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Abstract
The Ekman spiral is described by a coupled system of differential equations originally discussed by
Walfrid Ekman (Ekman, 1905). This system is a simplified version of the NavierStokes equations. The
differential equations, as discussed in Ekman’s paper, concern the currents of the ocean. However, it
is also possible to interpret these equations so as to describe and predict the flow of wind.

The research as presented is not only inspired by Walfrid Ekman’s original paper, but also by the
master thesis from de Jong (2021). The main contribution of this thesis is to include the influence of a
constant vertical wind speed on the classical Ekman spiral. After stuyding the classical Ekman spiral,
the inclusion of a constant vertical wind speed is done stepwise. First, the vertical wind speed is
discussed without having any vertical Coriolis forces. The classical Ekman spiral and the Ekman spiral
with vertical wind, but no vertical Coriolis force, were solved exactly. Then, the vertical wind speed is
included fully, giving rise to a nonlinear coupled system of differential equations.

For the nonlinear system, an algorithm for solving it analytically using a general perturbationmethod
is proposed. Next, the hodograph of the nonlinear equations of motion including a constant vertical
wind speed, is made using Euler’s Explicit numerical method and a shooting problem is solved.
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1
Introduction

Understanding the flow of wind at great heights is crucial in yielding sustainable wind energy. Wind
energy is a popular source of green energy, which is mainly harvested using wind turbines. These
operate on the same basic principles of older windmills. There are horizontalaxis and verticalaxis
wind mills, which refers to which axis the main rotor shaft is parallel to (AWEA, 2010). The size of
the wind turbine may vary, but is crucial for how much energy can be harvested. For both types of
these windmills, a strong wind is crucial for yielding energy (Roussey, 2021). A greater height of the
turbine implies a greater energy yield, as there is stronger wind flow at greater heights. However, this
does make the turbine more expensive, as it needs to be able to withstand these strong wind flows.
Generally speaking, the size of wind turbines has increased steadily over the last years (AWEA, 2010).

As the wind turbines increase in height every year, it is important to have a thorough analysis of the
wind flows at great heights. Nowadays, the equations of motion derived by Walfrid Ekman, discussed
in his paper (Ekman, 1905), are used to determine the wind flow at great heights. A major shortcoming
in his equations of motion is the assumption that there is no vertical wind speed. This imperfection was
previously not a problem, as the vertical wind speed did not have a significant influence on the structure
of wind turbines. However, the call for a more accurate evaluation, including vertical wind speeds, has
recently started so that even more wind energy can be yielded.

A better analysis of the flow of wind at greater heights will have a big impact on wind turbines. This
new evaluation on Ekman’s equations of motion will make sure that each turbine will be constructed
both costefficiently and even more structurally sound. Hence, even more wind energy will be yielded,
which lays the groundwork of working towards a sustainable, reliable and environmentally friendly fu
ture.

The aim of the thesis is to derive and solve three different versions of Ekman’s spiral, each being dif
ferent in allowing vertical wind speed. This thesis is inspired by a previous thesis (de Jong, 2021),
specifically on the Ekman Spiral. First, the classical Ekman spiral (Ekman, 1905) will be derived and
solved. Then, a modified linear version of the classical spiral will also be solved. Lastly, the focus is put
on the classical Ekman spiral, but now considering a constant wind speed moving in vertical direction.

In this thesis, there are two objectives. The first objective is to follow through the calculations made
in the previous work by de Jong (2021) and extend it by satisfying the imposed boundary conditions
exactly. The previous thesis worked out a version of Ekman’s spiral which allowed constant vertical
wind speed but no vertically acting Coriolis force. This version is called the modified linear Ekman
spiral.

Secondly, this thesis aims to be an extension of the modifications done on the Ekman Spiral. This
is done via adding modifications to the Ekman Spiral through nonlinear variations, solving these nu
merically using the explicit Euler method. This serves to give a better understanding on the behaviour
of wind in great heights.

This report has the following structure. First, in Chapter 2 the equation of motion from the atmospheric
NavierStokes equations are derived. The atmospheric NavierStokes equations were in turn derived
in the book by Emeis (2018). The special case of solving the equations from Walfrid Ekman is done

1
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in Chapter 3. The modified Ekman Spiral, as dicussed by de Jong (2021), is discussed and solved in
Chapter 4. Thereafter, the equations of motion including a constant vertical wind speed are discussed,
an algorithm is given to solve the equations of motion analytically using a general perturbation method,
and numerically visualized in Chapter 5. Lastly, in Chapter 6 a conclusion on this thesis and several
recommendations for further research into this subject are given.



2
Equations of Motion

In this chapter, the equations of motion for Ekman’s Spiral are derived from the atmospheric Navier
Stokes equations given by Emeis (2018) together with the boundary conditions. Firstly, the coordinate
system for the NavierStokes equations is introduced in Section 2.1. Following, the equations of motion
for the Ekman Spiral are derived in Section 2.2. Several assumptions on these equations are made
in Section 2.3 so as to simplify the system. After that, final equations of motion which are discussed
in this report are shown in Section 2.4. Different boundary conditions which will have to be satisfied
together with the aforementioned equations of motion are discussed in Section 2.5. This chapter is
concluded by Section 2.6, where the values of parameters given in the NavierStokes equations and
boundary conditions are discussed.

2.1. Coordinate system for NavierStokes Equations
Before the NavierStokes equations are introduced, it is important to define the coordinate system that
is used in this thesis. The following image shows the system used.

Figure 2.1: The coordinate system used for the NavierStokes equations, indicated on a side view of the Earth.

In Figure 2.1, the arrow above the globe represent the direction of rotation. The latitude is defined as
the angle between the 𝑧 and 𝑥axis.

2.2. Atmospheric NavierStokes Equations
Wind flowing in the atmospheric boundary layer can be described using the following set of vector equa
tions. These are derived from the NavierStokes equations (Doering and Gibbon, 1995) and are given
in Equation (2.1) and Equation (2.2). Equation (2.1) describes the flow of a fluid or gas. Note that Equa
tion (2.2) represents the continuity equation, which can be physically interpreted as the conservation

3
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of volume (Parker, 2003)

𝜕u
𝜕𝑡 + u ⋅ ∇u+ 1𝜌∇p = 2Ω × u+ 𝐾𝑀∇

2u+ g, (2.1)

∇ ⋅ u = 0. (2.2)

Several variables in Equation (2.1) and Equation (2.2) will now be explained. First, the vector u has
three components: 𝑢, 𝑣 and 𝑤 which represent the wind speed in the 𝑥, 𝑦 and 𝑧 direction respectively.
Variable 𝑡 represents the time. The air density in this equation is 𝜌, and the pressure is p. Then, Ω
represents the rotation of the earth, 𝐾𝑀 represents the turbulent viscosity and g is the gravitational
constant.

The timedependency is denoted by the first fraction, 𝜕u𝜕𝑡 . As the flow might accelerate, the term
u ⋅ ∇u denotes the convective acceleration. Variable p represents the pressure. This means that 1𝜌∇p
will represent the pressure gradient force. The term 2Ω×u represent the Coriolis force. Then, the term
𝐾𝑀∇2u is the friction force on the fluid. Lastly, g captures the effect of the gravitational force.

Having clarified all the different variables in Equation (2.1) and Equation (2.2), Section 2.3 will dis
cuss the different assumptions made to simplify.

2.3. Assumptions on NavierStokes Equations
To simplify Equation (2.1) and Equation (2.2), certain assumptions are made when analysing the flow
of the wind. These assumptions are discussed in this section.

Firstly, it is assumed that the gravity is constant both with respect to time and space. In reality,
gravitation varies per location on the globe, but this variation is negligible.

Next, the wind speed is assumed to be constant in time. That is, a steady flow is considered.
Therefore the term 𝜕u

𝜕𝑡 can be omitted. In reality, the wind speed will vary in time.
Thirdly, there is assumed to be no variation in direction of the wind in 𝑥− and 𝑦−direction. In reality,

this may occur but for the sake of simplicity it is assumed that the variation is negligible.
Both the pressure and density are assumed to change according to the International Standard

Atmosphere (ISA) (AndersonJr, 1978). Both change with respect to height, conform to the ISA with
the following relation shown in Equation (2.3) and Equation (2.4)

𝜌(𝑧) = 𝜌0 (1 +
𝜆0
𝑇0
𝑧)
− 𝑔
𝑅𝜆0

−1
, (2.3)

𝑝(𝑧) = 𝑝0 (1 +
𝜆0
𝑇0
𝑧)
− 𝑔
𝑅𝜆0

. (2.4)

In the above equations, 𝑧 represents the height as denoted in Section 2.1. Parameters 𝜌0 and 𝑝0
represent the density and pressure at ground level, 𝑧 = 0, respectively. 𝜆0 is the lapse rate in the
troposphere, and 𝑇0 is the temperature at ground level. 𝑅 indicates the universal gas constant. Having
constant density and pressure means that parameter 𝐾𝑀 remains constant as well.

The air is assumed to be incompressible. This means that air is assumed to be incapable of or
resistant to compression. This might not be the case in reality.

2.4. Equations of Motion
Having implemented the aforementioned assumptions, the equations of motion in Equation (2.1) and
Equation (2.2) become Equation (2.5)

𝑤 ⋅ 𝑢𝑧 + 𝑃𝑥 = 2𝑣Ω sin𝜙 − 2𝑤Ω cos𝜙 sin𝛽 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑤 ⋅ 𝑣𝑧 + 𝑃𝑦 = 2𝑤Ω cos𝜙 cos𝛽 − 2𝑢Ω sin𝜙 + 𝐾𝑀𝑣𝑧𝑧 ,
𝑤 ⋅ 𝑤𝑧 + 𝑃𝑧 = 𝐾𝑀𝑤𝑧𝑧 − 𝑔.

(2.5)

Three new parameters are introduced in this equation. The first parameter 𝑃 simply equals 𝑝
𝜌 , the pres

sure gradient divided by the air density, whereas the second parameter 𝛽 coincides with the following
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Equation (2.6). Note that 𝛽 depends on both horizontal wind speeds in the following way:

tan𝛽 = 𝑣
𝑢 . (2.6)

The last parameter is 𝜙, which is used to denote the latitude. Equation (2.5) and Equation (2.6) will
later be used for further analysis, but first the equations for Ekman Spiral will be derived.

Note that in Equation (2.5) the crossproduct concerning the Coriolis force has been written out. This
is done due to the equations being easily simplified in future sections. The influence of the Coriolis force
on the equation of motion concerning the vertical wind speed is equal to zero, which can be shown by
using the trigonometric relations of both the sine and cosine of the arctangent.

2.5. Boundary Conditions imposed on Equations of Motion
To solve the above mentioned equations of motion, boundary conditions are required. It is assumed
that there is a boundary condition at the ground level, so 𝑧 = 𝑧0, and a boundary condition at the
top height, 𝑧 = 𝑧𝑖, which is the top height of the atmospheric boundary layer (ABL). These differ from
Walfrid Ekman’s (Ekman, 1905) original boundary conditions, as he discussed the problem on a sea
surface. Walfrid Ekman had a lower boundary at 𝑧 = −∞ and an upper boundary at 𝑧 = 0. As now the
wind flow is studied, the boundary is shifted.

At the lower level, the wind speed is assumed to be negligible. This means that the wind speed
vector will be equal to the zero vector. Hence, there will be no slip. Also, the ground level height,
indicated by parameter 𝑧0, will be set equal to 0.

At the higher level, there is assumed to be a geostrophic wind. The direction of the geostrophic
wind is perpendicular to both the pressure gradient force and the Coriolis force, chosen to be in the
direction of the 𝑥axis. Hence, the uppper boundary condition will be at height 𝑧𝑖 and have 𝑢 = �̄� and
𝑣 = 0,

2.6. Values of Parameters
This section discussed the parameters and boundary conditions imposed on the equations of motion.
The different parameters are given in Equation (2.5) and discussed in the boundary conditions imposed
in Section (2.5).

The first parameter that will be discussed is the geostrophic wind speed. The geostrophic wind
speed, �̄�, which is the value of the wind speed on the upper boundary condtions, is assumed to be ten
metres per second. The speed depends on the pressure, density, the rotation of the earth and latitude
(Hakim and Holton, 2012).

The other parameter discussed in Section 2.5 is the height of the atmospheric boundary layer. This
height, indicated with parameter 𝑧𝑖, is taken to be 1000 metres. It might vary between 1000 and 2500
metres (Emeis, 2018).

The first parameter in Equation (2.5) will be the vertical wind speed 𝑤, as it is assumed to be
constant. Generally speaking, it will not be constant. The value of the vertical wind speed is assumed
to be 0.0025 metres per second. The wind speed might also take values in between −2 and 2 metres
per second (Zhang et al., 2019).

Next, the rotational speed of the earth is discussed. Parameter Ω is assumed to be equal to 7.27 ⋅
10−5 radians per second (Elert, 2009).

The latitude of the location that is studied is also a parameter in Equation (2.5). The latitude in the
Netherlands is equal to 52 degrees (MapsOfWorld, 2017). Hence, the parameter 𝜙 is set equal to 52
degrees.

The parameter indicating the viscosity, is 𝐾𝑀. The value of this parameter varies in between 0.1 and
2000 m2 per second. It is assumed that this parameter will equal 5 m2 per second.

The last parameter is gravity contant 𝑔. It was already noted that the gravity was assumed to
be constant. The value of the gravitational constant can be from 9.78 up to 9.83 metres per s2, as
determined by the European Space Agency (ESA) (ESA, 2021), but in this report is assumed to be
equal to 9.81 metres per s2.



3
Classical Ekman Spiral

This chapter focuses on the derivation and solving of the classical Ekman Spiral. The first section of
this chapter will focus on a short derivation of Walfrid Ekman’s (Ekman, 1905) spiral equations from
the equations of motion obtained in Chapter 2. Following that, Section 3.2 will delve into the process
of solving these equations, which is divided into solving for wind speed 𝑣 and 𝑢. Section 3.3 will be
the preleminary section of this chapter, a visualization of the spiral and remarks about the properties
of the parameters which influence the spiral are given. Lastly, Section 3.4 will conclude this chapter
with a short summary and conclusion on the parameters, assumptions and boundary conditions of the
classical Ekman spiral.

3.1. Classical Ekman Spiral
For the Ekman Spiral originally discussed by Walfrid Ekman, more assumptions are made on Equa
tion (2.5). Only the pressure gradient force, the Coriolis force and the friction force are considered.
Therefore, the gravitational force is neglected. Additionally, the assumption is made that there is no
vertical wind speed. Hence, the previous discussed equations of motion, stated in Equation (2.5), can
be reduced to the following

𝑃𝑥 = 2𝑣Ω sin𝜙 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑃𝑦 = −2𝑢Ω sin𝜙 + 𝐾𝑀𝑣𝑧𝑧 .

(3.1)

Note that in Equation (3.1) there is no longer an equation for the wind speed in vertical direction. This
is due to the fact that this will transform into the following Equation (3.2).

𝑃𝑧 = 𝐾𝑀𝑤𝑧𝑧|𝑧=0 = 𝐶, (3.2)

with 𝐶 being a constant. This gives that the pressure gradient divided by the air density with derivative
taken with respect to 𝑥 or 𝑦 will be constant with height.

In Equation (3.1), the term 2Ω sin𝜙 is actually constant, which will thus be called 𝑓 from now on,
the Coriolis parameter. This constant is shown in Equation (3.3)

𝑓 = 2Ω sin𝜙. (3.3)

In the original Equation (2.5), there also is a term which contains a cosine instead of a sine in the
Coriolis parameter. This slightly modified parameter is defined in Equation (3.4). It is defined to be the
vertical component of the Coriolis force

̂𝑓 = 2Ω cos𝜙. (3.4)

The value of these parameters will be the following

𝑓 = 2 ⋅ 7.27 ⋅ 10−5 ⋅ sin(52) = 1.1 ⋅ 10−4, (3.5)

and
̂𝑓 = 2 ⋅ 7.27 ⋅ 10−5 ⋅ cos(52) = 0.9 ⋅ 10−4. (3.6)

6



3.2. Solving Classical Ekman Spiral 7

The parameters and their values used to calculate both Coriolis parameters were discussed in Section
2.6. Parameter ̂𝑓 is not used in this chapter, but will be used later in Chapter 5.

The set of equations given in Equation (3.1) require boundary conditions. These are discussed in
Section 2.5. However, the boundary conditions that Ekman imposed in his paper (Ekman, 1905), are
different from those as discussed in Section 2.5. In short, to coincide with the boundary conditions
taken in his paper, the boundary conditions are changed slightly. Both the upper and lower boundary
are shifted up by an infinite height. Thus the lower boundary will be at ground level, 𝑧 = 0. The upper
boundary will be at infinite height. There, it is assumed that there is only a constant geostrophic wind
�̄�, which is pointed in the direction of wind speed 𝑢.

Filling in the last boundary condition into Equation (3.1), gives Equation (3.7)

𝑃𝑥 = 0,
𝑃𝑦 = −𝑓�̄�.

(3.7)

As both 𝑃𝑥 and 𝑃𝑦 were constant with height, these values can directly be substituted into Equation
(3.1). Also adding the previously discussed constant 𝑓, gives Equation (3.8)

−𝑓𝑣 = 𝐾𝑀𝑢𝑧𝑧 ,
𝑓𝑢 − 𝑓�̄� = 𝐾𝑀𝑣𝑧𝑧 .

(3.8)

Having derived this coupled system of differential equations, the following section will focus on solving
them.

3.2. Solving Classical Ekman Spiral
This section focuses on solving the coupled differential equations as obtained in the previous Section
3.1. First the solution for wind speed 𝑣 will be discussed. Then, using the coupled differential equa
tions, the solution for wind speed 𝑢 will be obtained.

Equation (3.8) can be separated into two fourthorder differential equations. This is done by differ
entiating both equations with respect to height 𝑧, then substituting them into each other

−𝑓𝑣 = 𝐾2𝑀
𝑓 𝑣𝑧𝑧𝑧𝑧 ,

𝑓𝑢 − 𝑓�̄� = −𝐾
2
𝑀
𝑓 𝑢𝑧𝑧𝑧𝑧 .

(3.9)

A constant 𝜖 is introduced, having the following value:

𝜖 = 𝐾𝑀
𝑓 (3.10)

Substituting the constant 𝜖 into Equation (3.9), gives the following

−𝑣 = 𝜖2𝑣𝑧𝑧𝑧𝑧 ,
𝑢 − �̄� = 𝜖2𝑢𝑧𝑧𝑧𝑧 .

