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Abstract

The Multi-Agent Path Finding (MAPF) problem is the problem of planning paths for multiple agents
without any collisions. There are also many variants such as the waypoint variant, where each agent
also has a set of waypoints it must visit before reaching its goal. The colored variant, in which the
agents are grouped into teams and each team has a set of targets that need to be reached. And the
colored MAPFW variant is a combination of the two. This paper presents an SAT-solver for the sum-
of-costs objective for these variants based on the sum-of-costs SAT solver for MAPF. It also introduces
a MaxSAT solver for the makespan objective while also minimizing the sum-of-costs, where instead
of having a cardinality constraint on the cost it is minimized. Experimental evaluation showed that
these methods perform well on different graph types compared to existing algorithms and that MaxSAT
solves more instances than SAT but is only optimal in 90% of the instances.
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1
Introduction

The pathfinding problem, in which an agent must traverse a graph from a starting vertex to a goal vertex,
is a classic AI problem that has been solved efficiently for more than 50 years [18]. More recently the
Multi-Agent Path Finding (MAPF) problem has seen a lot of research because of its use in warehouses
[59], aircraft-towing vehicles [29], videogames [38] and train shunting units [30]. In the MAPF problem,
there are multiple agents, which all need to traverse the graph from their starting vertex to their goal
vertex without colliding with the other agents. There are 5 different types of collisions [43] but generally,
only the vertex and edge conflict are used. A vertex collision occurs when two agents are at the same
vertex at the same time, while an edge conflict occurs when two agents want to traverse the same
edge at the same time. The MAPF problem has two objective functions, but finding optimal solutions
is NP-hard for both [64] [46] [31]. The two objective functions are minimizing the makespan or the
sum-of-costs of the solution. The sum-of-costs is the total sum of all paths while makespan [63] is the
total number of timesteps. There are also two types of solving techniques. Reduction-based solvers,
which reduce the MAPF problem to another NP-hard problem, generally solve the makespan objective.
While search-based solvers such as A* generally solve the sum-of-costs objective.

MAPF also has extensions, such as anonymous MAPF, in which all the agents share a set of goals
and it does not matter which agent goes to which target. A more generalized version of this problem
is colored MAPF, in which there are teams of agents that have a set of goals. Now every agent needs
to travel to one of the targets assigned to its team. MAPFW is the variant of MAPF where each
agent must also visit a set of waypoints. While there has been a lot of research into MAPF, there has
been little research into the variants of MAPF and generally only for search-based solvers that optimize
the sum-of-costs. Thus there is a gap for reduction-based solvers for these variations for both objective
functions. So this paper will introduce a reduction-based solver for both variants under the sum-of-costs
objective and compare them to an existing search-based solver. It also introduces a new reduction-based
solving method that solves the makespan objective while also minimizing the sum-of-costs. This method
is compared to the introduced reduction-based solver to see if it is more efficient and to compare the
quality of solutions. Lastly, this paper introduces the colored MAPFW problem, which combines the
colored MAPF and MAPFW problems into one and which resembles real-life instances even more. But
since there has been no research into this problem, our methods used for the individual variants will be
combined and compared to look at the difficulty of the colored MAPFW variant.

This paper is divided into five sections, the first of which provides a summary of the quite extensive
existing literature. In the following section, my contribution to the literature is introduced. Then there
is a section that describes my experimental setup, shows the results, and explains them. The last two
sections are the conclusion and the future work.
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2
Problem definition

2.1. MAPF
The Multi-Agent Pathfinding (MAPF) problem [43] is the problem of finding paths for n agents
a1, a2, ..., an ∈ A in the graph G = (V,E). Each agent a has a starting vertex si and a goal ver-
tex gi, and at every time-step t the agent can either move to a neighbour vertex or wait at its current
vertex. A solution is then a path πi for every agent ai ∈ A where πi(0) = si and πi(t) = gi, without
any vertex or edge conflicts. Where a vertex conflict occurs when πi(t) = πj(t) and an edge conflict
occurs when πi(t) = πj(t+1)∧πi(t+1) = πj(t) for any t∧ i ̸= j. The objective function is either given
by the sum of costs meaning that the cost of a solution is given by the sum of all individual solutions∑n

i=1 |πi|, or by the makespan which is the maximum cost of all the individual paths, or formally defined
as max1≤i≤n(|πi|). Lastly, in this paper it is assumed that an agent does not disappear upon reaching
its target and that waiting at the target location adds no extra cost to the solution. [43]

2.2. MAPFW
In the Multi-Agent Pathfinding with waypoints (MAPFW) problem each agent must visit a set of
waypoints Wi. A solution now also has the constraint that ∀w ∈Wi is in πi for every agent.

2.3. Colored MAPF
Colored MAPF is a generalization of anonymous MAPF, in which there is a set of targets and it does
not matter which agent goes to which target as long as there is a one-to-one mapping. In colored MAPF
there are teams of agents which have a set of targets and now the agents need to move to a target from
the set assigned to its team. Anonymous MAPF is therefore colored MAPF but with only one team.
More formally, in Colored MAPF [40] there are j teams consisting of kj agents such that

∑j
i=1 ki = n.

Each team j has a set of agents aj = {aj1, a
j
2, ..., a

j
kj
} and a set of kj goal vertices gj = {gj1, g

j
2, ..., g

j
kj
}.

Now each agent aji has a path πj
i where πj

i (0) = sji and πj
i (t) ∈ gj . A solution is now valid when at

t = max(πj
i )∀j, ∀i ∈ aj every g ∈ gj∀j contains an agent.

2.4. Colored MAPFW
To obtain the combined problem the Colored MAPF problem will be extended by assigning every agent
aji a set of waypoints W j

i that it needs to visit. This means that for a solution to be correct ∀w ∈ W j
i

has to be in πj
i must hold.
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3
Related work

Because the MAPF problem is a NP-hard problem [64] [46] [31] there has been done both research
on both optimal and sub-optimal solving methods. The focus of this paper will mainly be on optimal
solvers, and this section will first take a look at the search-based solvers such as A*-based solvers and
conflict-based search that optimize the sum-of-costs objective. Then the research into reduction-based
solvers that optimize the makespan objective but which can also be used for the sum-of-costs objective
[54] will be explained. The sections that follow will look at the research that has been done into the
relevant variants of the MAPF problem and the final section attempts to make a comparison between
the existing algorithms.

