
DELFT UNIVERSITY OF TECHNOLOGY

MASTER THESIS

FLEXIFABRICATE: PLASTIC WELDING TECHNIQUE USED TO JOIN PLASTIC LAYERS
FOR ORIGAMI ASSISTIVE GLOVE FABRICATION

Hamed Abolhassan Beigi

DELFT UNIVERSITY OF TECHNOLOGY

MASTER THESIS

FlexiFabricate: Plastic welding technique used
to join plastic layers for origami assistive glove

fabrication

Author:
Hamed Abolhassan Beigi (5048478)

Graduation committee:
Dr. ir. Arno Stienen, Chair & Supervisor
Prof.dr. Frans van der Helm, Committee member

August 22, 2024

Mechanical Engineering, department of BioMechanical Engineering

1

CONTENTS

I INTRODUCTION 3

II Device Design 6
II-A structural Backbone 6

II-A1 Workspace 7
II-B Hardware Setup 8
II-C Software Selection 9

II-C1 Homing, soft,
and hard limit
switches 10

II-D Operating Procedures 10
II-E Soldering Iron Holder Frame 11
II-F Soldering Iron Tip Design . 12
II-G Parameter tuning 14

II-G1 Steps per Mil-
limetre 14

II-G2 Sealing temper-
ature 15

II-G3 Dwell time and
sealing speed . . . 16

II-G4 Vertical pressure . 16

III Method 16
III-A Origami structure fabrication 17
III-B Glove fabrication 18
III-C Technical performance . . . 18

III-C1 Precision test . . . 18
III-C2 Sealing quality γ . 20
III-C3 Material test . . . 21

IV Result 22
IV-A Origami structure fabrication 22
IV-B Glove Fabrication 22
IV-C Technical performance . . . 22

IV-C1 Precision test . . . 23
IV-C2 Sealing quality . . 24
IV-C3 Material test . . . 25

V Discussion 26

VI Conclusion 28

VII Future recommendations 28

References 28

Appendix 30
A Python script to convert co-

ordinates to G-code 30
B Python script to check the

output G-code file from
Inkscape 32

C Python script for precision
test 34

D Precision test analysis 37
E Sealing quality Python code 39
F Sealing quality C++ code . . 52
G Precision test Trajectory G-

code 53
H Sealing quality G-code . . . 54
I Origami pattern G-code . . . 58
J Hand trajectory G-code . . . 61
K Additional Figures 63

2

ACKNOWLEDGMENT

The authors would like to thank Dr. ir. Arno Stienen, for his valuable guidance and support
throughout this research. Arno’s knowledge and guidance were key in shaping my research, and his
consistent support made a big difference in bringing this work to completion.

I also acknowledge Delft University of Technology for providing the necessary resources.

Hamed Abolhassan Beigi.
Delft, August 2024

3

Abstract—This paper aims to explore innova-
tive fabrication methods for assistive gloves using
origami design principles. The study addresses the
limitations of current assistive gloves, such as bulki-
ness and lack of customisation, by developing a novel
fabrication method that improves ergonomic design
and manufacturing flexibility. The proposed method
integrates 3D printing and welding techniques to cre-
ate lightweight, customisable gloves that enhance re-
habilitation for individuals with hand impairments,
particularly stroke survivors. The paper details the
design process, and testing methods, concluding with
successfully creating a new fabrication approach for
origami-based assistive gloves.

Index terms— Assistive Glove, Origami
robotics, self-folding robots, Fabrication, 3d print-
ing, welding technique, heat-sealing plastic, heat-
sealing elastic, 3d plotter machine.

I. INTRODUCTION
Hand functionality is paramount to our daily

lives, enabling us to perform a multitude of tasks
with precision and dexterity. From simple actions
like grasping objects to complex manipulations
required in professional or domestic settings,
our hands are indispensable tools. However,
when hand functionality is compromised due to
injury, disability, or medical conditions such as
stroke, it can profoundly impact an individual’s
independence and quality of life.

The loss of hand functionality can present
significant challenges, ranging from difficulties
in performing basic self-care tasks to limitations
in engaging in work or recreational activities.
Individuals who experience a decline in hand
function often face barriers to independence [1]
and may require assistance with even the most
routine activities [2].

Various factors can contribute to the loss
of hand functionality, including traumatic
injuries, degenerative conditions like arthritis, and
neurological disorders such as stroke. Among
these, stroke stands out as a leading cause
of disability worldwide with approximately
800,000 Stroke-patients annually in the USA
[3], frequently resulting in impairments in motor
control and coordination, particularly on one side
of the body, including the hand.

Assistive gloves represent a promising solution
for individuals grappling with hand impairments
[4], including those stemming from a stroke.
These gloves leverage innovative technologies
to support weakened hand muscles, enhance
grip strength, and facilitate movement precision.
Importantly, they serve as valuable tools
in rehabilitation, helping individuals relearn
essential motor skills and regain independence in
daily activities.

For stroke survivors, assistive gloves play a
crucial role in rehabilitation by providing targeted
assistance to weakened hand muscles and promot-
ing neural recovery. These gloves help stimulate
the brain’s plasticity by offering tactile feedback
and guiding movements, facilitating the rewiring
of neural pathways necessary for improved hand
function [5]. Additionally, assistive gloves can
assist individuals in performing repetitive exer-
cises vital for motor skill relearning, contributing
to more efficient and effective rehabilitation out-
comes [6].

While an array of assistive gloves exists to
aid patients with hand functionality impairment,
they often grapple with challenges such as
excessive bulk, weight, intricate designs, and
discomfort, consequently resulting in suboptimal
fit. Furthermore, these gloves are predominantly
available in standardized sizes, rendering
customization for individual patients unattainable
[3], [9], [10], [11], [12], [13]. These limitations
highlight the need for advancements in ergonomic
design and manufacturing flexibility.

Origami, an ancient Japanese paper-folding art,
has obtained a growing interest in the field of
robotics, primarily due to its unique attributes.
These distinctive features encompass the capacity
to seamlessly transition from a 2D planar structure
to a 3D configuration, adapt to various modes
and shapes, execute tasks both autonomously
and manually, possess a lightweight construction,
enable straightforward manufacturing processes
[14], and offer a versatile array of activation
methods and control strategies. These exceptional
qualities have shown in a new era of robotics,
enabling the creation of previously unfeasible

4

Fig. 1: Left figure: A Miura Ori folding pattern made on a single layer of paper. a) folded state b)
partially folded state. Chen et al [7].

Fig. 2: a) Typical Yoshimura folding pat-
tern. Solid and dashed lines represent
mountain and valley folds. A typical
Yoshimura pattern consists of uniform
triangles that fold into a cylindrical shape
and can expand and contract under uni-
axial force, b) cylindrical structure made
with Yoshimura pattern. This figure is
taken and modified from Sue et al [8].

robots within the confines of conventional
robotics, primarily rooted in the assembly of rigid
components.

Moreover, Origami robots are designed
to embrace the concept of compactness and
flexibility, enabling them to perform a diverse
array of tasks. Their design is an art form, relying
on geometric principles and intricate folding
patterns that transform flat sheets of material into
three-dimensional marvels [15]. This transition is
achieved by the purposeful utilization of mountain
and valley folds, serving as pivotal mechanisms
to generate precise folding actions that induce
either the contraction or expansion of the origami

robot’s overall structure or specific components.
Importantly, a significant proportion of origami
robots adhere to universally recognized design
principles when constructing these crease patterns
such as [16]:

1) Miura crease pattern (Figure 1).
2) Yoshimura pattern (Figure 2).
3) Kresling pattern.
4) Waterbomb pattern.
5) Magic ball pattern.

Fabricating origami designs involves converting
these designs into tangible structures, necessitating
a thorough understanding of both materials and
manufacturing techniques. The materials used can
vary from traditional paper to advanced options
like polymers or metals [18]. Similar to crafting
an intricate origami piece, the fabrication pro-
cess requires precision and meticulous attention
to detail to ensure the final product functions as
intended. Origami robotics also employs standard
fabrication methods akin to those used in design.
There are three primary methods for fabricating
an origami design [16]:

1) Single layer fabrication (Figure 4).
2) Layer-by-layer fabrication (Figure 5)
3) 3D print (Figure 3)

Furthermore, the single-layer fabrication
method as the name suggests makes use of only
one single layer of material and employs advanced
printing technology or laser-cut machinery to
create the design patterns. This method has the
limitation of not being able to merge multiple
layers of the materials for designing more

5

Fig. 3: 3d printing fabrication method. A 10-layer tower with an octagon as a base geometry: (a) CAD
model and (b) 3D printed tower shown in different configurations [17].

Fig. 4: Single layer fabrication method using
an advanced printing technology. [19]

Fig. 5: Layer-by-layer manufacturing process
an illustrative example. The assembly process
of the segment: (a) cardboard in a regular
arrangement, (b) connect the active platforms
and static platforms, (c) fold the 3rd unit into
shape, (d) fold the 2nd unit into shape, and (e)
fold the 1st unit into shape [20].

complex origami robots and is constrained by
the use of a single uniform material. In addition,

this method restricts folding in a single direction
and potentially weakens crease lines, which
can lead to a reduced operational lifespan, as
highlighted in [21]. While the layer-by-layer
manufacturing method mitigates the limitations of
the single-layer approach by allowing for multiple
layers with diverse materials and crease patterns
in various orientations, it necessitates the creation
of individual crease patterns for each layer
using laser-cut machinery. These layers are then
assembled using techniques such as heat-press,
pick-and-place automated robots, or manual
assembly. Consequently, this method increases
both the time required and the complexity of the
fabrication process. While 3D-printing technology
can use different materials to construct a given
design pattern by adding the materials layer
by layer, this method comes also with some
limitations such as dimensional accuracy and
precision, poor adhesion, residual stress, and
printing time [22].

In summary, in light of the crucial role
of hand functionality in daily life and the
challenges individuals face when impaired, there
is a pressing need for innovative solutions to
enhance rehabilitation and improve quality of
life. Existing assistive gloves, while promising,
often fall short due to their bulkiness, complexity,
and lack of customization options, hindering
their effectiveness and user comfort. While,
the origami concept provides features such as
compactness, and lightweight to address the
downsides of the existing assistive gloves, the
current fabrication methods for origami design

6

Single-layer Layer-by-layer 3D printing

One single layer each layer should be made individually Poor adhesion

Uniform material need another method to attach the layers Residual stress

uni-directional crease creation time consuming time consuming

Weak crease lines

TABLE I: The limitations in the existing fabrication methods in constructing origami designs.

patterns present notable restrictions, including
poor dimensional accuracy, time-consuming
processes, and restricted material choices. Table
I gives an overview of the limitations in the
existing fabrication methods used in the field of
origami robotics.

In the context of origami robots the need for
a new fabrication method is clear that can use
multiple layers of the material, does not require
additional methods or mechanisms to put the final
product together, can take at least two different
or the same material types, has relatively high
dimensional accuracy and precision, does not
have complex fabrication process, is fast, has low
residual stress and enables pneumatic activation.

Additionally, because the final goal of the
proposed method in this paper is to fabricate
origami assistive gloves, the product should
generate sufficient force required to bend
the fingers. I.e., the outcome of the machine
should withstand the pressure needed to bend
fingers. Also, it should enable the fabrication
of customized, lightweight, and ergonomic (not
bulky) gloves. Moreover, the produce origami
glove should adhere to the concept of origami.
That is to enable the transition from 2D to 3D
upon activation and re-configuring to the initial
2D state when deactivated.

to sum up, the fabrication method should be
able to:

1) Attach at least two different or the same
material layers to fabricate a glove.

2) To achieve this in one single machine. I.e.,
it does not need any additional device.

3) Have a dimensional accuracy and precision,
a root mean square error (RMSE) smaller

equal to 0.5 [mm].
4) Have a user-friendly interface. I.e., it is easy

to work with.
5) Construct origami design patterns that can

transfer from a 2D to a 3D state upon
activation and

6) Re-configure to its initial state when deacti-
vated.

7) Enable pneumatic activation of the produced
origami design pattern.

8) Produce design patterns that can tolerate the
activation force required to bend the fingers
approximately equal to 120 [kpa] or 1.2
[bar] [23].

9) Make lightweight customized assistive
gloves

10) Make ergonomic assistive gloves. I.e., the
glove should be comfortable to wear.

Therefore, this study aims to develop a novel
fabrication method for origami design patterns,
striving to overcome the existing limitations in
the current fabrication techniques. By address-
ing issues such as dimensional accuracy, material
versatility, and production efficiency, this new
method seeks to enable the creation of lightweight,
customizable origami assistive gloves that are er-
gonomic and user-friendly. Through the integra-
tion of advanced manufacturing technologies and
optimized design principles, we aim to streamline
the fabrication process and improve the overall
functionality and comfort of assistive gloves for
individuals with hand impairments, particularly
stroke survivors.

II. DEVICE DESIGN

A. structural Backbone

The Ultimaker 3 (UM3) 3D printer frame is
given as the structural backbone, Figure 6 for the

7

Fig. 6: The structural backbone of the ma-
chine.

FlexiFabricate system, owing to its robustness,
adaptability, and availability. The UM3 uses three
stepper motors, three hard limit switches, and a
build plate.

1) Workspace: The workspace defines the ma-
chine’s internal dimensions, indicating the area the
machine can effectively reach. Therefore, these
dimensions must be considered during pattern de-
sign. Notably, the new fabrication method, which
involves using a soldering iron rod for material
sealing, results in the original build dimensions of
the UM3 being different from the workspace of the
FlexiFabricate. This variation is primarily due to
the necessity of a new frame design to support the
soldering iron for the FlexiFabricate. Furthermore,
the new soldering iron holder frame must meet
specifications different from the original UM3
nozzle frame. For example, a frame designed for
a nozzle that prints material onto a build plate
does not need to counteract shear forces gener-
ated by the frame’s movement in direct contact
with material layers, a critical requirement for a
soldering iron frame in heat-sealing plastic layers.
Additionally, a soldering iron rod’s longer length
than a nozzle leads to a significantly reduced
plate height. Table II presents the maximum travel
distances along each axis for both the original
UM3 and the new FlexiFabricate.

In addition, the machine’s plate contacts the sol-

X [mm] Y [mm] Z [mm]
UM3 [24] 216 216 200

FlexiFabricate 212 212 145

TABLE II: Workspace of the machine.

dering rod tip at Zplate−height = 136 [mm] and
starts exerting force on the spring. Therefore, it is
essential to consider the thickness of the material
while developing a G-code file. Since pressure is
directly affected by the Z-level, equation 1 should
be used to ensure the pressure does not exceed the
optimum pressure.

Zcontact = Zplate−height + τ (1)

Where τ refers to the thickness of the material.

It is pertinent to address that an enormous
vertical pressure applied by the machine’s plate
to the soldering iron rod will diminish the
fluidity of the machine’s motion along the XY
plane and may result in the loss of force by the
z-stepper motor due to the fact that the stepper
motors are in general not good at torque or
force generation. So, they can hold a maximum
force and if the force exceeds this maximum,
the stepper motor will turn in the backward
direction. Another downside is that this backward
motion is not accounted for by the machine i.e.,
the real location of the rod tip is no longer the
same as indicated by the machine, and a homing
procedure is required for the machine to know its
real position.

Another important feature is that the machine’s
workspace is defined in the negative space mean-
ing that any given command to the machine should
be in the negative direction. For example, the
following command line will move the machine
from its current position to −100[mm] in all three
axes:

; To move the machine 100 mm in the space.
Note that the F 100 refers to the
feed rate or the speed of the movement

G01 X-100 Y-100 Z-100 F 100

Listing 1: Gcode example

8

Finally, the XY-origin of the soldering iron tip
is set to the front-left of the workspace, opposite
to the machine’s home position.

B. Hardware Setup

One of the most critical parameters in defining
the performance of the FlexiFabricate system is
ensuring precise control over the printer’s move-
ment, avoiding any unintended motion beyond the
commanded path. To take control of the machine,
the original UM3 controller board is replaced with
an Arduino UNO, a highly regarded controller
board in manufacturing CNC and 3D printer ma-
chines. The Arduino UNO board requires a CNC
shield and three stepper motor drivers to operate
the stepper motors.

The chosen CNC shield must be compatible
with the UNO board and facilitate precise
control of the stepper motors. Consequently, the
Arduino CNC Shield V3.00 is selected due to
its capability to accurately control four stepper
motors, compatibility with the Arduino UNO, and

Fig. 7: Hardware components used in
FlexiFabricate. The top left image shows
the Arduino CNC Shield, the top right
image depicts the Arduino UNO board,
the bottom left one demonstrates four
A4988 stepper motor drivers and the bot-
tom right shows a USB cable to connect
the Arduino UNO board to the operating
system (laptop or PC).

Fig. 8: The open loop system used in the
CNC machines to drive the stepper motors.
The controller sends the incremental steps as
pulse signals to the stepper motor drivers.
Consequently, the drivers convert these pulses
into the steps for the stepper motors to run
toward the target position. The figure is taken
and modified from [25]

support for micro-stepping of the stepper motors
for enhanced path accuracy. Additionally, the
A4988 stepper motor driver is selected to drive
the stepper motors, primarily because it supports
micro-stepping from 1

2 to 1
16 micro-steps [26]

and is fully compatible with the Arduino CNC
Shield V3.00. Figure 7 illustrates the mentioned
Arduino UNO board, Arduino CNC Shield, the
A4988 stepper motor drivers, and the USB cable
to connect the UNO board to an operating system.

It is also worth noting that the Arduino UNO
controller board, the Arduino CNC Shield V3.0
and stepper motor drivers follow an open-loop
system to drive the stepper motors as shown in
Figure 8. In an open-loop system, the distance
from the current location to the target location
is divided into a number of steps for precise
and incremental positioning of the machine by
the controller (Arduino UNO and Arduino CNC
Shield). Furthermore, these incremental steps,
also commonly referred to as micro-steps, are
then sent to the stepper motor drivers in the
form of pulse signals. Afterwards, the stepper
motor drivers convert these pulse signals into the
derivable steps for the stepper motors [25].

Figure 9 shows how to connect the Arduino
UNO board, Arduino CNC Shield V3.00, and
A4988 the stepper motor drivers. A detailed
assembly explanation can be found in [26].

