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a b s t r a c t

The threat of global climate change has caused the international community to pay close attention to
atmospheric levels of greenhouse gases such as carbon dioxide. Transportation sector carbon dioxide
emissions efficiency (TSCDEE) is a key indicator used to prioritize sustainable development in the
transportation sector. In this paper, the epsilon-based measure data envelopment analysis model with
undesirable outputs is applied to estimate TSCDEE for 30 provinces in China from 2010 to 2016. We also
analyze influencing factors using the spatial Durbin model. Research shows that the overall TSCDEE of
the Chinese provinces studied was 0.618, indicating that most regions are still in need of improvements.
The provinces with the highest TSCDEE are located in developed coastal regions of China. This study
shows that factors such as transportation structure, traffic infrastructure level, and technological prog-
ress have prominent positive effects on TSCDEE, while both urbanization level and urban population
density exert significantly negative effects on TSCDEE. The findings should have a far-reaching impact on
the sustainable development of global transportation.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) ex-
pected that the levels of emission of transport-related CO2 would
triple by 2100 if effective policies and measures were not imple-
mented in the near future [1]. In this scenario, the average global

temperature is expected to rise by over 4 �C above pre-industrial
levels [2]. The transport sector is the third-largest source of CO2
emissions in the world, ranking behind only the manufacturing
sector and electricity production sector in 2016 [3]. Since the
transportation sector is a main consumer of energy and contributor
to CO2 emissions, elevating transportation sector carbon dioxide
emissions efficiency (TSCDEE) is of urgent importance.

Technical efficiency analysis was first reported by Ref. [4]; and it
is the capacity of a decision-making unit (DMU) to achievemaximal
output under a given set of inputs [5]. TSCDEE is a new framework
for measuring the level of sustainable development in
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transportation. Relying on comprehensive and scientific principles,
we define TSCDEE as the comprehensive transportation efficiency
with which the transportation sector achieves more transportation
outputs and creates much less carbon dioxide emissions; the
definition assumes a condition of constant or decreasing input of
the factors determining productivity in the transportation sector
[6,7].

In 2016, the transportation sector in China consumed 271.831
million tons of standard coal, a level second only to that of the
manufacturing sector [8]. From 1995 to 2017, the total energy
consumption in China's transport sector grew by 639% [9]. This is
the fastest-growing of all sectors, and the energy consumed by the
transport sector is linked to significant increases in CO2 emissions.
In 2016, total traffic CO2 emissions from China reached 851.2
million metric tons, accounting for 10.8% of global traffic CO2
emissions and ranking second in theworld after the USA (Fig. 1) [3].
It is, therefore, important to calculate China's TSCDEE accurately,
since it can reveal the environmental impact arising from trans-
portation in the second-largest transport carbon emitter in the
word and ultimately promote global sustainable development of
transportation. Moreover, analysis of the key factors influencing
TSCDEE in China is beneficial and can assist in the development of
scientific and practical tactics and steps.

Much of the earlier research reported estimated TSCDEE ob-
tained with the data envelopment analysis (DEA) method, which
use a linear programming scheme to calculate the technical effi-
ciencies of a set of decision making units (DMUs). In the DEA
method, multiple inputs and outputs are handled. Unlike the
parametric efficiency evaluation approachs, some specific func-
tional forms do not determine the efficient frontier [10]. The mian
DEAmethods for estimating TSCDEE includies the Charnes-Cooper-
Rhodes (CCR) DEA model, the Banker-Charnes-Cooper (BCC) DEA
model, and the slacks-based measure (SBM) DEA model, but these
methods may overestimate or undervalue the efficiency value of a
decision making unit (DMU) [11e13]. The epsilon-based measure
(EBM) DEA model with undesirable outputs is a new method to
measure the provincial carbon dioxide emissions efficiency; this
method can address the defects of the CCR, BCC and SBM DEA
models [12], which exhibit the potential for overestimation or

underestimation of the efficiency value. [13]; therefore, this
method was applied to estimate the provincial TSCDEE in China. As
for the regression analysis, the Tobit model, spatial lag model
(SLM), and spatial error model (SEM) are the major methods to
analyze the factors affecting TSCDEE. In the traditional Tobit model,
the spatial factors would not be taken into account. In SLM and
SEM, the lags in both spatial independent variables and the
dependent spatial variable are not considered at the same time,
which may lead to an estimation error in the regression coefficient
[14].

The major contributions of this article are: (1) We provide a
more accurate method for calculating carbon dioxide emissions
from the transport sector, which include fossil fuel and electrical
carbon dioxide emissions. (2) We examine TSCDEE in Chinese 30
provinces from 2010 to 2016 and explore ways to achieve
improvement in TSCDEE, a subject which few have examined in
recent years. (3) We applied the SDM method, which contains
spatial lags of the explained variable and explanatory variables and
makes regression analysis more precise and reliable [15], to explore
how five kinds of influencing factors affect TSCDEE. The findings
should have a profound influence upon the policy making of
transport sustainable development.

The rest of the article is composed by a few parts: Section 2
reviews and summarizes the relevant studies. The methodologies
are briefly described in Section 3. Section 4 indicates the selection
of relevant data and the sources for those data. Section 5 presents
the characteristics of TSCDEE in China. In Section 6, the SDM
method is applied to analyze the factors influencing TSCDEE, and
Section 7 summarizes the article and offers suggestions for
improvements.

2. Literature review

2.1. Calculation methodology

The basic methodology for estimating TSCDEE is the DEA
method, which can handle multiple inputs and outputs and avoid
inaccurate results arising from the use of incorrect functional forms
[16]. There are two research approaches used in this field. The first

Fig. 1. Main transportation CO2 Emitters in 2016.
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takes carbon dioxide emissions as input by employing the radial
DEA model, which includes the CCR DEA or BCC DEA model. The
difference of two radial DEA models is that BCC can achieve the
separation of technical and scale efficiencies [17]. In both models,
the inputs and outputs were assumed to increase or decrease
proportionally when estimating the efficiency [18]. Lan and Zhang
[19] applied the CCR DEA model and treated capital stock, labor
force, and the CO2 emissions from the transportation sector as three
inputs, while the value added by the transportation sector was
treated as an output for evaluating the TSCDEEs of 30 Chinese
provinces between 2006 and 2010. Chen et al. [20] regarded traffic
CO2 emissions as a key input indicator when using both the CCR
DEA and BCC DEA methods to calculate TSCDEE in Beijing from
2000 to 2017. However, the radial DEA model is unable to consider
the effect of non-radial slacks, which may overestimate the effi-
ciency value of the DMU and cause a biased measure [13].

A second approach selects carbon dioxide emissions as an un-
desirable output and is based primarily on the non-radial DEA
model with undesirable outputs. In dealing with the problem of the
radial DEA model, Tone [18] put forward a non-radial SBM model
that takes the input and the output slacks into account when
calculating efficiency. However, the stranded SBM DEA cannot
consider undesirable outputs. Tone [21] then proposed the SBM
DEA model with undesirable outputs in 2004, and this can
accommodate undesirable output factors. Considering the CO2

emissions as the only variable of undesirable output and applying
the SBM DEAmodel with undesirable outputs, Chang et al. [22] and
Song et al. [23] calculated the environmental efficiency of the
transportation sector of China, and Liu et al. [24] measured the
environmental efficiency of the land transportation sector of China,
and Park et al. [25] estimated the transportation sector of USA,
respectively. Li et al. [26] and Ma et al. [27] applied the super-SBM
DEA model with undesirable outputs to calculate the integrated
transport efficiency in China based on CO2 emissions, respectively.
As for other DEA methods, Ren et al. (2017) applied a non-radial
chance-constrained DEA model to measure the carbon emission
efficiency of regional transportation systems in China, and Wang
and He [28] used a non-radial directional distance function DEA
models to measure the CO2 emissions efficiency of the regional
transportation sectors in China, and Feng and Wang [29] employed
the Global meta-frontier DEA model based on CO2 emissions to
anaylze the energy efficiency in China's transportation sector.

