the 36 cases the learning
curves cross. This may not always be apparent, however, as
large sample sizes may be needed to find the crossing point.
In the paper, the complex model (decision tree) is better for
large sample sizes, while the simple model (logistic regres-
sion) is better for small ones. Similarly, Strang et al. [83] per-
formed a large-scale meta-learning study on 294 datasets,

Authorized licensed use limited to: TU Delft Library. Downloaded on June 08,2023 at 06:07:19 UTC from IEEE Xplore. Restrictions apply.



7804

comparing linear versus nonlinear models, and found evi-
dence that non-linear methods are better when datasets are
large. Ng and Jordan [28] found, when comparing naive
Bayes to logistic regression, that in 7 out of 15 datasets con-
sidered the learning curves crossed. [45], [84], [85], [86] pro-
vide further evidence.

Also using learning curves, [36] finds that, besides sam-
ple size, separability of the problem can be an indicator of
which algorithm will dominate the other in terms of the
learning curve. Beyond that, the learning curve, when plot-
ted together with the training error of the algorithm can be
used to detect whether a learner is overfitting [4], [5], [57],
[87]. Besides sample size, dimensionality seems also an
important factor to determine whether linear or non-linear
methods will dominate [83]. To that end, learning curves
combined with feature curves may offer further insights.

3.2 Extrapolation to Reduce Data Collection Costs
When collecting data is time-consuming, difficult, or other-
wise expensive the possibility to accurately extrapolate a
learner’s learning curve can be useful. Extrapolations (typi-
cally base on some parametric learning curve model, see Sec-
tion 4.1) give an impression beforehand of how many
examples to collect to come to a specific performance and
allows one to judge when data collection can be stopped [46].
Examples of such practice can, for instance, be found in
machine translation [50] and medical applications [25], [26],
[32]. Last [48] quantifies potential savings assuming a fixed
cost per collected sample and per generalization error.
Extrapolating the learning curve using some labeled data,
the point at which it is not worth anymore to label more data
can be determined and data collection stopped.

Determining a minimal sample size is called sample size
determination. For usual statistical procedures this is done
through what is called a power calculation [88]. For classi-
fiers, sample size determination using a power calculation
is unfeasible according to [25], [26]. John and Langley [89]
illustrate that a power calculations that ignores the machine
learning model indeed fails to accurately predict the mini-
mal sample size.

Sample size determination can be combined with meta-
learning, which uses experience on previous datasets to
inform decisions on new datasets. To that end, [90] builds a
small learning curve on a new and unseen dataset and com-
pares it to a database of previously collected learning curves
to determine the minimum sample size.

3.3 Speeding Up Training and Tuning

Learning curves can be used to reduce computation time
and memory with regards to training models, model selec-
tion and hyperparameter tuning.

To speed up training, so-called progressive sampling [37]
uses a learning curve to determine if less training data can
reach adequate performance. If the slope of the curve
becomes too flat, learning is stopped, making training
potentially much faster. It is recommended to use a geomet-
ric series for n to reduce computational complexity.

Several variations on progressive sampling exist. John
and Langley [89] proposes the notion of probably close enough
where a power-law fit is used to determine if the learner is
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so-called epsilon-close to the asymptotic performance. [91]
gives a rigorous decision theoretic treatment of the topic. By
assigning costs to computation times and performances,
they estimate what should be done to minimize the
expected costs. Progressive sampling also has been adapted
to the setting of active learning [92]. [90] combines meta-
learning with progressive sampling to obtain a further
speedup.

To speed up model selection, [93] compares initial learn-
ing curves to a database of learning curves to predict which
of two classifiers will perform best on a new dataset. This
can be used to avoid costly evaluations using cross valida-
tion. Leite and Brazdil [94] propose an iterative process that
predicts the required sample sizes, builds learning curves,
and updates the performance estimates in order to compare
two classifiers. Rijn et al. [95] extend the technique to rank
many machine learning models according to their predicted
performance, tuning their approach to come to an accept-
able answer in as little time as possible. [96] does not resort
to meta-learning, and instead uses partial learning curves to
speed up model selection. This simpler approach can also
already lead to significantly improved run times.

With regards to hyperparameter tuning, already in 1994
Cortes et al. [45] devised an extrapolation scheme for learn-
ing curves, based on the fitting of power laws, to determine
if it is worth to fully train a neural network. In the deep
learning era, this has received renewed attention. [97]
extrapolates the learning curve to optimize hyperpara-
meters. [44] takes this a step further and actually optimize
several design choices, such as data augmentation. One
obstacle for such applications is that it remains unclear
when the learning curve has which shape.

4 WELL-BEHAVED LEARNING CURVES

We deem a learning curve well-behaved if it shows
improved performance with increased training sample
sizes, i.e., R,(A) > R,;1(A) for all n. In slightly different set-
tings, learners that satisfy this property are called smart [99,
page 106] and monotone [99].

There is both experimental and theoretical evidence for
well-behaved curves. In the case of large deep learning
models, empirical evidence often seems to point to power-
law behavior specifically. For problems with binary features
and decision trees, exponential curves cannot be ruled out,
however. There generally is no definitive empirical evi-
dence that power laws models are essentially better. Theory
does often point to power-law behavior, but showcases
exponentials as well. The most promising theoretical works
characterizing the shape are [100] and [101]. Theoretical PA
curves are provably monotone, given the problem is well-
specified and a Bayesian approaches is used. They favor
exponential and power-law shapes as well.

4.1 In-Depth Empirical Studies of Parametric Fits

Various works have studied the fitting of empirical learning
curves and found that they typically can be modelled with
function classes depending on few parameters. Table 1 pro-
vides a comprehensive overview of the parametric models
studied in machine learning, models for human learning
in [3] may offer further candidates. Two of the primary
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objectives in studies of fitting learning curves are how well a
model interpolates an empirical learning curve over an
observed range of training set sizes and how well it can
extrapolate beyond that range.

Studies investigating these parametric forms often find the
power law with offset (POW3 in the table) to offer a good fit.
The offset makes sure that a non-zero asymptotic error can be
properly modeled, which seems a necessity in any challeng-
ing real-world setting. Surprisingly, even though Frey and
Fisher [46] do not include this offset ¢ and use POW2, they
find for decision trees that on 12 out of 14 datasets they con-
sider, the power law fits best. Gu et al. [49] extend this work
to datasets of larger sizes and, next to decision trees, also uses
logistic regression as a learner. They use an offset in their
power law and consider other functional forms, notably,
VAP, MMF, and WBL. For extrapolation, the power law with
bias performed the best overall. Also Last [48] trains decision
trees and finds the power law to perform best. Kolachina
et al. [50] give learning curves for machine translation in
terms of BLUE score for 30 different settings. Their study con-
siders several parametric forms (see Table 1) but also they
find that the power law is to be preferred.

Boonyanunta and Zeephongsekul [103] perform no
quantitative comparison and instead postulate that a differ-
ential equation models learning curves, leading them to an
exponential form, indicated by EXPD in the table. [104]
empirically finds exponential behavior of the learning curve
for a perceptron trained with backpropagation on a toy
problem with binary inputs, but neither performs an in
depth comparison. In addition, the experimental setup is
not described precisely enough: for example, it is not clear
how step sizes are tuned or if early stopping is used.

Three studies find more compelling evidence for devia-
tions from the power law. The first, [105], can be seen as an
in-depth extension of [104]. They train neural networks on
four synthetic datasets and compare the learning curves
using the 7? goodness of fit. Two synthetic problems are lin-
early separable, the others require a hidden layer, and all
can be modeled perfectly by the network. Whether a prob-
lem was linearly separable or not doesn’t matter for the
shape of the curve. For the two problems involving binary
features exponential learning curves were found, whereas
problems with real-valued features a power law gave the
best fit. However, they also note, that it is not always clear
that one fit is significantly better than the other.