In addition, Arduino CNC Shield V3.00 allows
using three jumpers to enable micro-stepping of

9

Fig. 9: Connecting Arduino UNO board
to Arduino CNC Shield and A4988 step-
per motor drivers.

the A4988 stepper motor driver for enhancing
path-following accuracy and smooth motion of
each stepper motor as shown in Figure 10. To
enable the micro-stepping a jumper can be inserted
into each pin. Table III shows how to enable
different micro steps from the full to the sixteenth
step for each stepper motor. Furthermore, micro-
stepping is used in the controller system of the
CNC machines to divide the number of steps
into smaller steps to enhance the path-following
capability. For example, if a stepper motor uses
a full-step of 1.8◦, with half micro-step activa-
tion it will step in an increment of 1.8

2 = 0.9◦

which results in doubling the precision of the
machine. However, enabling the micro-stepping
technology has the drawback that it reduces the
maximum torque generation by the stepper motor.
As a consequence, the stepper motors can deliver
less power. However, this Pitfall may not be of
much importance for 3d printer machines, it plays
a very critical role in FlexiFabricate. Primarily,
because, as mentioned earlier, in FlexiFabricate
the stepper motors must overcome shear forces
due to the direct contact with the material for
enhanced heat flux. Therefore, an attempt should
be made to achieve an optimum balance between
path-following precision and torque generation
capacity.

Fig. 10: Inserting jumpers in the M0, M1,
and M2 pins on Arduino CNC shield
v3.00 to enable micro stepping of the
stepper motors [27]. Table III gives an
overview of the possible micro-steps of
the A4988 stepper motor driver.

M0 M1 M2 Microstep resolution
LOW LOW LOW FULL STEP
HIGH LOW LOW HALF STEP
LOW HIGH LOW QUARTER STEP
HIGH HIGH LOW EIGHTH STEP
HIGH HIGH HIGH SIXTEENTH STEP

TABLE III: Enabling micro-steps of the A4988
stepper motor driver [26]. To set a pin HIGH a
jumper should be inserted into that specific pin
on the Arduino CNC Shield v3.00 as shown in
Figure 10.

C. Software Selection

In the field of software architecture for
advanced manufacturing systems, a crucial
decision involves selecting the appropriate
framework: developing a bespoke solution
tailored specifically to the machine’s needs or
adopting a universal framework with broader
applicability. Opting for the latter one, the GRBL
library [28] is chosen as the cornerstone of
our software integration strategy. This decision
is driven by GRBL’s renowned versatility
and compatibility with G-code, making it an
ideal choice for precise communication with
CNC machines. This capability is essential for
executing intricate fabrication tasks and ensuring
exact machine movements.

10

The GRBL library offers extensive control over
critical machine parameters, including:

• Homing Procedures
• Soft and Hard Limits
• Maximum Travel Distances
• Step Resolution
Next, to enhance communication with the ma-

chine, the Universal G-code Sender (UGS) plat-
form [29] is chosen mainly for its intuitive inter-
face and seamless compatibility with GRBL. Key
features of UGS include:

• G-code Testing and Visualization: Allows
preemptive identification of potential issues
such as exceeding maximum travel distances
along the X and Y axes.

• User-friendly Interface: Simplifies commu-
nication with the FlexiFabricate system.

This pre-execution validation is crucial for
ensuring smooth and error-free operation during
production runs, significantly enhancing system
reliability and operational efficiency.

The UGS platform can also be used to set
and store important parameters such as maximum
travel distance, maximum feed rate, and steps
per millimetre to the EEPROM of the Arduino
UNO controller board. For example, the following
command lines are used to change and store the
maximum travel distance in X, Y, and Z directions
to the value in table II.

$130 = 212; command to change the maximum
travel distance in the X-axis

$131 = 212; command to change the maximum
travel distance in the Y-axis

$132 = 145; command to change the maximum
travel distance in the Z-axis

Listing 2: An example of the commands to change
and save the maximum travel distance in UGS
platform.

1) Homing, soft, and hard limit switches:
Next, the Homing feature provided by the grbl
library is enabled. Homing is important for the
machine to know its position especially when
the machine’s power is off or the users move
the motors by accident. Activating Homing
requires other important features, namely soft

and hard limits. As the names suggest, these
features ensure that the machine will not move
beyond its workspace limits. For example, if a
command tries to send the machine outside of
its maximum travel distance, soft limits will not
start the stepper motors and will show an alarm
to check and correct the command. Similarly,
hard limits will stop the stepper motors from
running if they are pressed with an alarm that the
machine coordinates are incorrect and a Homing
is required for the machine to know its actual
position.

To activate the hard limits the outputs of the
limit switches are inserted into the corresponding
pins of the Arduino CNC Shield V3.00. That are
pins 9, 10, 11 for x, y, z direction respectively.

D. Operating Procedures

Communication with the machine is conducted
via the UGS platform. To command the machine
using the UGS platform first, the Arduino UNO
board should be connected to the operating
system (laptop, PC) through the provided USB
cable, Figure 7. Then, the UGS platform can take
control of the machine. A detailed explanation of
how to use the UGS platform is provided in [30]
(steps 1 to 3). After successfully connecting the
UGS platform to the controller board any G-code
commands and files can be run through the UGS
interface.

It is important to highlight that G-code is the
only programming language the machine can
understand. Therefore, writing a proper G-code
file is essential to obtain the desired result.
Different platforms can be used to write G-code.
For example, Notepad ++ [31] can be used to
write a G-code which also provides a feature to
visualize a G-code, e.g., NCentic gcode plugin
[32] while developing.

Another approach to designing crease patterns
can be achieved through programming languages
like Python or MATLAB. The generated design
can be stored in a two-dimensional array,
representing the X and Y coordinates. These
coordinates can then be converted into a G-code
file via the provided Python script (Appendix

11

A). When employing this method, it is crucial
to consider that it presumes the design pattern
is uniform, necessitating the machine to level
the Z-height only once. For designs that include
unconnected parts, it is strongly recommended to
separate the coordinates from the brake lines to
ensure proper execution.

An alternative method for utilizing the machine
entails using Computer-Aided Software Design
(CAD) such as SolidWorks to develop a design
pattern. Since origami design patterns are created
in a two-dimensional format, the pattern can be
saved in the SVG file format and converted into G-
code via Inkscape [33]. Instructions for this con-
version are provided in [34], [35] and Appendix K
(Figures 36(d), 36(e), and 36(f)). Additionally, a
Python script (Appendix B) is available to convert
the Inkscape output into a format that meets the
Universal Gcode Sender (UGS) requirements, thus
making it suitable for FlexiFabricate. To verify
that the converted file complies with the machine’s
specifications, the G-code file can be visualized
and checked using Notepad++ prior to loading into
the machine.

Fig. 11: Magnetic clamps used to fix the ma-
terial layers on the build plate of the machine.

An important factor in operating the machine
is the fixation of the material layers to the ma-
chine’s plate. To do this a series of 12 magnets
are provided to fix the material layers, shown
in Figure 11, to the build plate. Because the
original build plate of the machine is made from

diamagnetic Aluminium, a ferromagnetic material
with a thickness of 2 [mm] is stuck to the original
build plate, using double sided tapes.

Once the material layers are securely fixed, the
soldering iron station can be activated, and the
operating temperature set. It is important to note
that the soldering station requires approximately
5 to 7 minutes to heat the soldering iron tip to
the desired temperature. Additionally, it is worth
mentioning that altering the temperature setting,
such as adjusting from 200◦C to 300◦C, takes
about 3 minutes.

Fig. 12: A complete view of the soldering
iron frame.

E. Soldering Iron Holder Frame

Considering the approach introduced by Flex-
iFabricate, which leverages a soldering iron for
material fusion, the traditional extrusion nozzle of
the Ultimaker 3 has been replaced with a soldering
iron assembly. Although many different soldering
irons exist in the market, the Velleman solder
station (VTSS4N 5410329442477) [36] is chosen
to replace the original nuzzle of the UM3. This
choice is mainly supported by its high-temperature
range from 150 to 450◦C [36] and low cost com-
pared to other soldering stations. It is worth noting
that this high-temperature range enables using
materials with different melting points enlarging

12

the application scope of the FlexiFabricate. This
alteration necessitates the development of a tai-
lored frame solution to accommodate the soldering
iron and optimize its functionality for the specific
requirements of heat-welding plastic materials.

Fig. 13: The guidelines used in the sol-
dering iron frame. The guidelines are
designed with high precision to allow
smooth vertical movement of the solder-
ing iron while restricting non-intentional
movement in the XY plane.

To design a robust frame capable of carrying
the soldering iron, it is essential to decide whether
to create a rigid frame with a fixed tip position
or a frame that allows the soldering iron tip to
move along the Z-axis. Due to the importance of
applying vertical pressure to achieve high-quality
sealing strength in heat sealing plastic techniques
[37], the latter design approach was chosen. This
involves designing a frame that permits the plate
to move higher than the contact point with the
soldering iron tip, specifically moving above
Zcontact as outlined in equation 1. Furthermore,
a frame that allows controlled motion along
the Z-axis while preventing any unintended
movement in the XY plane ensures the ability
to determine the optimal pressure required for
achieving maximum heat sealing strength.

The frame design, depicted in Figure 12, is
engineered with high precision to ensure optimal
performance during the soldering process. The
frame is configured to apply and maintain
vertical pressure during sealing to streamline an

efficient heat transfer to the material layers. The
application of steady vertical pressure ensures the
obtaining of stable sealing lines.

Additionally, the frame is fortified to withstand
potential perturbations along the z-axis, acting as
a buffer to absorb and mitigate any disturbances
that could damage the soldering iron components
or the materials under processing.

To realize this, the soldering iron frame utilises
a spring, as depicted in Figure 12. Including a
spring in the frame structure allows the soldering
iron to exert and regulate the pressure on the
soldering iron ensuring the desired vertical
contact force and an effective heat transfer from
the soldering iron to the material layers are
retained. Likewise, a spring in the frame body
absorbs vertical perturbations, thereby preventing
damage to the soldering iron.

To facilitate the movement of the soldering
iron in the Z-direction, the frame utilizes three
guidelines, as depicted in Figure 13. These
guidelines are secured to the soldering iron holder
frame at the top and the soldering iron tip at the
bottom, with a maximum allowable movement
distance constrained to the zero-length of the
spring (30 [mm]). The guidelines are fabricated
with high precision to minimize friction during
vertical movement.

Finally, accurate control over the soldering
iron’s positioning is imperative for maintaining
the fidelity of the fabricated structures. To this
end, the frame design incorporates mechanisms to
constrain undesired motion within the XY plane,
thereby ensuring that the soldering iron’s move-
ments are exclusively dictated by the commanded
motion of the machine’s control system.

F. Soldering Iron Tip Design

The diameter and shape of the soldering iron
tip are critical design parameters that significantly
impact the heat sealing quality. Specifically, the
tip diameter determines the weld thickness, neces-
sitating the complete closure of weld lines, thus
making selecting an optimal diameter essential.

13

Fig. 14: Original soldering iron tip of Velleman
Soldering station. The soldering iron has a
sharp head and a small tip diameter.

While a very small tip diameter may result in
insufficient heat sealing strength, an excessively
large diameter impairs the machine’s capability
to produce fine crease lines, which are crucial
for origami-designed assistive gloves. Therefore,
achieving a balance between sufficient weld thick-
ness and the ability to fabricate small crease lines
is imperative.

Fig. 15: The rounded soldering iron tip
used in FlexiFabricate to weld the mate-
rials. A rounded tip form ensures smooth
contact with materials and minimizes the
shear forces generated by the movement
of the soldering iron frame.

Fig. 16: The tip contains a nut where the sol-
dering iron rod (heat element) can be screwed
in, enabling the use of multiple soldering iron
tips. A bolt and nut mechanism ensures the tip
and rod’s position remains fixed and supports
sufficient heat transfer from the soldering heat
element to reach the desired sealing temper-
ature. The tip displayed in this figure has a
contact diameter of 1 [mm].

Determining the minimum and maximum thick-
nesses the machine can handle is essential for
optimizing performance. Experimental trials with
various tip diameters, validated through pneumatic
testing for weld closure, help establish the min-
imum effective thickness. Conversely, the max-
imum diameter is constrained by the precision
required for crease patterns. Multiple soldering
tips with varying diameters are recommended to
accommodate these diverse requirements. Conse-
quently, tips with diameters of 1 mm, 2 mm, and
3 mm are produced, offering flexibility in welding
thickness to meet a range of design specifications.
In addition, the availability of multiple soldering
iron tips enables designers to create patterns with
varying levels of precision, facilitating the fabrica-
tion of intricate designs and allowing for tailored
solutions to specific project requirements.

The shape of the tip is crucial for ensuring
smooth adherence to design patterns without
damaging the material. For instance, sharp-edged
tips can induce shear forces that misalign or
tear layers along the motion path. Therefore,
a tip with a rounded edge is preferred since it
diminishes the chance to pull and rupture the

14

(a) Nema 17 stepper motor used in Ultimaker 3. (b) Technical features of the Nema 17 stepper motor used
in Ultimaker 3.

Fig. 17: The stepper motor employed in UM3.

material and ensures smooth movement. Besides,
a rounded-edge tip allows for gentle contact with
the material, minimizing unintended forces and
ensuring optimal performance.

The original soldering iron tip shown in Figure
14 has a sharp head and small diameter of 0.5
[mm] therefore, it necessitates implementing a
new soldering iron tip design with a flat surface
and rounded edges as illustrated in Figure 15.
A tip with flat surface ensures uniform contact
between the soldering iron and the material layers
resulting in uniform heat transfer through the
sealing thickness to the materials and improved
sealing quality.

To allow using different sealing thicknesses,
the new soldering iron heating element and tip
are designed to interlock precisely, akin to the
fit between a bolt and a nut as shown in Figure
16. This approach permits multiple iron tips to
be used with a single heating element, thereby
decreasing material consumption. Likewise, the
bolt-and-nut design ensures a stable connection
between the soldering iron rod and tip, enhancing
heat transfer due to the larger contact area.

Another important consideration in tip design is
the material selection. The material used for the
soldering iron tip should be chosen to minimize
the task execution time and prevent large heat loss

to the surroundings. while a low thermal conduc-
tivity material increases the task completion time,
a material with very high thermal conductivity will
excessively consume heat. Therefore, a relatively
low thermal conductivity material is chosen to
limit the heat transfer to the contact area of the tip
and reduce undesired heat loss with the ambient
air. Hence, the three soldering iron tips are made
of a steel rod. Stainless steel, with a thermal con-
ductivity of 15 W

m·K [38], is significantly efficient
and ensures fast heat transfer to the material for
improved dwell-time.

G. Parameter tuning

To optimize the machine’s performance it is
important to critically tune the parameters that
play a major role in the criteria that define the
performance. Therefore, this section aims to
clarify the reasons behind the chosen parameters.
It is important to mention that three parameters
”sealing temperature”, ”dwell time” and ”vertical
pressure” are the most important ones that define
the final performance of the machine. Accordingly,
these parameters will be chosen based on the
evidence to ensure optimum performance. Hence,
tuning these parameters will mostly be based
on the work provided by Cheng et al. (2007). [37].

1) Steps per Millimetre: The number of steps
per millimetre (SPM) for each stepper motor is

15

a key parameter that affects the machine’s per-
formance and accuracy. Therefore, having a good
understanding of the stepper motor type and tools
used to transfer the rotational movement of the
motors into linear motion such as belts and pulleys
is necessary. Moreover, to correctly tune the num-
ber of steps per millimetre, the following equation
has been used:

SPM =
SPR×MS

MPR
(2)

SPR refers to steps per revolution, MS to micro
steps and MPR to millimetres per revolution.

It is important to note that UM3 employs Nema
17 stepper motors, depicted in Figure 17(a). These
motors feature a full step size of 1.8◦, requir-
ing 200 steps to achieve a complete revolution.
Detailed characteristics of the Nema 17 stepper
motors are provided in Figure 17(b).

With the type of belts and pulleys used in
UM3, it takes 5 steps for the machine to move
the soldering iron 1 [mm] in the XY direction.
Which gives a total of 200

5 = 40 [mm] movement
for one revolution. Finally, the number of micro-
steps used in this machine equals 8. Using these
values the steps per millimetre in the XY-plane

Fig. 18: The change in the sealing strength
as a function of the sealing temperature for
three materials. Sample #1 and #2 are linear
low-density polyethylene with 104.6◦ melting
point. Sample #3 is low-density polythene with
a melting point of 88.9◦.[37]

can be determined and is equal to:

SPM =
200×8

40
= 40

Similarly, we can define the SPM in the Z-
direction. Since the Z-axis uses lead-screw instead
of a belt and pulley, it takes 8.5 MPR. Also, the
number of micro-steps for the Z-stepper motor
equals 16. Hence, we obtain:

SPM =
200×16

8.5
= 378.5

2) Sealing temperature: The temperature
at which sealing occurs is paramount for
achieving high sealing strength. While no singular
temperature guarantees robust material binding,
a strong bond is typically achieved within a
specific temperature range. Through experiments,
Cheng et al. (2007). [37] demonstrated that
this temperature range extends from below the
melting point to several degrees above it. Figure
18 provides a visual representation of how
temperature variation influences sealing strength
across different materials, offering valuable
insights into the optimal temperature parameters
for effective sealing.

Fig. 19: Heat-sealing strength at different tem-
peratures as a function of dwell time. The heat-
sealing strength increases significantly for a
dwell time of 1[s] and remains almost con-
stant. Another important observation is that
for the temperature below the melting point
(106−115 ◦) dwell time has almost no effect
on the sealing-heat strength, as this would be
expected since the materials are not melted
enough to bind together and as a result insuf-
ficient heat-sealing stress is achieved. [37]

16

3) Dwell time and sealing speed: As stated
in [37] dwell time is the time duration that the
material is in direct contact with the heat-sealing
rod. I.e., the welding time. Dwell time is a
function of sealing temperature. I.e., as the
sealing temperature increases the dwell time
decreases. An optimum dwell time is significant
for achieving a highly qualified heat-sealing
strength. As proven by Cheng et al. (2007) [37]
and demonstrated in Figure 19 the most efficient
dwell time is around 1[s] around the melting
point temperature. This means that the velocity at
which the machine should move the heating rod
is constrained by the dwell time to achieve the
best performance.

