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ABSTRACT: Vibration-based Structural Health Monitoring (SHM) is an area of ongoing research and has received much 
attention from researchers in recent years. Online damage detection methods for bridges rely on placing sensors on the structure 
to detect anomalies in measured parameters such as acceleration, frequency or displacement among others. Changes in these 
parameters can be used to infer the presence of damage such as cracking in bridge beams, foundation scour etc. These methods 
mostly rely on using the signals arising on a bridge from ambient traffic or environmental loading. For foundation scour 
detection purposes, the lateral response of a bridge is of particular interest in that this has been shown to be particularly sensitive 
to the scour phenomenon. Vehicle-Bridge Interaction (VBI) effects can have a significant influence on the condition of output 
vibrations from a bridge element. In this paper, the effect of vehicle travelling velocity on the lateral response of a typical 
highway two-span integral bridge is investigated. In this context, the term lateral refers to the traffic direction. It is shown that 
depending on the velocity of the vehicle relative to the oscillatory period of the bridge it traverses, the bridge’s dynamic 
response is either amplified or diminished by varying degrees. This phenomenon could influence the accuracy of a particular 
damage detection method relying on output system vibrations to infer damage.  
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1 INTRODUCTION 

Structural Health Monitoring (SHM) is the art of monitoring 
the condition of a structure over its lifetime with a view to 
preventing excessive damage from accumulating. A very 
comprehensive overview of the topic is available in Farrar and 
Worden [1]. The motivation for asset owners (of bridges, in 
particular) for implementing technology of this nature is due 
to the potentially life-saving and economic benefits it can 
have by offsetting the cost (both in life and monetary terms) 
of excessive damage arising in the structure during its 
lifespan.  

Online damage detection refers to detecting damage 
arising in a structure using sensors distributed on the structure. 
These sensors seek anomalies in the structural behavior during 
operation (by monitoring displacement, acceleration, 
frequency, mode shapes etc.). Dimarogonas [2] points out that 
this type of online damage detection began in the early 1970s 
when utility companies started looking at developing ways of 
identifying defects in rotating shafts while machinery was in 
use. To date, this is the most mature application of SHM in 
terms of being successful.  

Vibration-based damage detection and health monitoring 
is an area of increased research interest in recent times [3–7]. 
The methods typically rely on the simple idea that damage 
arising in a structure will lead to changes in the structural 
stiffness at various locations, i.e. crack formation in a bridge 
beam leads to a local loss of bending stiffness. Since the 
modal properties of a dynamic system are inherently linked to 
its stiffness (and mass), damage will lead to changes in these 
properties. 

Foundation scour is the term given to describe the 
process of soil erosion that can occur around bridge 
foundations due to adverse hydraulic action [6,8]. This is a 
very serious problem that is notoriously difficult to predict 
and detect [9]. Applying SHM techniques to scour detection 
has gained significant traction in recent years [5,10–16]. A 
common conclusion among researchers in this field is that the 
lateral response of a bridge sub-structural component (piles, 
pier) is the most sensitive to scour in terms of changes in 
modal properties [5,6,10,15,16]. It is therefore of interest to 
investigate phenomena that can affect the lateral dynamic 
response, or more specifically, impede the ability for a sensor 
located on the structure to effectively detect this response. The 
most practical way to excite a bridge (for vibration-based 
damage detection applications) is to use ambient traffic [17]. 
In this paper, the effect of vehicle travelling velocity as it 
traverses a bridge is investigated to highlight the significant 
effect that this can have via interaction with the bridge’s own 
oscillatory motion (in the traffic direction). The type of bridge 
investigated is two-span integral bridges, due to their 
increasing popularity and prevalence. 

2 NUMERICAL MODELLING 

The issue relating to a vehicle travelling velocity across a two-
span integral bridge is investigated using numerical modelling 
approaches. A mathematical model describing the dynamic 
system (the bridge) is developed in the MATLAB 
programming environment. Various aspects of the model are 
discussed in the following sub-sections. Section 2.1 briefly 
describes different types of integral bridges and section 2.2 
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describes the mathematical approach taken to model the 
bridge, the foundation soil and the vehicle load in this paper. 

2.1 Types of Integral Bridge 

Integral bridges are becoming increasingly popular as they do 
not require a conventional expansion joint and this can reduce 
maintenance costs significantly. There are four main types of 
integral bridge [5]: (1) Frame Abutment Type: In this type of 
bridge, the abutments form a portal frame with the bridge 
deck; (2) Bank Pad Abutment Type: In this type, an integral 
support exists between the bridge deck and bank pad end 
support; (3) Flexible Abutments: In this type, the abutments 
are formed as a series of piles or columns extending to the 
bank pad. These columns are not directly in contact with the 
soil but are placed in sleeves to allow better absorption of the 
bridge deck thermal movements; (4) Semi-Integral Abutment 
Type: In this type, there is an end screen wall which is integral 
with the bridge deck, however this wall does not directly 
support the bridge beams. The deck must be supported by 
some other mechanism. In this paper, type (3), a bridge with 
flexible support abutments, is modelled. A schematic of this 
type of bridge is shown in Figure 1. 

