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Abstract
The field of speech-based Personality Computing classifies personality traits using speech data. There
are two labelling methods for this: Automatic Personality Recognition (APR), using self-assessed
personality scores, and Automatic Personality Perception (APP), using externally rated personality
scores. Another aspect is whether the data is recorded in natural circumstances or in a controlled
environment, as this influences how personality is shown. There is a lack of research into these speech
styles, especially when combined with the labelling methods. Related fields have been found to be
more developed in two ways. First, research from the perspective of speech styles has already been
conducted and proven useful. Second, when state-of-the-art techniques are released, such as pretrained
models targetting speech, these fields are often included in benchmark tests. As no personality datasets
are included, this creates a knowledge gab on using these techniques for personality classification.

The influence of the labelling methods and speech styles is investigated using three datasets that
target APR with controlled and natural speech, and APP with natural speech. Three types of models are
used to see what personality traits can successfully be classified. The two APR datasets have not been
used for personality classification before. Additionally, the models are trained using both hand-crafted
features and embeddings extracted from a state-of-the-art pretrained model. The experiment on the
APP and natural speech dataset indicates that the performance for 3 out of 5 traits can be improved
using more effective features. The APR and controlled speech dataset was able to classify 4 out of 5
traits above chance. The APR and natural speech dataset could not well be classified. Overall, the
APR datasets performed worse than the APP dataset. There were no clear patterns found between the
speech styles. Furthermore, the embeddings showed better overall performance than the hand-crafted
features. Future work could standardize a dataset for both labelling methods and speech styles to make
direct comparison between the methods possible.
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Preface
In 2018, I made a rush decision to bridge to Computer Science while being in
the middle of my bachelor degree. It was the last year that this transition was
allowed and the Computer Science master always intrigued me. It is a decision I
cherish to this day. From the first courses of my bridging programme, the world
of computing has fascinated me. I remember learning about the Turing Machine–a
mathematical model invented in 1936 that was the first model that could implement
any algorithm–and being amazed by how these pioneers had been building the field
for such a long time. I now realize what triggers this excitement.

As Computer Scientists, we get to solve puzzles. We are on an everlasting quest
towards conquering bigger puzzles, solving them more efficiently, often finding ways
to use less of our own input. It has been an interesting experience exploring the
puzzles that speech and personality have to offer. Combining Computer Science with
psychology taught me a lot about both fields. I am curious to see how these fields
will develop together in the future.

During the second semester of my master’s, I was allowed to go on exchange to
Milan. I did not expect the influence it would have on me. Meeting people from
all over the world, learning another language, and adapting to the Italian culture
broadened my world view and–not to be underestimated–significantly increased
my pasta making skills. At the end of the semester, I felt like I was not finished
yet. Having had a good experience with my previous rush decision, I set my focus
to finding a thesis project in Valencia. This extension gave me a whole set of new
experiences for which I am very grateful.

With the completion of my master’s degree, there also comes an end to my time
abroad. It has been a incredible experience that will stay with me for the rest of
my life. Nonetheless, I feel it is the right time to return home. I look forward to
spending more time with friends and family, to starting my working life in a new
environment, and, undoubtedly, to solving a lot more puzzles.

Emile Lampe
Valencia, June 2023
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1Introduction

1.1 Personality Computing
Personality has been a long-studied subject in psychology [1–4]. The consensus on a
personality model among researchers, the Big Five personality traits, is seen as an
important achievement of psychological science in the 20th century [5]. These traits
have been shown to predict physical and psychological health [6–9], competency in
interpersonal relationships [10], and success in key aspects of life such as the work
environment [11]. As a result, the field of Human-Computer Interaction started
to implement personality, leading to the field of Personality Computing [12]. It
combines the insights from Personality Psychology with Computer Science, and
focusses on classifying, analysing, and understanding human personality [12]. A
digital system tailoring its responses to personality traits could improve domains
such as human resources [13], marketing [14], education [15], and healthcare
[16]. Additionally, the automatic personality analysis of users can provide valuable
insights into human behaviour [17], decision-making processes [18], and social
dynamics [19]. Personality classification would therefore be a valuable contribution
to human-computer interactions.

Personality has been defined differently across research domains [20]. To address
this issue, the following definition was proposed in a recent paper [21]: “An in-
dividual’s personality is the enduring set of Traits and Styles that he or she exhibits,
which characteristics represent (a) dispositions (i.e., natural tendencies or personal
inclinations) of this person, and (b) ways in which this person differs from the ‘standard
normal person’ in his or her society.” The ‘enduring’ element is often included in
definitions [22–24], as personal characteristics are only seen as a trait if it is observed
over an extended period of time [21]. The Big Five traits that are used to model
personality are [25]:

• Openness to experience (curious, aesthetically sensitive, imaginative)

• Conscientiousness (organized, productive, responsible)

• Extraversion (sociable, assertive, energetic)

• Agreeableness (compassionate, respectful, trusting)

• Neuroticism (anxious, depressed, volatile)

These traits have been widely adopted as the standard personality framework due to
their reliability [26], cross-cultural applicability [27], and real-world validity [11].

With speech-based Personality Computing, personality traits are analysed and
classified using the speech signal as the primary data source. One way to do this is
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by using the meaning of the words, sentences, and phrases produced by the speaker,
called semantic information [12]. The other approach is without this meaning,
which is called non-semantic or paralinguistic information [12, 28, 29]. In this
thesis, I focus on personality classification using the paralinguistic information of
speech data. It consists of all the information that conveys how something is being
said, instead of what.

1.2 Recognition and Perception
Two main approaches have been proposed for automatically classifying personality
traits: Automatic Personality Recognition (APR) and Automatic Personality Percep-
tion (APP) [12, 28, 30, 31]. They differ in how the personality labels are obtained.
APR uses self-assessed personality scores, while APP uses personality scores obtained
from external judges that rate each sample based on their perception [12]. The tasks
have different aims and are therefore useful for different purposes.

Because APR labels are obtained through a self-assessed personality test, all
samples belonging to a certain speaker will have the same labels. This is in line with
the definition of personality being stable over time [21]. Some Personality Computing
research even states that the aim of APR is to classify the “true” personality of an
individual [12, 31, 32], although they acknowledge that self-assessed scores are
vulnerable to bias [12]. Personality Psychology research has indicated that it is
doubtful there exists a true personality [5], but has also stated that self-assessed
personality scores provide important information about how an individual is likely
to behave [5]. For these reasons, APR could be especially useful for tasks where the
long-term personality of the user is important. In the medical field, it could be used
to track the mental health [7, 8] or to present clinical treatment plans through a
system that tailors its messages to the preferences and needs of a patient [16]. For
consumer use, an example is matching a voice assistant’s personality (VAP) to that
of the user, as VAP has been shown to make the user feel more at ease and in control
[33].

APP labels are based on other people’s perception. The labels can vary per sample,
which contradicts the definition of traits being observed over longer periods of time
[21]. The aim of APP is therefore not to classify the unchanging personality of a
speaker, but to predict the personality others will attribute to him [12, 31]. The
perceived personality has shown to determine other people’s behaviour and opinions
towards a person [34]. APP could therefore be especially beneficiary to tasks where
the perception of others is important. One study, for example, showed how the
personalities of Hillary Clinton and Donald Trump were perceived differently during
their 2016 presidential campaigns [35], while another research showed the impact
of personality on perceived US presidential success [36]. APP could be used in this
case to improve campaign strategies, by using perceived personality to influence
public opinion.

2 Chapter 1 Introduction



Controlled Speech Natural Speech

Acted

Scripted

Read

Spontaneous

Elicited

Wizard-of-Oz

Fig. 1.1: Schematic overview of the defined speech styles: controlled and natural speech.
Acted, scripted and read belong to controlled speech, while spontaneous, elicited
and Wizard-of-Oz belong to natural speech.

1.3 Controlled and Natural Speech
To be able to train models that classify personality traits based on paralinguistic
information, datasets with audio recordings of speakers are needed. The setting
in which the audio is recorded can have a big impact on the performance of these
models. The personality in speech that is recorded in natural circumstances might
not be distinctive enough to successfully classify subtle differences. On the other side,
speech that is recorded in a lab might influence the ‘naturalness’ of the personality
and affect its generalizability to real-world scenarios. Existing speech datasets have
been recorded in a variety of settings [28, 37–41]. As depicted in Figure 1.1, I
define two umbrella terms under which these settings, called speech styles, can be
categorized: controlled speech and natural speech, each with its own sub categories.
A dataset can belong to multiple sub categories. Although in this thesis the focus
is on personality classification, the controlled and natural speech categories are
applicable to other speech-based fields, such as Speech Emotion Recognition (SER).

Controlled speech means that the speaker is given instructions on what to say or
how to say it. The terms acted, read, and scripted speech belong to controlled speech.
A dataset contains acted speech when the speakers are asked to display, and often
magnify, specific characteristics in their speech. It is frequently used in SER as it can
help to make emotions more prevalent in the paralinguistic information [42–46].
Scripted speech means that a scenario is defined in advance. This scenario can be
determined line by line, or it can be an outline of the conversation [37, 38, 45].
Read speech means the text is literally read out loud.

Under natural speech, speech styles are categorized where speakers have not been
instructed on what to say or how to say it. Natural speech includes spontaneous,
elicited, and Wizard-of-Oz speech. Spontaneous speech is often used [42–44, 46, 47]
and can refer to any situation where a speaker is free to say what he wants and how
he wants. With elicited speech, certain behaviour is induced through a stimulus [48].
In the case of SER, this means provoking an emotion in the speaker, for example by
asking speakers to describe pictures of happy and tragic events. During a Wizard-
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Fig. 1.2: The personality datasets that target the combinations of the labelling methods
(APR and APP) and the speech styles (controlled and natural speech) for which a
dataset was found. Full names: Nautilus Speaker Characterization corpus (NSC)
[38], Reconocimiento EMocional para la evaluación de la DEpresión (REMDE),
Speaker Personality Corpus (SPC) [28].

of-Oz conversation, the participants believe they are interacting with a computer,
while in reality the response is controlled by a human operator. This enables the
researchers to have some control over the conversation while still obtaining natural
responses from the participant. Although the speaker’s response to the Wizard-of-
Oz system could be controlled through a scenario, the reviewed literature used
the system to obtain spontaneous responses [42, 43, 49]. Wizard-of-Oz speech is
therefore categorized as natural speech.

1.4 Combining personality classification and
speech styles

In SER, there has been numerous research on the effects of controlled and natural
speech [42–44, 48, 49]. In personality classification, on the other hand, not much
research from a speech style perspective has been conducted. This is especially true
when also taking the differences between APR and APP into account. Exploring
Personality Computing using APR and APP with different speech styles could define
future research directions, and identify the field’s possibilities and limitations. To
be able to do this, a dataset targetting each of the four combinations of labelling
methods and speech styles has to be available. For this thesis, I have found two of
these databases and contributed to creating a third. They are shown in Figure 1.2. A
database for APP and controlled speech could not be found.

The Nautilus Speaker Characterization (NSC) corpus [38] is a dataset recorded in
German consisting of mainly scripted and semi-spontaneous speech. For the scripted
speech, the participants were asked to read the script of a specific situation out
loud. The semi-spontaneous speech followed a set of scenario’s. Only the scripted
subset is taken into consideration. The personality scores are obtained through
self-assessment. Because of the scripted speech with self-assessed personality labels,
it is seen as controlled speech with APR labels.
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The Speaker Personality Corpus (SPC) [28] from the Interspeech 2012 Speaker
Trait Challenge is a dataset in French obtained from Radio Suisse Romande. The
challenge provided a baseline with the dataset and called upon researchers to try to
beat it. This has resulted in 11 participants, of which one was declared the winner.
The samples were rated by 11 external judges, which makes it an APP dataset. It is
categorized as natural speech, as the clips are from a radio channel, recorded in a
real-world environment.

The Reconocimiento EMocional para la evaluación de la DEpresión (REMDE) is a
dataset created during my thesis by a research team at Universitat Politècnica de
València (UPV). I helped to conduct the experiments and with decisions on the
experimental design, further discussed in Chapter 3. Participants had conversations
in Spanish with a life-sized human avatar that could synthesize speech. The avatar’s
sentences were generated with GPT-3. As the participants were truly free in their
replies, this dataset is categorized as natural speech. The participants self-assessed
their personality, which makes the dataset suitable for APR.