Despite the differing materials used in [37],
Figures 18 and 19 can act as a reference for
comparison, supporting the validity of the results
to be obtained in this study

4) Vertical pressure: A steady contact between
the rod and the material must be maintained to
ensure a proper heat flow rate from the sealing
rod to the material. However, as shown in Figure
20 increasing the pressure does not have a
large effect on the heat-sealing strength [37], an
optimum vertical pressure is needed to press the
sealing rod on the material to reach sufficient
heat flux from the rod and the material layers.

Fig. 20: Vertical pressure effect on the heat-
sealing strength. This graph shows that vertical
pressure does not considerably affect the heat-
sealing stress [37].

To obtain the vertical pressure, first, the spring
force used in the sealing rod frame should be
calculated as follows:

F = KZ (3)

Where K is the stiffness of the spring and
Z is the length change of the spring. Next, the
pressure can be computed as the force divided by
the soldering iron tip’s area (A). That is:

P =
F
A

(4)

Because the soldering iron has a circular tip, its
area can be calculated using the tip diameter (d):

A =
πd2

4
(5)

Fig. 21: Vertical pressure vs displacement.
The vertical pressure on the material increases
with displacement. Also, the pressure increases
noticeably with the decreasing tip diameter.
Therefore, to maintain an optimum pressure,
the vertical displacement of the spring used
in the soldering iron holder frame should be
altered for different tip diameters.

Figure 21 illustrates the pressure difference for
each tip diameter. As expected, as the contact
diameter increases, the pressure from the spring
in the soldering iron holder frame on the ma-
chine’s plate (or vice versa) decreases. This Figure
suggests that to maintain the desired optimum
pressure, the Zcontact in equation 1 should be
adjusted depending on the tip diameter.

III. METHOD

To assess the machine’s operational capabilities,
three distinct tests will be performed. These tests

17

aim to offer thorough insights into different
aspects of the machine’s performance and
functionality. By examining specific operational
components, a complete evaluation of the
machine’s overall efficiency and effectiveness
will be achieved.

The first series of tests will focus on the
fabrication of an origami design pattern, aimed
at demonstrating the machine’s capacity to create
origami structures. This test will underscore
the machine’s ability to execute detailed and
intricate design patterns accurately. The second
test will be dedicated to the production of
a glove, intended to display the machine’s
proficiency in manufacturing gloves using the
provided materials. This will showcase the
machine’s practical application in producing
functional and wearable items, emphasizing its
versatility and efficiency in diverse manufacturing
processes. The final test will involve evaluating
the machine’s technical performance by assessing
its path-following precision, the quality of the
seals for secure joining of material layers, and its
capability to process various material types, such
as plastic and elastic materials. This evaluation
will provide detailed insights into the machine’s
accuracy and material handling capabilities.

Conducting the first test aims to demonstrate
the machine’s competence in creating origami
structures, and the second test will verify its
capability to fabricate gloves. The third test
will illustrate the machine’s ability to generate
reliable sealing lines, sufficient to achieve the
necessary pneumatic force for finger bending.
The focus will be on evaluating the integrity and
consistency of these seals to ensure that they
fulfil the operational requirements for pneumatic
functionality.

Collectively, successful completion of these
tests will confirm the machine’s proficiency in
integrating an origami design pattern within a
glove, which is essential for the production of
origami assistive gloves. Furthermore, these eval-
uations will offer a detailed understanding of the
machine’s capabilities and will help identify areas
that may require improvement or optimization.

This comprehensive evaluation process will be
instrumental in enhancing the machine’s perfor-
mance and ensuring its adaptability for a wide
range of manufacturing applications.

A. Origami structure fabrication

This test is designed to thoroughly assess the
machine’s capability to produce origami designs
that exhibit dynamic behaviour, transforming into
an altered state upon activation and reverting to
its initial state when deactivated. To conduct this
evaluation, three specific origami design patterns,
illustrated in Figure 22, have been selected for
welding onto two plastic layers. The selection of
these patterns allows for the examination of a
range of design complexities and folding mech-
anisms. After securely sealing the patterns on the
plastic layers, the structures will undergo activa-
tion using a pneumatic pressure pump.

Fig. 22: Origami design patterns to assess the
power of the machine in generating origami
structures. Left: zigzag pattern. Middle: side-
line pattern. Right: midline pattern.

This process is crucial for testing the function-
ality and precision of the machine in creating
origami designs that perform as intended under
pneumatic actuation.

The G-code file (Appendix I) required for the
generation of the origami design patterns was
meticulously written using the Notepad++ soft-
ware. The first design pattern, identified as the
zigzag pattern, is carefully situated in the middle
of a square block to enable a distinct folding
mechanism. The second design termed the side-
line pattern, features creases along both sides

18

(a) Hand trajectory generated on an A4 paper. The
paper is converted into a grid of 5 [mm], a hand is
placed on the paper, and the hand trajectory is drawn.
Specific locations are marked in red to convert into
G-code for the machine to seal two layers of plastic
for fabricating a glove as proof of concept.

(b) The resulting hand trajectory after converting
into G-code. This trajectory serves only as a proof
of concept example to demonstrate the ability of the
machine to fabricate gloves. The corresponding G-
code is provided in Appendix J.

of a square block, thereby illustrating the fold-
ing properties along its edges. The third pattern,
named the midline pattern, incorporates crease
lines centrally located within the structure, aimed
at demonstrating the middle folding mechanism.
All patterns have been designed to include an
opening to facilitate airflow, which is crucial for
pneumatic actuation. The selection of these three
patterns is intended to showcase the machine’s
versatility in fabricating various origami designs
and their respective folding behaviours. It is sig-
nificant to mention that the square blocks have
been dimensioned to represent the size of a finger,
thereby ensuring the practical applicability of the
designs.

B. Glove fabrication

As the machine’s final goal is to create origami
assistive gloves, it is important to confirm that it
is qualified to seal two material layers to fabricate
a glove. To do this, a hand trajectory is required.
As depicted in Figure 23(a), the hand trajectory
is delineated using an A4 paper. Initially, a grid
is established on the paper, with a grid size of
5 [mm], enhancing the accuracy of the drawn hand

trajectory. Subsequently, the trajectory is drawn
with a hand positioned on the gridded paper. Fol-
lowing this, specific coordinates (in red) from the
drawn hand trajectory are picked for conversion
into G-code (Appendix 23(b)) for the machine to
execute.

The objective of this test is to determine the
machine’s glove-making capability. Accordingly,
the glove’s quality is not a major factor. To create
a more visually appealing glove, a more precise
procedure can be implemented.

C. Technical performance

1) Precision test: The first test will assess the
machine’s precision and smoothness in executing
predefined paths. This assessment is essential for
determining the machine’s ability to accurately
follow instructions and maintain consistency in
its movements. By analyzing how well the ma-
chine adheres to specified trajectories, we can
gain valuable insights into its overall accuracy and
reliability. Moreover, this test aims to show that
the machine meets the precision requirement of
being able to execute any trajectory with an error

19

Fig. 23: The method to assess the precision
of the machine in executing pre-defined tra-
jectories. The trajectory is made in Python
programming language (Appendix C) to en-
sure high precision and prevent any human-
made error. Furthermore, the trajectory is made
compatible with A4 paper size due to the high
accessibility of A4 paper printer machines.
Also, the paper is girded with a grid size of 1
[mm] to enhance error identification. Specific
locations (green dots) are marked as compari-
son points to detect possible errors.

smaller equal to 0.5 [mm] accuracy.

To start the first test, a trajectory will
be drawn on paper and converted into G-
code for FlexiFabricate to execute. Once the
machine plots the trajectory, the machined
path will be compared to the original drawing.
This comparison will assess the precision
of FlexiFabricate’s movements, reveal any
deviations from the intended path, and visually
demonstrate its accuracy. Although it is possible
to manually draw the trajectory shown in Figure
23, the Python programming language (Appendix
C) will be used. Mainly, because a programming
language will prevent any human-made error and
ensure high precision is retained. Furthermore,
a conversion from pixel to millimetre is used
to draw the trajectory in real-world dimensions
and ensure the drawing is compatible with A4
paper. The choice of making the dimensions
compatible with A4 paper size is due to the
high availability of A4 paper printer machines
to print the trajectory for comparison with the

Fig. 24: The visualization of the steps to
convert the machine from a sealing into a
plotter machine. The sealing rod is replaced
with a pen to plot a trajectory on paper in-
stead of sealing on a material. This conversion
simplifies the comparison process for error
detection as the machine path can in the new
setup directly be drawn on or next to the
actual trajectory. An advantage of this is that
it eliminates human error from the comparison
process as there is no need for a human to align
the machine path with the desired path. In
conclusion, a pen-plotter machine will enhance
error detection significantly.

FlexiFabricate executed trajectory. Moreover, a
2d grid with a grid size of 1[mm] is drawn on
the A4 paper to simplify error detection. Also,
specific locations (green dots) are chosen as the
measurement points to check the precision.

It is important to note that to perform the
precision test first, the machine is turned into a
pen-plotter machine as shown in Figure 24. To
convert the FelxiFabricate into a plotter machine,
the soldering iron tip is changed with a pen.
The conversion to a plotter machine considerably
improves the trajectory comparison process as the
actual trajectory and machine path can now be
plotted on the same paper and visually compare
the results. Moreover, a pen-plotter machine
reduces the duration time for performing the
precision test as it can directly plot the trajectory
on or next to the actual trajectory on the same
paper compared to using heat sealing to seal
two material layers and subsequently align the
sealing lines with the printed trajectory on an A4
paper. On account of this, a pen-plotter machine

20

Fig. 25: The cylinder shape seals two layers
to each other and allows a pneumatic pressure
test for determining the sealing strength. The
figure on the left is made in Notepad++ for
better visualization and the image on the right
is a machine-made example.

expunges the chance of human-made error as
the comparison process can be done automatically.

Next, The trajectory shown in Figure 23 is
converted to the G-code (Appendix G) and
subsequently, the machine was tasked to draw the
trajectory on the same paper for error detection.
To draw the trajectory on the same paper, the zero
location of the machine in XY-plane was aligned
with the origin of the paper with Z-level at
Zcontact − 1. Then, the machine is commanded to
move to the red dots along the green lines in the
figure 23. After aligning the pen at each red-dots a
clamp is used to fix the paper on the build plate to
avoid dislocation of the paper with the workspace.

Finally, to evaluate the machine’s precision, the
evaluation metric will determine the Root Mean
Squared Error (RMSE) between the actual and
machine path at the specified locations.

2) Sealing quality γ: The second evaluation
will concentrate on the machine’s welding qual-
ity following the precision test. This assessment
is particularly crucial for applications involving
pneumatic or hydraulic actuators, where the in-

Fig. 26: Sealing quality measurement. A bike
pump, pressure sensor and Arduino Mega
Rev3 controller are used to measure and record
the values from the pressure sensor. To obtain
and store the values a Python (Appendix E)
python and a C++ (Appendix F) script were
used.

tegrity of welds plays a critical role in ensuring
operational efficiency and safety. By examining
the quality of sealing lines produced by the ma-
chine, we can verify whether materials are joined
securely and reliably, meeting the requisite stan-
dards for subsequent use.

γ [bar]

d = i for i = 1,2,3 [mm]

T = j for j = 200,250,300 ◦C

Z = k for k = 1,2,3 [mm]

V = l for l = 20,50,100,200,300 [mm
min]

Fig. 27: The tree shows the different settings
that the machine will be assessed for to analyse
the heat sealing quality. Because the pressure
is a linear multiplication with the machine’s
plate level, only Z-displacement is shown here
instead of the pressure.

To measure the sealing line quality, the machine

21

(a) (b) (c)

(d) (e) (f)

Fig. 28: Origami patterns in unfold and folded state. The zigzag pattern shows a twisting motion when
activated. The sideline pattern and the midline patterns result in the bending of the structure. a) unfold
zigzag pattern, b) unfold side line pattern, c) unfold mid line pattern, d) folded zigzag pattern, e) folded
sideline pattern, f) folded midline pattern.

will be tasked with sealing two layers of material
together to make a cylinder shape shown in
Figure 25. Subsequently, a pneumatic pump will
blow air into the sealed cylinder. In addition, an
Arduino Mega 2560 REV controller board and a
pressure sensor will be used to record the values
from the pressure sensor and store them for
further analysis. A complete view of the pressure
test setup is shown in Figure 26.

The Python (Appendix E) and C++ (Appendix
F) programming languages were used to
communicate with the controller and read the
values from the sensor. Also, data were collected
as .CSV file to compare the results obtained under
different machine settings.

Furthermore, the sealing quality test will be
performed under various settings to analyse, and
compare the performance of the machine for
each condition and find an optimum state that
results in the best sealing quality. These settings

will cover the heat sealing thickness, the sealing
speed, temperature, pressure, and dwell time. I.e.,
the sealing quality will be assessed for different
sealing iron tip diameters, speeds, temperature,
and sealing pressure as shown in Figure 27.
In addition, every test set will be performed 2
times to limit bias, reduce the risk of errors and
possibly eliminate the potential for mistakes.
Finally, the average outcome of each test set will
be calculated to increase the validity of the results.

3) Material test: Lastly, the third test will focus
on evaluating the machine’s performance across a
range of different materials. This assessment will
provide valuable data regarding the machine’s
versatility and adaptability in handling diverse
fabrication scenarios. By subjecting the machine
to various materials, we can assess its ability to
consistently deliver high-quality results across
different material properties.

Since a material with plastic properties was

22

used to perform the sealing quality test, the
material test will assess the ability of the machine
to seal elastic-type materials. Therefore, the TPU
(Thermoplastic Polyurethane) will be selected for
assessment. Mainly because the TPU’s inherent
flexibility and widespread use in origami robots
render it an apt candidate for testing the machine’s
performance across varied material properties.

IV. RESULT

A. Origami structure fabrication

Figure 28 provides a visual representation of the
three design patterns in their respective unfolded
and folded configurations. It is noted that the
zigzag pattern tends to exhibit rotational move-
ment when subjected to bending forces, whereas
both the sideline and midline patterns result in
the bending of the structures without rotation. All
patterns are designed to fold along their specified
crease lines. The test outcomes validate the ma-
chine’s ability to fabricate origami structures that
are functional in bending the fingers, thereby con-
firming its effectiveness for applications involving
precise and controlled bending mechanisms.

Fig. 29: The produced glove by the ma-
chine. The machine can fabricate custom-sized
gloves to meet the individual’s needs.

B. Glove Fabrication

Figure 29 presents a comprehensive view of
the glove fabricated by the machine. The glove
is shown to be securely sealed, which ensures its
effectiveness for use in pneumatic activation. The
size of the glove matches exactly with the spec-
ifications outlined in the corresponding G-code,
thereby validating the machine’s ability to fabri-
cate gloves with accurate dimensions. This result
successfully demonstrates the machine’s compe-
tence in glove production. Additionally, since the
machine is capable of plotting any trajectory on
the provided material layers, it can produce gloves
in various sizes, thus enabling the customization
of gloves to fit specific size requirements.

Fig. 30: Visual demonstration of the difference
between the machine and the desired path. The
result shows that the machine can precisely
follow any trajectory. Also, there is no sys-
tematic error such as vibration meaning that
the machine smoothly tracks a trajectory.

C. Technical performance

It is important to mention that the results
obtained for the technical performance test belong
to the pressure of 1 [mm] plate displacement.
This is because the stepper motors used in the
structural backbone of FlexiFabricate are mainly
suitable for 3d printing tasks where the stepper
motors do not need to overcome the shear force
exerted by the movement of the soldering iron
rod tip while it is in direct contact with the
material. Therefore, the stepper motors are not

23

able to generate enough force and pressure values
bigger than the value obtained for Z = 1 [mm] are
not examined in this paper.

1) Precision test: Figure 30 offers a visual
comparison between the intended path and the
path achieved by the machine. The machine’s
actual trajectory closely mirrors the desired path,
indicating a strong alignment with the planned
design. This close correspondence highlights the
machine’s proficiency in accurately following the
prescribed path, thereby validating its capability
to execute complex trajectories with precision.

Fig. 31: Mean Square Error between the actual
and machine trajectory. The machine shows a
root mean square error equal to 0.35 [mm] that
is smaller than the required precision.

To gain a more nuanced understanding of the
machine’s accuracy concerning the desired path,
the Root Mean Square Error (RMSE) of the dis-
crepancy between the actual and intended trajec-
tories is utilized as a comparative metric. Figure
31 illustrates that the machine’s precision, with an
RMSE of 0.35 mm, exceeds the required precision
threshold of RMSE ≤ 0.5mm. This finding indi-
cates that the machine demonstrates a high level
of accuracy in following trajectories, suggesting
its capability to effectively and precisely execute
any origami-designed pattern.

In addition, a detailed comparison along each
axis, specifically the X and Y axes, is conducted
to assess the machine’s directional accuracy. As
depicted in Figure 32, the machine displays a
comparable level of precision along both the

Fig. 32: Square Error between the actual and
machine trajectory along each axis. According
to the figure the machine has a similar preci-
sion along the X-direction and the Y-direction.
The dashed lines show the mean value of the
error in each direction.

X-axis and Y-axis. This observation highlights
the machine’s consistent accuracy across both
directional dimensions, confirming its ability to
perform with equal precision in multiple axes.

Fig. 33: Sealing strength for different condi-
tions. At lower temperatures sealing quality
degrades with increasing speed. on the con-
trary, at higher temperatures, faster task exe-
cution improves the sealing strength. Overall,
a greater heat sealing strength is obtained at
higher temperatures. In addition, the sealing
strength is independent of the sealing line
thickness.

24

2) Sealing quality: Figure 33 illustrates the
relationship between heat sealing strength and the
variables of temperature and speed. The graph
shows that, with a constant sealing thickness,
the strength of the seal is substantially affected
by both the sealing speed and temperature. This
indicates that variations in these parameters can
lead to significant changes in the sealing quality,
highlighting the importance of optimizing both
temperature and speed to achieve the desired
sealing strength.

For instance, when the tip diameter is set to
d = 1mm and the temperature is maintained at
T = 200◦C, it is observed that the sealing strength
diminishes as the sealing speed increases. Simi-
larly, at a higher temperature of T = 250◦C, the
sealing strength shows a decrease as the speed
is varied from 20 to 300 [mm

min]. Conversely, at an
elevated temperature of T = 300◦C the sealing
quality initially improves with increasing speed
from 20 to 100 [mm

min] but then deteriorates at higher
speeds. Additionally, it is noted that, irrespective
of the sealing thickness, the sealing strength ex-
hibits a general increase with rising temperature
from 200 to 300◦C. This indicates that higher
temperatures lead to stronger material bonding,
thereby enhancing the overall quality of the seal.