The second study, [47], evaluates a diverse set of learners
on four datasets and shows the logarithm (LOG2) provides
the best fit. The author has some reservations about the
results and mentions that the fit focuses on the first part of
the curve as a reason that the power law may seem to per-
form worse, besides that POW3 was also not included.
Given that many performance measures are bounded,
parametric models that increase or decrease beyond any
limit should eventually give an arbitrarily bad fit for
increasing n. As such, LOG2 is anyway suspect.

The third study, [102], considers only the performance of
the fit on training data, e.g., already observed learning
curves points. They do only use learning curve models with
a maximum of three parameters. They employs a total of
121 datasets and use C4.5 for learning. In 86 cases, the learn-
ing curve shape fits well with one of the functional forms, in
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64 cases EXP3 gave the lowest overall MSE, in 13 it was
POWS3. A signed rank test shows that the exponential out-
performs all others models mentioned for [102] in Table 1.
Concluding, the first and last work provide strong evidence
against the power law in certain settings.

Finally, in what is probably the most extensive learning
curve study to date [106], the authors find power laws to
often provide good fits though not necessarily preferable to
some of the other models. In particular, for larger data sets,
all four 4-parameter models from Table 1 often perform on
par, but MMF4 and WBL4 outperform EXP4 and POW4 if
enough curve data is used for fitting.

4.2 Power Laws and Eye-Balling Deep Net Results
Studies of learning curves of deep neural networks mostly
claim to find power-law behavior. However, initial works
offer no quantitative comparisons to other parametric forms
and only consider plots of the results, calling into question
the reliability of such claims. Later contributions find
power-law behavior over many orders of magnitude of
data, offering somewhat stronger empirical evidence.

Sun et al. [107] state that their mean average precision per-
formance on a large-scale internal Google image dataset
increases logarithmically in dataset size. This claim is called
into question by [97] and we would agree: there seems to be
little reason to believe this increase follows a logarithm. Like
for [47], that also finds that the logarithm fit well, one should
remark that the performance in terms of mean average preci-
sion is always bounded from above and therefore the log
model should eventually break. As opposed to [107], [108]
does observe diminishing returns in a similar large-scale set-
ting. [109] also studies large-scale image classification and
find learning curves that level off more clearly in terms of
accuracy over orders of magnitudes. They presume that this
is due to the maximum accuracy being reached, but note that
this cannot explain the observations on all datasets. In the
absence of any quantitative analysis, these results are possi-
bly not more than suggestive of power-law behavior.

Hestness et al. [97] observe power laws over multiple
orders of magnitude of training set sizes for a broad range
of domains: machine translation (error rate), language
modeling (cross entropy), image recognition (top-1 and top-
5 error rate, cross entropy) and speech recognition (error
rate). Its exponent was found to be between —0.07 and
—0.35 and mostly depends on the domain. Architecture and
optimizer primarily determine the multiplicative constant.
For small sample sizes, however, the power law supposedly
does not hold anymore, as the neural network converges to
a random guessing solutions. In addition, one should note
that that the work does not consider any competing models
nor does it provide an analysis of the goodness of fit. More-
over, to uncover the power law, significant tuning of the
hyperparameters and model size per sample size is neces-
sary, otherwise deviations occur. Interestingly, [44] investi-
gates robust curve fitting for the error rate using the power
law with offset and find exponents of size —0.3 and —0.7,
thus of larger magnitude than [97].

Kaplan et al. [110] and Rosenfeld et al. [73] also rely on
power laws for image classification and natural language
processing and remarks similar to those we made about [97]
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apply. [110] finds that if the model size and computation
time are increased together with the sample size, that the
learning curve has this particular behavior. If either is too
small this pattern disappears. They find that the test loss
also behaves as a power law as function of model size and
training time and that the training loss can also be modeled
in this way. [73] reports that the test loss behaves as a power
law in sample size when model size is fixed and vice versa.
Both provide models of the generalization error that can be
used to extrapolate performances to unseen sample and
model sizes and that may reduce the amount of tuning
required to get to optimal learning curves. Some recent
additions to this quickly expanding field are [111] and [112].
On the whole, given the level of validation provided in
these works (e.g., no statistical tests or alternative paramet-
ric models, etc.), power laws can currently not be consid-
ered more than a good candidate learning curve model.

4.3 What Determines the Parameters of the Fit?

Next to the parametric form as such, researchers have inves-
tigated what determines the parameters of the fits. [25], [45],
and [44] provide evidence that the asymptotic value of the
power law and its exponent could be related. Singh [47]
investigates the relation between dataset and classifier but
does not find any effect. They do find that the neural net-
works and the support vector machine (SVM) are more
often well-described by a power law and that decision trees
are best predicted by a logarithmic model. Only a limited
number of datasets and models was tested however. Perlich
et al. [36] find that the Bayes error is indicative of whether
the curves of decision trees and logistic regression will cross
or not. In case the Bayes error is small, decision trees will
often be superior for large sample sizes. All in all, there are
few results of this type and most are quite preliminary.

4.4 Shape Depends on Hypothesis Class

Turning to theoretical evidence, results from learning the-
ory, especially in the form of Probably Approximately Cor-
rect (PAC) bounds [113], [114], have been referred to to
justify power-law shapes in both the separable and non-sep-
arable case [44]. The PAC model is, however, pessimistic
since it considers the performance on a worst-case distribu-
tion P, while the behavior on the actual fixed P can be
much more favorable (see, for instance, [115], [116], [117],
[118], [119]). Even more problematic, the worst-case distri-
bution considered by PAC is not fixed, and can depend on
the training size n, while for the learning curve P is fixed.
Thus the actual curve can decrease much faster than the
bound (e.g., exponential) [100]. The curve only has to be
beneath the bound but can still also show strange behavior
(wiggling).

A more fitting approach, pioneered by Schuurmans [120],
[121] and inspired by the findings in [105], does characterize
the shape of the learning curve for a fixed unknown P. This
has also been investigated in [122], [123] for specific learn-
ers. Recently, Bousquet et al. [100] gave a full characteriza-
tion of all learning curve shapes for the realizable case and
optimal learners. This last work shows that optimal learners
can have only three shapes: an exponential shape, a power-
law shape, or a learning curve that converges arbitrarily
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slow. The optimal shape is determined by novel properties
of the hypothesis class (not the VC dimension). The result of
arbitrarily slow learning is, partially, a refinement of the no
free lunch theorem of [99, Section 7.2] and concerns, for
example, hypothesis classes that encompass all measurable
functions. These results are a strengthening of a much ear-
lier observation by Cover [124].

4.5 Shape Depends on the Problem

There are a number of papers that find evidence for the
power-law shape under various assumptions. We also dis-
cuss work that finds exponential curves.

A first provably exponential learning curve can be traced
back to the famous work on one-nearest neighbor (INN)
classifier [125] by Cover and Hart. They point out that, in a
two-class problem, if the classes are far enough apart, INN
only misclassifies samples from one class if all n training
samples are from the other. Given equal priors, one can
show R,(AjnN) =2 " This suggests that if a problem is
well-separated, classifiers can converge exponentially fast.
Peterson [126] studied INN for a two-class problem where
Px is uniform on [0,1] and Py|x equals x for one of the two
classes. In that case of class overlap the curve equals }+
W, thus we have a slower power law.

