
Making It Clear
Using Vision Transformers in Multi-View Stereo
on Specular and Transparent Materials

W.E.P. Tolsma

Making It Clear

Using Vision Transformers in Multi-View Stereo on
Specular and Transparent Materials

Thesis report

by

W.E.P. Tolsma

to obtain the degree of Master of Science
at the Delft University of Technology

to be defended publicly on October, 11th 2023 at 14:00

Thesis committee:
Chair: Assoc. Prof. Dr. J.C. van Gemert
Supervisors: Assist. Prof. Dr. N. Tömen
External examiner: Assist. Prof. Dr. M. Weinmann
Project Duration: February 2023 - October 2023
Student number: 4531124

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Electrical Engineering, Mathematics and Computer Science · Delft University of Technology

http://repository.tudelft.nl/

Copyright © W.E.P. Tolsma, 2023
All rights reserved.

Preface

This report marks the end of my time as a student at the Delft University of Technology. Pursuing a Master’s
degree in Artificial Intelligence during the ‘AI boom’ was interesting, to say the least. It was a humbling
experience to try and keep up with the rapid pace at which related research papers were released, which
says a lot about the amount of attention this field currently has by the community. Hopefully, this report will
give you a glimpse of the exciting possibilities we currently already have in applying AI for challenging
tasks.

I wish to give a special thanks to Nergis Tömen, who committed to meeting with me during her personal
time off. I want to thank Ronald Poelman, for inspiring and guiding me throughout the discovery of my
thesis, and for providing an endless supply of unread papers. I want to thank Hesam Araghi, for always
being available to listen to my ramblings and giving timely feedback. I also want to thank Jan van Gemert,
for making this project possible at the PRB group and providing guidance on where to take this project.

Finally, I want to thank my girlfriend, my friends, and my family for their support during the past year.

Pieter Tolsma

Delft, September 2023.

ii

Contents

1 Introduction 1

2 Scientific Article 2

3 Supplementary Material 17
3.1 Mathematical Foundations . 17

3.1.1 Basic Vector Operations . 17
3.1.2 Basis and Coordinate Systems . 17
3.1.3 Rigid Transformations . 17

3.2 Stereo Depth Estimation Fundamentals. 18
3.2.1 The Pinhole Camera Model . 18
3.2.2 Mapping Pixels to Pixels Using Depth. 18
3.2.3 Classic Epipolar Geometry. 19
3.2.4 Challenges with Epipolar Matching . 20
3.2.5 Camera setup. 20

3.3 Structure from Motion . 21
3.4 Deep Learning . 22

3.4.1 Core Principles . 22
3.4.2 Convolutional Neural Networks . 24
3.4.3 Learned Upsampling for 2D Data . 25
3.4.4 Feature Pyramid Networks. 25
3.4.5 Gated Recurrent Unit Networks . 25
3.4.6 3D Convolutional Neural Networks . 26
3.4.7 Transformers . 27

3.5 Deep-Learning-Based Multi-View Stereo . 30
3.5.1 Introduction . 30
3.5.2 Typical MVS Pipeline. 30
3.5.3 Loss Functions . 30
3.5.4 Challenges and Limitations . 31

3.6 MVS Datasets and Benchmarks . 32
3.6.1 Common MVS Benchmarks . 32

Tanks&Temples . 32
DTU . 32
ETH3D . 32
Middlebury . 32
BlendedMVS . 32

3.6.2 Transparent MVS Datasets . 34
ClearPose . 34
Trans10K . 34
Syn-TODD . 34

References 36

iii

1
Introduction

Depth estimation is a cornerstone of modern perception systems, powering a wide range of high-tech
products that enable things like self-driving, augmented reality, and warehouse automation. An accurate
depth estimate helps these systems reason about and act on their environment in a more advanced way
than a simple 2D image allows. Multi-View Stereo (MVS) combines multiple images from different viewing
angles in order to predict depth, which one could argue has similarities to how we humans perceive the
world. Compared to active sensing, which requires specialized hardware and has a dependency on the
specific environment, MVS has the potential to be a cheap, scalable, and widely applicable alternative.
Sadly, these methods are plagued by ambiguities like occlusion, texture-less regions and surfaces with
strong view-dependent effects, such as reflections and transparencies. Recent advancements in machine
learning have allowed MVS to book steady progress over the past few years in this area.

A relatively recent discovery is the Transformer [1] architecture, which has shown significant potential in
solving complex problems. The Vision Transformer (ViT) [2] enabled researchers to start using transformers
in vision, which has sparked a new area of research. Compared to convolutional neural networks (CNNs),
the ViT is said to be more shape-focused, less biased towards texture, and supposed to be better at
transfer learning [3][4][5]. In the area of MVS, recent works have also started using ViTs for estimating
depth [6]. If the ViT is really more robust and is more shape-focused, does this hold promises for MVS on
specular and transparent materials? Based on the 2D conceptions of the ViT, we can only hypothesize
whether this is true, and it is difficult to know without a proper dataset to evaluate this.

In this thesis, we put the ViT to the test in the domain of MVS by comparing it to a proven CNN
alternative. We evaluate the models by generating a unique, multi-material MVS dataset that allows for
the controlled evaluation of diffuse, specular and transparent materials. To the best of our knowledge,
there is no other dataset that allowed us to do this.

The structure of this report is as follows. Chapter 2 contains the main article, which is written with the
assumption that the reader has sufficient background knowledge in computer vision. Chapter 3 contains
background information, which can help the reader understand the work in the previous chapter. In this
chapter, we explain the basics of depth estimation, look at simple to advanced deep-learning models, and
expand on the various data sets that are publicly available.

1

2
Scientific Article

Page intentionally left blank.

2

Making it Clear: Using Vision Transformers in Multi-View Stereo on Specular
and Transparent Materials

W.E.P. Tolsma
Delft University of Technology
epieter.tolsma@gmail.com

H. Araghi
Delft University of Technology

H.Araghi@tudelft.nl

N. Tömen
Delft University of Technology

N.Tomen@tudelft.nl

R. Poelman
Fizyr B.V.

R.Poelman@fizyr.com

J.C. van Gemert
Delft University of Technology
J.C.vanGemert@tudelft.nl

Abstract

Transparency and specularity are challenging phenom-
ena that modern depth perception systems have to deal with
in order to be used in practice. A promising family of depth
estimation methods is Multi-View Stereo (MVS), which com-
bine multiple RGB images to predict depth, thus circum-
venting the need for costly specialized hardware. Although
promising, finding pixel-to-pixel mappings between images
is a challenging task, clouded by ambiguity. In order to
determine the current ability to deal with such ambiguity,
we introduce ToteMVS: a multi-view, multi-material syn-
thetic dataset with diffuse, specular and transparent objects.
Recent works in computer vision have effectively replaced
Convolutional Neural Networks (CNNs) with the emerging
Vision Transformer (ViT) architecture, but it remains un-
clear whether ViTs outperform CNNs in handling reflective
and transparent materials. In our study, we use ToteMVS
to compare ViT- and CNN-based architectures on the abil-
ity to extract useful features for depth estimation on diffuse,
specular, and transparent objects. Our results show that,
in contrast with the current trend of using ViTs over CNNs,
the ViT-based model does not have a special capability for
dealing with these challenging materials in the context of
MVS. Our evaluation data, including related code, can be
found on our GitHub.

1. Introduction

Estimating depth on transparent objects is a challeng-
ing task in computer vision partly due to the ambiguity
of the background appearing through the foreground (Fig.
1). Specularities are another nuisance that modern vision
systems have to deal with in order to be robust to varying
light intensities and directions. Multi-view stereo (MVS)

Figure 1: Estimating depth using six cameras on diffuse,
specular and transparent materials using the MVSFormer[4]
model, with either a Twins-PVT (a ViT) [7] or a ResNet-
50[14] (a CNN) in the backbone. Both variants are able to
extract the almost invisible dwarf with high accuracy once
trained on our data. This figure highlights the high output
similarity between the two approaches.

uses multiple RGB images to predict depth through epipo-
lar geometry, a common and versatile method for estimating
depth. Recently, Vision Transformers (ViTs) have started to
appear in MVS architectures, but their effectiveness is still
largely undiscovered in this domain. In this work, we ana-

1

https://github.com/pietertolsma/ToteMVS/

lyze the capability of state-of-the-art MVS on the difficult
task of estimating depth on specular and transparent objects
and answer the question of whether a modern ViT can be
a superior backbone for this compared to a Convolutional
Neural Network (CNN). To answer this question, we intro-
duce ToteMVS: a multi-material synthetic MVS dataset that
allows the evaluation of models on diffuse, specular, and
transparent materials in a controlled setting.

Our motivation behind scrutinizing modern MVS on
these materials is fueled by the imaginative factor that is
inherent to any deep-learning-based system. This prop-
erty could make these systems robust to ambiguous prob-
lems that specular and transparent objects create. Obtaining
such a system would be an engineering feat, as current off-
the-shelf sensors fail to address these situations properly.
For example, sensors relying on structured light or time-
of-flight [55] are based on the reflection of emitted signals
on surfaces, a property that only works consistently when
the surface is diffuse (reflects light in all directions). MVS
does not require specialized hardware, nor does it interact
with the environment, making it a candidate for a general,
all-purpose depth estimator.

Despite these promising qualities, current MVS method-
ologies are plagued by the ill-posed nature of the problem
it is solving, which at its core can be explained by finding
pixel correspondences between images. When the search
space is mostly untextured, finding a match leads to too
many possibilities. When a surface point is occluded, it is
possible that a match can not be found [52]. Lastly, when
the appearance of surfaces changes, for example, due to re-
flections or transparencies, finding a match becomes signif-
icantly more difficult[37].

Fortunately, in the past decade, the field of pattern recog-
nition in computer vision has experienced a large number of
developments [3], which has enabled MVS to become more
accurate on benchmarks like DTU [2] or Tanks&Temples
[18]. While these benchmarks are an important measuring
stick for tracking overall progress, they do not allow for the
controlled evaluation of different materials, which can theo-
retically make a large difference. Measuring this difference
becomes important for deciding on the effectiveness of ar-
chitectural choices.

Modern MVS can generally be deconstructed into four
stages: feature extraction, warping, regularization, and re-
finement (see Fig. 10). Currently, the two main categories
for feature extraction are Convolutional Neural Networks
(CNNs) [21, 20] or Vision Transformers (ViTs)[19], the
latter being a more recent discovery with unique proper-
ties, such as the immediate global understanding of the in-
put, compared to the CNN gradually seeing more of the
image. No heuristic currently exists that can tell whether
a ViT should be preferred over a CNN, making empiri-
cal tests the only practical option. There is very little re-

search on whether ViTs can push the state-of-the-art in
MVS when dealing with challenging materials, while liter-
ature suggests that ViTs are more robust and shape-focused
[30, 12, 33]. This could potentially make the ViT a superior
choice when dealing with specular and transparent materi-
als, which suffer strong view-dependent effects. The state-
of-the-art method MVSFormer [4] includes a ViT in the fea-
ture extraction process and reports improvements compared
to a ResNet-50 [14], making it a prime candidate archi-
tecture for further evaluation. In order to eliminate poten-
tial model-specific dependencies on the extracted features,
the same experiments are run on IterMVS[41], a different
method that is modifiable in the exact same way.

In this work, we compare the Twins-PVT [7] architecture
to a ResNet-50 [14], to see whether a ViT is more effective
in extracting features on specular and transparent objects for
MVS. We find that the Twins-PVT architecture generalizes
significantly better when trained on DTU to our data com-
pared to the ResNet-50, but notice no specific advantage on
transparent materials. Once we finetune both models on our
data, we find that both the ViT and CNN have similar ca-
pabilities in extracting features on specular and transparent
materials. When textural features are removed, we do not
observe any extra robustness for the ViT, which is surprising
as literature suggests that CNNs are generally more depen-
dent on texture compared to ViTs. Our conclusions are an
insight into the mild effectiveness of a ViT versus a CNN,
going against the trend of simply replacing a CNN with a
ViT in order to significantly boost performance.