2.2. Regression methodology

The main methods used to analyze the influencing factors are
the traditional econometric methods and the spatial econometric
methods. The former is essentially the Tobit model, which solves
the problem of regression of truncated or restricted variables [30].
Cui and Li [6] applied the Tobit model to empirically analysis on the
essential factors influencing carbon use efficiency in transportation.
They found the technological and management factors to be the
most important factors. The traditional econometric methods do
not consider spatial autocorrelation. They do not recognize the
existence of spatial heteroscedasticity, which may cause the esti-
mated coefficients to be biased [31]. The various types of spatial
econometric methods, such as SLM or SEM, can capture spatial
factors and provide better accuracy than do traditional econometric
methods when the dependent variable displays a certain degree of
spatial autocorrelation in various research regions. SLM contains
endogenous interaction effects and is appropriate for situations in
which spatial autocorrelation can be explained through the lag
effect of dependent variables [32]. SEM is suitable for situations in
which the spatial interaction effects are the result of omitted var-
iables that affect both local and adjacent areas [33]. Yuan et al. [34]

used the SLM model and found that the level of energy savings had
a prominent positive effect on transport carbon intensity, while
transportation structure, income level, transportation intensity,
and population scale had significant negative impacts on transport
carbon intensity. After calculating the ecological environment ef-
ficiency of urban transport (EEUT) based on CO2 emissions, Zheng
and Yang [35] conducted SLM and SEM regression analyses on the
EEUT in China's 30 major cities between 2007 and 2016. They
discovered that per capita GDP, the use of urban public transport
vehicles, and urban green areas had positive effects on EEUT, while
the level of urbanization, the number of taxis, and the number of
private cars had negative influences on EEUT.

2.3. General summary

The research reviewed demonstrates that the main methods for
evaluating TSCDEE has become the non-radial SBM DEA models
with undesirable outputs. Spatial econometric methods have
replaced the traditional econometric methods to become the major
methods for regression analysis. However, the current studies still
have certain flaws: (1) The radial DEA models assume proportional
changes of inputs or outputs [36]; theymay therefore overvalue the
efficiency value of the DMU. The non-radial SBMmodels has solved
the potential problem of the radial DEA models, but they has been
designed to achieve maximum reductions in inputs that discards
varying proportions of original input resources and potentially
contributes to the underestimation of the efficiency scores for the
DMU [11,13]. The best way to resolve these issues is to combine the
radial DEA and non-radial DEA features in a unified formula to
consolidate their advantages [37]. (2) Existing literature focusing on
the spatial autocorrelation analysis for the TSCDEE is scarce. The
spatial autocorrelation analysis explores the correlation degree of
attribute values for elements among some spatial areas in space
and adjacent units [38]. If spatial autocorrelation of TSCDEE exists,
it prompts the necessity of a spatial pattern analysis from the
perspective of geography-aspect such as spatial heterogeneity,
spatial homogeneity, or agglomeration. (3) The SLM and SEM
models still exhibit a common weakness. The explained variable in
these models may be explained, not only by a spatially lagged
explained variable or spatially autocorrelated error term, but also
by a spatially lagged explained variable and spatially lagged
explanatory variable [14,39].

This paper has addressed the above-mentioned problems as
follows. First, the present work is designed to update earlier
methods and utilize the EBM DEA model with undesirable outputs
to evaluate the provincial TSCDEE levels in China. This approach
offers a significant improvement because it integrates the merits of
radial and non-radial models and avoids the overestimation or
underestimation the technical efficiency of the DMU [13]. It also
allows the consideration of undesirable outputs [40,41]. Secondly,
this paper attempts to study the spatial autocorrelation of the
China's provincial TSCDEE and expects to contribute to relevant
previous works. Thirdly, the paper also applies the SDM,which is an
improvement over SLM and SEM, to analyze empirically the influ-
ential factors of TSCDEE. The SDM can capture both the spatial
correlations between explained variables and spatial spillover ef-
fects of the explanatory variable [7,42,43]).

3. Methodology

3.1. The EBM DEA model with undesirable outputs

There are n DMUs (j ¼ 1,…, n) which havem inputs (i ¼ 1,…,m)
and s outputs (i ¼ 1, …, s). The input matrices are indicated by
X ¼ {xij}2Rm�n, and, in response to this, the output matrices are
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denoted by Y ¼ {yij}2Rs�n. The method assumes X > 0 and Y > 0.
Variables n, s, m indicate the number of DMUs, the outputs, and the
inputs, respectively, s- denotes the input slacks, and xij and yij
identify the ith input and the ith output of DMUj, respectively. l
indicates the intensity vector. Under constant returns to scale, the
formula of the EBM DEA model is written as:

b* ¼ min

 
g� εx

Xm

i¼1

w�
i s

�
i

xik

!

s:t:

8>>>>>>>>><
>>>>>>>>>:

Xn

j¼1
ljxij þ s�i ¼ xik i ¼ 1;2;…;m

Xn

j¼1
ljyrj � yrk r ¼ 1;2;…; s

l � 0; s�i � 0

(1)

In Eq. (1), b*refers to the efficiency score of DMUk。w�
i is the

weight of input i and satisfies
P

w�1
i ¼ 1ðciw�

i � 0Þ. Parameter εx
can combine the radial programming parameter g and the non-
radial slacks terms.

According to Tone and Tsutsui [11]; the CCR DEA model fails to
consider the non-radial slacks factors, and then the efficiency value
of the DMUk may be overestimateed [13]. As for the SBM DEA
model, since the input slacks s- is not necessarily proportion to the
original xk, the projected DMUmay lose the proportionality present
in the original xk [37], and then the efficiency value may be
understimateed [13].

From Eq. (1), the EBM DEA model will be simplified to the CCR
DEA model when εx ¼ 0, or transformed into the SBM DEA model
when g ¼ ε ¼ 1, therefore, the EBM DEA model can simultaneously
take the radial and the non-radial information into consideration, it
would get a more accurate and scientific result of the efficiency
calculation [44].