1.5 Extracting paralinguistic features
To do personality classification based on paralinguistic features, these features must
be extracted from the audio. In most Personality Computing research, this has
been done using tools such as openSMILE [28, 29, 31], which extracts hand-crafted
features from audio [50]. Standardized feature sets exist for this tool, making it
easy to extract a large number of features from the data [51]. In recent years, deep
learning models have been created, trained on large amounts of data, that can extract
embeddings from the audio [52–55]. These embeddings can be used as features
to train machine learning models. In 2020, the Non-Semantic Speech Benchmark
(NOSS) was introduced for classification tasks based on paralinguistic and non-
semantic information [52]. The benchmark includes datasets for SER [56, 57],
speaker identification [58], language identification [59], speech commands [60],
and dementia detection [61]. This benchmark is often used to test the performance
of newly published pretrained models [52–54]. There is no database that targets
personality classification included in the benchmark. Because of this, there are
many more results for these pretrained models in related fields than for Personality
Computing. It would be interesting to see if embeddings and pretrained models are
also effective techniques for personality classification. If this is the case, it could
open the door for including a personality dataset into the benchmark test.

1.6 Problem statement and research questions
Even though speech style is known to have an impact in related fields such as SER
[42–44, 48, 49], research from this perspective lacks in Personality Computing. Like
in the SER research, making this separation part of the experimental design could
provide better insights. As there are different benefits to APR and APP [5, 13–15, 30],
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it is valuable to explore each from a speech style perspective. This exploration can
be done with both hand-crafted features and embedding extracted from pretrained
models. This would help determine the effectiveness of embeddings for personality
classification.

The aim of this thesis is to explore to which extent personality classification can be
performed using different labelling methods (APR and APP), speech styles (controlled
and natural speech), and feature types (hand-crafted features and embeddings). To
achieve this, three types of models, further discussed in Chapter 3, will be trained
on datasets that combine APR with controlled and natural speech, and APP with
controlled speech. Additionally, both hand-crafted features and embeddings will be
used for training the models so that they can be compared. The following research
questions are defined to achieve this aim:

RQ 1 How well can speech-based personality classification be performed using datasets
with different labelling methods (APR and APP) and speech styles (controlled and
natural speech)?

It is difficult to draw meaningful conclusions from comparisons between datasets,
as there are numerous external factors that can cause differences in results. The
research questions are therefore divided into three sub questions that address each
of the datasets. The first sub question is about APP and natural speech, for which
the SPC is used. As stated in Section 1.4, this database was part of a challenge,
which means that results from the baseline and challenge winner already exist. The
following sub question is therefore formulated:

SQ 1.1 For which traits can improvements be made on the challenge baseline and
winner using the database for APP and natural speech (SPC)?

The other two databases have not been used for personality classification before,
which means no baseline exists. The sub questions therefore address a baseline that
is defined as the chance level for each trait:

SQ 1.2 Which traits can be classified better than chance using the database for APR
and controlled speech (NSC)?

SQ 1.3 Which traits can be classified better than chance using the database for APR
and natural speech (REMDE)?

The second research question addresses the embeddings and hand-crafted features. It
is possible to make direct comparisons here, as the models can be repeatedly trained
with the same setup using both the embeddings and the hand-crafted features.

RQ 2 How do the models perform on embeddings compared to hand-crafted features for
speech-based personality classification?
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In the remainder of this thesis, Chapter 2 will discuss related work in the field of
Personality Computing. Chapter 3 will discuss the methodology for the experiments.
In Chapter 4, the results of the experiments will be presented. The results and
limitations will be discussed in Chapter 5. Suggestions for future work are shared in
6. Finally, the research questions will be answered and concluded in Chapter 7.
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2Related Work

2.1 Research on APP and APR
The introduction of the Personality Sub Challenge of the Interspeech 2012 Speaker
Trait Challenge [28] sparked a rise in APP research [62–72]. The sub challenge
provided researchers with the Speaker Personality Corpus, together with an extensive
feature set of 6,125 features, and a baseline set by Support Vector Machine (SVM)
and Random Forest (RF) models. Each personality trait could be classified as ’Low’
and ’High’, therefore making it a multi-label binary classification task, where each
trait is a label. In the subsequent survey of the challenge [31], the results of
the challenge contributors were presented. Figure 2.1 shows that only 2 out of
the 11 contributions marginally managed to surpass the baseline. Out of the 5
traits, Extraversion and Conscientiousness consistently scored highest among the
participants [30], as shown in Figure 2.2. A larger circle in this graph represents a
higher Unweighted Average Recall (UAR), which is the main performance metric
used in the challenge. It is interesting that relative performance on the traits is so
consistent among the contributors. This could have multiple reasons. It could be
that the traits that scored high are more expressed externally, when compared to the
other traits [5, 30]. This would make them more perceivable. Another explanation
is that by chance the test set contained samples with .

The best result among the participants was achieved by incorporating numerous
modulation spectrum analysis features into the existing base feature set [62]. After
feature selection, the feature count in this research ranged from 6,719 for Openness
to 13,425 for Extraversion. The AdaBoost [73] ensemble method was used for
classification.

Since the challenge, new attempts have been made at performing APP on the SPC
dataset. One study did this by training SVMs on spectrogram images [74]. Their
model surpassed the baseline of the Personality sub-challenge for Agreeableness
and Neuroticism traits, achieving UAR scores of respectively 64.9% and 70.8%. In
another study, an asymmetric auto-encoder was used, where in each hidden layer
the parameters were trained in a semi-supervised manner [75]. The paper’s most
notable claim is a UAR of 81.2% for Openness, making it their best classifiable
trait. This is contrary to most other work making use of the SPC, where Openness
often scored the lowest [28, 31]. One study used the SPC to combine paralinguistic
features with linguistic and psycholinguistic features, using an SVM with a linear
kernel for their models [76]. The linguistic features were obtained through part-
of-speech tagging. The psycholinguistic features were obtained with the Linguistic
Inquiry Word Count (LIWC) system that gives scores to words for 81 psycholinguistic
categories such as ‘anger’[76]. The combined feature set resulted in an average UAR
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Fig. 2.1: The results from the (APP) Personality sub-challenge, taken from the INTER-
SPEECH 2012 Speaker Trait Challenge survey [31].

of 70.4% across the traits, while only using paralinguistic features resulted in an
average UAR of 69.4%. The psycholinguistic features achieved a UAR of 58.1% and
the part-of-speech tagging 51.0%. The paralinguistic features were therefore the
most important contributor to the combined score.

In contrast to APP, research on speech-based APR has been relatively limited.
This could be because APP is seen as harder than APP [29]. Additionally, there
has not been a well-known challenge such as the Speaker Trait Challenge to attract
attention to APR. One of the earlier works on APR made use of transcriptions from
spoken dialogues to classify personality traits with an SVM [77]. Their findings
demonstrated that linguistic features, such as word usage and sentence structure
could be used to classify self-reported personality traits. Another study attempted
to predict self-assessed Extraversion and Neuroticism from video-based distance
between individuals in a social group interaction, using an SVM with a second-
order polynomial kernel [78]. Among APR research with the highest results was
a paper where Convolutional Neural Networks (CNN) were used to train on video
footage of facial expressions. All traits were predicted with an accuracy higher than
90%, an average accuracy of 95.3%, and all found correlations having a p-value <
0.01 [79]. Another study combined paralinguistic and visual features to perform
APR [80]. Their dataset consisted of Skype calls where individuals introduced
themselves in front of a camera. The highest scores were achieved on Extraversion

10 Chapter 2 Related Work



Fig. 2.2: The performance of the best 8 participants of the Personality sub-challenge per
personality trait, taken from the paper ’More Personality in Personality Comput-
ing" [30]. The size of each element in the plot represents the performance that
was achieved by each participant on that trait. This makes it easy to compare
the relative performance of the traits across the participants, showing that Ex-
traversion and Conscientiousness structurally were better classified than the other
traits. Abbreviations: Participant (Part.), Extraversion (Ext), Agreeableness (Agr),
Conscientiousness (Con), Neuroticism (Neu), Openness (Ope).

and Conscientiousness. Although the accuracy scores cannot be directly compared to
the results from the Personality Sub Challenge of the Speaker Trait Challenge [28],
it is interesting to note that Extraversion and Conscientiousness also there scored
consistently the highest.

One study, among the first to perform APR with only paralinguistic features, used
the Personable and Intelligent virtual Agents (PersIA) corpus [81]. The dataset was
collected during a study on the effect of personality on user experience in a tourist
call center [81]. The boostexter classifier was used for their experiments [82]. Their
results include a 95.0% accuracy for Conscientiousness and a 63.0% accuracy for
Extraversion, compared to respectively the 73.2% and 50.0% chance levels obtained
from random drawings. In another APR research where only paralinguistic features
were used, a study trained an SVM on two corpora consisting of American English
and Mandarin Chinese [29]. Unlike most personality classification research that
categorizes labels into ’High’ and ’Low’, this study introduced a third ’Medium’ class.
Four types of feature sets were used, both individually and in various combinations.
All the traits achieved a UAR higher than the 33% chance baseline in at least one of
the feature sets, although measures of significance or reliability were not provided.

2.2 Research on Controlled and Natural Speech
In Personality Computing, no work has been published yet that focusses specifically
on the effects of natural and controlled speech. As stated in Chapter 1, such research
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does exist for Speech Emotion Recognition. In one paper, acted speech was compared
with Wizard-of-Oz speech [42]. The acted speech database was recorded for their
research at TU Berlin, while the SmartKom corpus was used for the Wizard-of-Oz
speech. They found that acted emotions were more easily recognized and that for
acted speech the impact of feature selection was higher. Another paper compared
the acted, read and Wizard-of-Oz speech [43]. The data was collected specifically
for their research, and they made use of prosodic features. The best results were
achieved on acted speech with a 91.5% recognition of segments containing emotions,
followed by read speech with 71.6%, and finally Wizard-of-Oz speech with 70.6%.
A third paper compared acted speech, from the Berlin emotional speech database,
with spontaneous speech from the FAU Aibo corpus [44]. This spontaneous speech
dataset was obtained from children interacting naturally with an AIBO robot. The
spontaneous speech was found to be more challenging in this research. An SVM
trained on the Berlin dataset achieved 75.8% UAR, while the SVM trained on the
FAU Aibo corpus achieved 41.5% UAR. The FAU AIbo was also used in another paper
where it was compared with acted speech from the Spanish Emotional Speech (SES)
database, again finding the acted speech to achieve better results [48]. Classifying
activation emotions, where happy and anger are categorized as active, while bored
and sad are categorized as passive, resulted in 85% accuracy for the acted SES
database and 79% for the natural AIBO database.

The research on controlled and natural speech in SER shows that models trained
to classify emotions in controlled, and specifically acted, speech achieve better results
than those trained on speech recorded in natural circumstances. It is interesting
to see if such a clear pattern is similarly visible in personality recognition. In
theory, a difference could be expected between APP and APR. APP is closer in
methodology to SER, as the short segments in emotion databases are also labelled
based on how they are perceived. This could mean that acted speech also makes it
easier to classify perceived perception. The contrary could be true for APR. Acting
could cover up the speaker’s personality to show in the speech signal. As the
labels are obtained from self-assessment, this could make classification harder. An
important difference between SER and personality classification, is that in personality
classification requires 5 traits to be classified. This means there are 32 unique
combinations of personality traits. Acted speech in SER can be used to specifically
amplify an emotion such as ’anger’ or ’happiness’, while it is not possible to do this
with one of those 32 combinations.

2.3 Personality Tests
Over the years, numerous personality tests have been developed to assess personality.
The most important difference between the tests is the depth to which the personality
is assessed. These tests consist of items, which are statements or questions, to which
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I see myself as someone who...
is reserved is outgoing, sociable
is generally trusting tends to find fault with others
tends to be lazy does a thorough job
is relaxed, handles stress well gets nervous easily
has few artistic interests has an active imagination

Tab. 2.1: The Big Five Inventory-10 (BFI-10). All statements are to be answered on a
5-point Likert scale from “strongly disagree” to “strongly agree”.

the user can answer on a scale from ‘strongly disagree’ to ‘strongly agree’. The
following is an overview of the most widely used personality tests:

Big Five Inventory-44 (BFI-44)

The BFI-44 is a test that evaluates the Big Five traits. It includes 44 statements that
start with “I see myself as someone who...”, and are followed by descriptions such as
“is curious about many different things” or “can be moody”. Each statement has to
be answered using a 5-point Likert scale, ranging from "disagree strongly" to "agree
strongly". The BFI-44 provides a balance of comprehensive insights into personality
traits without being overly time-consuming to complete. Because of this, it has been
used multiple times in personality classification research [83–85].

Big Five Inventory-10 (BFI-10)

The BFI-10 [32] was developed as a shorter variant of the BFI, containing only 10
statements, shown in Table 2.1. The BFI-10 provides a rapid and efficient means to
assess the Big Five personality traits, particularly in situations with limited time and
resources. Despite its brief nature, the BFI-10 has demonstrated significant levels
of reliability and validity [32]. It is a popular choice in APP [28, 86], as the task
requires each sample to be rated by multiple judges, which would be too time and
resource consuming with longer tests.