3.1. A*-based solvers
A* is a well-known polynomial algorithm that solves the pathfinding problem for a single agent by
expanding nodes in such a way that the node with the lowest cost + heuristic is chosen until it finds
the target. In the MAPFW version of A*, a node represents the location of all agents and neighboring
nodes are the non-conflicting combinations of actions that the agents can take. Thus the branching
factor b = Πk

i=1b(ai) where b(ai) is the branching factor of agent ai is exponential. Because given a
4-connected grid b(ai) = 5 holds most of the time and thus b = 5k. This is the main disadvantage of the
A* algorithm, but there are improvements to the algorithm such as independence detection (ID) and
operator decomposition (OD) [42] as well as the Enhanced Partial Expansion A* (EPEA*) [17] and M*
algorithm [58].

3.1.1. Independence detection
The main idea of Independence detection (ID) [42] is to split the agents into independent groups to
reduce the number of agents in the problem, which grows exponentially with the number of agents.
Two groups of agents are independent when both groups have an optimal solution that does not have
conflicts. ID works by first solving the problem for all the agents and ignoring the other agents. It
then groups the agents whose paths contain a conflict and finds a solution for this group. The merging
of agents into larger groups continues until there is a solution without conflicts. The runtime is now
determined by the number of agents in the largest group rather than the total number of agents.

Algorithm 1 The ID framework [34]
Assign each agent to a singleton group
Plan a path for each group
while No conflicts occur do

validate the combined solution
if conflict found then

Merge two conflicting groups into a single group
Plan a path for the merged group

return paths of all groups combined

3
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3.1.2. Operator decomposition
Operator decomposition (OD) [42] shrinks the branching factor by limiting the number of moves per
node. It does so by ordering the agents and only expanding the first one. This will generate intermediate
nodes which when expanded will only expand the next agent, resulting in more intermediate nodes. Only
regular nodes will be generated when the last agent is expanded. The main advantage of this method
is that the A* planner does not need to distinguish between standard and intermediate nodes, allowing
it to always expand the best node.

3.1.3. EPEA*
Partial Expansion A* (PEA*) [60] reduces the branching factor by only expanding nodes with the
same cost as the parent node. Thus when node n is expanded, only the children nc are added for
which f(n) = f(nc). This greatly reduces the generated nodes but ensure that the optimal path is
not discarded n is added as well with f(n) = f(nd) where nd is the discarded child with the lowest f
value higher than f(n). Enhanced Partial Expansion A* (EPEA*) [17] further improves upon PEA*
by employing an Operator Selection Function which generates the list of operators that will generate
children with the value of f(n). This greatly reduces the runtime since it does not generate nodes that
are immediately discarded.

3.1.4. M*
M* [58] is similar to ID in the fact that it changes the dimensionality of agents based on conflicts. When
a node in M* is expanded all the agents that are not in conflict will follow their optimal move, resulting
in only one child node. When a conflict occurs the agents involved are added to the conflict set, which
is then added to all nodes in the current branch and which are added again to open. When such a
node is expanded, all the non-conflicting agents make their optimal move, but all the possible moves
of conflicting agents are added. Recursive M* (rM*) uses M* recursively when a conflict is found to
generate an optimal solution for the agents in the conflict. When expanding nodes in the main function
this can be used as the optimal path for conflicting agents. It is also possible to build rM* on top of OD
resulting in ODrM* [13]. This could then be used as the underlying planner for the MA-CBS algorithm
described later.

3.2. Increasing Cost Tree Search
Increasing Cost Tree Search (ICTS) [36] is a two-level solver that is different from A* but introduces a
key concept that will be used by other solvers.

The high level of ICTS searches the increasing cost tree (ICT). Every node consists of a k-ary
vector [C1, C2, ..., Ck] where Ci is the cost of the solution of agent ai. The vector of the root of
the tree consists of all the costs of all optimal paths [opt1, opt2, ..., optn]. The k children are then
generated by increasing the cost of one agent by 1 giving the vectors [opt1+1, opt2, ..., optn], [opt1, opt2+
1, ..., optn], ..., [opt1, opt2, ..., optn + 1]. The total cost of a node is the sum of the vector, and thus all
nodes on the same height have the same total cost. This means that searching the tree breadth-first
yields an optimal solution. An example of an ICT can be found in Figure 3.1.

The low level must find non-conflicting solutions for the ICT nodes visited by the high level such
that the cost of the path of agent ai is exactly Ci. To do so a multi-value decision diagram (MDD) is
used which stores all the paths for agent ai with cost Ci [41]. As a result, the low-level only searches
the Cartesian product of the MDDs for a set of k paths without conflicts. Generating the MDD can be
done efficiently because it is a breadth-first search to depth Ci from the starting location of agent ai.
Furthermore, if Ci increases by one, the previously generated MDD can be reused to quickly generate
the new one.

3.3. Conflict-based search
Conflict-based search (CBS) [34] consists of a low-level and a high-level solver. In the high-level solver, a
constraint tree (CT) is created. Each node N in this tree has a set of constraints, a solution consistent
with these constraints, and the cost of that solution. Constraints are either a vertex constraint <
ai, v, t >, in which an agent ai can not be at vertex v at time t, or an edge constraint < ai, v, u, t >
which prevents an agent ai from traversing the edge between u and v at time t. The root of the tree has
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Figure 3.1: ICT for three agents. [34]

Figure 3.2: A MAPF instance on a 4-neighbor grid with the corresponding MDDs and joint MDD. [22]

no constraints and a solution is generated by the low-level solver. In case of a conflict in the solution,
two children will be generated with a constraint for each of the agents in the conflict. These children
also inherit all the other constraints of the parent. An example of a MAPF instance with CT can be
seen in Figure 3.3.

CBS has many improvements such as meta-agent CBS (MA-CBS) [35], in which conflicting agents
are merged into a meta-agent, which is then considered as a single agent. A meta-agent will never be
split up lower in the tree but can merge with other (meta-)agents. The low-level search for a meta-agent
is now a MAPF solver.

MA-CBS has been further improved to create improved CBS (ICBS) [4] by using Merge and Restart
(MR), prioritizing conflicts (PC), and bypass (BP) [5]. In MR a new CT tree is created when two
agents are merged instead of merging them at the current node. With PC the cardinal conflicts are
split before the semi- and non-cardinal conflicts where a cardinal conflict is one that always increases the
cost of the solution. BP attempts to reroute agents to bypass a conflict, but it can only work with semi-
and non-cardinal nodes. These types of conflicts are found by using MDD [41]. A cardinal conflict at
timestep t can be found if the widths of the MMDs of the two agents are 1. Figure 3.2 shows the MDDs
for a1 and a2 and because the width is 2 at timestep 2 the conflict < a1, a2, B2, 1 > is non-cardinal [22].