Although significant progress has been made with the EBM DEA
model proposed by Ref. [11]; there are still some problems that
must be solved to allow practical implementation. The model ne-
glects the undesirable outputs. It is, therefore, reasonable to
combine the EBM DEA model and undesirable factors for the
evaluation of efficiency when some by-products associated with
beneficial output exist simultaneously [45]. To measure China's
eco-efficiency, Chen et al. [46] and Ren et al. [40,41] in 2020 showed
an improved EBM model that achieves the combination of both
radial and non-radial DEA models and also takes the undesirable
factors into account. The EBM DEAmodel with undesirable outputs
is expressed as:

T* ¼min

2
666664

g� εx
Xm

i¼1

u�
i s

�
i

xik

jþεy
Xs

r¼1

uþgood
r sþbad

r
yrk

þ εy
Xq

p¼1

u�bad
p s�bad

p

bpk

3
777775

s:t

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Xn

j¼1
xijljþ s�i ¼gxik i¼1;2;…;m

Xn

j¼1
yrjlj� sþgood

r ¼jyrk r¼1;2;…;s

Xq

j¼1
bpjljþ s�bad

p l¼jbpk p¼1;2;…;q

lj �0;s�i �0;sþgood
r �0;s�bad

p �0

(2)

In Eq. (2), there arem inputs, s desirable outputs and qundesirable
outputs in each DMU; the efficiency value T* varies from 0e1; s�d

i ,

sþgood
r , and s�bad

p denote the slacks of the slacks of input i, desired

output r, and undesired output p, respectively. uþgood
r and u�bad

p

represent thedesiredoutputweight and theundesiredoutputweight,
respectively. b stands for the pth undesirable output of the DMUj, and
q is the total number of undesirable outputs. εx stands for the set of
radial g and non-radial slacks; εy denotes the set of radialJ and non-
radial slacks; εx and εymeet the conditions: 0� εx� 1 and 0� εy� 1.
The definitions of the other variables are as described above.

For simplicity in calculating the technical efficiency, Cheng [47]
invented theMaxDEA 7 Ultra software, which can runmultiple DEA
models, including the EBM DEA model with undesirable outputs.
Therefore, this work involves the use of Cheng's MaxDEA 7 Ultra
software to calculate the values of provincial TSCDEE employing the
EBM DEA model with undesirable outputs. The method for
applying Cheng's MaxDEA 7 Ultra software can be found in Cheng
[48] and MaxDEA 7 Manual [47].

3.2. Spatial correlation analysis

Before the regression analysis, it is necessary to test whether
there is spatial correlation in the variables. If the spatial correlation
exists, a spatial econometric model needs to be established
Otherwise non-spatial econometric methods need to be used [49].

The spatial autocorrelation analysis methods include global and
local spatial autocorrelation. The global spatial correlation among
all provinces could be judged by measuring the Global Moran's I,
which is calculated as follows:

GlobalMoran0It ¼
Pn

i¼1
Pn

j¼1Wi; jðTSCDEEi; t � TSCDEEtÞðTSCDEEj; t � TSCDEEtÞ"
1
n
Pn

i¼1ðTSCDEEi; t � TSCDEEtÞ2
#Pn

i¼1
Pn

j¼1Wi; j

(3)
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In Eq. (3), TSCDEEi,t indicates the value of TSCDEE for province i

in year t. TSCDEEtrepresents the average of the TSCDEE for all
provinces in year t. It indicates the value of Global Moran's I in the
year t, and the scale ranges over [-1,1]. If the result is greater than
0 and reaches significant level, the TSCDEE has an obviously posi-
tive spatial correlation. If the value is less than 0 and reaches a
significant level, a negative spatial correlation is implied. If the
value is 0 or if the significance test is failed, no spatial relationship is
shown. n identifies the total number of provinces. W is the spatial
matrix. i and j represent two adjacent provinces, respectively. If
province i borders on j, Wi,j equals 1; otherwise, Wi,j equals 0.

Local spatial autocorrelation is mainly used to analyze the
spatial autocorrelation characteristics of each region, by measuring
the degree of local spatial correlation between each region and the
surrounding region. This approach compensates the shortcoming
of global autocorrelation, which ignores the instability of spatial
processes. The local spatial autocorrelation analysis is able to
measure the degree of local spatial clustering. The local Moran's I
index of the provinces i is calculated as follows:

Positive local Moran's I index in the province i indicates that the
TSCDEE in the province i is similar to its adjacent provinces,
otherwise it is not similar. The local spatial autocorrelation could be
usually measured by the Moran scatter plot (MSP) and Local In-
dicators of Spatial Association (LISA).

The MSPs can be divided into four quadrants as follow. The first
quadrant (in which province with high TSCDEE is adjacent to the
provinces with high TSCDEE, referred to as the High-High (HeH)
agglomeration area) and the third quadrant (in which province
with low TSCDEE is adjacent to the provinces with low TSCDEE,
referred to as the Low-Low (L-L) agglomeration area) indicate
positive spatial autocorrelations of the observed TSCDEE, while the
second quadrant (inwhich province with low TSCDEE is adjacent to
the provinces with high TSCDEE, referred to as the Low-High (LH)
agglomeration area) and the fourth quadrant (in which province
with high TSCDEE is adjacent to the provinces with low TSCDEE,
referred to as the High-Low (HL) agglomeration area) denote
negative spatial autocorrelations.

3.3. Spatial Durbin model

We analyze the driving factors of TSCDEE by applying the spatial
Dubin model (SDM). In this section we introduce the SLM and SEM
models, and analyze their advantage and disadvantage, and then
indicates the rationality and practicability by applying SDM.

The spatial lag model (SLM) is given as:

Y ¼ rWY þ bX þ ε (5)

In Eq. (5), Y stands for the explained variable and X identifies the
influencing variables. r is the spatial autocorrelation coefficient. W
indicates the spatial weight matrix,WY represents the spatial lag of
the explained variable. b stands for the spatial regression coeffi-
cient. ε is the random error and belongs to N(0,s2 In). SLM contains

endogenous interaction effects. From Eq. (5), it could be found that,
in the SLM, the explained variable Y in the local area is explained by
the spatially lagged explained variable, and could not be explained
by the spatially explanatory variables in the adjoin area [7,39,43].

The spatial error model (SEM) is expressed as follows:

Y ¼ bX þ lWε þ m (6)

Where l is the spatial error coefficient of the dependent variable
vector, and m stands for the random error vector of normal distri-
bution. The SEM contains interaction effects among the error terms.
From Eq. (6), it could be found that, in the SEM, the explained
variable Y in the local area is affected by the spatially autocorrelated
error term in the adjoin area; the SEM neglects the spatial lag of the
explained variable [39].

The SDM can capture the spatial effects of both independent and
dependent variables as well as the influence of variable error on
observation values, rendering the results more accurate [50]. We
therefore analyze the driving factors of TSCDEE by applying SDM.

The basic expression for SDM is:

Y ¼ rWY þ bX þ qWX þ ε (7)

In Eq. (7), WX denotes the spatial lag effects associated with
explanatory variables. Variables q and b are vectors of regression
coefficient estimates, respectively. In stands for an n-order identity
matrix.

4. Research area and indicator selection

We include data from 30 mainland Chinese provinces
(excluding Tibet), covering the period 2010 to 2016. As shown in
Fig. 2, these provinces are divided into eight regions in accordance
with Zhao et al. [51] and Zeng et al. [52].

Based on existing research results, such as those of Song et al.
[53]; Wang and He [28]; and Feng and Wang [29]; this paper treats
capital stock, labor force, and the energy consumption of the
transportation sector as three inputs. The value added by trans-
portation sector is a desirable output, while the CO2 emissions of
the transportation sector constitute an undesirable output
(Table 1). The data for both the value added and capital stock of the
transportation sector were converted to 2010 base period prices.
Following the studies of Chang et al. [22] and Wang and He [28];
the transportation sector in this paper is taken to consist of the
transportation, storage, and postal services industries.