Amari [127], [128] studies (PA) learning curves for a basic
algorithm, the Gibbs learning algorithm, in terms of the
cross entropy. The latter is equal to the logistic loss in the
two-class setting and underlies logistic regression. [127]
refers to it as the entropic error or entropy loss. The Gibbs
algorithm A is a stochastic learner that assumes a prior
over all models considered and, at test time, samples from
the posterior defined through the training data, to come to a
prediction [68], [129]. Separable data is assumed and the
model samples are therefore taken from version space [68].

For Ag, the expected cross entropy, RCE, can be shown to
decompose using a property of the conditional probabil-
ity [127]. Let p(S,) be the probability of selecting a classifier
from the prior that classifies all samples in S, correctly.
Assume, in addition, that S,, C 5,,;1. Then, while for general
losses we end up with an expectation that is generally hard
to analyze [130], the expected cross entropy simplifies into
the difference of two expectations [127]

RSE(AG) = Es,.p Ing(Sn) - ES,,HNP 1ng(5n+l)~ 4)

Under some additional assumptions, which ensure that the
prior is not singular, the behavior asymptotic in n can be
fully characterized. Amari [127] then demonstrates that

REE(Ag) ~ g + o(l>7 )

n

where d is the number of parameters.

Amari and Murata [131] extend this work and consider
labels generated by a noisy process, allowing for class over-
lap. Besides Gibbs, they study algorithms based on maximum
likelihood estimation and the Bayes posterior distribution.
They find for Bayes and maximum likelihood that the entro-
pic generalization error behaves as Hy + 5=, while the training
error behaves as Hy — -, where H, is the best possible cross

o’
entropy loss. For Gibbs, the error behaves as Hj + %, and the
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training error as Hy. In case of model mismatch, the maxi-
mum likelihood solution can also be analyzed. In that setting,
the number of parameters d changes to a quantity indicating
the number of effective parameters and H, becomes the loss
of the model closest to the groundtruth density in terms of
KL-divergence.

In a similar vein, Amari et al. [130] analyze the 0-1 loss,
i.e., the error rate, under a so-called annealed approxima-
tion [67], [68], which approximates the aforementioned
hard-to-analyze risk. Four settings are considered, two of
which are similar to those in [127], [128], [131]. The variation
in them stems from differences in assumptions about how
the labeling is realized, ranging from a unique, completely
deterministic labeling function to multiple, stochastic label-
ings. Possibly the most interesting result is for the realizable
case where multiple parameter settings give the correct out-
come or, more precisely, where this set has nonzero mea-
sure. In that case, the asymptotic behavior is described as a
power law with an exponent of —2. Note that this is essen-
tially faster than what the typical PAC bounds can provide,
which are exponents of —1 and —1 (a discussion of those
results is postponed to Section 7.3). This possibility of a
more rich analysis is sometimes mentioned as one of the
reasons for studying learning curves [68], [118], [132].

For some settings, exact results can be obtained. If one
considers a 2D input space where the marginal Py is a
Gaussian distribution with mean zero and identity covari-
ance, and one assumes a uniform prior over the true linear
labeling function, the PA curve for the zero one loss can
exactly be computed to be of the form %, while, the
annealed approximation gives 1 [130].

Schwartz et al. [133] use tools similar to Amari’s to study
the realizable case where all variables (features and labels)
are binary and Bayes rule is used. Under their approxima-
tions, the PA curve can be completely determined from a
histogram of generalization errors of models sampled from
the prior. For large sample sizes, the theory predicts that the
learning curve actually has an exponential shape. The expo-
nent depends on the gap in generalization error between
the best and second best model. In the limit of a gap of zero
size, the shape reverts to a power law. The same technique
is used to study learning curves that can plateau before
dropping off a second time [134]. [135] proposes extensions
dealing with label noise. [132] casts some doubt on the accu-
racy of these approximations and the predictions of the the-
ory of Schwartz et al. indeed deviate quite a bit from their
simulations on toy data. Recently, [101] presented a simple
classification setup on a countably infinite input space for
which the Bayes error equals zero. The work shows that the
learning curve behavior crucially depends on the distribu-
tion assumed over the discrete feature space and most often
shows power-law behavior. More importantly, it demon-
strates how exponents other than the expected —1 or —1 can
emerge, which could explain the diverse exponents men-
tioned in Section 4.2.

4.6 Monotone Shape if Well-Specified (PA)

The PA learning curve is monotone if the prior and likeli-
hood model are correct and Bayesian inference is employed.
This is a consequence of the total evidence theorem [136],

7807

[137], [138]. It states, informally, that one obtains the maxi-
mum expected utility by taking into account all observa-
tions. However, a monotone PA curve does not rule out that
the learning curve for individual problems can go up, even
if the problem is well-specified, as the work covered in Sec-
tion 6.7 points out. Thus, if we only evaluate in terms of the
learning curve of a single problem, using all data is not
always the rational strategy.

It may be of interest to note here that, next to Bayes’ rule,
there are other ways of consistently updating one’s belief—
in particular, so-called probability kinematics—that allow
for an alternative decision theoretic setting in which a total
evidence theorem also applies [139].

Of course, in reality, our model probably has some mis-
specification, which is a situation that has been considered
for Gaussian process models and Bayesian linear regression.
Some of the unexpected behavior this can lead to is covered
in Section 6.5 for PA curves and Section 6.6 for the regular
learning curve. Next, however, we cover further results in
the well-behaved setting. We do this, in fact, specifically for
Gaussian processes.

5 GAUSSIAN PROCESS LEARNING CURVES

In Gaussian process (GP) regression [140], it is especially the
PA learning curve (Section 2.1) for the squared loss, under
the assumption of a Gaussian likelihood, that has been stud-
ied extensively. A reason for this is that many calculations
simplify in this setting. We cover various approximations,
bounds, and ways to compute the PA curve. We also dis-
cuss assumptions and their corresponding learning curve
shapes and cover the factors that affect the shape. It appears
difficult to say something universally about the shape,
besides that it cannot decrease faster than O(n ') asymptoti-
cally. The fact that these PA learning curves are monotone
in the correctly specified setting can, however, be exploited
to derive generalization bounds. We briefly cover those as
well. This section is limited to correctly specified, well-
behaved curves, Section 6.5 is devoted to ill-behaved learn-
ing curves for misspecified GPs.

The main quantity that is visualized in the PA learning
curve of GP regression is the Bayes risk or, equivalently, the
problem averaged squared error. In the well-specified case,
this is equal to the posterior variance o? [141, Equa-
tion (2.26)] [141],

o2 = k(z,,z.) — k' (K(X,, X,,) +0°1) 'k,. (6)

Here k is the covariance function or kernel of the GP,
K(X,,X,) is the n x n kernel matrix of the input training
set X, where K'™(X,,, X,)) = k(z;, 2,). Similarly, k. is the
vector where the Ith component is k(z;, z.). Finally, o is the
noise level assumed in the Gaussian likelihood.

The foregoing basically states that the averaging over all
possible problems P (as defined by the GP prior) and all
possible output training samples is already taken care of by
Equation (6). Exploiting this equality, what is then left to do
to get to the PA learning curve is an averaging over all test
points x, according to their marginal Py and an averaging
over all possible input training samples X,.

Finally, for this section, it turns out to be convenient to
introduce a notion of PA learning curves in which only the
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averaging over different input training sets XK € A" has not
been carried out yet. We denote this by RP (X,) and we
will not mention the learning algorithm A (GP regression).

5.1 Fixed Training Set and Asymptotic Value
The asymptotic value of the learning curve and the value of
the PA curve for a fixed training set can be expressed in
terms of the eigendecomposition of the covariance function.
This decomposition is often used when approximating or
bounding GPs’ learning curves [141], [142], [143].