ICBS-h [12] has extended ICBS by adding an admissible heuristic to it, which has then been further
researched and improved into CBS with improved heuristics (CBSH2) [22]. CBSH with rectangle
reasoning by MDDs (CBSH-RM) [24] appears the best way to handle rectangle conflicts and a general
improvement. CBSH with Mutex Propagation (CBSH-MP) seems to be the final improvement, and it
uses techniques also seen in CBSH2. Lastly, if there are many corridors, a chain of connected vertices
with a degree of 2, CBS could benefit from breaking the corridor symmetry [23].

In problems with many agents and high contention Lazy CBS (LCBS) [15] performs better than
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Figure 3.3: (I) A MAPF instance. (II) Its CT. [34]

ICBS-h. The high-level solver of CBS is replaced in LCBS by a lazily constructed constraint program-
ming model with nogoods. This will store the results of conflicts, so it does not need to resolve conflicts
it has already solved unlike CBS and its improvements.

3.4. Reduction based solvers
Reduction-based solvers reduce the MAPF problem to an NP-hard problem with state-of-the-art solvers.
One such reduction is done by modeling MAPF as a network flow problem and solving it with Integer
Linear Programming (ILP) [61]. Answer Set Programming can also be used to solve MAPF optimally
[11], but the reduction to Boolean Satisfiability (SAT) is the most promising [52]. This algorithm uses
a fast polynomial algorithm to find a makespan-suboptimal solution and replaces the sub-sequences
with computed optimal sub-solutions. This paper introduced the inverse and all-different encodings
but two new encodings have been researched since then, namely matching [47] and direct [45]. There
are also two approaches [49] [50] that generate optimal solutions immediately without the need for a
makespan-suboptimal solution.

All of these reduction-based solvers solve the MAPF problem for the makespan objective and ad-
justing them to solve the sum-of-costs objective generally requires a new reduction. Nonetheless, a
sum-of-costs encoding for SAT [54] has been developed, and even more improvements have been made
[56] [7]. Because this is the basis for this paper the sections that follow will explain in detail how this
algorithm works, but first an important data structure known as the time expansion graph is explained.

3.5. SAT
3.5.1. Time expansion graph
A time expansion graph (TEG) is a directed acyclic graph. At every timestep from 0 to µ all of the
vertices of the graph G are duplicated. The edges between successive timesteps will then represent all
possible actions. An example can be seen in Figure 3.4, where it is also clear that diagonal edges are
the moves and the horizontal edges are the waiting action. Formally a TEG is defined as follows:

Definition 1. Time expansion graph of depth µ corresponding to graph G = (V,E) is TEG(µ) = (V ′, E′)
where V ′ = {ut

j |t = 0, 1, ..., µ∧ uj ∈ V } and E′ = {(ut
j , u

t+1
l )|t = 0, 1, ..., µ− 1∧ ({uj , ul}) ∈ E ∨ j = l)}

[54]

3.5.2. SAT encoding for sum-of-costs
This section will first show how the SAT encoding for makespan works and how it can be adapted to
work for sum-of-costs. Given a makespan µ the encoder will generate a TEGi(µ) for each agent ai,
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Figure 3.4: An example of a TEG with depth 2. [54]

and because non-conflicted paths in the TEGs corresponds to non-conflicted paths in the graph the
existence of non-conflicting paths in the TEGs are encoded as an SAT problem. An optimal makespan
can thus be found by starting at µ = 0 and increasing it until the encoding is satisfiable.

Similarly, finding an optimal sum-of-costs will be accomplished by converting the optimization prob-
lem into a sequence of decision problems that checks if there is a solution of a sum-of-costs of ξ. This
encoding does require the use of cardinality constraints for bounding ξ and bounding the makespan for
the sum-of-costs. A cardinality constraint [39] [2] [27] is satisfied if given a set B of Boolean variables
and a bound ξ there are no more than ξ variables in B set to TRUE. In the SAT encoding every
agent’s actions are mapped to a Boolean variable and then a cardinality constraint ξ is applied to these
variables. This results in a sum-of-costs upper bound because no more than ξ moves can be performed
by all agents. An optimal sum-of-costs solution can now be found by increasing ξ but the problem is
that both the number of time expansions µ and the upper bound for the sum-of-costs ξ are variables.

Bounding the makespan for the sum-of-costs
So to find the relation between µ and ξ the following requirement is needed:

Requirement 1. All possible solutions with sum-of-costs ξ must be possible for a makespan of at most
µ [54]

The following will be defined to find a µ that satisfies R1. Let ξ0(ai) be the cost of the shortest
individual path for agent ai, and let ξ0 =

∑
ai∈A ξ0(ai). ξ0 is called the sum of individual costs (SIC)

[36]. ξ0 is an admissible heuristic for optimal sum-of-costs search algorithms since ξ0 is a lower bound
on the minimal sum-of-costs. ξ0 is calculated by relaxing the problem by omitting the other agents.
Similarly, µ0 is defined as µ0 = maxai∈Aξ0(ai). µ0 is the length of the longest of the shortest individual
paths and is thus a lower bound on the minimal makespan. Finally, let ∆ be the extra cost over SIC.
That is, let ∆ = ξ − ξ0. [54]
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Proposition 1. For makespan µ of any solution with sum-of-costs ξ, where ξ = ξ0 + ∆, it holds that
µ ≤ µ0 +∆. Hence (R1) is satisfied for setting µ = µ0 +∆. [54]

Using Proposition 1, it is possible to encode the decision problem whether there is a solution with a
sum-of-costs of ξ, since if there is a solution of cost ξ it will be found within µ = µ0+∆ time expansions.
Thus this proposition shows that the relation between the variables µ and ξ is decided by ∆. Thus in
every iteration µ = µ0 + ∆ and the TEGs of depth µ for all agents are built. These TEGs are then
encoded into a decision problem whether there is a solution with sum-of-costs ξ = ξ0+∆ and makespan
µ. Thus an optimal solution can be found by starting with ∆ = 0 and increasing it until the encoding
is satisfiable. Algorithm 2 shows the resulting algorithm.

Improving the use of the cardinality constraint
The encoding of a cardinality constraint is quadratically bounded by the number of variables in the set
[39][27]. Thus bounding all the possible actions for the agents may be the bounding factor of the size
of the total encoding. This is redundant because every agent ai must move at least ξi0 = ξ0(ai) times,
and so only the actions of agents that make extra moves have to be bounded by ∆. This is done by
generating a slightly modified TEG called TEGi. TEGi introduces two kind of edges Ei and Fi. Ei

are the standard edges whose destination is at timestep t ≤ ξ0(ai) and Fi are the extra edges whose
destination is at timestep t > ξ0(ai). Figure 3.5 shows a TEGi with depth 3 for an agent that can reach
its goal in 2 steps. It also displays the dotted edges that belong to Fi and which will have a cardinality
constraint. Thus only the extra edges will be bounded and they must sum to ∆.

