
On the fall process of rock during
Subsea Rock Installation
1-D modelling of the falling process in the fall
pipe

M.A. Stoter

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy





ON THE FALL PROCESS OF ROCK DURING
SUBSEA ROCK INSTALLATION

1-D MODELLING OF THE FALLING PROCESS IN THE FALL PIPE

by

M.A. Stoter

in partial fulfillment of the requirements for the degree of

Master of Science
in Offshore and Dredging Engineering

at the Delft University of Technology,
to be defended publicly on Tuesday September 25, 2018 at 13:30.

Thesis committee: Dr. ir. G. H. Keetels TU Delft
Prof. dr. ir. C. van Rhee TU Delft
Dr. ir. W. P. Breugem TU Delft
Ir. A. van Es Van Oord

This thesis is confidential and cannot be made public until December 31, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgements

This thesis is the final product of my graduation research, performed in order to complete the master degree
in Offshore Engineering with a specialization in Dredging Engineering at Delft University of Technology. This
research could not have been realised without the help of my supervisors. So, before talking about subsea
rock installation I would like to thank the people who supported me during this research.

First of all, I would like to thank Van Oord for providing me the opportunity to work on this research. In
special, I want to thank Aad van Es, Frank Renting and Daniel Liefferink for their help over the duration of the
project.

I also want to thank my supervisors from the Delft University of Technology, Cees van Rhee and Geert
Keetels for their advice and suggestions.

A special thanks goes to my parents for their support during my entire study and providing me the opportu-
nities to achieve my goals. And last but not least, my girlfriend, Nousjka for supporting me whenever I needed
it.

M.A. Stoter
Rotterdam, August 2018

iii





Summary

Scarcity of (green) energy resources drives mankind further offshore and towards deeper waters. Protection
of subsea infrastructure is of eminent importance in these environments. The key parameter to have a good
control on the installation of rock is the falling time. For larger water depths up to 1200 meters, the accuracy of
the falling time prediction becomes more important because a small deviation can result in a large difference
between prediction and reality. This results in production losses and off target subsea installation work.

In the offshore industry there are two types of fallpipe vessels used. Namely a closed fallpipe and a semi-
closed fallpipe. A closed fallpipe consists of multiple pipe sections connected to each other while a semi-
closed fallpipe consists of multiple open-ended buckets connected by two chains. The main difference be-
tween the two systems is that for a closed fallpipe the inflow of water can be controlled by a special inlet
section. For a semi-closed fallpipe, water can flow freely in or out of the fallpipe through the openings be-
tween the buckets. The water will only flow in or out of the system if there is an under or overpressure in
the fallpipe compared to the hydrostatic (outer) pressure. The total fall velocity of the rock depends on the
settling velocity with respect to the mixture velocity and the mixture velocity itself.

The models which are currently used to determine the falling time of rock during subsea rock installation
are using the equilibrium settling velocity, the hindered settling velocity or only the mixture velocity (bulk
velocity). The total fall velocity of the rock is a combination of the mixture velocity and the settling velocity.
To describe the fall process of rock and to determine the falling time a new model is needed. This model
should include the development of the mixture velocity, the settling velocity of the rock and the possibility of
water in and outflow of the element.

This thesis focuses on modelling the fall process of rock in a fallpipe during subsea rock installation. This
has been done by using the drift-flux model. In this model a mixture velocity and a slip velocity (settling
velocity of rock) are calculated and used in the transport equation to describe the concentration profile in
the fallpipe. To determine the mixture velocity, the fractional step method is used. By using this method
the intermediate velocity and pressure are calculated separately. The mixture velocity for the new time step
can be calculated by correcting the intermediate velocity for the pressure, this way the new mixture velocity
satisfies continuity.

The main goal of this research is to conduct a model to predict the falling time of the rocks in a semi-
closed fallpipe during subsea rock installation. To do this a literature study has been carried out to look at the
processes involved during subsea rock installation. When looking at the closed fallpipe the only friction loss
which is taken into account is wall friction. For a semi-closed fallpipe there are also Carnot losses which have
a significant contributions to the total pressure loss. Another difference between the two fallpipe systems is
that for a closed fallpipe the water inflow is only at the inlet section, while for a semi-closed fallpipe water
will flow freely in or out at each segment. To model this it is chosen to implement a mass source/sink in the
continuity equation and a momentum source/sink in the momentum equation. The amount of water flowing
in or out depends on the flow area and the flow velocity. The flow velocity is limited based on the pressure
difference between in and outside of the fallpipe. The flow velocity can be calculated by Bernoulli’s equation.

When the process of rock installation starts and the first rocks are falling in the fallpipe, an overpressure
will be generated resulting in an outflow of water in the fallpipe. When using a closed fallpipe the outflow will
be at the end of the pipe. For a semi-closed fallpipe, the outflow will take place at the spacings between the
buckets, which means an overpressure will be levelled out at the opening. When the process continues, the
water level in the fallpipe will drop. This is because of the increase of mixture density in the fallpipe. When
the pressure in the fallpipe is lower than outside the fallpipe, water will start flowing in and generate a mixture
flow in the fallpipe.

The semi-closed fallpipe model, which is obtained during this research, shows good results compared to
the measurements of Van Oord. The model is one dimensional in z-direction and takes into account the
wall friction, Carnot losses, hindered settling and in and outflow of water between the buckets if there is
respectively an under or over pressure in the fallpipe. By using this model a good prediction of the falling
time and output production can be made for a wide range of operational conditions. In this way the model
can assist to reduce production losses and improve installation accuracy.
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1
Introduction

This chapter includes an overview of the report. Firstly, a general introduction of the subject will be given.
Secondly, the motivation of this thesis will be described in the problem definition and the thesis objective.
Thirdly, the approach of this thesis will be discussed and finally, the outline of this report will be given.

1.1. GENERAL INTRODUCTION
Subsea rock installation is used for various kinds of applications. Pipeline protection, scour protection, up-
heaval buckling, insulation, pipeline crossings and pre-lay seabed preparation are some examples where rock
installation can be applied.