Fig. 34: Sealing strength vs sealing line thick-
ness. The figure shows that the sealing thick-
ness does not significantly impact the sealing
quality.

Figure 34 presents an analysis of how seal-

ing thickness impacts the quality of the seal. A
significant observation from this analysis is that
variations in sealing thickness have a negligible
effect on sealing strength. Specifically, increasing
the sealing line thickness from 1 to 3 [mm] does
not produce a noticeable change in the strength
of the seal when both temperature and speed are
maintained constant. This observation effectively
distinguishes the dominant roles of temperature
and speed in affecting sealing quality, while indi-
cating that sealing thickness has a comparatively
minor effect on the strength of the seal.

Fig. 35: Dwell-time for different sealing thick-
ness and temperature. The sealing quality in-
creases with increasing dwell time from 0.2 to
3 [s] at temperatures T = 200, and T = 250◦C
for all sealing iron tip diameters. However, at
sealing temperature T = 300◦C the maximum
sealing strength is achieved at dwell time of
0.6[s]. In conclusion, dwell time decreases
with increasing the temperature regardless of
the sealing thickness.

Figure 35 illustrates the effect of dwell time on
sealing quality for three different tip diameters
across various temperatures. t is evident that,
for temperatures of T = 200 and T = 250◦C an
increase in dwell time leads to an enhancement
in sealing quality across all tested sealing
thicknesses. In contrast, at T = 300◦C the sealing
strength reaches a maximum at dwell time of 0.6
[s]. The data also highlight an interdependence
between dwell time and temperature, with dwell
time being inversely related to temperature.

25

(a) Testing of materials: The device
can effectively seal elastic-type materi-
als like TPU. Using a protective cover,
as illustrated in Figure 11, is essen-
tial to safeguard the layers from rup-
turing during the sealing process. This
test was performed at T = 300◦, V =
10[mm

min], d = 2[mm], and Z = 1[mm]
above Zcontact .

(b) The midline pattern in
folded state sealed on TPU
layers.

(c) Testing the machine’s ability to seal two layers of
TPU material. Due to the elastic behaviour of TPU, the
material attaches to and stretches with the soldering rod
resulting in rupture of the material if the material layers
and soldering iron tip are in direct contact with each
other.

This indicates that as temperature increases, the
required dwell time decreases to achieve optimal
sealing quality.

To summarize, both speed and temperature
are identified as crucial factors that significantly
affect the quality of sealing. The results indicate
that at higher temperatures, it is feasible to
achieve similar heat sealing strength at increased
speeds, which translates to shorter dwell times.
This is an important observation as it can lead to
reduced processing times, thereby improving task
efficiency. Furthermore, the findings reveal that
variations in sealing thickness do not significantly
impact the quality of the material binding
during the heat-sealing of plastic materials. This
highlights that while speed and temperature are
key determinants of sealing performance, the
thickness of the sealing line does not have a
substantial effect on the binding quality.

3) Material test: The material test aimed
to determine the machine’s effectiveness
with different materials, with Thermoplastic
Polyurethane (TPU) being the focus of the final
evaluation. Elastic materials differ from plastic-
like ones in that they stretch under pressure
when the soldering iron presses and moves,
which can cause rupturing. To avoid this, it is
important to add a thin layer of non-stretchable

and non-sealable material over the elastic layers.
Moreover, extending the dwell time is essential for
achieving optimal results with elastic materials.

Figure 36(a) demonstrates that, under suitable
conditions, the machine can effectively seal both
plastic layers and more challenging materials
such as TPU, which have natural elasticity.
Conversely, as shown in Figure 36(c), sealing
with the soldering iron tip in direct contact with
TPU layers can lead to the rupture of these elastic
materials.

In summary, the machine demonstrates excep-
tional capability in sealing layers of plastic mate-
rials, achieving a binding strength that surpasses
the inherent strength of the materials themselves.
However, challenges persist when attempting to
bind two elastic materials using the sealing tech-
nique. The primary issue arises from the elastic
properties of the materials, which cause them to
stretch and shift in response to the movement
of the soldering tip. This behaviour impairs the
sealing process, leading to difficulties in achieving
a reliable and consistent bond between elastic
materials. Nevertheless, these challenges can be
addressed by incorporating an additional material
layer to shield and protect the elastic layers.

26

V. DISCUSSION

The objective of this paper is to introduce a
novel fabrication technique aimed at producing
origami assistive gloves. This method integrates
3D printing technology with a 2D welding
approach to create intricate origami design
patterns. The fabrication process involves the
machine applying two layers of material and
sealing the specified pattern onto these layers. The
sealing operation is executed using a specialized
soldering iron station, which features a custom-
designed soldering iron tip and an accompanying
soldering iron holder frame. This combination of
technologies is intended to optimize the creation
of detailed origami patterns, facilitating the
development of assistive gloves with enhanced
functionality.

In constructing the machine, the UliMaker3
3D printing device was utilized as the structural
backbone, primarily due to its availability. While
the use of this 3D printer simplifies the design
process for the new fabrication method, it also
imposes certain constraints. These limitations
are associated with the specific capabilities and
design parameters of the UliMaker3, which may
impact the overall functionality and adaptability
of the new fabrication technique.

Particularly, the UM3 utilizes stepper motors
designed for 3D printing tasks, where the motors
are not subjected to shear forces resulting from
the direct contact between the soldering iron
tip and the material during the sealing process.
Consequently, the stepper motors in the UM3
possess a maximum torque generation capacity
insufficient to overcome shear forces in the XY
plane, which are exerted by the machine’s plate
when it moves more than 1,mm above the contact
point between the soldering iron tip and the plate.
As a result, it was not possible to analyze the heat
sealing quality under varying vertical pressures.

Additionally, the FlexiFabricate uses a soldering
iron to seal the material layers with direct contact
between the soldering iron and the material
on the plate. The UM3 Z-plate is designed to
resist 3d printed objects which are in general
lightweight. This means that the UM3 plate in the

new function undergoes relatively large pressure
at the contact point between the soldering iron tip
and the plate, as a consequence, the plate buckles
at the contact point resulting in an imbalance
in the sealing process that degrades the smooth
path-following of the machine and steady sealing
lines during the sealing process.

The UM3 operates within a fixed environment,
which imposes limitations on the maximum size
of the origami assistive gloves. This constraint
consequently restricts the range of origami design
patterns that can be accommodated. Moreover,
the enclosed nature of this environment presents
challenges in securely fixing the material layers
within the machine.

Besides, the precision test covers the machine’s
accuracy in the XY plane since fabricating
origami design patterns is done in the 2d plane.
Therefore, it is assumed here that the precision
along the Z-direction is of less interest. However,
owing to the fact that the micro-steps used in the
Z-stepper motor equal 1

16 which is more precise
than micro-steps used in XY plane (1

8), it can be
concluded that the machine acquires a similar or
even better RMSE along the Z-axis.

The results for the sealing quality test obtained
in this paper are at constant vertical pressure
achieved at 1 [mm] plate displacement. Therefore,
the results can differ if the vertical pressure can
also be modified.

The maximum sealing strength acquired in
the sealing quality test was affected by the
maximum pressure material layers could tolerate.
Meaning that the plastic layers used to obtain
the sealing strength could endure a maximum of
approximately 2.75 [bar]. Hence, a material with
stronger inherent properties can yield a higher
sealing quality.

It should be emphasized that the highest sealing
strength recorded in the technical performance
analysis was attained through the application of
concurrently increasing pneumatic pressure. The
potential effects of leakage for a duration of
time were not addressed within the scope of the

27

technical performance setup.

The UM3 controller board is replaced with an
Arduino UNO, Arduino CNC Shield V3.00 and
A4988 stepper motors, to steer the machine’s
operations in three-dimensional coordinates.
Alongside this, the GRBL library and the
Universal G-code Sender (UGS) are selected
as the software tools to make a user-friendly
interface.

To further simplify working with the machine,
a Python script is provided which takes the
coordinates of a 2d design pattern and converts
it into the G-code, the operating language of the
machine.

To thoroughly evaluate the machine’s
performance, three separate tests were
administered. The initial test was conducted
to verify the machine’s ability to produce origami
design patterns, thereby assessing the effectiveness
of the fabrication method for intricate designs.
The second test was aimed at demonstrating the
machine’s capability to fabricate custom-sized
gloves using two layers of material, highlighting
its adaptability in glove production. The final
test was designed to measure the machine’s
technical performance, encompassing aspects
such as precision and efficiency. These tests
collectively offer a comprehensive assessment
of the machine’s operational capabilities and its
effectiveness in diverse manufacturing tasks.

To fabricate origami structures, three
specific design patterns—zigzag, sideline, and
midline—were chosen. The fabrication results
demonstrate that the machine can successfully
seal these origami design patterns onto two
material layers. Upon pneumatic activation, the
structures achieve their desired folded states.
Additionally, these structures are capable of
returning to their initial configurations when
the air pressure is released. This confirms the
machine’s effectiveness in creating functional and
reconfigurable origami structures.

The outcome of the glove fabrication test
validates the machine’s capability to produce

custom-sized gloves with flexibility. This
adaptability is attributed to the machine’s ability
to interpret any 2D pattern provided as a G-code
file and accurately seal it onto the material layers.
This feature allows for precise customization
of glove sizes, demonstrating the machine’s
versatility in accommodating various design
specifications.

The machine shows a dimensional accuracy
and precision of 0.35[mm], which is smaller than
the required precision of 0.5 [mm] in executing
motions that are within the precision requirement
for the machine. The root mean square error is
chosen as the performance metric to assess the
precision of the machine

Likewise, the results from the heat sealing
quality assessment show that speed and
temperature are critical parameters that can
greatly impact sealing quality. Additionally,
higher temperatures result in similar heat-sealing
strength at faster speeds and shorter dwell times.
Moreover, it has been demonstrated that sealing
thickness has an insignificant impact on the
quality of material binding in heat-sealed plastic.
Also, the results show that the sealing line
strength obtained using FlexiFabricate under
certain sealing settings can yield a sealing
strength equal to or stronger than the material’s
inherent strength. To this end, the maximum
pneumatic pressure achieved in the sealing
quality test equals 2.75[ba] which is much more
than it is required to bend a finger. Therefore,
it can be concluded that the proposed method
can successfully fabricate origami assistive gloves.

The results from the material test indicate that
heat-sealing elastic materials such as TPU remain
challenging for the inherent elastic behaviour
of these materials if the material is in direct
contact with the soldering iron tip. However, it
is also shown that if another third party material
is used to prevent the TPU layers from directly
contacting the soldering iron tip, the machine is
able to seal TPU layers.

28

VI. CONCLUSION

In summary, this paper introduced a new
method that combines the 2d plastic welding
technique and 3d printing technology to fabricate
origami design patterns that are fast, cost-effective,
can use two material layers and have high
dimensional accuracy, a path-following RMSE
equal to 0.35[mm] in. Through experiments, it
is shown that the proposed method can generate
sealing lines that can withstand a pneumatic
pressure equal to or greater than the inherent
strength of the material individual layers.
Moreover, using two layers of sealing plastic, the
maximum pneumatic pressure obtained equals
2.75[bar] which is more than needed to flex a
finger.

Because of the compactness, and inherent
flexibility of the origami design, it provides a
promising alternative to the existing assistive
gloves to be lightweight, flexible and can be
produced in custom size. Therefore, the machine
aims to produce origami assistive gloves by
sealing an origami design pattern onto two
material layers suitable for use with a pneumatic
actuator.

In conclusion, this paper proposes a new fabri-
cation method to integrate the origami design prin-
ciple with assistive gloves and produce compact,
custom-sized, flexible, and lightweight prototypes
for origami assistive gloves. Furthermore, through
experiments, it is shown that the new fabrication
method can successfully seal an origami design
pattern on two layers of material suitable for
use with pneumatic actuators. It is also demon-
strated that the machine has the ability to fabricate
custom-sized gloves.

VII. FUTURE RECOMMENDATIONS

As mentioned earlier, the stepper motors used
in the UM3 are specifically intended for 3D
printing applications, where the motors function
in an unencumbered environment without
having to contend with forces like friction
from the machine’s plate resulting from vertical
pressure and material roughness. Therefore, the
implementation of more powerful stepper motors

with higher torque capacity would significantly
enhance the machine’s robustness and overall
performance.

Likewise, a considerable reduction in friction
within the XY-plane can be achieved by
substituting the rod’s contact surface with a roller
ball mechanism. This approach would enable the
ball to roll unimpeded while sealing the material,
thereby minimizing friction and enhancing the
machine’s efficiency.

A notable design constraint lies in the UM3
bed, which is not constructed to withstand high
levels of pressure. Accordingly, substituting the
current bed with a more robust or reinforced
version would substantially increase the machine’s
stability and the quality of the produced design
patterns.

Using the UM3 frame as the structural
backbone constrains the production of the
maximum possible glove size since the UM3
has a fixed dimension and is made for relatively
small-sized 3d printing objects. In addition,
the UM3 closed environment complicates the
insertion of the materials on the Z-plate. As a
consequence, the material layers do not perfectly
lay on the bed and exert unintended pressure on
the stepper motors at certain points affecting the
sealing quality. Therefore, having a structural
backbone with an open environment will not only
eliminate the constraint on the glove size but also
considerably simplify the fixation of the material
layers resulting in an enhanced performance.

By addressing these limitations, the machine
would be better equipped to handle the demands
of more precise applications, leading to more
consistent and reliable results.

REFERENCES

[1] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-
Troy, and S. Leonhardt, “Jner journal of neuroengineering
and rehabilitation review open access a survey on
robotic devices for upper limb rehabilitation,” p. 3,
2014. [Online]. Available: http://www.jneuroengrehab.
com/content/11/1/3

[2] A. Wege and G. Hommel, “Development and control of a
hand exoskeleton for rehabilitation of hand injuries,” in
2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 2005, pp. 3046–3051.

http://www.jneuroengrehab.com/content/11/1/3
http://www.jneuroengrehab.com/content/11/1/3

29

[3] C. N. Schabowsky, S. B. Godfrey, R. J. Holley,
and P. S. Lum, “Development and pilot testing
of hexorr: Hand exoskeleton rehabilitation robot,”
2010. [Online]. Available: http://www.jneuroengrehab.
com/content/7/1/36

[4] T. Worsnopp, M. Peshkin, J. Colgate, and D. Kamper,
“An actuated finger exoskeleton for hand rehabilitation
following stroke,” in 2007 IEEE 10th International Con-
ference on Rehabilitation Robotics, 2007, pp. 896–901.

[5] F. Nasrallah, A. Mohamed, H. Yap, H. Lai, C.-H. Yeow,
and J. Lim, “Effect of proprioceptive stimulation using a
soft robotic glove on motor activation and brain connec-
tivity in stroke survivors,” Journal of Neural Engineering,
vol. 18, 2021.

[6] M. Liu, S. Wilder, S. Sanford, M. Glassen, S. Dewil,
S. Saleh, and R. Nataraj, “Augmented feedback modes
during functional grasp training with an intelligent glove
and virtual reality for persons with traumatic brain in-
jury,” Frontiers in Robotics and AI, vol. 10, 2023.

[7] Y. Chen, J. Yan, and J. Feng, “Geometric and kinematic
analyses and novel characteristics of origami-inspired
structures,” 2019.

[8] J. E. Suh, T. H. Kim, and J. H. Han, “New approach
to folding a thin-walled yoshimura patterned cylinder,”
Journal of Spacecraft and Rockets, vol. 58, pp. 516–530,
2021.

[9] M. Chen, S. Ho, H. Zhou, P. Pang, X. Hu, D. Ng, and
K. Tong, “Interactive rehabilitation robot for hand func-
tion training,” in 2009 IEEE International Conference on
Rehabilitation Robotics, ICORR 2009, 2009, pp. 777–
780.

[10] I. Ertas, E. Hocaoglu, D. Barkana, and V. Patoglu,
“Finger exoskeleton for treatment of tendon injuries,” in
2009 IEEE International Conference on Rehabilitation
Robotics, ICORR 2009, 2009, pp. 194–201.

[11] 2011 IEEE International Conference on Rehabilitation
Robitics. IEEE, 2011.

[12] M. F. Rotella, K. E. Reuther, C. L. Hofmann, E. B. Hage,
and B. F. BuSha, “An orthotic hand-assistive exoskeleton
for actuated pinch and grasp,” in 2009 IEEE 35th Annual
Northeast Bioengineering Conference, 2009, pp. 1–2.

[13] K. Tong, S. Ho, P. Pang, X. Hu, W. Tam, K. Fung,
X. Wei, P. Chen, and M. Chen, “An intention driven hand
functions task training robotic system,” in 2010 Annual
International Conference of the IEEE Engineering in
Medicine and Biology, 2010, pp. 3406–3409.

[14] W. Yan, S. Li, M. Deguchi, Z. Zheng, D. Rus, and
A. Mehta, “Origami-based integration of robots that
sense, decide, and respond,” Nature Communications,
vol. 14, 12 2023.

[15] Z. Zhakypov and J. Paik, “Design methodology for
constructing multimaterial origami robots and machines,”
IEEE Transactions on Robotics, vol. 34, pp. 151–165, 2
2018.

[16] H. A. Beigi and A. H. A. Stienen, “Robotic origami:
Design, fabrication and actuation,” 2023.

[17] Y. Wang and K. Lee, “3d-printed semi-soft mechanisms
inspired by origami twisted tower,” 2017, pp. 161–166.

[18] J. Jovanova, M. Anachkova, V. Gavriloski, D. Petrevski,
F. Grazhdani, and D. Pecioski, “Modular origami robot
inspired by a scorpion tail,” vol. 2, 2018.

[19] Q. Chen, F. Feng, P. Lv, and H. Duan, “Origami spring-
inspired shape morphing for flexible robotics,” Soft
Robotics, vol. 9, pp. 798–806, 2022.

[20] Y. Guan, Z. Zhuang, Z. Zhang, and J. S. Dai, “Design,
analysis, and experiment of the origami robot based on
spherical-linkage parallel mechanism,” Journal of Me-
chanical Design, Transactions of the ASME, vol. 145,
8 2023.