Our main contributions can be summarized as follows:

• We introduce ToteMVS: a novel multi-material syn-
thetic MVS dataset that allows for comparison be-
tween diffuse, specular, and transparent materials in a
controlled manner. We show that transparent objects
are significantly more challenging than their diffuse
and specular counterparts.

• We provide a quantitative and qualitative compari-
son between Twins-PVT and ResNet-50 backbones
in MVS on the three material types. We find that
both backbones achieve similar results, but that the
ViT-based model has significantly better generaliza-
tion performance.

2. Related work
Depth Perception Systems Structure from Motion (SfM)
[39][36] is a popular method for computing depth and cam-
era positions based on a large number of images in a scene.
By matching features with high confidence, SfM typically
produces sparse yet accurate point clouds, making it a use-
ful initial calibration method for further processing. Ac-
tive depth sensing, such as time-of-flight (ToF) and struc-
tured light [55], predict depth by probing the environment

2

with signals. This way of predicting depth has the poten-
tial to be accurate but requires specialized hardware, de-
pends on environmental conditions, and may fail on chal-
lenging surfaces such as reflective or transparent. Neural
Radiance Fields (NeRFs) [28], provide a novel way of com-
bining multiple images in order to render novel views, and
are also capable of estimating depth. While NeRFs excel
at novel view synthesis, they fall short on generalization,
efficiency, and the ability to produce accurate depth maps
with sparse-view image sets. Stereo vision [53] mimics the
human visual system by combining two or more cameras to
estimate depth. In essence, this method uses the parallax
effect and an estimation of the disparity between images in
order to predict depth. This relatively simple method faces
challenges with texture-less regions, occlusions, and view-
dependent effects such as reflections or transparencies. Re-
cent works have built upon the concept of stereo vision with
promising results in these areas, by combining recent deep-
learning advancements with classic epipolar geometry.

Multi-View Stereo with Deep Learning MVS methods
combine views by exploiting classic epipolar geometry
[11, 51]. The core of the MVS problem can be described as
finding a pixel-to-pixel mapping between a pair of images.
This problem is sometimes described as ill-defined, as there
are situations where it is impossible to determine a match-
ing point, caused by effects such as textureless regions or
strong view-dependent effects. Texture-less regions make
the search for a corresponding point difficult, as there exist
too many candidates to choose from. View-dependent ef-
fects, such as reflectiveness or transparency, make surfaces
appear different between camera angles, making it difficult
to find correspondence based on color. Transparency has
the additional problem that the background appears through
the foreground, adding another layer of obfuscation. Recent
works [15, 49, 13, 42, 41, 45, 4] use advanced feature ex-
traction backbones, combined with novel fusion strategies.
A typical pipeline of these advanced MVS methods is de-
picted in Fig. 2, a design that was first used by the authors
of MVSNet [49, 44]. A detail that stands out is the fact that
all of these methods use a Feature Pyramid Network (FPN)
[22], which is designed in the shape of an hourglass with
skip connections. Dense prediction tasks, like per-pixel
depth estimation, often require feature outputs that have the
same resolution as the original input, for which the FPN is
designed. PSMNet [5] was one of the first MVS methods
to start using these multi-scale features. The multiple layers
allow for a coarse-to-fine approach, where initial depth es-
timations are made using a low-resolution, but a high-level
understanding of the scene, gradually scaling up until the
full resolution is used. MVSFormer [4] enriches the FPN
with features extracted through a ViT, which is a modifica-
tion that can be applied to any method that uses an FPN,

making it a design worth investigating. A simplified dia-
gram of the MVSFormer architecture is depicted in Fig. 3.

Figure 2: Typical pipeline for deep-learning based MVS.
Feature extraction transforms the RGB space into a high-
dimensional understanding of the original input. Warping
maps the feature vectors from the source images into the
frustum of the reference view, at fixed depth intervals. Reg-
ularization propagates local information, thereby smoothen-
ing the final prediction. Refinement iteratively predicts
depths from a coarse to fine scale.

Figure 3: Simplified visualization of the MVSFormer [4]
architecture. Note how the FPN is enriched with addi-
tional features extracted from the Twins-PVT [7] (ViT) or
a ResNet-50 [14] (CNN), a technique that can be generally
applied to any method using an FPN.

Depth Estimation on Transparent Materials Estimat-
ing depth on transparent materials is a task that previous
works have tried to solve. MVTrans [46] proposed a method
following the flow of Fig. 2 and reported success with
segmentation, but demonstrated limitations with estimat-
ing depth on clear objects. Another work fused raw depth-
sensor output with RGB (RGB-D) [54] which resulted in

3

somewhat accurate yet incomplete predictions on transpar-
ent objects. TODE-Trans [16] combines RGB-D with a
Vision Transformer (ViT) [19] which they claim signifi-
cantly improves the completeness of the output compared
to a CNN.

CNNs vs ViTs The Vision Transformer (ViT) architec-
ture [19] has a fundamentally different approach to CNNs
in processing images and has been demonstrated to be com-
petitive with CNNs. The initial ViT implementation was
unable to beat similarly sized CNNs [47], but nevertheless
served as a good demonstration of the multi-modal capabil-
ity of the transformer architecture[40]. Recent adaptations
of the ViT [47][24] [7] introduced convolutional operations
that reduced the computational complexity of self-attention,
making it a viable alternative to popular backbones such
as the ResNet[14]. Twins-PVT [7], used by MVSFormer
[4], is an improvement to the original pyramid vision trans-
former (PVT) [43]. These pyramid-like transformers are
suitable for dense prediction tasks, which typically require
feature maps at various resolutions for a more high-level
understanding of the input. Twins-PVT proposes locally
grouped self-attention (LSA) and global sub-sampled atten-
tion (GSA), which enable efficient self-attention such that
it can be used in real-time vision backbones. LSA is first
computed over parts of the image, after which information
is globally exchanged using GSA.

Some of the drawbacks of using ViTs over CNNs are the
lack of translation invariance, the need for more data for ef-
fective use, and the increase in computational complexity.
CNNs can also deal with varying sizes in input resolution,
whereas the ViT requires multi-scale training to be able to
deal with this [4]. As suggested by [32], ViTs have the
potential to learn more robust feature representations, in-
creasing the generalization capability compared to a CNN.
As shown by [34], ViTs seem to produce more similar fea-
ture representations throughout the network, compared to a
ResNet model having a much lower similarity between the
lower and higher layers. The authors also find that the final
feature outputs of the ViT have quite different representa-
tions than a ResNet output. Because of the self-attention
mechanism, ViTs can ‘see’ the full image from the start,
compared to CNN which starts with a small receptive field
that increases with the network depth. TODE-Trans [16] re-
ported a significant increase in performance metrics by us-
ing a ViT over a CNN. The authors hypothesize that it could
be explained by global understanding caused by the self-
attention. As shown by [12], CNNs tend to focus decisions
on texture, whereas ViTs are more robust to textural dif-
ferences by focusing more on shape [30]. This could poten-
tially have consequences in MVS, where a change in texture
appearance can be caused by moving the camera around.

Compared to 2D tasks, ViTs have only just started being

used in MVS [4] [45] [10], and while impressive numbers
are being reported, we are lacking more fine-grained insight
into the characteristics of the CNN compared to a ViT, as
we have for the 2D cases. More specifically, we are inter-
ested in finding out if the ViT is superior in MVS in terms
of generalizability, in dealing with specular and transparent
objects, and when confronted with a lack of texture.

Benchmarks. Various popular benchmarks exist on
monocular or stereo depth estimation networks, like KITTI
[27] and SceneFlow [25]. For benchmarking MVS meth-
ods, popular benchmarks like DTU [2], Tanks&Temples
[18], ETH3D and BlendedMVS [50] all fail to include more
challenging scenes with transparent objects. For transpar-
ent objects, ClearGrasp [35] and Trans10K [48] are monoc-
ular datasets. TOD [23] explains how to effectively extract
ground-truth depth data from real-world transparent objects,
but is also monocular. ClearPose [6] is a large real-world,
annotated MVS dataset with transparent objects, but does
not have diffuse or specular objects to compare with, mak-
ing it difficult to give a fair comparison with equal con-
ditions. MVTrans [46] recently published Syn-TODD: a
large-scale synthetic MVS dataset with transparent objects,
which nearly fits the purpose of this work, but misses the
focus on discrete materialistic changes on the same objects,
contains varying camera baselines, and is in general not an
ideal controlled setting due to high variation in background
(HDRI with strongly textured flat planes).

Using synthetic over real data has drawbacks, which can
be summarized as the gap between the synthetic and real
data. Synthetic data may contain artifacts or patterns that
a model may overfit on [38], causing suboptimal general-
ization to the real world. The advantages of using synthetic
data are vast and only increase, as the ability to render re-
alistic scenes efficiently improves over time. Some of these
advantages are accurate ground-truth depth and camera po-
sitions, automatic labeling, ease of access to large volumes,
and the flexibility to make changes to the scene composi-
tions as desired. Using this, data can be generated that is
in the long tail of improbable occurrences, which is notori-
ously expensive data to collect in the real world. In the case
of MVS, the biggest advantage is having access to ground-
truth depth data, which would otherwise be challenging and
expensive to obtain.

3. Method
3.1. ToteMVS: A Novel Multi-Material MVS

Dataset
Detecting differences in performance between diffuse,

specular, and transparent objects requires a controlled en-
vironment, including segmentation and ground-truth depth
maps. To fulfill these requirements, we generate our own

4

Figure 4: ToteMVS modalities. From left to right: RGB
image, depth map and segmentation map. Diffuse, specular
and transparent are indicated by red, blue and green respec-
tively.

Figure 5: Textureless ToteMVS variation sample, where all
texture and color is removed from the non-transparent ob-
jects. This data is used to measure the dependency on tex-
tural features.

synthetic dataset titled ToteMVS: a large, labeled dataset
containing six camera angles, 9000 scenes with 40 different
objects, and more than 1000 possible materials, including
ground-truth depth data (see Fig. 4 for a sample). The res-
olution is 768x768, which is similar to other what common
methods use for input size. Our dataset is generated using
NVIDIA Isaac Sim [1], a state-of-the-art simulation envi-
ronment that allows for realistic rendering of our scenes.
The test set (450 scenes) can be found on our GitHub, open-
ing up the possibility for others to evaluate models against
our different material types.

Variation in ToteMVS In order to increase the general-
ization potential of ToteMVS, variation is introduced per
scene through randomly permutating the following selected
properties:

• Objects: during the simulation phase, 8 randomly se-
lected object models are dropped from a fixed height
onto the plane, which contains a randomly rotated tote
bin half of the time. The 40 object models were se-
lected from the KIT object models database [17].

• Light: besides an HDRI map that emits light, a sphere
light is randomly positioned over the scene with vary-
ing intensity, color temperature and radius.

• Material: For every object, a random material class

is assigned (diffuse, specular, transparent), after
which texture randomization is applied using our
parametrized material graph. The plane is assigned
a random color in the interval [0, 0.5] for every color
channel. For added variation, random bump noise and
roughness are added within certain ranges depending
on the material.

Textureless ToteMVS In order to measure the effect of
textural cues on the ability to estimate depth, a second test
set is generated consisting of 450 scenes, where all texture
and color are removed from the non-transparent objects (see
Fig. 5).

3.2. Evaluation
For evaluating our results, we use metrics frequently

used in other depth estimation works [29]. Both metrics
are calculated over the set of N pixels, where every pixel
i 2 N has a predicted depth di and ground-truth depth dgti .

• Sq. Rel:
1

N

P
i2N

|di � dgti |2

dgti

• �-Accuracy: % of pixels s.t. max(
di

dgti
,
dgti
di

) < �

The squared relative error (Sq. Rel.) accounts for the fact
that far-away ground truth is more likely to have a larger ab-
solute error. The squared term weighs outliers more heav-
ily, thus being a metric that is more sensitive to large out-
liers. The accuracy metrics are defined in this work as
�i = 1.0125i for i 2 [1, 2, 3] meaning the threshold is in-
creased in three steps. This metric indicates the percentage
of pixels that are within the given relative error bounds. As
an example, if �1 = 0.9, it means that 90% of the pixels has
a predicted depth within 1.25% of the ground-truth depth.