NEO Personality Inventory-Revised (NEO PI-R)

The NEO PI-R [87] is an extensive self-report questionnaire developed to measure
the Big Five personality traits and their six facets. Composed of 240 items, the NEO
PI-R offers a comprehensive representation of an individual’s personality. While
being very rigorous, it is found less often in related literature. This is thought to be
due to its length.

NEO Five-Factor Inventory (NEO-FFI)

The NEO Five-Factor Inventory (NEO-FFI) [87] is a condensed version of the NEO
PI-R, specifically designed to evaluate the Big Five personality traits without delving
into the facets that the NEO PI-R explores. The NEO-FFI comprises 60 items and

2.3 Personality Tests 13



is advantageous in situations where a shorter assessment is desirable, while still
maintaining a strong focus on the primary personality dimensions. The NEO-FFI has
also been used in personality classification research [29].
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3Methodology

The research question formulated in Chapter 1 is the following: Can personality clas-
sification be performed on each of the labelling method and speech style combinations?
To answer this question, an experiment will be conducted for each of the datasets
belonging to the combinations. The code for this methodology can be found on
GitHub 1.

The first step will be preprocessing the audio samples so that their format is
suitable for the experiments (Section 3.1). In the next step, features will be extracted
from the data. This will be done using both classical hand-crafted features and using
a pretrained deep learning model (Section 3.2). After this, the dataset is divided into
a training and test set in a way that is suitable to our task (Section 3.3). The next
step is to process the feature with standardization and feature selection (Section
3.4). Then, three selected models are trained on the features. The models and their
hyperparameters will be discussed in Section 3.5. Finally, the results of the models
will be evaluated using the chosen evaluation metrics. The choice for these metrics
is explained in Section 3.6.

Each personality trait will be seen as its own binary classification task. This means
that there will be 5 models, one for each trait. The personality scores are categorized
into scoring either ‘Low’ or ‘High’ on a trait. The samples will be divided into a
training and test set. After this division, each trait will have a separate pipeline, with
its own selected features and model hyperparameters. Furthermore, the two types
of feature sets will also be trained on separately.

3.1 Datasets
3.1.1 Speaker Personality Corpus
The Speaker Personality Corpus (SPC) from the Interspeech 2012 Speaker Trait
Challenge [28] was used for the combination of APP and natural speech. The SPC
consists of audio recordings from the French-speaking Swiss radio channel Radio
Suisse Romande. It includes 322 individuals, speaking for approximately 10 seconds
per sample, for a total of roughly 1 hour and 40 minutes. The samples have a
frequency range of 8kHz with a 32-bit depth and 1-channel. There are 264 male
speakers in the dataset and 59 women. No further processing on the audio samples
was performed so that the results could be compared to earlier obtained results on
the challenge from related work.

As this dataset is intended for APP, external judges rated the labels. For this
dataset, 11 external judges rated each sample using the BFI-10 personality test. The
judges did not speak French, ensuring that the semantics would not influence their

1https://github.com/emilelampe/speech-automatic-personality-recognition
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Trait Label Calc. IS12 Diff.
Openness O 222 247 25

NO 418 393 25
Conscientious C 413 290 123

NC 227 350 123
Extraversion E 337 320 17

NE 303 320 17
Agreeableness A 370 323 47

NA 270 317 47
Neuroticism N 306 318 12

NN 334 322 12

Tab. 3.1: The distribution of the binary labels calculated following the Challenge instruc-
tions compared to the distribution as stated in their paper. Calc. is the number
of samples calculated in this thesis for each class. IS12 is the number of samples
calculated in the challenge paper. Diff. is the difference between the two.

perception. From these 11 different tables of personality scores, the binary labels
were calculated following the instructions from the original Speaker Trait Challenge:
“Each clip is labelled to be above average (X) for a given trait X ∈ O, C, E, A, N if
at least six judges (the majority) assign to it a score higher than their average for
the same trait; otherwise, it is labelled NX” [28], where NX means scoring below
average on that trait.

Following these instructions, however, resulted in a label distribution different
from the one reported in the Challenge paper. Despite various interpretations of
the instructions, contacting the creator of the SPC, and contacting contributors to
the challenge, the original label set could not be obtained. As a result, the labels
created following the exact instructions in the challenge paper were used. Table
3.1 illustrates the differences in distribution between the labels as obtained when
using the instructions and those stated in the Challenge paper. Conscientiousness,
in particular, has a significantly different label distribution, with the majority and
minority classes inverted.

3.1.2 REMDE
The REMDE dataset is used to explore APR with natural speech. As discussed in
Chapter 1, this dataset is currently being developed at the Universitat Politècnica
de València (UPV), where I conducted my research for this thesis. The team’s
objective is to detect depression symptoms in participants using data recorded
through conversations between participants and a digital avatar. I helped to develop
the dataset as part of this thesis. Because I am the first of the team to work with the
audio data and because the audio was unprocessed, the REMDE dataset required
extensive preprocessing. This section will therefore discuss in greater detail what
preprocessing steps were taken.
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Context of the database
The dataset consists of speech belonging to participants that have had spontaneous
conversations with a digital avatar. The avatar is a life-sized representation of
either a male or female character. It communicates using speech synthesis with
text generated by GPT-3. This connection to GPT-3 allows the character’s response,
and therefore the conversation, to be spontaneous. The avatar can exhibit various
emotional states, such as happiness, sadness, anger, and neutrality, and adjusts its
choice of words and body language based on the selected emotion. It can also
be dressed formal and casual. Each participant engaged in six conversations with
the avatar, alternating between the male and female characters. The emotional
states and ways of dressing were distributed equally among the participants. Each
participant encountered all emotional states at least once in their six conversations.
Figure 3.1 shows the interaction between a participant and the avatar. The avatar in
the figure is female, has a neutral emotional state, and is dressed formally.

Throughout the interactions, multi-modal data was recorded from the participant,
including speech audio, eye-tracking, electroencephalogram (EEG, electrical activity
of the brain), electrocardiogram (ECG, electrical activity of the heart), and electro-
dermal activity (EDA, electrical conductance of the skin). The study included 54
healthy participants and 50 clinically depressed individuals. Only the data from
healthy participants was used in this research. This was done to eliminate the
potential influence of depression on speech patterns and personality expression.
The dataset is recorded in Spanish, with an average participant age of 31.9 years,
ranging from 18 to 54 years old. There were 28 male and 26 female participants.

Fig. 3.1: A person wearing the recording devices, who is interacting with the neutral-state,
formally dressed female avatar.

Recording setup
Speech audio was recorded using the SYNCO G1 (A1) wireless system at 44.1kHz/32
bit and 1-channel. The audio was recorded in a controlled recording environment.
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Lucía Gómez Zaragozá–the researcher responsible for speech analysis in the UPV
depression project–and I conducted the experiments. We determined that the optimal
microphone location was the forehead. This decision was based on a paper [88] that
demonstrated that this location was the least obstructive to the frequency spectrum,
when compared to a microphone that was placed at mouth height 1 meter in front
of the participant. Figure 3.2 shows the frequency spectra for different microphone
positions [88]. It can be seen that the other positions result in a relatively big drop
in the high-frequency range. To verify that the forehead is the best location, we
recorded multiple samples with the different microphone positions. During playback,
the samples with the microphone placed on the forehead had the clearest sound.
This solidified our decision to use the forehead as the microphone position. The
initial number of samples was 3,730.

Fig. 3.2: The frequency spectrum with different microphone locations. The paper [88]
reported that the forehead resulted in the least amount of spectral change.

Detecting samples with a high level of noise
Upon inspection of the recorded audio, some conversations turned out to contain
a constant noise signal, which is thought to be due to microphone problems. The
loudness of the noise varied per conversation. The noise in some conversations
was so loud that the samples were marked as unusable. Because the high number
of samples made it not feasible to check every sample manually, I developed an
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algorithm to filter out samples with a high level of noise using the Root Mean Square
(RMS) energy. The RMS is the average power output of a signal. When there is
constant noise, the average power output will be higher. The algorithm calculates
the RMS of each sample and filters out the samples that have an RMS above a
certain threshold. After some experimentation with samples known to contain both
acceptable and unacceptable levels of noise, the RMS threshold was set to be 0.35.
All samples with an RMS above 0.35 were removed from the dataset. This brought
the initial number of samples down from 3,730 to 3,665. A selection of the removed
samples were examined and all of them were confirmed to have a high level of noise.

Reduction of remaining noise

In the next step of the audio preprocessing, non-stationary noise reduction was
explored to remove any noise of lower but still notable levels. The non-stationary
noise reduction algorithm, from the PyPi package noisereduce [89], creates a time
and frequency smoothed mask from the spectrogram of an audio signal. This mask
selectively reduces noise that persists on longer timescales than the target signal.
This means that noise is removed that is present for longer durations than the
fluctuating speech signal. Although it successfully removed noise and performed
better than other noise reduction techniques, it also affected the quality of the
speech signal. Especially the lower ends were sometimes filtered out. An exploration
was conducted with models trained on features from audio with and without noise
reduction. The results from the noisy samples showed higher standard deviations in
the cross validation when compared to the noise-reduced samples. This instability is
suspected to be caused by the noise. Therefore, the samples with noise reduction
were chosen for the experiments.

Normalization, segmentation, and concatenation

Next, all the samples were normalized using peak normalization, so that the effect of
external influences, such as the exact placement of the microphone, were minimized.
The audio files often contained long silent beginnings or endings. Because of this,
the start and end of the samples were cut off if there was more than 1200ms of
audio with an amplitude lower than -30dB. The silences between words within a
response were kept, as these could be indicators of personality traits. The samples
from each conversation were then concatenated with an algorithm that optimally
creates combinations of samples between 10 and 15 seconds. This duration was
based on the 10-second duration used in the Speaker Personality Corpus. A window
of 5 seconds was used so that complete utterances could be concatenated, instead of
samples being cut off in the middle of a word. To retain a natural speech style, only
samples from the same conversation were combined. They were also concatenated
in sequential order. This process resulted in a total of 1,249 samples of an average
duration of 13.3 seconds. The total duration of the samples is 4.6 hours. There are
23 clips on average per speaker.
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Labelling the samples
To obtain the personality scores of the participants, the BFI-44 self-assessment
questionnaire was chosen as it combines a thorough analysis while being relatively
short. The BFI-44 outputs personality scores on a continuous scale. To make
it suitable for a classification task, the personality scores were divided into the
categories ‘Low’ and ‘High’ for each personality trait, consistent with most related
work in this field [28, 29, 31, 62, 65]. Ideally, this division occurs in the middle
between the highest and lowest possible score, as this score represents the neutral
point where a person scores neither high nor low on a trait. This way, both classes
have an equal range in which a personality score could fall into its category. However,
the raw personality scores did not distribute evenly around this neutral point,
resulting in highly imbalanced binary classes. Therefore, the median was used as
the binary threshold. Figure 3.3 shows the distribution of the personality scores.
In the figure it can be seen that if 0, the neutral midpoint, would have been used
as the threshold to divide the scores into two classes, the label distribution would
have been very imbalanced. The median, which is shown in the figure as the point
where the colours change, provides a balanced distribution when used as the binary
threshold and was therefore used.

Fig. 3.3: The distribution of the personality scores of the participants in the REMDE dataset.
The binary threshold is set at the median. The colours represent the two different
classes. It can be seen that if 0, the neutral midpoint, would have been used as the
binary threshold, the label distribution would have bee very imbalanced.

3.1.3 Nautilus Speaker Characterization Corpus
The Nautilus Speaker Characterization (NSC) corpus [38, 90] is used to explore
controlled speech APR. It comprises scripted telephone conversations in German.
The conversations were recorded under controlled conditions to ensure high audio
quality. The samples were recorded at 48kHz/16 bit and 1-channel. I downsampled
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the audio to 41kHz so that it matches the frequency range of the REMDE dataset.
The age of the participants ranges between 18 and 35 years old. 117 of the speakers
are male, and 156 speakers are female. Personality trait scores were obtained using
the German version of the BFI-44, which includes a 45th German question, and the
BFI-10, depending on the recording session. A total of 181 participants completed
the BFI-44, while 92 speakers completed the BFI-10.

The documentation states the database contains no noise [38]. The algorithm
that was used on the REMDE dataset to detect samples with high levels of noise was
used and, as expected, no samples were detected above the threshold. The audio
samples were then normalized, segmented, and concatenated in the same way as
the REMDE dataset, resulting in samples of a duration between 10 and 15 seconds.
This resulted in 3354 samples with a total of 12.0 hours of speech.

