
 
 

Delft University of Technology

Continuous People Crowd Monitoring defined as a Regression Problem using Radar
Networks

Guendel, Ronny; Ullmann, Ingrid ; Fioranelli, Francesco ; Yarovoy, Alexander

DOI
10.23919/EuRAD58043.2023.10289622
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 20th European Radar Conference (EuRAD)

Citation (APA)
Guendel, R., Ullmann, I., Fioranelli, F., & Yarovoy, A. (2023). Continuous People Crowd Monitoring defined
as a Regression Problem using Radar Networks. In Proceedings of the 2023 20th European Radar
Conference (EuRAD) (pp. 294-297). (20th European Radar Conference, EuRAD 2023). IEEE.
https://doi.org/10.23919/EuRAD58043.2023.10289622
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/EuRAD58043.2023.10289622
https://doi.org/10.23919/EuRAD58043.2023.10289622


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Continuous People Crowd Monitoring defined as a
Regression Problem using Radar Networks

Abstract — Radar-based human activity recognition in
crowded environments using regression approaches is addressed.
Whereas previous research has focused on single activities and
subjects, the problem of continuous activity recognition involving
up to five individuals moving in arbitrary directions in an indoor
area is introduced. To treat the problem, a regression-based
approach is used, which offers innovative insights into creating
robust and accurate systems for monitoring human activities.

Novel approaches utilizing LSTM or CNN regression
techniques with Linear Regression and Support Vector Machine
regressor are compared on extracted features from radar data
through the Histogram of Oriented Gradients and Principal
Component Analysis. These approaches are rigorously evaluated
by a Leave-One-Group-Out method, with performance assessed
using common regression metrics such as the RMSE. The most
promising outcomes were observed for crowds of three and
five individuals, with respective RMSE of approximately 0.4
and 0.6. These results were primarily achieved by utilizing the
micro-Doppler (µD) Spectrogram or range-Doppler data domain.

Keywords — Radar Signal Processing, Multiple People
Monitoring, Distributed Radar, Machine Learning, Deep
Learning, Histogram of Oriented Gradients, Principal
Component Analysis, Regression, LSTM, CNN.

I. INTRODUCTION

Human Activity Recognition (HAR) has emerged as
a crucial research area, not only for enabling vulnerable
individuals to maintain an independent lifestyle, but also
for ensuring safety in self-determined living environments.
A range of technologies, from contactless sensors such as
radio frequency (RF) based products to wearable sensors in
the form of smartwatches and other devices, have shown the
capability to measure various vital metrics, including location,
pulse rate, body temperature, blood pressure, and motion
characteristics [1]. However, when it comes to monitoring
multiple individuals simultaneously, wearable sensors and
contactless video-based approaches such as cameras and lidar
sensors have limitations in terms of usability and privacy
concerns. As a result, radar has arisen as a promising
alternative due to its ability to overcome these restrictions [2].

The treatment of crowd monitoring as a discretized
classification problem has been discussed in the literature,
and Bendali-Braham et al. [3] have provided further insight
into the complexities of crowd monitoring. For instance, a
slight deviation in the classifier’s prediction may result in
significant classification accuracy errors, as illustrated in the

case where the ground truth provides 10 walking individuals,
but a classifier predicts only 9. In such cases, the accuracy
becomes 0 %, similar to the accuracy obtained if the classifier
predicts no walking. Furthermore, this issue is compounded by
the possibility of people starting or stopping walking within
the sliding window used for classification, leading to similar
errors. Therefore, to address these limitations, this study aims
to treat the problem of predicting the number of walking people
as a regression problem rather than a classification problem.
The contributions can be summarized as follows:

• A regression problem was defined to predict the number
of people walking in the scene instead of a more
conventional discretized classification problem.

• A variety of regressors including deep learning methods,
such as the Long-Short Term Memory (LSTM) network
was applied on features extracted from continuous
radar recordings, and their results were evaluated using
relevant metrics such as the Root Mean Squared Error
(RMSE). Other regressors included a Convolutional
Neural Network (CNN) operating directly on the image
domain.

• The proposed approach was validated with data collected
with a radar network of five nodes, synthetically
combining the signatures of up to five people walking
and stopping to simulate crowd movements in an indoor
area.

The rest of this paper is organized as follows. Section II
presents the data collection, the dataset, and the proposed
regression approach, with experimental results presented in
Section III. Finally, Section IV concludes the paper.