[21] C. D. Onal, R. J. Wood, and D. Rus, “An origami-inspired
approach to worm robots,” IEEE/ASME Transactions on
Mechatronics, vol. 18, pp. 430–438, 2013.

[22] S. Singh, G. Singh, C. Prakash, and S. Ramakrishna,
“Current status and future directions of fused filament
fabrication,” pp. 288–306, 7 2020.

[23] H. Yap, J. Lim, F. Nasrallah, and C.-H. Yeow, “Design
and preliminary feasibility study of a soft robotic glove
for hand function assistance in stroke survivors,” Fron-
tiers in Neuroscience, vol. 11, 2017.

[24] UltiMaker, “Ultimaker3 3d printer,” https:
//www.dimensions.com/element/ultimaker-3-3d-printer#:
∼:text=The%20overall%20build%20volume%
20is,sophisticated%20models%20with%20intricate%
20geometries.

[25] ALL3DP, “Stepper motor driver: All you need to know,”
https://all3dp.com/2/what-s-a-stepper-motor-driver-
why-do-i-need-it/.

[26] M. Hardware, “Cnc shield,” https://makerhardware.net/
wiki/doku.php?id=electronics:cnc shield/.

[27] E. Clinic, “Arduino cnc shield v3.0 and
a4988 hybrid stepper motor driver + joystick,”
https://www.electroniclinic.com/arduino-cnc-shield-
v3-0-and-a4988-hybrid-stepper-motor-driver-joystick/.

[28] GRBl, “Grbl library,” https://github.com/grbl/grbl/.
[29] UGS, “Universal g-code sender,” https://github.com/

winder/Universal-G-Code-Sender/.
[30] SainSmart, “How to set up universal gcode sender (ugs)

for windows operating system,” https://docs.sainsmart.
com/article/xevbm8qufa-how-to-install-universal-gcode-
sender-ugs-for-windows-operating-system.

[31] NotePad++, “Notepad++,” https://notepad-plus-plus.org/
downloads/.

[32] Ncentic, “Notepad++ gcode plugin,” https://ncnetic.com/
notepad-gcode-plugin/.

[33] inkscape, “inkscape,” https://inkscape.org/.
[34] Maslow, “Inkscape for gcode generation - quick

instructions to get started,” https://forums.maslowcnc.
com/t/inkscape-for-gcode-generation-quick-instructions-
to-get-started/12049/12.

[35] YouTube, “A guick guid to make gcode in inkscape,”
https://www.youtube.com/watch?v=JkVj2MAyj18.

[36] Bol.com, “Solder station,” http:///www.bol.
com/nl/nl/p/velleman-soldeerstation-instelbaar-
40-48-w-temperatuurbereik-150-450-c-grijs/
9200000042746360/?s2a=/.

[37] S. Y. Cheng, A. Hassan, M. I. H. Ghazali, and A. F.
Ismail, “Heat sealability of laminated films with lldpe and
ldpe as the sealant materials in bar sealing application,”
Journal of Applied Polymer Science, vol. 104, pp. 3736–
3745, 6 2007.

[38] Thermtest, “Thermal conductivity of steel,”
https://thermtest.com/thermal-conductivity-of-steel#:
∼:text=The%20thermal%20conductivity%20of%
20steel,235%20W%2F(mK)%20respectively.

http://www.jneuroengrehab.com/content/7/1/36
http://www.jneuroengrehab.com/content/7/1/36
https://www.dimensions.com/element/ultimaker-3-3d-printer#:~:text=The%20overall%20build%20volume%20is,sophisticated%20models%20with%20intricate%20geometries.
https://www.dimensions.com/element/ultimaker-3-3d-printer#:~:text=The%20overall%20build%20volume%20is,sophisticated%20models%20with%20intricate%20geometries.
https://www.dimensions.com/element/ultimaker-3-3d-printer#:~:text=The%20overall%20build%20volume%20is,sophisticated%20models%20with%20intricate%20geometries.
https://www.dimensions.com/element/ultimaker-3-3d-printer#:~:text=The%20overall%20build%20volume%20is,sophisticated%20models%20with%20intricate%20geometries.
https://www.dimensions.com/element/ultimaker-3-3d-printer#:~:text=The%20overall%20build%20volume%20is,sophisticated%20models%20with%20intricate%20geometries.
https://all3dp.com/2/what-s-a-stepper-motor-driver-why-do-i-need-it/
https://all3dp.com/2/what-s-a-stepper-motor-driver-why-do-i-need-it/
https://makerhardware.net/wiki/doku.php?id=electronics:cnc_shield/
https://makerhardware.net/wiki/doku.php?id=electronics:cnc_shield/
https://www.electroniclinic.com/arduino-cnc-shield-v3-0-and-a4988-hybrid-stepper-motor-driver-joystick/
https://www.electroniclinic.com/arduino-cnc-shield-v3-0-and-a4988-hybrid-stepper-motor-driver-joystick/
https://github.com/grbl/grbl/
https://github.com/winder/Universal-G-Code-Sender/
https://github.com/winder/Universal-G-Code-Sender/
https://docs.sainsmart.com/article/xevbm8qufa-how-to-install-universal-gcode-sender-ugs-for-windows-operating-system
https://docs.sainsmart.com/article/xevbm8qufa-how-to-install-universal-gcode-sender-ugs-for-windows-operating-system
https://docs.sainsmart.com/article/xevbm8qufa-how-to-install-universal-gcode-sender-ugs-for-windows-operating-system
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://ncnetic.com/notepad-gcode-plugin/
https://ncnetic.com/notepad-gcode-plugin/
https://inkscape.org/
https://forums.maslowcnc.com/t/inkscape-for-gcode-generation-quick-instructions-to-get-started/12049/12
https://forums.maslowcnc.com/t/inkscape-for-gcode-generation-quick-instructions-to-get-started/12049/12
https://forums.maslowcnc.com/t/inkscape-for-gcode-generation-quick-instructions-to-get-started/12049/12
https://www.youtube.com/watch?v=JkVj2MAyj18
http:///www.bol.com/nl/nl/p/velleman-soldeerstation-instelbaar-40-48-w-temperatuurbereik-150-450-c-grijs/9200000042746360/?s2a=/
http:///www.bol.com/nl/nl/p/velleman-soldeerstation-instelbaar-40-48-w-temperatuurbereik-150-450-c-grijs/9200000042746360/?s2a=/
http:///www.bol.com/nl/nl/p/velleman-soldeerstation-instelbaar-40-48-w-temperatuurbereik-150-450-c-grijs/9200000042746360/?s2a=/
http:///www.bol.com/nl/nl/p/velleman-soldeerstation-instelbaar-40-48-w-temperatuurbereik-150-450-c-grijs/9200000042746360/?s2a=/
https://thermtest.com/thermal-conductivity-of-steel#:~:text=The%20thermal%20conductivity%20of%20steel,235%20W%2F(mK)%20respectively.
https://thermtest.com/thermal-conductivity-of-steel#:~:text=The%20thermal%20conductivity%20of%20steel,235%20W%2F(mK)%20respectively.
https://thermtest.com/thermal-conductivity-of-steel#:~:text=The%20thermal%20conductivity%20of%20steel,235%20W%2F(mK)%20respectively.

30

APPENDIX

A. Python script to convert coordinates to G-code

’’’
This file takes XY-coordinates stored in .csv file
and converts it to a gcode file.

input_file : the file to with .csv file to be converted. E.g., "myfile.csv"
output: .gcode file

’Run the function general()’

’’’

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

def load_data(file_path):
myfile = pd.read_csv(file_path)
data = pd.read_csv(file_path).values
data = data[28:1024, :]
data=np.round(data/6.5,4)
return data

def convert_to_gcode(coordinates):
gcode_commands = []
x,y = coordinates[0,:]
gcode_commands.append(f"G17 ; Select XY plane for circular interpolation\n")
gcode_commands.append(f"G21 ; set the units to milimeters\n")
gcode_commands.append(f"G54 ; select the coordinate system 1\n")
gcode_commands.append(f"G80 ;cancle motion\n")
gcode_commands.append(f"G90 ; non-incremental motion\n")
gcode_commands.append(f"G94 ;feed/minute mode\n")
gcode_commands.append(f"G00 F1000 ; set the feed rate for fast movement\n")
gcode_commands.append(f"G01 F100 ; set the feed rate that machine should move with\
n")
gcode_commands.append(f"G00 Z{-160}\n")
gcode_commands.append(f"G00 X{x} Y{y}\n")
gcode_commands.append(f"G01 Z{-162}\n")
for point in coordinates[1:,:]:

x, y = point
gcode_commands.append(f"G01 X{x} Y{y}\n") # Assuming linear interpolation (G01

) for simplicity

gcode_commands.append(f"G00 Z{-150}\n")
gcode_commands.append(f"G04 P{1000} ;pause the machine for 1000 ms\n")
gcode_commands.append(f"G28 ; Home the machine\n")
return gcode_commands

def transfer_coordinates_into_machine_workspace(coordinates):
l = len(coordinates)
new_coordinates = np.zeros((l,2))
x_data = coordinates[:,0]
y_data = coordinates[:,1]
x_max = np.max(x_data)
y_max = np.max(y_data)
y_offset = 10
x_offset = 10
if x_max >= 0:

x_data -= x_max
x_data -= x_offset

if y_max >= 0:
y_data -= y_max

31

y_data -= y_offset
if x_max <= -200:

x_min = np.min(x_data)
x_exceed = x_min + 200
x_offset = x_exceed - 5
x_data -= x_offset

if y_max <= -200:
y_min = np.min(y_data)
y_exceed = y_min + 200
y_offset = y_exceed - 5
y_data -= y_offset

new_coordinates[:,0] = np.round(x_data,3)
new_coordinates[:,1] = np.round(y_data,3)
return new_coordinates

def plot_data(data):
color = [’blue’, ’red’]
labels = [’original’, ’converted’]
j=0
i=0
col = np.shape(data)[1]
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
while i!=col:

ax.plot(data[:, i], data[:, i+1], color=color[j], label=labels[j], linewidth
=4-(i))

i+=2
j+=1

ax.set_xlabel(’X’)
ax.set_ylabel(’Y’)
ax.legend()
fig.show()

def write_file(file_path, gcode_commands):
with open(file_path, "w") as file:

file.writelines(gcode_commands)
return file

def general():
input_data = input("Insert the input file name, e.g: mydata.csv: ")
file_name = input_data.split(’.’)[0]
data = load_data(input_data)
Convert NumPy array to G-code commands
new_data = transfer_coordinates_into_machine_workspace(data)
gcode_commands = convert_to_gcode(new_data)
Write G-code commands to a file
file_path = "%s.gcode"%file_name
write_file(file_path, gcode_commands)

data_base = np.zeros((len(data),4))
data_base[:,0:2] = data
data_base[:,2:4] = new_data

plot_data(data_base)

print("proces finished. A G-code file (%s.gcode) is created in "
"the same directory where the input file is."%file_name)

#general() # uncomment and run the script

’’’
End of converting np.arrays to G-code
’’’

32

B. Python script to check the output G-code file from Inkscape

’’’
This file takes a gcode file from inkscape Gcode-tool result and convert it into
a suitable gcode file that is readable by the Universal G-code Sender.

input: G-code file myfile.gcode --> COPY THE FILE INTO THE SAME DIRECTORY WITH THIS
FILE.

output: new_myfile.gcode

Hence: To convert the output of the linkscape file (which is in .NGC formate) to .gcode
open the file in "Notepad++" and rename it for example "myfile.gcode".

Make sure you type ’.gcode’ at the end of file name. This will make sure you do not get
any error.

’’’

import numpy as np
import convert_to_grbl as ctg
import time

def read_gcode_file(file_path):
print(’Process started...’)
with open(file_path, ’r’) as file:

f = file.read()
f0 = f.split(’\n’)
motion_commands = []
coordinates = np.zeros((len(f0), 6)) # X,Y,Z,I,J,F
f1 = []
ii=0
for line in f0:

if line != ’’:
f1.append(line)

ii+=1
i=0
for line in f1:

command = line.strip()
command = command.split(’ ’)
print(command)
if command[0].startswith(’%’) or command[0].startswith(’(’):

pass
elif command[0].startswith(’M’) or command[0]==’G21’:

pass
else:

if command[0]==’G00’ or command[0]==’G01’:
if command[1].startswith("Z"):

motion_commands.append(command[0])
coordinates[i,2] = round(float(command[1][1:]),4)

elif command[1].startswith("X"):
motion_commands.append(command[0])
L = len(command[1:])
for j in range(2):

if L>3:
if command[4].startswith(’F’):

coordinates[i, j] = round(float(command[j + 1][1:]), 4)
else:

coordinates[i,j] = round(float(command[j+1][1:]),3) #
coordinate

coordinates[i, j+3] = round(float(command[j + 4][1:]),
4)

else:
strToint = str.
coordinates[i, j] = round(float(command[j + 1][1:]), 4)

i+=1

33

coordinates = coordinates[:i,:5]
return motion_commands, coordinates

def write_proper_gcode(motion_commands, coordinates):
gcode_commands = []
x, y, z = coordinates[0, :3]
gcode_commands.append(f"G17 ; Select XY plane for circular interpolation\n")
gcode_commands.append(f"G21 ; set the units to milimeters\n")
gcode_commands.append(f"G54 ; select the coordinate system 1\n")
gcode_commands.append(f"G80 ;cancle motion\n")
gcode_commands.append(f"G90 ; non-incremental motion\n")
gcode_commands.append(f"G94 ;feed/minute mode\n")
gcode_commands.append(f"G00 F1000 ; set the feed rate for fast movement\n")
gcode_commands.append(f"G01 F100 ; set the feed rate that machine should move with\
n")
gcode_commands.append(f"G02 F100 ; set the feed rate that machine should move with\
n")
gcode_commands.append(f"G03 F100 ; set the feed rate that machine should move with\
n")
i=0
for point in coordinates[:, :]:

G0 = motion_commands[i]
x, y, z, I, J = point
if z==0:

if G0 == ’G00’:
gcode_commands.append(f"{G0} X{x} Y{y}\n")

elif G0==’G01’:
gcode_commands.append(f"{G0} X{x} Y{y}\n")

elif G0==’G02’:
gcode_commands.append(f"{G0} X{x} Y{y} I{I} J{J}\n")

else:# G0 == ’G02’:
gcode_commands.append(f"{G0} X{x} Y{y} I{I} J{J}\n")

if z != 0:
gcode_commands.append(f"{G0} Z{z}\n")

i+=1
gcode_commands.append(f"G28 ; Home the machine\n")
return gcode_commands

def main():
ts = time.time()
file_path = input(’Provide the input .gcode file: ’)
file_path = ’sideline_1.gcode’
motion_commands, coordinates = read_gcode_file(file_path)
coordinates[:,:2] = ctg.transfer_coordinates_into_machine_workspace(coordinates
[:,:2])
gcode_commands = write_proper_gcode(motion_commands=motion_commands, coordinates=
coordinates)
file_name = file_path.split(’/’)[-1]
file_name = file_name.split(’.’)[0]
file_path = "new_%s.gcode" % file_name
ctg.write_file(file_path, gcode_commands)

te = time.time()

t = round(te - ts,2)

print(’Process finished in %s seconds.’%t)
print(’File has been converted. Check the file using Notepad++ as instructed in the
paper.’)

34

C. Python script for precision test

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

def save_csv(coordinates, filename=’’):
coordinates = coordinates.reshape(len(x_coor), 2)
df = pd.DataFrame(coordinates)
df = pd.DataFrame(list(coordinates.items()), columns=[’Key’, ’Value’])
filename = filename + ’.csv’
df.to_csv(filename, sep=’,’, encoding=’utf-8’, index=False)

def create_sine(X, A, F, y0):
Y = A*np.sin(2*np.pi*F*X) + y0
return Y

X = np.linspace(-160, -20, 70)
Y = create_sine(X,60, 1, -80)

file = np.zeros((len(X),2))
file[:,0] = X
file[:,1]=Y

save_csv(coordinates=file, filename=’sin’)
plt.plot(X,Y)
plt.show()
machine_path = np.array([

[-20, -19.5, -159.5, -160, -60, -60, -119.5,-119.5, -100, -20],
[-20, -140, -140, -21, -20, -100, -100, -60.5, -60.5, -20]

])
machine_path = np.transpose(machine_path)
coordiates = np.array([

[-20, -20, -160, -160, -60, -60, -120, -120, -100, -20],
[-20, -140, -140, -20, -20, -100, -100, -60, -60, -20]])

Define the dimensions of the environment in mm
min_x = -221#190 # mm
min_y = -201#170 # mm
max_x = 0 # mm
max_y = 0 # mm
grid_size_mm = 1 # Grid size in mm

Define A4 paper size in inches (1 inch = 25.4 mm)
a4_width_mm = 297
a4_height_mm = 210
a4_width_in = a4_width_mm / 25.4
a4_height_in = a4_height_mm / 25.4

Calculate the width and height of the environment
width_mm = abs(min_x)
height_mm = abs(min_y)

Calculate the necessary margins to center the plot on A4 paper
margin_x = (a4_width_mm - width_mm) / 2
margin_y = (a4_height_mm - height_mm) / 2

Create a figure with A4 size
fig = plt.figure(figsize=(a4_width_in, a4_height_in)) # Set figure size to A4

Create an axis with limits set to the dimensions of the environment
ax = fig.add_axes([margin_x / a4_width_mm, margin_y / a4_height_mm, width_mm /

a4_width_mm, height_mm / a4_height_mm])
ax1 = fig.add_axes([margin_x / a4_width_mm, margin_y / a4_height_mm, width_mm /

a4_width_mm, height_mm / a4_height_mm])

Plot grid lines

35

i=10
linewidth=0.5
for x in range(0, width_mm + 1, grid_size_mm):

if x==i:
linewidth=1
col = ’black’
i+=10

else:
linewidth=0.5
col = ’gray’

ax.axvline(-x, color=col, linewidth=linewidth)
i=10
for y in range(0, height_mm + 1, grid_size_mm):

if y==i:
linewidth=1
col = ’black’
i+=10

else:
linewidth=0.5
color = ’gray’

ax.axhline(-y, color=col, linewidth=linewidth)

min_x = -190
min_y = -170
Add a marker (star or dot) at a specific location
marker_x, marker_y = coordiates[0,:], coordiates[1,:] # Coordinates for the marker
marker_XY = np.array([