Figure 3.4 shows that, just as with the REMDE dataset, using the neutral midpoint
as the binary threshold would have resulted in an imbalanced label distribution.
Therefore, the median was used as the threshold to divide the scores into the binary
classes ‘Low’ and ‘High’.

Fig. 3.4: The distribution of the personality scores of the participants in the NSC corpus.
The binary threshold is set at the median. The colours represent the two different
classes. It can be seen that if 0, the neutral midpoint, would have been used as the
binary threshold, the label distribution would have been very imbalanced.

3.2 Feature Extraction
Feature extraction was done in two ways: through the classical approach using hand-
crafted features [51], and using a pretrained deep learning model [53]. For the
classically extracted features, the tool openSMILE [50] was used. This tool provides
multiple standard feature sets. Two of these were investigated: the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) [51], comprising 88 features, and

3.2 Feature Extraction 21



Model VoxCeleb [58] VoxForge [59] SpeechCommands [60] CREMA-D [56]
openSMILE (ComParE) [91] 2.5 78.0 36.5 53.7
TRILL [52] 13.8 84.5 77.6 65.7
Wav2Vec2 [55] 17.9 98.5 95.0 77.4
CAP12 [93] 51.0 99.7 97.1 88.2
TRILLsson [53] 46.2 99.7 93.9 86.1

Tab. 3.2: A comparison of the different pretrained models for datasets in the NOSS bench-
mark. A higher score means better performance. Only datasets for the benchmark
are included that were used across the publications of these models. CAP12
achieves the highest score on all the datasets. TRILLsson, a distilation from
CAP12, achieves comparable results while being a fraction of the size.

the Computational Paralinguistics Challenge (ComParE) [91], comprising 6,373
features. Upon exploration, eGeMAPS was found to outperform ComParE in almost
all cases while greatly reducing training time. Consequently, the eGeMAPS feature
set was used for the experiments. eGeMAPS includes a set of low-level acoustic
descriptors (LLDs), such as fundamental frequency (F0), loudness, spectral slope,
spectral flux, Mel-frequency cepstral coefficients (MFCCs), and jitter and shimmer
measures. It is widely used in related fields such as SER [91, 92].

For the deep learning model, 4 pretrained models were compared. These models
are TRILL [52], FRILL [54], Wav2Vec2 [55], and TRILLsson [53]. The best model
was selected based on datasets in the NOSS benchmark, discussed in Chapter 1, that
were used in all publications of the models. The results for these models on the
datasets are presented in Table 3.2. It shows that CAP12 achieved the highest score
on all datasets. CAP12 is a massive model trained on the YT-U dataset, containing
900M+ hours of footage from YouTube [93]. It is not publicly available. The creators
distilled a smaller, publicly available model from CAP12, called TRILLsson [53].
Distillation means that knowledge got transferred from a larger model into a smaller
one. TRILLsson was built as a faster, smaller, and mobile-friendly distillation. The
model on average performs 90-96% as well as CAP12, despite being 1%-15% the
size and trained using only 6% the data. Because of these competitive results using
a small model, this model was selected as the embedding extractor for this thesis.
TRILLsson outputs 1024 embeddings for each sample. These embeddings are then
used as features for the classification models described in Section 3.5.

3.3 Training and Test Splits of the Databases
Given that there are five personality traits to be classified from the data, this task can
be considered a multi-label problem. This means that each sample has multiple non-
exclusive labels. Standard algorithms for dividing data into training and test sets fail
to maintain pairwise balance between labels, which leads to bad generalization [94].
Therefore, dedicated multi-label algorithms are needed to split the data. Additionally,
the tasks in this thesis require all samples belonging to a speaker not to be shared
between the training and test set. Such a division could cause the model to train on
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the characteristics of the speaker rather than the personality traits. Although tools
exist to split data into multi-label stratified training and test sets, they do not ensure
speaker-independency between training and test sets. Similarly, there exists a tool to
create training and test sets that ensures speaker-independece, but this only works
for single-label tasks.

To that end, I developed a PyPi package, named maestros2 (MULTI-LABEL STRATI-
FIED GROUP SPLITS). It makes use of multistrat for splitting multi-label data into
train and test sets, but also guarantees speaker-independence. In addition to split-
ting data according to these requirements, the package also generates stratification
reports and charts, allowing for easy examination of the stratification quality of the
data sets.

Figure 3.5 to 3.7 display the charts created by maestros after performing a multi-
label stratified speaker-independent split. Figure 3.5 shows that there were many
more men than women in the dataset, which could impact the results. The traits
show slight imbalances, but no extreme imbalance. Between the complete, training,
and test set, each trait and gender is well stratified. Figure 3.4 shows that the NSC
corpus is almost perfectly balanced and stratified. This is the result of using the
median as the binary threshold. The traits for the REMDE dataset in Figure 3.7 show
that the training and test sets are slightly less well-balanced and stratified compared
to the NSC corpus. This is because the dataset has fewer speakers, making it harder
to create a perfect stratification for all traits. Specifically, the balance of Neuroticism
in the test set diverges from the complete and training set.

Besides the personality traits, gender was also included in the stratification process
of all the datasets to ensure that the male-to-female ratio in the training and test
sets is similar to that of the complete data set. This is important as gender is known
to influence the paralinguistic information of speech.

3.4 Feature preprocessing
After the data was split into a development and a test set, a different pipeline for
each trait was created. This resulted in 5 different single-label binary classifica-
tion tasks. The first step in the pipeline was standardization. After this, Principal
Component Analysis (PCA) was explored. PCA is a technique to reduce data com-
plexity by transforming many related features into fewer, uncorrelated components,
while retaining important information. PCA was tried by creating components that
retained both 95% and 99% variability. However, the results of the exploration
indicated that excluding PCA performed better. This step was therefore not included
in the final experiments. Then, feature selection using cross-validated Recursive
Feature Elimination (RFE) was explored. This algorithm uses cross-validation to
find the optimal number of features to be included. It was done with 5-fold speaker-
independent cross validation. Just as with PCA< this step showed to be detrimental

2https://github.com/emilelampe/maestros
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Fig. 3.5: A chart of the SPC dataset stratification. The chart, generated by maestros, illus-
trates the stratification of the training and test set compared to the whole dataset.
Gender is included in the stratification.

Fig. 3.6: A chart of the NSC corpus stratification. The chart, generated by maestros, illus-
trates the stratification of the training and test set compared to the whole dataset.
Gender is included in the stratification.
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Fig. 3.7: A chart of the REMDE corpus stratification. The chart, generated by maestros,
illustrates the stratification of the training and test set compared to the whole
dataset. Gender is included in the stratification.

to results in the cross validation. Therefore, this step was also excluded from the
final experiments.

3.5 Classifiers
This section will discuss the three models that were chosen for the experiments:
Support Vector Machines (SVM) with an RBF kernel, Random Forest (RF) classifiers,
and k-Neirest Neighbors (kNN). An explanation of the models is given, together
with research where the models were used. Additionally, the chosen range of
hyperparameters that were explored for the cross validation development phase are
presented.

3.5.1 Support Vector Machine
Given a set of training data, the goal of an SVM is to find the optimal hyperplane
that best separates the data points into their respective classes. The optimal hyper-
plane is the one that maximizes the margin between the two classes, defined as
the distance between the hyperplane and the closest data points from each class,
known as support vectors. SVMs have been a popular choice in earlier work on
personality classification. It was, for example, one of the models for the baseline in
the Personality Sub Challenge of the Interspeech 2012 Speaker Trait Challenge [28].

SVMs work with kernels, which are functions that compute the similarity between
data points in a transformed space. The linear kernel uses a linear function to
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separate data points in a feature space. The polynomial kernel is a non-linear kernel
that allows SVM to learn more complex decision boundaries. Figure 3.8 shows how
an SVM with a polynomial kernel manages to non-linearly separate data points. For
the experiments, an SVM with a Radial Basis Function (RBF) kernel is used. The RBF
kernel is a Gaussian function that computes the similarity between input vectors. It
maps the input data into an infinite-dimensional space, where the data points can
become linearly separable [95].

Fig. 3.8: Schematic representation of a Support Vector Machine with a polynomial kernel
[96].

The SVm with RBF kernel has 2 hyperparameters that can be tuned: the C and γ

(gamma) hyperparameters. The C hyperparameter controls the trade-off between
maximizing the margin and minimizing the classification error. A small value of C
creates a wider margin, allowing some misclassifications, which can result in a more
general model. A large value of C aims to minimize the classification error, even at
the expense of a narrower margin, which can lead to overfitting. In simpler terms,
C determines the balance between finding the best possible separation between
classes and avoiding overfitting. The γ hyperparameter in the RBF kernel influences
the shape of the decision boundary, with smaller values leading to a more flexible
boundary and larger values resulting in a more rigid one.

The following values for the hyperparameters are chosen to explore during the
cross validation:

• C: [10−3, 10−2, . . . , 106] (10 values, logarithmically spaced)

• γ: [10−7, 10−6, . . . , 102] (10 values, logarithmically spaced)
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3.5.2 Random Forest
Random Forest (RF) is an ensemble learning method used for both classification
and regression tasks [97]. It consists of multiple decision trees, and the final
output is determined by aggregating the predictions from each tree. In the case of
classification, the majority vote from all trees is considered the final prediction.

The decision trees in a random forest are constructed using a random subset of
the training data, and at each node, a random subset of features is considered for
splitting. This randomization process results in a diverse set of trees, reducing over-
fitting and improving the generalization ability of the model. Figure 3.9 illustrates a
Random Forest classifier, where multiple decision trees are combined to make the
final prediction. Just as SVM, the RF model has been used for the baseline of the
Interspeech 2012 Speaker Trait Challenge [28].

Fig. 3.9: Schematic representation of a Random Forest classifier.

There are multiple hyperparameters that can be tuned in RF models. Two of
the most often used are the number of trees in the forest and the maximum tree
depth. The number of trees affects the ensemble’s ability to generalize and reduce
overfitting. A larger number of trees generally leads to better performance and lower
variance but increases the risk of overfitting and computational complexity. The
maximum tree depth controls the complexity of the individual decision trees in the
ensemble. A shallow tree may underfit the data, while a deep tree may overfit. By
limiting the maximum depth, the model’s capacity to overfit is reduced, resulting in
a more generalizable model.

The following hyperparameters have been explored for the Random Forest models:

• Number of trees in the forest: [10, 100, 250, 500, 1000].

• Maximum tree depth: [2, 4, 8, 16, None].
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3.5.3 k-Nearest Neighbors
The k-Nearest Neighbors (kNN) algorithm is a non-parametric learning method used
for classification and regression tasks [98]. In the classification context, the kNN
algorithm assigns a new data point to the majority class of its k nearest neighbours
in the feature space.

The distance between data points can be calculated using various distance metrics,
such as Euclidean, Manhattan, or Minkowski distance. Both the choice for the
distance metric and the number of neighbours can affect the performance of the kNN
algorithm. A smaller number of neighbours may lead to a more flexible decision
boundary, which is prone to overfitting. In contrast, a larger number of neighbours
results in a smoother decision boundary, which may underfit the data. The optimal
number of neighbours balances the trade-off between overfitting and underfitting.
Figure 3.10 shows a k-Nearest Neighbors classifier, where a new data point is
classified based on the majority class of its k nearest neighbors.

Fig. 3.10: Schematic representation of a k-Nearest Neighbors classifier.

For the kNN models, the following hyperparameter was tuned:

• Number of neighbors: [1, 2, 3, ..., 20].

3.6 Evaluation Metrics
The performance of the trained classifiers will be evaluated using two metrics: the
main metric Unweighted Average Recall (UAR) and the Area Under the Receiver
Operating Characteristic curve (AUC ROC). Unweighted Average Recall is a metric
that is often used for personality classification [28, 29, 62]. It is also known
as the balanced accuracy in the case of binary classes. This metric, defined as
Sensitivity ∗ 0.5 + Specificity ∗ 0.5, works well for imbalanced data as it gives equal
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importance to both the positive and the negative class, regardless of their size. When
the data is perfectly balanced, the UAR is the same as the accuracy.

The AUC ROC measures the performance of a classification model across all
possible classification thresholds, quantifying the trade-off between sensitivity (true
positive rate) and specificity (true negative rate). The AUC ROC ranges from 0 to
1, where a higher value indicates better classification performance. A value of 0.5
represents a random classifier, while a value of 1 indicates perfect classification.

AUC ROC is a suitable evaluation metric for comparing different models and
datasets because it is robust to class imbalance, invariant to the choice of classi-
fication threshold, and provides an aggregate measure of performance across all
possible thresholds. By incorporating AUC ROC alongside UAR, a more comprehen-
sive explanation of the classifier’s performance can be presented.