With Px be the marginal density and k(z, z") the covari-
ance function. The eigendecomposition constitutes all eigen-
functions ¢; and eigenvalues \; that solve for

/ Kz, o )(x)dPx (z) = Ap(2). M

Usually, the eigenfunctions are chosen so that

/ 6,(2)0,(x)dPy (z) = 5, ()

where §;; is Kronecker’s delta [140]. The eigenvalues are non-
negative and assumed sorted from large to small
(A1 > A2 > ...). Depending on Px and the covariance func-
tion £, the spectrum of eigenvalues may be either degenerate,
meaning there may be finite nonzero eigenvalues, or nonde-
generate in which case there are infinite nonzero eigenval-
ues. For some, analytical solutions to the eigenvalues and
functions are known, e.g., for the squared exponential
covariance function and Gaussian Pyx. For other cases the
eigenfunctions and eigenvalues can be approximated [140].

Now, take A the diagonal matrix with ); on the diagonal
and let ®;; = ¢;(z;), where each z; comes from the training
matrix X,,. The dependence on the training set is indicated
by ® = ®(X,,). For a fixed training set, the squared loss
over all problems can then be written as

RPA(X,) = Tr(A™ + 0 20(X,)TD(X,) ", ©)

which is exact [142]. The only remaining average to compute
to come to a PA learning curve is with respect to X,,. This last
average is typically impossible to calculate analytically
(see [141, p. 168] for an exception). This leads one to consider
the approximations and bounds covered in Section 5.3.

The asymptotic value of the PA learning curve is [144]

_ <NT
RPA — i
o Z‘L’+/\7’7

i=1

(10)

where convergence is in probability and almost sure for
degenerate kernels. Moreover, it is assumed that o = nt for
a constant tr, which means that the noise level grows with
the sample size. The assumption seems largely a technical
one and Le Gratiet and Garnier [144] claim this assumption
can still be reasonable in specific settings.

5.2 Two Regimes, Effect of Length Scale on Shape

For many covariance functions (or kernels), there is a char-
acteristic length scale [/ that determines the distance in fea-
ture space one after which the regression function can
change significantly. Williams and Vivarelli [141] make the
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qualitative observation that this lead the PA curve to often
have two regimes: initial and asymptotic. If the length scale
of the GP is not too large, the initial decrease of the learning
curve is approximately linear in n (initial regime). They
explain that, initially, the training points are far apart, and
thus they can almost be considered as being observed in iso-
lation. Therefore, each training point reduces the posterior
variance by the same amount, and thus the decrease is ini-
tially linear. However, when n is larger, training points get
closer together and their reductions in posterior variance
interact. Then reduction is not linear anymore because an
additional point will add less information than the previous
points. Thus there is an effect of diminishing returns and
the decrease gets slower: the asymptotic regime [141], [142].

The smaller the length scale, the longer the initial linear
trend, because points are comparatively further apart [141],
[142]. Williams and Vivarelli further find that changing the
length scale effectively rescales the amount of training data
in the learning curve for a uniform marginal Py. Further-
more, they find that a higher noise level and smoother
covariance functions results in earlier reaching of the
assymptotic regime for the uniform distribution. It remains
unclear how these results generalize to other marginal
distributions.

Sollich and Halees [142] note that in the asymptotic
regime, the noise level has a large influence on the shape of
the curve since here the error is reduced by averaging out
noise, while in the non-asymptotic regime the noise level
hardly plays a role. They always assume that the noise level
is much smaller than the prior variance (the expected fluctu-
ations of the function before observing any samples). Under
that assumption, they compare the error of the GP with the
noise level to determine the regime: if the error is smaller
than the noise, it indicates that one is reaching the asymp-
totic regime.

5.3 Approximations and Bounds

A simple approximation to evaluate the expectation with
respect to the training set from Equation (9) is to replace the
matrix CIJ(X“)TCI)(X,L) by its expected value nl (this is the
expected value due to Equation (8)). This results in

o0 2
JER Y g
n " D) .
c~o” + n\;

The approximation, which should be compared to Equa-
tion (10), is shown to be an upper bound on the training loss
and a lower bound on the PA curve [145]. From asymptotic
arguments, it can be concluded that the PA curve cannot
decrease faster than L for large n [141, p. 160]. Since asymp-
totically the training and test error coincide, Opper and
Vivarelli [145] expect this approximation to give the correct
asymptotic value, which, indeed, is the case [144].

The previous approximation works well for the asymp-
totic regime but for non-asymptotic cases it is not accurate.
Sollich [146] aims to approximate the learning curve in such
a way that it can characterizes both regimes well. To that
end, he, also in collaboration with Halees [142], introduces
three approximations based on a study of how the matrix
inverse in Equation (9) changes when n is increased. He
derives recurrent relations that can be solved and lead to

an
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upper and lower approximations that typically enclose the
learning curve. The approximations have a form similar to
those in Equation (11). While [146] initially hypothesized
these approximations could be actual bounds on the learn-
ing curve, Sollich and Halees [142] gave several counter
examples and disproved this claim.

For the noiseless case, in which o = 0, Michelli and
Wahba [147] give a lower bound for RP*(X,,), which in turn
provides a lower bound on the learning curve

(12)

Plaskota [148] extends this result to take into account noise
in the GP and Sollich and Halees [142] provide further
extensions that hold under less stringent assumptions.
Using a finite-dimensional basis, [149] develops a method
to approximate GPs that scales better in n and finds an
upper bound. The latter immediately implies a bound on
the learning curve as well.

Several alternative approximations exist. For example,
Sarkka [150] uses numerical integration to approximate the
learning curve, for which the eigenvalues do not need to be
known at all. Opper [151] gives an upper bound for the
entropic loss using techniques from statistical physics and
derives the asymptotic shape of this bound for Wiener pro-
cesses for which k(z, 2") = min(z, 2’) and the squared expo-
nential covariance function. [142] notes that in case the
entropic loss is small it approximates the squared error of
the GP, thus for large n this also implies a bound on the
learning curve.

5.4 Limits of the Eigenvalue Spectrum

Sollich and Halees [142] also explore what the limits are of
bounds and approximations based on the eigenvalue spec-
trum. They create problems that have equal spectra but dif-
ferent learning curves, indicating that learning curves
cannot be predicted reliably based on eigenvalues alone.
Some works rely on more information than just the spec-
trum, such as [141], [149] whose bounds also depend on
integrals involving the weighted and squared versions of
the covariance function. Sollich and Halees also shows sev-
eral examples where the lower bounds from [145] and [148]
can be arbitrarily loose, but at the same time cannot be sig-
nificantly tightened. Also their own approximation, which
empirically is found to be the best, cannot be further refined.
These impossibility results leads them to question the use of
the eigenvalue spectrum to approximate the learning curve
and what further information may be valuable.

Malzahn and Opper [152] re-derive the approximation
from [142] using a different approach. Their variational
framework may provide more accurate approximations to
the learning curve, presumably also for GP classifica-
tion [140], [142]. It has also been employed, among others,
to estimate the variance of PA learning curves [153], [154].

5.5 Smoothness and Asymptotic Decay

The smoothness of a GP can, in 1D, be characterized by the
Sacks-Ylvisaker conditions [155]. These conditions capture
an aspect of the smoothness of a process in terms of its
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derivatives. The order s used in these regularity conditions
indicates, roughly, that the sth derivative of the stochastic
process exists, while the (s+ 1)th does not. Under these
conditions, Ritter [156] showed that the asymptotic decay
rate of the PA learning curve is of order O(n~(2s+1/(2s+2)),
Thus the smoother the process the faster the decay rate.