(3.11)

The first equation of Equation (3.11) can now be solved. Having 𝑣(𝑧), one can determine 𝑢(𝑧) by
merely differentiating it and substituting it into the second equation in original Equation (3.8).

The characteristic equation, by trying a solution 𝑣(𝑧) = e𝑟𝑧 with 𝑟 a constant, is the following:

𝜖2𝑟4 = −1 ⇒ (√𝜖𝑟)4 = −1 (3.12)

The last step in deriving the value of 𝑟 for the characteristic equation requires some complex function
analysis. In short, it holds true that

√𝜖𝑟 = ±
1
√2
(1 + 𝑖), or √𝜖𝑟 = ±

1
√2
(−1 + 𝑖). (3.13)
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Having the value of the complex numbers and therefore the value of 𝑟, the solution is therefore the
following sum

𝑣(𝑧) = e
𝑧
√2𝜖 (𝑑1 cos(

𝑧
√2𝜖

) + 𝑑2 sin(
𝑧
√2𝜖

)) + e−
𝑧
√2𝜖 (𝑑3 cos(

𝑧
√2𝜖

) + 𝑑4 sin(
𝑧
√2𝜖

)) . (3.14)

Note that the solution for horizontal wind speed 𝑣 still has four constants, these will be determined using
the boundary conditions in the following section.

3.2.1. Boundary Conditions imposed on Specific Wind Speed
Solving the Equation (3.14) requires boundary conditions. There are two boundary conditions, as
discussed before. For equation concerning the wind speed 𝑣, there are two boundary conditions readily
available. These were discussed in Section 3.1 and given generally in Section 2.5. At ground level,
𝑧 = 0, there is no wind speed, hence 𝑣 = 0. Also, at infinite height, 𝑧 → ∞, there is geostrophic wind,
which is not in the direction of 𝑣, so also here it will hold that 𝑣 = 0.

However, as there are four constants, also four boundary conditions are needed. The last two are
obtained by substituting the boundary conditions for wind speed 𝑢 into Equation (3.8). For the ground
speed boundary condition, the following is obtained

− �̄� = 𝜖𝑣𝑧𝑧(0). (3.15)

For the boundary conditions at infinite height, the last boundary condition will be

0 = 𝜖𝑣𝑧𝑧(𝑧) for 𝑧 → ∞ (3.16)

3.2.2. Solution for Specific Wind Speed
Now that the boundary conditions are determined, Equation (3.14) can be solved. Firstly, using the
fact that 𝑣 = 0 at 𝑧 = 0 gives 𝑑1 + 𝑑3 = 0. Through the boundary condition at 𝑧 → ∞, it follows that
𝑑1 = 0 = 𝑑2, as the solution cannot go to infinity. Therefore, it is known that also 𝑑3 = 0 will hold.
Having the values of all the constants, Equation (3.14) can be reduced to

𝑣(𝑧) = e−
𝑧
√2𝜖𝑑4 sin(

𝑧
√2𝜖

) . (3.17)

For the second boundary condition, wind speed 𝑣 must be differentiated twice with respect to the height
𝑧. Thus,

𝑣𝑧(𝑧) = −𝑑4
1
√2𝜖

e−
𝑧
√2𝜖 sin( 𝑧

√2𝜖
) + 𝑑4

1
√2𝜖

e−
𝑧
√2𝜖 cos( 𝑧

√2𝜖
) . (3.18)

When another derivative with respect to 𝑧 is taken, all terms containing a sine will drop out. Hence, the
derivative of wind speed 𝑣 twice with respect to the height will be

𝑣𝑧𝑧(𝑧) = −2𝑑4 (
1
√2𝜖

)
2
e−

𝑧
√2𝜖 cos( 𝑧

√2𝜖
) . (3.19)

Note that the constant terms in this equation can be simplified to:

− 2𝑑4 (
1
√2𝜖

)
2
= −𝑑4 (√2

1
√2𝜖

)
2
= −𝑑4 (

1
√𝜖
)
2
= −𝑑4

1
𝜖 (3.20)

Therefore, substituting Equation (3.20) into Equation (3.19) gives the total derivative of

𝑣𝑧𝑧(𝑧) = −
𝑑4
𝜖 e

− 𝑧
√2𝜖 cos( 𝑧

√2𝜖
) . (3.21)

Using the boundary condition at ground level in the above equation gives that constant 𝑑4 = �̄�. There
fore, the wind speed will be

𝑣(𝑧) = �̄�e−
𝑧
√2𝜖 sin( 𝑧

√2𝜖
) . (3.22)

And thus, substituting the value for constant 𝜖, the following is obtained

𝑣(𝑧) = �̄�e−
𝑧√𝑓
√2𝐾𝑀 sin( 𝑧√𝑓

√2𝐾𝑀
) . (3.23)
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3.2.3. Solution for Remaining Wind Speed
As mentioned before in Section 3.2, using Equation (3.8), wind speed 𝑢 can now be determined. The
second derivative of wind speed 𝑣 with respect to the height 𝑧 has already been determined in Equation
(3.21). Hence, the following is obtained:

𝑢(𝑧) − �̄� = 𝜖𝑣𝑧𝑧 = 𝜖
�̄�
𝜖 e

− 𝑧
√2𝜖 cos( 𝑧

√2𝜖
) . (3.24)

Substituting constant epsilon, the equation for wind speed 𝑢 is obtained

𝑢(𝑧) = �̄� − �̄�e−
𝑧√𝑓
√2𝐾𝑀 cos( 𝑧√𝑓

√2𝐾𝑀
) . (3.25)

3.3. Visualization of the Ekman Spiral
A hodograph is made of the wind speed 𝑣 and 𝑢, as seen in Equation (3.23) and Equation (3.25). The
hodograph can be seen in Figure 3.1 and Figure 3.2.

Figure 3.1: A hodograph of the classical Ekman Spiral with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 5.

Note that the figure takes a spirallike form, hence why it is called the Ekman spiral. There are three
parameters which determine the behaviour of the hodograph. The influence of these parameters is
discussed individually.

For the further analysis of each parameter Figure 3.2 will be used.
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Figure 3.2: A hodograph of the classical Ekman Spiral with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 5 with dots on the
graph indicating certain values for the height.

In Figure 3.2, four dots can be seen. The red dot indicates a height of ten. The green dot represents
a height of 100 metres, the purple dot a height of 1000 metres and the black dot is put at a height of
10000metres. These dots are placed at these heights to discuss the influence of the height of the ABL
for different parameter values.

The Python code used to visualize above figures and the remaining figures in this chapter can be
found in Appendix C.

3.3.1. Influence of the geostrophic wind speed
As indicated already in Figure 3.1 with the ticks on both the 𝑢 and 𝑣 axes, the geostrophic wind has a
substantial influence on the shape of the classical Ekman spiral. The following two figures both have
different values for the geostrophic wind.

Figure 3.3: A hodograph of the classical Ekman Spiral with
parameters �̄� = 6, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 5.

Figure 3.4: A hodograph of the classical Ekman Spiral with
parameters �̄� = 30, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 5.

In Figure 3.3 it can be seen that the shape of the spiral remains the same, but it is scaled by a factor 45
when comparing it to Figure 3.1. The same can be said for Figure 3.4. However, this image is scaled
by a factor three when comparing it to Figure 3.1.

Note that the position of the four dots have not changed when comparing to Figure 3.2.
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3.3.2. Influence of the Coriolis parameter
The Coriolis parameter has an influence on the speed with which the hodograph goes towards the end
point where 𝑢 is equal to the geostrophic wind speed and 𝑣 is equal to zero. The figures below each
have a different value for the Coriolis parameter as opposed to Figure 3.2.

Figure 3.5: A hodograph of the classical Ekman Spiral with
parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−3 and 𝐾𝑀 = 5.

Figure 3.6: A hodograph of the classical Ekman Spiral with
parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−5 and 𝐾𝑀 = 5.

In Figure 3.5 it can be seen that the dots have moved forward, especially the purple dot. This indi
cates that the hodograph moves to the geostrophic wind speed for a lower ABL with a bigger Coriolis
parameter. For Figure 3.6, it is the exact opposite. The dots have all moved back, meaning that the
hodograph moves towards the end point at a higher ABL height.

Also, it can be noted that the figure has not been scaled whatsoever, like previously happened when
studying the influence of the geostrophic wind.

3.3.3. Influence of the viscosity
The last parameter that influences the behaviour of the hodograph is the parameter which indicates
the viscosity of the fluid. The values of parameter 𝐾𝑀 is varied in the two figures below.

Figure 3.7: A hodograph of the classical Ekman Spiral with
parameters �̄� = 6, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 1.

Figure 3.8: A hodograph of the classical Ekman Spiral with
parameters �̄� = 30, 𝑓 = 1.1 ⋅ 10−4 and 𝐾𝑀 = 10.

A similar effect compared to the analysis of the Coriolis parameter 𝑓 can be seen when studying the
above figures. In Figure 3.7 it can be seen that the hodograph for a lower viscosity parameter value
reaches the end point for a lower ABL height, while in Figure 3.8 the opposite happens for a bigger
viscosity parameter. In Figure 3.8 especially, it can be seen that the black dot has changed position
heavily. Thus, it can again be concluded that the value of the viscosity parameter influences the height
of the ABL.

Again, no change in the scale happens when studying the influence of this parameter.
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3.4. Conclusion on Analysis of Classical Ekman Spiral
This section concludes the chapter on the classical Ekman spiral by giving a short overview of the as
sumptions, boundary conditions and different parameters.

First, the assumptions for the classical Ekman spiral are discussed. The many assumptions made,
especially the assumption that there is no vertical wind speed, impacts how realistic the outcome for
the wind flow is. The assumption that there is no gravitational force does not have a major influence
on the model.

Second, the boundary conditions discussed in Section 3.2.1 are not realistic as well. Having a
boundary at infinite height is a challenge to numerically implement to visualize the hodograph, due to
the computational power required to handle larger numbers.

Third, the several parameters discussed in Section 3.3 each play an important role in the behaviour
of the hodograph. The speed of the geostrophic wind scales the classical Ekman spiral, which can be
attributed to both solutions for wind speed 𝑣 and 𝑢, given in Equation (3.23) and (3.25) respectively,
are multiplied with this parameter. The effect of the remaining parameters, the Coriolis parameter and
the turbulent viscosity, can be discussed by discussing parameter 𝜖, which was defined in Equation
(3.10). This parameter influences the height at which the hodograph reaches the end point, a higher
𝜖 indicated a lower height for the end point and vice versa. This can be associated to the parameter
being in the exponent of the solution for wind speed 𝑣 and 𝑢.

In conclusion, the classical Ekman spiral is a simple yet effective way of studying the flow of wind.
By rewriting the boundary conditions imposed in Ekman’s original paper (Ekman, 1905), an efficient
model is created for studying the wind flow. This model is influenced by only two parameters, the
geostrophic wind speed and an 𝜖, containing the Coriolis parameter and the turbulent viscosity. Both
parameters each have a clear and distinct effect on the hodograph produced by implementing the so
lutions for wind speed 𝑣 and 𝑢.



4
Modified Linear Ekman Spiral

In this chapter, focus is put on a modified linear Ekman spiral. The modified linear Ekman spiral will
be introduced in Section 4.1 and the equations of motion will be determined. Then, for the sake of
simplicity, the equations of motion obtained in Section 4.1 will be nondimensionalized in Section 4.2.
Thereafter, the nondimensional equations of motion will be solved in Section 4.3. In Section 4.4, a
visualization of the solution posed in the previous section is given. Following that, in Section 4.5, nu
merical remarks about the visualization and solution of the modified linear Ekman spiral is given. Lastly,
in Section 4.6, a conclusion on the analysis of the modified linear Ekman spiral is given. This conclu
sion concerns the assumptions, boundary conditions, influence on the parameters and the numerical
remarks.

4.1. Modified Linear Ekman Spiral
In Ekman’s original paper (Ekman, 1905), the assumption was made that there was no vertical wind
speed, indicated by variable 𝑤. However, in reality there will be such a vertical wind speed. This will
change previously discussed equations of motion given in Equation (3.1) into the Equation (4.1).

In this equation, for the sake of linearity, the term given in Equation (3.4) is taken equal to 0. This
means that there will be no vertical component of the Coriolis force. The nonlinear case is studied in
Chapter 5.

The new equations of motion are obtained by taking Equation (2.5) and substituting the Coriolis
parameter given in Equation (3.3), discussed in Chapter 3

𝑤 ⋅ 𝑢𝑧 + 𝑃𝑥 = 𝑣𝑓 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑤 ⋅ 𝑣𝑧 + 𝑃𝑦 = −𝑢𝑓 + 𝐾𝑀𝑣𝑧𝑧 .

(4.1)

Note that there is no equation concerning the vertical wind speed. This is due to the fact that the vertical
wind speed is assumed constant, as this reduces the amount of equations in Equation (4.1) from three
to two equations. In reality this vertical wind speed might vary in height.

4.2. Nondimensionalization
This section will focus on making the equations of motion given in Equation (4.1) nondimensional.

Via the same argument given in Chapter 3, the pressure gradient divided by the air density with
derivative taken with respect to either 𝑥 or 𝑦 will remain constant with height. Therefore, values given
in Equation (3.7) will be substituted into the above Equation (4.1)

𝑤 ⋅ 𝑢𝑧 = 𝑣𝑓 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑤 ⋅ 𝑣𝑧 − 𝑓�̄� = −𝑢𝑓 + 𝐾𝑀𝑣𝑧𝑧 .

(4.2)

The above mentioned equation will now be nondimensionalized. This will be done in the following
sections.

13
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Nondimensionalization of the Height
The height is the most important variable in the equations of motion, as each derivative is taken with
respect to the height 𝑧. To nondimensionalize this variable, it is divided by the atmospheric boundary
layer (ABL) height 𝑧𝑖. The nondimensional height �̂� is given in Equation (4.3)

�̂� = 𝑧
𝑧𝑖
. (4.3)

Nondimensionalization of the Wind Speed
The components of the wind speed, 𝑢, 𝑣 and 𝑤, will be nondimensionalized by dividing them by the
geostrophic wind speed �̄�, which has been discussed in previous section. The components without
dimension can be seen in Equation (4.4)

�̂� = 𝑢
�̄� ,

�̂� = 𝑣
�̄� ,

�̂� = 𝑤
�̄� .

(4.4)

As the equations of motion contain the derivatives of these wind speeds, the derivative needs to be
determined. This is done in Equation (4.5)

d𝑢
d𝑧 =

�̄�
𝑧𝑖
d�̂�
d�̂� . (4.5)

As the equations of motion also contain the second derivative with respect to the height, this is deter
mined as well in Equation (4.6)

d2𝑢
d𝑧2 =

�̄�
𝑧2𝑖

d2�̂�
d2�̂�

. (4.6)

By the same reasoning the new derivative for wind speed 𝑣 can be determined.

Nondimensional Boundary Conditions
The boundary conditions were discussed generally in Section 2.5. As they play an important part in
solving the equations of motion, they need to be nondimensionalized as well. The boundary conditions
imposed on the system were

𝑢(0) = 0, 𝑢(𝑧𝑖) = �̄�,
𝑣(0) = 0, 𝑣(𝑧𝑖) = 0.

(4.7)

The boundary condition on ground level is made nondimensional by merely changing the dimensional
wind speeds by the nondimensional one as the value of the wind speed is equal to zero.

The boundary condition at the top of the ABL is slightly different. As the height 𝑧 is made non
dimensional by dividing it by the ABL height, the height of the new upper boundary condition is one.
Also, the value of the boundary for wind speed 𝑢 will no longer be �̄� but simply one. This is due to the
fact that wind speed 𝑢 is made nondimensional by dividing it with the value of the geostrophic wind
speed.

New nondimensional Equations of Motion
Combining the information obtained from Equation (4.3), Equation (4.4), Equation (4.5) and Equation
(4.6), the following new nondimensional equations of motion are obtained

�̄�2
𝑧𝑖
�̂��̂��̂� = 𝑓 ⋅ �̄��̂� +

�̄�
𝑧2𝑖
𝐾𝑀�̂��̂��̂� ,

�̄�2
𝑧𝑖
�̂��̂��̂� − 𝑓�̄� = −�̄��̂�𝑓 +

�̄�
𝑧2𝑖
𝐾𝑀�̂��̂��̂� .

(4.8)
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To simplify Equation (4.8), all terms are divided by 𝑓�̄�. The simplification makes solving the system
easier, as the wind speed 𝑢 and 𝑣 will no longer be multiplied by any parameters. Doing this operation
gives Equation (4.9)

�̄��̂�
𝑧𝑖𝑓
�̂��̂� = �̂� +

𝐾𝑀
𝑓𝑧2𝑖

�̂��̂��̂� ,

�̄��̂�
𝑧𝑖𝑓
�̂��̂� − 1 = −�̂� +

𝐾𝑀
𝑓𝑧2𝑖

�̂��̂��̂� .
(4.9)

Constants𝑁 and𝑊 are introduced for the sake of clarity. This will transformEquation (4.9) into Equation
(4.10).

𝑊�̂��̂� = �̂� + 𝑁�̂��̂��̂� ,
𝑊�̂��̂� − 1 = −�̂� + 𝑁�̂��̂��̂� ,

(4.10)

which means that constants 𝑁 and𝑊 will have the following values

𝑁 = 𝐾𝑀
𝑓𝑧2𝑖

, 𝑊 = �̄��̂�
𝑧𝑖𝑓
. (4.11)

Subsequently, using the values of parameters discussed in Section 2.6

𝑁 = 5
1.1 ⋅ 10−4 ⋅ 10002 ≈ 4.5 ⋅ 10

−2, 𝑊 = 10 ⋅ 0.0025
1000 ⋅ 1.1 ⋅ 10−4 ≈ 2.3 ⋅ 10

−1. (4.12)

The following section will focus on solving these equations of motion.

4.3. Solving Modified Linear Ekman Spiral
To solve the system found in Section 4.2, the focus is first put on solving for wind speed 𝑣. Thereafter,
the system is solved for wind speed 𝑢. This technique of solving the coupled system is similar to what
was done to solve the classical Ekman spiral, discussed in Section 3.2.