[0, 0, -170, -170, 0],
[0, -150, -150, 0, 0]

])
marker_size = 100 # Size of the marker
ax.scatter(marker_x, marker_y, s=marker_size, color=’green’, marker=’o’) # Star marker
ax.scatter(marker_XY[0,:], marker_XY[1,:], s=marker_size, color=’red’, marker=’o’) #

Star marker
ax.plot(marker_x, marker_y, color=’red’, linewidth=2, label=’Desired trajectory’)
ax.plot(machine_path[:,0], machine_path[:,1], color=’blue’, linewidth=1,label=’Machine

trajectory’)
ax.plot(marker_XY[0,:], marker_XY[1,:], color=’green’, linewidth=2, label=’Workspace’)
ax.scatter(marker_x, marker_y, s=20, color=’blue’, marker=’o’) # Star marker
ax.plot(X,Y, color=’brown’,linewidth=4)
Set the limits and aspect ratio
ax.set_xlim(min_x, max_x)
ax.set_ylim(min_y, max_y)
ax.set_aspect(’equal’)

Invert the Y-axis to have zero at the bottom
ax.invert_yaxis()

Label the axes with numbers
ax.set_xticks(range(min_x, max_x + 1, 10)) # Adjust the step size as needed
ax.set_yticks(range(min_y, max_y + 1, 10)) # Adjust the step size as needed
ax.set_xticklabels(range(min_x, max_x + 1, 10), fontsize=8)
ax.set_yticklabels(range(min_y, max_y + 1, 10), fontsize=8)

Move the y-axis ticks and labels to the right side
ax.yaxis.set_label_position("right")
ax.yaxis.tick_left()
ax.xaxis.tick_top()

Remove axes for a cleaner look but keep the ticks and labels
ax.tick_params(axis=’both’, which=’both’, length=0) # Remove tick lines

Draw an arrow from (1.5, 6) to (2.5, 7.5)
ax.annotate(’’, xy=(marker_x[0]+5, marker_y[0]), xytext=(marker_x[0]+5, marker_y[0]-10)

,

36

arrowprops=dict(facecolor=’blue’, arrowstyle=’<|-’, lw=2),
fontsize=12)

Add text near the arrow
ax.text(marker_x[0]+8, marker_y[0], ’start’, fontsize=12, color=’blue’)

ax.annotate(’’, xy=(marker_x[0]-20, marker_y[0]-5), xytext=(marker_x[0]-10, marker_y
[0]),

arrowprops=dict(facecolor=’blue’, arrowstyle=’<|-’, lw=2),
fontsize=12)

ax.text(marker_x[0]-20, marker_y[0]+5, ’End’, fontsize=12, color=’blue’)
ax.text(0,0, ’origin’, color=’blue’, fontsize=12)

ax.legend()
Save the plot as a high-resolution image
output_file = ’image/final_figures/grid_plot_compatible_with_a4.png’
output_file = ’image/final_figures/grid_plot_compatible_with_a4_result.png’
fig.savefig(output_file, dpi=254) # 254 dpi ensures that 1 pixel = 0.1 mm (since 1

inch = 25.4 mm)
plt.show()
Close the plot
plt.close(fig)

print(f"Plot saved as {output_file}. Open this file and print it at 100% scale to
ensure correct dimensions.")

37

D. Precision test analysis

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
import math
import sklearn.metrics

def load_data(file_path):
myfile = pd.read_csv(file_path)
data = pd.read_csv(file_path).values
data = data[28:1024, :]
data=np.round(data/6.5,4)
return data

def calculate_rmse_2d(actual, prediction):
error = actual - prediction
squared_error = np.square(error)
N = np.shape(error)[1]
Calculate the sum of the squared differences in both dimensions
sum_squared_diffs = np.sum(squared_error, axis=1)/N
Calculate the mean of the squared differences
mean_squared_diffs = np.mean(sum_squared_diffs)
Calculate the RMSE
rmse = np.sqrt(mean_squared_diffs)
return rmse, sum_squared_diffs

data = load_data(’precision_test/precision_points.csv’)
data = data[:,0]

actual_path = np.array([
[-20, -20, -160, -160, -60, -60, -120, -120, -100, -20],
[-20, -140, -140, -20, -20, -100, -100, -60, -60, -20]

])

machine_path = np.array([
[-20, -19.5, -159.5, -160, -60, -60, -119.5,-119.5, -100, -20],
[-20, -140, -140, -21, -20, -100, -100, -60.5, -60.5, -20]

])

actual_path = np.transpose(actual_path)
machine_path = np.transpose(machine_path)

rmse, sum_squar_error = calculate_rmse_2d(actual_path, machine_path)

root_sum_squar_error = np.sqrt(sum_squar_error)
print(’root mean squared error = ’,rmse)

error = actual_path - machine_path
squar_error = error**2

plt.plot(actual_path[:,0], actual_path[:,1], color=’blue’, label=’actual path’)
plt.plot(machine_path[:,0], machine_path[:,1],color=’red’, label=’machine path’)
plt.title(’Precision test’)
plt.xlabel(’x [mm]’)
plt.ylabel(’y [mm]’)
plt.legend()

plt.savefig(’image/final_figures/precision_result.jpg’)
plt.show()

38

’’’
plotting the sum of the squared error
’’’
figbox_rms, box_rms = plt.subplots(figsize=(8, 6))
boxplot_rms = box_rms.boxplot(sum_squar_error, labels=’E’,showmeans=True, meanline=True

)
boxplot_rms = box_rms.boxplot(root_sum_squar_error, showmeans=True, meanline=True)

Customize the mean line thickness
for line in boxplot_rms[’means’]:

line.set_linewidth(2.5)

plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
box_rms.set_title(’Sum of the squared error’, fontsize=20)
box_rms.set_ylabel(r’MSE $[mm]$’, fontsize=20)
box_rms.set_xlabel(’ ’)
plt.tight_layout()
plt.savefig(’image/final_figures/rms_box.jpg’)
figbox_rms.show()

fig, box = plt.subplots(figsize=(8, 6))
box.boxplot(squar_error, labels=[’X’, ’Y’], showmeans=True, meanline=True)
box.set_title(’Sequared error along each axis’, fontsize=20)
box.set_ylabel(’SE [mm]’, fontsize=20)

plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

box.set_ylable(’’)
plt.savefig(’image/final_figures/error_box.jpg’)
fig.show()

39

E. Sealing quality Python code

import time

import serial
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

def pressure_reading():
def save_csv(coordinates,filename=’’):

coordinates = coordinates.reshape(len(x_coor), 2)
df = pd.DataFrame(coordinates)
df.to_csv(filename, sep=’,’, encoding=’utf-8’, index=False, header=False)

inp = input(’Enter the file name : ’)
N_test = input(’Enter the number of test: ’)
st_time=time.time()
ser = serial.Serial(’COM4’, 115200)
run = True
N=100;
i=0
Data = []
data = np.zeros((N,1))
command = ’1’.encode()
ser.write(command)
while run:

ser.write(command)
time.sleep(0.5)
message = ser.readline()
message.decode(’utf-8’).rstrip()
message = str(message, ’utf-8’)
message = message.strip(’\r\n’)
print(message)
data[i, 0] = float(message)
i += 1
end_time= time.time()
elapse_time = round(end_time-st_time,0)
print(elapse_time)
if elapse_time >= 60.0:

print("Done")
command = "0".encode()
ser.write(command)
run = False
ser.close()

data = np.zeros((len(Data),1))
#
for i in range(len(Data)):
data[i,0]=Data[i]
filename = ’result/plastic/individual_data/%s/’%N_test+ inp +’.csv’
filename = ’result/TPU/individual_data/%s/’%N_test+ inp +’.csv’
save_csv(data, filename=filename)
print("file saved.")

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os

def concatenate_data():
def load_data(file_path):

40

myfile = pd.read_csv(file_path)
data = pd.read_csv(file_path).values
data = data[28:1024, :]
data=np.round(data/6.5,4)
return data

Data = np.zeros((100,27))

def save_csv(coordinates, filename=’’):
coordinates = coordinates.reshape(len(x_coor), 2)
df = pd.DataFrame(coordinates)
df = pd.DataFrame(list(coordinates.items()), columns=[’Key’, ’Value’])
filename = filename + ’.csv’
df.to_csv(filename, sep=’,’, encoding=’utf-8’, index=False)

save_csv(Data,"Data.csv")
material = input(’Specify the material: ’)
N_test = input(’Specify the number of tests: ’)
data = load_data("result/Data.csv")[:,0]
path_plastic = "result/plastic/individual_data/%s"%N_test
path_tpu = "result/tpu/individual_data/%s"%N_test
if material == ’plastic’:

path = path_plastic
directory = os.listdir(path)

elif material == ’TPU’:
path = path_tpu
directory = os.listdir(path)

else:
print("Invalid material. Please choose between ’plastic’ and ’TPU’")
material = input(’Specify the material: ’)

directory = os.listdir(path)
print(directory)
N = len(directory)
scale = 80 # 1 bar = 80 in arduino output
Data = []
Data = np.zeros()
header =
max_values = {

}
Material = []
i=0
for file in directory:

Material.append(material)
filename = file.split(’.’)[0]
header.append(filename)
new_data = load_data(path + ’/’ + file) #/ scale
data = new_data[:,0]/scale
max_values.append(max(data))
max_values[filename] = max(data)
Data.append(new_data[:,0])
i+=1

print(len(max_values))
if material==’plastic’:

save_csv(coordinates=max_values, filename=’result/data_plastic_%s’%N_test)
elif material==’TPU’:

save_csv(coordinates=max_values, filename=’result/data_tpu_%s’%N_test)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

def plot_data():
def load_data(file_path):

myfile = pd.read_csv(file_path)

41

data = pd.read_csv(file_path) # .values
data_dict = data.set_index(’Key’).to_dict()[’Value’]
data = data[28:1024, :]
data=np.round(data/6.5,4)
return data_dict

material = ’plastic’
file_path_1 = ’result/data_plastic_1.csv’
file_path_2 = ’result/data_plastic_2.csv’
file_path_3 = ’result/data_plastic_3.csv’

data_1 = load_data(file_path_1)
data_2 = load_data(file_path_2)
data_3 = load_data(file_path_3)

keys = data_2.keys()
keys = list(keys)

D = [1, 2, 3]
T1_20 = []
T1_50 = []
T1_100 = []
T1_200 = []
T1_300 = []
Max_vals1_20 = []
Max_vals1_50 = []
Max_vals1_100 = []
Max_vals1_200 = []
Max_vals1_300 = []

T2_20 = []
T2_50 = []
T2_100 = []
T2_200 = []
T2_300 = []
Max_vals2_20 = []
Max_vals2_50 = []
Max_vals2_100 = []
Max_vals2_200 = []
Max_vals2_300 = []

T3_20 = []
T3_50 = []
T3_100 = []
T3_200 = []
T3_300 = []
Max_vals3_20 = []
Max_vals3_50 = []
Max_vals3_100 = []
Max_vals3_200 = []
Max_vals3_300 = []
average_values = {}
print(data_2[key])
val_3 = 0
for key in keys:

val_1 = data_1[key]
val_2 = data_2[key]
val_3 = data_3[key]
av_val = (val_2 + val_3)/2
average_values[key] = av_val

max_values = average_values
max_values = data_2
max_values = data_3

42

for i in range(len(keys)):
label = keys[i]
d = int(label.split(’,’)[2].split(’=’)[1]) # diameter
v = int(label.split(’,’)[3].split(’=’)[1]) # speed

if d == 1:
if v == 20:

Max_vals1_20.append(max_values[label])
T1_20.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 50:
Max_vals1_50.append(max_values[label])
T1_50.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 100:
Max_vals1_100.append(max_values[label])
T1_100.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 200:
print(label)
Max_vals1_200.append(max_values[label])
T1_200.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 300:
Max_vals1_300.append(max_values[label])
T1_300.append(int(label.split(’,’)[0].split(’=’)[1]))

if d == 2:
if v == 20:

Max_vals2_20.append(max_values[label])
T2_20.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 50:
Max_vals2_50.append(max_values[label])
T2_50.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 100:
Max_vals2_100.append(max_values[label])
T2_100.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 200:
Max_vals2_200.append(max_values[label])
T2_200.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 300:
print(max_values[i])
Max_vals2_300.append(max_values[label])
T2_300.append(int(label.split(’,’)[0].split(’=’)[1]))

if d == 3:
if v == 20:

Max_vals3_20.append(max_values[label])
T3_20.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 50:
Max_vals3_50.append(max_values[label])
T3_50.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 100:
Max_vals3_100.append(max_values[label])
T3_100.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 200:
print(max_values[i])
Max_vals3_200.append(max_values[label])
T3_200.append(int(label.split(’,’)[0].split(’=’)[1]))

if v == 300:
print(max_values[i])
Max_vals3_300.append(max_values[label])
T3_300.append(int(label.split(’,’)[0].split(’=’)[1]))

for i in range(3):
T1_20[i] -= 10
T1_50[i] -= 5
T1_200[i] += 5
T1_300[i] += 10

43

T2_20[i]-=10
T2_50[i]-=5
T2_200[i]+=5
T2_300[i]+=10

T3_20[i]-=10
T3_50[i] -= 5
T3_200[i] +=5
T3_300[i] += 10

tick_label = [’200’, ’250’, ’300’]

fig, axs = plt.subplots(2, 2, figsize=(10, 8))
fig.suptitle(’Heat sealing strength vs temperature and speed’, fontsize=16)
Plot on the first subplot (0, 0)
axs[0, 0].bar(T1_20, Max_vals1_20, width=5, label=r’V=20 $[\frac{mm}{min}]$’, color
=’black’)
axs[0, 0].bar(T1_50, Max_vals1_50, width=5, label=r’V=50 $[\frac{mm}{min}]$’, color
=’blue’)
axs[0, 0].bar(T1_100, Max_vals1_100, tick_label=tick_label, width=5, label=r’V=100
$[\frac{mm}{min}]$’, color=’red’)
axs[0, 0].bar(T1_200, Max_vals1_200, width=5, label=r’V=200 $[\frac{mm}{min}]$’,
color=’green’)
axs[0, 0].bar(T1_300, Max_vals1_300, width=5, label=r’V=300 $[\frac{mm}{min}]$’,
color=’magenta’)
axs[0, 0].set_title(r’$d=1 [mm]$’,fontsize=15)
axs[0, 0].set_ylabel(’Sealing strength[bar]’, fontsize=10)
axs[0, 0].set_xlabel(’Temperature’, fontsize=10)
axs[0, 0].set_ylim(top=3.2)

d1_eff = [Max_vals1_20, Max_vals1_50, Max_vals1_100, Max_vals1_200, Max_vals1_300]
d2_eff = [Max_vals2_20, Max_vals2_50, Max_vals2_100, Max_vals2_200, Max_vals2_300]
d3_eff = [Max_vals3_20, Max_vals3_50, Max_vals3_100, Max_vals3_200, Max_vals3_300]
Add a horizontal line to show the maximum

mx = round(np.max(d1_eff),2)
axs[0, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs[0, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs[0, 0].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’, color=’
black’, fontsize=10)

Plot on the first subplot (0, 1)
axs[0, 1].bar(T2_20, Max_vals2_20, width=5, label=r’V=20 $[\frac{mm}{min}]$’, color
=’black’)
axs[0, 1].bar(T2_50, Max_vals2_50, width=5, label=r’V=50 $[\frac{mm}{min}]$’, color
=’blue’)
axs[0, 1].bar(T2_100, Max_vals2_100, tick_label=tick_label, width=5, label=r’V=100
$[\frac{mm}{min}]$’, color=’red’)
axs[0, 1].bar(T2_200, Max_vals2_200, width=5, label=r’V=200 $[\frac{mm}{min}]$’,
color=’green’)
axs[0, 1].bar(T2_300, Max_vals2_300, width=5, label=r’V=300 $[\frac{mm}{min}]$’,
color=’magenta’)
axs[0, 1].set_title(r’$d=2 [mm]$’, fontsize=15)
axs[0, 1].set_ylabel(’Sealing strength[bar]’, fontsize=10)
axs[0, 1].set_xlabel(’Temperature’, fontsize=10)
axs[0, 1].set_ylim(top=3.2)

mx = round(np.max(d2_eff),2)
axs[0, 1].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint

44

x_min, x_max = axs[0, 1].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs[0, 1].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’, color=’
black’, fontsize=10)

Plot on the first subplot (1, 0)
axs[1, 0].bar(T3_20, Max_vals3_20, width=5, label=r’V=20 $[\frac{mm}{min}]$’, color
=’black’)
axs[1, 0].bar(T3_50, Max_vals3_50, width=5, label=r’V=50 $[\frac{mm}{min}]$’, color
=’blue’)
axs[1, 0].bar(T3_100, Max_vals3_100, tick_label=tick_label, width=5, label=r’V=100
$[\frac{mm}{min}]$’, color=’red’)
axs[1, 0].bar(T3_200, Max_vals3_200, width=5, label=r’V=200 $[\frac{mm}{min}]$’,
color=’green’)
axs[1, 0].bar(T3_300, Max_vals3_300, width=5, label=r’V=300 $[\frac{mm}{min}]$’,
color=’magenta’)
axs[1, 0].set_title(r’$d=3 [mm]$’,fontsize=15)
axs[1, 0].set_ylabel(’Sealing strength[bar]’, fontsize=10)
axs[1, 0].set_xlabel(’Temperature’, fontsize=10)
axs[1, 0].set_ylim(top=3.2)

mx = round(np.max(d3_eff),2)
axs[1, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs[1, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs[1, 0].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’, color=’
black’, fontsize=10)

Plot on the first subplot (1, 1)
axs[1, 1].bar([200], [0], width=5, label=r’V=20 $[\frac{mm}{min}]$’, color=’black’)
axs[1, 1].bar([250], [0], width=5, label=r’V=50 $[\frac{mm}{min}]$’, color=’blue’)
axs[1, 1].bar([300], [0], width=5, label=r’V=100 $[\frac{mm}{min}]$’, color=’red’)
axs[1, 1].bar([0], [0], width=5, label=r’V=200 $[\frac{mm}{min}]$’, color=’green’)
axs[1, 1].bar([100], [0], width=5, label=r’V=300 $[\frac{mm}{min}]$’, color=’
magenta’)
axs[1, 1].set_ylim(top=3.2)
axs[1, 1].legend(loc=’center’, fontsize=15)
plt.subplots_adjust(hspace=0.5)
plt.savefig(’image/final_figures/sealing_strength_bar_%s.jpg’%material)
fig.show()