As an illustration: the squared exponential covariance
induces a process that is very smooth as all orders of deriva-
tives exist. The smoothness of the so-called modified Bessel
covariance function [140] is determined by its order £,
which relates to the order in the Sacks-Ylvisaker conditions
as s = k — 1. If k = 1, the covariance function leads to a pro-
cess that is not even once differentiable. In the limit of
k — oo, it converges to the squared exponential covariance
function [140], [141]. For the roughest case k = 1 the learn-
ing curve behaves asymptotically as O(n~'/?). For the
smoother SE covariance function the rate is O(n"log (n))
[151]. For other rates see [141, Chapter 7] and [141].

In particular cases, the approximations in [142] can have
stronger implications for the rate of decay. If the eigenval-
ues decrease as a power law \; ~ i7", in the asymptotic
regime (R'* < 0?), the upper and lower approximations
c01nC1de and Predlct that the learning curve shape is given

For example, for covariance function of
the classmal Ornstein-Uhlenbeck process, ie., k(z,z') =
exp — =21 r‘ with ¢ the length scale, we have \; ~i 2. The
elgenvalues of the squared exponential covariance functlon
decay faster than any power law. Taking 7 — oo, this
implies a shape of the form %. These approximation are
indeed in agreement with known exact results [142]. In the
initial regime (R'A > 0?), if one takes o — 0 the lower
approximation gives n~""!. In this case, the suggested
curve for the Ornstein-Uhlenbeck process takes on the form
n~!, which agrees with exact calculations as well. In the ini-
tial regime for the squared exponential, no direct shape can
be computed without additional assumptions. Assuming
d = 1, a uniform input distribution, and Iarge n, the approx-
imation suggests a shape of the form ne=" for some con-
stant ¢ [142], which is faster even than exponential.

5.6 Bounds Through Monotonicity
Section 4.6 indicated that the PA learning curve is always
monotone if the problem is well specified. Therefore, under
the assumption of a well-specified GP, its learning curve is
monotone when its average is considered over all possible
training sets (as defined by the correctly specified prior). As
it turns out, however, this curve is already monotone before
averaging over all possible training sets, as long as the
smaller set is contained in the larger, ie., R'A(X,) >
R (X,,11) forall X,, C X,,,. This is because the GP’s poste-
rior variance decreases with every addition of a training
object. This can be proven from standard results on the con-
ditioning a multivariate Gaussians [141]. Such sample-
based monotonicity of the posterior variance can generally
be obtained if the likelihood function is modeled by an
exponential family and a corresponding conjugate prior is
used [157].

Williams and Vivarelli [141] use this result to construct
bounds on the learning curve. The key idea is to take the n
training points and treat them as n training sets of just a
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single point. Each one gives an estimate of generalization
error for the test points (Equation (6)). Because the error
always decreases when increasing the training set, the mini-
mum over all train points creates a bound on the error for
the whole training set for the test point. The minimizer is
the closest training point.

To compute the a bound on the generalization error, one
needs to consider the expectation w.r.t. Px. In order to keep
the analysis tractable, Williams and Vivarelli [141] limit
themselves to 1D input spaces where Py is uniform and per-
form the integration numerically. They further refine the
technique to training sets of two points as well, and, find
that as expected the bounds become tighter, since larger
training sets imply better generalization. Sollich and
Halees [142] extend their technique to non-uniform 1D Px.
By considering training points in a ball of radius p around a
test point, Lederer et al. [143] derive a similar bound that
converges to the correct asymptotic value. In contrast, the
original bound from [141] becomes looser as n grows.
Experimentally, [143] shows that under a wide variety of
conditions their bound is relatively tight.

6 ILL-BEHAVED LEARNING CURVES

It is important to understand that learning curves do not
always behave well and that this is not necessarily an arti-
fact of the finite sample or the way an experiment is set up.
Deterioration with more training data can obviously occur
when considering the curve R(A(S,)) for a particular train-
ing set, because for every n, we can be unlucky with our
draw of S,. That ill-behavior can also occur in expectation,
i.e, for R,(A), may be less obvious.

In the authors’ experience, most researchers expect
improved performance of their learner with more data. Less
anecdotal evidence can be found in literature. [115,
page 153] states that when n surpasses the VC-dimension,
the curve must start decreasing. [21, Subsection 9.6.7] claims
that for many real-world problems they decay monotoni-
cally. [158] calls it expected that performance improves with
more data and [49] makes a similar claim, [159] and [160]
consider it conventional wisdom, and [103] considers it
widely accepted. Others assume well-behaved curves [37],
which means that curves are smooth and monotone [161].
Note that a first example of nonmonotonic behavior had
actually already been given in 1989 [62], which we further
cover in Section 6.2.

Before this section addresses actual bad behavior, we
cover phase transitions, which are at the brink of becoming
ill-behaved. Possible solutions to nonmonotonic behavior
are discussed at the end. Fig. 3 provides an overview of
types of ill-behaved learning curve shapes with subsection
references. The code reproducing these curves (all based on
actual experiments) can be retrieved from https://github.
com/tomviering/ill-behaved-learning-curves.

6.1 Phase Transitions

As for physical systems, in a phase transition, particular
learning curve properties change relatively abruptly,
(almost) discontinuously. Fig. 3 under (6.1) gives an exam-
ple of how this can manifest itself. In learning, techniques
from statistical physics can be employed to model and
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Fig. 3. Qualitative overview of various learning curve shapes placed in
different categories with references to their corresponding subsections.
All have the sample size n on the horizontal axis. Dotted lines indicate
the transition from under to overparametrized models. Abbreviations;
error: classification error; sq. loss: squared loss; NLL: negative log likeli-
hood; abs. loss: absolute loss; PA indicates the problem-average learn-
ing curve is shown.

analyze these transitions, where it typically is studied in the
limit of large samples and high input dimensionality [68].
Most theoretical insights are limited to relatively simple
learners, like the perceptron, and often apply to PA curves.
Let us point out that abrupt changes also seem to occur in
human learning curves [13], [162], in particular when the
task is complex and has a hierarchical structure [163]. A first
mention of the occurrence of phase transitions, explicitly in
the context of learning curves, can be found in [164]. It indi-
cates the transition from memorization to generalization,
which occurs, roughly, around the time that the full capacity
of the learner has been used. Gyorgyi [165] provides a first,
more rigorous demonstration within the framework of
statistical physics—notably, the so-called thermodynamic
limit [68]. In this setting, actual transitions happen for single-
layer perceptrons where weights take on binary values only.
The perceptron and its thermodynamic limit are consid-
ered in many later studies as well. The general finding is
that, when using discrete parameter values—most often
binary weights, phase transitions can occur [132], [166],
[167]. The behavior is often characterized by long plateaus
where the perceptron cannot learn at all (usually in the
overparametrized, memorization phase, where n < d) and
has random guessing performance, until a point where the
perceptron starts to learn (at n > d, the underparametrized
regime) at which a jump occurs to non-trivial performance.
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Phase transitions are also found in two-layer networks
with binary weights and activations [167], [168], [169]. This
happens for the so-called parity problem where the aim is
to detect the parity of a binary string [170] for which
Opper [171] found phase transitions in approximations of
the learning curve. Learning curve bounds may display
phase transitions as well [118], [172], though [132], [172]
question whether these will also occur in the actual learning
curve. Both Sompolinsky [173] and Opper [171] note that
the sharp phase transitions predicted by theory, will be
more gradual in real-world settings. Indeed, when studying
this literature, one should be careful in interpreting theoreti-
cal results, as the transitions may occur only under particu-
lar assumptions or in limiting cases.

For unsupervised learning, phase transitions have been
shown to occur as well [174], [175] (see the latter for addi-
tional references). Ipsen and Hansen [176] extend these
analyses to PCA with missing data. They also show phase
transitions in experiments on real-world data sets. [177] pro-
vides one of the few real application papers where a dis-
tinct, intermediate plateau is visible in the learning curve.