 

Figure 1. Schematic of Integral Bridge [5] 

2.2 Mathematical Considerations 

The bridge is modelled as a dynamic system. For ease of 
modeling, the integral bridge is treated as a 2D frame system 
and grouped geometric properties are used to model group 
behavior of the piles, abutments and piers as well as the 
individual deck beams. In short, lateral (into the page) and 
torsional behavior is omitted.  

The individual bridge elements are modelled using 6-
degree-of-freedom (6-DOF) Euler-Bernoulli frame elements 
[18], the mass [Mb] and stiffness [Kb] matrices as shown in 
(1). The foundation soil is modelled using a Winkler 
philosophy which models the continuous soil layers as 
discrete, mutually independent and closely spaced springs 
[19,20]. These spring elements have individual stiffness 
matrices [Ks,i] as shown in (2) and a null mass assumption. 
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To model the bridge, knowledge of E (Young’s 

modulus), I (moment of inertia), A (cross-sectional area) for 
each element is required as well as span lengths, column 
lengths etc. Standard properties are adopted to model the 
integral bridge in this paper and these properties are available 
in [5,6]. In summary, a two-span concrete bridge with each 
span being 25 m in length is modelled. A schematic showing 
the main model dimensions is produced in Figure 2. This 
figure also shows an inset of the individual bridge element 
degrees of freedom.  

To model the foundation soil, the approach described by 
Prendergast et al. [5,11,21] is used. This approach considers 
each soil spring as a linear-elastic element (strain-independent 
ks,i) and uses small-strain soil stiffness parameters (G0, E0) to 
characterize the response. The approach was developed based 
on experimental work carried out to develop correlations 
between measurable geotechnical site data (Cone Penetration 
Tests, Multi-Channel Analysis of Surface Waves (MASW) 
[22]) and geotechnical stiffness parameters [10,23]. These 
approaches allow for soil spring stiffnesses to be specified that 
are capable of modeling a normally-consolidated loose, 
medium-dense or dense sand deposit. In this paper, the bridge 
is assumed to be founded in loose sand. 

From the individual structural matrices shown 
previously, global mass [MG] and stiffness [KG] matrices are 
assembled for the full structure according to the procedure in 
Kwon & Bang [18]. The dynamic response of the bridge 
structure can be obtained by solving the second-order matrix 
differential equation shown in (3) using a numerical 
integration scheme. In this paper, the Wilson-Θ integration 
scheme is used [24]. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 





















































































tF

tF

tF

tx

tx

tx

K

tx

tx

tx

C

tx

tx

tx

M

N

2

1

N

2

1

G

N

2

1

G

N

2

1

G


















     (3) 

 
where [MG], [CG] and [KG] are the (N x N) global mass, 
damping and stiffness matrices for the model respectively and 
N is the total number of degrees of freedom in the system. 



  tx ,   tx  and   tx  describe the displacement, 

velocity and acceleration of every degree of freedom for each 

time step in the analysis and   tF  describes the external 

forces acting on each of the degrees of freedom for a given 
time step. These external forces are determined by 
apportioning the vehicle load as forces and moments on 
adjacent bridge nodes as the load traverses the bridge, using 
Hermitian shape functions (interpolation functions). The 
damping matrix [CG] is determined assuming a Rayleigh 

damping approach [25] and a damping ratio (   21 ) of 

2% is assumed . 
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Figure 2. Model Schematic and Dimensional Data (mm) 

3 VELOCITY EFFECTS 

In this section, the interaction effects between a vehicle’s 
travelling velocity over the bridge and the resulting impact on 
the bridge’s own oscillatory motion (in the traffic direction) is 
investigated. Section 3.1 presents an analysis of the mode 
shape of the bridge pertaining to lateral sway motion and 
section 3.2 investigates the effect of a single vehicle load 
traversing the bridge. 

3.1 Global mode shape of bridge  

In order to extract the un-damped modal frequencies and 
mode shapes from the numerical model, it is necessary to 
conduct an eigenvalue analysis on the system matrix [D], 
specified as shown in (4). 

 

     G
1

G KMD                             (4) 

 
An eigenvalue analysis is conducted on [D] using MATLAB’s 
in-built eigenvalue functionality. Extracting the system 
eigenvalues and eigenvectors corresponds to the un-damped 
frequencies and mode shapes of the model.  