3.3. Design of Experiments
Because ViTs have only recently started being used in

MVS, obtaining a deeper understanding of its different ca-
pabilities is important in order to justify the architectural de-
cision behind it. Our experiments contribute to this under-
standing by comparing a ViT- and CNN-based MVS back-
bone on diffuse, specular and transparent materials.

MVSFormer[4] is chosen for its novel enrichment of the
FPN with a ViT. For the control experiment, IterMVS[41] is
selected. Compared to MVSFormer, IterMVS has a differ-
ent approach to depth refinement and uses a Gated Recur-
rent Unit (GRU). The aim of experimenting with the second
method is to verify that the relationships found in the results
generalize to other methods.

To evaluate the role of the ViT in predicting depth on
different materials, the Twins-PVT is replaced with the

5

https://github.com/pietertolsma/ToteMVS/

Material Experiment Sq.Rel.# �1 " �2 " �3 "
Diffuse IterMVS (ResNet-50) 0.8923 0.7864 0.8855 0.9181

IterMVS (Twins-PVT) 0.8785 0.7944 0.8883 0.9183
MVSFormer (ResNet-50) 0.5382 0.8730 0.9224 0.9413
MVSFormer (Twins-PVT) 0.5568 0.8804 0.9206 0.9399

Specular IterMVS (ResNet-50) 0.8977 0.7758 0.8831 0.9164
IterMVS (Twins-PVT) 1.0386 0.7770 0.8776 0.9097
MVSFormer (ResNet-50) 0.4920 0.8783 0.9282 0.9482
MVSFormer (Twins-PVT) 0.5455 0.8825 0.9257 0.9446

Transparent IterMVS (ResNet-50) 1.9467 0.4731 0.6899 0.7930
IterMVS (Twins-PVT) 2.2888 0.4689 0.6763 0.7770
MVSFormer (ResNet-50) 0.9627 0.6992 0.8525 0.9007
MVSFormer (Twins-PVT) 0.8555 0.7159 0.8620 0.9098

Table 1: Test scores on ToteMVS after training on ToteMVS. Pretrained backbones are used.
�i = 1.25i% relative error threshold.

ResNet-50[14] (see Fig. 3). The Twins-PVT (small) net-
work has around 24.1M parameters, whereas the ResNet-
50 has 26.79M, and both backbones have publicly available
weights that have been trained on ImageNet-1K [9]. This is
important since ViTs generally require more data to be ef-
fective compared to a CNN. Both the ViT and CNN receive
input that is half the resolution that the FPN receives, an
optimization suggested by MVSFormer in order to reduce
computational cost.

4. Experiments
Training The experiments are run using a single NVIDIA
V100 with 16GB of memory, via the Delft High Perfor-
mance Computing Cluster (DHPC) [8]. After training for
36 hours, the test scores from MVSFormer stagnated around
epoch 11. From the six available viewpoints, a random
camera is set as the reference camera making the remain-
ing the source cameras. The data is divided into a 95/5
train/test split, meaning 8550 scenes are used for training
and the remaining for 450 testing. The original hyperpa-
rameter and learning rate scheduler configuration is copied
from MVSFormer[4]. The correctness of the training setup
is confirmed by reproducing the results from the publicly
available weights (Table A.3).

4.1. Generalization Capability
According to [30, 33, 32], ViTs trained on ImageNet [9]

generalize exceptionally well to other domains. This exper-
iment aims to determine whether this holds for the diffuse,
specular, and transparent cases in MVS. To achieve this,
pre-trained (ImageNet) ResNet-50 and Twins-PVT models
are configured in MVSFormer. The models are first trained
on the DTU dataset, after which they are evaluated on the
ToteMVS dataset. Following the claim of [30], we hypothe-

Figure 6: �1 for models trained on ToteMVS and evaluated
on the test set. MVSFormer performs significantly better on
transparent objects.

Figure 7: UMAP results on feature maps from both Twins-
PVT and ResNet-50. Note how both backbones fail to dis-
cern background from foreground on the plastic bottle.

size that the ViT-based model generalizes better and that the
ViT outperforms the CNN on the transparent objects, due to
the long-range understanding of the scene.

6

Material Experiment Sq.Rel.# �1 " �2 " �3 "
Diffuse ResNet-50 (Trained on DTU) 1.5037 0.6847 0.8565 0.8939

Twins-PVT (Trained on DTU) 0.7437 0.7675 0.8985 0.9278

Specular ResNet-50 (Trained on DTU) 1.5232 0.6863 0.8552 0.8979
Twins-PVT (Trained on DTU) 0.7012 0.7453 0.8947 0.9309

Transparent ResNet-50 (Trained on DTU) 13.5504 0.1164 0.2321 0.3376
Twins-PVT (Trained on DTU) 12.5421 0.1206 0.2469 0.3595

Table 2: Generalization of models trained on DTU and evaluated on ToteMVS. Note how the metrics on the transparent
material are significantly worse compared to the other materials.

�i = 1.25i% relative error threshold.

The results of our experiment can be found in Table 2. It
becomes immediately apparent how poor the generalization
is to transparent objects for both backbones, compared to
the diffuse and specular objects. Fig. 8 shows how the ViTs
predictions are closer to the ground truth, but both strug-
gle greatly with the transparent objects. Interestingly, the
ViT is significantly better at generalizing to our diffuse and
specular objects than the CNN, which partly confirms what
previous literature has to say on the ViTs improved ability
to generalize to other domains.

Figure 8: Inference results when MVSFormer is trained on
DTU, for the ResNet-50 and Twins-PVT based backbones.
Notice how the transparent objects are almost completely
ignored.

4.2. Accuracy of ViT and CNN on Specular and
Transparent Materials

The texture hypothesis by [12] says that CNNs value ob-
ject textures more than global object shapes, and according

to [30] ViTs perform better than CNNs on shape recogni-
tion and dealing with noise and occlusions. While these
findings are undoubtedly relevant to object detection tasks,
it is unclear whether these properties are relevant for MVS,
where the goal is to extract representative features of an ob-
ject surface and not to segment a whole object directly. We
hypothesize that specular and transparent objects have con-
fusing (view-dependent) textures and that a network could
benefit from recognizing a surface based on shape outline,
leading us to think that a ViT-based backbone has the po-
tential to be a superior feature extractor. To answer this
question, the ViT- and CNN-based models are trained on
ToteMVS until convergence. The goal here is to find out
the maximum capability of both configurations to detect the
specular and transparent objects.

Our results in Table 6 and Fig. 1 tell a different story than
our hypothesis. We observe that the ResNet-50 is nearly just
as capable of learning to detect transparent objects. To qual-
itatively compare the feature maps from both backbones, we
apply UMAP [26], a method for reducing the dimensional-
ity of data while maximizing the retention of the original
structure. Interestingly, the CNN- and ViT-based mapped
features in Fig. 7 clearly show that the background behind
the transparent object appears through the foreground. Ide-
ally, the feature extractor learns to ignore the background,
increasing the ability to match foreground features prop-
erly. The results further show that compared to IterMVS,
MVSFormer is significantly better at dealing with transpar-
ent objects, which cannot be explained by the feature ex-
traction stage as these are identical. This suggests that the
3D CNNs used by MVSFormer are an effective method for
transparent objects.

4.3. Robustness to Lack of Textural Features

As mentioned in the related works, for 2D tasks ViTs
seem to be more shape-oriented and less sensitive to tex-
ture compared to CNNs. In this experiment, the goal is
to determine whether these characteristics also hold for
MVS feature extraction, where specular and transparent ob-

7

Figure 9: �1 score of testing on textureless ToteMVS, after
training on the normal (textured) ToteMVS.

jects are considered as having inconsistent textures between
views. This leads us to hypothesize that ViTs could extract
more representative features on texture-less surfaces. After
training on the standard ToteMVS, the model is evaluated
against the texture-less ToteMVS (see Fig. 5) to measure
any dependency on textural features.

Our results can be seen in Fig. 9 and Table A.4. We find
no discrepancy with the original textured results from the
previous experiment, indicating that both the ViT and CNN
can function when texture and color are removed from the
scene.

4.4. Ablations
Problems with Transposed Convolutions. As visually
explained by [31], checkerboard artifacts can be the re-
sult of transposed convolutions (or ’deconvolutions’). We
found that the decoder stage from the ViT part of the
backbone suffered from these artifacts, caused by the
ConvTranspose2D layer from the PyTorch library. Re-
placing this layer with bilinear upsampling combined with
a standard convolutional layer resolves the problem. The
feature maps become smoother and the evaluation metrics
improve slightly (see Table A.5).

The effect of the refinement stages MVSFormer, like
other MVS methods, constructs a coarse-to-fine cost vol-
ume by warping features from source views to fronto-
parallel planes to the reference camera frame at discrete
depth hypothesis intervals. It must be noted that compared
to a 2D CNN, 3D CNNs are expensive to run due to the
rapid increase of trainable parameters as the volume grows.
In Fig. 10 the intermediate �1 metrics are visualized per
stage and per material. Surprisingly, besides the diminish-

Figure 10: Influence of the individual stages of MVSFormer
on the final accuracy per material, trained on ToteMVS and
tested on the ToteMVS test set. The stages 1 to 4 refer to
the cost volumes depicted in Fig. 3, from the bottom to the
top. Note how the last two stages barely influence the final
outcome.

ing effect of the later refinement stages, the final stage only
has a detrimental effect. The same effect occurs on the DTU
dataset, visualized in Fig. A.1. Every refinement stage in
MVSFormer has around 0.3M parameters since the channel
size and hypothesis interval are reduced when the resolution
increases in order to keep a constant size. Since the final
stage is redundant, we run an experiment where we remove
the final stage, and ’spend’ the 0.3M parameters on the prior
stages by increasing the channel sizes to [80, 40, 20] from
small to large resolution respectively. We measure a slight
overall improvement, as denoted in Table A.5.

The effect of the FPN Combining the ViT features with
an FPN is an atypical approach suggested in MVSFormer,
which aims to combine a computationally efficient ViT
with a standard CNN. We hypothesize that the ViT features
can become ‘contaminated‘ with the view-dependent effects
that the FPN extracts from the full-scale input images, and
that skipping the FPN will be beneficial for depth prediction
on transparent materials.

Since the ViT produces features that are at a much
smaller scale than the target output, we construct a second
decoder network that takes in the ViT features and upsam-
ples them to the appropriate sizes, allowing them to be fed
directly into the regularization part. In Fig. 11 we visualize
the results. We notice that the error rates decline slightly,
together with the accuracy (see Table A.2). We believe that
this could be explained by the fact that the network only re-
ceives half the original resolution of the input, which causes

8

a coarser matching process.

Figure 11: Effect of removing the FPN from both ViT and
CNN-based backbones.

5. Discussion
As explained in the related works, ViTs can be more ro-

bust and shape-oriented than a similar-sized CNN, and we
related this to the domain of MVS. While our results show
(both quantitatively and qualitatively) that the Twins-PVT
generalizes slightly better for diffuse and specular materials
than a ResNet-50, we do not find a significant advantage of
the ViT for dealing with specular and transparent objects.
The feature maps showed no indication that the ViT dealt
with transparent objects differently, as both types showed
the background visible through the objects. We want to em-
phasize that prior works on comparing ViTs to CNNs were
mostly on 2D tasks and that our experiments cannot be di-
rectly compared to these earlier findings.

Future work We believe it would be interesting to test
the differences between 2D tasks (e.g. image segmentation
or monocular depth estimation) and the 3D task of MVS.
Our hypothesis is that feature extraction for 2D tasks has a
different objective, which we believe is producing homoge-
neous features on similar areas, whereas for MVS the per-
formance would improve when features are as distinctive
as possible in order to increase the confidence in matching
between views. Perhaps, novel ways can be found that are
specialized for this kind of goal.