The Chinese government does not publish data on the capital
stock of the transportation sector. Referring to Wang and He [28];
Xie et al. [54]; Feng and Wang [29]; and Stefaniec et al. [55]; this
article applies the perpetual inventory method to determine the
capital stock of the transportation sector as follows: Ci,t ¼ Ii,t þ (1-d)
Ci,t-1。Here C and I indicate the capital stock and the fixed capital
investment in the transportation sector. The subscripts i and t
represent the province i and year t, respectively. d indicates the

LocalMoran0Ii ¼ ðTSCDEEi; t � TSCDEEtÞ
S2

Xn

i¼1
Wi; jðTSCDEEj; t � TSCDEEtÞ

S2 ¼ 1
n

Xn

i¼1
Wi; jðTSCDEEi; t � TSCDEEtÞ2

(4)
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depreciation rate of capital stock, which is 8.76%, according to Li
and Zhang [26]. Consistent with the study conducted by Zhang
[56]; the capital stock of the transportation sector in 2010 is equal
to the value of the gross fixed capital formation in 2010 divided by
10%. The data for fixed capital investments were taken from the
National Bureau of Statistics of China (NBSC) [57].

We use the total number of employees in the transportation
sector as the labor force variable, and data were taken from China
Statistical Yearbooks (CSY) [58]. The energy consumption datawere
gathered from all provincial statistical yearbooks [59]. Data on the
value added by the transportation sector were obtained from NBSC
[57].

NBSC has not released data on the CO2 emissions from the
transportation sector, so these must be calculated. The trans-
portation sector CO2 emissions in this research consist of both fossil
fuel and electrical CO2 emissions.

With reference to the method in the IPCC Guidelines, the
equation for counting CO2 emissions from transportation fossil fuel
consumption can be shown in Eq. (5) [60]:

CCi; t¼
Xn

j¼1

�
Ei; t; j�ALCVj� CCFj� COFj� 44

12

�
(8)

In Eq. (8), CCi,t stands for the total CO2 emissions from energy
use by the transportation sector of province i in year t, j represents
the different fossil fuel types, Ei,t,j is the total consumption of fuel
type j in province i in year t, ALCVj identifies the average low
calorific value (ALCV) of fuel type j, CCFj denotes the carbon content

factor (CCF) of fuel type j, and COFj stands for the carbon oxidation
factor (COF) of the carbonaceous fuel j. The data on ALCV, CCF and
COFwere collected from Shan et al. [61] (Table 2). The data on fossil
fuel consumption were obtained from CESY [9e62].

This work utilizes the carbon dioxide emission coefficient for
electric power energy published by the National Development and
Reform Commission (NDRC) [63] for calculating electricity carbon
dioxide emissions; the estimation method is written as:

ECi; t¼ Ei; t � EFgrid;OM; y; i; t (9)

Here ECi,t refers to the total electrical CO2 emissions resulting from
the transportation sector of province i in year t. EFgrid;OM; y; i; t de-
notesthetotalelectricpowerconsumedbythetransportationsectorin
province i inyear t, and thedatawere obtained fromCESY [9e62]. EFi,t
stands for thebaseline emissions factors for regional power grids,
which can be collected fromNDRC [63] (Table 3).

Using the method described above, we have calculated the
transportation sector CO2 emissions for 30 Chinese provinces be-
tween the years 2010 and 2016. The International Energy Agency
(IEA) is a monitoring organization that regularly releases data on
CO2 emissions. To check the reliability of our method for calculating
CO2 data from the transportation sector, we compared our results
with those of the IEA [64] in Fig. 3. Clearly, the CO2 data measured
in this study for the transportation sector are similar to those of the
IEA. From the comparison, we conclude that the method used
herein is suitable for the accurate calculation of CO2 emission levels.

Fig. 2. Sketch map of Chinese eight economic zones.

Table 1
TSCDEE measurement index system.

Primary indices Secondary-class indices Third-class indices

Inputs Capital Capital stock of transportation sector (Unit: 100 million yuan RMB)
Labour Total number of employees in the transportation sector (unit: 10,000)
Energy Total energy consumption of the transportation sector (unit: 10,000 tons of standard coal)

Outputs Desirable outputs Added value of the transportation sector (unit: 100 million yuan RMB)
Undesirable outputs CO2 emissions from the transportation sector (unit: 104 tons)
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5. Analysis of the characteristics of TSCDEE in China

Using MaxDEA 7 Ultra software, the TSCDEEs of 30 provinces in
China between 2010 and 2016 were calculated as shown in Table 4.

5.1. National TSCDEE characteristics

Based on the mean value of TSCDEE for every province from
2010 to 2016, the spatial distribution map for TSCDEE levels was
drawn using ArcGIS 10.3 software. As seen in Fig. 4, the overall
national TSCDEE level was relatively low during the research

Table 2
Fossil fuels and emissions factors (NCVi, CCi) [61].

Fuels in China's energy statistics Fuels in this study ALCVi (PJ/104 tonnes, 108m3) CCFi (tonneC/TJ) COFi(%)

Raw coal Raw coal 0.21 26.32 74
Cleaned coal Cleaned coal 0.26 26.32 74
Other washed coal Other washed coal 0.15 26.32 74
Briquettes Briquettes 26.32 0.18 74
Gangue 74
Coke Coke 0.28 31.38 89
Coke oven gas Coke oven gas 1.61 21.49 91
Blast furnace gas Other gas 0.83 21.49 91
Converter gas 91
Other gas 91
Other coking products Other coking products 0.28 27.45 96
Crude oil Crude oil 0.43 20.08 96
Gasoline Gasoline 0.44 18.9 96
Kerosene Kerosene 0.44 19.6 96
Diesel oil Diesel oil 0.43 20.2 96
Fuel oil Fuel oil 0.43 21.1 96
Naphtha Other petroleum products 0.51 17.2 96
Lubricants 96
Paraffin 96
White spirit 96
Bitumen asphalt 96
Petroleum coke 96
Other petroleum products 96
Liquefied petroleum gas (LPG) LPG 0.47 20 97
Refinery gas Refinery gas 0.43 20.2 97
Nature gas Nature gas 3.89 15.32 98

Table 3
Baseline emissions factors for regional power grids in China [63].

Provinces (EFgrid, OM, y, tCO2/MWh) 2010 2011 2012 2013 2014 2015 2016

Beijing, Tianjin, Hebei, Shanxi, Shandong, Inner Mongolia 0.9914 0.9803 1.0021 1.0302 1.058 1.0416 1
Liaoning, Jilin, Heilongjiang 1.1109 1.0852 1.0935 1.112 1.1281 1.1291 1.1171
Shanghai, Jiangsu, Zhejiang, Anhui, Fujiang 0.8592 0.8367 0.8244 0.81 0.8095 0.8112 0.8086
Henan, Hubei, Hunan, Jiangxi, Sichuan, Chongqing 1.0871 1.0297 0.9944 0.9779 0.9724 0.9515 0.9229
Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 0.9947 1.0001 0.9913 0.972 0.9578 0.9457 0.9316
Guangdong, Guangxi, Guizhou, Yunnan 0.9762 0.9489 0.9344 0.9223 0.9183 0.8959 0.8676
Hainan 0.7972 0 0 0 0 0 0

Fig. 3. Comparison of transportation CO2 emissions in China as computed by IEA and this study.
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period. The mean value of TSCDEE in Chinese provinces was 0.618,
which illustrates that TSCDEE in China has substantial room for
improvement. Furthermore, there was significant variation among
provincial TSCDEEs. The TSCDEEs of the Yellow River downstream
area and the southeastern areas were high, while low TSCDEEs
were found for most of the western provinces (Table 5, Fig. 5). The

trend in the national TSCDEE average consists of two phases. Phase
one lasts from 2010 to 2012, when the national TSCDEE average
exhibited a general downward trend and fell from 0.613 in 2010 to
0.568 in 2012. In the second phase, lasting from 2012 to 2016, the
national TSCDEE average showed a steep upward trend, reaching a
value of 0.673 in 2016 and thereby exceeding the initial TSCDEE

Table 4
The values of TSCDEE for 30 provinces in China (2010e2016).