The coupled system of differential equations given in Equation (4.10) is rewritten, so that an ordinary
differential equation for wind speed 𝑣 is obtained. This is done via taking the second equation in the
system and rewriting it to the following

�̂�(�̂�) = 1 −𝑊�̂��̂� + 𝑁�̂��̂��̂� . (4.13)

When the derivative with respect to the height is taken of Equation (4.13) and substituted into the first
equation in the system given in Equation (4.10), an expression is obtained only containing wind speed
𝑣. This expression can be seen in Equation (4.14)

𝑊2�̂�𝑧𝑧 − 2𝑊𝑁�̂�𝑧𝑧𝑧 + 𝑁2�̂�𝑧𝑧𝑧𝑧 = −�̂�. (4.14)

As this is an ordinary differential equation, it can be solved for wind speed 𝑣. To derive the solution of
the above mentioned equation, it is assumed that the solution �̂�(�̂�) will be of the following form

�̂�(�̂�) = e𝜉�̂� . (4.15)

Substituting Equation (4.15) into Equation (4.14), will give rise to the next steps in solving the differential
equation

e𝜉�̂� (𝑊2𝜉2 − 2𝑊𝑁𝜉3 + 𝑁2𝜉4) = e𝜉�̂� ,
e𝜉�̂� (𝑊2𝜉2 − 2𝑊𝑁𝜉3 + 𝑁2𝜉4 − 1) = 0,

(𝑊𝜉 − 𝑁𝜉2)2 = −1,
𝑁𝜉2 −𝑊𝜉 = ±𝑖.

(4.16)
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In these steps, it is used that the exponential function will never equal 0. Note that the above Equation
(4.16) is a regular second degree polynomial in 𝜉

𝜉 = 𝑊
2𝑁 ±

1
2𝑁√𝑊

2 ± 4𝑁𝑖,

(𝜉 − 𝑊
2𝑁)

2
= 1
4𝑁2 (𝑊

2 ± 4𝑁𝑖) ,

= 𝑊2

4𝑁2 ±
𝑖
𝑁 .

(4.17)

Taking the square root of the right hand side of Equation (4.17) will not be done. Instead, a different
strategy is used. It is a complex number, hence it will be rewritten using the polar form

𝑧 = 𝑟(cos �̂� + 𝑖 sin �̂�) = 𝑟e𝑖�̂� . (4.18)

Here, 𝑧 = 𝑎 + 𝑏𝑖 with 𝑎, 𝑏 ∈ ℝ is a complex number, unequal to 0. Then also, 𝑟 = √𝑎2 + 𝑏2 is the
modulus of this complex number and �̂� an argument of this complex number. For the cosine and sine
it will hold that cos �̂� = 𝑎

𝑟 and sin �̂� = 𝑏
𝑟 . As the cosine and sine are both periodic in 2𝜋, there are

infinitely many options for �̂�. The principal value of this argument is defined as 𝜃.
The complex number that needs to be rewritten has values for 𝑎 and 𝑏, which are specified in (4.19)

𝑎 = 𝑊2

4𝑁2 ,

𝑏 = 1
𝑁 .

(4.19)

Note that both values are positive. Therefore, the modulus, cosine and sine can be determined. These
can be seen in Equation (4.20)

𝑟 = √𝑎2 + 𝑏2 = √( 𝑊
2

4𝑁2)
2
+ ( 1𝑁)

2
= √𝑊

4 + 16𝑁2
16𝑁4 = √𝑊4 + 16𝑁2

4𝑁2 ,

cos𝜃 = 𝑎
𝑟 =

𝑊2

4𝑁2
√𝑊4+16𝑁2

4𝑁2

= 𝑊2

√𝑊4 + 16𝑁2
,

sin𝜃 = 𝑏
𝑟 =

1
𝑁

√𝑊4+16𝑁2
4𝑁2

= 4𝑁
√𝑊4 + 16𝑁2

.

(4.20)

This information is substituted back into Equation (4.17)

(𝜉 − 𝑊
2𝑁)

2
= 𝑟e𝑖𝜃 ,

𝜉 − 𝑊
2𝑁 = ±√𝑟e±

𝑖𝜃
2 ,

𝜉 = 𝑊
2𝑁 ± √𝑟e

± 𝑖𝜃2 .

(4.21)

Solutions were assumed to be of a specific form, which can be found in Equation (4.15). A short
inspection of the exponent is made of these solutions

𝜉�̂� = ( 𝑊2𝑁 ± √𝑟e
± 𝑖𝜃2 ) �̂�,

= 𝑊
2𝑁 �̂� ± √𝑟�̂� (cos(±

𝜃
2) + 𝑖 sin(±

𝜃
2)) ,

= 𝑊
2𝑁 �̂� ± √𝑟�̂� (cos(

𝜃
2) ± 𝑖 sin(

𝜃
2)) .

(4.22)
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Now, the solution of the differential equation shown in Equation (4.14), will be a combination of these
solutions. Having all these expressions for 𝜉, they can be combined to derive an expression for the
wind speed �̂�(�̂�), which can be seen in Equation (4.23)

�̂�(�̂�) = 𝑎1e(
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂�e𝑖√𝑟�̂� sin(

𝜃
2 ) + 𝑎2e(

𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂�e−𝑖√𝑟�̂� sin(

𝜃
2 )

+ 𝑎3e(
𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂�e𝑖√𝑟�̂� sin(

𝜃
2 ) + 𝑎4e(

𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂�e−𝑖√𝑟�̂� sin(

𝜃
2 ).

(4.23)

Equation (4.23) is studied further in Equation (4.24)

�̂�(�̂�) = 𝑎1e(
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂� (cos(√𝑟�̂� sin(

𝜃
2)) + 𝑖 sin(√𝑟�̂� sin(

𝜃
2)))

+ 𝑎2e(
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂� (cos(−√𝑟�̂� sin(

𝜃
2)) + 𝑖 sin(−√𝑟�̂� sin(

𝜃
2)))

+ 𝑎3e(
𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂� (cos(√𝑟�̂� sin(

𝜃
2)) + 𝑖 sin(√𝑟�̂� sin(

𝜃
2)))

+ 𝑎4e(
𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂� (cos(−√𝑟�̂� sin(

𝜃
2)) + 𝑖 sin(−√𝑟�̂� sin(

𝜃
2))) ,

= (𝑎1 + 𝑎2)e(
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂� cos(√𝑟�̂� sin(

𝜃
2)) + (𝑎1 − 𝑎2)e

( 𝑊2𝑁+√𝑟 cos(
𝜃
2 ))�̂�𝑖 sin(√𝑟�̂� sin(

𝜃
2))

+ (𝑎3 + 𝑎4)e(
𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂� cos(√𝑟�̂�(sin(

𝜃
2)) + (𝑎3 − 𝑎4)e

( 𝑊2𝑁−√𝑟 cos(
𝜃
2 ))�̂�𝑖 sin(√𝑟�̂� sin(

𝜃
2)) .
(4.24)

Hence, in total

�̂�(�̂�) = 𝑏1e(
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ))�̂� cos(√𝑟�̂� sin(

𝜃
2)) + 𝑏2e

( 𝑊2𝑁+√𝑟 cos(
𝜃
2 ))�̂� sin(√𝑟�̂� sin(

𝜃
2))

+ 𝑏3e(
𝑊
2𝑁−√𝑟 cos(

𝜃
2 ))�̂� cos(√𝑟�̂� sin(

𝜃
2)) + 𝑏4e

( 𝑊2𝑁−√𝑟 cos(
𝜃
2 ))�̂� cos(√𝑟�̂� cos(

𝜃
2)) .

(4.25)

The above solution for wind speed 𝑣 is not manageable and will be simplified by introducing three
different constants 𝑝, 𝑘 and 𝑞. These constants are defined below

𝑝 = 𝑊
2𝑁 + √𝑟 cos(

𝜃
2) , 𝑘 = 𝑊

2𝑁 − √𝑟 cos(
𝜃
2) , 𝑞 = sin(√𝑟

𝜃
2) . (4.26)

Using the constants defined in Equation (4.26) transforms the solution for wind speed 𝑣 given in Equa
tion (4.25) into

�̂�(�̂�) = e𝑝�̂� (𝑏1 cos (𝑞�̂�) + 𝑏2 sin (𝑞�̂�)) + e𝑘�̂� (𝑏3 cos (𝑞�̂�) + 𝑏4 sin (𝑞�̂�)) . (4.27)

Note that, same as with the classical Ekman spiral, the above solution for wind speed 𝑣 has four
unknown constants which need to be determined using the boundary conditions. This will be done in
the following section.

4.3.1. Boundary conditions for Specific Wind Speed
There are four constants, and thus there should be four boundary conditions imposed on the system.
Generally, the boundary conditions were discussed in Section 2.5. These were made nondimensional
in Section 4.2 and will now be rewritten for wind speed 𝑣.

Two of the four imposed boundary conditions are not related to wind speed 𝑣, but instead to wind
speed 𝑢. Hence, these boundary conditions will be rewritten, as to be related to wind speed 𝑣. This is
done using the second equation of the coupled system of differential equations given in Equation (4.10).
In this differential equation, first the value of the boundary condition at ground level is substituted

𝑊�̂��̂�(0) − 1 = −�̂�(0) + 𝑁�̂��̂��̂�(0). (4.28)
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It directly follows that
𝑊�̂��̂�(0) − 𝑁�̂��̂��̂�(0) = 1. (4.29)

For the boundary condition at the top of the ABL height, the same steps are taken. The substitution
can be seen in Equation (4.30)

𝑊�̂��̂�(1) − 1 = −�̂�(1) + 𝑁�̂��̂��̂�(1), (4.30)

hence the next boundary conditions will be

𝑊�̂��̂�(1) = 𝑁�̂��̂��̂�(1). (4.31)

Thus, in total the four boundary conditions that are imposed on wind speed 𝑣 are the following

�̂�(0) = 0, �̂�(1) = 0,
𝑊�̂��̂�(0) − 𝑁�̂��̂��̂�(0) = 1, 𝑊�̂��̂�(1) = 𝑁�̂��̂��̂�(1).

(4.32)

If one solves the system for wind speed 𝑢, the boundary conditions can be rewritten to four conditions
which relate to wind speed 𝑢 in a similar manner.

4.3.2. Determining Constants in Solution for Wind Speed
In Section 4.3.1, four boundary conditions for wind speed 𝑣 which can be used to determine the values
of the constants of the solution given in Equation (4.27), were determined.

To use the last two boundary conditions given in Equation (4.3.1), the derivative of wind speed 𝑣
with respect to the height needs to be determined. The first derivative of the wind speed with respect
to the height is given in Equation (4.33)

�̂��̂�(�̂�) = 𝑝e𝑝�̂� (𝑏1 cos(𝑞�̂�) + 𝑏2 sin(𝑞�̂�)) + e𝑝�̂� (−𝑞𝑏1 sin(𝑞�̂�) + 𝑏2𝑞 cos(𝑞�̂�))
+ 𝑘e𝑘�̂� (𝑏3 cos(𝑞�̂�) + 𝑏4 sin(𝑞�̂�)) + e𝑘�̂� (−𝑞𝑏3 sin(𝑞�̂�) + 𝑏4 cos(𝑞�̂�)) .

(4.33)

Also, the second derivative of the wind speed with respect to the height is needed. This derivative is
given in Equation (4.34)

�̂��̂��̂�(�̂�) = 𝑝2e𝑝�̂� (𝑏1 cos(𝑞�̂�) + 𝑏2 sin(𝑞�̂�)) + 2𝑝e𝑝�̂� (−𝑞𝑏1 sin(𝑞�̂�) + 𝑏2𝑞 cos(𝑞�̂�))
+ e𝑝𝑧 (−𝑞2𝑏1 cos(𝑞�̂�) − 𝑞2𝑏2 sin(𝑞�̂�)) + 𝑘2e𝑘�̂� (𝑏3 cos(𝑞�̂�) + 𝑏4 sin(𝑞�̂�))
+ 2𝑘e𝑘�̂� (−𝑞𝑏3 sin(𝑞�̂�) + 𝑏4𝑞 cos(𝑞�̂�)) + e𝑘𝑧 (−𝑞2𝑏3 cos(𝑞�̂�) − 𝑞2𝑏4 sin(𝑞�̂�)) .

(4.34)

The first boundary condition given in Equation (4.3.1) is used. This gives the following

𝑏1 + 𝑏3 = 0, ⇒ −𝑏1 = 𝑏3. (4.35)

The other boundary conditions will also be used, but not written out. Instead, a matrix representation of
the system that needs to be solved to determine the values of the constants can be found in Appendix
A.1. The matrix is 3 × 3, as the condition posed in Equation (4.35) is already implemented into the
solution.

Solving the matrixvector equation gives the values of the constants. The exact values of these
constants are not written down in this thesis, as this will take up an entire page. Instead the code used
to compute the values of the constants can be found in Appendix A.2. Having computed the values
of the constants, the solution for wind speed 𝑢 can be determined. This will be done in the following
section.

4.3.3. Solution for Remaining Wind Speed
The solution for wind speed 𝑣 has been determined in Section 4.3, and the values of the constants in
the solution were discussed in Section 4.3.2. Now, the solution for wind speed 𝑢 can be determined.

The solution for wind speed 𝑢 is determined using Equation (4.13). The two derivatives in this
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equation can be found in Equation (4.33) and Equation (4.34). Thus,

�̂�(�̂�) = 1 −𝑊 (𝑝e𝑝�̂� (𝑏1 cos(𝑞�̂�) + 𝑏2 sin(𝑞�̂�)) + e𝑝�̂� (−𝑞𝑏1 sin(𝑞�̂�) + 𝑏2𝑞 cos(𝑞�̂�)))
−𝑊 (𝑘e𝑘�̂� (𝑏3 cos(𝑞�̂�) + 𝑏4 sin(𝑞�̂�)) + e𝑘�̂� (−𝑞𝑏3 sin(𝑞�̂�) + 𝑏4 cos(𝑞�̂�)))
+ 𝑁 (𝑝2e𝑝�̂� (𝑏1 cos(𝑞�̂�) + 𝑏2 sin(𝑞�̂�)) + 2𝑝e𝑝�̂� (−𝑞𝑏1 sin(𝑞�̂�) + 𝑏2𝑞 cos(𝑞�̂�)))
+ 𝑁 (e𝑝𝑧 (−𝑞2𝑏1 cos(𝑞�̂�) − 𝑞2𝑏2 sin(𝑞�̂�)) + 𝑘2e𝑘�̂� (𝑏3 cos(𝑞�̂�) + 𝑏4 sin(𝑞�̂�)))
+ 𝑁 (2𝑘e𝑘�̂� (−𝑞𝑏3 sin(𝑞�̂�) + 𝑏4𝑞 cos(𝑞�̂�)) + e𝑘𝑧 (−𝑞2𝑏3 cos(𝑞�̂�) − 𝑞2𝑏4 sin(𝑞�̂�))) .

(4.36)

Note that both solutions for wind speeds 𝑢 and 𝑣 have changed drastically now that the modified linear
version of Ekman’s spiral is studied. In Section 4.4, both solutions are visualized.

4.4. Visualization of the Modified Linear Ekman Spiral
This section will discuss several hodographs of the solution to the modified linear Ekman spiral. It will
also compare the new spiral to the classical Ekman spiral, discussed previously in Section 3.3. Again,
the influence of different parameters are discussed.

A hodograph is again made of wind speed 𝑣 and 𝑢, given in Equation (4.27) and Equation (4.36)
respectively. The constants in these equations are discussed in Section 4.3.2. The hodograph can be
seen in Figure 4.1.

Figure 4.1: The hodograph of the modified linear Ekman spiral with parameter values 𝑁 = 4.5 ⋅ 10−2 and𝑊 = 2.3 ⋅ 10−1.

The spiral, which appeared in the hodograph of the classical Ekman spiral in Figure 3.1, is no longer
in the hodograph of the modified linear Ekman spiral. This will be discussed later, when analyzing the
influence of difference parameters on the modified linear Ekman spiral.
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Again, similar to Section 3.3, another hodograph is made with points indicating the height. However,
now that the height is nondimensionalized, the dots do not represent the same heights as before. Now
they are fractions of the ABL height. This hodograph can be seen in Figure 4.2.

Figure 4.2: A hodograph of the modified linear Ekman spiral with parameter values 𝑁 = 4.5 ⋅ 10−2 and𝑊 = 2.3 ⋅ 10−1 with dots
indicating certain heights.

The blue dot, which is just beneath the orange dot, is placed at a fraction of 1
10000 of the ABL height.

Next, the orange dot is a fraction of 1
1000 of the ABL height. The third dot, which is yellow, is placed at1

100 of the ABL height. Lastly, the grey dot is placed at
1
10 of the ABL height.

4.4.1. Comparing Modified Linear Ekman Spiral and Classical Ekman Spiral
The modified linear Ekman spiral and classical Ekman spiral can be compared when taking the vertical
wind speed in the modified version equal to 0. By dividing the classical Ekman spiral by the geostrophic
wind speed, it is scaled so that it can be compared to the modified version. The wind speeds of the
scaled version of the classical Ekman spiral are denoted by 𝑢n and 𝑣n. The two hodographs are shown
in Figure 4.3.

Figure 4.3: Hodograph of the modified linear Ekman spiral in red and hodograph of classical Ekman spiral in blue, parameters
equal to 𝑧𝑖 = 1000, �̄� = 10 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5 and �̂� = 0.
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In the above figure, the axis are indicated by the nondimensional wind speeds. The wind speed for
the classical Ekman spiral is thus also divided by the geostrophic wind speed.

A difference between the two is clearly visible. This difference can be explained via the chosen
height of the ABL. In the classical Ekman spiral, Walfrid Ekman put his boundary at an infinite height.
In reality, the height of the ABL is not infinite. To study this difference, the error between the two
hodographs is calculated. The error in wind speed 𝑢 is defined as the following

𝜀𝑢 =
105

∑
𝑖=1
|𝑢n( ̂𝑖) − �̂�( ̂𝑖)|. (4.37)

In the above equation, the parameter ̂𝑖 is defined

̂𝑖 = 𝑖
105 , (4.38)

so that values of both nondimensionalized wind speeds 𝑢 of Ekman’s spiral are calculated. By sub
tracting these from each other, the error becomes smaller when the two hodographs havemore overlap.
The error in wind speed 𝑣 is defined similarly to the error for wind speed 𝑢 given in Equation (5.56)

𝜀𝑣 =
105

∑
𝑖=1
|𝑣n( ̂𝑖) − �̂�( ̂𝑖)|. (4.39)

Here, the same definition for parameter ̂𝑖, given in Equation (5.57), is used. Note that the error does
not depend on the height at which the hodograph goes towards the endpoint.