For Fig. 3 under (6.1), we constructed a simple phase
transition based on a two-class classification problem, y €
{+1, —1}, with the first 99 features standard normal and the
100th feature set to ;. PFLD’s performance shows a transi-
tion at n = 100 for the error rate.

6.2 Peaking and Double Descent

The term peaking indicates that the learning curve takes on
a maximum, typically in the form of a cusp, see Fig. 3 under
(6.2). Unlike many other ill behaviors, peaking can occur in
the realizable setting. Its cause seems related to instability
of the model. This peaking should not be confused with
peaking for feature curves as covered in Section 2.6, which
is related to the curse of dimensionality. Nevertheless, the
same instability that causes peaking in learning curves can
also lead to a peak in feature curves, see Fig. 2. The latter
phenomenon has gained quite some renewed attention
under the name double descent [65].

By now, the term (sample-wise) double descent has
become a term for the peak in the learning curve for deep
neural networks [56], [178]. Related terminologies are
model-wise double descent, that describe a peak in the plot
of performance versus model size, and epoch-wise double
descent, that shows a peak in the training curve [56].

Peaking was first observed for the pseudo-Fisher’s linear
discriminant (PFLD) [62] and has been studied already for
quite some time [179]. The PFLD is the classifier minimizing
the squared loss, using minimum-norm or ridgeless linear
regression based on the pseudo-inverse. PFLD often peaks
at d ~ n, both for the squared loss and classification error. A
first theoretical model explaining this behavior in the ther-
modynamical limit is given in [66]. In such works, originat-
ing from statistical physics, the usual quantity of interest is
a =4 that controls the relative sizes for d and n going to
infinity [67], [68], [129].

Raudys and Duin [80] investigate this behavior in the
finite sample setting where each class is a Gaussian. They
approximately decompose the generalization error in three
terms. The first term measures the quality of the estimated
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means and the second the effect of reducing the dimension-
ality due to the pseudo-inverse. These terms reduce the
error when n increases. The third term measures the quality
of the estimated eigenvalues of the covariance matrix. This
term increases the error when n increases, because more
eigenvalues need to be estimated at the same time if n
grows, reducing the quality of their overall estimation.
These eigenvalues are often small and as the model depends
on their inverse, small estimation errors can have a large
effect, leading to a large instability [71] and peak in the
learning curve around n = d. Using an analysis similar
to [80], [180] studies the peaking phenomenon in semi-
supervised learning (see [23]) and shows that unlabeled
data can both mitigate or worsen it.

Peaking of the PFLD can be avoided through regulariza-
tion, e.g., by adding AI to the covariance matrix [71], [80].
The performance of the model is, however, very sensitive to
the correct tuning of the ridge parameter A [71], [181].
Assuming the data is isotropic, [182] shows that peaking dis-
appears for the optimal setting of the regularization parame-
ter. Other, more heuristic solutions change the training
procedure altogether, e.g., [183] uses an iterative procedure
that decides which objects PFLD should be trained on, as
such reducing n and removing the peak. [184] adds copies of
objects with noise, increasing n, or increases the dimension-
ality by adding noise features, increasing d. Experiments
show this can remove the peak and improve performance.

Duin [63] illustrates experimentally that the SVM may
not suffer from peaking in the first place. Opper [171] sug-
gests a similar conclusion based on a simplistic thought
experiment. For specific learning problems, both [66]
and [166] already give a theoretical underpinning for the
absence of double descent for the perceptron of optimal (or
maximal) stability, which is a classifier closely related to the
SVM. Opper [185] studies the behavior of the SVM in the
thermodynamic limit which does not show peaking either.
Spigler et al. [186] show, however, that double descent for
feature curves can occur using the (squared) hinge loss,
where the peak is typically located atann > d.

Further insight of when peaking can occur may be
gleaned from recent works like [187] and [188], which per-
form a rigorous analysis of the case of Fourier Features with
PFLD using random matrix theory. Results should, how-
ever, be interpreted with care as these are typically derived
in an asymptotic setting where both n and d (or some more
appropriate measure of complexity) go to infinity, i.e., a set-
ting similar to the earlier mentioned thermodynamic limit.
Furthermore, [189] shows that a peak can occur where the
training set size n equals the input dimensionality d, but
also when n matches the number of parameters of the
learner, depending on the latter's degree of nonlinearity.
Multiple peaks are also possible for n < d [182].

6.3 Dipping and Objective Mismatch

In dipping, the learning curve may initially improve with
more samples, but the performance eventually deteriorates
and never recovers, even in the limit of infinite data [190],
see Fig. 3 below (6.3). Thus the best expected performance is
reached at a finite training set size. By constructing an
explicit problem [99, page 106], Devroye et al. already
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Fig. 4. A two-class problem that dips for various linear classifiers
(cf. [190]). The sample data (the two s) shows that, with small samples,
the linear model with optimal error rate can be obtained. However, due
to the surrogate loss typically optimized, the decision boundary obtained
in the infinite sample limit is around the suboptimal z = 0.

showed that the nearest neighbor classifier is not always
smart, meaning its learning curve can go up locally. A simi-
lar claim is made for kernel rules [99, Problems 6.14 and
6.15]. A 1D toy problem for which many well-known linear
classifiers (e.g., SVM, logistic regression, LDA, PFLD) dip is
given in Fig. 4. In a different context, Ben-David et al. [191]
provide an even stronger example where all linear classi-
fiers optimizing a convex surrogate loss converge in the
limit to the worst possible classifier for which the error rate
approaches 1.

Another example, Lemma 15.1 in [98], gives an insightful
case of dipping for likelihood estimation.

What is essential for dipping to occur is that the classifi-
cation problem at hand is misspecified, and that the learner
optimizes something else than the evaluation metric of the
learning curve. Such objective misspecification is standard
since many evaluation measures such as error rate, AUC, F-
measure, and so on, are notoriously hard to optimize (cf.
e.g., [115, page 119] [192]). If classification-calibrated loss
functions are used and the hypothesis class is rich enough
to contain the true model, then minimizing the surrogate
loss will also minimize the error rate [191], [193]. As such,
consistent learners, that deliver asymptotically optimal per-
formance by definition, cannot have learning curves that
keep increasing monotonically and, therefore, cannot dip.
Other works also show dipping of some sort. For example,
Frey and Fisher [46] fit C4.5 to a synthetic dataset that has
binary features for which the parity of all features deter-
mines the label. When fitting C4.5 the test error increases
with the amount of training samples. They attribute this to
the fact that the C4.5 is using a greedy approach to minimize
the error, and thus is closely related to objective misspecifi-
cation. Brumen et al. [102] also shows an ill-behaving curve
of C4.5 that seems to go up. They note that 34 more curves
could not be fitted well using their parametric models,
where possibly something similar is going on. In [194], we
find another potential example of dipping as, in Fig. 6, the
accuracy goes down with increasing sample sizes.

Anomaly or outlier detection using k-nearest neighbors
(kNN) can also shows dipping behavior [160] (referred to as
gravity defying learning curves). Also here is a mismatch
between the objective that is evaluated with, i.e., the AUC,
and ANN that does not optimize the AUC. Hess and
Wei [32] also show ANN learning curves that deteriorate in
terms of AUC in the standard supervised setting.

Also in active learning [24] for classification, where the
test error rate is often plotted against the size of the (actively
sampled) training set, learning curves are regularly reported
to dip [195], [196]. In that case, active learners provide opti-
mal performance for a number of labeled samples that is
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smaller than the complete training set. This could be inter-
preted as a great success for active learning. It implies that
even in regular supervised learning, one should maybe use
an active learner to pick a subset from one’s complete train-
ing set, as this can improve performance. It cannot be ruled
out, therefore, that the active learner uses an objective that
matches better with the evaluation measure [197].