For rock installation generally two types of vessels can be used namely: a side stone dumping vessel or a
fallpipe vessel. Commonly a side stone dumping vessel will be used in shallow waters up to 50m of water
depth whereas fallpipe vessels can be used in water depths up to 1200 meters. A disadvantage of a side stone
vessel is that while dumping rocks, spreading of the rocks will occur because of underwater currents and lift
forces acting on the rocks. The spreading of the rocks results in less accurate rock placement, which is why in
deeper water, rocks will be guided by a fallpipe to the sea bottom to increase the accuracy.

A second reason for using a fallpipe is to increase the total fall velocity of the rocks because a mixture flow
will be generated in the fallpipe. There are two commonly used fallpipe systems in the offshore industry.
Whereas other dredging companies are making use of a closed fallpipe system, Van Oord uses a semi-closed
fallpipe, which is built up from open-ended buckets. The two fallpipe systems can be seen in figure 1.1.

Figure 1.1: Semi-closed and closed fallpipe systems

The main difference between the two fallpipe systems is that by a semi-closed fallpipe the water can freely

1



2 1. INTRODUCTION

flow in and out of the fallpipe if there is a pressure difference between the in and outside of the fallpipe. While
for a closed fallpipe a specific inlet section is placed in the fallpipe. At that inlet location water can flow into
the fallpipe when there is an under pressure in the pipe. The area of the opening can be adjusted so the
total amount of water flowing into the fallpipe can be controlled. At the lower end of both fallpipe systems a
remotely operated vehicle (ROV) is placed. The main function of the ROV is controlling the fallpipe and next
to that cameras at the ROV will give a better view of what happens at the sea bottom.

1.2. PROBLEM DEFINITION

Scarcity of energy resources drives mankind further offshore and towards deeper waters. Protection of subsea
infrastructure is of eminent importance in these environments. The key parameter to have a good control on
the installation of rocks is the falling time. For larger water depths up to 1200 meters, the accuracy of the
falling time prediction becomes more important because a small deviation can result in a large difference
between prediction and reality. Resulting in production losses and off target subsea installation work. This
means knowledge of the falling time i.e. the time it takes before a specific input production comes out at
the lower end of the fallpipe becomes more and more important for optimizing the subsea rock installation
process. In a fallpipe the total fall velocity of the rocks is a combination of the settling velocity of the rock
and the flow in the fall pipe, which is driven by the density difference between the stone-water mixture in
the pipe and the ambient water. The flow in the fall pipe is a large contributor to the total fall velocity and
depends on the density change in the fall pipe. Especially during start-up phase and production changes,
when the mixture velocity changes, it is of special interest. When the fall process of rock in a fallpipe is better
understood, a better estimation of the falling time can be made.

The problem definition is as follows:

" There is a limited extent of knowledge about the falling time of rock during subsea rock installation, espe-
cially due to the start-up phase of the mixture velocity in the fallpipe."

1.3. THESIS OBJECTIVE

The process of rock installation can be divided into two main parts. The first part is the process inside the
fallpipe. The second part is the process when the rocks are leaving the fallpipe and the interaction with the
seabed. A lot of research is already carried out regarding the process from the end of the fallpipe till the
sea bottom by e.g. [Ravelli, 2012], [Kevelam, 2016] and [Reus, 2004]. Less is known about the process in the
fallpipe. Therefore, this thesis will focus on the first part of the rock placement process, which is the fall
process of the rocks in the fallpipe. The main objective is to gain a better understanding of the processes
occurring in the fallpipe during rock dumping by developing an one dimensional model to predict the falling
time of the rocks.

The main objective of this thesis is:

"Develop a model to predict the falling time, concentration profile in the fallpipe and outlet velocity for a
semi-closed fallpipe during subsea rock installation"

1.4. THESIS APPROACH

The approach of this thesis can be divided into two parts. First a literature study is carried out to get more
insight in the state-of-the-art knowledge of subsea rock installation and to get familiar with the processes
involved. The second part focuses on the modelling of the fall process of rock in a numerical model. To
check if the model gives a representative outcome of the real process, the outcome will be validated by in situ
measurements. An overview of the approach is given in figure 1.2.
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Figure 1.2: Overview of thesis approach

1.5. REPORT OUTLINE
This reports is divided into two parts. The first part focuses on familiarization with the process of subsea rock
installation and giving an overview of the current calculation models. This will includes chapter 2 to 5. The
second part focuses on the modelling of the fall process and includes chapter 6 to 9.

Part I

• Chapter 2: Subsea Rock Installation: An overview of rock placement operation is given and the work-
ing of a fallpipe vessel used by Van Oord will be described.

• Chapter 3: Settling of rock: An overview of the forces acting on a rock, while settling is explained and
some background is given about the settling of rocks.

• Chapter 4: Modelling of rocks in a fallpipe: An overview of the models which are used for subsea rock
installation during the years is given.

• Chapter 5: Concluding remarks literature study: A summary of the literature study is given.
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Part II

• Chapter 6: Introduction to the research: An introduction of the research will be described.

• Chapter 7: Model description: The built up of the model will be discussed.

• Chapter 8: Model results and case study: An overview of the results of the model for different cases is
given and compared with experimental data by Van Oord.

• Chapter 9: Final conclusions and recommendations: Concluding remarks and recommendations for
further work.



"On the fall process of rock during Subsea Rock Installation"

Master thesis

Part I
Literature Study
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2
Subsea Rock Installation

In the offshore industry, rock dumping is used for different kind of applications. In the early years it was
especially used for making dikes and breakwaters. Nowadays the name rock dumping changed in subsea
rock installation due to the implementation of new technologies and increasing difficulties of the projects. In
the first part of this chapter an overview of the different rock placement operations will be given. The second
part will give an introduction of what kind of vessels can be used and finally the working of the by van Oord
used vessel "The Nordnes" will be described.

2.1. ROCK PLACEMENT OPERATIONS
Subsea rock installation can be used in a large variety of offshore projects. A view examples, where subsea
rock installation can be applied are briefly described in this section.

2.1.1. PIPELINE PROTECTION
Pipelines at the sea bottom should be protected against dragging anchors and fishery in areas where a lot of
sea-going activities takes place. The anchors and fishing nets can cause damage to the pipeline. In order to
prevent this, rocks are placed over the pipeline, as shown in figure 2.1. It is important that the size of the rocks
are smaller than the mesh size of the fishing net, so the nets will not take the rocks away from the pipeline
and the protection stays in place.