Having defined error for both wind speeds, the error is studied for different heights of the parameter
𝑧𝑖, the height of the ABL. The values are given in Table 4.1. In this table, also the difference in values
between the current and previous ABL height is given. This difference is denoted by Δ𝜀𝑢 and Δ𝜀𝑣 for
the error in wind speed 𝑢 and 𝑣 respectively.

Table 4.1: Both errors of wind speed 𝑢 and 𝑣 for different ABL heights including the difference in errors.

𝑧𝑖 𝜀𝑢 𝜀𝑣 Δ𝜀𝑢 Δ𝜀𝑣
1000 20095.25 16524.62  
2000 10640.19 8334.83 −9455.06 −8189.79
3000 7057.56 5581.76 −3582.63 −2753.07
4000 5255.80 4197.81 −1801.76 −1383.95
5000 4174.49 3363.20 −1084.31 −834.61
6000 3453.61 2803.80 −720.88 −559.40
7000 2938.71 2401.98 −514.90 −401.82
8000 2552.53 2098.88 −386.18 −303.10
9000 2252.16 1861.75 −300.37 −247.13
10000 2011.87 1670.92 −240.29 −190.83

For a more thorough analysis of the correlation between the error and the height of the ABL, a graph
is made of the errors. This graph can be seen in Figure 4.4.
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Figure 4.4: The error of both wind speed 𝑢 and 𝑣 against the parameter 𝑧𝑖.

The Python code to create Figure 4.4 and the values in Table 4.1 can be found in Appendix B.1. The
difference in error in Table 4.1 was computed by hand.

It is clear that the error decreases when the height of the ABL increases. However, a drastic de
crease in error happens in the first 4000 metres as opposed to the last 4000 metres. This can be
attributed to parameter 𝑁 being inversely squared proportional to the parameter 𝑧𝑖.

Emeis stated in his book (Emeis, 2018) that the ABL height might be as high as 2500metres. The error
at this height will still be around 6000 for 𝜀𝑣 and 8000 for 𝜀𝑢, but still less than for an ABL height of 1000
metres. Figure 4.3 will be recreated, but with this different value of 𝑧𝑖. This can be seen in Figure 4.5.

Figure 4.5: Hodograph of modified linear Ekman spiral in red and hodograph of classical Ekman spiral in blue, paramaters equal
to 𝑧𝑖 = 2500, �̄� = 10, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5 and �̂� = 0.

From the figure above, in which the red and blue hodographs have merged, there no longer seems to
be any difference between the modified linear Ekman spiral and the classical Ekman spiral. However,
when calculating the error, it is still equal to 𝜀𝑢 = 8498.99 and 𝜀𝑣 = 6682.60.

For sake of comparison and to study the spiral, the parameter 𝑧𝑖 will from now standard be set equal
to 2500 metres.
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4.4.2. Influence of the Coriolis parameter
First, Figure 4.2 is recreated, using the different value for parameter 𝑧𝑖, as discussed in previous Section
4.4.1. In this figure, the dots remain at the same places as discussed before.

Figure 4.6: Hodograph of the modified linear Ekman spiral with dots indicating certain heights, parameter values �̄� = 10,
𝑓 = 1.1 ⋅ 10−5, 𝐾𝑀 = 5, 𝑧𝑖 = 2500 and �̂� = 0.0025.

In Figure 4.6 a clear spiral can be seen again, as opposed to Figure 4.2. The positioning of the dots,
however, is similar.

To study the effect of the Coriolis parameter, two different hodographs are made with different values
of Coriolis parameter 𝑓. The other parameters will remain the same as in Figure 4.6. The two different
hodographs can be seen below.

Figure 4.7: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−3, 𝐾𝑀 = 5, 𝑧𝑖 = 2500
and �̂� = 0.0025.

Figure 4.8: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−5, 𝐾𝑀 = 5 and �̂� =
0.0025.

In Figure 4.7 the same effect as for the classical Ekman spiral can be seen; a bigger Coriolis parameter
means that the wind speed moves towards the ABL height for a lower height. The opposite holds true
for a smaller Coriolis parameter, which can be seen in Figure 4.8.

In both Figures, there is also a difference in the spiral itself. In Figure 4.7, the spiral is shorter. In
Figure 4.8, there is no spiral at all.
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4.4.3. Influence of the turbulent viscosity
To study the effect of the turbulent viscosity parameter 𝐾𝑀, two different hodographs are made and
compared to Figure 4.6.

Figure 4.9: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 1, 𝑧𝑖 = 2500
and �̂� = 0.0025.

Figure 4.10: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 10, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 10 and �̂� =
0.0025.

The dots in both Figure 4.9 and Figure 4.10 are roughly in the same position. This is different than
what happened with the classical Ekman spiral. The spiral, however, does change. In Figure 4.9 there
is a full loop of the spiral. In Figure 4.10, there is a shorter spiral than in Figure 4.6. Also, at the end of
the spiral, an almost straight line towards the boundary point (1, 0) is made. This is discussed further
in Section 4.5.

4.4.4. Influence of the geostrophic wind speed
Again, hodographs with different values for the parameter �̄�, indicating the geostrophic wind speed,
are made and compared to Figure 4.6.

Figure 4.11: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 3, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5, 𝑧𝑖 = 2500
and �̂� = 0.0025.

Figure 4.12: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 30, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5 and �̂� =
0.0025.

Figure 4.11 seems identical to Figure 4.7, apart from the positioning of the dots. Also, the dots have
moved slightly upwards on the spiral. For Figure 4.12, the dots have moved down and there is almost
no recognizable spiral left.

The same remark, as was made in Section 4.4.4 about the end of the spiral is still appearing here.
The end of the spiral does not follow a spiral shape continuously, but the hodograph rather moves
directly towards the end point.
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4.4.5. Influence of the ABL height
The parameter 𝑧𝑖, which represents the height of the ABL, is also discussed. Different hodographs are
again created for different values of the ABL height.

Figure 4.13: Hodgraphs of the modified linear Ekman spiral with parameter values �̄� = 10, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5, �̂� = 0.0025
and 𝑧𝑖 equal to ABL for the different hodographs.

In Figure 4.13, it can be seen that the hodograph takes a different shape for different heights of the ABL.
Looking closely, the red and green hodograph overlap for the most part. Hence, it can be concluded
that there is little difference in the influence of the ABL height from 2500 metres or higher.

It should be noted that there are no dots in the above figure, due to the ABL height directly influencing
the placement of these dots. This is, because the end point of the hodograph is put at the ABL height.

4.4.6. Influence of the vertical wind speed
The influence of the vertical wind speed is also analyzed via studying the hodograph for different values
of parameter �̂�.

Figure 4.14: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 3, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5, 𝑧𝑖 = 2500
and �̂� = 0.

Figure 4.15: A hodograph of the modified linear Ekman Spiral
with parameters �̄� = 30, 𝑓 = 1.1⋅10−4,𝐾𝑀 = 5 and �̂� = 0.05.

By decreasing the vertical wind speed, the hodograph, seen in Figure 4.14 the appearance is similar
to that of the classical Ekman spiral. This coincides with what has been discussed in Section 4.4.1.
The dots have moved forward slightly. In Figure 4.15, the hodograph with a bigger vertical wind speed
can be seen. The dots have moved back and the spiral has taken another form, resembling more the
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upper half of a circle.
As the vertical wind speed is the most important parameter, it is studied even more. Hodographs

are made with even more different values of �̂�, which can be seen in Figure 4.16.

Figure 4.16: Hodograph of the modified linear Ekman spiral with parameters �̄� = 30, 𝑓 = 1.1 ⋅ 10−4, 𝐾𝑀 = 5 and �̂� varies per
hodograph ranging from 0 to 0.02.

In the above figure it can be seen that the shape of the hodograph changes drastically for different
values of the vertical wind speed. For higher wind speeds, beyond 0.005, no longer any spiral shape
can be recognized in the hodograph.

4.4.7. Exaggerating the spiral in the Modified Linear Ekman Spiral
During the process of analyzing several values for the above mentioned parameters, a certain set of
parameters amplified the spiral in the hodograph of the modified linear Ekman spiral drastically. This
can be seen in Figure 4.17.

Figure 4.17: Hodograph of modified linear Ekman spiral with parameter values 𝑁 = 4.55 ⋅10−5 and𝑊 is equal to values ranging
from 0 to 0.03.

For higher values of parameter𝑊, the spiral seems to loopmore around the end point (1, 0). Also, there
is a bigger maximum speed for both horizontal wind speeds when parameter 𝑊 increases. However,
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higher values of parameter𝑊 are not possible. This is discussed in Section 4.5.
To study the spiral in more detail, a close up of the above hodograph is made around the end point.

This can be seen below.

Figure 4.18: A close up of the hodograph of the modified linear Ekman spiral with parameter values 𝑁 = 4.55⋅10−5 and𝑊 equal
to values ranging from 0 to 0.03.

It can be seen that the hodograph spirals around the end point with values𝑊 unequal to 0.03. For this
value, the hodograph simply goes in a straight line towards the end point, which could also be seen
when discussing the influence of the vertical wind speed, geostrophic wind speed, turbulent viscosity
and Coriolis parameter.

4.5. Numerical Remarks Modified Linear Ekman Spiral
There are several important remarks to be made when visualizing the modified linear Ekman spiral
using a numerical implementation. These remarks will be discussed in this section.

First, the solution for both wind speeds depends on an exponential which does not have a negative
exponent. Hence, it will tend to large values if the exponent gets too large. This can happen when
changing parameters in the solution to study different scenarios. The following exponential influences
the wind speed

e𝑝 = e
𝑊
2𝑁+√𝑟 cos(

𝜃
2 ). (4.40)

Note that in Equation (4.40), the cosine remains between −1 and 1 and the parameter √𝑟 is of lower
order than 𝑊

2𝑁 . The value of
𝑊
2𝑁 might be very large, due to 𝑁 being small. This is why in Section 4.4.7,

the hodograph could not be plotted for higher𝑊 values.
The second remark has to do with the behaviour of the spiral towards the end point (1, 0). In some

figures, see Figure 4.10, Figure 4.12 and Figure 4.15, the spiral moves in an almost straight line at
the end. It is thought that this happens due to not enough grid points existing around the end point.
However, if one defines a grid which takes steps of order 1 ⋅ 10−9 at the last 0.05 height, Figure 4.19 is
obtained.
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Figure 4.19: Hodograph of modified linear Ekman spiral with parameter values 𝑁 = 4.55 ⋅ 10−5 and 𝑊 = 0.03, with non
equidistant grid.

In the figure above, the blue dot represents from where the gridpoints have decreased to taking a step
of 1 ⋅ 10−9. The straight line towards the end point thus does not happen due to a non optimal placed
grid. This effect could be attributed to the low ABL height. If the ABL would be placed at a greater
height, the spiral could spiral more around the end point before ending in it. However, this could not be
implemented due to the first numerical remark.

The Python code used to create the figures in this chapter, except the ones concerning the errors
between the modified linear Ekman spiral and the classical Ekman spiral, can be found in Appendix D.

4.6. Conclusion on Analysis of Modified Linear Ekman Spiral
This section will conclude on the modified linear Ekman spiral. A short overview of the assumptions,
boundary conditions, influence of different parameters and numerical remarks is given.

The assumptions made for the modified linear Ekman spiral are not major. There is assumed to
be no gravitational force and no vertical component of the Coriolis force. The first assumption will not
influence the hodograph significantly, as it is merely a constant which is subtracted in the vertical wind
direction. The assumption that there is no vertical component of the Coriolis force does influence the
solution significantly, as allowing a vertical component of the Coriolis force will make the equations of
motion, given in Equation (4.1), nonlinear.

The boundary conditions imposed on the modified linear Ekman spiral are heavily influenced by the
ABL height. These boundary conditions are more realistic than the boundary conditions imposed on
the classical Ekman spiral.

Next, the parameters of the modified linear Ekman spiral are discussed. Similar to the classical
Ekman spiral, a larger Coriolis parameter influences at which height the wind goes towards the end
point. This effect does not appear with the turbulent viscosity parameter. For a smaller geostrophic
wind speed or vertical wind speed, the hodograph also moves towards the end point for a lower height.
For a larger Coriolis parameter, vertical wind speed or ABL height, a more spirallike shape can be
seen in the hodograph. The same holds for a smaller geostrophic wind speed or turbulent viscosity
parameter.

When implementing themodified linear Ekman spiral, there are numerical remarks. The exponential
terms in the solution can become too big for a computer to handle, which influences for which param
eters the hodograph can be visualized.

In conclusion, the modified linear Ekman spiral is a realistic model for the wind flow. By non
dimensionalizing, an efficient way of relating the spiral to the ABL height is created, which creates
a valid way of imposing the boundary conditions. The assumption of no vertical Coriolis force makes
the equations of motion easily solvable, as the equations of motion remain linear. All constants can
be combined into two parameters, which have an effect on the shape and size of the hodograph. The
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major shortcoming lies in the numerical implementation, as due to an exponential term in the solution
for both wind speeds, the solution might become too large to visualize a hodograph.



5
Ekman Spiral with Vertical Wind Speed

In this chapter, focus is put on amodified nonlinear Ekman spiral. Themodified nonlinear Ekman spiral
will be introduced in Section 5.1. Then, for the sake of simplicity, the equations of motion obtained in
Section 5.1 will be nondimensionalized in Section 5.2. Thereafter, an algorithm to solve the the non
dimensional equations of motion analytically is given in Section 5.3. In Section 5.4, the numerical
scheme used in this thesis to determine the nonlinear hodograph is given, whereas in Section 5.5
the visualizations of different hodographs is given. In this section, also the influence of the different
parameteres in the solutions for the wind speeds is discussed.

5.1. Ekman Spiral with Vertical Wind Speed Ekman Spiral
As already stated before, in Ekman’s original paper (Ekman, 1905), the assumption was made that
there was no vertical wind speed. Chapter 4 allowed vertical wind speed, but no vertical Coriolis force
component. However, in reality there will be such a component. This will change previous discussed
equations of motion given in Equation (3.1) into the Equation (5.1). This equation is obtained by taking
Equation (2.5) and substituting the Coriolis parameters given in Equation (3.3) and Equation (3.4), both
discussed in Chapter 3

𝑤 ⋅ 𝑢𝑧 + 𝑃𝑥 = 𝑣𝑓 − 𝑤 ̂𝑓 sin𝛽 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑤 ⋅ 𝑣𝑧 + 𝑃𝑦 = 𝑤 ̂𝑓 cos𝛽 − 𝑢𝑓 + 𝐾𝑀𝑣𝑧𝑧 .

(5.1)

Note that there is again no equation concerning the vertical wind speed. This is due to the fact that the
vertical wind speed is assumed constant, as this reduces the amount of equations in Equation (5.1)
from three to two equations. In reality this vertical wind speed varies in height.

5.2. Nondimensionalization
This section will focus on making the equations of motion given in Equation (5.1) nondimensional.

Via the same argument given in Chapter 3, the pressure gradient divided by the air density with
derivative taken with respect to either 𝑥 or 𝑦 will remain constant with height. Therefore, values given
in Equation (3.7) will be substituted into the above Equation (5.1).

𝑤 ⋅ 𝑢𝑧 = 𝑣𝑓 − 𝑤 ̂𝑓 sin𝛽 + 𝐾𝑀𝑢𝑧𝑧 ,
𝑤 ⋅ 𝑣𝑧 − 𝑓�̄� = 𝑤 ̂𝑓 cos𝛽 − 𝑢𝑓 + 𝐾𝑀𝑣𝑧𝑧 .

(5.2)

The above mentioned equation will now be nondimensionalized. This will be done via the same steps
taken in Chapter 4. Combining the information obtained from Equation (4.3), Equation (4.4), Equation
(4.5) and Equation (4.6), the following new nondimensional equations of motion are obtained.

�̄�2
𝑧𝑖
�̂� ⋅ �̂��̂� = 𝑓 ⋅ �̄��̂� − �̂��̄� ̂𝑓 sin𝛽 + �̄�

𝑧2𝑖
𝐾𝑀�̂��̂��̂� ,

�̄�2
𝑧𝑖
�̂� ⋅ �̂��̂� − 𝑓�̄� = �̄��̂� ̂𝑓 cos𝛽 − �̄��̂�𝑓 + �̄�

𝑧2𝑖
𝐾𝑀�̂��̂��̂� .

(5.3)

30
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To simplify Equation (5.3), all terms are divided by 𝑓�̄�. This gives Equation (5.4)
�̄��̂�
𝑧𝑖𝑓

⋅ �̂��̂� = �̂� −
�̂� ̂𝑓
𝑓 sin𝛽 + 𝐾𝑀

𝑓𝑧2𝑖
�̂��̂��̂� ,

�̄��̂�
𝑧𝑖𝑓
�̂� ⋅ �̂��̂� − 1 =

�̂� ̂𝑓
𝑓 cos𝛽 − �̂� + 𝐾𝑀

𝑓𝑧2𝑖
�̂��̂��̂� .

(5.4)

Constants 𝑁,𝑊 and 𝐹 are introduced for the sake of clarity. This will transform Equation (5.4) into
Equation (5.5)

𝑊 ⋅ �̂��̂� = �̂� − 𝐹 sin𝛽 + 𝑁�̂��̂��̂� ,
𝑊 ⋅ �̂��̂� − 1 = 𝐹 cos𝛽 − �̂� + 𝑁�̂��̂��̂� ,

(5.5)

so constants 𝑁,𝑊 and 𝐹 will have the following values

𝑁 = 𝐾𝑀
𝑓𝑧2𝑖

, 𝑊 = �̄��̂�
𝑧𝑖𝑓
, 𝐹 = �̂� ̂𝑓

𝑓 . (5.6)

Now, using the values of the parameters as discussed in Section 2.6

𝑁 = 5
1.1 ⋅ 10−4 ⋅ 10002 ≈ 4.5 ⋅ 10

−2, 𝑊 = 10 ⋅ 0.0025
1000 ⋅ 1.1 ⋅ 10−4 ≈ 2.3 ⋅ 10

−1,

𝐹 = 0.0025 ⋅ 0.90 ⋅ 10−4
1.1 ⋅ 10−4 ≈ 2.0 ⋅ 10−3.