Additionally, we see a parallel in feature matching across
views and self-attention. From a broad perspective, match-
ing a feature (query) to a range of features along the epipo-
lar line (keys) is similar to self-attention. In this work, we
solely evaluated the role of a ViT as a feature extractor. Be-
cause of the context awareness property, we believe that the

principles of transformers could be further applied in differ-
ent forms to MVS. A method that does something like this
is MVSTER [45].

Lastly, the results show a large gap between the perfor-
mance of MVSFormer and IterMVS on transparent objects,
which cannot be explained by the feature extraction back-
bone. Future work can focus on determining what makes
MVSFormer so much better at this task. Since the feature
extraction process is identical, the regularization stage is
likely responsible for this accuracy gain.

6. Conclusion
In this work, we introduced ToteMVS: a novel, multi-

material synthetic MVS dataset that allows for compari-
son between diffuse, specular and transparent materials in
a controlled manner. In this work, we used ToteMVS to
find out if a ViT can outperform a similar-sized CNN in the
role of a feature extractor of MVS models. We found that
transparent objects are significantly more difficult to deal
with compared to their diffuse and specular counterparts.
While the Twins-PVT (ViT) backbone showed significantly
better generalization capability compared to the ResNet-50
(CNN), we found that both achieved similar results when
trained on our data. Furthermore, we did not find an advan-
tage of the Twins-PVT when textural features were removed
from the scene. Our work is in contrast with the popular
belief that ViTs should outperform CNNs, which we hope
adds to the ongoing development of future MVS methods.

References
[1] NVIDIA Isaac. Available at https://docs.nvidia.

com/isaac/index.html, 2023. Accessed on June 13,
2023.

[2] H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B.
Dahl. Large-scale data for multiple-view stereopsis. Inter-
national Journal of Computer Vision, pages 1–16, 2016.

[3] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M.
Umar, O. U. Linus, H. Arshad, A. A. Kazaure, U. Gana,
and M. U. Kiru. Comprehensive review of artificial neural
network applications to pattern recognition. IEEE Access,
7:158820–158846, 2019.

[4] C. Cao, X. Ren, and Y. Fu. Mvsformer: Multi-view stereo by
learning robust image features and temperature-based depth.
Transactions of Machine Learning Research, 2023.

[5] J.-R. Chang and Y.-S. Chen. Pyramid Stereo Matching Net-
work, Mar. 2018. arXiv:1803.08669 [cs].

[6] X. Chen, H. Zhang, Z. Yu, A. Opipari, and O. Chad-
wicke Jenkins. Clearpose: Large-scale transparent object
dataset and benchmark. In European Conference on Com-
puter Vision, pages 381–396. Springer, 2022.

[7] X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia,
and C. Shen. Twins: Revisiting the design of spatial atten-
tion in vision transformers. Advances in Neural Information
Processing Systems, 34:9355–9366, 2021.

9

https://docs.nvidia.com/isaac/index.html
https://docs.nvidia.com/isaac/index.html

[8] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https:

//www.tudelft.nl/dhpc/ark:/44463/

DelftBluePhase1, 2022.
[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[10] Y. Ding, W. Yuan, Q. Zhu, H. Zhang, X. Liu, Y. Wang,
and X. Liu. Transmvsnet: Global context-aware multi-
view stereo network with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8585–8594, 2022.

[11] Y. Furukawa, C. Hernández, et al. Multi-view stereo: A tu-
torial. Foundations and Trends® in Computer Graphics and
Vision, 9(1-2):1–148, 2015.

[12] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-
mann, and W. Brendel. Imagenet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy
and robustness. In International Conference on Learning
Representations, 2019.

[13] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan. Cascade
cost volume for high-resolution multi-view stereo and stereo
matching. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2495–2504,
2020.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, Los Alamitos, CA, USA, jun 2016. IEEE Computer So-
ciety.

[15] M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang. Surfacenet: An
end-to-end 3d neural network for multiview stereopsis. In
Proceedings of the IEEE international conference on com-
puter vision, pages 2307–2315, 2017.

[16] B. X. D. L. Z. K. Kang Chen, Shaochen Wang and B. Li.
Tode-trans: Transparent object depth estimation with trans-
former. arXiv preprint arXiv:2209.08455.

[17] A. Kasper, Z. Xue, and R. Dillmann. The kit object mod-
els database: An object model database for object recogni-
tion, localization and manipulation in service robotics. The
International Journal of Robotics Research, 31(8):927–934,
2012.

[18] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks
and temples: benchmarking large-scale scene reconstruction.
ACM Transactions on Graphics, 36(4):1–13, Aug. 2017.

[19] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold,
J. Uszkoreit, L. Beyer, M. Minderer, M. Dehghani,
N. Houlsby, S. Gelly, T. Unterthiner, and X. Zhai. An image
is worth 16x16 words: Transformers for image recognition
at scale. 2021.

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[21] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989.

[22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2117–2125, 2017.

[23] X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige.
Keypose: Multi-view 3d labeling and keypoint estimation for
transparent objects. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
11602–11610, 2020.

[24] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2021.

[25] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train con-
volutional networks for disparity, optical flow, and scene
flow estimation. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134.

[26] L. McInnes, J. Healy, N. Saul, and L. Grossberger. Umap:
Uniform manifold approximation and projection. The Jour-
nal of Open Source Software, 3(29):861, 2018.

[27] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[28] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis, Aug. 2020.
arXiv:2003.08934 [cs].

[29] Y. Ming, X. Meng, C. Fan, and H. Yu. Deep learning for
monocular depth estimation: A review. Neurocomputing,
438:14–33, 2021.

[30] M. M. Naseer, K. Ranasinghe, S. H. Khan, M. Hayat,
F. Shahbaz Khan, and M.-H. Yang. Intriguing properties of
vision transformers. Advances in Neural Information Pro-
cessing Systems, 34:23296–23308, 2021.

[31] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and
checkerboard artifacts. Distill, 2016.

[32] N. Park and S. Kim. How do vision transformers work?
In International Conference on Learning Representations,
2022.

[33] S. Paul and P.-Y. Chen. Vision transformers are robust learn-
ers. In Proceedings of the AAAI conference on Artificial In-
telligence, volume 36, pages 2071–2081, 2022.

[34] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and
A. Dosovitskiy. Do vision transformers see like convolu-
tional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

[35] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng,
and S. Song. Clear grasp: 3d shape estimation of transparent
objects for manipulation. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 3634–
3642. IEEE, 2020.

[36] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion
Revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

10

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

[37] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In 2006 IEEE computer
society conference on computer vision and pattern recogni-
tion (CVPR’06), volume 1, pages 519–528. IEEE, 2006.

[38] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsupervised
images through adversarial training. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2107–2116, 2017.

[39] S. Ullman. The interpretation of structure from motion. Pro-
ceedings of the Royal Society of London. Series B. Biological
Sciences, 203(1153):405–426, 1979.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing sys-
tems, 30, 2017.

[41] F. Wang, S. Galliani, C. Vogel, and M. Pollefeys. Iter-
MVS: Iterative Probability Estimation for Efficient Multi-
View Stereo, Dec. 2021. arXiv:2112.05126 [cs].

[42] F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys.
PatchmatchNet: Learned Multi-View Patchmatch Stereo. In
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 14189–14198, Nashville,
TN, USA, June 2021. IEEE.

[43] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu,
P. Luo, and L. Shao. Pyramid vision transformer: A versa-
tile backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 568–578, 2021.

[44] X. Wang, C. Wang, B. Liu, X. Zhou, L. Zhang, J. Zheng,
and X. Bai. Multi-view stereo in the deep learning era: A
comprehensive review. Displays, 70:102102, 2021.

[45] X. Wang, Z. Zhu, G. Huang, F. Qin, Y. Ye, Y. He, X. Chi,
and X. Wang. Mvster: epipolar transformer for efficient
multi-view stereo. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXI, pages 573–591. Springer, 2022.

[46] Y. R. Wang, Y. Zhao, H. Xu, S. Eppel, A. Aspuru-Guzik,
F. Shkurti, and A. Garg. MVTrans: Multi-View Perception
of Transparent Objects, Feb. 2023. arXiv:2302.11683 [cs].

[47] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and
L. Zhang. Cvt: Introducing convolutions to vision transform-
ers. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 22–31, 2021.

[48] E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, and P. Luo.
Segmenting transparent objects in the wild. arXiv preprint
arXiv:2003.13948, 2020.

[49] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth
inference for unstructured multi-view stereo. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 767–783, 2018.

[50] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang,
and L. Quan. Blendedmvs: A large-scale dataset for gen-
eralized multi-view stereo networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1790–1799, 2020.

[51] J. Zbontar and Y. LeCun. Computing the stereo matching
cost with a convolutional neural network. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1592–1599, 2015.

[52] J. Zhang, Y. Yao, S. Li, Z. Luo, and T. Fang.
Visibility-aware multi-view stereo network. arXiv preprint
arXiv:2008.07928, 2020.

[53] Z. Zhang. Flexible camera calibration by viewing a plane
from unknown orientations. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, vol-
ume 1, pages 666–673 vol.1, 1999.

[54] L. Zhu, A. Mousavian, Y. Xiang, H. Mazhar, J. van Eenber-
gen, S. Debnath, and D. Fox. Rgb-d local implicit function
for depth completion of transparent objects, 2021.

[55] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner,
R. Klein, and A. Kolb. State of the art on 3d reconstruc-
tion with rgb-d cameras. In Computer graphics forum, vol-
ume 37, pages 625–652. Wiley Online Library, 2018.

11

A. Additional Tables and Figures
Explanation of metrics used in the following tables:

• RMSE:
r

1

N

P
i2N |di � dgti |2

• RMSElog:
r

1

N

P
i2N |log(di)� log(dgti)|2

• Abs. Rel:
1

N

P
i2N

|di � dgti |
dgti

• Sq. Rel:
1

N

P
i2N

|di � dgti |2

dgti

• �-Accuracy: % of pixels s.t. max(
di

dgti
,
dgti
di

) < �

Figure A.1: Influence of stage on the final accuracy per ma-
terial on DTU [2].

12

Material Experiment A.Rel.# Sq.Rel.# RMSE# RMSElog# �1 " �2 " �3 "
Diffuse IterMVS (ResNet-50) 0.1366 0.8923 22.2930 0.2628 0.7864 0.8855 0.9181

IterMVS (Twins-PVT) 0.1340 0.8785 23.0048 0.2688 0.7944 0.8883 0.9183
MVSFormer (ResNet-50) 0.0983 0.5382 18.5555 0.2137 0.8730 0.9224 0.9413
MVSFormer (Twins-PVT) 0.0953 0.5568 19.4142 0.2230 0.8804 0.9206 0.9399

Specular IterMVS (ResNet-50) 0.1386 0.8977 21.3466 0.2522 0.7758 0.8831 0.9164
IterMVS (Twins-PVT) 0.1488 1.0386 24.0194 0.2839 0.7770 0.8776 0.9097
MVSFormer (ResNet-50) 0.0943 0.4920 17.8147 0.2073 0.8783 0.9282 0.9482
MVSFormer (Twins-PVT) 0.0937 0.5455 19.0367 0.2185 0.8825 0.9257 0.9446

Transparent IterMVS (ResNet-50) 0.2750 1.9467 34.4508 0.4069 0.4731 0.6899 0.7930
IterMVS (Twins-PVT) 0.2964 2.2888 37.5437 0.4445 0.4689 0.6763 0.7770
MVSFormer (ResNet-50) 0.1623 0.9627 24.8356 0.2868 0.6992 0.8525 0.9007
MVSFormer (Twins-PVT) 0.1518 0.8555 24.1044 0.2785 0.7159 0.8620 0.9098

Table A.1: Results on ToteMVS for the different materials. Pretrained backbones are used.
�i = 1.25i% relative error threshold.