2.1.2. SCOUR PROTECTION
Waves and currents can cause erosion of the seabed around fixed structures e.g. oil platforms and monopiles
used for offshore wind turbines. This is called scour. The sand around the structures can be washed away
due to currents, resulting in an stability decrease of the foundation. To prevent against scouring, rocks are
installed around the structure, as displayed in figure 2.2.

Figure 2.1: Pipeline protection Figure 2.2: Scour protection
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2.1.3. PIPELINE CROSSING

When laying new pipelines it can be necessary to cross earlier laid pipelines. This can be done by making
a berm over the old pipeline as shown in figure 2.3. The rock berm will perform a gentle slope over the old
pipeline to make sure there will be no high tensions in the new-laid pipeline.

2.1.4. PRE-LAY SEABED PREPARATION

The sea floor is not flat, which means before placing structures or pipelines at the sea floor sometimes seabed
preparations should be carried out. Where the sea floor is not flat rocks are placed to level out the seabed so
a structure can stand on it or for decreasing the free span of a pipeline as displayed in figure 2.4.

Figure 2.3: Pipeline crossing Figure 2.4: Freespan correction

2.2. SIDE STONE DUMPING VESSELS

A side stone dumping vessel is mostly used when rocks are installed in shallow water. When rocks are dumped
in water spreading will occur because of horizontal forces and/or currents. When side dumping will be ap-
plied in deeper water the accuracy will decrease. That is why this technique is commonly used for the con-
struction of breakwaters in shallow water.

2.3. FALL PIPE VESSELS

For installing rocks in deeper water, two types of fall pipe systems can be used, namely a closed fallpipe and
a semi-closed fallpipe. The fallpipe will guide the rocks to the sea bottom to increase the accuracy. By using
a fallpipe system, a mixture flow will be generated when water starts flowing into the fallpipe. This flow will
increase the total fall velocity of the rock.

2.3.1. CLOSED FALLPIPE

A closed fallpipe consists of multiple standard sections which are mounted on top of each other. At the top
end a water inlet section is placed. This section is used to control the inflow of water in the pipe. If there
is no inflow of water in the fall pipe, the water level in the pipe will drop when the process of rock dumping
starts. An overview of the water level drop can be seen in figure 2.5. This is because of the density increase
of the mixture in the fall pipe, which results in a higher pressure. Based on the Bernoulli equation this results
in an outflow at the end of the fallpipe. For deeper waters, if the water level drops too far, a large difference
between inner and outer pressure of the fallpipe can occur. Due to these high pressure differences a pipeline
can collapse. This is one of the reason why for a closed fallpipe a water inlet segment is installed at the top
end of the fallpipe, to ensure the water level will not drop to far and for controlling the flow in the fallpipe.
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Figure 2.5: Overview of water level drop in a closed fallpipe with pressure profile

For example, a 700m long fallpipe with a concentration of 5 % will experience a pressure at the end of the
pipe because of the hydrostatic column of 7.6 MPa. While the surrounding pressure is 7.0 MPa. To level this
out the water level in the fallpipe will drop 55.52 m.

2.3.2. SEMI-CLOSED FALLPIPE
The system used by van Oord is an open construction consisting of multiple open-ended buckets. The buck-
ets at the upper and lower end of the fallpipe are made of steel and the buckets in the midsection are made of
synthetic material. Multiply buckets are connected by two steel chains which is called a string. By connecting
multiple strings a total depth of 1200m can be realized. At the lower end of the fallpipe a Remotely Operated
Vehicle (ROV) is attached. Because of the ROV, the rocks can be placed more accurate as the position of the
lower end of the fallpipe can be controlled form the control room in the vessel.

2.4. FALLPIPE VESSEL: "THE NORDNES"
The Nordnes is one of the fallpipe vessels of Van Oord. The total length of the vessel is 166.70m with a span
of 26.23m. The Nordnes can carry 26,238 tons and has a maximum rock installation capacity of 2000 tonnes
per hour. In figure 2.6 a cross section of "The Nordnes" is given.

The dumping process
Before the process of dumping rocks starts the fallpipe should be launched. The fallpipe consists of multiple
strings with buckets, which are all stored at the ship. Firstly the ROV is launched through the moonpool.
When the ROV is launched the buckets will follow up by using the bucket winch, see figure 2.7. The first part
of the fallpipe is a telescopic pipe, which can be used to follow the seabed without the need of extra buckets.
On top of the telescopic pipe a couple of steel buckets will be placed. The midsection of the fallpipe is made
of synthetic buckets and the last view meters to the ship is made of steel buckets again. The lower end and
upper end of the fallpipe are made of steel buckets because higher forces and stress levels will occur at these
parts of the fallpipe. An overview of the structure of a fallpipe can be seen in figure 2.8. When the fallpipe is
in place the dumping process can start.
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Figure 2.6: Cross section of the Nordness

Figure 2.7: Bucket launching system Figure 2.8: Built up of a semi-closed fallpipe

Transport of the rocks to the fallpipe

The route of the rocks will be described step by step and a complete overview of the route is given in figure
2.9.

(i) The rocks are all stored in the holds of the ship. The main conveyor belt is at the bottom of the hold and
transports the rocks to the front of the ship. The transport of rock can be controlled by adjusting the
speed of the conveyor belt.

(ii) At the front of the vessel a C conveyor, a sandwich of two belts with the rock in the middle, deposits the
rock on too the boombelt.

(iii) The boombelt above deck, transports the rocks from the front of the ship to the hopper.

(iv) From the hopper, the rocks will be transported by conveyor belts to the moonpool and via the feeder the
rock is transfered to top steel bucket and down into the fallpipe. The production output is controlled
by adjusting the speed of the conveyor belts.
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Figure 2.9: Transport route of rocks

Buckets
The buckets which are used for the fallpipe are made of steel or synthetic material. The first and last part of
the fallpipe are both made of steel because of its resistance to wear.The synthetic buckets are used to reduce to
overall weight on the chains and span the major part of the fallpipe. The diameter of the buckets determines
the maximum allowable diameter of the rocks. The lower diameter of the bucket is 849mm and the upper
diameter is 1097mm. The height of a bucket is 2225 mm.