(5.7)

Also, it is known that the values for the nondimensional wind speed 𝑢 and 𝑣 are between 0 and 1. The
nondimensional height also lies in this range.

Before continuing on, the sine and cosine in the coupled system of differential equations given in
Equation 5.5 are studied. In Section 2.4 it was noted that 𝛽 was equal to the arctangent of the fraction
𝑣
𝑢 . Hence, the sine and cosine of 𝛽 will equal

sin𝛽 =
𝑣
𝑢

√1 + ( 𝑣𝑢)
2
, cos𝛽 = 1

√1 + ( 𝑣𝑢)
2

(5.8)

Next, an algorithm for solving Equation (5.5) analytically is given in Section 5.3.

5.3. Algorithm Modified Nonlinear Ekman Spiral
Due to the nonlinear property of the equations of motion, given in Equation (5.5), the system becomes
very hard to solve via the same steps taken before in Section 4.3. Therefore, a regular perturbation
method, RPM, is used.

First, the problem is generalized. Both equations in the system of equations, given in Equation
(5.5), are rewritten to the following general form

𝐿𝑣(x) = ̂𝑓𝑁𝑣(x), (5.9)
𝐿𝑢(x) = 1 + ̂𝑓𝑁𝑢(x). (5.10)

Here, the vector x is the vector consisting of components 𝑥1 and 𝑥2. The superscript, either 𝑣 or 𝑢
represents the first and second differential equation in Equation (5.5) respectively.

In Equation (5.9), 𝐿𝑣 represent the linear differential operator given by

𝐿𝑣(x) = −𝑊 ⋅ dd�̂� 𝑥1 + 𝑥2 + 𝑁
d2

d�̂�2 𝑥1. (5.11)

In the same equation, 𝑁𝑣 represents the nonlinear operator

𝑁𝑣(x) =
𝑥2
𝑥1

√1 + (𝑥2𝑥1 )
2
. (5.12)
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Next, in Equation (5.10), 𝐿𝑢 represent the linear differential operator given by

𝐿𝑢(x) = 𝑊 ⋅ dd�̂� 𝑥2 + 𝑥1 − 𝑁
d2

d�̂�2 𝑥2. (5.13)

In the same equation, 𝑁𝑢 represents the nonlinear operator

𝑁𝑢(x) = 1

√1 + (𝑥2𝑥1 )
2
. (5.14)

In the case of the Ekman spiral, the vector x will consist of wind speed �̂� and �̂�. When using a RPM,
these variables are assumed to be of the following form

�̂� = ∑
𝑛=0

�̂�𝑛 ̂𝑓𝑛

�̂� = ∑
𝑛=0

�̂�𝑛 ̂𝑓𝑛
(5.15)

Now, each order of ̂𝑓 is treated separately, starting with 𝒪(1). This will be done in Section 5.3.1. After
that, higher orders of ̂𝑓 are treated.

5.3.1. Order 𝒪(1)
In the problem of order 𝒪(1), it is assumed that wind speed 𝑢 and 𝑣 both are equal to only the first term
of the summation given in Equation (5.15). In other words, it is assumed that ̂𝑓 equals zero. So, the
horizontal wind speeds will be

�̂� = �̂�0, �̂� = �̂�0. (5.16)

Thus, vector x on which both linear and nonlinear operators act, can now be replaced with both wind
speeds given in Equation (5.16).

Solving the equations given in Equation (5.9) and Equation (5.9) only requires studying the linear
operators, as the nonlinear operators drop out due to ̂𝑓 being equal to 0. First, the linear operator with
superscript 𝑣, given in Equation (5.11), is studied

𝐿𝑣 ((�̂�
0

�̂�0)) = −𝑊�̂�
0
�̂� + �̂�0 + 𝑁�̂�0�̂��̂� . (5.17)

Next, the linear operator with superscript 𝑢 is analyzed

𝐿𝑢 ((�̂�
0

�̂�0)) = 𝑊�̂�
0
�̂� + �̂�0 − 𝑁�̂�0�̂��̂� . (5.18)

Hence, the system of differential equations that needs to be solved is the following

−𝑊�̂�0�̂� + �̂�0 + 𝑁�̂�0�̂��̂� = 0,
𝑊�̂�0�̂� + �̂�0 − 𝑁�̂�0�̂��̂� = 1.

(5.19)

The system of differential equations given in Equation (5.19) is identical to the system of differential
equations for the modified linear Ekman spiral. This system has been solved in Chapter 4. Hence, �̂�0
and �̂�0 are hereby known solutions to the above system.

5.3.2. Order 𝒪( ̂𝑓)
For the step in the perturbation method, the next order of the problem is studied. The next order means
that all terms containing 𝒪 ( ̂𝑓2)will be considered equal to 0. Therefore, the new horizontal wind speeds
that will be discussed are

�̂� = �̂�0 + ̂𝑓�̂�1, �̂� = �̂�0 + ̂𝑓�̂�1. (5.20)
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Similar steps as in Section 5.3.1 are taken, only now the nonlinear operators are studied as well. First,
both the linear and nonlinear operator with superscript 𝑣 are discussed. First, the linear operator

𝐿𝑣 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) = 𝐿

𝑣 ((�̂�
0

�̂�0)) +
̂𝑓 (−𝑊�̂�1�̂� + �̂�1 + 𝑁�̂�1�̂��̂�) . (5.21)

From Section 5.3.1 it was determined that the linear operator in the above equation which concerns
wind speeds �̂�0 and �̂�0 is equal to 0. This turns Equation (5.21) into

𝐿𝑣 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) = +

̂𝑓 (−𝑊�̂�1�̂� + �̂�1 + 𝑁�̂�1�̂��̂�) . (5.22)

Next, the nonlinear operator

𝑁𝑣 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) =

�̂�0+�̂��̂�1
�̂�0+�̂��̂�1

√1 + ( �̂�
0+�̂��̂�1
�̂�0+�̂��̂�1 )

2
. (5.23)

Now the operators with superscript 𝑢 are studied, first the linear operator

𝐿𝑢 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) = 𝐿

𝑢 ((�̂�
0

�̂�0)) +
̂𝑓 (𝑊�̂�1�̂� + �̂�1 − 𝑁�̂�1�̂��̂�) . (5.24)

A similar argument is used as before. The linear operator concerning the first wind speed term in the
summation is known. According to Section 5.3.1 it is equal to 1. This turns Equation (5.24) into

𝐿𝑢 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) = 1 +

̂𝑓 (𝑊�̂�1�̂� + �̂�1 − 𝑁�̂�1�̂��̂�) . (5.25)

Lastly, the nonlinear operator

𝑁𝑢 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) =

1

√1 + ( �̂�
0+�̂��̂�1
�̂�0+�̂��̂�1 )

2
. (5.26)

Before continuing, the nonlinear operators are discussed. First, only the nonlinear operator with
superscript 𝑣 is studied. This is due to nonlinear operator with superscript 𝑢 being a simpler form of
the fraction of the aforementioned operator. Both operators were either a sine or cosine of angle 𝛽,
which has been discussed in Section 5.2 .The sine equals

sin𝛽 = �̂�
�̂� (1 + (

�̂�
�̂� )

2
)
− 12
, (5.27)

which is just rewriting Equation (5.8). The first term is studied,

�̂�
�̂� =

�̂�0 + �̂�1 ̂𝑓
�̂�0 + �̂�1 ̂𝑓

= (�̂�0 + �̂�1 ̂𝑓) 1�̂�0 (1 +
�̂�1
�̂�0

̂𝑓)
−1
. (5.28)

Using the binomial theorem, the last term in Equation (5.28) will equal

(1 + �̂�
1

�̂�0
̂𝑓)
−1
= 1 − �̂�

1

�̂�0
̂𝑓 + (�̂�

1

�̂�0)
2
̂𝑓2 + 𝒪 ( ̂𝑓3) . (5.29)

So in total:
�̂�
�̂� =

1
�̂�0 (�̂�

0 + ̂𝑓 (�̂�1 − �̂�
1�̂�0
�̂�0 ) + 𝒪( ̂𝑓2)) (5.30)
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In the above equation, all terms of order 𝒪( ̂𝑓2) will drop out, as only the first order problem is studied.

̂𝑓 �̂��̂� =
̂𝑓 (�̂�0 + �̂�1 ̂𝑓) 1�̂�0 (1 −

�̂�1
�̂�0

̂𝑓 + (�̂�
1

�̂�0)
2
̂𝑓2 + 𝒪 ( ̂𝑓3)) = ̂𝑓 �̂�

0

�̂�0 . (5.31)

A closer look at the square root yields

̂𝑓 (1 + ( �̂��̂� )
2
)
− 12
= ̂𝑓2 (√ ̂𝑓2 (1 + (�̂��̂� )

2
))

−1

= ̂𝑓2 (√ ̂𝑓2 + ( ̂𝑓 �̂��̂� )
2
)

−1

, (5.32)

= ̂𝑓2 (√ ̂𝑓2 + ( ̂𝑓 �̂�
0

�̂�0)
2
)

−1

= ̂𝑓2 ( ̂𝑓√1 + ( �̂�
0

�̂�0)
2
)

−1

, (5.33)

= ̂𝑓 (1 + ( �̂�
0

�̂�0)
2

)
− 12
. (5.34)

Hence,

̂𝑓 sin𝛽 = ̂𝑓
�̂�0
�̂�0

√1 + ( �̂�
0

�̂�0 )
2 , (5.35)

and therefore,
̂𝑓 cos𝛽 = ̂𝑓 1

√1 + ( �̂�
0

�̂�0 )
2 . (5.36)

Thus, the nonlinear operator with superscript 𝑣 multiplied with ̂𝑓 will equal the following

̂𝑓𝑁�̂� ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) =

̂𝑓
�̂�0
�̂�0

√1 + ( �̂�
0

�̂�0 )
2 , (5.37)

and the other nonlinear operator multiplied with ̂𝑓 will equal

̂𝑓𝑁𝑢 ((
�̂�0 + ̂𝑓�̂�1
�̂�0 + ̂𝑓�̂�1)) =

̂𝑓 1

√1 + ( �̂�
0

�̂�0 )
2 . (5.38)

Equation (5.22), Equation (5.26), Equation (5.37) and Equation (5.38) are put together, which gives

̂𝑓 (−𝑊�̂�1�̂� + �̂�1 + 𝑁�̂�1�̂��̂�) = ̂𝑓
�̂�0
�̂�0

√1 + ( �̂�
0

�̂�0 )
2 ,

1 + ̂𝑓 (𝑊�̂�1�̂� + �̂�1 − 𝑁�̂�1�̂��̂�) = 1 + ̂𝑓 1

√1 + ( �̂�
0

�̂�0 )
2 .

(5.39)

The above system can be simplified to

𝑊�̂�1�̂� + �̂�1 + 𝑁�̂�1�̂��̂� = −
𝑣0
�̂�0

√1 + ( �̂�
0

�̂�0 )
2 ,

𝑊�̂�1�̂� + ̂�̂�1 − 𝑁�̂�1�̂��̂� =
1

√1 + ( �̂�
0

�̂�0 )
2 .

(5.40)
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Generally, the above system can be rewritten to

u̇(�̂�) = 𝐴u(�̂�) + F(�̂�), (5.41)

where the dot represents a derivative with respect to the nondimensional height and

u = (
�̂�1
𝜇
�̂�1
𝜈
) , (5.42)

with 𝜇 = �̂�1�̂� and 𝜈 = �̂�1�̂� . Then, 𝐴 is a matrix which contains the linear part of the system given in
Equation (5.40). Matrix 𝐴 will equal

𝐴 = 1
𝑁 (

0 𝑁 0 0
0 −𝑊 −1 0
0 0 0 𝑁
1 0 0 𝑊

) . (5.43)

Lastly, F(�̂�) indicated the nonlinear terms on the system of equations. The function depends only on
the nondimensional height, as �̂�0 and �̂�0 are known solutions which depend on �̂�. The function is
defined as

F(�̂�) = 1
𝑁

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0
𝑣0
�̂�0

√1+( �̂�
0
�̂�0 )

2

0
1

√1+( �̂�
0
�̂�0 )

2

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (5.44)

Solving the matrix vector differential equation given in Equation (5.41) is done via the method of varia
tion of parameters.

Generally speaking, the method of variation of parameters helps to find the solution of a nonhomo
geneous equation by studying the homogeneous version. In the homogeneous version of the problem,
the constants are determined which appear during the usage of the superposition principle. In the case
of Equation (5.41), the solution of the homogeneous version can be written as

uhom(�̂�) = Φ(�̂�)c, (5.45)

where Φ represents the fundamental matrix and c is a vector containing the constants belonging to
the solutions of the homogeneous problem. The next step is crucial to the method of variation of
parameters, it is assumed that the constants depend on the independent variable. In this case, this
would mean that c will depend on the nondimensional height, so

u = Φ(�̂�)c(�̂�). (5.46)

Substituting the above solution into the original nonhomogeneous Equation (5.41), gives

u̇ = Φ̇(�̂�)c(�̂�) + Φ(�̂�)ċ(�̂�) = 𝐴Φ(�̂�)c(�̂�) + F(�̂�), (5.47)

and since the fundamental matrix has the property that Φ̇(�̂�) = 𝐴Φ(�̂�), it will hold that

Φ(�̂�)ċ(�̂�) = F(�̂�). (5.48)

As the fundamental matrix consists of columns which contain linearly independent solutions at every
height, its inverse exists. Therefore,

ċ(�̂�) = Φ−1(�̂�)F(�̂�). (5.49)
The above expression is integrated between a certain height �̂�0 and �̂� to obtain

c(�̂�) = c(�̂�0) + ∫
�̂�

�̂�0
Φ−1(𝑠)F(𝑠)d𝑠. (5.50)
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Note that c(�̂�0) can be rewritten using the fundamental matrix to get

c(�̂�) = Φ−1(�̂�0)u(�̂�0) + ∫
�̂�

�̂�0
Φ−1(𝑠)F(𝑠)d𝑠. (5.51)

As the interest is in the wind speed, and not in the constants, using Equation (5.46), the following is
obtained

u = Φ(�̂�)Φ−1(�̂�0)u(�̂�0) + Φ(�̂�)∫
�̂�

�̂�0
Φ−1(𝑠)F(𝑠)d𝑠. (5.52)

It should be noted that the integral in Equation (5.52) will likely be impossible to integrate, due to the
exponential, sines and cosines in the nonlinear function F. Hence, a numerical approximation, like the
midpoint rule, of the integral should then be used to gain an expression of the analytical solution for
the wind speed.

Above expression could be worked out further, as the fundamental matrix is equal to the matrix
exponential of the matrix given in Equation (5.43). However, this expression is too big to write down to
fit on this page.

The above described algorithm can be applied to obtain the analytical solution of the Ekman spiral
containing vertical wind speed with a general perturbation method up to order 𝒪( ̂𝑓).

5.4. Numerical scheme for Ekman Spiral with Vertical Wind Speed
When not using the algorithm for the analytical solution given in Section 5.3, a numerical scheme is
used to solve Equation (5.5). The numerical method chosen for the hodograph is elaborated in this
section.

The numerical scheme chosen in this report is Euler Forward, an explicit method. To use this
method, the equations of motion are first rewritten using the following

w = (
�̂�
�̂��̂�
�̂�
�̂��̂�

) . (5.53)

In the Forward Euler method, the values for the equations of motion are computed using a straight
forward vectorvalued method given in Equation (5.54)

w𝑛+1 = w+ Δ𝑡f(�̂�𝑛 ,w𝑛). (5.54)
In the above equation, f is defined as the following function

f(�̂�𝑛 ,w𝑛) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

�̂��̂�
1
𝑁 (𝑊�̂��̂� − �̂� + 𝐹

�̂�
�̂�

√1+( �̂��̂� )
2)

�̂��̂�
1
𝑁 (𝑊�̂��̂� − 1 + �̂� − 𝐹

1

√1+( �̂��̂� )
2)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (5.55)

Thus the numerical method used to visualize the nondimensional wind speeds �̂� and �̂� has now been
determined. The Forward Euler method is chosen due to its simplicity. More difficult numerical methods
could be used, suggestions are given in Section 6.3. The shortcoming of the Forward Euler method, is
it high order of truncation error when comparing it to other numerical methods.

Also, there is a difficulty in implementing the above numerical method. In the definition of f(�̂�𝑛 ,w𝑛),
a fraction appears which divided �̂� and �̂�. As the starting point of the hodograph is (0, 0), the wind
speed at ground level, function f(�̂�𝑛 ,w𝑛) will not be defined here. It is therefore assumed that around
the starting point of the hodograph, both wind speeds behave according to the modified linear Ekman
spiral.

This area around the starting point is to be determined in the Section 5.5, which visualized the
hodograph using the method discussed in this section.
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5.5. Visualization of the Ekman Spiral with Vertical Wind Speed
This section visualizes the Ekman spiral with vertical wind speed. The visualization of the hodograph
is made with the numerical scheme discussed in Section 5.4. After that, the influence of the different
parameters will be discussed.

Due to the numerical scheme, the first step before discussing the influence of the different parame
ters on the equations of motion, is to visualize the general form of the hodograph first. This means the
base hodograph to which the hodograph with varying parameters will be compared.

As discussed previously, due to the nonlinearity the hodograph of the Ekman spiral with vertical
wind speed cannot start in the starting point (0, 0). Hence, at first the modified linear Ekman spiral is
used. The point where the Ekman vertical wind speed takes over from the modified linear Ekman spiral
is defined as the turning point. The following figure visualizes hodographs with different turning points.
This is done to select the best turning point for the hodographs.

Figure 5.1: Hodographs of the Ekman spiral with vertical wind speed each having a different starting point from 0.01 up to 0.51
where the linear solution ends and the numerical schema starts.

In Figure 5.1 the hodograph with different turning points is visualized. The different colored lines cor
respond to the value of the turning point. The exact point where the Ekman spiral with vertical wind
speed takes over from the modified linear Ekman spiral is indicated by the same colored dot.

For higher turning points, the hodograph comes closer to the required end point (1, 0). However,
this means that there is more influence of the modified linear Ekman spiral on the Ekman spiral with
vertical wind speed. This will thus give a distorted image of how the Ekman spiral with vertical wind
speed will act. Therefore, a low turning point is desirable.