Meng and Xie [159] construct a dipping curve in the con-
text of time series modeling with ordinary least squares. In
their setting, they use an adequate parametric model, but
the distribution of the noise changes every time step, which
leads least squares to dipping. In this case, using the likeli-
hood to fit the model resolves the non-monotonicity.

Finally, so-called negative transfer [198], as it occurs in
transfer learning and domain adaptation [199], [200], can be
interpreted as dipping as well. In this case, more source
data deteriorates performance on the target and the objec-
tive mismatch stems from the combined training from
source and target data instead of the latter only.

6.4 Risk Monotonicity and ERM

Several novel examples of non-monotonic behavior for den-
sity estimation, classification, and regression by means of
standard empirical risk minimization (ERM) are shown
in [201]. Similar to dipping, the squared loss increases with
n, but in contrast does eventually recover, see Fig. 3 under
(6.4). However, these examples cannot be explained either
in terms of dipping or peaking. Dipping is ruled out as, in
ERM, the learner optimizes the loss that is used for evalua-
tion. In addition, non-monotonicity can be demonstrated
for any n and so there is no direct link with the capacity of
the learner, ruling out an explanation in terms of peaking.

Proofs of non-monotonicity are given for squared, abso-
lute, and hinge loss. It is demonstrated that likelihood esti-
mators suffer the same deficiency. Two learners are reported
that are provably monotonic: mean estimation based on the
Ly loss and the memorize algorithm. The latter algorithm
does not really learn but outputs the majority voted classifi-
cation label of each object if it has been seen before. Memo-
rize is not PAC learnable [68], [114], illustrating that
monotonicity and PAC are essentially different concepts.
Here, we like to mention [202], which shows generalization
even beyond memorization of the finite training data.

It is shown experimentally that regularization can actu-
ally worsen the non-monotonic behavior. In contrast, Nak-
kiran [182] shows that optimal tuning of the regularization
parameter can guarantee monotonicity in certain settings. A
final experiment from [201] shows a surprisingly jagged
learning curve for the absolute loss, see Fig. 3 under (6.4).

6.5 Misspecified Gaussian Processes

Gaussian process misspecification has been studied in the
regression setting where the so-called teacher model pro-
vides the data, while the student model learns, assuming a
covariance or noise model different from the teacher. If they
are equal, the PA curve is monotone (Section 4.6).

Sollich [203] analyzes the PA learning curve using the
eigenvalue decomposition earlier covered. He assumes both
student and teacher use kernels with the same eigenfunc-
tions but possibly differing eigenvalues. Subsequently, he
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considers various synthetic distributions for which the
eigenfunctions and eigenvalues can be computed analyti-
cally and finds that for a uniform distribution on the verti-
ces of a hypercube, multiple overfitting maxima and
plateaus may be present in the learning curve (see Fig. 3
under (6.5)), even if the student uses the teacher noise level.
For a uniform distribution in one dimension, there may be
arbitrarily many overfitting maxima if the student has a
small enough noise level. In addition the convergence rates
change and may become logarithmically slow.

The above analysis is extended by Sollich in [204], where
hyperparameters such as length scale and noise level, are
now optimized during learning based on evidence maximi-
zation. Among others, he finds that for the hypercube the
arbitrary many overfitting maxima do not arise anymore
and the learning curve becomes monotone. All in all, Sollich
concludes that optimizing the hyperparameters using evi-
dence maximization can alleviate non-monotonicity.

6.6 Misspecified Bayesian Regression

Grinwald and Van Ommen [205] show that a (hierarchical)
Bayesian linear regression model can give a broad peak in
the learning curve of the squared risk, see Fig. 3 under (6.6).
This can happen if the homogeneous noise assumption is
violated, while the estimator is otherwise consistent.

Specifically, let data be generated as follows. For each
sample, a fair coin is flipped. Heads means the sample is
generated according to the ground truth probabilistic model
contained in the hypothesis class. Misspecification happens
when the coin comes up tails and a sample is generated in a
fixed location without noise.

The peak in the learning curve cannot be explained by
dipping, peaking or known sensitivity of the squared loss to
outliers according to Griinwald and Van Ommen. The peak
in the learning curve is fairly broad and occurs in various
experiments. As also no approximations are to blame, the
authors conclude that Bayes’ rule is really at fault as it can-
not handle the misspecification. The non-monotonicity can
happen if the probabilistic model class is not convex.

Following their analysis, a modified Bayes rule is intro-
duced, in which the likelihood is raised to some power ».
The parameter 1 cannot be learned in a Bayesian way, lead-
ing to their SafeBayes approach. Their technique alleviates
the broad peak in the learning curve and is empirically
shown to make the curves generally more well-behaved.

6.7 The Perfect Prior

As we have seen in Section 4.6, the PA learning curve is
always monotone if the problem is well specified and a
Bayesian decision theoretical approach is followed. None-
theless, the fact that the PA curve is monotone does not
mean that the curve for every individual problem is. [206]
offers an insightful example (see also Fig. 3 beneath (6.7)):
consider a fair coin and let us estimate its probability p of
heads using Bayes’ rule. We measure performance using
the negative log-likelihood on an unseen coin flip and adopt
a uniform Beta(1,1) prior on p. This prior, i.e., without any
training samples, already achieves the optimal loss since it
assigns the same probability to heads and tails. After a sin-
gle flip, n =1, the posterior is updated and leads to a
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probabilities of } or 2 and the loss must increase. Eventually,
with n — oo, the optimal loss is recovered, forming a bump
in the learning curve. Note that this construction is rather
versatile and can create non-monotonic behavior for practi-
cally any Bayesian estimation task. In a similar way, any
type of regularization can lead to comparable learning curve
shapes (see also [99], [201] and Section 6.4).

An related example can be found in [157]. It shows that
the posterior variance can also increase for a single problem,
unless the likelihood belongs to the exponential family and
a conjugate prior is used. GPs fall in this last class.

6.8 Monotonicity: A General Fix?

This section has noted a few particular approaches to
restore monotonicity of a learning curve. One may wonder,
however, whether generally applicable approaches exist
that can turn any learner into a monotone one. A first
attempt is made in [207] which proposes a wrapper that,
with high probability, makes any classifier monotone in
terms of the the error rate. The main idea is to consider n as
a variable over which model selection is performed. When
n is increased, a model trained with more data is compared
to the previously best model on validation data. Only if the
new model is judged to be significantly better—following a
hypothesis test, the older model is discarded. If the original
learning algorithm is consistent and if the size of the valida-
tion data grows, the resulting algorithm is consistent as
well. It is empirically observed that the monotone version
may learn more slowly, giving rise to the question whether
there always will be a trade-off between monotonicity and
speed (refer to the learning curve in Fig. 3 under (6.8)).

[208] extended this idea, proposing two algorithms that
do not need to set aside validation data while guaranteeing
monotonicity. To this end they assume that the Rademacher
complexity of the hypothesis class composited with the loss
is finite. This allows them to determine when to switch to a
model trained with more data. In contrast to [207], they
argue that their second algorithm does not learn slower, as
its generalization bound coincides with a known lower
bound of regular supervised learning.

Recently, [209] proved that, in terms of the 0-1 loss, any
learner can be turned into a monotonic one. It extends a
result obtained in [210], disproving a conjecture by Devroye
et al. [99, page 109] that universally consistent monotone
classifiers do not exist.