Remotely Operating Vehicle (ROV)
The Remotely Operating Vehicle is at the lower end of the fallpipe. This is the only part of the fallpipe which
is controllable. The ROV is hanging on the vessel with three cables and the telescopic pipe of the fallpipe
is connected to the ROV, which means the rocks are falling through the ROV. To provide the ROV and other
equipment with power there are umbilicals form the vessel to the ROV.

2.5. CONCLUSION
Subsea rock installation is applied in different offshore projects. There is a difference between rock installa-
tion in shallow water and deeper waters. By using a fallpipe vessel rocks can be installed more precise because
spreading will only occur at the last several meters to the sea floor, when the rocks are not in the fallpipe any
more. In the offshore industry two different kind of fallpipe systems are used, namely a closed fallpipe and
a semi-closed fallpipe. For a closed fallpipe there is a water inlet at the top end of the fallpipe to control the
water level in the fallpipe, while for a semi-closed fallpipe the water can freely flow in or out of the fallpipe
through the openings between the buckets.





3
Terminal settling velocity of rock

In this chapter the settling of rocks will be evaluated. First the settling of a single rock will discussed. Followed
by the influence of multiple rocks settling at the same time will be described and finally the fallpipe influence
on the settling velocity will be described.

3.1. TERMINAL SETTLING VELOCITY OF A SINGLE ROCK

Figure 3.1: Vertical forces acting on a par-
ticle

The terminal settling velocity depends on the forces acting on a parti-
cle.When the forces are in equilibrium the terminal settling velocity is
reached.

Forces acting on rock
The dumping of a single rock can be described as follows. When a particle
is falling in water, there are three forces acting in vertical direction on the
particle namely: Gravitational force (Fg ), buoyancy force (Fb) and drag
force (Fd ).

Gravitational force
The gravitational force can be determined by using the following formula:

Fg = mg (3.1)

Where Fg is the gravitational force, g is the gravitational acceleration
and m is the mass of the object. The mass of the object is considered as a
sphere and can be calculated by the following formula:

m = π

6
d 3ρs (3.2)

Where d is diameter of the sphere and ρs is the density of the solid.

Buoyancy force
The buoyancy force is acting on the particle in opposite direction of the gravitational force and can be calcu-
lated by the following formula:

Fb = π

6
d 3ρ f g (3.3)

Fb is the buoyancy force and ρ f is the density of fluid.

Drag force
The drag force is also acting on opposite direction of the gravitational force and can be calculated by:

Fd = 1

2
Cdρ f w2

s (3.4)

Where Fd ,Cd and ws are respectively the drag force, drag coefficient and the terminal settling velocity of a
single particle in still water.
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14 3. TERMINAL SETTLING VELOCITY OF ROCK

Drag coefficient

During the years a lot of research has been done to determine an accurate expression for Cd for perfect
spheres over the entire particle Reynolds number (Rep) regime. At higher Reynolds numbers separation of
the boundary layer will occur and a wake will form. This means a pressure difference between the front and
the rear of the object will occur. The drag coefficient can be calculated by using the particle Reynolds number.
Three different regimes can be distinguished: the laminar, turbulent and transition regime. For each regime
a different relation applies [Van Rhee, 2017]:

Table 3.1: Drag coefficient based on particle Reynolds number

Rep < 1 Cd = 24
Rep

1 < Rep < 2000 Cd = 24
Rep

+ 3p
Rep

+0.34

Rep > 2000 Cd = 0.4

The Reynolds particle number (Rep) is defined as:

Rep = ws d

ν
(3.5)

Where ν is the kinematic viscosity of the fluid. The particle Reynolds number depends on the fall velocity
of the particle. The set of equation 3.1-3.5 can be solved iteratively to find the terminal settling velocity.

Calculations fall velocity

The fall velocity of the particle can be calculated by using the second law of Newton:

Fz = ma (3.6)

Where Fz is the summation of the forces acting in the z-direction and a is the acceleration in z-direction. By
filling in equations 3.1, 3.3 and 3.4 into Newton’s law of motion. The settling velocity with respect to distance
[Miedema, 1981] and time can be derived. The equations respect to time and distance are given in equation
3.7 and 3.8. Note: In equation 3.7-3.9 and figure 3.2-3.3, the drag coefficient is constant, where actually the
drag coefficient is a function of the particle Reynolds number. To provide a general insight of the distance and
time needed to reach the terminal settling velocity, it is chosen to use a constant value for the drag coefficient.

ws (z) =
√

4g (ρs −ρ f )d

3ρ f Cd

(
1−e

−3ρ f Cd z

2ρs d

)
(3.7)

The exponential in the second part of the formula represents the start of the falling particle. When the
distance (z) goes to infinity, the exponential will go to zero and the particle will reach its equilibrium velocity.

ws (t ) =
√

4g d(ρs −ρ f )

3Cdρ f
t anh

(√
3Cd gρ f

8d(ρs −ρ f )
t

)
(3.8)

After a certain distance and/or time the forces will be in equilibrium which will result in a constant velocity.
The equilibrium velocity can be calculated by the following equation:

ws =
√

4g d(ρs −ρ f )

3Cdρ f
(3.9)
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Figure 3.2: Velocity profile of a settling sphere as function of time
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Figure 3.3: Velocity profile of a settling sphere as function of
distance

In figure 3.2 and 3.3, it can be seen that it will not take a lot of time and/or distance to reach the equilibrium
velocity. So it is reasonable to say that in a fallpipe, the rocks will reach their equilibrium settling velocity
instantaneously because the falling distance to reach the equilibrium velocity is small compared to the total
length of the fallpipe. Note that figure 3.2 and 3.3 are generated with a fixed drag coefficient to provide insight
of distance and time needed to reach the terminal settling velocity. To be more precise the particle Reynolds
number should be implemented in the drag coefficient.

Ferguson and Church

The force balance, which was described in the previous section, is more complex to use because of the drag
coefficient which depends on the particle Reynolds number. In 2004, Ferguson and Church developed an
empirical relation for the settling velocity, based on the experiments of Richardson and Zaki [1954], which
does not include the drag coefficient [Ferguson & Church, 2004]:

we = ∆g d 2

C1ν+
√

0.75C2∆g d 3
(3.10)

Where C1 and C2 are respectively 18 and 1 for natural sands and ∆ is the relative density and can be deter-
mined by using the following formula:

∆= ρs −ρ f

ρ f
(3.11)

An advantage of the equation founded by Ferguson and Church is, there is no need to use an iteration
scheme to determine the correct drag coefficient. When comparing Newton’s law and the equation of Fer-
guson and Church it can be seen that the same results are obtained, as shown in figure 3.4. A typical rock
diameter for subsea rock installation is in the range of 22-125mm.