For the cross-validation of the development phase, the mean and standard de-
viation of the evaluation metrics are reported. During this phase, the best model
from the different hyperparameters is selected for evaluation on the test set. Often
in literature, this selection is based on the highest performance according to the
primary evaluation metric, which in this case is the UAR. However, instances were
observed during exploration where models with similar UAR scores had significantly
different standard deviations. A high standard deviation during the development
phase is indicative of a model’s instability when encountering new data, which could
be a result of overfitting or an inability to generalize effectively. Consequently, a
high score on the test set may not truly reflect the model’s real-world performance,
as it may not consistently maintain this level of performance on other unseen data.
Therefore, I consider both the mean performance and the standard deviation when
selecting the optimal model for evaluation on the test set. This approach ensures
that the chosen model not only has a high UAR, but is also stable and robust when
applied to new data.

To address this issue, a ranking score that incorporates both the mean of the UAR
and the standard deviation was used, calculated as x − 0.5 × σ, where x is the
average UAR and σ is the standard deviation. This ranking score penalizes models
with high standard deviations, favouring more stable models. Table 3.3 presents an
example where, based on the mean UAR alone, Model 1 would have been selected.
However, by incorporating the ranking score, the more stable Model 2 is chosen for
evaluation.

For the test set, we will use a statistical technique called bootstrapping to obtain
more reliable estimates of the evaluation metrics. Bootstrapping is a resampling
method that involves repeatedly sampling with replacement to create multiple
datasets of the same size. In this case, multiple test sets are created. By analysing the
evaluation metrics obtained from these bootstrapped datasets, we can estimate the
sampling distribution of the metrics, and in turn, derive confidence intervals around
their estimates. Confidence intervals provide a range within which the true value of
the metric is likely to fall, given a specified level of confidence. This is chosen to be
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Model Mean UAR Std Dev UAR Ranking score
Model 1 0.678 0.18 0.588
Model 2 0.665 0.06 0.635

Tab. 3.3: An example illustrating the impact of the adjusted ranking score: Model 2 is
selected as the best model, considering both the UAR performance and stability,
instead of Model 1, which would have been chosen based solely on the mean
UAR.

95%, which is an often used standard in literature. If the lower confidence interval
is higher than the baseline score to which the model is compared, the results can
called significant.

In this study, we will bootstrap the test set 1,000 times and report the average of
the bootstrapped evaluation metrics, together with the lower and upper bounds of
the confidence interval. This should provide a more rigorous image of how well the
different datasets and approaches perform.
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4Results

In this chapter, the results that were obtained from the experiments will be presented.
Each dataset has a large table where for each personality trait the results from the
evaluation metrics, the type of feature set and the model with the selected hyperpa-
rameters are presented. The evaluation metrics of the results include the average
UAR and average AUC ROC, as explained in Section 3.6, for both the development
and test phase. The average of the development phase is derived from the 5-fold
cross validation, while the average in the test set is derived from the bootstrapped
scores. Additionally, the standard deviation of the cross validation is presented,
while the test phase includes the confidence intervals from the bootstrapped test set.
For each trait, the model that performed best is highlighted with a grey background
colour in the table. The best performing model is the model with the highest score
for x UAR + 0.1 × x AUC ROC for the test set, where x is the average of the metric.
This makes the UAR the main performance metric, but includes the AUC ROC in
selecting the best model when models achieve similar UAR scores.

The results are also accompanied by graphs of the test set results. Each graph
includes error bars, which show the 95% confidence interval of the bootstrapped test
set. Furthermore, some graphs contain horizontal lines on the bars. These lines are
the average UAR of the cross validation during the development phase. The inclusion
of the average UAR from the cross validation provides additional information on the
stability of the model. Additionally, a dashed line is included on the 0.5 score line,
as this is the chance level for UAR.

4.1 APP & Natural Speech
The results in Table 4.1 show that for APP and natural speech, Extraversion was the
best classifiable trait, with a best achieved UAR of 0.795 and an average UAR of
0.750. Openness was the least well classifiable trait with the best model having a
UAR of 0.559, where its lower confidence bound is 0.47 which is below the chance
level of 0.5. Figure 4.1 shows the best models for each trait for both the eGeMAPS
features and the embeddings. The average UAR scores obtained from the cross
validation in the development phase, shown with the horizontal lines on the bars,
are all better for models trained on the embeddings. In general, they show similar
performance compared to the test set, which indicates that the models are stable
when being exposed to new data.
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APP & NATURAL SPEECH

SPEAKER PERSONALITY CORPUS

Extraversion Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 1000, gamma = 1e − 05 eGeMAPS 0.767 ± 0.03 0.827 ± 0.05 0.75 ± (0.68, 0.82) 0.849 ± (0.78, 0.91)
RF max depth = 16, trees = 1000 eGeMAPS 0.748 ± 0.05 0.82 ± 0.06 0.795 ± (0.72, 0.86) 0.868 ± (0.8, 0.93)
kNN neighbors = 1 eGeMAPS 0.685 ± 0.03 0.75 ± 0.04 0.728 ± (0.66, 0.79) 0.84 ± (0.77, 0.91)

SVM C = 100000, gamma = 1e − 05 Embeddings 0.782 ± 0.01 0.844 ± 0.02 0.751 ± (0.68, 0.83) 0.854 ± (0.79, 0.92)
RF max depth = 16, trees = 1000 Embeddings 0.77 ± 0.06 0.849 ± 0.07 0.752 ± (0.68, 0.82) 0.848 ± (0.78, 0.91)
kNN neighbors = 1 Embeddings 0.745 ± 0.04 0.821 ± 0.06 0.72 ± (0.65, 0.8) 0.79 ± (0.71, 0.87)

Agreeableness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 10, gamma = 0.001 eGeMAPS 0.654 ± 0.04 0.695 ± 0.07 0.664 ± (0.58, 0.75) 0.724 ± (0.63, 0.81)
RF max depth = none, trees = 500 eGeMAPS 0.639 ± 0.04 0.681 ± 0.05 0.665 ± (0.58, 0.75) 0.728 ± (0.63, 0.83)
kNN neighbors = 7 eGeMAPS 0.614 ± 0.04 0.628 ± 0.03 0.597 ± (0.51, 0.69) 0.683 ± (0.58, 0.78)

SVM C = 10, gamma = 0.001 Embeddings 0.688 ± 0.06 0.734 ± 0.05 0.701 ± (0.61, 0.78) 0.778 ± (0.68, 0.86)
RF max depth = 8, trees = 500 Embeddings 0.71 ± 0.05 0.768 ± 0.04 0.657 ± (0.57, 0.74) 0.742 ± (0.64, 0.83)
kNN neighbors = 1 Embeddings 0.62 ± 0.03 0.675 ± 0.04 0.627 ± (0.54, 0.72) 0.692 ± (0.59, 0.8)

Conscientiousness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100, gamma = 0.01 eGeMAPS 0.665 ± 0.04 0.758 ± 0.05 0.621 ± (0.53, 0.71) 0.714 ± (0.62, 0.81)
RF max depth = none, trees = 500 eGeMAPS 0.704 ± 0.02 0.775 ± 0.03 0.691 ± (0.6, 0.77) 0.756 ± (0.66, 0.84)
kNN neighbors = 8 eGeMAPS 0.644 ± 0.02 0.708 ± 0.03 0.585 ± (0.51, 0.67) 0.682 ± (0.58, 0.78)

SVM C = 100, gamma = 0.001 Embeddings 0.769 ± 0.01 0.85 ± 0.04 0.673 ± (0.59, 0.76) 0.783 ± (0.7, 0.86)
RF max depth = none, trees = 500 Embeddings 0.769 ± 0.02 0.847 ± 0.03 0.651 ± (0.56, 0.74) 0.76 ± (0.67, 0.84)
kNN neighbors = 6 Embeddings 0.73 ± 0.03 0.802 ± 0.03 0.704 ± (0.62, 0.79) 0.707 ± (0.61, 0.81)

Neuroticism Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 10, gamma = 0.001 eGeMAPS 0.681 ± 0.06 0.735 ± 0.04 0.692 ± (0.61, 0.77) 0.792 ± (0.71, 0.87)
RF max depth = 8, trees = 10 eGeMAPS 0.665 ± 0.04 0.712 ± 0.07 0.724 ± (0.65, 0.8) 0.748 ± (0.66, 0.83)
kNN neighbors = 1 eGeMAPS 0.661 ± 0.05 0.712 ± 0.04 0.667 ± (0.59, 0.74) 0.733 ± (0.64, 0.82)

SVM C = 10, gamma = 0.0001 Embeddings 0.721 ± 0.02 0.788 ± 0.03 0.731 ± (0.64, 0.82) 0.825 ± (0.74, 0.9)
RF max depth = none, trees = 500 Embeddings 0.724 ± 0.04 0.791 ± 0.03 0.732 ± (0.65, 0.81) 0.793 ± (0.71, 0.87)
kNN neighbors = 9 Embeddings 0.646 ± 0.04 0.702 ± 0.06 0.631 ± (0.55, 0.71) 0.698 ± (0.6, 0.79)

Openness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100000, gamma = 1e − 05 eGeMAPS 0.564 ± 0.02 0.573 ± 0.04 0.463 ± (0.39, 0.54) 0.518 ± (0.42, 0.62)
RF max depth = none, trees = 500 eGeMAPS 0.544 ± 0.01 0.6 ± 0.03 0.512 ± (0.46, 0.57) 0.585 ± (0.49, 0.69)
kNN neighbors = 1 eGeMAPS 0.518 ± 0.02 0.551 ± 0.03 0.525 ± (0.46, 0.59) 0.524 ± (0.42, 0.62)

SVM C = 1000, gamma = 0.0001 Embeddings 0.59 ± 0.02 0.621 ± 0.04 0.559 ± (0.47, 0.65) 0.541 ± (0.43, 0.65)
RF max depth = 4, trees = 10 Embeddings 0.568 ± 0.04 0.651 ± 0.06 0.537 ± (0.47, 0.61) 0.59 ± (0.48, 0.7)
kNN neighbors = 1 Embeddings 0.552 ± 0.05 0.61 ± 0.09 0.542 ± (0.48, 0.62) 0.613 ± (0.51, 0.72)

Tab. 4.1: The results of the APP and natural speech experiment. The Development metrics show the mean and
standard deviation of the cross-validation. The Test metrics show the mean of the bootstrapped test
set with the lower and higher bound of the confidence interval. The first three models of each trait are
trained on the eGeMAPS features and the second three models on the embeddings.
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Fig. 4.1: The average UAR of the models for the eGeMAPS and the embeddings feature set
for the SPC dataset. The error bar represents the average 95% confidence interval
of the bootstrap. The horizontal line on each bar is the average UAR of the cross
validation during the development phase. The dotted line is the chance level of
0.50.

Table 4.2 shows the results of the best models for both the eGeMAPS and embed-
dings feature sets, compared to baseline and challenge winner of the Speaker Trait
Challenge [28]. The best models of this experiment outperform the baseline and
challenge winner on Extraversion, Agreeableness, and Neuroticism. These results
were tested as significant using a one sample t-test (α = 0.05). Only for Neuroticism,
both the embeddings and the eGeMAPS features would have outperformed the
challenge baseline and winner. The good performance on Extraversion in line with
earlier achieved results on the SPC. Furthermore, all models achieve relatively low
results on Openness.

Methods Extraversion Agreeableness Conscientiousness Neuroticism Openness
Best IS12 baseline 0.762 (0.841) 0.642 (0.667) 0.801 (0.845) 0.659 (0.718) 0.59 (0.674)
IS12 winner 0.765 (NA) 0.672 (NA) 0.77 (NA) 0.692 (NA) 0.564 (NA)
Best eGeMAPS 0.795 (0.868) 0.665 (0.728) 0.691 (0.756) 0.724 (0.748) 0.525 (0.524)
Best Embedding 0.752 (0.848) 0.701 (0.778) 0.704 (0.707) 0.731 (0.825) 0.559 (0.541)

Tab. 4.2: A comparison between UAR of the Interspeech 2012 Speaker Trait Challenge and
the results obtained here. The ‘Best IS12 baseline’ represents the best UAR from
both the SVM and RF models of the baseline. The ‘IS12 winner’ is the contribution
to the challenge that was selected as the winner of the challenge, due to having
the highest average UAR. The ‘Best eGeMAPS’ are the best scores obtained in this
thesis using the eGeMAPS feature set, while the ‘Best Embeddings’ are the best
obtained results using the pretrained model. The highest results are bolded.
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Trait
eGeMAPS UAR
(x ± c.i.)

Embeddings UAR
(x ± c.i.)