’’’
Next we plot the Dwell time: the time material layers are in direct contact
with the heat Source.
’’’

V = [300, 200, 100, 50, 20]
Dt = np.zeros(len(V))
dwell_t = np.reshape(dwell_t, (1,len(V)))
print(dwell_t[0])
dwell_t = []
dwell_t2 = np.zeros(len(V))
dwell_t3 = []
k=-0.2
for i in range(len(V)):

V[i]=V[i]/60 # convert to mm/seconds
dwt = np.round(1/V[i],1) # get the dwell time it takes for the machine to move

1 mm
Dt[i]=dwt

45

dwell_t2[i] = dwt
dwell_t.append(dwt) # append the dwell time for the labels tick

dwell_t2[0] -= 0.5
dwell_t2[1] += 0.2
dwell_t2[2] += 0.6
dwell_t2[3] += 0.9
Dt = dwell_t2 - 0.2
dwell_t3 = dwell_t2 + 0.2

Dt[0] -= 0.5
Dt[1] += 0.2
Dt[2] += 0.6
Dt[3] += 0.9
dwell_t2 = Dt-0.2
dwell_t3 = Dt + 0.2

’’’
Dwell time for d=1mm at 3 different temperatures 200, 250, and 300 respectively.
’’’

fig_dwell_1, axs_dwell_1 = plt.subplots(2, 2, figsize=(10, 8))
fig_dwell_1.suptitle(r’Heat sealing strength vs dwell time for sealing thickness
of $d=1mm$’, fontsize=16)

T200_1_eff = [Max_vals1_300[0], Max_vals1_200[0], Max_vals1_100[0], Max_vals1_50
[0], Max_vals1_20[0]] # @T=200
T250_1_eff = [Max_vals1_300[1], Max_vals1_200[1], Max_vals1_100[1], Max_vals1_50
[1], Max_vals1_20[1]] # @T=250
T300_1_eff = [Max_vals1_300[2], Max_vals1_200[2], Max_vals1_100[2], Max_vals1_50
[2], Max_vals1_20[2]] # @T=300

Plot on the first subplot (0, 0)
axs_dwell_1[0, 0].bar(Dt, T200_1_eff, tick_label=dwell_t, color=’blue’, width=0.2,
label=r’$T=200ˆ\circ C$’)
axs_dwell_1[0, 0].plot(Dt, T200_1_eff, color=’blue’, linewidth=2)
axs_dwell_1[0, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_1[0, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_1[0, 0].set_ylim(top=3.2)

axs_dwell_1[0, 1].bar(Dt, T250_1_eff, tick_label=dwell_t, color=’red’, width=0.2,
label=r’$T=250ˆ\circ C$’)
axs_dwell_1[0, 1].plot(Dt, T250_1_eff, color=’red’, linewidth=2)
axs_dwell_1[0, 1].set_title(’$T=250ˆ\circ C$ $[mm]$’, fontsize=15)
axs_dwell_1[0, 1].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_1[0, 1].set_ylim(top=3.2)

axs_dwell_1[1, 0].bar(Dt, T300_1_eff, tick_label=dwell_t, color=’black’, width=0.2,
label=r’$T=300ˆ\circ C$’)

axs_dwell_1[1, 0].plot(Dt, T300_1_eff, color=’black’, linewidth=2)
axs_dwell_1[1, 0].set_title(’$T=300ˆ\circ C$ $[mm]$’, fontsize=15)
axs_dwell_1[1, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_1[1, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_1[1, 0].set_ylim(top=3.2)

axs_dwell_1[1, 1].bar([0.3],[0], label=r’$T=200ˆ\circ C$’, color=’blue’)
axs_dwell_1[1, 1].bar([0.6],[0], label=r’$T=250ˆ\circ C$’, color=’red’)
axs_dwell_1[1, 1].bar([3],[0], label=r’$T=300ˆ\circ C$’, color=’black’)
axs_dwell_1[1, 1].set_ylim(top=3.2)
plt.subplots_adjust(hspace=0.5) # Increase hspace as needed
axs_dwell_1[1, 1].legend(loc=’center’, fontsize=15)
plt.savefig(’image/final_figures/dwellTime_d1.jpg’)
fig_dwell_1.show()

46

’’’
Dwell time for d=2 mm at 3 different temperatures 200, 250, and 300 respectively.
’’’
fig_dwell_2, axs_dwell_2 = plt.subplots(2, 2, figsize=(10, 8))
fig_dwell_2.suptitle(r’Heat sealing strength vs dwell time for sealing thickness
of $d=2mm$’, fontsize=16)

T200_2_eff = [Max_vals2_300[0], Max_vals2_200[0], Max_vals2_100[0], Max_vals2_50
[0], Max_vals2_20[0]]
T250_2_eff = [Max_vals2_300[1], Max_vals2_200[1], Max_vals2_100[1], Max_vals2_50
[1], Max_vals2_20[1]]
T300_2_eff = [Max_vals2_300[2], Max_vals2_200[2], Max_vals2_100[2], Max_vals2_50
[2], Max_vals2_20[2]]

for i in range(3):
dwell_t[i] = dwell_t[i]*2
print(dwell_t)
Plot on the second suplot (0, 1)
axs_dwell_2[0, 0].bar(dwell_t2, T200_2_eff, tick_label=dwell_t, color=’blue’, width
=0.2, label=r’$T=200ˆ\circ C$’)
axs_dwell_2[0, 0].plot(dwell_t2, T200_2_eff, color=’blue’, linewidth=2)
axs_dwell_2[0, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_2[0, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_2[0, 0].set_ylim(top=3.2)

axs_dwell_2[0, 1].bar(dwell_t2, T250_2_eff, tick_label=dwell_t, color=’red’, width
=0.2, label=r’$T=250ˆ\circ C$’)
axs_dwell_2[0, 1].plot(dwell_t2, T250_2_eff, color=’red’, linewidth=2)
axs_dwell_2[0, 1].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_2[0, 1].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_2[0, 1].set_ylim(top=3.2)

axs_dwell_2[1, 0].bar(dwell_t2, T300_2_eff, tick_label=dwell_t, color=’black’,
width=0.2, label=r’$T=300ˆ\circ C$’)
axs_dwell_2[1, 0].plot(dwell_t2, T300_2_eff, color=’black’, linewidth=2)
axs_dwell_2[1, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_2[1, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_2[1, 0].set_ylim(top=3.2)

axs_dwell_2[1, 1].bar([0.3],[0], label=r’$T=200ˆ\circ C$’, color=’blue’)
axs_dwell_2[1, 1].bar([0.6],[0], label=r’$T=250ˆ\circ C$’, color=’red’)
axs_dwell_2[1, 1].bar([3],[0], label=r’$T=300ˆ\circ C$’, color=’black’)
axs_dwell_2[1, 1].legend(fontsize=’x-large’, loc=’center’, borderaxespad=0.5)
axs_dwell_2[1, 1].set_ylim(top=3.2)
plt.subplots_adjust(hspace=0.5) # Increase hspace as needed

plt.savefig(’image/final_figures/dwellTime_d2.jpg’)
fig_dwell_2.show()
’’’
Dwell time for d=2mm at 3 different temperatures 200, 250, and 300 respectively.
’’’

fig_dwell_3, axs_dwell_3 = plt.subplots(2, 2, figsize=(10, 8))
fig_dwell_3.suptitle(r’Heat sealing strength vs dwell time for sealing thickness
of $d=3mm$’, fontsize=16)

T200_3_eff = [Max_vals3_300[0], Max_vals3_200[0], Max_vals3_100[0], Max_vals3_50
[0], Max_vals3_20[0]]
T250_3_eff = [Max_vals3_300[1], Max_vals3_200[1], Max_vals3_100[1], Max_vals3_50
[1], Max_vals3_20[1]]
T300_3_eff = [Max_vals3_300[2], Max_vals3_200[2], Max_vals3_100[2], Max_vals3_50
[2], Max_vals3_20[2]]
for i in range(3):

47

dwell_t[i] = dwell_t[i]*3/2
Plot on the third subplot (1, 0)
axs_dwell_3[0, 0].bar(dwell_t3, T200_3_eff, tick_label=dwell_t, color=’blue’, width
=0.2, label=r’$T=200ˆ\circ C$’)
axs_dwell_3[0, 0].plot(dwell_t3, T200_3_eff, color=’blue’, linewidth=2)
axs_dwell_3[0, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_3[0, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_3[0, 0].set_ylim(top=3.2)

axs_dwell_3[0, 1].bar(dwell_t3, T250_3_eff, tick_label=dwell_t, color=’red’, width
=0.2, label=r’$T=250ˆ\circ C$’)
axs_dwell_3[0, 1].plot(dwell_t3, T250_3_eff, color=’red’, linewidth=2)
axs_dwell_3[0, 1].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_3[0, 1].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_3[0, 1].set_ylim(top=3.2)

axs_dwell_3[1, 0].bar(dwell_t3, T300_3_eff, tick_label=dwell_t, color=’black’,
width=0.2, label=r’$T=300ˆ\circ C$’)
axs_dwell_3[1, 0].plot(dwell_t3, T300_3_eff, color=’black’, linewidth=2)
axs_dwell_3[1, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell_3[1, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell_3[1, 0].set_ylim(top=3.2)

axs_dwell_3[1, 1].bar([0.3],[0], label=r’$T=200ˆ\circ C$’, color=’blue’)
axs_dwell_3[1, 1].bar([0.6],[0], label=r’$T=250ˆ\circ C$’, color=’red’)
axs_dwell_3[1, 1].bar([3],[0], label=r’$T=300ˆ\circ C$’, color=’black’)
axs_dwell_3[1, 1].legend(fontsize=’x-large’, loc=’center’)
axs_dwell_3[1, 1].set_ylim(top=3.2)
plt.subplots_adjust(hspace=0.5) # Increase hspace as needed

plt.savefig(’image/final_figures/dwellTime_d3.jpg’)
fig_dwell_3.show()

’’’
############### Dwell time ######################
’’’
vals200 = [T200_1_eff,T200_2_eff,T200_3_eff]
vals250 = [T250_1_eff, T250_2_eff, T250_3_eff]
vals300 = [T300_1_eff, T300_2_eff, T300_3_eff]

max_1 = []
max_2 = []
max_3 = []
for i in range(3):

max_1.append(max(vals200[i]))
max_2.append(max(vals250[i]))
max_3.append(max(vals300[i]))

fig_dwell, axs_dwell = plt.subplots(2, 2, figsize=(10, 8))
fig_dwell.suptitle(r’Heat sealing strength vs dwell time’, fontsize=16)

#Plot on the first subplot (0, 0)
axs_dwell[0, 0].bar(Dt, T200_1_eff, color=’blue’, width=0.2, label=r’$d=1 [mm]$’)
axs_dwell[0, 0].plot(Dt, T200_1_eff, color=’blue’, linewidth=2)

axs_dwell[0, 0].bar(dwell_t2, T200_2_eff, tick_label=dwell_t, color=’red’, width
=0.2, label=r’$d=2 [mm]$’)
axs_dwell[0, 0].plot(dwell_t2, T200_2_eff, color=’red’, linewidth=2)

axs_dwell[0, 0].bar(dwell_t3, T200_3_eff, color=’black’, width=0.2, label=r’$d=3 [
mm]$’)
axs_dwell[0, 0].plot(dwell_t3, T200_3_eff, color=’black’, linewidth=2)

48

axs_dwell[0, 0].set_title(r’Temperature $T=200ˆ\circ C$’)
axs_dwell[0, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell[0, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell[0, 0].set_ylim(top=3.2)

Plot on the first subplot (0, 01)
axs_dwell[0, 1].bar(Dt, T250_1_eff, color=’blue’, width=0.2, label=r’$d=1 [mm]$’)
axs_dwell[0, 1].plot(Dt, T250_1_eff, color=’blue’, linewidth=2)

axs_dwell[0, 1].bar(dwell_t2, T250_2_eff, tick_label=dwell_t, color=’red’, width
=0.2, label=r’$d=2 [mm]$’)
axs_dwell[0, 1].plot(dwell_t2, T250_2_eff, color=’red’, linewidth=2)

axs_dwell[0, 1].bar(dwell_t3, T250_3_eff, color=’black’, width=0.2, label=r’$d=3 [
mm]$’)
axs_dwell[0, 1].plot(dwell_t3, T250_3_eff, color=’black’, linewidth=2)

axs_dwell[0, 1].set_title(r’Temperature $T=250ˆ\circ C$’)
axs_dwell[0, 1].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell[0, 1].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell[0, 1].set_ylim(top=3.2)

Plot on the first subplot (1, 0)
axs_dwell[1, 0].bar(Dt, T300_1_eff, color=’blue’, width=0.2, label=r’$d=1 [mm]$’)
axs_dwell[1, 0].plot(Dt, T300_1_eff, color=’blue’, linewidth=2)

axs_dwell[1, 0].bar(dwell_t2, T300_2_eff, tick_label=dwell_t, color=’red’, width
=0.2, label=r’$d=2 [mm]$’)
axs_dwell[1, 0].plot(dwell_t2, T300_2_eff, color=’red’, linewidth=2)

axs_dwell[1, 0].bar(dwell_t3, T300_3_eff, color=’black’, width=0.2, label=r’$d=3 [
mm]$’)
axs_dwell[1, 0].plot(dwell_t3, T300_3_eff, color=’black’, linewidth=2)

axs_dwell[1, 0].set_title(r’Temperature $T=300ˆ\circ C$’)
axs_dwell[1, 0].set_xlabel(r’Dwell time $[s]$’, fontsize=10)
axs_dwell[1, 0].set_ylabel(’Sealing Strength $[bar]$’, fontsize=10)
axs_dwell[1, 0].set_ylim(top=3.2)

axs_dwell[1, 1].bar([0.3], [0], label=r’$d=1 [mm]$’, color=’blue’)
axs_dwell[1, 1].bar([0.6], [0], label=r’$d=2 [mm]$’, color=’red’)
axs_dwell[1, 1].bar([3], [0], label=r’$d=3 [mm]$’, color=’black’)
axs_dwell[1, 1].legend(fontsize=’x-large’, loc=’center’)
axs_dwell[1, 1].set_title(’Legend’)
axs_dwell[1, 1].set_ylim(top=3.2)

mx = round(max(max_1), 2)
axs_dwell[0, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_dwell[0, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_dwell[0, 0].text(x_mid, mx, r’$\gamma = %s $’ % mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

mx = round(max(max_2), 2)
axs_dwell[0, 1].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_dwell[0, 1].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_dwell[0, 1].text(x_mid, mx, r’$\gamma = %s $’ % mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

49

mx = round(max(max_3), 2)
axs_dwell[1, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_dwell[1, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_dwell[1, 0].text(x_mid, mx, r’$\gamma = %s $’ % mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

plt.subplots_adjust(hspace=0.5) # Increase hspace as needed
plt.savefig(’image/final_figures/dwellTime.jpg’)
fig_dwell.show()

’’’

calculating and ploting the heat sealing strength vs sealing thickness

’’’

d0_eff = [Max_vals1_20[0], Max_vals2_20[0], Max_vals3_20[0]] # @T=200
d1_eff = [Max_vals1_20[1], Max_vals2_20[1], Max_vals3_20[1]] #sealing strength at T
=250 for tip diameters
d2_eff = [Max_vals1_20[2], Max_vals2_20[2], Max_vals3_20[2]] # @T=300

D1 = []
D2 = []
for i in range(len(D)):

D1.append(D[i] - 0.1)
D2.append(D[i] + 0.1)

#

fig_tip_d, axs_tip_d = plt.subplots(3, 2, figsize=(10, 8))
fig_tip_d.suptitle(r’Heat sealing strength vs Sealing thickness’, fontsize=20)

Plot on the first subplot (0, 0)
axs_tip_d[0, 0].bar(D1, d0_eff, label=r’T=200’, color=’blue’,width=0.1)
axs_tip_d[0, 0].bar(D, d1_eff, tick_label=D, label=’T=250’, color=’red’,width=0.1)
axs_tip_d[0, 0].bar(D2, d2_eff, label=’T=300’, color=’green’,width=0.1)
axs_tip_d[0, 0].set_title(r’V=20 $[\frac{mm}{min}]$’, fontsize=15)
axs_tip_d[0, 0].set_ylabel(r’Sealing strength $[bar]$’, fontsize=10)
axs_tip_d[0, 0].set_xlabel(r’Tip diameter $[mm]$’, fontsize=10)
axs_tip_d[0, 0].set_ylim(top=3.2)
axs_tip_d[0, 0].legend(loc=’lower center’)

mx = round(max(max(d0_eff, d1_eff, d2_eff)),2)
axs_tip_d[0, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_tip_d[0, 0].get_xlim()
x_mid = (x_min + x_max) / 2

Add text in the middle of the horizontal line
axs_tip_d[0, 0].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

**** legend in subfigure (0, 1) --> beter for visualizing
axs_tip_d[0, 1].bar(D, [0,0,0], label=r’$T=200ˆ\circ C$’, color=’blue’,width=0.1)
axs_tip_d[0, 1].bar(D1, [0,0,0], tick_label=D, label=r’$T=250ˆ\circ C$’, color=’red
’,width=0.1)
axs_tip_d[0, 1].bar(D2, [0,0,0], label=r’$T=300ˆ\circ C$’, color=’green’,width=0.1)
axs_tip_d[0, 1].set_title(’Legends’, fontsize=15)
axs_tip_d[0, 1].set_ylim(top=3.2)
axs_tip_d[0, 1].legend(loc=’center’)

50

d0_eff = [Max_vals1_50[0], Max_vals2_50[0], Max_vals3_50[0]] # @T=200
d1_eff = [Max_vals1_50[1], Max_vals2_50[1], Max_vals3_50[1]] #sealing strength at T
=250 for tip diameters
d2_eff = [Max_vals1_50[2], Max_vals2_50[2], Max_vals3_50[2]] # @T=300