3.2. SETTLING OF MULTIPLE ROCKS

In the previous section the fall process of a single rock and the forces acting on the rock are described. During
subsea rock installation multiple rocks are dumped at the same time. The behaviour of rocks in groups is
described in this section.
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Figure 3.4: Settling velocity for a range of particle diameters

While rocks are settling in a group they will have some influence on each other this is called hindered set-
tling. Over the years, research has been done by various researchers. A series of experiments on hindered
settling were carried out by Richardson and Zaki in 1954 and they developed an empirical relation [Richard-
son & Zaki, 1997] to take into account the hindered settling based on their experiments:

whe = we (1−αs )n (3.12)

Where whe is the hindered equilibrium velocity, αs is the concentration of solids and n is the empirical
exponent related to the particle Reynolds number (Rep ). The particle Reynolds number can be calculated by
equation 3.5. The empirical exponent n can be calculated by using the following formula [Rowe, 1987]:

n =
4.7

(
1+0.15Re0.687

p

)
1+0.253Re0.687

p
. (3.13)

Equation 3.13 covers the empirical exponent n for all ranges of the particle Reynolds number. Richardson
and Zaki developed different formulas to calculate the exponent n for different ranges of particle reynolds
numbers, which can be seen in table 3.2[Rook, 1994]. Comparing the different ways for calculating the expo-
nent based on the particle Reynolds number, it can be seen that equation 3.13 will give good results for the
whole range of particle Reynolds numbers. Where d

D is the ratio between particle diameter and pipe diameter.

Table 3.2: Hindered settling factor

n = 4.65+19.5 d
D for Rep < 0.2

n = (4.35+17.5 d
D )Re−0.03

p 0.2 < Rep < 1

n = (4.45+18.5 d
D )Re−0.1

p 1 < Rep < 200

n = 4.45Re−0.1
p 200 < Rep < 500

n = 2.39 Rep > 500

According to [Wijk, 2011] equation 3.13 still holds for coarse gravel (high d
D ) and a value of n=2.4 was found

during fluidization experiments [Van Rhee, 2017].

3.3. FALLPIPE INFLUENCE
The presence of the fallpipe will have influence on the settling velocity of the particles. The settling velocity
of a particle can be calculated by Newtons equation in turbulent regions [Li et al., 2014], given as follows :
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whe,p = whe

(
1−

( d

D

)2)√(
1−0.5

( d

D

))
(3.14)

Where whe,p is the settling velocity in the pipe, d is the particle diameter and D is the diameter of the
fallpipe.

Looking at equation 3.14 and figure 3.5 it can be seen that, when the diameter of the rock increases, the
settling velocity decreases. For small diameter particles the fallpipe will have no influence on the settling
velocity but during subsea rock installation relatively larger particles with respect to the fallpipe diameter are
used, so there will be some reduction on the settling velocity for these particles.

Figure 3.5: Wall influence on the settling of a particle

3.4. CONCLUSION
The settling velocity can be determined by calculating the forces acting on the rock during falling. For this
technique a drag coefficient is needed, which is difficult to determine for rocks due to the particle Reynolds
number. Richardson and Zaki developed a different formula to determine the settling velocity, which does
not include the drag coefficient. When a comparison is made between the different methods, there is shown
that both methods obtain almost the same settling velocity.

During subsea rock installation multiple rocks are dumped at the same time, this results in interaction
between the rocks. The settling velocity will decrease if the concentration increases.

While rocks are settling in a fallpipe, the fallpipe will have some influence on the settling velocity as well.
The reduction of the settling velocity due to the fallpipe depends on the relative particle size.





4
Modelling of rocks in a fall pipe

In this chapter, an overview is given of the fallpipe models conducted over the years. First the static models
for subsea rock installation will be discussed followed by the dynamic models. The static models only look at
a specific moment in time or calculate an equilibrium velocity, while the dynamic models take the concen-
tration development into account. Finally, a drift-flux model is discussed which is applied in the deep sea
mining industry for transporting manganese modules.

4.1. STATIC MODELS FOR SUBSEA ROCK INSTALLATION

4.2. DYNAMIC MODELS FOR SUBSEA ROCK INSTALLATION

4.3. VERTICAL HYDRAULIC TRANSPORT FOR DEEP SEA MINING
In 2011 research has been carried out into flow assurance for vertical hydraulic transport for deep sea mining
[Wijk, 2011]. Some similarities can be seen between SRI and deep sea mining, that is why an overview of
this model will be given here. The focus of the research was on the possibility of blockage while transporting
manganese nodules from the sea bottom to the surface. The transport of the modules is computed by solving
the advection-diffusion equation for the individual fractions using a drift-flux model. The drift-flux model
models the water and the manganese nodules as a mixture with a certain density(ρm) and corrects for the
slip velocity (velocity difference between mixture and solids). The continuity equation is written as function
of density while van Es wrote it as function of concentration solids. The continuity equation for a constant in
and outflow area is given as follows:

∂ρm

∂t
+ ∂(ρm vm)

∂z
= 0 (4.1)

The density change in time depends on the net density flux of the element. To calculate the mixture velocity
for the new time step the conservation of momentum in z-direction is given by[Wijk, 2011]:

∂(ρm vm)

∂t︸ ︷︷ ︸
Velocity change in time

+ ∂(ρm v2
m)

∂z︸ ︷︷ ︸
Momentum flux

= ∂p

∂z︸︷︷︸
Pressure gradient

− 4τm

D︸ ︷︷ ︸
Viscous stresses

− ρm g︸ ︷︷ ︸
Gravity force

...