Regions Provinces 2010 2011 2012 2013 2014 2015 2016 Mean

Northern coast Beijing 0.604 0.592 0.497 0.587 0.632 0.648 0.690 0.607
Tianjin 0.831 0.787 0.726 0.758 0.784 0.777 0.810 0.782
Hebei 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Shandong 1.000 0.923 0.877 0.784 0.855 0.882 0.932 0.893

Eastern coast Shanghai 0.698 0.613 0.572 0.702 0.797 0.831 1.000 0.745
Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Zhejiang 0.736 0.679 0.645 0.726 0.740 0.742 0.770 0.720

Southern coast Fujian 0.715 0.619 0.637 0.655 0.651 0.712 0.783 0.682
Guangdong 0.630 0.604 0.627 0.667 0.729 0.762 0.804 0.689
Hainan 0.397 0.384 0.378 0.438 0.505 0.465 0.471 0.434

Northeast Liaoning 0.545 0.551 0.548 0.638 0.650 0.756 0.751 0.634
Jilin 0.488 0.467 0.463 0.486 0.491 0.497 0.523 0.488
Heilongjiang 0.508 0.510 0.425 0.457 0.514 0.547 0.612 0.510

Middle Yellow River Shanxi 0.535 0.510 0.532 0.529 0.551 0.631 0.697 0.569
Inner Mongolia 0.700 0.659 0.657 0.767 0.765 0.661 0.782 0.713
Henan 0.703 0.644 0.674 0.879 1.000 1.000 1.000 0.843
Shaanxi 0.429 0.401 0.407 0.420 0.458 0.489 0.521 0.447

Middle Yangtze River Jiangxi 0.756 0.632 0.601 0.676 0.671 0.643 0.619 0.657
Anhui 0.682 0.605 0.702 0.725 0.726 0.728 0.765 0.705
Hubei 0.519 0.480 0.463 0.544 0.556 0.553 0.530 0.521
Hunan 0.579 0.525 0.560 0.590 0.604 0.597 0.631 0.584

Southwest Guangxi 0.437 0.448 0.432 0.477 0.475 0.494 0.508 0.467
Chongqing 0.493 0.456 0.454 0.538 0.533 0.538 0.564 0.511
Sichuan 0.337 0.317 0.310 0.404 0.422 0.466 0.478 0.391
Guizhou 0.725 0.713 0.703 0.721 0.698 0.685 0.715 0.709
Yunnan 0.190 0.174 0.175 0.171 0.176 0.182 0.195 0.180

Northwest Gansu 0.682 0.62 0.72 0.749 0.745 0.726 0.76 0.715
Qinghai 0.757 0.645 0.613 0.691 0.677 0.632 0.612 0.661
Ningxia 0.519 0.485 0.475 0.562 0.58 0.579 0.561 0.537
Xinjiang 0.579 0.53 0.576 0.616 0.644 0.643 0.691 0.611

Average efficiency in Chinese provinces 0.613 0.577 0.568 0.613 0.634 0.644 0.673 0.617

Fig. 4. Average TSCDEE values in 30 Chinese provinces (2010e2016).
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level.
In order to confront the global economic crisis of 2008, China

executed an positive financial policy and permissive monetary
policy. This allowed various provinces to increase their investments
in transportation infrastructure, resulting in redundancies in capi-
tal investment in transportation [65e68]. Therefore, the national
TSCDEE exhibited a downward trend from 2010 to 2012. In 2011,
the Ministry of Transport of China (MOT) [69] developed many
policies intended to curb the release of traffic pollutants. Notably, in
2013, the Communist Party of China (CPC) [70] promoted the
building of an ecological civilization, and various provinces in China
increased efforts to achieve energy conservation and emissions

reductions. Many new energy-saving technologies were popular-
ized and applied in the transportation sector; these were conducive
to improving TSCDEE and can explain the upward trend in national
TSCDEE after 2012.

5.2. Characteristics of TSCDEE in the different regions

A comparison of regions indicates that the Eastern coast has the
highest level of TSCDEE, followed by the Northern coast, the Middle
Yellow River, the Middle Yangtze River, the Southern coast, the
Northeast, the Northwest, and the Southwest (Table 5, Fig. 6). Over
time, all eight regions show trends that are consistent with the
developmental trend of the national TSCDEE. Three additional
factors are evident: (1) The coastal provinces enjoy geographical
advantages and high levels of economic development. Their
transportation industries are relatively highly developed, their
education systems are advanced, they have large populations of
professional and technical personnel, and they successfully
implement and promote advanced foreign technologies and busi-
ness ideas. These provinces have been at the forefront in imple-
menting a number of energy-saving and emissions reduction
measures, including many electrified modification projects for lo-
gistics parks, docks, and integrated transportation hubs. As a result,
they may utilize transportation energy more efficiently and realize
higher carbon dioxide emissions efficiencies than do other regions
[29]. However, the TSCDEE level in Hainan Province, a coastal
province, is relatively low. Although its geographical position is
advantageous and it has been open since the 1990s, the output level
of its transportation sector is low, resulting in low TSCDEE. (2) The
Middle Yellow River and Middle Yangtze River regions closely
follow the coastal areas and have been opened up to the outside

Table 5
TSCDEE values for eight Chinese regions (2010e2016).

Regions 2010 2011 2012 2013 2014 2015 2016 Mean

Northern coast 0.859 0.826 0.775 0.782 0.818 0.827 0.858 0.821
Eastern coast 0.811 0.764 0.739 0.809 0.846 0.858 0.923 0.822
Southern coast 0.581 0.536 0.547 0.587 0.629 0.646 0.686 0.602
Northeast 0.514 0.509 0.479 0.527 0.551 0.600 0.629 0.544
Middle Yellow River 0.592 0.554 0.567 0.649 0.694 0.695 0.750 0.643
Middle Yangtze River 0.634 0.561 0.582 0.633 0.639 0.630 0.636 0.616
Southwest 0.436 0.422 0.415 0.462 0.461 0.473 0.492 0.452
Northwest 0.538 0.502 0.495 0.511 0.510 0.512 0.509 0.511

Fig. 5. The evolutionary trend of TSCDEE value in China and eight of its regions (2010e2016).

Fig. 6. The Moran's I scatterplot of 30 provincial TSCDEE in 2010.
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world. The educational systems in these regions are also relatively
developed, energy-saving technologies are fully applied, internal
infrastructure is continuously improved, and traffic carbon dioxide
emissions levels closely follow those of the coastal provinces. (3) As
a result of geographical factors, leaders in the Northeast, Northwest
and Southwest regions are less able to acquire and introduce
advanced technologies. After the reform and opening, a large
number of talented workers moved from the Northeast, Northwest,
and Southwest to the coastal areas [71]. The resulting loss of talent
has made it difficult to improve production technologies in various
industries, and especially in transportation, where emission effi-
ciency levels remain low.