II. PROPOSED METHODOLOGY

A. Radar Data and Domains

The publicly available data [4] contains single human
subjects; hence, multiple recordings of different individuals
were coherently fused to generate synthetic data with multiple
people, such that: R̄ = 1

K

∑K
i=1 Ri, with K the maximum

number of people, R a complex range-Time (RT) sequence
and R̄ the fused result. The generated output in logarithmic
scale can be visually examined in the RT maps on the left
side of Figure 1, with five subjects performing walking and
standing in an unconstrained trajectory. Further information
on the layout of the radars is provided in [5].
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Fig. 1. The flowchart of the proposed approach shows the synthetically merged data providing the RT maps for a group of five people recorded with a radar
network consisting of five nodes. In terms of signal processing, three data domains are extracted, namely the RT–, RD–, and µD Spectrogram domain, followed
by the feature extraction chains of PCA and HOG, and the ML/DL-based regressors. Lastly, a Leave-One-Group-Out (LOGO) test is shown with its prediction
error plot (top-right corner) and the four applied evaluation metrics (bottom-right corner).

Three radar data domains of range-Time (RT)–,
range-Doppler (RD) map, and micro-Doppler (µD)
Spectrogram, are obtained using a sliding window on
continuously recorded data, as illustrated in Figure 1. As
seen, the network consists of five radar nodes, enabling
unconstrained Human Activity Recognition (HAR). A sliding
window of 1 sec with an hop-size of 0.25 sec is applied.
Furthermore, the row-wise Fast Fourier Transform (FFT) was
used over the same window to obtain the RD map.

Before using the same sliding window approach over the
µD Spectrogram, the Short-Time Fourier Transform (STFT)
was applied on the RT signals, with a window size and hop-size
of 64 and 63 samples, respectively. Finally, downsampling
to 28x28 pixels was applied on all gathered domains of five
nodes, with a few examples shown to the bottom of Figure 1.

B. Feature Extraction

On the generated images for the three data domains,
Principal Component Analysis (PCA) was applied, selecting
the five strongest principal components associated with the five
strongest singular values; this resulted in a feature vector size
of 140 samples for the given input images of 28x28 pixels.
Similarly, as a comparative method to PCA, the Histogram of
Oriented Gradients (HOG) is used with a cellsize of 8x8, a
blocksize of 2x2, 9 bins, and 50% block overlap, resulting in
a feature vector size of 144 samples.

Before forwarding the extracted features to the regression
algorithm, feature fusion was employed to combine the
information seen by all five radar nodes resulting in a total
feature vector length of 700 and 720 for PCA and HOG,
respectively.
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C. Regression Approaches
This section describes the conventional regressors and the

deep learning networks used in this research.

1) Conventional Regressors
Several regression methods were tested with the best

compromise between computational load and performance
provided by the Linear Regression (LR) and the Support
Vector Machine (SVM) regression. These two regressors are
used throughout this study on the concatenated fused features
described in Section II-B.

2) Deep Learning Regressors
Furthermore, the following two deep learning based

regressors were used. First, a modified Convolutional Neural
Network (CNN) for regression, as proposed in [6], which
operates on image tensors with the dimension 28x28x5
directly, and no feature fusion via PCA or HOG required.
Then, the Recurrent Neural Network (RNN), proposed in [7]
with its version of the Long Short-Term Memory (LSTM)
network was modified to fulfil regression problems, simply
by changing its last layers (Softmax Layer, the Classification
Layer) to a Regression Layer. Furthermore, we decreased the
network’s depth to 400 hidden units instead of the originally
proposed 1500.

The ADAM optimizer was used to train both DL networks
with 50 epochs and an initial learning rate of 10−3. It should
be noted that additional hyperparameter– and network tuning
may further improve performances, but this is left for future
work beyond the scope of this paper.

D. Evaluation Metrics
The main evaluation metric throughout this work is the

Root Mean Squared Error (RMSE), by default the most popular
metric when evaluating regression problems and defined as:
ϵRMSE=

√
1
m

∑m
i=1 (ŷi − yi)

2 [8], with ŷi, yi the prediction
and the ground truth, respectively, and m the samples in
the LOGO (Leave-One-Group-Out) test set. The results are
reported in Table 1 and in Figure 2, with additional metrics
such as the Mean Squared Error Mean (MSE), the Mean
Absolute Error (MAE), and the R2 score.

III. EXPERIMENTAL RESULTS

The reported results considered DL models, namely a CNN
and a LSTM, with the latter applied to the feature domains
extracted from PCA and HOG, respectively. Similarly, those
features were tested by the following conventional regressors,
the LR and the SVM regression model. The CNN regression
model, by nature an image processing regression model [6],
was modified for input data size 28x28x5, where five is the
number of radars in the network, and thus no prior feature
extraction is required.

An example of the attained performance can be seen in
Figure 1 (top-right corner) by comparing the Ground Truth
(blue) with the Prediction curve (brown), and the Prediction
error curve (yellow), here demonstrated for a group of five
people.

Table 1. Leave three and five people out test results, known as
Leave-One-Group-Out (LOGO), using a CNN, LSTM, and conventional
regressors applied on the µD Spectrogram, the RD map, and the RT map,
respectively. The RMSE results using a CNN are also shown in Figure 2.