Figure 3.5: An example of a TEGi with depth 3. [54]

3.5.3. MDD-SAT
The previously described encoding is called BASIC-SAT and it can be improved upon by reducing the
size of the TEGs. To reduce the size of the TEGs vertices need to be removed without making the TEGs
unsatisfiable. This can be done by using MDD as the data structure for TEGµ

i which is TEGi for µ
time expansions. MMDµ

i represents all paths from the current vertex of ai to its goal vertex gi of cost
µ, and has thus a source node the vertex of ai at t = 0 and a sink node gi at t = µ. It is self-evident that
MMDµ

i is a subgraph of TEGi, because TEGi includes all vertices of G at every timestep, whereas
MMDµ

i only includes the vertices that are on a path from ai to gi with cost µ. Furthermore TEGµ
i

can be replaced with MMD
ξ0(ai)+∆
i because ξ0(ai) + ∆ is the maximum cost that agent ai can create.

This is a further improvement because ξ0(ai)+∆ ≤ µ0+∆ = µ. The encoding that uses MDD is called
MDD-SAT [54].

It is also possible to combine MDD-SAT with independence detection (ID) resulting in MDD-
SAT+SID and MDD-SAT+ID [55] [57]. It is not clear how much of an improvement these are compared
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to MDD-SAT overall but there are cases where it is an improvement [56]. However, the sections that
follow will only discuss MDD-SAT improvements and will not mention MDD-SAT+SID.

3.5.4. SMT-CBS
One of the main disadvantages of MDD-SAT is that the complete Boolean model must be fully specified.
This limitation has been addressed in SMT-CBS [53], an SAT-based solver that uses incomplete Boolean
models. In the incomplete Boolean model, not the entire MAPF problem is specified, but only the
implication between the solvability of the MAPF problem and the Boolean model holds. Formally, this
is defined as follows:

Definition 2. Incomplete propositional model Propositional formula H(ξ) is an incomplete propositional
model of MAPF Σ if the following condition holds:
H(ξ) is satisfiable ⇐= Σ has a solution of sum-of-costs ξ. [53]

The solution of this incomplete model must be checked to ensure that all moves are legal. Similar
to CBS if this is not the case a solution has been found and otherwise the model is refined by adding
constraints that forbid the found illegal moves and a new solution is found.

3.5.5. Sparse-SMT-CBS
The lazy compilation to reduce the Boolean formulae is the main advantage of using SMT-CBS over
MDD-SAT. However, this does not reduce the number of nodes and edges in the MDDs, so the number
of variables and constraints of the paths in the MDDs are the same in both SMT-CBS and MDD-SAT,
implying that on large maps this will be the bounding factor of the runtime. Therefore Sparse-SMT-
CBS [51] introduces sparsification of the set of candidate paths of each agent, resulting in smaller
formulae and thus a faster solving time by the SAT solver. This reduces the impact of large graphs on
the runtime.

3.5.6. DPLL(MAPF)
The other major disadvantage of MDD-SAT which is emphasized in SMT-CBS is the fact that the SAT
solver is a black box with which the main solver can not interact and must wait until it is finished.
Especially in SMT-CBS, this can be problematic because a MAPF rule violation may be decided early
on and the SAT solver does not know it is incorrect, and the main solver is unable to interact with
it. DPLL(T) [32] [21] is an algorithm that uses the SAT solver with a decision procedure for the
conjunctive fragment of some first-order theory T. This means that the decision procedure for the
conjunctive fragment checks whether truth-value assignments are consistent with T. In our case, T will
be the MAPF movement rules [7]. DPLL(MAPF) does not use the original Davis-Putnam-Logemann-
Loveland algorithm [8] but rather the modern variant Conflict-Driven Clause Learning (CDCL) [26].
But the literature uses DPLL(MAPF) rather than CDCL(MAPF).

3.6. Solving Colored MAPF problems
The anonymous MAPF problem is a variant of the Colored MAPF problem, in which all the agents
are on the same team, and which can be solved makespan-optimally in polynomial time [62]. The
Colored MAPF problem can also be solved for the makespan objective by modifying the SAT and ILP
reduction-based solvers [3] [47]. The Conflict-Based Min-Cost-Flow (CBM) algorithm [25] outperforms
both of these algorithms on larger maps and both CBS and the ILP-based MAPF solver [61] on MAPF
problems and can solve Colored MAPF problems as well. CBM is based on CBS where the high-level
solver combines the agents in the same team into a single meta-agent. As a result, the low-level solver
is executed per team and conflicts only happen between teams. The low-level solver uses a polynomial-
time min-cost max-flow algorithm [16] on a time-expanded graph to generate a solution for the team
such that no constraints are broken and each agent travels to a unique target. The objective function
of CBM is to minimize the makespan but CBMxSOC [1] was created to optimize the sum of costs.

Other MAPF algorithms have been extended to solve the Colored MAPF problem such as A* [6],
M* (pmM*) [10], EPEA* [20] and ICTS [36]. These algorithms use exhaustive matching to reduce the
Colored MAPF problem to a set of MAPF problems, which can then be solved using the respective
algorithm. This was further improved by first calculating a heuristic for each MAPF problem instance
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and using this to first sort the MAPF problem instances and then prune the ones with a heuristic value
greater than the lowest cost found thus far.

3.7. Solving MAPFW problems
Algorithms such as A* [37], CBS (CBSW) [19], M* (WM*)[9], MLA* (EMLA*) [14] and Branch-
Price-and-Cut (BCP-MAPF)[28] have also been extended to solve the MAPFW problem. Furthermore,
M* has also been extended to MS* to solve the Multi-agent simultaneous multi-goal sequencing and
pathfinding (MSMP) problem [33]. These algorithms converted their underlying planners to a TSP-
solver so that the optimal path to the goal through the waypoints could be calculated. With the use of
caching the TSP-solvers did not explode the runtime too much in case of not too many waypoints.

A related problem is the multi-goal multi-agent pathfinding problem, in which an agent has a list
of goals it all needs to visit but it can end at anyone. The Hamiltonian CBS (HCBS) [48] algorithm
is similar to CBSW but it now uses a solver for the Hamiltonian path problem. SMT-CBS is also
combined with HCBS to create SMT-HCBS which underperforms compared to HCBS but which might
be further improved by using a lazy approach or the DPLL framework [DPLL(MAPF)].