5.3. Characteristics of TSCDEE in the different provinces

Using TSCDEE values, 30 Chinese provinces can be divided into
four spatial regions exhibiting high TSCDEE, slightly high TSCDEE,
medium TSCDEE, and low TSCDEE. Four additional observations
follow: (1) For Hebei, Jiangsu, Shandong, Henan, Ningxia, and
Tianjin, TSCDEEs were greater than 0.78. It is important to note that
Ningxia is a western province. The reasons for its high TSCDEE level
are that Ningxia has a relatively small geographical area, fewer
transportation input resources, and higher output efficiency, as
compared to other western provinces. (2) The annual mean value of
the TSCDEEs of Shanghai, Zhejiang, Inner Mongolia, Guizhou,
Jiangxi, Guangdong, Fujian, Anhui, and Liaoning ranged from 0.634
to 0.745 and fall in the category of slightly high TSCDEE. (3) The
average annual TSCDEEs of Beijing, Hunan, Shanxi, Hubei, Gansu,
Chongqing, and Heilongjiang ranged from 0.51 to 0.617, thereby
placing them in the medium TSCDEE category. (4) The average
annual TSCDEEs of Jilin, Guangxi, Xinjiang, Shaanxi, Hainan,
Sichuan, Qinghai, and Yunnan are all below 0.5, and these provinces
thus belong to the low TSCDEE region.

Analysis of trends shows that Hebei and Jiangsu remained at the
production frontier level throughout the research period. However,
the TSCDEEs of the remaining provinces exhibited different trends:
(1) Shanxi, Liaoning, Guangdong, Guangxi, and Xinjiang show
overall improvement in TSCDEE, indicating that their trans-
portation sectors have made obvious improvements in energy
conservation and emissions reductions. (2) Gansu and Qinghai
show declining trends, meaning that these two provinces had un-
favorable allocations of transport resources. (3) Inner Mongolia,
Anhui, Guizhou, and Ningxia displayed significantly different fluc-
tuation trends during the research period. (4) The remaining
provinces are generally in line with the overall trend of the country,
showing initial downward and subsequent rising trends.

6. The spatial autocorrelation of TSCDEE in China

6.1. The global spatial autocorrelation analysis

This work used Global Moran's I to examine the global spatial

autocorrelation of provincial TSCDEEs further. Table 6 contains the
results.

As shown in Table 6, there are significantly positive spatial
autocorrelation of TSCDEEs among China's regions during the
period 2010 to 2016, which indicates that provinces that are close to
each other tend to exhibit similar TSCDEEs. More concretely, Global
Moran's I showed changing dynamics from 2010 to 2016, with a
downward trend from 2010 to 2012 indicating a weakened spatial
autocorrelation. Global Moran's I displayed an upward trend after
2012, which indicates that the effect of spatial agglomeration
gradually strengthened. Taken together, there were some potential
biases in the regression analysis of the factors influencing TSCDEE
when spatial effects were not considered.

6.2. The local spatial autocorrelation analysis

The Moran scatter plots (MSP) and Local Indicators of Spatial
Association (LISA) were applied to explore the local spatial corre-
lations of the local spatial autocorrelation of provincial TSCDEE in
China. Figs. 6e8 report the MSP of TSCDEE in China in 2010, 2013
and 2016; most provinces are in the frist quadrant (HeH agglom-
eration area) and third quadrant (L-L agglomeration area), and only
some provinces are located in the second quadrant (L-H agglom-
eration area) and the four quadrants (H-L agglomeration area),
indicating that the spatial homogeneity is more significant than the
spatial heterogeneity for TSCDEE in China.

The MSP maps in 2010, 2013, and 2016 indicate that Tianjin,
Hebei, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Shandong, and
Henan always belong to the first quadrant, meaning that these
provinces have high TSCDEE and have diffusion effect on the sur-
rounding areas. The above provinces aremainly located in Northern
coast and Eastern coast of China. Heilongjiang, Hubei, Hunan,
Guangxi, Chongqing, Sichuan, Yunnan, Shaanxi, and Ningxia are
always the third quadrant in 2010, 2013 and 2016, meaning that
these provinces have low TSCDEE and are surrounded by provinces
with relatively low TSCDEE; these provinces are mainly western
provinces; these provinces display a positive spatial autocorrela-
tion. Beijing always distributed in the second quadrant in 2010,
2013 and 2016, representing that Beijing are always surrounded by
province with higher TSCDEE level. The frequent occurrence of
serious traffic congestions has become a major problem confronted
by Beijing for a long time, which adds the difficulties to the low-
carbon and energy-saving management of its transportation in-
dustry [72]. In 2010, 2013 and 2016, the fourth quadrant includes

Table 6
Value of Moran's I of provincial TSCDEE in China (2010e2016).

Year Moran's I Z-score P-value

2010 0.400 3.530 0.000
2011 0.352 3.170 0.002
2012 0.287 2.641 0.008
2013 0.319 2.883 0.004
2014 0.371 3.315 0.001
2015 0.385 3.436 0.001
2016 0.386 3.423 0.001

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Fig. 7. The Moran's I scatterplot of 30 provincial TSCDEE in 2013.
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Inner Mongolia, Gansu, Guangdong, and Guizhou that have high
TSCDEE but are surrounded by provinces with low TSCDEE. It is
remarkable that Inner Mongolia, Gansu, and Guizhou are belong to
the western province. Based on the statistical data yearly, Inner
Mongolia, and Guizhou have the high level of the transportation
sector added value, which are at the forefront in Western China;
compared with surrounding provinces, such as Inner Mongolia,
Xinjiang or Shaanxi, Gansu has lower level of transportation pro-
duction consumption factors and CO2 emissions of transportation
in Western China [57].

Figs. 9e11 depicted provinces with significant locations color-
coded by different types of LISA coefficients of TSCDEE in China.
As from the Figs, in 2010, 2013, and 2016, the provinces at the 5%
significance level are in the HeH or L-L agglomeration areas. More
specifically, In 2010, the HeH agglomeration area are composed by
four obvious provinces: Tianjin, Hebei, Jiangsu, and Shandong,
which passed the significant level test within 5%; Whereas the L-L

agglomeration area exhibit an obvious small cluster area, which
only includes two obvious provinces: Sichuan and Yunnan. By 2013,
the HeH agglomeration area has decreased by three obvious
provinces (Hebei, Jiangsu, and Shandong). By 2016, the HeH
agglomeration area has increased compared with 2013, which are
composed by four obvious provinces: Hebei, Shanghai, Jiangsu, and
Shandong. The L-L agglomeration area remain unchanged across
2010, 2013 and 2016.

7. Factors influencing TSCDEE

7.1. Determinants of TSCDEE

After the systematic analysis of the regional TSCDEE features, we
used the SDM method to explore the factors affecting TSCDEE.
Based on previous studies, we selected transportation structure
(TS), traffic infrastructure level (TIL), technological progress (TP),
urbanization level (UL), and population density of urban area
(PDUA) as independent variables (Table 7). The data were collected
from CSY [58] and all provincial statistical yearbooks [59].

7.1.1. Transportation structure (TS)
The pollutant emissions per unit of highway freight were 7

times and 13 times greater than those of railway and waterway
transportation, respectively (Ministry of Ecology and Environment
of China [85] Waterway transportation is characterized as
economical, secure, low polluting, and with low mass traffic, so it
has become a significant alternative for the transport of dangerous
goods. The idiographic measure of the optimization and adjust-
ment of transportation structures is meant to establish a long-
distance transportation system based on electrified trains and
environmentally-friendly ships, as well as a short-distance trans-
portation system based on low emission vehicles and alternative
energy vehicles [85]. Moreover, Yuan et al. [34]; Wei et al. [73]; and
Wang et al. [74] have suggested that a more reasonable trans-
portation structure would prove beneficial in reducing carbon di-
oxide emissions from the transportation sector. Therefore, we apply

Fig. 8. The Moran's I scatterplot of 30 provincial TSCDEE in 2016.