To decide which turning point is used for the visualization, the start of the hodograph is studied. Up
until the first black dot, the hodograph appears to move in a linear line. The angle under which the
hodographs moves away from the starting point, is determined by the modified linear Ekman spiral. It
can be assumed that the Ekman spiral will only differ slightly from this angle, which is why the turning
point will be chosen as 0.01.

Note that the Ekman spiral with vertical wind speed does not end up in the point where it should. It
should end exactly in the point (1, 0). Therefore, there is a shooting problem. By giving minor pertur
bations in the direction of both wind speeds, the hodograph should end up in the desired end point.

Firstly, in Figure 5.1 it can be seen that the wind speed 𝑣 is farthest away from the desired point,
being at 0.3 whereas it should be at 0. Therefore, the perturbation in wind speed 𝑣 will be studied first.
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Figure 5.2: Hodographs with different perturbations in wind speed 𝑣, perturbation in 𝑢 equal to 0 and turning point 0.1.

In Figure 5.2 it can be seen that the red and green hodographs do not go towards the desired end point.
The same is true for the black line. Hence, the perturbation in wind speed 𝑣 which coincides with the
blue hodograph is chosen to solve the shooting problem.

Next, as wind speed 𝑢 is also still not at the end point, a minor perturbation parameter is also
introduced the this wind speed. This is again visualized in several hodographs, with wind speed 𝑣
chosen equal to 0.0015.

Figure 5.3: Hodographs with different perturbation in 𝑢 with the perturbation in 𝑣 equal to 0.0015 and turning point 0.1.

In Figure 5.3 it can be seen that the black hodograph with perturbation 0.001 ends up in the correct end
point. The other hodographs all end up beyond the desired end point.

Some minor alterations are done to the perturbation parameters; the perturbation in 𝑣 is put equal
to 0.00155 and 𝑢 is equal to 0.0011. For these perturbation values, the hodograph gets even closer to
the end point. The hodograph with these parameter values can be seen in the Figure 5.4.
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Figure 5.4: Hodograph of the Ekman spiral with vertical wind speed with turning point 0.1, a perturbation in 𝑢 equal to 0.0011
and perturbation is 𝑣 chosen equal to 0.00155.

Now that the different perturbations values and the turning point for the hodograph have been cho
sen, a further analysis can be done on the influence of the different parameters on the hodograph for
the Ekman spiral with vertical wind speed. Only a new parameter 𝐹, which consists of ̂𝑓, 𝑓 and �̂�, is
introduced as compared to the modified linear Ekman spiral. Therefore, the influence of these three
parameters is crucial to the behaviour of the Ekman spiral with vertical wind speed.

However, due to the simple approximation, the numerical scheme and turning point, to the non
linear problem, the shooting problem which occurs makes it unable to analyze the influence of all the
parameters. Each parameter will namely make the hodograph change in end point. As the perturba
tion parameters are chosen to make the hodograph end in the required end point, these perturbation
parameters will influence the other parameters. Therefore, the effect of the other parameters on the
hodograph cannot be studied.

The Python code used to create Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 can be found in
Appendix E.

5.5.1. Comparing Modified Linear Ekman Spiral and Ekman Spiral with Vertical
Wind Speed

The modified linear Ekman spiral and the Ekman spiral with vertical wind speed are compared in this
section. These two Ekman spirals are compared in the same way as in Section 4.4.1.

The different errors in wind speed 𝑢 and 𝑣 are similar to 𝜀𝑢 and 𝜀𝑣, only now the modified linear
Ekman spiral and the Ekman spiral with vertical wind speed. Thus, now the error in wind speed 𝑢 is
defined as

̂𝜀𝑢 =
105

∑
𝑖=1
|�̂�( ̂𝑖) − �̂�𝑐( ̂𝑖)|. (5.56)

In the above equation, the parameter ̂𝑖 is defined

̂𝑖 = 𝑖
105 , (5.57)

so that values of both nondimensionalized wind speeds 𝑢 of Ekman’s spiral are calculated at a certain
height. By subtracting these from each other, the error becomes smaller when the two hodographs
have more overlap. The error in wind speed 𝑣 is defined as

̂𝜀𝑣 =
105

∑
𝑖=1
|�̂�( ̂𝑖) − �̂�𝑐( ̂𝑖)|. (5.58)
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In the following figure, the hodographs of the two different spirals can be seen. The black dot still
represents the turning point of the Ekman spiral with a constant vertical wind speed.

Figure 5.5: Hodographs of the modified linear Ekman spiral and the Ekman spiral with constant vertical wind speed, with param
eter values as discussed previously.

It can be seen that the hodographs overlap almost everywhere. Only near the end the difference
between the two hodographs can be seen. For above hodograph, the value of the previously defined
error in wind speed 𝑢 indicated by parameter ̂𝜀𝑢 is equal to

̂𝜀𝑢 = 14337, (5.59)

the error in the other wind speed equals
̂𝜀𝑣 = 11522. (5.60)

For higher values of the ABL, the error increases rapidly for both wind speed 𝑢 and 𝑣. This can be seen
in the following figure.

Figure 5.6: The error of the wind speed 𝑢 and 𝑣 between the modified linear Ekman spiral and the Ekman spiral with a vertical
wind speed.

In Figure 5.6 the error is very large at the ABL height of a thousand metres, but increases more by in
creasing the ABL height. The error in wind speed 𝑣 especially seemingly grows exponentially, whereas
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the wind speed 𝑢 does not grow as fast. For even higher values of the ABL, the error increases even
more upwards to order 1027.

The increase in error, as opposed to the decrease in error when comparing the classical Ekman
spiral and the modified linear Ekman spiral, can be attributed to the shooting problem which occurs
when visualizing the Ekman spiral with a constant vertical wind speed. This shooting problem is solved
for an ABL height with certain perturbation parameters. Thus, when the ABL height increases but the
perturbation parameters do not change, the error will increase. The code for creating Figure 5.6 can
be seen in Appendix B.2.

5.6. Conclusion on Analysis of Ekman Spiral with Vertical Wind
Speed

This section will conclude on the Ekman spiral with constant vertical wind speed. A short overview of
the assumptions, boundary conditions, analytic algorithm and numerical scheme are discussed. For
reasons mentioned in Section 5.5, the influence of the different parameters is not discussed as this
was not studied.

Compared to the previously discussed version of the Ekman spiral, the only changed assumption
is the one discussing the vertical Coriolis parameter. It was assumed that this parameter was equal to
zero, when discussing the modified linear Ekman spiral. However, the Ekman spiral with vertical wind
speed no longer has this assumption.

There is no change in the boundary conditions compared to themodified linear Ekman spiral. There
fore, there are no other remarks about the boundary conditions when discussing the Ekman spiral with
vertical wind speed.

The hodograph of the Ekman spiral with a constant vertical wind speed can be visualized using
either the algorithm discussed previously in Section 5.3 or the numerical scheme discussed in Section
5.54. The analytic algorithm consists of using a RPM for solving the equations of motion, in which a
difficulty lies in the nonlinear part. The algorithm has been worked out up to order 𝒪 ( ̂𝑓).

The numerical scheme used to visualize the hodograph of the Ekman spiral with a vertical wind
speed is the Euler explicit method. Due to the nonlinearity of the equations of motion for this Ekman
spiral, there is a shooting problem. The hodograph is shot away from the starting point (0, 0) and differ
ent perturbation parameters are chosen so that the hodograph ends up in the desired end point (1, 0).
Also, a turning point is introduced, as there will otherwise be a division by 0.

In conclusion, the Ekman spiral with a constant vertical wind speed is in theory an even more re
alistic model for studying the wind flow when comparing it to the modified linear Ekman spiral. Due to
the nonlinearity in the equations of motion, this problem is much harder to solve than the other spirals
discussed in this thesis. All the different parameters in the equations of motion can be reduced to three
parameters in total, two of which already appeared in the modified linear Ekman spiral. The shortcom
ing of this spiral lies in the numerical scheme used. Due to the shooting problem, the influence of the
parameters can not be discussed.



6
Conclusions and Recommendations

In this chapter, a short summary of the thesis is given. In Section 6.1 this summary is given. Next, as
there is still work to be done on improving the Ekman spiral, several recommendations for future work
are given in the sections that follow the first section; in Section 6.2 the possibility for an analytical solu
tion of the Ekman spiral with vertical wind speed is discussed, in Section 6.3 other numerical methods
to visualize the Ekman spiral with vertical wind speed are recommended. In Section 6.4 the boundary
conditions imposed on the Ekman spiral are discussed, together with the possibility to change them and
lastly, in Section 6.5 the assumptions that were made in this report are discussed. Also, the possibility
to change these assumptions or even disregard some of these assumptions are reviewed.

6.1. Summary
This report aimed to extend on a previous thesis (de Jong, 2021) and study the Ekman spiral with a
constant vertical wind speed. The previous thesis discussed a modified version of the Ekman spiral
which also allowed constant vertical wind speed, but no vertical Coriolis component.

The previous thesis has been extended so that now the modified linear Ekman spiral does coincide
exactly with the boundary conditions. The hodograph produced by the wind speeds of this Ekman
spiral varies heavily per chosen parameters. Also, there are numerical shortcomings to visualizing the
hodograph due to exponents in the solution for wind speeds. These shortcomings occur when the
vertical wind speed increases or the ABL height decreases beyond a certain threshold value.

Next, the Ekman spiral with a constant vertical wind speed was studied. Due to the nonlinearity,
a numerical scheme was used to visualize the hodograph. An algorithm for the analytical approach
is given, but not implemented due to the time limit on this thesis. This algorithm is based on a RPM
and worked out towards order 𝒪 ( ̂𝑓). To solve for this order, a varation of parameters method is used,
where likely a numerical integration method should be used to work out the integral which appears.

The numerical scheme used for this version of the Ekman spiral, gave rise to a shooting problem
when visualizing the Ekman spiral. With a chosen turning point, and different perturbations in the
solution for the wind speeds, the shooting problem has been resolved and a visualization has been
produced.

6.2. Analytical solution Ekman spiral with Vertical Wind Speed
The analytical solution of the Ekman spiral with a constant vertical wind speed is a crucial aspect which
should be studied in further research. The algorithm that has been discussed in Section 5.3, should
definitely be implemented to visualize the hodograph of this Ekman spiral.

Further research should decide on which numerical integration method will be used to solve the
integrals in the RPM. The numerical integration method should be used, so that the error made is
as low as possible. One should also study the possibility of solving this integral analytically, but it is
expected that this will not be possible.

Also, the influence of the different parameters should be studied once a hodograph of the Ekman
spiral with a constant vertical wind speed has been visualized. Especially the parameter ̂𝑓 is of interest.
When the vertical Coriolis parameter increases, so will the influence of the nonlinear term on the
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equations of motion. When the vertical Coriolis parameter decreases, the Ekman spiral with vertical
wind speed will behave as the modified linear Ekman spiral.

6.3. Numerical methods for Hodograph Ekman Spiral with Vertical
Wind Speed

A different numerical method could be used to visualize the hodograph for the Ekman spiral with vertical
wind speed. Explicit methods are highly recommended, due to the nonlinear term in the equations of
motion. Using a different numerical method increases the order of the local truncation error. Several
methods, with their truncation error are proposed in Table 6.1 below.

Table 6.1: Several explicit numerical methods with their amplification factor, stability conditions and truncation error.

Method Amplification factor Stability condition Truncation error
Explicit Euler 1 + 𝜆Δ𝑡 Δ𝑡 ≤ − 2

𝜆 𝒪 (Δ𝑡)
Modified Euler 1 + 𝜆Δ𝑡 + 1

2 (𝜆Δ𝑡)
2 Δ𝑡 ≤ − 2

𝜆 𝒪 ((Δ𝑡)2)
RungeKutta4 1 + 𝜆Δ𝑡 + 1

2 (𝜆Δ𝑡)
2 + 1

6 (𝜆Δ𝑡)
3 + 1

24 (𝜆Δ𝑡)
4 Δ𝑡 ≤ −2.8𝜆 𝒪 ((Δ𝑡)4)

In Table 6.1, it can clearly be seen that Explicit Euler’s method has a higher truncation error when
compared to the other explicit methods. Hence, it is recommended that further research takes this into
account by implementing the RungeKutta4 method for the visualization. This would decrease the
truncation error and thus give a more accurate visualization of the hodograph of the Ekman spiral with
vertical wind speed.

To solve the shooting problemwhich occurred when visualizing the Ekman spiral with a constant vertical
wind speed, another method then used in this report could be used. There are two different methods
which will be discussed.

Now, the hodograph is shot away from the starting point (0, 0) with also adding different perturba
tions in both horizontal wind speeds. These perturbations were chosen to make the hodograph end
up in the correct end point (1, 0). Also, currently a turning point is used, as otherwise a division by 0
happens in the nonlinear part of the equations of motion.

Another method to solve the shooting problem, is to make the hodograph shoot away from the end
point. In this point, there will be no problem with the nonlinear term in the equations of motion of the
Ekman spiral with a constant vertical wind speed, so no turning point at the start is required. At the
starting point, there still is a problem with a division by 0. Therefore, still a turning point is required at
the end of the hodograph, as well as some minor perturbations in both horizontal wind speeds.

One could also make the hodograph shoot away from both the starting point and the end point.
From the starting point, a turning point is still required. However, now perturbations can be modified in
four parameters. Two for each hodograph which is shot away from a point.

Further research could delve into one or multiple of these options of different methods for solving the
shooting problem which occurs when numerically visualizing the Ekman spiral with a constant vertical
wind speed.

6.4. Boundary conditions of the Ekman spiral
The boundary conditions which are currently imposed on the Ekman spiral involve the height of the
ABL. The height of the ABL has a major influence on the behaviour of the hodograph, but the specific
height for the ABL is not known. Therefore, the boundary conditions could be changed so that the ABL
has less of a major role.

The suggested way to implement the boundary conditions in further research is to define a beam
in ℝ3. The boundary conditions should be imposed on the boundary of this beam. Currently, only
boundary conditions are imposed on wind speed 𝑢 and 𝑣. However, when defining a beam, boundary
conditions can also be imposed on the vertical wind speed 𝑤. The exact behaviour of the wind can be
studied within the beam when using this construction.

Also, using the beam method, one could try to use a separation of variables method if one takes
the vertical wind speed to be small. Using the separation of variables method, the process of solving
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the equations of motion for the wind speed should be a more straight forward process.

6.5. Discussion on Assumptions
There were several assumptions made on the equations of motion originally given in Chapter 2 and on
the vertical wind speed in Chapter 5. Also, several assumptions were made on the parameter values
in Section 2.6. Some of these assumptions can be changed of even disregarded without drastically
altering the solution method. However, there are assumptions which do significantly change the way
to obtain a solution of the equations of motion if they are reversed.

Assumptions which can be reversed with little to no change to the solution method are discussed
first. The first easily reversible assumption is about the gravitational constant. This constant can be
allowed to vary with the latitude of the earth. This will not change the solution if the vertical wind speed
remains constant. Having a constant vertical wind speed makes sure that the equation concerning the
vertical wind speed in the equations of motion is still of no importance to the solution of the horizontal
wind speeds, as each vertical wind speed term where a derivative is taken with respect to the height
drops out.

Another assumption that could be reversed is the assumption that the geostrophic wind speed
does not depend on height. If the geostrophic wind is assumed to be a linear function dependent on
the height, generally �̄�(�̂�) = 𝑎0 + 𝑎1�̂�, the nondimensionalization is adjusted by the constant 𝑎1. The
boundary conditions remain the same.

Assumptions which are harder to reverse are those concerning the wind speeds in the equation of
motion. There are two major assumptions which are shortly discussed.

The assumption that there is a steady flow could be partially disregarded. A steady flow which is
for example periodic, could be implemented as well. This will add a term on all equations of motion
which varies in a known way in time. If the wind speed does not vary in a known way with time, another
independent variable is introduced into the equations of motion. This will make the equations even
harder to solve.