Material Experiment A.Rel.# Sq.Rel.# RMSE# RMSElog# �1 " �2 " �3 "
Diffuse ResNet-50 (no FPN) 0.0996 0.5456 18.4374 0.2134 0.8674 0.9207 0.9410

ResNet-50 (with FPN) 0.0983 0.5382 18.5555 0.2137 0.8730 0.9224 0.9413
Twins-PVT (no FPN) 0.0948 0.4900 18.2373 0.2103 0.8722 0.9227 0.9437
Twins-PVT (with FPN) 0.0953 0.5568 19.4142 0.2230 0.8804 0.9206 0.9399

Specular ResNet-50 (no FPN) 0.0961 0.4790 17.6827 0.2044 0.8632 0.9289 0.9498
ResNet-50 (with FPN) 0.0943 0.4920 17.8147 0.2073 0.8783 0.9282 0.9482
Twins-PVT (no FPN) 0.0945 0.4823 17.9918 0.2076 0.8712 0.9273 0.9477
Twins-PVT (with FPN) 0.0937 0.5455 19.0367 0.2185 0.8825 0.9257 0.9446

Transparent ResNet-50 (no FPN) 0.1584 0.8742 23.8879 0.2776 0.6893 0.8544 0.9067
ResNet-50 (with FPN) 0.1623 0.9627 24.8356 0.2868 0.6992 0.8525 0.9007
Twins-PVT (no FPN) 0.1567 0.8036 23.4757 0.2726 0.6804 0.8507 0.9055
Twins-PVT (with FPN) 0.1518 0.8555 24.1044 0.2785 0.7159 0.8620 0.9098

Table A.2: Measuring the effect of the FPN on MVSFormer for both ViT and CNN.
�i = 1.25i% relative error threshold.

Experiment A.Rel.# Sq.Rel.# RMSE# RMSElog# �1 " �2 " �3 "
Twins-PVT (Original Weights) 19.8490 0.0071 1.5927 0.0255 0.9461 0.9607 0.9677
Twins-PVT (Reproduced) 19.6378 0.0076 1.5583 0.0253 0.9440 0.9589 0.9656
ResNet-50 (Reproduced) 18.6527 0.0072 1.0488 0.0242 0.9327 0.9528 0.9614

Table A.3: Reproduction experiment of MVSFormer on DTU. Only Twins-PVT weights were shared by the original author.
�i = 1.25i% relative error threshold.

13

Material Experiment A.Rel.# Sq.Rel.# RMSE# RMSElog# �1 " �2 " �3 "
Diffuse IterMVS (ResNet-50) 0.1557 1.2405 23.1547 0.2755 0.7376 0.8686 0.9124

IterMVS (Twins-PVT) 0.1794 1.3888 25.8630 0.3114 0.7272 0.8544 0.8919
MVSFormer (ResNet-50) 0.1032 0.5467 19.3285 0.2227 0.8530 0.9129 0.9377
MVSFormer (Twins-PVT) 0.0999 0.5412 19.3313 0.2212 0.8604 0.9167 0.9400

Specular IterMVS (ResNet-50) 0.1673 1.1327 23.8771 0.2834 0.7006 0.8540 0.9024
IterMVS (Twins-PVT) 0.1678 1.1664 26.1316 0.3056 0.7070 0.8494 0.8947
MVSFormer (ResNet-50) 0.1157 0.6903 20.4088 0.2370 0.8324 0.9057 0.9311
MVSFormer (Twins-PVT) 0.1111 0.6992 20.3546 0.2350 0.8479 0.9103 0.9334

Transparent IterMVS (ResNet-50) 0.3106 2.6305 37.2582 0.4453 0.4297 0.6514 0.7650
IterMVS (Twins-PVT) 0.3370 3.2698 41.7973 0.4924 0.4177 0.6356 0.7414
MVSFormer (ResNet-50) 0.1837 1.2503 27.3410 0.3160 0.6620 0.8260 0.8819
MVSFormer (Twins-PVT) 0.1705 1.0626 25.8622 0.2985 0.6834 0.8416 0.8945

Table A.4: Results on textureless ToteMVS for the different materials. Pretrained backbones are used.
�i = 1.25i% relative error threshold.

Material Experiment Sq.Rel.# �1 " �2 " �3 "
Diffuse ResNet-50 0.5382 0.8730 0.9224 0.9413

Twins-PVT (3 Stages) 0.5435 0.8838 0.9223 0.9408
Twins-PVT (Bilinear + Conv) 0.4821 0.8873 0.9273 0.9456
Twins-PVT (Default) 0.5568 0.8804 0.9206 0.9399

Specular ResNet-50 0.4920 0.8783 0.9282 0.9482
Twins-PVT (3 Stages) 0.5135 0.8837 0.9267 0.9453
Twins-PVT (Bilinear + Conv) 0.4749 0.8864 0.9310 0.9496
Twins-PVT (Default) 0.5455 0.8825 0.9257 0.9446

Transparent ResNet-50 0.9627 0.6992 0.8525 0.9007
Twins-PVT (3 Stages) 0.7771 0.7225 0.8685 0.9149
Twins-PVT (Bilinear + Conv) 0.7307 0.7228 0.8688 0.9158
Twins-PVT (Default) 0.8555 0.7159 0.8620 0.9098

Table A.5: Overview of ablation effects on MVSFormer, trained and tested on ToteMVS.
�i = 1.25i% relative error threshold.

14

Figure A.2: Twins-PVT vs ResNet-50 based depth predictions using MVSFormer[4] trained on ToteMVS.

15

3
Supplementary Material

3.1. Mathematical Foundations
In order to understand how multiple views are combined in order to predict depth, it is important to
understand the underlying mathematics first, which comes down to basic linear algebra. In this section, we
briefly summarize some of the linear algebra that is used in further sections.

3.1.1. Basic Vector Operations
• Dot product: the dot product between two vectors a and b of length n is given by a · b = a1b1 + a2b2 +
· · ·+ anbn. The dot product is only defined for vectors of equal length.

• Matrix multiplication: to multiply two matrices A of size (m,n) and B of size (n, k), you construct a
new matrix of size (m, k) such that every element is the dot product between a column of A and a
row of B. Mathematically, this can be written as C = A⇥B such that Cij =

P
n

k=1 Aik ·Bkj .
• Inverse matrices: the inverse of a matrix A, denoted as A�1, is a matrix such that AA�1 = I where
I is the identity matrix.

3.1.2. Basis and Coordinate Systems
A collection of points can be described using a coordinate system, most often in 2D or 3D space. All points
have a relative position to each other and can be viewed from different positions or angles, just like in the
real world. The default point of reference, or standard basis, is defined by the identity matrix forming the
basis vectors. Any vector or point in this space can be described as a linear combination of these basis
vectors. Defining this is useful when we need to change our coordinate system, which could be described
by moving a camera around the scene. Doing so changes the position of the points in space relative to the
camera, but not relative to each other.

Switching between frames of reference is easy, as all we need is the basis of the two reference frames.
For example, take references 1 and 2 described by E1 and E2. To go from reference system 1 to 2, we first
move to the standard basis by computing the inverse of E1, and then move to the basis of 2 by multiplying
with E2. Combined, we simply multiply every point in our space with E2E

�1
1 .

3.1.3. Rigid Transformations
For moving a camera around a scene, two primitive operations are important: rotating and translating
(moving). These kinds of transformations are called rigid transformations since the relative position
between any point in the vector space remains the same. Here, we assume a 3D space. Given a rotation
defined by 3x3 matrix R, and a translation defined by 1x3 vector T , any point can be transformed using
this equation: u2 = Ru1 + T . To simplify this equation, we can write it down using the augmented form,

A =
h
R T

i
=

2

6664
R T

0 0 0 1

3

7775

17

3.2. Stereo Depth Estimation Fundamentals 18

Figure 3.1: An example camera frustum describing the pinhole model.

To use the augmented matrix, any point that is being multiplied by it must also be augmented, meaning
ua = [u|1]. It is trivial to see that Aua = Ru + T . A useful property of the augmented form is that it is
easier to invert transformations compared to the prior form. We can now describe a camera’s position and
viewing direction using the augmented form.

3.2. Stereo Depth Estimation Fundamentals
3.2.1. The Pinhole Camera Model
The pinhole camera model (see Fig. 3.1) is a simplified model of how a camera sensor perceives the 3D
world on a 2D surface (the image plane), by modeling how light travels through a small hole (pinhole). Even
though it is a relatively simple model, it provides a useful and intuitive way of dealing with world-to-camera
(w2c) and camera-to-world (c2w) projections. This model uses the following matrices:

Intrinsic matrix

K =

2

64
fx s cx 0

0 fy cy 0

0 0 1 0

3

75

Where:
fx : Focal in x direction in pixels / mm
fy : Focal in y direction in pixels / mm
s : Axis skew (often 0)
cx : Center offset in x

cy : Center offset in y

Extrinsic matrix

h
R T

i

Where:

R : Rotation matrix
T : Translation vector

Note : Matrix in augmented form

Using the above matrices, we can calculate the camera matrixM , which converts 3D world coordinates
to 2D pixel coordinates on the camera image plane.

M = K
h
R T

i

Conversely, the intrinsic and extrinsic matrices can be used to map 2D pixel coordinates to the 3D world.
Note that because of the augmented form of the camera matrix, coordinates must also be in augmented
form.

3.2.2. Mapping Pixels to Pixels Using Depth
In the scenario where we have multiple images of the same scene accompanied by the exact camera
extrinsic and intrinsic matrices, we can warp one viewpoint to the other using the pinhole camera model

3.2. Stereo Depth Estimation Fundamentals 19

Figure 3.2: The plane defined by the two optical centers and the query vector define the epipolar search
line.

described in the previous section. Note that for this to work, we need an accurate depth map for I1, denoted
as d in the following transformation.

Given two images with an estimated depth per pixel zi, intrinsic matrices K1,K2 and extrinsic matrices
E1, E2, we can map a pixel coordinate from I1, written as u1 in augmented form to the coordinate system
of I2, written as u2 with the following transformation:

W ⇡ E2E
�1
1

"
(K�1

1 u1)zi
1

#

u
0

2 ⇡ K2

2

64
Wx/Wz

Wy/Wz

1

3

75

This series of transformations can be broken down into three steps:

1. (K�1
1 u1)zi: Project the 2D points to the image plane in 3D from the reference point of camera 1.

Multiply by the depth values per pixel to get the 3D positions from the camera’s 1 point of view.
2. E2E

�1
1 : Change the basis of the 3D coordinates by computing the relative difference between

cameras 1 and 2.

3. K2

2

64
Wx/Wz

Wy/Wz

1

3

75: First project the points onto the image plane by dividing by their z values. Finally,

obtain their 2D pixel coordinates by multiplying them with the intrinsic matrix of camera 2.

Since zi is an estimation, the precision of the mapping depends on the precision of this estimation.
Given two depth predictions, the consistency can be evaluated by warping between pairs of images’ points
of view and calculating the error.

The principles above can be used inversely: given an estimated mapping from u1 ! u
0

2, we can
calculate a depth estimation zi. This is the fundamental mechanic behind MVS depth estimation.

3.2.3. Classic Epipolar Geometry
In the previous part, we explained how you can perfectly map viewpoints from one to the other if you have
access to an accurate depth prediction, and how an inaccurate depth map will lead to misaligned points
in the mapping. Aligning points such that they do match is the core principle behind epipolar matching

3.2. Stereo Depth Estimation Fundamentals 20

Figure 3.3: The 1D search space for any epipolar matching algorithm on the pixel level (simplified
representation).

strategies, that predict depth values based on correspondence between features or pixels. The amount
of which a surface point moves between views is also often called disparity. A naive way of predicting
disparity would result in a 2D search space (across the whole image). Here, we explain how epipolar
geometry can drastically decrease this search space.

Given two cameras with optical centers Ol, Or, we can draw a baseline between the two points (see
Fig. 3.2). Next, we select a query point in one of the image planes, through which we shoot a ray from the
optical center through the designated pixel. As the figure shows, the baseline and the query ray form a
plane on which the epipolar line is defined as the intersection of the epipolar plane with the reference
image plane.