3.8. Comparison between algorithms
It is difficult to compare all of the algorithms mentioned. Because, as previously stated, most algorithms
have only been developed for one of the objective functions and thus comparisons have generally been
limited to a class of algorithms. Furthermore, not all algorithms have been compared directly, so they
have to be compared based on their comparison to a third algorithm. For example, LCBS, CBSH-RM,
CSBH-MP, and CBSH2 all outperform CBSH which outperforms ICBS, even though there are only
very few direct comparisons between the four. Furthermore, all the sum-of-costs SAT solvers are only
compared to CBS and ICBS. The results show that MDD-SAT outperforms ICBS in the cases that are
compact with a high number of agents and thus a high number of conflicts. However, ICBS is generally
faster in the simpler cases with more open space because a search-based algorithm will know more about
the map layout and MDD-SAT has some overhead as well. Therefore, it is expected that combining the
two algorithm classes will result in a state-of-the-art solver. This appears to be the case for SMT-CBS
which combines MDD-SAT and CBS but it slightly outperforms MDD-SAT and there are still instances
that are easy for ICBS and hard for MDD-SAT. Although more research is needed it appears that
DPLL(MAPF) could potentially be an improvement to SMT-CBS yet the MAPF consistency check
seems too expensive to be called every time there is an assignment.



4
Contribution

4.1. Basic Encoding
The basic SAT encoding that will be extended for the variants is heavily based on the sum-of-costs
BASIC-SAT encoding [54] and will be called the Basic Encoding. Some of the constraints have been
replaced, and some additional constraints are added. As described in the paper the encoding is satisfied
if a solution of ξ exists. To do so ξ0(ai) the shortest path for an individual agent ai is calculated.
This can be used to calculate µ0 = maxai∈Aξ0(ai), the length of the longest of the shortest individual
paths of all agents and thus a lower bound for the makespan optimal solution. ∆ which starts at 0 and
increases every time a solution is not found as seen in Algorithm 2 is declared and used to update µ.
Then a MDDi of depth µ is generated for each agent ai ∈ A. The vertices in MDDi that agent ai can
occupy is denoted by Vi and the set of edges with a destination at timestep t > ξ0(ai) is denoted by
Fi. Because an agent, ai must take at least ξ0(ai) steps only the extra steps Fi need to be bound. The
edges of waiting on the target are thus not in Fi since these do not add an extra cost to the solution.
To create the encoding, first define the three variables that will be used in the encoding:

Algorithm 2 SAT algorithm for MAPF
Σ← (G = (V,E), A, si, gi)
µ0 ← maxai∈Aξ0(ai)
∆← 0
while Solution not found do

µ← µ0 +∆
for ai ∈ A do

build MDDi(µ)

solution ← SAT-Solver(Σ, µ,∆)
if solution not statisfied then

∆++

1. χt
j(ai) for every t ∈ 0, 1, ..., µ and ut

j ∈ Vi. χt
j(ai) is true if agent ai is at node vj at timestep t

2. Etj,k(ai) for every t ∈ 0, 1, ..., µ− 1 and ut
j , u

t+1
k ∈ Vi. This models the transition of agent ai from

vertex vj to vk through the edge (j, k) at the time from t to t+ 1.
3. Ctj,k(ai) for every t ∈ 0, 1, ..., µ− 1 and ut

j , u
t+1
k ∈ Fi. This models the cost of movement across

edges in Fi at the time from t to t+ 1.

Let Tµ = 0, 1, ..., µ− 1 and all constraints apply to all agents ai ∈ A and for every timestep t ∈ Tµ.
The constraints can then be defined as follows:

C1: If an agent appears in a vertex at a given timestep, it must take one edge for the following time
step. This is encoded by the constraint below, which must hold for every ut

u ∈ Vi

11
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χt
j(ai)⇒

∨
(ut

j ,u
t+1
k )∈Vi

Etj,k(ai) (1)

C2: If an agent takes an edge, it must be at the starting vertex of the edge at timestep t and the
target vertex at timestep t+ 1. This is ensured by the following constraint for every (ut

j , u
t+1
k ) ∈ Vi

Etj,k(ai)⇒ χt
j(ai) ∧ χt+1

k (ai) (2)

C3: If agent ai takes edge (j, k) no other agent can take the edge (k, j) because this causes an edge
conflict.The following constraint ensures this for every (ut

j , u
t+1
k ) ∈ Vi

Etj,k(ai)⇒
∧

al∈A∧ai ̸=al

¬E tk,j(al) (3)

C4: No two agents can appear in the same vertex at the same time since this would result in a
vertex conflict. This is ensured by the following constraint for every pair of agents ai, al ∈ A such that
i ̸= l ∧

ut
j∈Vi∩Vl

¬χt
j(ai) ∨ ¬χt

j(al) (4)

C5: An agent must occupy exactly one vertex at each timestep. The following constraint ensures
this, but because it is an at-most-one constraint, it could also be implemented in other ways.∧

j,k∈Vi∧k<j

¬χt
j(ai) ∨ ¬χt

k(ai) (5)

C6: If an extra edge is traversed, the cost will increase. This is accomplished by the following
constraint for each extra edge (ut

j , u
t+1
k ) ∈ Fi

Etj,k(ai)⇒ Ctj,k(ai) (6)

C7: The cardinality constraint. This bounds the total cost, by ensuring that no more than ∆ extra
edges are traversed. The following cardinality constraint ensures this:

≤∆

{
Ctj,k(ai)|i = 1, 2, ..., n ∧ t = 0, 1, ..., µ− 1 ∧ (ut

j , u
t+1
k ) ∈ Fi

}
(7)

So the majority of the constraints remain the same as proposed in the paper, with the two changes
being that the constraint that an agent must occupy exactly one vertex at every timestep replaces
the constraint that dictates that an agent must take exactly one edge every timestep. Because there
are fewer vertices than edges, the encoding is smaller, resulting in a faster runtime. Furthermore, the
constraint that ensures that an edge’s target is empty was removed, and constraint 3 was added to
ensure that no edge conflicts occur. This results in a sum-of-costs optimal SAT encoding for MAPF
without vertex and edge conflicts.

4.2. The waypoint encoding
Extending this encoding to the waypoint variant of MAPF is rather trivial. First, the heuristic of
agents must be calculated as the shortest path from the starting vertex to the goal vertex that also
visits all waypoints. This can be done optimally by using a traveling salesman problem (TSP) solver.
Furthermore, an additional constraint is added that ensures that an agent visits a waypoint at a timestep
between t = 0 and t = m. Thus for each agent ai ∈ A and wj ∈Wi∨

t∈{1,2,...,µ−1}

χt
j(ai) (8)

The original algorithm will produce an optimal solution to MAPFW problem instances since this
constraint ensures that an agent will visit all of its waypoints and the optimal makespan bound can
still be found using TSP. Of course, TSP is an NP-hard complete problem, and thus the runtime scales
exponentially with the number of waypoints, but a good algorithm can solve up to 18 waypoints in a
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couple of seconds. Normally, this is more than used in benchmarks and real-life instances, but if there
is a need for more waypoints then a heuristic algorithm can also be used. This results in faster runtimes
for the calculations of the heuristics but will lead to a sub-optimal solution and thus a higher makespan
bound. This causes a larger encoding than the optimal makespan bound since the MDDs will contain
more edges and vertices. Furthermore, a sub-optimal makespan bound will yield a sub-optimal solution
for the problem, and thus an optimal solver for TSP is recommended and used in this study. Using this
new encoding in algorithm 2 will result in an algorithm for MAPFW.