The fundamental mode shape of the integral bridge is a 
global lateral sway mode (in the traffic direction). For the 
given bridge properties assumed [5], the frequency of the 
fundamental mode is 1.5643 Hz with a corresponding period 
(T) of 0.639 seconds. The bridge modal shape at four 
vibration stages corresponding to 0.25 x T, 0.5 x T, 0.75 x T, 
and 1 x T is shown in Figure 3. 

0 10 20 30 40 50

-20

-10

0

0.25 x T

0 10 20 30 40 50

-20

-10

0

0.5 x T

0 10 20 30 40 50

-20

-10

0

Y
-C

oo
rd

0.75 x T

0 10 20 30 40 50

-20

-10

0

X-Coord

1 x T

 

 

(a)

(b)

(c)

(d)

 

Figure 3. Four stages of first vibration mode – global sway 

Figure 3 provides a pictorial view of the displaced shape of 
the given mode at a particular stage of vibration over one 
cycle. The time it takes for the given shape to arise and the 
direction of motion is displayed in Table 1. 

Table 1. Bridge motion – direction and arrival times. 

Fig 3 Image Ref Arrival Time (s) Motion 
Direction 

(a) 0.25 x 0.639 = 0.16s Stationary 
(will move 

right) 
(b) 0.5 x 0.639 = 0.32s Swaying to 

right 
(c) 0.75 x 0.639 = 0.4795s Stationary 

(will move 
left) 

(d) 1 x 0.639 = 0.639s Swaying to 
left 

 
Interaction effects between the bridge’s dynamic motion and 
the rate of load traversing are investigated in the next section. 



3.2 Single traversing load 

While the bridge undergoes global sway at the first natural 
frequency (see Figure 3), it first sways to the left (say) with 
span 1 deflecting downward, then sways right with span 2 
deflecting downward. If we consider a single load traversing 
the bridge while it undergoes motion at its own natural 
frequency, the rate at which the load traverses will interact 
with the amplitude of the bridge’s lateral motion. This will 
lead to differences in the magnitude of the free vibration 
response after the load (vehicle) has left the bridge. As the 
lateral bridge motion is the parameter of interest, a typical 
lateral displacement and acceleration response measured at the 
pier top due to a single load traversing is shown in Figure 4. 
For this analysis, the load of V = 100 kN traverses the bridge 
at 25 m/s and the signal contains 10 seconds of free vibration 
after the load departs.  
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Figure 4. Pier top signals for load traversing at 25 m/s with 10 
sec free vibration. (a) Lateral displacement. (b) Lateral 

acceleration. 

The signals in Figure 4 are quite typical. The individual 
peaks as the load enters and leaves the bridge are evident in 
the acceleration plot in part (b). Once the load leaves the 
bridge, a logarithmic decay is evident in the free vibration of 
both displacement and acceleration. It is postulated in this 
paper that the rate at which the load traverses the bridge will 
affect the amplitude of the response signals due to interaction 
effects. More specifically, maximum amplification of the 
response should occur if the load traverses the first span in the 
time it takes for the bridge to undergo one half of its vibration 
cycle (i.e. reaching the pier when the bridge is in condition (b) 
of Figure 3). This means that the load will be on the left span 
when it naturally deflects downwards and on the right span 
when this naturally deflects downwards due to the bridge’s 
periodic motion, thus amplifying this response. The opposite 
situation (maximum diminishing of signal) should occur if the 
load traverses span 1 in the time it takes for the bridge to 
undergo a full vibration cycle (i.e. condition (d) in Figure 3). 

This is because in this case the load while on the left span for 
the first half of the vibration cycle will still be on the left span 
during the second half, where it will act against the bridge’s 
natural motion, then it will pass onto the right span while the 
bridge is naturally pulling left for the first half of the next 
cycle, once more impeding the motion before finally working 
with the bridge for the second half of its second cycle. 

To investigate this, an analysis is conducted herein. For the 
analysis in this paper, only the free vibration signal after the 
vehicle (load) leaves the bridge is produced. This is because 
as the load is on the bridge, it is more difficult to compare 
different responses due to the different times associated with 
the load leaving the bridge making direct comparisons 
difficult. A single load traverses the bridge with a velocity (vs) 
such that it crosses the first bridge span (25 m) in a time that 
is a given ratio of the bridge’s natural period. The ratios 
chosen are 0.25, 0.5, 0.75, 1, 1.25, 1.5 1.75 and 2 times the 
bridge’s natural period (T). The results of this analysis should 
confirm that a load traversing the bridge span 1 in a time that 
equates to half of the bridge’s natural period is the most 
beneficial in terms of signal amplification (free vibration) 
while a load traversing the span 1 in a time equating to the full 
bridge period will impede the vibration the most. Establishing 
the effect at multiples of the bridge period (i.e. ratios > 1) is 
also undertaken to observe if the effect is any different and 
also to see how the system reacts with more realistic loading 
velocities. Table 2 outlines the crossing times and required 
velocities for the analysis. Note: for the analysis with ratios < 
1 for crossing velocities, the vehicle (load) speeds are 
unrealistically high.  