The epipolar line restricts the search of a corresponding surface point from a 2D space to a (much
smaller) 1D space (see Fig. 3.3). Even though this seems to solve all of our problems, the next section will
explain why this method is far from perfect.

3.2.4. Challenges with Epipolar Matching
This part highlights some of the main problems with epipolar matching, describing why estimating depth
with epipolar matching can lead to ambiguous situations.

Occlusions appear when one camera can see something that the other cannot. Depending on the
scene, increasing the baseline impacts the chance of occlusions between views.

Textureless regions cause ambiguity when matching pixels along the epipolar line, due to the fact
that just based on pixel color multiple options can seem optimal.

View-dependent effects are like the opposite problem of the prior case, because now the surface
changes depending on the light and viewing direction, making it much harder to match pixels. This effect
is especially strong on transparent and highly reflective surfaces.

3.2.5. Camera setup
Even though there are an infinite number of ways one could set up a stereo pair of cameras, there are
trade-offs to be made.

1. Horizontally aligned parallel cameras lead to perfectly horizontal epipolar lines. This has the
advantage of reduced computational complexity since one would only need to find correspondence
along the horizontal axis of the image. The downside is that both cameras see parts of the scene
that the other cannot, depending on the baseline.

3.3. Structure from Motion 21

Figure 3.4: COLMAP scene reconstruction example on DTU scene 1.

2. A strong toe-in will ensure both cameras see the same object, which is important for the matching
part. Note that a strong toe-in will increase the amount of occlusion depending on how close an object
is to the camera and the baseline. A strong toe-in also results in a keystone distortion, meaning the
warped views will be more like a trapezoid than a rectangular plane.

Depending on the situation and requirements (number of cameras, distance to object, completeness to
name a few) one should decide on the optimal setup for the cameras.

3.3. Structure from Motion
Structure from Motion (SfM) is a method for estimating 3D structures from multiple 2D images, while
simultaneously estimating camera positions and orientations. Whereas modern deep-learning-based MVS
methods focus on estimating depth based on disparity and known camera poses, giving a more complete
view, SfM is typically less complete but extremely accurate. This makes it a useful tool for estimating
camera orientations that can be used in other MVS methods.

The SfM problem can be formulated as: given a pair of images, how can we extract the relative camera
position and orientations and reconstruct the 3D geometry of the scene? The first work to address this
problem was by [7], who introduced a method for estimating stereo camera orientation based on matching
points between pairs, later called the eight-point algorithm. This method is known to be sensitive to noise
but was a first step in the right direction.

SfM assumes that the camera intrinsics are known, such as the focal length, skew, and camera offset.
These intrinsics can be estimated using the Zhang method [8], which can estimate the parameters based
on images from a known checkerboard pattern.

Extracting features is a critical step in SfM. Features are optimal when they can be extracted consistently
between views, and do not change depending on the viewing direction (for example with reflective surfaces).
Texture variation is also important, as extracting features on textureless surfaces is difficult.

Using the learned features, 3D structure can be estimated through triangulation. Once initial 3D points
and camera positions are estimated, they are optimized to minimize the reprojection error. This produces a
sparse, but accurate point cloud as shown in Fig. 3.4. A practical environment for running state-of-the-art
SfM algorithms is COLMAP. COLMAP [9] is an open-source all-in-one SfM and MVS utility that is widely
used by researchers and developers. It is important to note that COLMAP deploys a wide range of
techniques that others created.

Fig. 3.4 shows the end-product of a scene reconstruction using the GUI version of COLMAP. Through
the CLI version, this process can be automated as a preprocessing step, for example, to extract camera
positions and orientations.

3.4. Deep Learning 22

3.4. Deep Learning
In this section, we go over the core principles behind deep learning with a focus on computer vision.
After reading this chapter, you should hopefully have a clear idea of why deep learning should be able to
overcome the challenges with classical stereo-vision matching methods.

3.4.1. Core Principles
Deep learning methods allow us to learn patterns in our data without explicitly telling it how to do so. In the
most simple terms, we feed a neural network input data and compare the predicted output to our target
output. The word ”deep” comes from the number of layers that are used in the network. To understand
why deep neural networks exist, we first start at the beginning.

The Perceptron
The perceptron [10] was originally inspired by the neurons of the brain, which learn by regularly activating
specific neural pathways. A perceptron can have 1 or more inputs and can be used as a trainable binary
classification model. The formal definition is as follows:

y =

(
1 if

P
n

i=1 wixi + b > 0

0 otherwise

The perceptron forms a plane in the space of possible inputs, where anything above the plane would be
classified as 1 and anything below the plane as 0. While the perceptron was one of the early steps to
modern artificial intelligence, it had big shortcomings. Most notably, the perceptron is not able to learn the
XOR function due to its inherent linear shape.

Loss Functions
In order for any model to ”learn”, its weights must be adjusted or nudged in the right direction such that the
difference between the model output and our target output becomes smaller. To adjust the weights, we
must figure out in what direction to move them. The right direction can be found by taking the derivative of
the loss function with respect to the model parameters. This technique is called gradient descent. Let us
first give the formal definition of a loss function:

L(✓) = 1

N

NX

i=1

`(yi, f(xi; ✓))

The loss function gives the average loss per (xi, yi) pair taken from our training data. A popular loss
function is the Mean-Squared Error (MSE):

MSE =
1

N

NX

i=1

(yi � ŷi)
2

In order to determine the right direction for our model parameters to move in, we find the derivative of
the MSE in the case of a simple perceptron with respect to the weights. Note that we simplify the notationP

n

i=1 wixi + b = WTX + b.
�y

�W
=

2

N

NX

i=1

(yi �WTXi � b)(�Xi)

Using this formula we can now calculate the gradient of the loss function with respect to the weights.
Since our goal is to minimize the loss, we correct the weights by a factor of the opposite direction. This
factor is also called the learning rate ✏:

✓0 = ✓ � ✏
�y

�✓
(x; y; ✓)

This process can be repeated until the model converges or after a fixed number of iterations. The
learning rate is an important hyperparameter that heavily influences whether the model can find it’s global
minimum. If the learning rate is too high, the model may skip over the global minimum and fail to reach it.

3.4. Deep Learning 23

If the learning rate is too low, the model may get stuck in a local minimum. There is no clear rule for the
optimum learning rate, but there are strategies that can give a performance boost (read more about it in
the subsection about optimizers).

The Multi-Layer Perceptron

(a) Classic perceptron is unable to perfectly divide the two
classes

(b) MLP with ReLU and Sigmoid activation function

Figure 3.5: Learning the XOR function

The Multi-Layer Perceptron (MLP) was proposed by the same author years later and solves the issue
of linearity by adding hidden layers with nonlinear activation functions in between. The hidden layer can
be described using the following formula:

f l

i
(x) = �(wl

0 +
NX

n=1

wl

n
f l�1
n

)

The activation functions allow the decision boundary to become nonlinear (see Fig. 3.5), giving the model
more flexibility. See Fig. 3.6 for an overview of the most commonly used activation functions.

Figure 3.6: Common activation functions used in deep learning.

Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is an optimization of the standard gradient descent, where the objective
is to find the optimal weights as quickly as possible. Whereas classic gradient descent calculates the
gradient based on the whole training data, SGD splits the data into ”batches” with a fixed size. On every
iteration, a batch is randomly selected, and only the resulting loss is used to update the weights. This way,

3.4. Deep Learning 24

weights are updated more often, and more noise is added allowing weights to escape local minima. There
are many other optimization methods, such as RMSProp or Adam, which are more advanced methods
that we suggest the reader look into when designing a training method.

3.4.2. Convolutional Neural Networks
Detecting patterns in images through the use of classic MLP networks has limitations, but has notoriously
been demonstrated to work for simple black-and-white images to detect single-handwritten digits. Simply
by taking every row of pixels and concatenating them, a network can be built that accepts every pixel as
input. This is far from ideal: the network would overfit the training data for more complex cases, and since
colored images are usually composed of red, green, and blue (RGB) channels, the number of learnable
weights explodes as well. The convolutional neural network [11] (CNN) was able to overcome these
problems and has become a fundamental element in modern computer vision.

Instead of having a weight for every input, square n⇥ n kernels are convoluted over the input image,
thereby transforming the raw image into features. As a very basic example, take the following kernel:

K =

2

64
1 0 �1

1 0 �1

1 0 �1

3

75

The star ? notation is typically used to indicate that a kernel is applied to a matrix. The operation
translates to the following mathematical expression:

(I ?K)ij =
nX

a=1

nX

b=1

Ii+a�1,j+b�1 · kab

Note that applying a n⇥ n kernel to a matrix will shrink the width and height by (n� 1). To maintain
the same size, the image can be padded with values according to some strategy (e.g. constant values).
Applying the kernel from the example to the left image in Fig. 3.7 produces the image to the right. This
is a good example of feature extraction: in this case, the kernel extracts the right edges in the picture.
Usually, CNNs start with detecting edges in the first layer, and as the network gets deeper these features
are combined to detect shapes and finally things.

Figure 3.7: Result after applying the edge detection kernel to a sample image.

Imagine that not just one, but many kernels are learned and applied to the input. Due to the large
amount of data this produces, we need some way to condense this information in a more compact format.
One of the methods of reducing the dimensions of the features is called pooling and is another essential
step in making CNNs work. An often used pooling operation is called MaxPooling which simply takes the
maximum value from every cell in a discrete grid of the feature channel. This grid is determined by the size
of the pooling operation: a 2⇥ 2 operation downsizes the feature map by a factor of 2. Another technique

3.4. Deep Learning 25

that allows the shrinking of input is called stride, which indicates by how many pixels the convolution
window moves every step. A stride of 2 would result in a feature map that is roughly twice as small in both
dimensions.

By chaining convolutions, we start capturing increasingly more high-level features because of the
increased receptive field of a single pixel in the feature map. The reason for this is that the output of a
n⇥ n convolution ”sees” a range of n⇥ n pixels per output pixel. Compound this and you can see how the
deeper you go, the wider the visibility or receptive field of every feature element.

Note that kernels are translation invariant: meaning it does not matter where in the image the feature is
located, the kernel will extract it regardless. This is an important property that reduces the chances of the
network overfitting on exact object locations. A typical CNN is not scale invariant however; this can result
in overfitting on objects of specific scales.

3.4.3. Learned Upsampling for 2D Data
Reducing the resolution of an image with learned convolutions allows the network to distill information
about a region of the data in a compact manner. For many applications, the desired output has the same
resolution as the input, for example in semantic segmentation or depth estimation. Traditional upsampling
methods, like nearest-neighbor, bilinear, or bicubic interpolation are ’dumb’ in the sense that they do not
allow the network to learn an interpretation of what the upsampled data should look like. Just like we can
use convolutions to learn appropriate downsampling, we can also do the inverse, often called transposed
convolutions or deconvolution. In transposed convolutions, we still have a kernel, but instead of taking
a region of the input and multiplying it with the kernel, we pick a single input value and spread it over a
larger spatial region in the output. Depending on the kernel size, the input is padded around every element,
and the kernel is multiplied with every single value and added to the resulting feature map. Note that this
operation can create ’checkerboard’ artifacts, which can look like the example in Fig. 3.8. These can be
partly caused by uneven overlaps of the convolutions, which occur when the kernel size is not divisible by
the stride. Another way to get rid of checkerboard artifacts is to avoid using a transposed convolution, and
instead, first upsample the image using bilinear interpolation and then apply a standard convolution.

Figure 3.8: Checkerboard artifact from the deconvolution operation.

3.4.4. Feature Pyramid Networks
Dense prediction tasks are tasks that require a prediction of some value (discrete or continuous) per pixel.
Often, it makes sense to reduce the spatial dimensionality and increase the channel size of the latent
space, in order to learn many representations of an image. In order to project this high-level understanding
of a scene onto a format that will allow us to perform per-pixel prediction, we can use Feature Pyramid

Networks (FPNs) [12]. Using this technique, we can essentially enrich the features at a low-level with
high-level features. An example architecture is depicted in Fig. 3.9. This network outputs four levels, which
many downstream tasks use to go from a coarse to fine estimation.