+ ∑ ∂pe

∂z︸ ︷︷ ︸
External pressure gradient

− ∂

∂z

(
(1− cv )ρ f (vm − v f )2 +

K∑
k=1

cv,kρs,k (vm − vs,k )2
)

︸ ︷︷ ︸
Correction for slip velocity

(4.2)

Note that the momentum equation is divided by the control volume (V ). For the viscous term it is clarified
in the following equation:

Fvi scous = πD∆zτm
π
4 D2∆z

= 4τm

D
(4.3)

19



20 4. MODELLING OF ROCKS IN A FALL PIPE

Where τm is the shear stress of the mixture, D is the diameter of the pipe and ∆z is the height of the ele-
ment. The total solid input phase is divided into number of K fractions depending on particle diameter. Each
fraction has its own settling velocity whe,p,k , density ρs,k and volume fraction cv,k . Important to notice is that
the settling velocity will decrease the solids velocity in deep sea mining while for SRI the settling velocity will
increase the solids velocity. The solids velocity can be calculated by using the following formula:

vs,k = vm −whe,p,k (4.4)

When the solids velocity (vs ) is calculated the transport of the solid fractions is described by the advection
diffusion equation (4.5). This will give a concentration and velocity profile in the riser.

∂cv

∂t︸︷︷︸
Concentration change in time

+ (∂cv,k vs,k )

∂z︸ ︷︷ ︸
Advection term

= ∂

∂z

(
εz
∂cv,k

∂z

)
︸ ︷︷ ︸
Diffusion term

(4.5)

Where the diffusion term depends on the diffusion coefficient (εz ), which depends on the Stokes number
given by the following equation:

Stk = 4(ρs −ρ f )d |vm |
3ρ f Dwhe,pCd

(4.6)

For higher Stokes numbers i.e. for larger particle diameters, the diffusion coefficient is set to zero. Hence
the influence of the diffusion part will not be taken into account for large particle diameters, which are ap-
plied in deep sea mining and SRI.

4.4. CONCLUSION



5
Concluding remarks literature study

In this chapter the main components of the fall process in the fallpipe, which came forward from the literature
research are discussed.

• When rocks are settling in water large offsets can occur. This is why in greater water depths, fallpipe
vessels are used to guide the settling rocks to the sea bottom. In the offshore industry, there are two
commonly used fallpipe vessels namely a semi-open system consisting of multiple open-ended buck-
ets and a closed system built up from pipe segments. When using a fallpipe system during subsea rock
installation the fluid in the fallpipe will accelerate and a downwards directed flow will develop in the
fallpipe. This results in an additional velocity of the rock, besides the settling velocity. The total fall ve-
locity is a summation of the flow velocity (vm) and the settling velocity of the rocks (ws ). This velocity
will transport the concentration with a higher speed to the end of the fallpipe.

• During subsea rock installation multiple rocks are dumped in the fallpipe at the same time. So a larger
number of particles is settling at the same time in the fallpipe and this will effect the settling velocity
of the individual particles. When the concentration increases the settling velocity of a single particles
decreases. Besides the hindered settling, the fallpipe will have his influence on the settling velocity as
well. The reduction of the settling velocity depends on the fraction between the diameter of the particle
and the diameter of the fallpipe. If this fraction increases the settling velocity decreases.

• The models, which are used for subsea rock installation at the moment have a strong focus on the
settling velocity of the particles, the mixture velocity in the fallpipe or the equilibrium fall velocity of
the particles in the fallpipe. To make a better prediction of the falling time of the particles, the start
up of the mixture flow should be taken into account and the total fall velocity of the rocks should be a
combination of the settling velocity and the mixture velocity generated in the fallpipe. The influence of
water in and outflow is highly important because it has effect on the mixture flow in the fallpipe. The
mixture flow increases the total fall velocity of the rock and is a significant contributor to this total fall
velocity.

• The drift-flux model used by van Wijk will be used to conduct a model for subsea rock installation by
using a fallpipe. This model is chosen because it combines the generate mixture flow in the fallpipe and
the settling velocity of the rocks, while the other models only uses the mixture flow or settling velocity
in the transport equation for the concentration.
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6
Introduction to the research

Rock installation by using a closed or semi-closed fallpipe is applied in various kinds of offshore projects
e.g. to protect pipelines and pre- and post-lay seabed preparation. While the offshore industry is moving to
deeper waters and the projects become more complex, the accuracy of the falling time prediction becomes
more important because small deviations can result in large differences between prediction and reality. The
aim of this research is to provide a better understanding of the fall process of rock and to predict the time
needed for a specific production rate to reach the end of the fallpipe. The focus of this research will be on the
fall process within the fallpipe and specially on the determination of the falling time of the rocks.

6.1. MODEL ASSUMPTIONS
The following assumptions are made in the model:

Assumption 1:
The input of the rocks is modelled as a mixture with a certain density based on the amount of tonnes per
hour and the input velocity of the rocks. By using the production and input velocity of the rocks the input
concentration (αi n), the input velocity (vi n) and the density of the input mixture (ρm,i n) can be obtained.

Assumption 2:
In chapter 3 the settling velocity as function of distance is discussed. In figure 3.3, it can be seen that the
distance to reach the terminal settling velocity is very small in comparison to the total length of the fallpipe.
This justifies the assumption that the rocks reach there terminal settling velocity instantaneously when it
enters the fallpipe.

Assumption 3:
The input location or upper boundary of the model is fixed. This means that the water level is fixed in the
fallpipe. When the water level is fixed, an under pressure in the fallpipe will be generated by the drift-flux
model, when the rocks start falling. This under pressure can be rewritten to the water level drop.

Assumption 4:
When there is an overpressure in the fallpipe, the assumption is made that there will only be water flowing
out instead of mixture. This assumption is made because this way the maximum flow velocity between the
buckets can be determined. If the flow density is equal to the mixture density, the outflow velocities will be
lower based on the Bernoulli equation.

6.2. MODEL DEVELOPMENT
In figure 6.1 an overview of the development of the model is given to provide insight of the steps which were
taken to develop a representative model for subsea rock installation by using a semi-closed fallpipe. The
first step is to model a water flow in the fallpipe, which has been done by using the fractional step method
described in chapter 7.2.1. The following step is to model the rocks falling in the fallpipe. This has been
done by using the drift-flux model, where the rocks are modelled as a mixture with a certain density based
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26 6. INTRODUCTION TO THE RESEARCH

on the concentration of the rocks and the fluid. The drift-flux model continues on the fractional step method
with some extensions. This will be described in more detail in chapter 7.2.1 - 7.2.3. The drift flux model
will generate an under pressure in the fallpipe which is equal to the water level drop. In a fallpipe there is
the possibility of water in or outflow if there is an under or overpressure. This is modelled in step 3 and is
explained in more detail in chapter 7.3. The last step should be taken to create a representative model for a
semi-closed fallpipe. In this step the possibility of water in or outflow is modelled for each element depending
on an under or overpressure in the fallpipe. This is described in more detail in chapter 7.4.