Allowing a non constant vertical wind speed makes the equations of motion have three equations.
This will make the hodograph for the different wind speeds threedimensional. The equation concerning
the vertical wind speed is not likely to pose problems for solving for the vertical wind speed. However,
due to the nonlinearity that exists in the other equations in the system, a numerical schema might still
be preferable.
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A
Determining Constants Modified Linear

Ekman Spiral

A.1. Matrix Representation Modified Linear Ekman Spiral
The following system is studied

𝐴b = x, (A.1)

where

𝐴 = (
e𝑝 cos(𝑞) − e𝑘 cos(𝑞) e𝑝 sin(𝑞) e𝑘 sin(𝑞)
𝑊(𝑝 − 𝑘) − 𝑁 (𝑝2 − 𝑘2) 𝑊𝑞 − 2𝑁𝑝𝑞 𝑊𝑞 − 2𝑁𝑘𝑞

𝑎3,1 𝑎2,3 𝑎3,3
) , (A.2)

with

𝑎3,1 = 𝑊 (e𝑝 (𝑝 cos(𝑞) − 𝑞 sin(𝑞)) + e𝑘 (𝑞 sin(𝑞) − 𝑘 cos(𝑞)))
− 𝑁 (e𝑝 (cos(𝑞) (𝑝2 − 𝑞2) − 2𝑝𝑞 sin(𝑞)) − e𝑘 (cos(𝑞) (𝑘2 − 𝑞2) − 2𝑘𝑞 sin(𝑞))) ,

(A.3)

also
𝑎2,3 = 𝑊e𝑝 (𝑝 sin(𝑞) + 𝑞 cos(𝑞)) − 𝑁e𝑝 (sin(𝑞) (𝑝2 − 𝑞2) + 2𝑝𝑞 cos(𝑞)) , (A.4)

and
𝑎3,3 = 𝑊e𝑘 (𝑘 sin(𝑞) + 𝑞 cos(𝑞)) − 𝑁e𝑘 (sin(𝑞) (𝑘2 − 𝑞2) + 2𝑘𝑞 cos(𝑞)) . (A.5)

The vector b consists of the three remaining constants, see Equation (A.6)

b = (
𝑏1
𝑏2
𝑏4
) . (A.6)

Remaining vector x consists of the three values on the boundary

x = (
0
1
0
) . (A.7)
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A.2. Python Code implementation determining constants
impor t numpy as np

def constantebepa l ing (N,W) :
a = (W**2) / ( 4 * (N**2) )
b = 1/N
r = np . sq r t ( np . sq r t ( ( a**2) +(b**2) ) )
ph i = np . sq r t ( ( 1+ (W**2) / ( 4 * (N**2) * ( r **2) ) ) / 2 )
the ta = np . sq r t ( (1 −(W**2) / ( 4 * (N**2) * ( r **2) ) ) / 2 )
p = W/ ( 2 *N)+ r * phi
q = r * t he ta
k = W/ ( 2 *N)− r * phi

A = np . ar ray ( [ [ np . exp ( p ) *np . cos ( q )−np . exp ( k ) *np . cos ( q ) , np . exp ( p ) *np .
↪ s in ( q ) , np . exp ( k ) *np . s in ( q ) ] , [W* ( p−k )−N* ( ( p**2) −(k **2) ) , W*q−2*N
↪ *p*q , W*q−2*N*k*q ] , [W* ( np . exp ( p ) * ( p*np . cos ( q )−q*np . s in ( q ) ) − np .
↪ exp ( k ) * ( k*np . cos ( q )−q*np . s in ( q ) ) ) − N* ( np . exp ( p ) * ( np . cos ( q ) * ( ( p
↪ **2) −(q**2) ) −2*p*q*np . s in ( q ) ) −np . exp ( k ) * ( np . cos ( q ) * ( ( k **2) −(q
↪ **2) ) −2*k*q*np . s in ( q ) ) ) , W*np . exp ( p ) * ( p*np . s in ( q )+q*np . cos ( q ) ) −
↪ N*np . exp ( p ) * ( np . s in ( q ) * ( ( p**2) −(q**2) ) +2*p*q*np . cos ( q ) ) , W*np .
↪ exp ( k ) * ( k*np . s in ( q )+q*np . cos ( q ) ) − N*np . exp ( k ) * ( np . s in ( q ) * ( ( k
↪ **2) −(q**2) ) +2*k*q*np . cos ( q ) ) ] ] )

B = np . ar ray ( [ 0 , 1 , 0 ] )

Bcon = np . l i n a l g . so lve (A, B)

re t u rn Bcon



B
Determining error between wind speeds

B.1. Python code for graph of errors in wind speeds classical and
modified linear

impor t ma t p l o t l i b . pyp lo t as p l t
from numpy impor t s in , cos , exp , sqr t , l inspace , array , append
from bepal ingconstanten impor t *
z = l inspace (0 , 100000 , 100000)
zhat = l inspace (0 , 1 , 100000)

s teps ize = 50
maxi = 9000 / s teps ize

t o t e r r u = ar ray ( [ ] )
t o t e r r v = ar ray ( [ ] )
e r r _ i = ar ray ( [ ] )

f o r i i n range (0 , i n t ( maxi ) + 1) :
er r_u = ar ray ( [ ] )
e r r_v = ar ray ( [ ] )
ABL = 1000 + s teps ize * i
ubar = 10
f = 1.1 * 10 ** ( −4)
Km = 5
N = Km / ( f * ABL ** 2)
what = 0
W = ( what * ubar ) / ( f * ABL)

B l i s t = constantebepa l ing (N, W)

b1 = B l i s t [ 0 ]
b2 = B l i s t [ 1 ]
b3 = −b1
b4 = B l i s t [ 2 ]

a = (W ** 2) / (4 * N ** 2)
b = 1 / N
r = sq r t ( sq r t ( a ** 2 + b ** 2) )
concos = np . sq r t ( ( 1 + (W ** 2) / (4 * (N ** 2) * ( r ** 2) ) ) / 2)
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consin = np . sq r t ( ( 1 − (W ** 2) / (4 * (N ** 2) * ( r ** 2) ) ) / 2)

p = (W / (2 * N) + r * concos )
k = (W / (2 * N) − r * concos )
q = r * consin

u = ubar − ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) )
* cos ( ( z * sq r t ( f ) / s q r t (2 * Km) ) )

v = ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * s in ( ( z * sq r t ( f ) ) /
↪ sq r t (2 * Km) )

uhat = u / ubar
vhat = v / ubar

uw = 1 − W * ( p * exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat
↪ * q ) ) + exp ( p * zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) ) + k * exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat )
↪ ) ) \

+ N * ( ( p ** 2) * exp ( p * zhat ) * ( b1 * cos ( zhat * q ) + b2 * s in (
↪ zhat * q ) ) + ( k ** 2) * exp ( k * zhat ) * (
b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + 2 * p * exp ( p *

↪ zhat ) * (
−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) )

↪ + 2 * k * exp ( k * zhat ) * (
−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat ) )

↪ + exp ( p * zhat ) * (
−b1 * ( q ** 2) * cos ( q * zhat ) − b2 * ( q ** 2) *

↪ s in ( q * zhat ) ) + exp ( k * zhat ) * (
−b3 * ( q ** 2) * cos ( q * zhat ) − b4 * ( q ** 2) *

↪ s in ( q * zhat ) ) )

vw = exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) )
vwhat = vw
uwhat = uw

f o r j i n range ( len ( vhat ) ) :
e r r_v = append ( err_v , abs ( vhat [ j ] − vwhat [ j ] ) )

f o r j i n range ( len ( uhat ) ) :
er r_u = append ( err_u , abs ( uhat [ j ] − uwhat [ j ] ) )

t o t e r r u = append ( t o t e r r u , sum( err_u ) )
t o t e r r v = append ( t o t e r r v , sum( er r_v ) )
e r r _ i = append ( e r r _ i , i )
p r i n t (ABL)

k_ar r = ar ray ( [ ] )
f o r k i n range (0 , len ( e r r _ i ) ) :

i f i n t (1000 + s teps ize * e r r _ i [ k ] ) % 1000 == 0:
k_ar r = append ( k_arr , k )
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p l t . p l o t ( e r r _ i , t o t e r r u , ’ blue ’ )
p l t . p l o t ( e r r _ i , t o t e r r v , ’ red ’ )

l abe l s = [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
p l t . x t i c k s ( k_arr , l abe l s )
p l t . legend ( [ ’ E r ro r i n u ’ , ’ E r ro r i n v ’ ] )
p l t . x l abe l ( ’ABL he igh t ( x1000 ) ’ )
p l t . y l abe l ( ’ Er ror ’ )
p l t . g r i d ( )
p l t . show ( )
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B.2. Python code for graph of errors inwind speedsmodified linear
and with constant vertical wind speed

impor t ma t p l o t l i b . pyp lo t as p l t
from numpy impor t s in , cos , exp , sqr t , l inspace , array , append , zeros
from bepal ingconstanten impor t *
z = l inspace (0 , 100000 , 100000)
zhat = l inspace (0 , 1 , 100000)

s teps ize = 1000
maxi = 1000 / s teps ize

t o t e r r u = ar ray ( [ ] )
t o t e r r v = ar ray ( [ ] )
e r r _ i = ar ray ( [ ] )

def s t a r t d e r i v a t i v e p o i n t ( i ) :
vzhat = p * exp ( zhat [ i ] * p ) * ( b1 * cos ( zhat [ i ] * q ) + b2 * s in ( zhat [

↪ i ] * q ) ) + exp ( p * zhat [ i ] ) * (
−b1 * q * s in ( q * zhat [ i ] ) + b2 * q * cos ( q * zhat [ i ] ) ) + k *

↪ exp ( zhat [ i ] * k ) * (
b3 * cos ( zhat [ i ] * q ) + b4 * s in ( zhat [ i ] * q ) ) + exp (

↪ zhat [ i ] * k ) * (
−b3 * q * s in ( q * zhat [ i ] ) + b4 * q * cos ( q * zhat [ i ] )

↪ )
uzhat = −W * ( ( p ** 2) * exp ( p * zhat [ i ] ) * ( b1 * cos ( zhat [ i ] * q ) +

↪ b2 * s in ( zhat [ i ] * q ) ) + ( k ** 2) * exp (
k * zhat [ i ] ) * (

b3 * cos ( zhat [ i ] * q ) + b4 * s in ( zhat [ i ] * q ) ) +
↪ 2 * p * exp ( p * zhat [ i ] ) * (

−b1 * q * s in ( q * zhat [ i ] ) + b2 * q * cos ( q *
↪ zhat [ i ] ) ) + 2 * k * exp ( k * zhat [ i ] ) * (

−b3 * q * s in ( q * zhat [ i ] ) + b4 * q * cos ( q *
↪ zhat [ i ] ) ) + exp ( p * zhat [ i ] ) * (

−b1 * ( q ** 2) * cos ( q * zhat [ i ] ) − b2 * ( q **
↪ 2) * s in ( q * zhat [ i ] ) ) + exp ( k * zhat [ i ] )
↪ * (

−b3 * ( q ** 2) * cos ( q * zhat [ i ] ) − b4 * ( q **
↪ 2) * s in ( q * zhat [ i ] ) ) ) + N * (

( p ** 3) * exp ( p * zhat [ i ] ) * ( b1 * cos ( q * zhat [ i ] ) +
↪ b2 * s in ( q * zhat [ i ] ) ) + 3 * ( p ** 2) * exp (

p * zhat [ i ] ) * ( −q * b1 * s in ( q * zhat [ i ] ) + b2 * q * cos (
↪ q * zhat [ i ] ) ) + 3 * p * exp ( p * zhat [ i ] ) * (

−(q ** 2) * b1 * cos ( q * zhat [ i ] ) − ( q ** 2) *
↪ b2 * s in ( q * zhat [ i ] ) ) + exp ( p * zhat [ i
↪ ] ) * (

( q ** 3) * b1 * s in ( q * zhat [ i ] ) − b2 * ( q **
↪ 3) * cos ( q * zhat [ i ] ) ) + ( k ** 3) * exp (

k * zhat [ i ] ) * ( b3 * cos ( q * zhat [ i ] ) + b4 * s in ( q * zhat [
↪ i ] ) ) + 3 * ( k ** 2) * exp (

k * zhat [ i ] ) * ( −q * b3 * s in ( q * zhat [ i ] ) + b4 * q * cos (
↪ q * zhat [ i ] ) ) + 3 * k * exp ( k * zhat [ i ] ) * (

−(q ** 2) * b3 * cos ( q * zhat [ i ] ) − ( q ** 2) *
↪ b4 * s in ( q * zhat [ i ] ) ) + exp ( k * zhat [ i
↪ ] ) * (
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( q ** 3) * b3 * s in ( q * zhat [ i ] ) − b4 * ( q **
↪ 3) * cos ( q * zhat [ i ] ) ) )

r e t u rn uzhat , vzhat

def E x p l i c i t E u l e r n o n l i n (N, W, F , u , v , uz0 , vz0 , g r i dpo in t s , s t a r t , endpoint
↪ ) :
x1 = zeros ( [ g r i d po i n t s ] )
y1 = zeros ( [ g r i d po i n t s ] )
x2 = zeros ( [ g r i d po i n t s ] )
y2 = zeros ( [ g r i d po i n t s ] )
x1 [ 0 ] = u
y1 [ 0 ] = v
x2 [ 0 ] = uz0
y2 [ 0 ] = vz0
de l t a t = ( endpoint − s t a r t ) / g r i d po i n t s
f o r i i n range (0 , g r i d po i n t s − 1) :

x1 [ i + 1 ] = x1 [ i ] + d e l t a t * x2 [ i ]
x2 [ i + 1 ] = x2 [ i ] + d e l t a t * (

1 / N * (W * x2 [ i ] − y1 [ i ] + F * ( ( y1 [ i ] / x1 [ i ] ) /
↪ sq r t (1 + ( y1 [ i ] / x1 [ i ] ) ** 2) ) ) )

y1 [ i + 1 ] = y1 [ i ] + d e l t a t * y2 [ i ]
y2 [ i + 1 ] = y2 [ i ] + d e l t a t * (1 / N * (W * y2 [ i ] − 1 + x1 [ i ] − F *

↪ (1 / sq r t (1 + ( y1 [ i ] / x1 [ i ] ) ** 2) ) ) )
r e t u rn x1 , y1

f o r i i n range (0 , i n t ( maxi ) + 1) :
er r_u = ar ray ( [ ] )
e r r_v = ar ray ( [ ] )
ABL = 2000 + s teps ize * i
ubar = 10
f = 1.1 * 10 ** ( −4)
Km = 5
N = Km / ( f * ABL ** 2)
what = 0.0025
W = ( what * ubar ) / ( f * ABL)
f ha t = 0.9 * 10 ** ( −4)
F = ( what * f h a t ) / f

B l i s t = constantebepa l ing (N, W)

b1 = B l i s t [ 0 ]
b2 = B l i s t [ 1 ]
b3 = −b1
b4 = B l i s t [ 2 ]

a = (W ** 2) / (4 * N ** 2)
b = 1 / N
r = sq r t ( sq r t ( a ** 2 + b ** 2) )
concos = np . sq r t ( ( 1 + (W ** 2) / (4 * (N ** 2) * ( r ** 2) ) ) / 2)
consin = np . sq r t ( ( 1 − (W ** 2) / (4 * (N ** 2) * ( r ** 2) ) ) / 2)

p = (W / (2 * N) + r * concos )
k = (W / (2 * N) − r * concos )
q = r * consin
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u = ubar − ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * cos ( ( z * sq r t ( f
↪ ) / s q r t (2 * Km) ) )

v = ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * s in ( ( z * sq r t ( f ) ) /
↪ sq r t (2 * Km) )

uhat = u / ubar
vhat = v / ubar

uw = 1 − W * ( p * exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat
↪ * q ) ) + exp ( p * zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) ) + k * exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat )
↪ ) ) \

+ N * ( ( p ** 2) * exp ( p * zhat ) * ( b1 * cos ( zhat * q ) + b2 * s in (
↪ zhat * q ) ) + ( k ** 2) * exp ( k * zhat ) * (
b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + 2 * p * exp ( p *

↪ zhat ) * (
−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) )

↪ + 2 * k * exp ( k * zhat ) * (
−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat ) )

↪ + exp ( p * zhat ) * (
−b1 * ( q ** 2) * cos ( q * zhat ) − b2 * ( q ** 2) *

↪ s in ( q * zhat ) ) + exp ( k * zhat ) * (
−b3 * ( q ** 2) * cos ( q * zhat ) − b4 * ( q ** 2) *

↪ s in ( q * zhat ) ) )

vw = exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) )
vwhat = vw
uwhat = uw

s t a r t = 0.01
per tu rbu = 0.0011
per tu rbv = 0.00155
endpoint = 1

non l i nea ru_ar r = ar ray ( [ ] )
non l i nea rv_a r r = ar ray ( [ ] )

q = 0
l i s t i = [ ]
f o r q i n range (0 , len ( zhat ) ) :

i f zhat [ q ] > s t a r t :
l i s t i . append ( q )

de rus ta r t , d e r v s t a r t = s t a r t d e r i v a t i v e p o i n t ( min ( l i s t i ) )
non l i nea ru_ar r = append ( non l inearu_ar r , uw [ 0 : min ( l i s t i ) ] )
non l i nea rv_a r r = append ( non l inearv_ar r , vw [ 0 : min ( l i s t i ) ] )
unonl in , vnon l i n = Exp l i c i t E u l e r n o n l i n (N, W, F , uw [ min ( l i s t i ) ] , vw [ min

↪ ( l i s t i ) ] , de rus ta r t , de rvs ta r t , 100000 , s t a r t ,
endpoint )

non l i nea ru_ar r = append ( non l inearu_ar r , unon l in )
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non l i nea rv_a r r = append ( non l inearv_ar r , vnon l i n )

f o r j i n range ( len ( vhat ) ) :
e r r_v = append ( err_v , abs ( vwhat [ j ] − non l i nea rv_a r r [ j ] ) )

f o r j i n range ( len ( uhat ) ) :
er r_u = append ( err_u , abs ( uwhat [ j ] − non l i nea ru_ar r [ j ] ) )

p r i n t (sum( err_u ) )

t o t e r r u = append ( t o t e r r u , sum( err_u ) )
t o t e r r v = append ( t o t e r r v , sum( er r_v ) )
e r r _ i = append ( e r r _ i , i )
p r i n t ( e r r _ i )
p r i n t (ABL)

k_ar r = ar ray ( [ ] )
f o r k i n range (0 , len ( e r r _ i ) ) :

i f i n t (1000 + s teps ize * e r r _ i [ k ] ) % 1000 == 0:
k_ar r = append ( k_arr , k )

p l t . p l o t ( e r r _ i , t o t e r r u , ’ blue ’ )
p l t . p l o t ( e r r _ i , t o t e r r v , ’ red ’ )

# l abe l s = [ 1 , 2 , 2 . 5 ]
# p l t . x t i c k s ( k_arr , l abe l s )
p l t . legend ( [ ’ E r ro r i n u ’ , ’ E r ro r i n v ’ ] )
p l t . x l abe l ( ’ABL he igh t ( x1000 ) ’ )
p l t . y l abe l ( ’ Er ror ’ )
p l t . g r i d ( )
p l t . save f ig ( ’ eske t t i t compar ison ’ )
p l t . show ( )



C
Visualizing the Classical Ekman Spiral

from numpy impor t s in , cos , exp , sqr t , l inspace , se te r r , s e t _p r i n t op t i o n s
impor t ma t p l o t l i b . pyp lo t as p l t
from bepal ingconstanten impor t *
impor t sys

se t e r r ( a l l = ’ ignore ’ )
s e t _p r i n t op t i o n s ( th resho ld=sys . maxsize )

z = l inspace (0 , 100000 , 100000)
zhat = l inspace (0 , 1 , 100000)

ABL = 2500
ubar = 10
f = 1.1 * 10 ** ( −4)
Km = 5

u = ubar − ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * cos ( ( z * sq r t ( f ) /
↪ sq r t (2 * Km) ) )

v = ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * s in ( ( z * sq r t ( f ) ) / s q r t (2
↪ * Km) )

ax = p l t . axes ( )
uba rs t r = ” u ” + u ” \ u0304 ”
uha t s t r = ” u ” + u ” \ u0302 ”
vha t s t r = ” v ” + u ” \ u0302 ”

p l t . x l abe l ( uha t s t r )
p l t . y l abe l ( v ha t s t r )
p l t . g r i d ( )
p l t . p l o t ( u , v , ’ blue ’ )

p l t . p l o t ( u [ 10 ] , v [ 10 ] , ’ ro ’ )
p l t . p l o t ( u [100 ] , v [ 100 ] , ’ go ’ )
p l t . p l o t ( u [1000 ] , v [1000 ] , ’mo ’ )
p l t . p l o t ( u [10000] , v [10000] , ’ ko ’ )

p l t . show ( )
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Visualizing the Modified Linear Ekman