3.4.5. Gated Recurrent Unit Networks
Gated Recurrent Unit (GRU) Networks are a subclass of recurrent neural networks, meaning they can
process sequential information and pass intermediate output along through a hidden state. An example
of sequential information is a time series (e.g. the price of a stock), but it can also be used to process
sequential camera frames, thereby modeling spatial and temporal relationships between objects. Classic

3.4. Deep Learning 26

Figure 3.9: General architecture of a Feature Pyramid Network with 4 levels.

recurrent networks suffer from the vanishing gradient problem: when gradients of the loss function get
close to zero with respect to the weights of the early elements in the recurrent chain. This has the negative
effect that the weights of early layers or blocks are updated much slower than the final layers.

To mitigate this problem, GRUs implement changes to allow the network to control the amount of
information that is passed along to the next layers. Through mathematical constructs called ”gates”, the
network can decide how much of the previous hidden state to pass along (update) or how much to forget
(reset). Formally, a complete GRU is described with the following formulas:

Formulas:

zt = �g(Wzxt + Uzht�1 + bz)

rt = �g(Wrxt + Urht�1 + br)

ĥt = �h(Whxt + Uh(rt � ht�1) + bh)

ht = (1� zt)� ht�1 + zt � ĥt

Explanations:
xt: input tensor at t
ht: hidden output tensor at t
W,U : learnable weights
zt: update value
rt: reset value
�: the Hadamard Product
�,�: sigmoid and tanh activation functions
ĥt: candidate hidden output tensor at t
ht: final hidden output tensor combined with pre-
viously hidden output

Convolutional GRUs (CGRU) can be used for sequential image processing and contain almost the
same series of operations, except now the hidden state is concatenated to the current input on which
learned kernels are convoluted. The tanh activation function is also replaced by a rectified linear unit
(ReLU) function.

3.4.6. 3D Convolutional Neural Networks
Whereas CNNs are typically used to process 2-dimensional data one by one, a 3D CNN [13] allows for
an extra dimension, for example, a temporal dimension for video [14], or a depth dimension for depth
estimation [6]. This is made possible by increasing the dimensionality of the kernel, to 3D, which means
that the kernel now slides in the width, height, and depth of the volume. While 3D CNNs are able to
process more complex data, they cause significantly more overhead in terms of computational complexity
and memory. Given a filter with dimensions Hf , Wf , and for 3D Df , and input dimensions Hin, Win, and
possibly Din, we can relate the memory and computational complexity for a single convolution as follows:

3.4. Deep Learning 27

2D Convolution

• Computational Complexity:
Hin ⇥Win ⇥Hf ⇥Wf ⇥ Cin ⇥ Cout

• Memory Complexity:
Hf ⇥Wf ⇥ Cin ⇥ Cout

3D Convolution

• Computational Complexity:
Hin⇥Win⇥Din⇥Hf⇥Wf⇥Df⇥Cin⇥Cout

• Memory Complexity:
Hf ⇥Wf ⇥Df ⇥ Cin ⇥ Cout

3.4.7. Transformers
While recurrent neural networks (RNNs) allow the processing of sequential information, they are inefficient
to train due to their sequential input processing and lack of contextual relationships between inputs. The
transformer architecture [1] solves both of these problems through a completely different approach: the
self-attention mechanism. The success and wide adoption of the transformer can partly be explained
by its flexibility to accept any input, even images, making it one step closer to a general-purpose model.
Transformers seem to outperform most older architectures on natural language processing (NLP) and
computer vision tasks, but this comes at the cost of needing more data and more compute. This makes
this type of architecture mostly interesting to big tech corporations who have access to this kind of data
and compute. Nevertheless, the effectiveness of transformers keeps surprising researchers and users,
and the big question is where it will take us in the future.

Self-Attention
We will now explain the basic principles behind self-attention. First, the sequential input is tokenized,
meaning broken down and encoded in a numerical vector with a fixed size. When the goal is processing
text, sentences can be broken down into words and then converted to vectors. A popular method for doing
this is Word2Vec [15], which encodes words in such a way that similar or related words will also have
higher similarity in the numerical representation. When the input is an image, it can be broken down into
”patches” and fed into a linear layer to produce a numerical token.

The idea behind attention is to determine for every token, howmuch attention it should pay to every other
token. For example, in the sentence ”I let the dog out”, the token ”I” should probably pay more attention to
”dog” than to ”the”. Basically, self-attention reweighs the tokens by analyzing the context, thereby producing
a more meaningful encoding of the input sequence (rather than simply encoding individual words). The
original authors of the transformer model describe this concept more formally using keys, queries and
values, which could be described using the following analogy:

• Keys: what characteristics does a token possess?
• Queries: what information is this token looking for?
• Values: what is the actual value or contribution of this token to the sequence?

The key (K), query (Q) and value (V) are obtained by passing the input tokens through linear layers.
The formula for calculating the attention is as follows:

Attention(Q,K, V) = softmax(QKT

p
dkT

)V

Here, dk denotes the dimensionality of the key vector and is used to reduce the magnitude of the attention
and stabilize the gradients. T is often included as an additional hyperparameter and stands for the
temperature of the transformer. A higher temperature will ensure that attention is spread out more,
whereas a lower temperature will focus the attention on the highly activated fields.

Multi-Head Attention
To make the transformer network more versatile, the original authors also proposed adding multi-head
attention. This allows the network to learn multiple representations of a sequence, which can be seen
as looking at the input from different perspectives. Multi-head attention can be implemented using the
following formulas:

MultiHeadAttention = Concat(head1, . . . , headn)WO

headi = Attention(QWQ

i
,KWK

i
, V WV

i
)

3.4. Deep Learning 28

Positional Encoding
The standard attention mechanism ignores the position or order of the tokens. This can be critical
information, for example, if you compare the sentences ”the cat bit the dog” or ”the dog bit the cat”. With
positional encoding, the tokens are augmented with position-dependent values such that a token value not
only depends on the original input but also on the location in the sequence. The original authors propose
the following positional encoding:

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

Here, i denotes the index of the dimension and dmodel the total token dimension.

Classic Vision Transformers
Originally developed for encoding language, transformers turn out to be surprisingly effective on images
as well. Vision Transformers (ViTs) [2] tokenize input images and process them in the exact same way as
normal tokens. Tokenizing 2D images is done in two steps:

1. Patching: the image is divided into equal squares or ”patches”.
2. Tokenization: every patch is fed through a small CNN, after which the output channels are flattened

and fed through a linear layer to obtain the final embedding dimensions.

Typically, ViTs require a lot more data and training time compared to CNNs but are able to achieve
higher accuracy on common benchmarks like ImageNet. The general formatting of a token also allows the
development of multimodal models that can for example accept images and text simultaneously.

Hierarchical Vision Transformers
While ViTs have proven to be a superior backbone for downstream tasks compared to older CNN-based
backbones, calculating the self- and cross-attention is computationally expensive, as it grows quadratically
with the number of pixels in the input image. The Swin Transformer [16] reduces the amount of computations
by only calculating the self-attention on local regions (windows) in the image. Because global self-attention
is still desired, these local ”windows” of attention are merged into a single patch, after which the process is
repeated this time on a more global scale. This approach has similarities to a Feature-Pyramid Network
(FPN), where the receptive field is also gradually increased from local to global. Swin also introduces the
shifted windows technique, which shifts the window range such that patches are also included in other
windows. Shifting results in empty spots, which are filled with the patches that end up outside the window
range.

Pyramid Vision Transformers

Figure 3.10: Overall architecture of the Pyramid Vision Transformer (PVT). Reprinted from [17, Fig. 3]

3.4. Deep Learning 29

Pyramid Vision Transformers (PVT) [17] bear a lot of similarities to the CNN-based Feature Pyramid
Networks (FPNs), in the sense that the receptive field is gradually increased and that the network can serve
as a multi-level backbone. Note how in every block, tokens are converted into patches again, resulting in a
representation that is useful for downstream dense prediction tasks.

Twins: Efficient Pyramid Vision Transformers
The authors of ”Twins: Revisiting the Design of Spatial Attention in Vision Transformers” [18] introduce
two new variants of the ViT: Swins-PCPVT and Swins-SVT. Both models are an iteration on the PVT.

• Twins-PCPVT: the authors noted that the default positional encoding technique used in PVT is
suboptimal, as the authors of CPVT [19] explain by introducing the Positional Encoding Generator
(PEG). The main issue with standard positional encoding is that it reduces the flexibility of the model,
as it causes difficulties with varying input sizes once trained. The PEG solves this by including a
2D convolution block over the patch embeddings, providing the network with a learnable positional
encoder. Experiments by the authors of Twins show that replacing the standard PE with PEG gives
a significant boost to the precision on the COCO dataset.

• Twins-SVT: as the PVT only uses the computationally expensive global attention, applying it in the
wild requires a large amount of computational resources. To remedy this, the Twin-SVT uses local
self-attention (LSA) and global self-attention (GSA) with PVTs. This technique allows the network to
exchange information between patch groups, whilst being much more efficient. Twins-SVT also uses
PEG, which makes it the more favorable option to use.

Both models have a pretrained version published online based on the Ade20k dataset, which opens up
the possibility to serve as a feature extractor without the need for expensive training.

3.5. Deep-Learning-Based Multi-View Stereo 30

3.5. Deep-Learning-Based Multi-View Stereo
3.5.1. Introduction
Multi-View Stereo (MVS) has seen a significant paradigm shift since the rise of using deep learning for
computer vision. Traditional methods, like SfM, were mainly relying on explicit formulations of geometric
and photometric consistency, which resulted in accurate, but sparse estimations of a scene, whilst also
requiring a significant amount of input images for decent results. Attempts to fill in the gaps were mainly
limited by textureless regions, occlusions and view-dependent effects making it difficult to find pixel-to-pixel
correspondences.

The use of deep learning in the field of MVS has opened up the possibility to deal with these problems,
through the ability of neural networks to understand the context of a scene and image in order to make
predictions. In this section, we highlight the main mechanics behind common deep-learning-based MVS
methods and discuss the challenges and limitations.

3.5.2. Typical MVS Pipeline
Modern MVS depth prediction methods select a reference view and a set of source views that are used
for triangulating and matching features with the reference view, which often happens pair-wise. A typical
pipeline for recent MVS depth estimation methods is depicted in Fig. 3.11. Essentially, these methods can
be broken down into four stages:

• Feature extraction: This stage is responsible for extracting features that are representative of the
surface. Ideally, the features maximize the similarity of identical surface points between views and
minimize similarity on all points. Typically, a Feature Pyramid Network (FPN) is used to extract
features at various receptive field sizes, while embedding the low-level features with the high-level
understanding of the scene. This also allows for a coarse-to-fine approach in the refinement stage.

• Warping: This stage uses the typical, explicit geometrical formulation of the pinhole camera model.
Since the depth is unknown at this stage, a series of fronto-parallel planes are formed for the reference
camera at discrete, predetermined distances. The planes form the hypothesis range for the depth
estimation, so need to be configured correctly depending on the scene and camera setup. The
features from the source images are warped onto these planes, using epipolar geometry explained
in previous chapters. A common method to fuse the source and reference features is to take the
dot product, which is an indicator of feature similarity. This is then fed through a Softmax along the
depth axis and added to the aggregate volume. This data structure is often called a cost volume.

• Regularization: The recent successes in deep-learning-based MVS can be largely attributed to
the regularization stage, which is able to deal with the typical problems (textureless, occlusions,
view-dependent effects) by predicting the unknowns based on the 3D patterns in the cost volume. A
3D CNN is able to regularize and smoothen the predictions. Finally, a confidence estimation per x, y
coordinate along the depth-axis is obtained by taking the Softmax along the depth.

• Refinement: Using the obtained probability distribution, the network can predict a per-pixel depth
value using either the index of the highest confidence or the Soft-Argmin, which is the weighted
average index of all probabilities. A key advantage of using Soft-Argmin is that it is differentiable,
facilitating efficient backpropagation of the loss.