Normality Test
(p-value)

Significance Test
(p-value)

Extraversion 0.795 ± (0.72, 0.86) 0.752 ± (0.68, 0.82) 0.34, 0.45 << 0.001
Agreeableness 0.665 ± (0.57, 0.75) 0.701 ± (0.61, 0.78) 0.99, 0.06 << 0.001
Conscientiousness 0.691 ± (0.60, 0.77) 0.704 ± (0.62, 0.79) 0.09, 0.74 << 0.001
Neuroticism 0.724 ± (0.65, 0.82) 0.731 ± (0.64, 0.81) 0.58, 0.08 << 0.001
Openness 0.525 ± (0.46, 0.59) 0.559 ± (0.47, 0.65) 0.30, 0.12 << 0.001

Tab. 4.3: The results of a significance test for the SPC between the bootstrapped UAR scores
of the best models trained on the eGeMAPS features and on the embeddings. For
the normality test, a p-value higher than 0.05 means that the null-hypothesis
that the bootstrapped values have a normal distribution cannot be rejected. The
significance test, done with a paired t-test, shows that the difference between the
bootstrapped results is significant. For both tests, α = 0.05.

A significance test was performed on the scores obtained from the bootstrapped
test set, to see if the best model using one type of feature was significantly better
than the other for each trait, shown in Table 4.3. As both models were tested on the
same bootstrapped test set values, a paired t-test was conducted. This test assumes
a normal distribution, which is why the scores from the bootstrapped were also
tested for normality. The resulting p-values were all far below 0.001, from which
we can conclude that the best performing models for each trait outperformed the
best performing models using the other feature type. As can be seen in the table, the
best model trained on the embeddings outperformed the best model trained on the
eGeMAPS features 4 out of 5 times.

In most cases, the performance of the different types of models was comparable
between the two types of features. Interesting exceptions are the kNN models that
classify Conscientiousness. In Table 4.1, it can be seen that the kNN model trained
on eGeMAPS features scored worse than the SVM and RF trained on those features,
with an average UAR of 0.585 and a lower confidence bound of 0.51, which is
only slightly above chance. In contrast, the kNN model trained on the embeddings
obtained the best UAR results of any of the models trained for Conscientiousness,
with a UAR of 0.704 and a lower confidence bound of 0.62. This model also scored
high in the development phase, with an average UAR of 0.730, which makes it more
likely that the high test score cannot be contributed to luck.

4.2 APR & Controlled Speech
Table 4.5 shows the results of the models trained on the Nautilus Speaker Charac-
terization corpus for APR and controlled speech. The best results are displayed in
Figure 4.2. It shows that for all traits except Openness, a lower confidence bound
above the chance level of 0.5 was achieved. To make sure the results are significantly
above chance, the best performing models for each trait were tested using a one
sample t-test. Table 4.4 shows that only Openness did not score significantly above
the chance level. The best performing models shown in Figure 4.2 were also tested
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Fig. 4.2: The average UAR of the models for the eGeMAPS and the embeddings feature set
for the NSC dataset. The error bar represents the average 95% confidence interval
of the bootstrap. The dotted line is the chance level of 0.50.

Trait Feature Set
UAR
(x ± c.i.)

Significance Test
(p-value)

Extraversion Embeddings 0.64 ± (0.6, 0.68) << 0.001
Agreeableness Embeddings 0.576 ± (0.54, 0.61) << 0.001
Conscientiousness Embeddings 0.637 ± (0.6, 0.68) << 0.001
Neuroticism eGeMAPS 0.598 ± (0.56, 0.63) << 0.001
Openness eGeMAPS 0.501 ± (0.46, 0.54) > 0.05

Tab. 4.4: A test to see if the achieved scores for the NSC corpus are significantly above the
chance level of 0.5 for α = 0.05.

for significance compared to each other, just as with the SPC models. The results
for this are in 4.6, which confirms that the best models were significantly better and
that all models passed the test for normality.

As can be seen, the highest scores were achieved with an SVM trained on the
embeddings for Extraversion and Conscientiousness with an UAR of respectively
0.640 and 0.637. It should be noted that the UAR during the development phase,
shown with a horizontal line on the bar, was considerably lower for those models,
with an average UAR of 0.541 and 0.527.
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APR & CONTROLLED SPEECH

NAUTILUS SPEAKER CHARACTERIZATION CORPUS

Extraversion Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 10000, gamma = 1e − 07 eGeMAPS 0.577 ± 0.04 0.584 ± 0.04 0.54 ± (0.5, 0.58) 0.569 ± (0.52, 0.61)
RF max depth = none, trees = 500 eGeMAPS 0.542 ± 0.02 0.54 ± 0.02 0.603 ± (0.57, 0.64) 0.609 ± (0.57, 0.65)
kNN neighbors = 1 eGeMAPS 0.54 ± 0.03 0.537 ± 0.04 0.584 ± (0.55, 0.62) 0.592 ± (0.55, 0.64)

SVM C = 100, gamma = 0.001 Embeddings 0.549 ± 0.04 0.575 ± 0.07 0.64 ± (0.6, 0.68) 0.673 ± (0.63, 0.72)
RF max depth = 16, trees = 10 Embeddings 0.545 ± 0.03 0.543 ± 0.03 0.543 ± (0.51, 0.58) 0.578 ± (0.53, 0.62)
kNN neighbors = 9 Embeddings 0.53 ± 0.02 0.536 ± 0.03 0.527 ± (0.49, 0.57) 0.545 ± (0.5, 0.59)

Agreeableness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100, gamma = 0.001 eGeMAPS 0.564 ± 0.07 0.586 ± 0.08 0.487 ± (0.45, 0.52) 0.494 ± (0.45, 0.54)
RF max depth = 4, trees = 10 eGeMAPS 0.564 ± 0.03 0.567 ± 0.03 0.501 ± (0.46, 0.54) 0.537 ± (0.49, 0.58)
kNN neighbors = 7 eGeMAPS 0.514 ± 0.03 0.515 ± 0.04 0.441 ± (0.4, 0.48) 0.439 ± (0.39, 0.48)

SVM C = 100, gamma = 1e − 05 Embeddings 0.541 ± 0.02 0.573 ± 0.04 0.567 ± (0.53, 0.61) 0.588 ± (0.54, 0.64)
RF max depth = 2, trees = 500 Embeddings 0.547 ± 0.02 0.575 ± 0.04 0.576 ± (0.54, 0.61) 0.564 ± (0.52, 0.61)
kNN neighbors = 3 Embeddings 0.567 ± 0.03 0.579 ± 0.04 0.528 ± (0.49, 0.57) 0.54 ± (0.5, 0.59)

Conscientiousness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100000, gamma = 1e − 05 eGeMAPS 0.531 ± 0.04 0.532 ± 0.05 0.497 ± (0.46, 0.54) 0.464 ± (0.42, 0.51)
RF max depth = 2, trees = 10 eGeMAPS 0.512 ± 0.02 0.504 ± 0.05 0.528 ± (0.49, 0.57) 0.572 ± (0.53, 0.62)
kNN neighbors = 7 eGeMAPS 0.507 ± 0.02 0.501 ± 0.02 0.457 ± (0.42, 0.49) 0.458 ± (0.41, 0.5)

SVM C = 100, gamma = 1e − 05 Embeddings 0.527 ± 0.03 0.548 ± 0.07 0.637 ± (0.6, 0.68) 0.62 ± (0.58, 0.67)
RF max depth = 2, trees = 10 Embeddings 0.526 ± 0.01 0.533 ± 0.02 0.589 ± (0.55, 0.63) 0.601 ± (0.56, 0.65)
kNN neighbors = 1 Embeddings 0.544 ± 0.01 0.562 ± 0.02 0.577 ± (0.54, 0.62) 0.589 ± (0.55, 0.63)

Neuroticism Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 10000, gamma = 1e − 05 eGeMAPS 0.582 ± 0.05 0.604 ± 0.04 0.598 ± (0.56, 0.63) 0.616 ± (0.57, 0.66)
RF max depth = 16, trees = 10 eGeMAPS 0.517 ± 0.02 0.529 ± 0.03 0.564 ± (0.52, 0.6) 0.585 ± (0.54, 0.63)
kNN neighbors = 2 eGeMAPS 0.52 ± 0.01 0.523 ± 0.01 0.556 ± (0.52, 0.6) 0.605 ± (0.56, 0.65)

SVM C = 100000, gamma = 1e − 05 Embeddings 0.594 ± 0.04 0.633 ± 0.05 0.454 ± (0.42, 0.49) 0.443 ± (0.4, 0.49)
RF max depth = 16, trees = 500 Embeddings 0.554 ± 0.04 0.578 ± 0.07 0.514 ± (0.48, 0.55) 0.529 ± (0.48, 0.57)
kNN neighbors = 2 Embeddings 0.547 ± 0.02 0.562 ± 0.02 0.498 ± (0.47, 0.53) 0.494 ± (0.46, 0.54)

Openness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 10000, gamma = 1e − 05 eGeMAPS 0.57 ± 0.03 0.596 ± 0.03 0.501 ± (0.46, 0.54) 0.499 ± (0.46, 0.54)
RF max depth = 4, trees = 500 eGeMAPS 0.583 ± 0.04 0.601 ± 0.05 0.37 ± (0.33, 0.41) 0.361 ± (0.32, 0.4)
kNN neighbors = 1 eGeMAPS 0.561 ± 0.01 0.569 ± 0.03 0.423 ± (0.39, 0.46) 0.38 ± (0.34, 0.43)

SVM C = 100, gamma = 0.0001 Embeddings 0.558 ± 0.03 0.57 ± 0.04 0.428 ± (0.39, 0.47) 0.408 ± (0.37, 0.45)
RF max depth = 4, trees = 250 Embeddings 0.564 ± 0.02 0.584 ± 0.03 0.381 ± (0.34, 0.42) 0.388 ± (0.34, 0.43)
kNN neighbors = 1 Embeddings 0.523 ± 0.02 0.516 ± 0.03 0.411 ± (0.37, 0.45) 0.383 ± (0.34, 0.43)

Tab. 4.5: The results of the APR and controlled speech experiment. The Development metrics show the mean
and standard deviation of the cross-validation. The Test metrics show the mean of the bootstrapped
test set with the lower and higher bound of the confidence interval. The first three models of each
trait are trained on the eGeMAPS features and the second three models on the embeddings.
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Trait
eGeMAPS UAR
(x ± c.i.)

Embeddings UAR
(x ± c.i.)

Normality Test
(p-value)

Significance Test
(p-value)

Extraversion 0.603 ± (0.57, 0.64) 0.64 ± (0.60, 0.68) 0.70, 0.96 << 0.001
Agreeableness 0.501 ± (0.46, 0.54) 0.576 ± (0.54, 0.61) 0.52, 0.39 << 0.001
Conscientiousness 0.528 ± (0.49, 0.57) 0.637 ± (0.60, 0.68) 0.80, 0.96 << 0.001
Neuroticism 0.598 ± (0.56, 0.63) 0.514 ± (0.48, 0.55) 0.60, 0.85 << 0.001
Openness 0.501 ± (0.46, 0.54) 0.428 ± (0.39, 0.47) 0.23, 0.68 << 0.001

Tab. 4.6: The results of a significance test for the NSC corpus between the bootstrapped
UAR scores of the best models trained on the eGeMAPS features and on the
embeddings. For the normality test, a p-value higher than 0.05 means that the
null-hypothesis that the bootstrapped values have a normal distribution cannot be
rejected. The significance test, done with a paired t-test, shows that the difference
between the bootstrapped results is significant. For both tests, α = 0.05.

4.3 APR & Natural Speech
Table 4.8 shows the results of the models trained on the REMDE corpus for APR
and Natural Speech. The results are mostly around or below the chance level.
Furthermore, multiple models have a UAR of 0.5 with equivalent lower and upper
confidence bounds on the test set. This is caused by the model guessing only one
class for all the test samples, which results in an UAR of 0.5. Table 4.7 shows all
models except Conscientiousness scored significantly above chance in the evaluation
phase. However, they also obtained a low average UAR and standard deviation of
the cross validation. The highest UAR is achieved by the kNN trained on embeddings
for Agreeableness with a UAR of 0.616. Also here, development UAR for this model
is low with a score of 0.409 and a high standard deviation of 0.11, indicating an
unstable model and thereby making the achieved test score unreliable.

Trait Feature Set
UAR
(x ± c.i.)