Figure 6.1: Schematic representation of the modelling approach



7
Model description

In this chapter a detailed description of the models is given. First the closed fallpipe model will be discussed
followed by the semi-closed model. The mixture flow in the fallpipe is computed by solving the continuity
and momentum equations. For both models, the closed fallpipe and semi-closed fallpipe, the drift flux model
approach by [Goeree et al., 2016] is used. The settling velocity of rock is calculated by using the hindered
settling theory. The transport of solids will be described by the advection-diffusion transport equation.

7.1. CLOSED FALLPIPE MODEL
The model computes the concentration, velocity and pressure profiles in the fallpipe during subsea rock
installation in space and time. By doing so the total falling time can be calculated. For obtaining these results,
the fallpipe will be modelled as one dimensional with the focus on the z-direction with positive direction
upwards.

The total fall velocity of a rock depends on the settling velocity of the rock and the velocity of the mix-
ture (bulk velocity) in the fallpipe. First the mixture velocity will be calculated by solving the Navier Stokes
equation, followed by calculating the settling velocity for each fraction with respect to the mixture velocity by
taking into account hindered settling. The settling velocity will be added to the mixture velocity and so the
total fall velocity of the rock for each fraction is obtained.

Mixture equations
The mixture consist of a solid (rocks) and a carrier liquid. Based on the work of [Jop et al., 2006], the transport
of suspended solids can be approximated by using a continuum approach. The amount of rocks in the mix-
ture will be described as a fraction (αs ). The rocks do not all have the same diameter but are distributed over a
certain range. The total solids fraction can be divided into K sub fractions, where the total solid concentration
is defined as follows:

αs =
K∑

k=1
αs,k (7.1)

For each fraction a particular settling velocity with respect to the mixture velocity should be calculated
based on the specific diameter of the particle of that fraction and the concentration of the mixture. Notice
that the total volume concentration is by definition given by the following equation:

α f +
K∑

k=1
αs,k = 1 (7.2)

Whereα f is the concentration of the fluid andαs,k is the concentration of a solid fraction. The total mixture
density ρm can be calculated by using equation 7.3, by assuming a constant density of the solids for each
fraction.

ρm =αsρs + (1−αs )ρ f (7.3)
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Conservation and momentum equation
The mixture of fluid and rocks is treated as a single fluid with density ρm , velocity vm and pressure p. The
mixture is assumed to be incompressible with a non-constant density [Goeree & van Rhee, 2013]. This means
ρm is time dependent i.e. ρm = ρm(t ).

Continuity equation
The continuity equation for a closed fallpipe, when looking at the in and outflow of each segment, can be
written by equation 7.4. An overview of one segment is given in figure 7.1. Note: The velocity is defined pos-
itive upward. The velocities during subsea rock installation are mostly in downward direction and therefore
negative.

∂

∂t

∫
V
ρmdV +

∮
A1

ρm vmd A1 −
∮

A2

ρm vmd A2 = 0 (7.4)

Where the first term describes the density change in time in control volume V , the second term describes
the flux through boundary A1 and the third term describes the flux through boundary A2. Where the area
A1=A2. The continuity equation should be equal to zero if no extra mass will be added to or subtracted from
the control volume (source or sink). In a closed fallpipe the inner area is constant over the length of the
fallpipe and the volume of the element is the inner area multiplied with the length of the element (∆z). By
dividing equation 7.4 by the volume of the element the continuity equation for a closed fallpipe can be written
as follows:

∂ρm

∂t
+ ∂(ρm vm)

∂z
= 0 (7.5)

Figure 7.1: Forces acting in an element of a closed fallpipe

Momentum equation
The equation of motion of a fluid is governed by the Navier-Stokes equation. For a fallpipe the equation of
motion is given by equation 7.6. An overview of the forces acting in a section for a closed fallpipe is given in
figure 7.1.

∂

∂t

∫
V
ρm vmdV +

∮
A1

ρm v2
md A1 −

∮
A2

ρm v2
md A2 =−

∮
A1

pd A1 +
∮

A2

pd A2 −
∫

V
|ρm g |dV +Fvi scous (7.6)

Where the first term is the change of momentum in time, the second term is the momentum flux through
boundary A1, the third terms is the momentum flux through boundary A2, the fourth term is the pressure
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term at the upper boundary, the fifth term is the pressure term at the lower boundary, the sixth term is the
gravity force and the last term is the friction force due to wall friction.

Viscous stresses
The total viscous stresses for a closed fallpipe depends on the wall friction, while for a semi-closed fallpipe it
is a combination of wall friction and Carnot losses. The pressure loss due to friction for a close fallpipe can
be described as follows[Matoušek, 2004]:

d p

d z
= 4τm

D
(7.7)

Where D is the diameter of the fallpipe. By using the Darcy-Weisbach equation, the pressure loss due to
friction over a certain length (∆z) can be written as follows:

∆p f r i ct i on = ∆z

2D
λmρm v2

m (7.8)

The friction factor λm depends on the Reynolds number and relative roughness of the pipe and can be
obtained from the Moody diagram in figure 7.2. The Reynolds number and the relative roughness of the pipe
can be calculated by the following equations:

Re = vmDρm

µ
(7.9)

RPR = ε

D
(7.10)

Where µ is the dynamic viscosity of the medium, ε is the pipe roughness and ε
D is the relative pipe rough-

ness.