4.3. The colored encoding
Creating an encoding for the colored MAPF problem will be done by first calculating the individual
heuristics for each agent. Because it is unclear which agent will go to which target in this problem
variant, the individual heuristics will be calculated per team while ignoring the agents of the other
teams. A bipartite graph will be created to calculate the heuristic by connecting all of the starting
locations of the agents on this team to the target location they can reach [47]. The edge value will
be the distance between the two vertices. This problem can then be solved by a modified Hungarian
algorithm in O(n3) time. This provides the optimal sum-of-costs heuristic for a team, but it does not
necessarily give the minimum makespan since a different solution with the same sum-of-costs but with
a different makespan may exist. As a result, the Hungarian algorithm needs to be run again, but with
a limit of the edge cost in the bipartite graph. Starting at 1 and increasing it until a solution is found
with the same sum-of-costs as the optimal solution yields the minimum makespan under the optimal
sum-of-cost. The pseudocode for this algorithm can be found at Algorithm 3.

Algorithm 3 Calculating the minimum makespan for colored MAPF
Given team j and empty graph G
for si ∈ j do

for gi ∈ j do
dist← dist(si, gi)
add ((si, gi), dist) to G

sum-of-costs ← Hungarian(G)
makespan ← 1
while Solution not found do

for si ∈ j do
for gi ∈ j do

dist← dist(si, gi)
if dist <makespan then

add ((si, gi), dist) to G2
temp ← Hungarian(G2)
if temp = makespan then

break
makespan + = 1

It is impossible to track when an individual agent makes an extra move because multiple configu-
rations can have the same sum-of-cost. Therefore, the cost variable used in the previously introduced
encodings is discarded. Instead, a variable is introduced that tracks the number of waiting moves on
the target made by all agents. A variable to track the number of edges taken by all agents that add
a cost is also possible but this leads to a large encoding. Furthermore, waiting on the target adds no
cost and is therefore related to the number of edges taken by all agents that do add a cost. Given that
µ = µ0, ∆ = 0, and ξ is the sum of all team heuristics, it follows that n ∗ µ edges are taken in total. ξ
of those must be taken since this is the optimal sum-of-cost. Because ∆ = 0, (n ∗ µ)− ξ edges must be
taken where an agent waits on its target vertex. If this is not a feasible solution, both µ and ∆ will be
increased by one. This means that one additional step can be taken or that there are n− 1 additional
waiting steps. So the number of waiting steps is bound by (n ∗ µ)− (ξ +∆), and this is a lower bound
since the goal is to maximize the number of waiting steps.

The sixth and seventh constraints of the Basic Encoding will be replaced by two new constraints
and a new cardinality constraint. It should be noted that this could have also been done per team,
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but doing so would have added a lot of cardinality constraints, so it was decided to create a larger one
for all agents instead. Before introducing the new constraints, a new set WE is defined as a set that
contains all the edges where an agent waits on its target location, or more formally as (ut

j , u
t+1
k ) ∈ Vi

where j = k and j ∈ ga where ga is the team of agent a goal vertices. This is used in the new variable
Wt

j,k(ai) for every t ∈ 0, 1, ..., µ− 1 and ut
j , u

t+1
k ∈WE, which tracks the total number of waiting moves

made. Using this, the new constraints that replace the basic encoding’s sixth and seventh constraints
are:

C6: If an agent waits at the target vertex, the number of waiting moves will be increased. This is
done by the following constraint for every edge (ut

j , u
t+1
k ) ∈WE:

Wt
j,k(ai)⇒ E tj,k(ai) (9)

C7: If an agent waits at the target vertex, it can not move away from that vertex. Thus, once a
waiting move has been made the agent can not make any other moves. So for every edge (ut

j , u
t+1
k ) ∈

WE:

Wt
j,k(ai)⇒

∧
t2=t,t+1,...,µ

χt2
j (ai) (10)

C8: The cardinality constraint. This bounds the total number of waiting moves. The bound β is
given by (n ∗ µ)− (∆ + ξ0).

≥β

{
Wt

j,k(ai)|i = 1, 2, ..., n ∧ t = 0, 1, ..., µ− 1
}

(11)
Once again algorithm 2 can be used if the new encoding is used for the solver and algorithm 3 is

used to calculate µ0.

4.4. MaxSAT Encoding
This section will present a new method to solve MAPF, MAPFW, and colored MAPF problem instances,
where MaxSAT will be used as the solver instead of SAT. The cardinality constraint will therefore be
discarded and the cost or waiting variables will be the only variables with an assigned weight that
the MaxSAT solver will try to optimize. This means that a solution will be found for a smaller or
equal ∆ than using SAT since it finds a solution for a given makespan while minimizing the sum of
cost and does not have to satisfy the cardinality constraint. This method is therefore also not optimal
under the sum-of-costs objective but finds the best sum-of-costs solution given the optimal makespan.
This is because µ0 starts as the optimal makespan and is then used to find a solution with the lowest
sum-of-cost. If a solution is found, it certainly has the optimal makespan and lowest sum-of-costs given
this optimal makespan. If no solution is found this means that there is no solution for this makespan
and thus increasing it will eventually result in the correct solution.

Figure 4.1: An example of a problem to showcase the difference between SAT and MaxSAT.

4.4.1. The difference between SAT and MaxSAT
The difference between the two methods will be demonstrated using the simple MAPF problem in
Figure 4.1. The individual heuristics are 1 for green and 4 for red and thus the optimal makespan µ0

is 4 and ∆ starts at 0. Now, for SAT, red must take the shortest path since it must arrive at the goal
at timestep 4 and the distance is exactly 4 steps. Meanwhile, green can only reach its goal at the final
timestep because moving away from it and then returning to let red pass would be considered extra
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steps because its individual heuristic is 1. Thus ∆ will be increased by 1, but this has no effect because
red still can only take the shortest path of 4 and green still requires two extra steps. Thus, when ∆ = 2,
this solution is finally satisfiable with a cost of 8 since both move 4 times. But, red can now take a
different path as well that goes around the green’s target. Then red takes 6 steps and green only takes
1 before waiting on its target leading to a solution with a sum-of-costs of 7 that is indeed optimal.
MaxSAT on the other hand does not need to increase ∆ because it finds the solution with makespan 4
and sum-of-costs 8 in which red takes its optimal path and green waits until red has passed.