7 DiscusSsION AND CONCLUSION

Though there is some empirical evidence that for large deep
learners, especially in the Big Data regime, learning curves
behave like power laws, such conclusions seem premature.
For other learners results are mixed. Exponential shapes can-
not be ruled out and there are various models that can per-
form on par with power laws. Theory, on the other hand,
often points in the direction of power laws and also supports
exponential curves. GP learning curves have been analyzed
for several special cases, but their general shape remains
hard to characterize and offers rich behavior such as differ-
ent regimes. Ill-behaved learning curves illustrate that vari-
ous shapes are possible that are hard to characterize. What is
perhaps most surprising is that these behaviors can even
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occur in the well-specified case and realizable setting. It
should be clear that, currently, there is no theory that covers
all these different aspects.

Roughly, our review sketches the following picture.
Much of the work on learning curves seems scattered and
incidental. Starting with Hughes, Foley, and Raudys, some
initial contributions appeared around 1970. The most orga-
nized efforts, starting around 1990, come from the field of
statistical physics, with important contributions from
Amari, Tishby, Opper, and others. These efforts have found
their continuation within GP regression, to which Opper
again contributed significantly. For GPs, Sollich probably
offered some of the most complete work.

The usage of the learning curve as an tool for the analysis
of learning algorithms has varied throughout the past deca-
des. In line with Langley, Perlich, Hoiem, et al. [36], [42],
[44], we would like to suggest a more consistent use. We
specifically agree with Perlich et al. [36] that without a study
of the learning curves, claims of superiority of one approach
over the other are perhaps only valid for very particular
sample sizes. Reporting learning curves in empirical studies
can also help the field to move away from its fixation on
bold numbers, besides accelerating learning curve research.

In the years to come, we expect investigations of paramet-
ric models and their performance in terms of extrapolation.
Insights into these problems become more and more impor-
tant—particularly within the context of deep learning—to
enable the intelligent use of computational resources. In the
remainder, we highlight some specific aspects that we see as
important.

7.1 Averaging Curves and The Ideal

Parametric Model

Especially for extrapolation, a learning curve should be pre-
dictable, which, in turn, asks for good parametric model. It
seems impossible to find a generally applicable, parametric
model that covers all aspects of the shape, in particular ill-
behaving curves. Nevertheless, we can try to find a model
class that would give us sufficient flexibility and extrapola-
tive power. Power laws and exponentials should probably
be part of that class, but does that suffice?

To get close to the true learning curve, some studies aver-
age hundreds or thousands of individual learning curves [26],
[28]. Averaging can mask interesting characteristics of indi-
vidual curves [6], [211]. This has been extensively debated in
psychonomics, where cases have been made for exponen-
tially shaped individual curves, but power-law-like average
curves [212], [213]. In applications, we may need to be able to
model individual, single-training-set curves or curves that
are formed on the basis of relatively small samples. As such,
we see potential in studying and fitting individual curves to
better understanding their behavior.

7.2 How to Robustly Fit Learning Curves

A technical problem that has received little attention (except
in [44], [106]) is how to properly fit a learning curve model.
As far as current studies at all mention how the fitting is car-
ried out, they often seem to rely on simple least squares fit-
ting of log values, assuming independent Gaussian noise at
every n. Given that this noise model is not bounded—while
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a typical loss cannot become negative, this choice seems dis-
putable. At the very least, derived confidence intervals and
p-values should be taken with a grain of salt.

In fact, fitting can often fail, but this is not always
reported in literature. In one of the few studies, [106], where
this is at all mentioned, 2% of the fits were discarded. There-
fore, further investigations into how to robustly fit learning
curve models from small amounts of curve data seems
promising to investigate. In addition, a probabilistic model
with assumptions that more closely match the intended use
of the learning curve seems also worthwhile.

7.3 Bounds and Alternative Statistics

One should be careful in interpreting theoretical results when
it comes to the shape of learning curves. Generalization
bounds, such as those provided by PAC, that hold uniformly
over all P may not correctly characterize the curve shape.
Similarly, a strictly decreasing bounds does not imply mono-
tone learning curves, and thus does not rule out ill-behavior.
We merely know that the curve lies under the bound, but this
leaves room for strange behavior. Furthermore, PA learning
curves, which require an additional average over problems,
can show behavior substantially different from those for a
single problem, because here averaging can also mask
characteristics.

Another incompatibility between typical generalization
bounds and learning curves is that the former are con-
structed to hold with high probability with respect to the sam-
pling of the training set, while the latter look at the mean
performance over all training sets. Though bounds of one
type can be transformed into the other [214], this conversion
can change the actually shape of the bound, thus such high
probability bounds may also not correctly characterize
learning curve shape for this reason.

The preceding can also be a motivation to actually study
learning curves for statistics other than the average. For
example, in Equation (2), instead of the expectation we
could look at the curves of the median or other percentiles.
These quantities are closer related to high probability learn-
ing bounds. Of course, we would not have to choose the
one learning curve over the other. They offer different types
of information and, depending on our goal, may be worth-
while to study next to each other. Along the same line of
thought, we could include quartiles in our plots, rather than
the common error bars based on the standard deviation.
Ultimately, we could even try to visualize the full loss distri-
bution at every sample size n and, potentially, uncover
behavior much more rich and unexpected.

A final estimate that we think should be investigates
more extensively is the training loss. Not only can this quan-
tity aid in identifying overfitting and underfitting issues [4],
[211], but it is a quantity that is interesting to study as such
or, say, in combination with the true risk. Their difference, a
simple measure of overfitting, could, for example, turn out
to behave more regular than the two individual measures.

7.4 Research Into lll-Behavior and Meta-Learning

We believe better understanding is needed regarding the
occurrence of peaking, dipping, and otherwise non-mono-
tonic or phase-transition-like behavior: when and why does
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this happen? Certainly, a sufficiently valid reason to investi-
gate these phenomena is to quench one’s scientific curiosity.
We should also be careful, however, not to mindlessly dismiss
such behavior as mere oddity. Granted, these uncommon and
unexpected learning curves have often been demonstrated in
artificial or unrealistically simple settings, but this is done to
make at all insightful that there is a problem.

The simple fact is that, at this point, we do not know what
role these phenomena play in real-world problems. [106]
shared a database of learning curves for 20 learners on 246
datasets. These questions concerning curious curves can
now be investigated in more detail, possibly even in auto-
mated fashion. Given the success of meta-learning using
learning curves this seems a promising possibility. Such
meta-learning studies on large amounts of datasets could, in
addition, shed more light on what determines the parame-
ters of learning curve models, a topic that has been investi-
gated relatively little up to now. Predicting these parameters
robustly from very few points along the learning curve will
prove valuable for virtually all applications.

7.5 Open Theoretical Questions
There are two specific theoretical questions that we would
like to ask. Both are concerned with the monotonicity.

One interesting question that remains is whether mono-
tonic learners can be created for losses other than 0-1,
unbounded ones in particular. Specifically, we wonder
whether maximum likelihood estimators for well-specified
models behave monotonically. Likelihood estimation, being
a century-old, classical technique [215], has been heavily
studied, both theoretically and empirically. In much of the
theory developed, the assumption that one is dealing with a
correctly specified model is common, but we are not aware
of any results that demonstrate that better models are
obtained with more data. The question is interesting
because this estimator has been extensively studied already
and still plays a central role in statistics and abutting fields.

Second, as ERM remains one of the primary inductive
principles in machine learning, another question that
remains interesting—and which was raised in [201], [209] as
well, is when ERM will result in monotonic curves?

7.6 Concluding

More than a century of learning curve research has brought
us quite some insightful and surprising results. What is
more striking however, at least to us, is that there is still so
much that we actually do not understand about learning
curve behavior. Most theoretical results are restricted to rel-
atively basic learners, while much of the empirical research
that has been carried out is quite limited in scope. In the
foregoing, we identified some specific challenges already,
but we are convinced that many more open and interesting
problems can be discovered. In this, the current review
shouls
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