Fig. 9. LISA Diagrams of provincial TSCDEE in 2010.
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the proportion of railway and water freight volume in the total
freight volume to represent the transportation structure. Our pre-
diction is that readjusting and optimizing the transportation
structure would improve TSCDEE.

7.1.2. Traffic infrastructure level (TIL)
An excellent traffic infrastructure system can curb both energy

consumption and the discharge of pollutants, but transportation
planners should consider the level of per capita traffic infrastruc-
ture. Low per capita traffic infrastructure may lead to challenges in
increasing transport loads. Traffic congestion has often been

considered to be the major contributor to road traffic pollutant
levels [86]. Therefore, an excellent transportation system requires
adequate traffic infrastructure. Referring to Ma et al. [76]; Liu et al.
[77]; Zhang [87]; and others, per capita road area was applied to
measure the level of traffic infrastructure in this work. We offer the
prediction that improvements in traffic infrastructure level would
improve TSCDEE.

7.1.3. Technological progress (TP)
Technological progress in energy utilization is a key driver for

reducing carbon dioxide emissions [88e91], and this has already

Fig. 10. LISA Diagrams of provincial TSCDEE in 2013.

Fig. 11. LISA Diagrams of provincial TSCDEE in 2016.
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been widely considered and accepted. Generally, lower energy in-
tensity signifies lower environmental costs and better technology
for converting energy into economic outputs. In reference to the
findings of Scholl et al. [78]; Wei et al. [73]; and Yuan et al. [34]; we
have herein applied the reciprocal of transportation sector energy
intensity as an indicator of technological progress (TP) and predict
that improvements in technological progress would improve
TSCDEE.

7.1.4. Urbanization level (UL)
Urbanization is thought to be correlated with the CO2 emissions

of the transportation sector. Wu et al. [79]; Xie et al. [80]; and Lv
et al. [81] have conducted in-depth studies on urbanization and the
CO2 emissions of the transportation sector. Ongoing urbanization
brings large-scale construction of urban residential housing and
infrastructure and a notable increase in traffic demand. Conversely,
the high traffic volume resulting from urbanization causes more
energy consumption and release of gaseous pollutants. The rela-
tionship between urbanization level and TSCDEE, therefore, re-
quires further empirical testing.

7.1.5. Population density of urban area (PDUA)
Because of the increasing returns resulting from scale or

agglomeration effects, larger population can foster higher urban
productive efficiency, which can bring higher profits that exceed
the environmental external costs of the added transport. Alford and
Whiteman [82] andModarres [83] found that transport commuting
in regions with higher population density can consume relatively
less transport energy and release less CO2. However, the additional
emission reduction effects resulting from high population density
were not significant after the population density reached a certain
level [84]. Exorbitant population density may have a negative
impact on traffic circulation, directly or indirectly, resulting in
additional emissions of traffic pollutants. Therefore, the impact of
population density on TSCDEE must be examined further.

7.2. Explaining TSCDEE: spatial Durbin regression results

To avoid the appearance of spurious regression and confirm the
validity of the regression coefficient estimate, the LLC, IPS, ADF-
Fisher and PP-Fisher methods are applied to perform a stationary
analysis of all variable quantities. The results are shown in Table 8.
The variables all pass the significance test at the second difference,
which means that it is necessary to perform the cointegration test
on all variable quantities.

The Kao and Pedroni cointegration tests were applied to deter-
mine whether all variables are cointegrated. The test outcome of
the Kao method (t-Statistic: 1.941, P ¼ 0.026) shows that the null
hypothesis is rejected at the 5% significance level. The test outcome
of the Pedroni method (Table 9) indicates that four of the seven

statistics are significant at the 1% level.We are thus able to conclude
that the panel data had cointegration relationships.

To decide which model is more appropriate for empirical
investigation of the main determinants of TSCDEE, we carried out
statistical tests. The Hausman test was applied to decidewhether to
use fixed or random effects models. The results (chi2 (5) ¼ 69.61,
P¼ 0.000) demonstrated that the fixed effects model was preferred
to the random effects model.

The next step was to conduct the Wald and Likelihood ratio (LR)
tests to establish whether SDM can be simplified to SLM or SEM.
The hypothesis that SDM can be degenerated into the SLM is
rejected (Wald test: 30.26***, LR test: 57.57***). Moreover, the
hypothesis that SDM can be simplified to the SEM is also rejected
(Wald test: 46.17***, LR test: 58.01***). These results show that
SDM is preferable to both SLM and SEM.

Based on Eq. (7), the explicit regression equation of the SDM
with fixed effects is as follows:

TSCDEEi,t ¼ rW*TSCDEEi,t þ b1TSi,t þ b2TILi,t þ b3TPi,t þ b4ULi,t þ

b5PDUAi,tþq1W*TSi,t þq2W*TILi,t þ q3W*TPi,t þq4W*ULi,t þ

q5W*PDUAi,t þ εi,t εi,t ~ N(0,s2i,t In) (10)

Table 10 displays the calculation results for the three SDM
models: spatial fixed-effects, time fixed-effects, and spatial and
time fixed-effects models, respectively. We performed the LR test to
choose the most applicable model among them. The null hypoth-
esis that the spatial fixed effects nested in spatial and time fixed-

Table 7
Influencing factors.

Explanatory variables Definitions of variables Key references Predicted
effect

Transportation structure (TS) Proportion of the total of railway and water freight volume to total freight volume
(%)

Wei et al. [73]; Yuan et al. [34]; Wang
et al. [74]

Positive

Traffic infrastructure level (TIL) Per capita road area (km2) Zhang [75]; Ma et al. [76]; Liu et al.
[77];

Positive

Technological progress (TP) Ratio of GDP to energy consumption by the transportation industry (tons of
standard coal/104 Yuan RMB)

Scholl et al. [78]; Wei et al. [73]; Yuan
et al. [34]

Positive

Urbanization level (UL) Proportion of city population in total population (%) Wu et al. [79]; Xie et al. [80]; Lv et al.
[81]

Unknown

Population density of urban
area (PDUA)

Ratio of the total of urban population and urban transit to urban area (person/km2) Alford and Whiteman [82]; Modarres
[83]; Hong [84]

Unknown

Table 8
Unit root test.

LLC IPS PP - Fisher

InTSCDEE �5.760*** 1.592 60.039
InTS �3.986*** 0.844 67.354
InTIL 0.756 3.121 25.419
InTP �28.910*** �2.290*** 64.131
InUL �8.585*** �0.486 189.579***
InPDUA �3.986*** 1.344 81.149**
△InTSCDEE �14.411*** �3.691*** 157.892***
△InTS �0.6701 1.290 54.092
△InTIL 0.094 1.320 51.490
△InTP �19.958*** �5.730*** 193.394***
△InUL �9.890*** �2.217** 136.478***
△InPDUA �20.726*** �4.227*** 137.397***
△△InTSCDEE �29.158*** �7.558**** 134.718****
△△InTS �18.658*** �6.998*** 136.933****
△△InTIL �14.087*** �2.525*** 80.332**
△△InTP �18.781*** �6.775*** 140.771***
△△InUL �20.451*** �5.162*** 114.792***
△△InPDUA �29.337*** �7.361*** 139.967***

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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effects is rejected at the 1% significance level (LR test: 40.23,
P ¼ 0.000). The null hypothesis that the time fixed effects nested in
spatial and time fixed-effects is rejected at the 1% level of signifi-
cance (LR test: 319.44, P ¼ 0.000). Thus, spatial and time fixed-
effects are acceptable. According to that results, we explain the
deciding factors of TSCDEE.