Significance Test
(p-value)

Extraversion Embeddings 0.505 ± (0.44, 0.58) < 0.001
Agreeableness Embeddings 0.616 ± (0.54, 0.69) < 0.001
Conscientiousness Embeddings 0.5 ± (0.5, 0.5) −
Neuroticism Embeddings 0.53 ± (0.46, 0.6) < 0.001
Openness Embeddings 0.549 ± (0.48, 0.62) < 0.001

Tab. 4.7: A test to see if the achieved scores for the REMDE corpus are significantly above
the chance level of 0.5 for α = 0.05. The dash means that no significance test
could be performed, as all the scores were the same as the value that was being
tested for (0.5).
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APR & NATURAL SPEECH

REMDE CORPUS

Extraversion Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100, gamma = 1e − 06 eGeMAPS 0.503 ± 0 0.517 ± 0.14 0.5 ± (0.5, 0.5) 0.47 ± (0.38, 0.56)
RF max depth = none, trees = 10 eGeMAPS 0.477 ± 0.14 0.488 ± 0.2 0.444 ± (0.37, 0.52) 0.435 ± (0.35, 0.52)
kNN neighbors = 2 eGeMAPS 0.512 ± 0.1 0.491 ± 0.13 0.421 ± (0.35, 0.5) 0.405 ± (0.33, 0.49)

SVM C = 1000, gamma = 0.01 Embeddings 0.506 ± 0.01 0.489 ± 0.14 0.5 ± (0.5, 0.5) 0.58 ± (0.49, 0.67)
RF max depth = none, trees = 10 Embeddings 0.512 ± 0.11 0.505 ± 0.2 0.505 ± (0.44, 0.58) 0.476 ± (0.39, 0.56)
kNN neighbors = 4 Embeddings 0.517 ± 0.08 0.506 ± 0.16 0.49 ± (0.42, 0.57) 0.515 ± (0.43, 0.6)

Agreeableness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 0, gamma = 0.0001 eGeMAPS 0.5 ± 0 0.351 ± 0.13 0.5 ± (0.5, 0.5) 0.541 ± (0.44, 0.63)
RF max depth = none, trees = 10 eGeMAPS 0.408 ± 0.1 0.376 ± 0.13 0.519 ± (0.45, 0.59) 0.509 ± (0.41, 0.61)
kNN neighbors = 3 eGeMAPS 0.457 ± 0.13 0.432 ± 0.16 0.572 ± (0.5, 0.65) 0.583 ± (0.49, 0.67)

SVM C = 10, gamma = 0.1 Embeddings 0.5 ± 0 0.497 ± 0.01 0.5 ± (0.5, 0.5) 0.5 ± (0.5, 0.5)
RF max depth = 8, trees = 10 Embeddings 0.446 ± 0.11 0.404 ± 0.16 0.495 ± (0.42, 0.57) 0.508 ± (0.42, 0.6)
kNN neighbors = 1 Embeddings 0.409 ± 0.11 0.409 ± 0.11 0.616 ± (0.54, 0.69) 0.616 ± (0.54, 0.69)

Conscientiousness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 0, gamma = 0.0001 eGeMAPS 0.5 ± 0 0.41 ± 0.13 0.5 ± (0.5, 0.5) 0.379 ± (0.3, 0.46)
RF max depth = 2, trees = 10 eGeMAPS 0.42 ± 0.09 0.364 ± 0.15 0.447 ± (0.41, 0.49) 0.341 ± (0.26, 0.42)
kNN neighbors = 2 eGeMAPS 0.452 ± 0.07 0.432 ± 0.09 0.445 ± (0.38, 0.51) 0.409 ± (0.34, 0.48)

SVM C = 10, gamma = 0.01 Embeddings 0.504 ± 0.01 0.475 ± 0.09 0.5 ± (0.5, 0.5) 0.411 ± (0.33, 0.5)
RF max depth = 4, trees = 250 Embeddings 0.485 ± 0.09 0.463 ± 0.11 0.394 ± (0.34, 0.45) 0.272 ± (0.21, 0.35)
kNN neighbors = 2 Embeddings 0.503 ± 0.05 0.467 ± 0.07 0.366 ± (0.3, 0.44) 0.409 ± (0.33, 0.49)

Neuroticism Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 0, gamma = 0.0001 eGeMAPS 0.5 ± 0 0.481 ± 0.1 0.5 ± (0.5, 0.5) 0.61 ± (0.53, 0.69)
RF max depth = 2, trees = 500 eGeMAPS 0.497 ± 0.1 0.433 ± 0.11 0.498 ± (0.46, 0.53) 0.458 ± (0.38, 0.54)
kNN neighbors = 2 eGeMAPS 0.424 ± 0.09 0.407 ± 0.11 0.497 ± (0.44, 0.56) 0.489 ± (0.42, 0.57)

SVM C = 10, gamma = 0.1 Embeddings 0.5 ± 0 0.511 ± 0.01 0.5 ± (0.5, 0.5) 0.5 ± (0.5, 0.5)
RF max depth = 2, trees = 500 Embeddings 0.497 ± 0.09 0.448 ± 0.19 0.424 ± (0.37, 0.48) 0.529 ± (0.44, 0.62)
kNN neighbors = 1 Embeddings 0.448 ± 0.11 0.448 ± 0.11 0.53 ± (0.46, 0.6) 0.53 ± (0.46, 0.6)

Openness Development (x ± s.d.) Test (x ± c.i.)
Model Hyperparameters Features UAR AUC ROC UAR AUC ROC
SVM C = 100, gamma = 1e − 06 eGeMAPS 0.503 ± 0 0.416 ± 0.11 0.507 ± (0.46, 0.55) 0.48 ± (0.4, 0.56)
RF max depth = 8, trees = 10 eGeMAPS 0.461 ± 0.08 0.443 ± 0.09 0.411 ± (0.35, 0.48) 0.325 ± (0.25, 0.41)
kNN neighbors = 6 eGeMAPS 0.46 ± 0.07 0.411 ± 0.08 0.4 ± (0.33, 0.48) 0.372 ± (0.29, 0.46)

SVM C = 100000, gamma = 1e − 05 Embeddings 0.549 ± 0.09 0.536 ± 0.11 0.478 ± (0.41, 0.55) 0.531 ± (0.45, 0.61)
RF max depth = 8, trees = 10 Embeddings 0.524 ± 0.08 0.526 ± 0.13 0.549 ± (0.48, 0.62) 0.564 ± (0.48, 0.64)
kNN neighbors = 2 Embeddings 0.499 ± 0.05 0.508 ± 0.09 0.453 ± (0.39, 0.51) 0.457 ± (0.38, 0.53)

Tab. 4.8: The results of the APR and natural speech experiment. The Development metrics show the mean and
standard deviation of the cross-validation. The Test metrics show the mean of the bootstrapped test
set with the lower and higher bound of the confidence interval. The first three models of each trait are
trained on the eGeMAPS features and the second three models on the embeddings.
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Fig. 4.3: The average UAR of the models for the eGeMAPS and the embeddings feature
set for the REMDE dataset. The error bar represents the average 95% confidence
interval of the bootstrap. The dotted line is the chance level of 0.50.

4.4 The datasets together
Figure 4.4 shows the best overall models for each trait and dataset. The models
trained on the SPC dataset for APP and natural speech style clearly achieved the
best overall results. It is interesting that there is no clear pattern when it comes to
most of the traits. They all scored relatively low on Openness. However, for the
SPC dataset, the highest score was achieved for Extraversion, while for the REMDE
dataset, this score could not be classified better than chance.

Table 4.9 shows for how many traits each feature types won over the other type.
This is shown for the different datasets and for the models. The left number counts
the number of traits for the eGeMAPS feature and the right number for the embed-
dings. When both models did not have a significant score, they were not included.
The table shows that the models trained on the embeddings outperformed those on
the eGeMAPS features for all datasets. Furthermore, the embeddings worked better
across the datasets for the SVM and the kNN models, while it performed equal for
the RF models.
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Fig. 4.4: The best achieved result on the personality traits for each of the datasets. The
error bar represents the 95% confidence interval of the bootstrap. The dotted line
is the chance level of 0.50.

SPC NSC REMDE Total
SVM (0, 5) (2, 3) - (2, 8)
RF (3, 2) (2, 3) - (5, 5)

kNN (2, 3) - (0, 2) (2, 5)
Total (5, 10) (4, 6) (0, 2) (9, 18)

Tab. 4.9: The number of personality traits where each feature type won over the other. The
left number is for the eGeMAPS features and the right number for the embeddings.
Only traits where at least one of the two models was significant above chance
(p<0.05) are included.
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5Discussion and limitations

5.1 Discussion of results
In this thesis, automatic personality classification is explored by combining different
labelling methods (APR and APP) and different speech styles (controlled and natural
speech). Three types of models were trained on four datasets to explore each of the
combinations. Furthermore, both hand-crafted features and embeddings extracted
from a pretrained model were used and compared. In this chapter, I will discuss the
results that were presented in Chapter 4.

Out of all the experiments, the APP and natural speech experiment trained on the
SPC obtained the best results. As was shown in Table 4.2, Extraversion, Agreeable-
ness, and Neuroticism achieved a better UAR than the baseline and challenge winner
of the Interspeech 2012 Speaker Trait Challenge [28]. The SVM and RF that were
used in this experiment had also been used for the challenge baseline [28]. The
increase in performance compared to the Speaker Trait Challenge could therefore be
caused by the implementation of more effective features. The challenge was released
in 2012 and provided an extensive feature set of 6,125 features [28]. In 2015,
the eGeMAPS feature set was released with a relatively low number of 88 features
[51]. These features were selected based on their success in past literature and
their theoretical significance. This seems to have resulted in increased performance
on the SPC corpus compared to the challenge baseline. The embeddings, of which
Table 4.3 showed it significantly outperformed the eGeMAPS feature set on 4 out
of 5 personality traits, obtained even better results. The embeddings are from a
pretrained deep learning model released in 2021 [53] that achieved near state-of-
the-art results on related paralinguistic classification tasks. The results obtained in
this experiment indicate that the deep learning model is also an effective feature
extractor for perceived personality classification based on paralinguistic information.

In Figure 2.2, it could be seen that all the participants of the Personality Sub
Challenge from the Interspeech 2012 Speaker Trait Challenge [28] achieved the best
results on Extraversion and Conscientiousness. In related work on personality classi-
fication, Extraversion is often among the traits on which the highest performance is
achieved [29]. This is also the case with the models trained on the SPC corpus. For
a trait to be successfully classified, it must be perceptible [5]. Extraversion, which
manifests itself in characteristics such as being talkative, is expressed externally,
while characteristics such as fantasy proneness, which are related to Openness, are
expressed internally [5]. This could contribute to why Extraversion often performs
well on personality classification tasks.

While the results for Extraversion are in line with the results of the challenge
contributions, Conscientiousness scored worse in this experiment (0.701 in the best
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embedding model versus 0.801 in the challenge baseline), as is shown in Table 4.2.
This is most likely explained by the different label distribution that was calculated
for the SPC in this thesis. Table 3.1 showed that the difference between the labels
is 127 for each class of Conscientiousness. This makes the majority class in this
experiment ‘High’ on Conscientiousness, while the majority class in the challenge
distribution was ‘Low’ on Conscientiousness.

Although this big difference in the label distribution resulted in a lower score
for Conscientiousness compared to the challenge baseline, a score of 0.701 was
still achieved, thereby outperforming Agreeableness and Openness in the same
experiment. This raises the question of how, with such a big difference in the label
distribution, both Conscientiousness models can achieve a score above 0.7. It can be
explained by the impact that a ‘hard’ binary threshold has on the label distribution.
The raw personality scores have to be converted to binary scores at some point in the
label calculation. A hard cut-off is used, which causes everything below the threshold
to be labelled as ‘Low’ on the trait, while everything above the threshold is labelled
as ‘High’ on the trait. If a large amount of the personality scores for a trait have
values close to the binary threshold, slight differences in where the threshold is set
could have a relatively big impact on the binary label distribution. At the same time,
the range in which a personality score will be categorized as one of the two classes
mostly stays the same. Therefore, a change in the value of the binary threshold can
have a relatively big impact on the label distribution, while good results for that trait
can still be achieved.

Table 4.4 showed that in the APR and controlled speech experiment with the NSC
corpus, scores significantly higher than chance were obtained for all traits except
Openness. The best score was obtained for Extraversion. This further supports the
explanation that traits related to external expression (such as Extraversion) are
more suitable for classification tasks based on paralinguistic information than traits
related to internal expression (such as Openness) [5]. The significance test between
the models trained on the eGeMAPS features and the embeddings, of which the
results are in Table 4.6, showed that the embeddings outperformed the eGeMAPS
features for 3 out of 5 traits. The embeddings therefore also performed better for
the experiment with APR and controlled speech.