Although MaxSAT technically solves the problem for a different objective function, it still finds good
sum-of-costs solutions and it finds the optimal sum-of-costs solution in cases where µ0 is the optimal
makespan. Furthermore, using SAT ∆ gets increased more often, particularly in problems with many
collisions which adds a lot of extra runtime since the encoding needs to be generated every time and
the solver needs to check whether it is satisfiable. MaxSAT, on the other hand, will find solutions for
a much lower ∆ and should therefore find its solution much faster. For these reasons, comparing the
runtime and quality of the solution of MaxSAT to SAT would be interesting.

4.4.2. Finding an upperbound
Currently, µ0 is used as the upper bound for the solver, but using a larger upper bound will yield better
sum-of-costs solutions and in some cases even optimal ones. Finding the upper bound that will result in
an optimal sum-of-costs without any calculations seems impossible. In the example given in figure 4.1
it must be increased by two but this example can be made even more complex, leading to the belief that
no universal rule can be created. However, using the sum-of-costs of the optimal makespan solution as
the upper bound will result in the optimal sum-of-costs solution. Given the earlier example from Figure
4.1, where MaxSAT finds a solution with a sum-of-costs of 8, it is clear that 8 is an upper bound for the
optimal sum-of-costs solution and that using this as an upper bound will lead to the optimal sum-of-
costs solution because no agent needs to make more actions since this will lead to a higher sum-of-costs
solution. This method of computing the optimal sum-of-costs solution is impractical because such a
large upper bound results in a large encoding that takes much longer to solve. Of course, there may be
better methods of findings a smaller upper bound for the optimal sum-of-costs solution, but that was
not the focus of this research. In the experiments, MaxSAT will be used with both the upper bound
being µ0, as well as an inflated version where the upper bound is µ0 ∗ 1.25. The latter is used to see
how much better the solutions are with a higher upper bound compared to the expected runtime loss.



5
Experimental Evaluation

The main goal of the experiments is to compare the introduced SAT algorithm and MaxSAT algorithm
on different graph types to see which algorithm performs better and if the graph types influence that.
As discussed earlier, it is expected that MaxSAT will find solutions faster but not always the sum-of-
costs optimal solution, and thus both the number of instances solved by the methods as well as the
quality of the solutions will be compared. To further improve this comparison inflated MaxSAT is also
used where the starting upper bound µ0 is increased by 25% and this is expected to lie between the
two. Furthermore, the search-based algorithm M* is also used in all comparisons, although it is not a
state-of-the-art solver it performs adequately and is consistent for all the variants. M* is expected to
perform better at larger maps with longer path lengths because of its search, but these cases are also
more difficult for (Max)SAT since larger maps and longer paths lead to a larger encoding and thus a
longer solving time. For colored MAPF, prematching is also used for some experiments. Prematching
turns the colored MAPF instance into normal MAPF instances for all possible configurations, and
although there are some optimizations available it is expected that after a certain number of agents it
drops off since generating all pairings takes an exponential amount of time.

5.1. The graph types
The experiments will be done on 4-connected grid graphs of varying sizes with random obstacles and a
32x32 rooms graph [44]. These are both standard setups for testing MAPF algorithms, with 4-connected
grid graphs being used in many comparisons. For these experiments, grid sizes of 8x8, 16x16, and 32x32
are used with 10% of the nodes being an obstacle. An 8x8 and 32x32 grid will cover both a compact map
without a lot of room to maneuver agents and a map with more open spaces. The 32x32 rooms will be
used since this combines the narrow corridors property with the isolated rooms, and these smaller maps
should be more interesting and comparable to real-life problem instances. Therefore the commonly
used Dragon Age maps which are a collection of large maps that include maps with a lot of open space,
narrow corridors, and isolated rooms will not be used in these experiments. Experiments also include a
new type of graph that resembles the train shunting problem called a carrousel graph [30]. A carrousel
graph is a star graph where every branch is a line graph and then there are a few extra edges between
the individual branches. A simple example can be found in figure 5.2.

5.2. The experimental setup
For colored MAPF the experiments will be divided into two parts. The first part is where all of the
agents are on the same team, also known as the anonymous MAPF problem. This is an interesting
subvariant because there are algorithms that solve it in polynomial time[62]. As a result, it will be
interesting to see how SAT performs on it. The other part is colored MAPF where the agents are
spread over 3 teams. In the MAPFW experiments, all agents will have a set of 3 waypoints they must
visit. Lastly, there will be some experiments on the combined problem called colored MAPFW, where
the agents are spread over 3 teams and each agent has 3 waypoints.

All experiments had a 3-minute timeout and were performed on an Intel(R) Xeon(R) Gold 6148
CPU @ 2.40GHz with 8GB of memory, and using the Glucose 3 solver for SAT and RC2 for MaxSAT.

16
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Figure 5.1: An example of a carrousel graph

Figure 5.2: The 32x32 rooms graph.
Source: https://movingai.com/benchmarks/mapf/index.html

5.3. Discussion
The results for the colored MAPF can be seen in Figure A.1 for the 3 team problem instances and
Figure A.2 for the 1 team or anonymous MAPF problem instances. This includes the 8x8 grid, 32x32
grid, the carrousel graph, and the rooms graph. The same graphs are used for MAPFW and can be
found in Figure A.3. For the colored MAPFW problem, there is only the 8x8 grid, the 16x16 grid, and
the carrousel graph and these results can be found in Figure A.4. Although every graph has a legend
the same algorithms will have the same color throughout all the graphs. Table 5.1 shows the percentage
that the found solution of the MaxSAT algorithms was optimal per individual experiment.

5.3.1. Colored MAPF
From both Figure A.1 and Figure A.2 it is clear that the SAT and MaxSAT approaches always out-
perform M* by a significant margin and that the in-matching approaches always outperform the pre-
matching approaches. This was expected and thus only SAT, MaxSAT, and inflated MaxSAT will be
compared. Therefore the prematching MaxSAT solutions are also not in Table 5.1. For the 3 team
problem instances both MaxSAT approaches outperform the SAT approach for the number of agents
it can solve problems for, yet in cases where both approaches find a solution, MaxSAT finds a solution
with a cost higher than the optimal cost at a maximum of 20% of the cases. For the inflated approach
this drops down to an upper limit of 6% yet it also solves fewer instances than the MaxSAT approach.

https://movingai.com/benchmarks/mapf/index.html
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As discussed earlier, increasing the minimum makespan causes the encoding to become much larger
and thus the solver needs more time, but it can find better solutions. Lastly, the 32x32 rooms problem
seems more difficult than the 32x32 grid with random obstacles, which is due to the fact that the rooms
graph is laid out to have chokepoints, which causes collisions.