The coefficient for transportation structure is notably positive,
which illustrates that a higher proportion of rail and water traffic
freight volume will lead to a higher TSCDEE, as expected. The
amount of road freight transportation accounted for more than 74%
of the total freight volume in China for every year of the study
period. By contrast, both the railway and water traffic assumed a
lower share of freight transportation during the same time period
[58]. Therefore, it is very important to adjust the transportation
structure policy by converting the long-distance transport model
for bulk cargo from highway transport to railway and water
transport [92].

The regression coefficient of the traffic infrastructure level is
significantly positive, meaning that the increase in traffic infra-
structure level can indirectly promote TSCDEE to some extent. The
positive correlation does not indicate that the government should
blindly increase investments in transportation infrastructure.
Generally speaking, the traffic infrastructure levels in the western
regions, especially in small and medium-sized cities, are compar-
atively lower. Therefore, the Chinese government should coordi-
nate regional infrastructure construction.

Technological progress had a remarkably positive correlation
with TSCDEE. From 2010 to 2016, transportation sector energy in-
tensity gradually decreased from 1.48 TCE/104 yuan RMB to 1.2 TCE/
104 yuan RMB [57], as the Chinese government enacted a range of
energy-saving policies and technologies that have been widely
implemented.

Urbanization level would significantly hinder the realization of

local TSCDEE. Although urbanization can bring a notable increase in
traffic demand, the irrationality of the regional transportation and
energy consumption structures still appear in the utilization of the
transportation production factors, which do not generate positive
agglomeration effects.

Population density of urban area had a significant negative in-
fluence on TSCDEE. In the current period, the constant expansion of
the population and urban land area is a common trend in China.
The population density of urban area in China increased from 2209
person/km2 in 2010e2408 person/km2 in 2016 [57]. The regions in
which the population density of urban area is developing rapidly
should be given more attention. For example, both Guizhou and
Qinghai have experienced rapid increases in population density of
urban area from 2010 to 2016, and their TSCDEEs decreased rapidly.

8. Conclusions and policy implications

The accelerated transition to an energy system with low carbon
emissions is demanded by society and the times [93], and China's
TSCDEE data have grown at their fastest rates since 2012. In a po-
litical sense, it is possible to explain this acceleration in terms of a
combination of the CPC's ecological civilization model and the
MOT's green transport policies [75]. However, what does seem
fairly clear is that the overall level of TSCDEE in China was low and
total transport CO2 emissions grew at the fastest rates seen for
years. In the early developmental periods, factors including back-
ward technology, insufficient environmental protection conscien-
tiousness, and ‘extensive way’ of development had adverse impacts
on the energy-saving and emission reduction efforts in the trans-
portation sector. Although China has issued a series of policies to
improve this situation, the effects of these policies have not
emerged for a period of time due to intensive capitals and long
circles nature of transportation industries [72,94]. To achieve the
goals of the Paris Climate Accords, the Chinese government needed
to focus on more effective and sustainable transportation devel-
opment policies [28,31,95]. As shown by the SDM regression data,
transportation structure, traffic infrastructure level, and techno-
logical progress all had significant positive effects on TSCDEE, while
both urbanization level and population density of urban area had
significantly negative effects on TSCDEE. It is noteworthy that the
regression coefficient of technological progress is larger than that of
the other two positive independent variables, which is consistent
with the report of Cui and Li [6]. This shows that technological
progress is a critical factor in achieving low-carbon transportation.

Urgent action by national governments is essential for realizing
the mitigation commitments made in their respective Nationally
Determined Contributions [96]. Based on the SDM regression re-
sults, this study suggests the need for a series of actions: (1) The

Table 9
Cointegration test.

Alternative hypothesis: common AR coefs. (within-dimension)
Statistic Weighted statistic

Panel v-statistic �570.643 �5.705
Panel rho-statistic 6.299 6.295
Panel PP-statistic �6.958*** �15.552***
Panel ADF-statistic �3.309*** �3.976***

Alternative hypothesis: individual AR coefs. (between-dimension)
Statistic

Group rho-statistic 8.706
Group PP-statistic �20.681***
Group ADF-statistic �3.709***

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 10
Spatial Durbin model regression results.

Spatial fixed-effects Time fixed-effects Spatial and time fixed-effects

TS 0.129*** 0.038* 0.112***
TIL 0.038 0.041 0.040*
TP 0.509*** 0.672*** 0.452***
UL �1.216*** 0.097 �0.883***
PDUA �0.207*** �0.013 �0.146 ***
W*TS 0.008 0.200*** �0.024
W*TIL 0.054 0.517*** 0.031
W*TP �0.081 0.250** �0.132
W*UL 1.487*** 0.068 1.435***
W*PDUA 0.337*** �0.078 0.393***
R-squared 0.643 0.443 0.632
Log-likelihood 289.945 94.093 320.174

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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government should rationally plan for local investment in trans-
portation industries, and perfect an effective traffic infrastructure
system, and improve the system of energy-saving emissions re-
ductions in transportation industries. (2) Regional development
disparity needs to be considered in formulating the targets and
policies of emission reduction [97]. Every province should formu-
late a suitable transportation policy for emissions reduction based
on its local economic development and technology levels. Coastal
areas should assume more responsibility for energy conservation
and emission reductions in their transportation industries and
impose stricter restrictions on sewage discharge standards. China's
inland areas must ensure that transportation sector growth and
ecological protection in transportation can be achieved simulta-
neously. (3) Regional technical cooperation should be strength-
ened. A long-term communication mechanism is suggested to be
established to connect regions. The coastal provinces are encour-
aged to intensify the technical support to the interior provinces, in
order to balance regional development. (4) The government should
accelerate the adjustment of the transportation structure by con-
verting the bulk cargo transport mode from road transport to
railway transport or water transport. (5) Currently, China is at a
critical period of urbanization and industrialization [98]. The new
urbanization process need to be coordinated with traffic infra-
structure construction to avoid repeated construction or traffic
undersupply. (6) Financial subsidies helps to gradually lower down
the public transportation fare, thereby playing an important role in
nudging urban residents to choose greener transportation mode,
such as bus, rail and cycling [99,100]. The provinces with rapid
urban population growth should actively adopt finance subsidy
policies to promote the use of both urban public transportation
means and new energy vehicles.

Several limitations in this paper point to a need for further study
and future improvement. First, the study has used the province as
the basic spatial unit. Future research could expand the research
perspective from the province to the region and country, which
could provide a more meaningful reference for global trans-
portation sustainability. Second, subsequent research could focus
more on specific traffic departments, by examining, for example,
the carbon dioxide emissions efficiencies for railway, highway,
waterway, and airline transport. Finally, we propose that the na-
tional statistics offices collect other transportation pollution data,
such as those on the emissions of nitric oxides and carbon mon-
oxide, to support a comprehensive study of the sustainable devel-
opment of Chinese transportation.
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