Spiral

from numpy impor t s in , cos , exp , sqr t , l inspace , se te r r , array , append ,
↪ arange , vstack

impor t ma t p l o t l i b . pyp lo t as p l t
from bepal ingconstanten impor t *

se t e r r ( a l l = ’ ignore ’ )

step = 500000
z = l inspace (0 ,10000 , step )
zhat = l inspace (0 ,1 , step )

datau = ar ray ( [ zhat ] )
datav = ar ray ( [ zhat ] )

j = 0
ABL = 1020
what = 0.005
ubar = 10
f = 1.1 * 10 ** ( −4)
Km = 5

W_arr = ar ray ( [ ] )
legend_arr = ( [ ] )

uha t s t r = ” u ” + u ” \ u0302 ”
vha t s t r = ” v ” + u ” \ u0302 ”
whats t r = ”w” + u ” \ u0302 ”

f o r W in arange (0 .01 ,0 .04 ,0 .01 ) :

W_arr = append (W_arr ,W)
s t r 1 = ”W = ” + s t r (W_arr [ j ] )
legend_arr = append ( legend_arr , s t r 1 )
j += 1
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N = Km / ( f * ABL ** 3)

B l i s t = constantebepa l ing (N, W)
b1 = B l i s t [ 0 ]
b2 = B l i s t [ 1 ]
b3 = −b1
b4 = B l i s t [ 2 ]

a = (W ** 2) / (4 * N ** 2)
b = 1 / N
r = sq r t ( sq r t ( a ** 2 + b ** 2) )
concos = sq r t ( ( 1 / 2) * (1 + ( a ) / ( r ** 2) ) )
consin = sq r t ( ( 1 / 2) * (1 − ( a ) / ( r ** 2) ) )

p = (W / (2 * N) + r * concos )
k = (W / (2 * N) − r * concos )
q = r * consin

u = ubar − ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * cos ( ( z * sq r t ( f
↪ ) / s q r t (2 * Km) ) )

v = ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * s in ( ( z * sq r t ( f ) ) /
↪ sq r t (2 * Km) )

uhat = u / ubar
vhat = v / ubar

uw = 1 − W * ( p * exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat
↪ * q ) ) + exp ( p * zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) ) + k *
↪ exp ( zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) +
↪ exp ( zhat * k ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q *
↪ zhat ) ) ) \

+ N * ( ( p ** 2) * exp ( p * zhat ) * ( b1 * cos ( zhat * q ) + b2 * s in (
↪ zhat * q ) ) + ( k ** 2) * exp ( k * zhat ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + 2 * p * exp ( p *
↪ zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q *
↪ zhat ) ) + 2 * k * exp ( k * zhat ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q *
↪ zhat ) ) + exp ( p * zhat ) * (

−b1 * ( q ** 2) * cos ( q * zhat ) − b2 * ( q ** 2)
↪ * s in ( q * zhat ) ) + exp ( k * zhat ) * (

−b3 * ( q ** 2) * cos ( q * zhat ) − b4 * ( q ** 2)
↪ * s in ( q * zhat ) ) )

vw = exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) )
vwhat = vw
uwhat = uw

uwhat_array = ar ray ( uwhat )
vwhat_array = ar ray ( vwhat )
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datau = vstack ( [ datau , uwhat_array ] )
datav = vstack ( [ datav , vwhat_array ] )

co l o r _a r r = ar ray ( [ ’ black ’ , ’ blue ’ , ’ red ’ , ’ green ’ , ’ orange ’ , ’ purple ’ , ’
↪ mediumaquamarine ’ , ’ grey ’ , ’ brown ’ ] )

f o r i i n range (1 , j +1) :
p l t . p l o t ( datau [ i ] , datav [ i ] , c o l o r _a r r [ i −1 ] )
p r i n t ( legend_arr [ i −1 ] )

p l t . g r i d ( )
p l t . legend ( legend_arr )
p l t . x l abe l ( uha t s t r )
p l t . y l abe l ( v ha t s t r )

# p l t . save f ig ( ’ ModLinDiffWcloseup ’ )
p l t . show ( )



E
Visualizing the Ekman Spiral with

Vertical Wind Speed

from numpy impor t s in , cos , exp , sqr t , l inspace , se te r r , asarray , zeros ,
↪ arange , array , append

from bepal ingconstanten impor t *
impor t ma t p l o t l i b . pyp lo t as p l t

s e t e r r ( a l l = ’ ignore ’ )

def s t a r t d e r i v a t i v e p o i n t ( i ) :
vzhat = p * exp ( zhat [ i ] * p ) * ( b1 * cos ( zhat [ i ] * q ) + b2 * s in ( zhat [

↪ i ] * q ) ) + exp ( p * zhat [ i ] ) * (
−b1 * q * s in ( q * zhat [ i ] ) + b2 * q * cos ( q * zhat [ i ] ) ) + k *

↪ exp ( zhat [ i ] * k ) * (
b3 * cos ( zhat [ i ] * q ) + b4 * s in ( zhat [ i ] * q ) ) + exp (

↪ zhat [ i ] * k ) * (
−b3 * q * s in ( q * zhat [ i ] ) + b4 * q * cos ( q * zhat [ i ] )

↪ )
uzhat = −W * ( ( p ** 2) * exp ( p * zhat [ i ] ) * ( b1 * cos ( zhat [ i ] * q ) +

↪ b2 * s in ( zhat [ i ] * q ) ) + ( k ** 2) * exp (
k * zhat [ i ] ) * (

b3 * cos ( zhat [ i ] * q ) + b4 * s in ( zhat [ i ] * q ) ) +
↪ 2 * p * exp ( p * zhat [ i ] ) * (

−b1 * q * s in ( q * zhat [ i ] ) + b2 * q * cos ( q *
↪ zhat [ i ] ) ) + 2 * k * exp ( k * zhat [ i ] ) * (

−b3 * q * s in ( q * zhat [ i ] ) + b4 * q * cos ( q *
↪ zhat [ i ] ) ) + exp ( p * zhat [ i ] ) * (

−b1 * ( q ** 2) * cos ( q * zhat [ i ] ) − b2 * ( q **
↪ 2) * s in ( q * zhat [ i ] ) ) + exp ( k * zhat [ i ] )
↪ * (

−b3 * ( q ** 2) * cos ( q * zhat [ i ] ) − b4 * ( q **
↪ 2) * s in ( q * zhat [ i ] ) ) ) + N * (

( p ** 3) * exp ( p * zhat [ i ] ) * ( b1 * cos ( q * zhat [ i ] ) +
↪ b2 * s in ( q * zhat [ i ] ) ) + 3 * ( p ** 2) * exp (

p * zhat [ i ] ) * ( −q * b1 * s in ( q * zhat [ i ] ) + b2 * q * cos (
↪ q * zhat [ i ] ) ) + 3 * p * exp ( p * zhat [ i ] ) * (

−(q ** 2) * b1 * cos ( q * zhat [ i ] ) − ( q ** 2) *
↪ b2 * s in ( q * zhat [ i ] ) ) + exp ( p * zhat [ i
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↪ ] ) * (
( q ** 3) * b1 * s in ( q * zhat [ i ] ) − b2 * ( q **

↪ 3) * cos ( q * zhat [ i ] ) ) + ( k ** 3) * exp (
k * zhat [ i ] ) * ( b3 * cos ( q * zhat [ i ] ) + b4 * s in ( q * zhat [

↪ i ] ) ) + 3 * ( k ** 2) * exp (
k * zhat [ i ] ) * ( −q * b3 * s in ( q * zhat [ i ] ) + b4 * q * cos (

↪ q * zhat [ i ] ) ) + 3 * k * exp ( k * zhat [ i ] ) * (
−(q ** 2) * b3 * cos ( q * zhat [ i ] ) − ( q ** 2) *

↪ b4 * s in ( q * zhat [ i ] ) ) + exp ( k * zhat [ i
↪ ] ) * (

( q ** 3) * b3 * s in ( q * zhat [ i ] ) − b4 * ( q **
↪ 3) * cos ( q * zhat [ i ] ) ) )

r e t u rn uzhat , vzhat

def E x p l i c i t E u l e r n o n l i n (N, W, F , u , v , uz0 , vz0 , g r i dpo in t s , s t a r t , endpoint
↪ ) :
x1 = zeros ( [ g r i d po i n t s ] )
y1 = zeros ( [ g r i d po i n t s ] )
x2 = zeros ( [ g r i d po i n t s ] )
y2 = zeros ( [ g r i d po i n t s ] )
x1 [ 0 ] = u
y1 [ 0 ] = v
x2 [ 0 ] = uz0
y2 [ 0 ] = vz0
de l t a t = ( endpoint − s t a r t ) / g r i d po i n t s
f o r i i n range (0 , g r i d po i n t s − 1) :

x1 [ i + 1 ] = x1 [ i ] + d e l t a t * x2 [ i ]
x2 [ i + 1 ] = x2 [ i ] + d e l t a t * (

1 / N * (W * x2 [ i ] − y1 [ i ] + F * ( ( y1 [ i ] / x1 [ i ] ) /
↪ sq r t (1 + ( y1 [ i ] / x1 [ i ] ) ** 2) ) ) )

y1 [ i + 1 ] = y1 [ i ] + d e l t a t * y2 [ i ]
y2 [ i + 1 ] = y2 [ i ] + d e l t a t * (1 / N * (W * y2 [ i ] − 1 + x1 [ i ] − F *

↪ (1 / sq r t (1 + ( y1 [ i ] / x1 [ i ] ) ** 2) ) ) )
r e t u rn x1 , y1

f ha t = 0.9*10** ( −4)
ABL = 1000
what = 0.0025
ubar = 20
f = 1.1 * 10 ** ( −4)
Km = 5
N = Km/ ( f *ABL* * ( 2 ) )
W = ubar / ( ABL* f ) *what
F = ( what* f h a t ) / f

s t a r t = 0.01
per tu rbu = 0
per tu rbv = 0.00155
endpoint = 1

loop_ar r = ar ray ( [ ] )
legend_arr = ( [ ] )

z = l inspace (0 , 10000 , 50000)
zhat = l inspace (0 , 1 , 500000)
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datau = [ zhat ]
datav = [ zhat ]

uha t s t r = ” u ” + u ” \ u0302 ”
vha t s t r = ” v ” + u ” \ u0302 ”
whats t r = ”w” + u ” \ u0302 ”

j =0
i _ a r r = ar ray ( [ ] )

f o r per tu rbu i n arange (0 .0011 ,0 .003 ,0 .05) :
loop_ar r = append ( loop_arr , round ( per turbu , 4 ) )
s t r 1 = s t r ( loop_ar r [ j ] )
legend_arr = append ( legend_arr , s t r 1 )
j += 1

a = (W ** 2) / (4 * N ** 2)
b = 1 / N
r = sq r t ( sq r t ( a ** 2 + b ** 2) )
concos = sq r t ( ( 1 / 2) * (1 + ( a ) / ( r ** 2) ) )
consin = sq r t ( ( 1 / 2) * (1 − ( a ) / ( r ** 2) ) )

p = (W / (2 * N) + r * concos )
k = (W / (2 * N) − r * concos )
q = r * consin

B l i s t = constantebepa l ing (N, W)
b1 = B l i s t [ 0 ]
b2 = B l i s t [ 1 ]
b3 = −b1
b4 = B l i s t [ 2 ]

vz0 = b1 * p + b2 * q + b3 * k + b4 * q
uz0 = N * (

b1 * p ** 3 − 3 * b1 * p * q ** 2 + 3 * b2 * p ** 2 * q −
↪ b2 * q ** 3 + b3 * k ** 3 − 3 * b3 * k * q ** 2 + 3
↪ * b4 * k ** 2 * q − b4 * q ** 3) − W * (

b1 * p ** 2 − b1 * q ** 2 + 2 * b2 * p * q + b3 * k
↪ ** 2 − b3 * q ** 2 + 2 * b4 * k * q )

vzhat = p * exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat * q ) )
↪ + exp ( p * zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) ) + k * exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + exp ( zhat *
↪ k ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat ) )
uzhat = −W * ( ( p ** 2) * exp ( p * zhat ) * ( b1 * cos ( zhat * q ) + b2 *

↪ s in ( zhat * q ) ) + ( k ** 2) * exp ( k * zhat ) * (
b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + 2 * p * exp ( p *

↪ zhat ) * (
−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat )

↪ ) + 2 * k * exp ( k * zhat ) * (
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−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat )
↪ ) + exp ( p * zhat ) * (

−b1 * ( q ** 2) * cos ( q * zhat ) − b2 * ( q ** 2) *
↪ s in ( q * zhat ) ) + exp ( k * zhat ) * (

−b3 * ( q ** 2) * cos ( q * zhat ) − b4 * ( q ** 2) *
↪ s in ( q * zhat ) ) ) + N * (

( p ** 3) * exp ( p * zhat ) * ( b1 * cos ( q * zhat ) +
↪ b2 * s in ( q * zhat ) ) + 3 * ( p ** 2) * exp (

p * zhat ) * ( −q * b1 * s in ( q * zhat ) + b2 * q * cos ( q
↪ * zhat ) ) + 3 * p * exp ( p * zhat ) * (

−(q ** 2) * b1 * cos ( q * zhat ) − ( q **
↪ 2) * b2 * s in ( q * zhat ) ) + exp (
↪ p * zhat ) * (

( q ** 3) * b1 * s in ( q * zhat ) − b2 * (
↪ q ** 3) * cos ( q * zhat ) ) + ( k **
↪ 3) * exp ( k * zhat ) * ( b3 * cos (
↪ q * zhat ) + b4 * s in ( q * zhat ) )
↪ + 3 * ( k ** 2) * exp (

k * zhat ) * ( −q * b3 * s in ( q * zhat ) + b4 * q * cos ( q
↪ * zhat ) ) + 3 * k * exp ( k * zhat ) * (

−(q ** 2) * b3 * cos ( q * zhat ) − ( q **
↪ 2) * b4 * s in ( q * zhat ) ) + exp (
↪ k * zhat ) * (

( q ** 3) * b3 * s in ( q * zhat ) − b4 * (
↪ q ** 3) * cos ( q * zhat ) ) )

uexact = ubar − ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * cos ( ( z *
↪ sq r t ( f ) / s q r t (2 * Km) ) )

vexact = ubar * exp ( −( z * sq r t ( f ) ) / s q r t (2 * Km) ) * s in ( ( z * sq r t ( f ) )
↪ / s q r t (2 * Km) )

uhat = uexact / ubar
vhat = vexact / ubar

uw = per tu rbu + 1 − W * ( p * exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2
↪ * s in ( zhat * q ) ) + exp ( p * zhat ) * (

−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) ) + k * exp (
↪ zhat * k ) * (

b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + exp (
↪ zhat * k ) * (

−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat )
↪ ) ) \

+ N * ( ( p ** 2) * exp ( p * zhat ) * ( b1 * cos ( zhat * q ) + b2 * s in (
↪ zhat * q ) ) + ( k ** 2) * exp ( k * zhat ) * (
b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) ) + 2 * p * exp ( p *

↪ zhat ) * (
−b1 * q * s in ( q * zhat ) + b2 * q * cos ( q * zhat ) )

↪ + 2 * k * exp ( k * zhat ) * (
−b3 * q * s in ( q * zhat ) + b4 * q * cos ( q * zhat ) )

↪ + exp ( p * zhat ) * (
−b1 * ( q ** 2) * cos ( q * zhat ) − b2 * ( q ** 2) *

↪ s in ( q * zhat ) ) + exp ( k * zhat ) * (
−b3 * ( q ** 2) * cos ( q * zhat ) − b4 * ( q ** 2) *

↪ s in ( q * zhat ) ) )

vw = per tu rbv + exp ( zhat * p ) * ( b1 * cos ( zhat * q ) + b2 * s in ( zhat *
↪ q ) ) + exp ( zhat * k ) * (
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b3 * cos ( zhat * q ) + b4 * s in ( zhat * q ) )
vwhat = vw
uwhat = uw

non l i nea ru_ar r = ar ray ( [ ] )
non l i nea rv_a r r = ar ray ( [ ] )

i = 0
l i s t i = [ ]
f o r i i n range (0 , len ( zhat ) ) :

i f zhat [ i ] > s t a r t :
l i s t i . append ( i )

i _ a r r = append ( i _a r r , i n t ( min ( l i s t i ) ) )

de rus ta r t , d e r v s t a r t = s t a r t d e r i v a t i v e p o i n t ( min ( l i s t i ) )
non l i nea ru_ar r = append ( non l inearu_ar r , uw [ 0 : min ( l i s t i ) ] )
non l i nea rv_a r r = append ( non l inearv_ar r , vw [ 0 : min ( l i s t i ) ] )
unonl in , vnon l i n = Exp l i c i t E u l e r n o n l i n (N,W,F ,uw [ min ( l i s t i ) ] , vw [ min (

↪ l i s t i ) ] , de rus ta r t , de rvs ta r t ,100000 , s t a r t , endpoint )

non l i nea ru_ar r = append ( non l inearu_ar r , unon l in )
non l i nea rv_a r r = append ( non l inearv_ar r , vnon l i n )

datau . append ( non l i nea ru_ar r )
datav . append ( non l i nea rv_a r r )

datau = asarray ( datau )
datav = asarray ( datav )
co l o r _a r r = ar ray ( [ ’ black ’ , ’ blue ’ , ’ red ’ , ’ green ’ , ’ orange ’ , ’ purple ’ , ’

↪ mediumaquamarine ’ , ’ grey ’ , ’ brown ’ ] )
f o r i i n range (1 , j +1) :

p l t . p l o t ( datau [ i ] , datav [ i ] , c o l o r _a r r [ i −1 ] )
p l t . g r i d ( )
# p l t . legend ( legend_arr )
f o r i i n range (1 , j +1) :

p r i n t ( i _ a r r [ i −1 ] )
p l t . p l o t ( datau [ i ] [ i n t ( i _ a r r [ i −1 ] ) ] , datav [ i ] [ i n t ( i _ a r r [ i −1 ] ) ] , ’ o ’ ,

↪ co lo r = co l o r _a r r [ i − 1 ] )
p l t . x l abe l ( uha t s t r )
p l t . y l abe l ( v ha t s t r )
# p l t . save f ig ( ’ NonL inD i f fF ina l0 t ’ )
p l t . show ( )
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