3.5.3. Loss Functions
The output of a typical dl-based MVS method is a pixel-wise confidence estimation along the depth
hypotheses. How this estimation is used can differ per method, but broadly speaking can be categorized
into regression-based and classification-based estimation.

Regression-based depth estimation predicts a continuous depth value for every pixel, for example
using the Soft-Argmin function. Typical loss functions for this type are Mean Squared Error (MSE), Mean
Absolute Error (MAE) or Huber loss.

Classification-based estimations are predictions based on a discrete, binned range of predetermined
hypotheses. Typical loss functions here are Cross-Entropy (CE) loss, focal loss or Wasserstein loss.

The authors of MVSFormer [6] note that regression-based models can be overconfident, even for out-
of-range depth hypotheses, but seem to be able to produce more accurate point clouds. The confidence

3.5. Deep-Learning-Based Multi-View Stereo 31

Figure 3.11: Visualization of a typical deep-learning-based MVS pipeline (simplified).

maps from the classification-based experiment were better; which is especially useful for filtering out
predictions that suffer from occlusion or strong view-dependent effects.

3.5.4. Challenges and Limitations
Recent advancements in deep-learning-based MVS have shown that we can build systems that deal with
the typical problems that MVS suffers from. Still, these problems are far from solved, and challenges
remain for mitigating the effects. In this subsection, we list some of the current limitations and challenges
we think are in front of us.

• Large dataset requirements: current MVS methods require vast amounts of data in order to perform
well enough to be used reliably within the context of the data itself. It is an open question (with deep
learning in general) whether we can unlock methods that are able to learn from far less data, like
humans can. Creating datasets is expensive, partly because it requires ground-truth depth data,
which is costly to obtain for real-world settings. Modern synthetic data generation pipelines can help
us overcome this hurdle.

• Generalizability: an ideal MVS system would work in any setting reliably, meaning that the model
generalizes well from the data it was trained on. Whereas SfM generalizes to any setting, deep-
learning-based MVS is not guaranteed to work on settings that it was not trained on.

• Computational complexity: Deep-learning-based MVS can be expensive to train, often taking days
on costly hardware. Even though systems are able to achieve near real-time inference, the model
complexity would ideally be decreased to allow running it on cheaper hardware.

3.6. MVS Datasets and Benchmarks 32

3.6. MVS Datasets and Benchmarks
A benchmark contains a publicly available dataset that is used to assess the performance of new models
and compare them to previous state-of-the-art. Since MVS is quite a broad topic with many applications,
there are many different benchmarks each with its own niche, such as the type of scenes, number of
cameras, and lighting conditions. In this section, we highlight a few of the most commonly used benchmarks
on the topic of MVS surface reconstruction.

3.6.1. Common MVS Benchmarks

Figure 3.12: ’Family’ scene in T&T [20] Figure 3.13: Subset of point clouds in DTU [21]

Tanks&Temples
The Tanks&Temples [20] dataset contains a mix of 14 test and 7 training indoor and outdoor scenes with
on average more than 10000 images per scene. Depth information was captured using an industrial laser
scanner. The goal of this benchmark is to stimulate the development of a model that can reconstruct a
scene in 3D from handheld camera footage. At the time of writing, MVSFormer [6] is at the top of the
leaderboard with a mean F-score of 66.41.

DTU
The DTU dataset [21] is nearly always used as a benchmark in MVS works, making it a solid reference
point to compare results against multiple popular methods. When DTU was released, the aim was to serve
as a dataset with more variation than was previously available. The set has 124 real scenes, with 49 or
64 camera positions, with accurate ground-truth depth and 7 different lighting conditions. See Fig. 3.13
for samples. Even though the dataset is relatively old, it remains an invaluable resource for MVS related
research. The data was captured in a controlled environment, with the cameras focused at the center of
the scene, making it a useful dataset for analysing fine-grained differences between results.

ETH3D
The ETH3D [22] dataset was put together by ETH Zurich and contains images from real scenes with
ground-truth depth (see Fig. 3.14. Compared to DTU, this dataset contains significantly more occlusion
and textureless surfaces, making it a more advanced evaluation.

Middlebury
TheMiddlebury dataset [23] contains challenging scenes with cluttered objects, again with a lot of occlusions,
textureless and reflective surfaces. The data only contains one stereo pair of images and ground-truth
disparity per scene (Fig. 3.15), which makes it incompatible with 3D scene reconstruction tasks. Even
though the dataset was released in 2002, researchers are still actively releasing new and improved versions,
with the latest one being released in 2021.

BlendedMVS
BlendedMVS [24] strongly focuses on 3D reconstruction, by generating a training set based on the
reconstructed 3D mesh from the original images, instead of being based on expensive laser scanners. In

3.6. MVS Datasets and Benchmarks 33

Figure 3.14: Sample scenes from ETH3D [22]

Figure 3.15: Sample scene from the Middlebury dataset with ground-truth disparity. [23]

3.6. MVS Datasets and Benchmarks 34

order to still have view-dependent effects, these reconstructions are blended with the original input image,
thereby embedding the 2D projection with ambient lighting. According to the authors, training on this data
results in improved scores on T&T compared to training on DTU or ETH3D, which can partly be explained
by the fact that BlendedMVS contains significantly more ground-truth depth.

3.6.2. Transparent MVS Datasets
ClearPose
The authors of ClearPose [25] recognized the lack of large-scale RGBD datasets focusing on transparent
objects. To this extent, they built a dataset with more than 350K images and 5M instance annotations
of transparent objects. Ground-truth depth was annotated by combining laser scanner depth with digital
models, allowing for a complete depth view and simplified extraction of instance masks.

Trans10K
Trans10K [26] is a real RGB dataset with images of segmented transparent objects in the wild, which can
serve as a valuable resource for training models to detect things like windows. For MVS, this dataset falls
short, due to the lack of multi-view imagery.

Syn-TODD
The Toronto Transparent Object Depth Dataset (Syn-TODD) was published as part of the MVTrans
[27] work, which focused on training for robotic manipulation in household or laboratory settings. While
Syn-TODD is rich in terms of feature count, it does only contain transparent objects, making it difficult to
evaluate relative performance to other material types.

References

[1] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing

systems 30 (2017).

[2] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. In: ICLR (2021).

[3] Muhammad Muzammal Naseer et al. “Intriguing properties of vision transformers”. In: Advances in

Neural Information Processing Systems 34 (2021), pp. 23296–23308.

[4] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness.” In: International Conference on Learning Representations. 2019.
URL: https://openreview.net/forum?id=Bygh9j09KX.

[5] Sayak Paul et al. “Vision transformers are robust learners”. In: Proceedings of the AAAI conference

on Artificial Intelligence. Vol. 36. 2. 2022, pp. 2071–2081.

[6] Chenjie Cao et al. “MVSFormer: Multi-View Stereo by Learning Robust Image Features and
Temperature-based Depth”. In: Transactions of Machine Learning Research (2023).

[7] H Christopher Longuet-Higgins. “A computer algorithm for reconstructing a scene from two projec-
tions”. In: Nature 293.5828 (1981), pp. 133–135.

[8] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE Transactions on pattern

analysis and machine intelligence 22.11 (2000), pp. 1330–1334.

[9] Johannes Lutz Schönberger et al. “Pixelwise View Selection for Unstructured Multi-View Stereo”. In:
European Conference on Computer Vision (ECCV). 2016.

[10] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and organization in
the brain.” In: Psychological review 65.6 (1958), p. 386.

[11] Yann LeCun et al. “Handwritten digit recognition with a back-propagation network”. In: Advances in
neural information processing systems 2 (1989).

[12] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 2117–2125.

[13] Shuiwang Ji et al. “3D convolutional neural networks for human action recognition”. In: IEEE transac-

tions on pattern analysis and machine intelligence 35.1 (2012), pp. 221–231.

[14] Du Tran et al. “Learning spatiotemporal features with 3d convolutional networks”. In: Proceedings of

the IEEE international conference on computer vision. 2015, pp. 4489–4497.

[15] Kenneth Ward Church. “Word2Vec”. In: Natural Language Engineering 23.1 (2017), pp. 155–162.

[16] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted windows”. In:Proceedings
of the IEEE/CVF international conference on computer vision. 2021, pp. 10012–10022.

[17] Wenhai Wang et al. “Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions”. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021,
pp. 568–578.

[18] Xiangxiang Chu et al. “Twins: Revisiting the design of spatial attention in vision transformers”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 9355–9366.

[19] Xiangxiang Chu et al. “Conditional Positional Encodings for Vision Transformers”. In: ICLR 2023.
2023. URL: https://openreview.net/forum?id=3KWnuT-R1bh.

35

https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=3KWnuT-R1bh

References 36

[20] Arno Knapitsch et al. “Tanks and temples: Benchmarking large-scale scene reconstruction”. In: ACM
Transactions on Graphics (ToG) 36.4 (2017), pp. 1–13.

[21] Henrik Aanæs et al. “Large-scale data for multiple-view stereopsis”. In: International Journal of
Computer Vision 120 (2016), pp. 153–168.

[22] Thomas Schops et al. “A multi-view stereo benchmark with high-resolution images and multi-camera
videos”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 3260–3269.

[23] Daniel Scharstein et al. “A taxonomy and evaluation of dense two-frame stereo correspondence
algorithms”. In: International journal of computer vision 47 (2002), pp. 7–42.

[24] Yao Yao et al. “BlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo Networks”.
In: Computer Vision and Pattern Recognition (CVPR) (2020).

[25] Xiaotong Chen et al. “ClearPose: Large-scale Transparent Object Dataset and Benchmark”. In:
European Conference on Computer Vision. 2022.

[26] Enze Xie et al. “Segmenting Transparent Objects in the Wild”. In: arXiv preprint arXiv:2003.13948
(2020).

[27] Yi Ru Wang et al. MVTrans: Multi-View Perception of Transparent Objects. 2023. arXiv: 2302.11683
[cs.RO].

https://arxiv.org/abs/2302.11683
https://arxiv.org/abs/2302.11683

Transparency and specularity are challenging phenomena that
modern depth perception systems have to deal with in order to be
used in practice. A promising family of depth estimation methods
is Multi-View Stereo (MVS), which combines multiple RGB
images to predict depth, thus circumventing the need for costly
specialized hardware. Although promising, finding pixel-to-pixel
mappings between images is a challenging task, clouded by
ambiguity. In order to determine the current ability to deal with
such ambiguity, we introduce ToteMVS: a multi-view, multi-
material synthetic dataset with diffuse, specular and transparent
objects. Recent works in computer vision have effectively replaced
Convolutional Neural Networks (CNNs) with the emerging Vision
Transformer (ViT) architecture, but it remains unclear whether
ViTs outperform CNNs in handling reflective and transparent
materials. In our study, we use ToteMVS to compare ViT- and
CNN-based architectures on the ability to extract useful features
for depth estimation on diffuse, specular, and transparent objects.
Our results show that, in contrast with the current trend of using
ViTs over CNNs, the ViT-based model does not have a special
capability for dealing with these challenging materials in the
context of MVS.

	Introduction
	Scientific Article
	Supplementary Material
	Mathematical Foundations
	Basic Vector Operations
	Basis and Coordinate Systems
	Rigid Transformations

	Stereo Depth Estimation Fundamentals
	The Pinhole Camera Model
	Mapping Pixels to Pixels Using Depth
	Classic Epipolar Geometry
	Challenges with Epipolar Matching
	Camera setup

	Structure from Motion
	Deep Learning
	Core Principles
	Convolutional Neural Networks
	Learned Upsampling for 2D Data
	Feature Pyramid Networks
	Gated Recurrent Unit Networks
	3D Convolutional Neural Networks
	Transformers

	Deep-Learning-Based Multi-View Stereo
	Introduction
	Typical MVS Pipeline
	Loss Functions
	Challenges and Limitations

	MVS Datasets and Benchmarks
	Common MVS Benchmarks
	Tanks&Temples
	DTU
	ETH3D
	Middlebury
	BlendedMVS

	Transparent MVS Datasets
	ClearPose
	Trans10K
	Syn-TODD

	References