Regression Group size 3 People 5 People
model Classif./Ev. Metrics RMSE RMSE

DL CNN µD spec. 0.408 0.633
DL CNN RT map 0.703 1.035
DL CNN RD map 0.421 0.606
DL HOG LSTM µD spec. 0.471 0.642
DL HOG LSTM RT map 0.496 0.645
DL HOG LSTM RD map 0.469 0.634
Conventional HOG LR µD spec. 0.453 0.653
Conventional HOG SVM µD spec. 0.452 0.636
Conventional HOG LR RT map 0.490 0.671
Conventional HOG SVM RT map 0.489 0.651
Conventional HOG LR RD map 0.466 0.635
Conventional HOG SVM RD map 0.464 0.616
DL PCA LSTM µD spec. 0.541 0.795
DL PCA LSTM RT map 0.826 1.074
DL PCA LSTM RD map 0.708 0.960
Conventional PCA LR µD spec. 0.494 0.654
Conventional PCA SVM µD spec. 0.500 0.663
Conventional PCA LR RT map 0.828 1.111
Conventional PCA SVM RT map 0.846 1.128
Conventional PCA LR RD map 0.729 0.949
Conventional PCA SVM RD map 0.742 0.958
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Fig. 2. Regression results shown for different regression models and for three–
and five-people groups in (a) and (b), respectively. The considered evaluation
metrics are the R2 score, RMSE, MSE, and MAE.
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A. Group of 3 People

The associated results for a group of three people in
the scene are shown in Figure 2a with ordered performance
declining from left to right, as well as in the third
column of Table 1. The best overall performance for
Leave-One-Group-Out (LOGO) tests was achieved using the
CNN regressor applied on the µD Spectrogram with an RMSE
of 0.4, closely followed by the CNN architecture operating on
RD maps. Fusing the µD Spectrogram and RD map was not
able to boost the results further. Then conventional regression
models, such as the LR and the SVM, follow, with an RMSE
in the order of 0.45. PCA feature extraction, applied on the
µD Spectrogram with five principal component vectors, also
achieves satisfactory results with two times 0.50 and 0.54 for
LR, SVM, and LSTM regression models, respectively.

Regardless of the chosen regression model, a drastic
performance drop can be observed using the RT map in
combination with features extracted from the PCA.

B. Group of 5 People

The results for the five people group case are shown in
Figure 2b, as well as in the fourth column of Table 1. A similar
order of regression performances for different models can be
observed, as the one in Section III-A. Higher performance is
mainly provided by the µD Spectrogram and RD domain, i.e.,
the best result with an RMSE of 0.6 for the RD map and the
CNN regressor, followed again by the LSTM, SVM, and LR
models with features extracted by the HOG. Similarly, the RT
map in conjunction with PCA provides poor results.

C. Discussion

The poor regression performance using PCA-based features
from 28x28 images of the RT map may be due to its
rotation-invariant feature extraction. For RT maps, the feature
vector may not convey information about the slope of the
dominant signature from a walking human, and the RT
domain may not provide direct crucial velocity information, as
compared to the µD Spectrogram or RD domain. Similarly, the
CNN applied to the RT map also provided poor performance,
possibly due to similar concerns. It is also notable that,
although the HOG feature descriptor is not inherently
rotation-invariant, it has shown superior performance in
detecting the slopes of people within an RT map [9]. Finally,
while such a small image size is perhaps also not favourable,
this choice was made to limit the computational runtime and
burden for the regression models.

Therefore, these initial results appear to suggest that it is
crucial to either consider domains that include the velocity
information or a suitable feature extraction method, such
as the HOG, must be used. Although the LSTM does not
compete performance-wise with the CNN, it should be noted
that the LSTM has much more freedom for hyperparameter
and network tuning, and with finer tuning, it may outperform
other models. However, it is worth noting that the LSTM and
conventional regressors (LR, SVM) operate on the HOG or

PCA feature vectors, whereas the CNN operates directly on
the sample images, making a fair comparison arguable.

IV. CONCLUSION

The paper’s aim is the estimation of crowd activities
using distributed radars addressed as a regression problem to
forecast the ratio of walking vs standing individuals in arbitrary
directions. Traditional Linear Regression (LR) and Support
Vector Machine (SVM) regressor models, as well as deep
learning regressors were used. Experimental recordings with
15 single subjects were recorded with synthetic data of groups
of three and five people created. Leave-One-Group-Out sets
evaluate the performance of the trained regressor on unknown
data. Three different radar data domains were tested, and two
classes of features were extracted from each domain. The CNN
regressor applied on the micro-Doppler Spectrogram achieved
superior performance with an RMSE of 0.4 for crowds of
three people. Similarly, for five people, the range-Doppler map
delivered an RMSE of 0.6, with the CNN operating directly
on the image domain. On the other hand, the Histogram
of Oriented Gradient features provided close performance,
with the LSTM, LR, or SVM regressor producing results of
approximately 0.45 (crowds of three) and 0.65 (crowds of five).
In contrast, PCA often fails to compete with its aforementioned
counterparts, especially on range-time data.
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