Table 2. Load velocities to traverse span 1. 

Span (m) T (s) Time to 
cross 

Span 1 Tv 

(s) 

Ratio 
Tv/T 

Load vs 

(m/s) 

25 0.639 0.16 0.25 156.43 
25 0.639 0.32 0.5 78.22 
25 0.639 0.4794 0.75 52.14 
25 0.639 0.639 1 39.11 
25 0.639 0.799 1.25 31.29 
25 0.639 0.959 1.5 26.07 
25 0.639 1.118 1.75 22.36 
25 0.639 1.278 2 19.56 

 
The results for the analysis are shown in Figure 5 and 6. 

Figure 5(a) shows the lateral pier top displacement responses 
in free vibration for velocity ratios ≤ 1. Figure 5(b) shows the 
lateral pier top acceleration responses in free vibration for 
velocity ratios ≤ 1. Five seconds of free vibration is analysed. 
In Figure 5 it is evident that the maximum amplification of the 
free vibration response signals occurs for a load traversing the 
first span in the time it takes the bridge to undergo 0.5 times 
its vibration cycle. It is also shown that the lowest 
amplification of the signal occurs when the load traverses the 
first span in the time it takes the bridge to undergo a full 
cycle. The other ratios give intermediate results and the results 
are the same for both displacement and acceleration. This is 
sensible (and expected) as it indicates that when the load is 
completely in phase with the bridge motion (i.e. pushing down 



on span 1 as it naturally deflects downwards due to periodic 
motion, then moving to span 2 as this naturally deflects 
downwards) we achieve maximum amplification. When the 
load acts to resist the bridge’s own oscillatory motion, we 
achieve the lowest amplification.  
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Figure 5. Lateral pier top signals for load traversing span 1 in 
specified ratio (0 to 1) of bridge period. (a) Displacement. (b) 

Acceleration. 
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Figure 6. Lateral pier top signals for load traversing span 1 in 
specified ratio (1 to 2) of bridge period. (a) Displacement. (b) 

Acceleration. 

Figure 6 shows the results for the load traversing span 1 in a 
time that is multiples of the bridge’s natural period. The 
amplitude results in this case are almost an order of magnitude 
less pronounced (to be expected as there is an element of the 
load acting against the bridge movement for every case). The 

results for Figure 6 indicate a different outcome than those in 
Figure 5. The maximum signal amplification occurs when the 
load reaches the end of span 1 in a time that is 1.75 times the 
bridge’s period as opposed to 1.5 times which might have 
been expected from the first set of results. Also the lowest 
amplification occurs for the load traversing span 1 in 1.25 
times the bridge period as opposed to 2 times, as might have 
been expected. The amplitude of the free vibration is a 
function of the bridge displacement, velocity and acceleration 
at the point when the load leaves the bridge and this can have 
a significant effect on the amplitude of the signal in free 
vibration. The results are less intuitive than when the load 
traverses in a specified ratio less than 1 of the bridge period as 
in this case it is easy to see when the load will act to impede 
the bridge motion. For ratios greater than 1, there is a trade-off 
effect in place as at some stage during the loading, the load 
will always be ‘working against’ the bridge motion to some 
degree. These results highlight the complicated interaction 
process at play in this problem and moreover show that using 
vehicle-induced vibration signals for bridge damage detection 
could potentially lead to issues with time-domain based SHM 
techniques. 

4 CONCLUSION 

Vibration-based Structural Health Monitoring is a growing 
research area. In this paper we describe the application of the 
approach to investigate reliable methods to detect damage 
arising in bridge structures using dynamic response 
measurements. For scour detection using vibration-based 
methods, the lateral response of a bridge sub-structural 
element has been shown to be most sensitive to scour. 
Obtaining dynamic signals from a bridge is mostly undertaken 
by monitoring its response to ambient traffic loading. 
Therefore, it is of interest to study potential effects that could 
arise from the interaction between the rate of loading a two-
span integral bridge and the measured response. 

In this paper, vehicle velocity effects were investigated in 
terms of how they can amplify or diminish the dynamic 
response of a bridge. The results show that the response 
magnitude in free vibration can vary significantly depending 
on how the load interacts with the bridge in terms of its own 
oscillatory motion. The results in many cases may not be 
intuitive and this study aims to highlight potential disparities 
that can arise.  

This phenomenon could become an issue for time-domain 
related SHM techniques, as a diminished signal magnitude 
could become absorbed into the noise band of a standard 
sensor for example. Signal clarity can be a serious issue for 
many of these methodologies. 
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