MaxSAT inflated
8x8, 1 team 99% 100%
8x8, 3 teams 79% 94%
8x8, 3 waypoints 81% 92%
8x8, combined 69% 99%
32x32, 1 team 100% 100%
32x32, 3 teams 95% 99%
32x32, 3 waypoints 100% 100%
16x16, combined 94% 100%
carrousel, 1 team 98% 100%
carrousel, 3 teams 80% 97%
carrousel, 3 waypoints 80% 100%
carrousel, combined 79% 100%
rooms, 1 team 100% 100%
rooms, 3 teams 89% 95%
room, 3 waypoints 100% 100%

Table 5.1: The percentage that the found solution of
the MaxSAT algorithms was optimal per individual

experiment.

Interestingly, for the anonymous MAPF problem
where all agents are on the same team, SAT per-
forms better than the MaxSAT approaches. This is
likely because there are so many configurations pos-
sible that the optimal one used for the heuristics is
not the configuration of the optimal solution. As a
result, MaxSAT spends a lot of time looking for a
solution with that minimal makespan that does not
exist, while SAT realizes that this is not feasible and
keeps increasing the makespan until it does find a fea-
sible solution. MaxSAT does find solutions with the
optimal cost in almost all cases but with the lesser
instances solved it loses its main advantage. It is also
worth noting that this variant can be solved in poly-
nomial time and that SAT and MaxSAT solve the 8x8
grid for almost all instances. The problem is trivial
with a low number of agents, but it also becomes in-
creasingly easier the closer the number of agents gets
to the number of nodes because if there are N nodes
with N agents then all agents can stay on their start-
ing vertex. For the larger map sizes, it does eventually
drop off since the map size does attribute to the run-
time even if it would be a polynomial algorithm it could take more time than the 3-minute timeout.
Whether or not these approaches are a polynomial approach for this problem will not be proved in this
research.

5.3.2. MAPFW
MAPFW is a much more difficult problem than colored MAPF because it can be solved for significantly
fewer agents. This is due to the fact that by adding the waypoints the paths of all agents become much
longer, thus increasing the makespan which influences the size of the encoding. Because the makespan
is now much higher the MDDs of every agent will include more nodes because it still only considers all
the paths from the starting location to the target location with that length. It does not consider only
the paths that also visit all the waypoints since this is incompatible with the way MDDs are efficiently
generated and thus represents a different type of problem that can be addressed in future research. So,
when you consider that there are far more timesteps to consider and that each timestep contains far
more nodes and edges, it is easy to see that the MAPFW problem is far more difficult for SAT than the
colored MAPF problem. Once again MaxSAT generally outperforms SAT with an upper limit of 20%
on finding a worse solution. However, on the larger graphs, even M* has similar or even better results,
because the increase of the makespan increases the runtime of SAT so significantly while M* can use
its search to find a good path through the waypoints.

5.3.3. colored MAPFW
As expected the combined problem is more difficult than the individual problems. This is likely due to
the increase of the makespan from the MAPFW problem, which, as discussed in the previous section,
is the more difficult variant of the two. But this is more prevalent in larger problem instances since
more instances get solved on the 8x8 grid than for the MAPFW 8x8 grid instances. While for the
32x32 grid and the rooms graphs very few instances were solved and those were therefore omitted, and
a 16x16 graph was used instead. Running these with a larger timeout would likely improve the results
since it takes much more time to build the encodings and solve them, but now all the timeouts are
consistent. The results are expected with MaxSAT solving more instances than SAT, but the upper
limit on instances with a higher cost is also increased to 30%.



6
Conclusion

In this paper, an extension to the existing SAT solver for the sum-of-cost MAPF problem which solves
the waypoint and colored variants of MAPF was introduced. Furthermore, a new encoding that uses
a MaxSAT solver and which solves MAPF and the two aforementioned variants for makespan while
optimizing the sum-of-costs was developed. These methods were compared to each other and the exist-
ing search-based M* algorithm for problem instances of colored MAPF, MAPFW, and the introduced
colored MAPFW problem. The colored MAPF experiments also included the prematching SAT algo-
rithm. These experiments were done on 4-connected grids, a rooms graph, and the introduced carrousel
graph. From the results, it was concluded that the SAT and MaxSAT algorithms perform much better
than M* especially on the smaller instances. The larger instances are more difficult for the SAT and
MaxSAT since it takes time to set up the entire encoding, while M* can use its search to its advantage.
This is also why MAPFW instances are more difficult to solve than colored MAPF problem instances
because the path length with MAPFW is longer and therefore the encoding becomes much larger as
well. MaxSAT generally outperforms SAT but it does not always find the optimal solution. Yet, SAT
is comparable to MaxSAT in the colored MAPF problem instances where all agents are on the same
team. Lastly, the combined problem is harder than the individual problems the larger the instances
become but can be reasonable well solved in the 3-minute timeout for smaller graphs.
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7
Future work

Nevertheless, many improvements could have been made to this paper’s research. To begin with, many
improvements to the sum-of-costs SAT algorithm were introduced in the related works section but could
not be applied to the algorithms introduced in this paper. Especially the combination with CBS into
SMT-CBS seems like a good improvement. CBS or even better CBSH2 or CBSH-MP should have
also been used in the experiments for a more accurate comparison to a search-based solver instead of
M*. Lastly, improvements upon the experiments could also be achieved by having a larger timeout,
especially for the colored MAPFW problem instances. There were also some intriguing questions raised
during this paper that merit further research. Such as can the MDD structure for the MAPFW problem
be improved so it only contains the paths that go through all the waypoints. This should reduce the
size of the MDDs thus making the encoding much smaller as well. However, this does not seem like a
trivial problem and the increase in the results may not be that significant. Another one is whether the
introduced methods are polynomial in the case of anonymous MAPF. Finally, although it may appear
to be impractical, can an upper bound for the MaxSAT algorithm be calculated such that it finds a
sum-of-costs optimal solution.
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Results

Figure A.1: Number of instances solved for colored MAPF with 3 teams
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Figure A.2: Number of instances solved for colored MAPF with 1 team (anonymous MAPF)
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Figure A.3: Number of instances solved for MAPFW with 3 waypoints
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Figure A.4: Number of instances solved for colored MAPFW with 3 waypoints and 3 teams
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