In Figure 4.2 of the APR and controlled speech experiment, it can be seen that for
all traits except Neuroticism, at least one of the models had a cross validation score,
shown with the horizontal line on the bar, that is out of the bounds of the confidence
interval for the test score. Many of the models therefore performed considerably
different during the development phase when compared to the evaluation phase.
This could indicate that the model is unstable when seeing new data or that the
samples in the test set were either favourable or unfavourable to that specific trait.
The instability can be further examined by looking at the standard deviation of the
cross validation. Table 4.5 shows that the standard deviations for the best performing
models in the development phase were low. The highest standard deviation out of
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all the models that showed inconsistency between the development and evaluation
phase, presented in Figure 4.2, is 0.04. These standard deviations go against the
explanation that the models are unstable. The differences in performance between
the development and the evaluation phase are therefore more likely to be caused by
the configuration of the test set. The database is split so that no samples from the
same speaker are divided among the training and test set. The test set therefore has
a limited subset of the speakers. In APR, all samples belonging to the same speaker
will have the same labels. Therefore, the extent to which a trait is prevalent in the
test set is highly dependent on the speakers that are included in the set.

The results of the experiment for APR and natural speech with the REMDE corpus,
shown in Table 4.8, indicate that personality mostly could not be classified in this
experiment. Although Table 4.7 shows that the best models achieved a statistically
significant result for 4 out of 5 traits, their average UAR and standard deviation of
the cross validation perform badly. This suggests that the scores that are deemed
statically significant can likely be contributed to luck. Taking all the metrics into
consideration, the models are not able to get good results for the REMDE dataset.
The overall best performing model had an average score below chance during the
development phase with a relatively high standard deviation of 0.11, which are signs
of a badly performing and unstable model.

Overall, the best results were obtained on the SPC, which is visible in Figure 4.4.
It cannot be said with certainty whether this because of APP and natural speech, or
because other characteristics of the database make it more suitable for classification.
Classifying personality based on unchanging self-assessed personality labels is seen
as harder than classifying perceived personality. If the audio recorded does not reflect
the scores obtained from the personality test, it will be difficult to identify patterns.
The lower results of both APR datasets compared to the APP dataset are in line with
this. The experimental setup could also influence the results. The speakers in the
REMDE corpus had conversations with a digital avatar in an intimate setting. In
contrast, the SPC contains audio from a radio channel. This is a medium where the
speakers are aware that their voice is the only way to communicate to the listeners.
This could elicit the personality traits of the speaker. Regarding the embeddings
and eGeMAPS features, Table 4.9 showed that the embeddings outperformed the
eGeMAPS features in most cases. The results of the experiments have shown that
the differences in performance were statistically significant. This indicates that the
embeddings are suitable for personality classification and can regularly obtain higher
scores than the hand-crafted features.

5.2 Limitations
As explained before, using different datasets will impose limitations on the com-
parisons that can be made. Ideally, a dataset has labels from both the self-assessed
personality scores, as personality scores based on the perception of the raters. This
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Fig. 5.1: The range in which personality scores will be classified as one of the two classes
when the binary threshold is 0, compared to when the binary threshold is set as
the median (given the median is not 0). Shifting the binary threshold away from 0
makes this range for one class larger, while the other class has less ‘space’ in which
a score will be classified as such.

would enable direct comparison between APR and APP. For speech styles, an ideal
situation would have participants both speak freely and act out scenarios. Because of
this limitation, the labelling method and speech style analysis focusses mostly on the
results for each dataset specifically. Personality being more difficult to classify in APR
datasets than in APP datasets does align with existing research. However, it cannot
be said with certainty that this is what caused the results in these experiments.
Furthermore, the datasets were recorded in 3 different languages. Language could
affect the way personality is prevalent through speech.

A limitation specific to the APR datasets is the distribution of the self-assessed
personality scores. Figure 3.3 and 3.4 showed how the scores did not distribute
evenly around the midpoint between the highest and lowest possible score for a
trait. Because determining binary scores based on this midpoint would produce a
highly imbalanced label distribution, the median was chosen as the binary threshold.
Although this results in more balanced label distributions, it also alters the range in
which scores will be categorized as one of the two classes. This is effect is illustrated
in Figure 5.1. It shows the full range of a personality trait from -5 to 5, where 0
is the midpoint. In the left image, the midpoint is chosen as the binary threshold,
resulting in an equal range for both classes. The right image shows how these ranges
change when the median (in this case 0.2) is chosen as the binary threshold. It
becomes clear that the participant must score extremely high on this trait in order
to be classified as ’High’. Simultaneously, participants that would score above 0
but below the threshold for this trait, will now be classified as being ’Low’ on the
personality trait. A speaker scoring 0.15 will now have the same label as a person
scoring -3, even though their answers on the self-assessment test might have been
very different.

The data division with multiple labels could also influence the performance. The
datasets are divided into a training set for the development phase, and a test set.
This is done so that the binary labels of all traits and gender are relatively well
stratified, and so that the speakers are not shared among training and test set. The
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data in the test set could, by chance, contain speakers that much stronger represent
a specific trait than the data that was used for cross validation. This would cause
a model to perform pessimistically during the development phase when compared
to the test set. This effect can especially play a role in APR, as all samples from a
speaker have the same label.

Finally, there are also limitations intrinsic to the task of classifying self-assessed
personality from paralinguistic information. The goal of APR is to classify a person’s
persistent personality, as assessed by the person himself. The definition of personality,
as stated in Chapter 1, defines personality to consist of an enduring set of traits.
Short speech segments might simply not carry the information that is needed to
identify these enduring traits, as they are not defined on such a timescale. This is a
limitation mostly specific to APR, as the task of APP aims to classify the perception
of that specific short segment. A second general limitation is the extent to which
traits are shown in paralinguistic information. Not all traits are expressed externally
in equal ways. This makes certain traits more ‘available’ in the data [5]. There could
be limits to what extent personality traits such as Openness can be classified using
externally expressed information such as speech.
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6Future Work

There are multiple extensions to this thesis that would make interesting contributions.
One such extension would be to fine-tune the deep learning model. When fine-
tuning a pretrained model, you unfreeze the last few layers of the model. You then
retrain those layers using your own data. It thereby becomes an end-to-end model
implementation, removing the need for the shallow classification models that were
used in this thesis. Fine-tuning has been shown to sometimes produce better results
as it can effectively capture information that shallow models can not [52].

An improvement to the collection of datasets would be an APP dataset with
controlled speech. With such a dataset, all combinations of the labelling methods
and speech styles can be investigated. This could reveal additional patterns on
the effectiveness of each labelling method and speech style across databases. A
database like this can be made by creating APP labels for the Nautilus Speaker
Characterization corpus. This would simultaneously enable direct comparisons
between APP and APR using controlled speech.

Additionally, APP labels could be created for the REMDE dataset. This would
target the same combination as the Speaker Personality Corpus, but would also make
direct comparisons between the APR and APP on controlled speech possible. As the
models performed the worst on the REMDE dataset, it would be interesting to see if
using labels based on perception would improve the scores.

Creating APP labels for the datasets is a time and resource costly operation, as
each sample needs to be assessed by external raters. Obtaining APR labels for the
APP datasets would require less labelling. However, the speakers in the datasets
would have to be found and participate in a personality self-assessment test. For
a database such as the SPC, where the audio is extracted from radio, this is not
feasible. Creating APP labels for APR datasets would therefore be the best solution
in most cases, and would be a valuable contribution to speech-based personality
classification research.

The transcriptions of the speech data could be used, so that semantics are included
in the speech analysis of the personality traits. This would provide an additional
layer of information to the speech. Furthermore, most research on speech personality
classification uses binary labels. In some Personality Computing research, different
approaches have already been tried, such as using 3 classes [29]. These approaches
could be further explored to see if this improves performance.

It would also be valuable to experiment with different training and test set di-
visions. This could give more clarity on what caused the difference between the
cross validation and evaluation averages on the APR datasets. However, personality
classification as done in this thesis is a multi-label task with speaker-independent
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training and test sets. This limits the number of ways in which a dataset can be
divided while still being stratified for all the traits.

Interesting future work on the REMDE dataset would be to combine the different
recorded modalities, such as eye tracking and brain activity, with the speech data.
This would target the limitation that some traits are expressed mostly internally.
Related work making use of other modalities, such as facial expressions [79], has
been shown to produce very high results, even with self-assessed personality labels
[79].
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7Conclusion

In this thesis, the influence of labelling methods (APR and APP) and speech styles
(controlled and natural speech) on personality classification is explored. This is done
using paralinguistic information from speech data. Experiments were conducted on
three datasets that target three of the combinations. Furthermore, the influence of
embeddings versus handcrafted features on personality classification was investi-
gated. In this chapter, I will conclude my findings and answer the research questions.

RQ 1 How well can speech-based personality classification be performed using datasets
with different labelling methods (APR and APP) and speech styles (controlled and
natural speech)?

To answer this question, three sub questions were defined.

SQ 1.1 For which traits can improvements be made on the challenge baseline and
winner using the database for APP and natural speech (SPC)?

For this experiment, the models were trained on the Speaker Personality Corpus,
and compared to the baseline and winner of the Speaker Trait Challenge. The
results showed that for Extraversion, Agreeableness, and Neuroticism, significantly
higher UAR scores were obtained than both the baseline and the winner of the
challenge. Except for Conscientiousness, all traits were best classified with models
that were also used for the baseline. As the types of these models were the same, a
plausible explanation for the increase in performance is that the features were more
effective. Conscientiousness and Openness scored lower than the baseline results.
The label distribution of Conscientiousness was considerably different from what
was presented in the challenge, as discussed in Section 3.1.3. This could explain
the lower results for this trait. While the models trained on Openness achieved
worse results than the baseline and the challenge winner, this trait was also the
hardest to classify in the challenge baseline and winner. A possible reason for the bad
performance of Openness is that the trait is closely related to internally expressed
behaviour, making it hard to be perceived. Overall, 3 out of 5 traits scored better
than the challenge baseline and winner, and thus these traits could be improved.

SQ 1.2 Which traits can be classified better than chance using the database for APR
and controlled speech (NSC)?

In this experiment, UAR scores significantly above chance were obtained for Ex-
traversion, Agreeableness, Conscientiousness, and Neuroticism. Extraversion and
Conscientiousness achieved the best scores during evaluation. Their cross valida-
tion scores during the development phase were considerably lower. However, the
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standard deviation of the cross validation scores for these traits was also low, which
is a sign of stability in the models when being exposed to new data. This suggests
that the difference in the scores between the development and evaluation phase
was not caused because of unstable models. One explanation is that the APR labels
make the prevalence of traits in the test set highly dependent on which speakers are
included. In conclusion, 4 out of 5 scores could be classified significantly better than
chance, although additional experimentation with different test sets could provide
more insights on the validity of the results.

SQ 1.3 Which traits can be classified better than chance using the database for APR
and natural speech (REMDE)?
In this experiment, all traits except Conscientiousness achieved scores slightly, but
significantly, above chance. However, the average UAR during the cross validation
phase was often below chance. Additionally, the standard deviations of the cross
validation were high, indicating that the models were unstable. It is therefore
concluded that the models could not reliably classify the traits better than chance.
These results suggest that it is hard to perform APR using audio that is recorded
with natural speech.

Overall, the APR datasets performed worse than the APP dataset. This is in line
with findings of previous research and could suggest that there are limitations to the
extent to which APR can be performed. There were no clear patterns regarding the
controlled and natural speech styles. Natural speech with APP achieved the highest
scores while natural speech with APR achieved the lowest results. A dataset with the
fourth combination, APP and controlled speech, could provide additional insights
into the effectiveness of the labelling methods and speech styles. A standardized
dataset that includes both labelling methods and both speech styles would enable
detailed comparisons between results.

RQ 2 How do the models perform on embeddings compared to hand-crafted features for
speech-based personality classification?
Table 4.9 showed that for all three experiments, the embeddings achieved better
results than the eGeMAPS features on most traits. In total, the embeddings obtained
higher scores 18 times, compared to 9 times for the eGeMAPS features. Therefore,
the embeddings overall performed better than the hand-crafted features in speech-
based personality classification. The pretrained model can successfully be used to
extract features for personality classification.

This thesis provides the first research on both APR and APP including a speech style
perspective. Two databases have been used for the first time for these tasks. In all
experiments, significant UAR scores were achieved for multiple personality traits.
The reliability of these scores differs per experiment. The APP dataset obtained better
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results than the APR datasets. Further experimentation can clarify to what extent
these results generalize. Additionally, embeddings have shown to be a valuable
contribution to personality computing by outperforming hand-crafted features. The
methodology presented in this thesis can be used as a foundation for future research
on labelling methods and speech styles. As part of the methodology, a PyPi package
was introduced that makes dividing datasets into multi-label stratified speaker-
independent training and test sets considerably easier. The results and limitations
can help determine the direction of future Personality Computing research.
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