Plot on the second subplot (0, 1)
axs_tip_d[1, 0].bar(D1, d0_eff, label=’T=200’, color=’blue’,width=0.1)
axs_tip_d[1, 0].bar(D, d1_eff, tick_label=D, label=’T=250’, color=’red’,width=0.1)
axs_tip_d[1, 0].bar(D2, d2_eff, label=’T=300’, color=’green’,width=0.1)
axs_tip_d[1, 0].set_title(r’V=50 $[\frac{mm}{min}]$’, fontsize=15)
axs_tip_d[1, 0].set_ylabel(r’Sealing strength $[bar]$’, fontsize=15)
axs_tip_d[1, 0].set_xlabel(r’Tip diameter $[mm]$’, fontsize=10)
axs_tip_d[1, 0].set_ylim(top=3.2)

Add a horizontal line to show the maximum
mx = round(max(max(d0_eff, d1_eff, d2_eff)),2)
axs_tip_d[1, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_tip_d[1, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_tip_d[1, 0].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

d0_eff = [Max_vals1_100[0], Max_vals2_100[0], Max_vals3_100[0]] # @T=200
d1_eff = [Max_vals1_100[1], Max_vals2_100[1], Max_vals3_100[1]] #sealing strength
at T=250 for tip diameters
d2_eff = [Max_vals1_100[2], Max_vals2_100[2], Max_vals3_100[2]] # @T=300

Plot on the third subplot (1, 0)
axs_tip_d[1, 1].bar(D1, d0_eff, label=’T=200’, color=’blue’,width=0.1)
axs_tip_d[1, 1].bar(D, d1_eff, tick_label=D, label=’T=250’, color=’red’,width=0.1)
axs_tip_d[1, 1].bar(D2, d2_eff, label=’T=300’, color=’green’,width=0.1)
axs_tip_d[1, 1].set_title(r’V=100 $[\frac{mm}{min}]$’, fontsize=15)
axs_tip_d[1, 1].set_ylabel(r’Sealing strength $[bar]$’, fontsize=10)
axs_tip_d[1, 1].set_xlabel(r’Tip diameter $[mm]$’, fontsize=10)
axs_tip_d[1, 1].set_ylim(top=3.2)

Add a horizontal line to show the maximum
mx = round(max(max(d0_eff, d1_eff, d2_eff)),2)
axs_tip_d[1, 1].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_tip_d[1, 1].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_tip_d[1, 1].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

d0_eff = [Max_vals1_200[0], Max_vals2_200[0], Max_vals3_200[0]] # @T=200
d1_eff = [Max_vals1_200[1], Max_vals2_200[1], Max_vals3_200[1]] #sealing strength
at T=250 for tip diameters
d2_eff = [Max_vals1_200[2], Max_vals2_200[2], Max_vals3_200[2]] # @T=300

Plot on the first subplot (0, 0)
axs_tip_d[2, 0].bar(D1, d0_eff, label=’T=200’, color=’blue’,width=0.1)
axs_tip_d[2, 0].bar(D, d1_eff, tick_label=D, label=’T=250’, color=’red’,width=0.1)
axs_tip_d[2, 0].bar(D2, d2_eff, label=’T=300’, color=’green’,width=0.1)
axs_tip_d[2, 0].set_title(r’V=200 $[\frac{mm}{min}]$’, fontsize=15)
axs_tip_d[2, 0].set_ylabel(r’Sealing strength $[bar]$’, fontsize=15)
axs_tip_d[2, 0].set_xlabel(r’Tip diameter $[mm]$’, fontsize=10)
axs_tip_d[2, 0].set_ylim(top=3.2)

51

Add a horizontal line to show the maximum
mx = round(max(max(d0_eff, d1_eff, d2_eff)),2)
axs_tip_d[2, 0].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_tip_d[2, 0].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_tip_d[2, 0].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

d0_eff = [Max_vals1_300[0], Max_vals2_300[0], Max_vals3_300[0]] # @T=200
d1_eff = [Max_vals1_300[1], Max_vals2_300[1], Max_vals3_300[1]] #sealing strength
at T=250 for tip diameters
d2_eff = [Max_vals1_300[2], Max_vals2_300[2], Max_vals3_300[2]] # @T=300

Plot on the first subplot (0, 0)
axs_tip_d[2, 1].bar(D1, d0_eff, label=’T=200’, color=’blue’,width=0.1)
axs_tip_d[2, 1].bar(D, d1_eff, tick_label=D, label=’T=250’, color=’red’,width=0.1)
axs_tip_d[2, 1].bar(D2, d2_eff, label=’T=300’, color=’green’,width=0.1)
axs_tip_d[2, 1].set_title(r’V=300 $[\frac{mm}{min}]$’, fontsize=15)
axs_tip_d[2, 1].set_ylabel(r’Sealing strength $[bar]$’, fontsize=10)
axs_tip_d[2, 1].set_xlabel(r’Tip diameter $[mm]$’, fontsize=10)
axs_tip_d[2, 1].set_ylim(top=3.2)

Add a horizontal line to show the maximum
mx = round(max(max(d0_eff, d1_eff, d2_eff)),2)
axs_tip_d[2, 1].axhline(y=mx, color=’black’, linestyle=’--’, linewidth=2)
Get the x-axis limits to calculate the midpoint
x_min, x_max = axs_tip_d[2, 1].get_xlim()
x_mid = (x_min + x_max) / 2
Add text in the middle of the horizontal line
axs_tip_d[2, 1].text(x_mid, mx, r’$\gamma = %s $’%mx, ha=’center’, va=’bottom’,
color=’black’, fontsize=10)

plt.subplots_adjust(hspace=1)
plt.savefig(’image/final_figures/sealing_thickness.jpg’)
plt.figure(fig_tip_d.number)
fig_tip_d.show()
plt.show()
print("***Run completed. Data are saved.***")

plot_data()

52

F. Sealing quality C++ code

const int pressureSensorPin = A0; // Pin connected to the pressure sensor
const int numReadings = 10; // Number of readings to store
int max_pressure = 0;
int readings[numReadings]; // Array to store pressure readings
int index = 0; // Index for the current reading
bool dataCollected = false; // Flag to indicate if data collection is complete
int Input=1;
void setup() {

Serial.begin(115200); // Initialize serial communication at 9600 bits per
second

for (int i = 0; i < numReadings; i++) {
readings[i] = 0; // Initialize all readings to 0

}
}

void loop() {
if (Serial.available()){
String input = Serial.readString();
Input = input.toInt();

}
if (Input==1) {
int pressureValue = analogRead(pressureSensorPin);
Serial.println(pressureValue);
delay(200); // Wait for 0.2 second before
taking the next reading

}
else {

Serial.println("data collected");
}

}

// void printCollectedData() {
// Serial.println("Collected Pressure Sensor Readings:");
// for (int i = 0; i < numReadings; i++) {
// Serial.print("Reading [");
// Serial.print(i);
// Serial.print("]: ");
// Serial.println(readings[i]);
// }
// }

53

G. Precision test Trajectory G-code

M3

G17 ; Select XY plane for circular interpolation
G21 ; Set units to millimeters
;G40 ; cancel diameter compensation
;G49 ; cancel length offset
G54 ; coordinate system 1
G80 ; cancel motion
G90 ; non-incremental motion
G94 ; Feed/minute mode
; Set initial position and feed rate
G00 F1000
G01 F600

G00 X0 Y0

G0 Z-145

G1 Z-149

G01 X0 Y-150
G01 X-170 Y-150
G01 X-170 Y0
G01 X0 Y0

G0 Z-145

G00 X-20 Y-20
G0 Z-145
G01 Z-149

G01 X-20 Y-140
G01 X-160 Y-140
G01 X-160 Y-20
G01 X-60 Y-20
G01 X-60 Y-100
G01 X-120 Y-100
G01 X-120 Y-60
G01 X-100 Y-60

G01 X-20 Y-20

G28
M5

54

H. Sealing quality G-code

; THIS GCODE FILE IS MENT TO TEST THE MACHINE PERFORMANCE FOR HEAT SEALING STRENGTH VS
SPEED, TEMPERATURE AND PRESSURE

; PARTS 1 TO 3 --> TESTS THE MACHINE PERFORMANCE FOR VERTICAL PRESSURE ASCHIEVED AT X=1
MM AND AT SPEEDS V=100, 200, 300 MM/MIN RESPECTIVELY

; PARTS 4 TO 6 --> TESTS THE MACHINE PERFORMANCE FOR VERTICAL PRESSURE ASCHIEVED AT X=2
MM AND AT SPEEDS V=100, 200, 300 MM/MIN RESPECTIVELY

M3

G17 ; Select XY plane for circular interpolation
G21 ; Set units to millimeters
;G40 ; cancel diameter compensation
;G49 ; cancel length offset
G54 ; coordinate system 1
G80 ; cancel motion
G90 ; non-incremental motion
G94 ; Feed/minute mode
; Set initial position and feed rate
G00 F1000
G01 F50 ; Set feed rate to 100 mm/min

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-15 Y-50

G01 Z-137 ; connect the bed to the soldering iron
G02 X-5 Y-70 I-15 J-20
G01 X-5 Y-150
G02 X-30 Y-150 I-12.5 J-0
G01 X-30 Y-70
G02 X-27 Y-50 R30

G00 Z-133 ;F1000

G00 X-15 Y-50

G01 Z-137
G01 X-15 Y-5
G0 Z-133
G00 X-27 Y-50

G01 Z-137
G01 X-27 Y-5

G0 Z-133 ;F1000

;;; END PART 1
G01 F50

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-50 Y-50 ;F1000
G01 Z-137 ; connect the bed to the soldering iron
G02 X-40 Y-70 R30
G01 X-40 Y-150
G02 X-65 Y-150 I-12.5 J-0
G01 X-65 Y-70
G02 X-63 Y-50 R30

55

G0 Z-133 ;F1000

G00 X-50 Y-50

G01 Z-137
G01 X-50 Y-5
G0 Z-133
G00 X-63 Y-50

G01 Z-137
G01 X-63 Y-5

G00 Z-133

;;; END PART 2

G01 F100

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-85 Y-50

G01 Z-137
G02 X-75 Y-70 R30
G01 X-75 Y-150
G02 X-100 Y-150 I-12.5 J-0
G01 X-100 Y-70
G02 X-97 Y-50 R30

G00 Z-133

G00 X-85 Y-50

G01 Z-137 ; connect the bed to the soldering iron
G01 X-85 Y-5
G0 Z-133 ;F1000
G00 X-97 Y-50

G01 Z-137 ; connect the bed to the soldering iron
G01 X-97 Y-5

G00 Z-133

;;; END PART 3

; G01 F100

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-120 Y-50

G01 Z-137
G02 X-110 Y-70 R30
G01 X-110 Y-150
G02 X-135 Y-150 I-12.5 J-0
G01 X-135 Y-70
G02 X-132 Y-50 R30

56

G00 Z-133

G00 X-120 Y-50

G01 Z-137
G01 X-120 Y-5
G0 Z-133
G00 X-132 Y-50

G01 Z-137
G01 X-132 Y-5

G00 Z-133

;;; END PART 4

G01 F200 ; Set feed rate to 100 mm/min

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-155 Y-50

G01 Z-137
G02 X-145 Y-70 R30
G01 X-145 Y-150
G02 X-170 Y-150 I-12.5 J-0
G01 X-170 Y-70
G02 X-167 Y-50 R30

G00 Z-133

G00 X-155 Y-50

G01 Z-137 F200
G01 X-155 Y-5 F200
G0 Z-133
G00 X-167 Y-50

G01 Z-137 F200
G01 X-167 Y-5 F200

G00 Z-133

;;; END PART 5

; G01 F200 ; Set feed rate to 100 mm/min

G00 X-100 Y-100
G00 Z-133 ;F1000

G00 X-190 Y-50

G01 Z-137
G02 X-180 Y-70 R30

57

G01 X-180 Y-150
G02 X-205 Y-150 I-12.5 J-0
G01 X-205 Y-70
G02 X-202 Y-50 R30

G00 Z-133

G00 X-190 Y-50

G01 Z-137 ; connect the bed to the soldering iron
G01 X-190 Y-5
G0 Z-133 ;F1000
G00 X-202 Y-50

G01 Z-137 ; connect the bed to the soldering iron
G01 X-202 Y-5

G00 Z-133

;;; END PART 6

G28

M5

58

I. Origami pattern G-code

; This is the G-code template for designing Origami pattern to test the machine’s
perfromance

; in fabricating Origami structures

G21 ; millimeters
G90 ; absolute coordinate
G17 ; XY plane
G94 ; units per minute feed rate mode
M3 S1000 ; Turning on spindle

G00 F1000
G01 F100

; Midline pattern
G00 X-35 Y-10
G00 Z-133
G01 Z-137

G01 X-35 Y-40
; Create rectangle
G01 X-20 Y-40
G01 X-20 Y-110
G01 X-60 Y-110
G01 X-60 Y-40
G01 X-45 Y-40

G00 Z-133
G00 X-45 Y-10
G01 Z-137
G01 X-45 Y-40

G00 Z-133
G00 X-53 Y-55

G01 Z-137
G01 X-27 Y-55

G00 Z-133
G00 X-53 Y-70
G01 Z-137
G01 X-27 Y-70

G00 Z-133
G00 X-53 Y-85
G01 Z-137
G01 X-27 Y-85

G00 Z-133
G00 X-53 Y-100
G01 Z-137
G01 X-27 Y-100

G00 Z-133

;;; New origami pattern: Sideline pattern

G00 X-100 Y-10
G01 Z-137
G01 X-100 Y-40
G01 X-85 Y-40
G01 X-85 Y-110

59

G01 X-125 Y-110
G01 X-125 Y-40
G01 X-110 Y-40
G01 X-110 Y-10

G00 Z-133
G00 X-125 Y-55
G01 Z-137
G01 X-110 Y-55

G00 Z-133
G00 X-125 Y-70
G01 Z-137
G01 X-110 Y-70

G00 Z-133
G00 X-125 Y-85
G01 Z-137
G01 X-110 Y-85

G00 Z-133
G00 X-125 Y-100
G01 Z-137
G01 X-110 Y-100

G00 Z-133
G00 X-85 Y-55
G01 Z-137
G01 X-100 Y-55

G00 Z-133
G00 X-85 Y-70
G01 Z-137
G01 X-100 Y-70

G00 Z-133
G00 X-85 Y-85
G01 Z-137
G01 X-100 Y-85

G00 Z-133
G00 X-85 Y-100
G01 Z-137
G01 X-100 Y-100

G0 Z-133

; 3th design ZIG_ZAG pattern

G00 X-150 Y-10
G01 Z-137

G01 X-150 Y-40

G01 X-135 Y-40
G01 X-135 Y-110
G01 X-175 Y-110
G01 X-175 Y-40
G01 X-160 Y-40
G01 X-160 Y-10

G00 Z-133
G00 X-168 Y-55

60

G01 Z-137
G01 X-142 Y-55
G01 X-168 Y-70
G01 X-142 Y-70
G01 X-168 Y-85
G01 X-142 Y-85
G01 X-168 Y-100
G01 X-142 Y-100

G00 Z-100
; Turning off spindle
M5

61

J. Hand trajectory G-code

G21 ; Set units to millimeters
G17 ; Select XY plane for circular interpolation
; Set feed rate to -- mm/min
G00 F1000
G01 F200
; Set initial position and feed rate
G00 X-45 Y-20 ; Rapid move to starting point (X0, Y0, Z5)

G00 Z-135 ; connect the bed to the soldering iron

G01 Z-137
G01 X-65 Y-17
G01 X-75 Y-15
G01 X-80 Y-12
; G02 X-100 Y-18 R20
G01 X-85 Y-12
G01 X-100 Y-18
G01 X-110 Y-15

G01 X-125 Y-12

G01 X-140 Y-10

G03 X-140 Y-30 R10
G01 X-125 Y-35
G01 X-110 Y-37
G01 X-100 Y-40
G01 X-95 Y-45
G01 X-93 Y-50
G01 X-95 Y-55
G01 X-100 Y-60
G01 X-105 Y-65
G01 X-110 Y-70
G01 X-120 Y-75
G01 X-125 Y-80
G01 X-135 Y-85
G01 X-145 Y-90
G01 X-155 Y-95
G01 X-160 Y-97
G01 X-165 Y-100
G01 X-170 Y-103
G01 X-172 Y-105
G01 X-175 Y-107

G03 X-170 Y-125 I2.5 J-9

; G01 X-135 Y-105

G01 X-130 Y-100

G02 X-125 Y-105 I2.5 J-2.5

G01 X-170 Y-150

G03 X-160 Y-170 I5 J-10
G01 X-140 Y-150
G01 X-110 Y-120

G02 X-105 Y-125 I2.5 J-2.5

G01 X-140 Y-170

62

G03 X-125 Y-180 I7.5 J-5

G01 X-90 Y-135

G02 X-85 Y-140 I2.5 J-2.5

G01 X-100 Y-175

G03 X-90 Y-185 I5 J-5

G01 X-60 Y-140

G01 X-50 Y-130

G01 X-20 Y-100

G00 Z-100
G00 X0 Y0

M30

63

K. Additional Figures

(d) Orientation Points to be used in Inkscape. Adjust
the Z surface and Z dept as shown in this figure.

(e) In the Path to Gcode adjust the values to be the
same as shown in this figure.

(f) In the Path to Gcode navigate to the references
tab and adjust the values to be the same as shown in
this figure.
Hence, you can play with the Post-processor tab to
obtain the best resulting G-code file.

	INTRODUCTION
	Device Design
	structural Backbone
	Workspace

	Hardware Setup
	Software Selection
	Homing, soft, and hard limit switches

	Operating Procedures
	Soldering Iron Holder Frame
	Soldering Iron Tip Design
	Parameter tuning
	Steps per Millimetre
	Sealing temperature
	Dwell time and sealing speed
	Vertical pressure

	Method
	Origami structure fabrication
	Glove fabrication
	Technical performance
	Precision test
	Sealing quality
	Material test

	Result
	Origami structure fabrication
	Glove Fabrication
	Technical performance
	Precision test
	Sealing quality
	Material test

	Discussion
	Conclusion
	Future recommendations
	References
	Appendix
	Python script to convert coordinates to G-code
	Python script to check the output G-code file from Inkscape
	Python script for precision test
	Precision test analysis
	Sealing quality Python code
	Sealing quality C++ code
	Precision test Trajectory G-code
	Sealing quality G-code
	Origami pattern G-code
	Hand trajectory G-code
	Additional Figures