Figure 7.2: Moody diagram for determine the friction coefficient

For a closed fallpipe the pressure loss due to friction ( ∆p f r i ct i on) can be written in terms of the wall shear
stress in the following way by only taken into account the friction due to the mixture:

τm = λm

2D
ρm v2

m (7.11)
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Implementing the viscous term equation 7.6 results in the following momentum equation for a closed
fallpipe:

∂

∂t

∫
V
ρm vmdV +

∮
A1

ρm v2
md A1−

∮
A2

ρm v2
md A2 =−

∮
A1

pd A1+
∮

A2

pd A2+ 1

2D
ρm v2

mλm−
∫

V
|ρm g |dV (7.12)

Transport of concentration
Solving the continuity and momentum equation will result in a velocity and pressure field in the fallpipe.
The transport of solids can be described by using the transport equation for each concentration fraction
individually. When looking at the advection part and neglecting the diffusion part, the transport equation
can be written as follows:

∂

∂t

∫
V
αs,k dV +

∮
A1

αs,k v f al l ,k d A1 −
∮

A2

αs,k v f al l ,k d A2 = 0 (7.13)

Where the first term is the total change of concentration in time, the second term is the flow of concentra-
tion through the upper boundary and the third term is the flow of concentration through the lower boundary
of the element.

7.2. COMPUTATIONAL METHOD
The drift-flux model is used to model the process of subsea rock installation. This method can be generally
divided into two parts. The first part is modelling the mixture flow and the second part is the sediment trans-
port. To model the mixture flow, the fractional step method is used. To describe the transport of sediment,
the mixture velocity, settling velocity of the rocks and the advection-diffusion equation are used.

7.2.1. NUMERICAL IMPLEMENTATION
For the numerical implementation it is chosen to use a staggered grid, which means in comparison with a
Cartesian grid, the variables pressure and velocity are not located at the same location. See figure 7.4[Hirsch
Charles, 2007].

(a) Cartesian grid

(b) Staggered grid

Figure 7.3: Cartesian grid and staggered grid

For a Cartesian grid, the velocity and pressure are located at the centre of each cell while for a staggered grid
the velocity is located at the boundaries of the cell and the pressure is located at the centre of the cell. The
main advantage of a staggered grid above a Cartesian grid is that the pressure and velocity is less coupled,
which makes the numerical model more stable. The variables density ρ, concentration αs and pressure p are
located in the centre of the cell and only the velocity ~v is located at the cell boundaries. This results in two
different control volumes for the mass and momentum conservation, as shown in figure 7.4.
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(a) Control volume for mass conservation (b) Control volume for momentum conservation

Figure 7.4: Control volume for mass and momentum conservation

7.2.2. FRACTIONAL STEP METHOD
In the fractional step method an intermediate velocity will be obtained by simply omitting the pressure term
in the momentum equation,given by equation 7.12. The pressure term will be obtained by solving a Poisson
equation 7.27 and finally the flow velocity can be determined by correcting the intermediate velocity for the
pressure.

The total length of the fallpipe will be divided into a number of segments, which is the total length of
the fallpipe divided by the length of each segment ∆z. Note that for keeping the numerical scheme sta-
ble, the Courant-Friedrichs-Lewy (CFL) condition should be satisfied [Hirsch Charles, 2007]. The Courant-
Friedrichs-Lewy condition is given by equation 7.14. This condition means that the time step should be small
enough to ensure no element will be jumped over during a time step, which would result in numerical insta-
bility.

C = v∆t

∆z
≤ 1 (7.14)

Where v is a velocity, ∆t is time step and ∆z is spacial step. The input is given as a certain production in
tonnes per hour and a certain settling velocity of the rocks (~vs ). Based on these two parameters the concen-
tration of the mixture can be obtained, by using equation 7.15 and 7.16.

ρm,i nput =αsρs + (1−αs )ρai r (7.15)

Where ρai r is the density of air. The density of air is small in comparison with the density of rock, which
makes it valid to neglect the air part in the mixture density.

αs,i n = Pi n

~vs Aρs
(7.16)

Where A is the inner area of the fallpipe. The input velocity of the rocks is equal to the settling velocity of
the rocks in air over the height from the conveyor belt to the water level in the fallpipe.

The next step is to calculate the momentum at the boundaries. First an intermediate momentum ρv∗
is calculated by discretization of equation 7.12 and omitting the pressure term. The equation for the three
different locations, boundary( i= 1

2 ), mid locations ( 1
2 < i <imax + 1

2 ) and the lower boundary (i=imax + 1
2 ) are
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given by equation 7.17, 7.18 and 7.19 respectively. For the momentum discretization a central difference
scheme is used. Important to notice is that the same equations are valid for modelling a water flow in the
fallpipe. The only difference is the input density.

For modelling a water flow the input density is equal to the density of water, ρm,i nput = ρw and αs,i n =0.
When the concentration solids is equal to 0, it means the mixture density ρm will automatically transform to
the water density because of equation 7.3.

ρm, 1
2

v∗
m, 1

2
= v t

i nρ
t
m,i n (7.17)

(ρm,i+ 1
2

vi+ 1
2

)∗ = v t
m,i+ 1

2
ρt

m,i+ 1
2
− ∆t

2∆z

(
(ρm,i− 1

2
v2

m,i− 1
2

)− (ρm,i+ 3
2

v2
m,i+ 3

2
)
)t

...

+ ∆t

2D
λ(ρm,i+ 1

2
v2

m,i+ 1
2

)t −∆t |ρt
m,i+ 1

2
g | (7.18)

ρm,imax+ 1
2

v∗
m,imax+ 1

2
= ρm,imax− 1

2
v∗

m,imax− 1
2

(7.19)

When the intermediate momentum (ρv∗) is calculated for all the locations in the fallpipe, the velocity will
be corrected by the pressure for the new time step, which can be calculated by solving a Poisson equation.
The Poisson equation ensures that continuity is conserved. The corrected velocity is the mixture velocity for
the new time step.

Upper boundary cell
Looking at the density change of the top cell (i = 1), as displayed in figure 7.5 an equation for the pressure
can be obtained. The density change of the control volume depends on the in an outflow. The inflow at this
location is set as a boundary condition namely ρm,i n and vi n . Important to notice is that z-direction and
velocity is positive upwards.

Figure 7.5: Overview of control volume for upper cell

Writing equation 7.4 in discrete form, the following equation for the density change of the control volume
is obtained:
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∆x∆z
∂ρm,i

∂t
=∆x

(
ρm vm

)t+1

i+ 1
2

−∆x
(
ρm,i n vi n

)
(7.20)

Where v t+1
m is the mixture velocity at the new time step and ∆x is the width of the element. Because each

term is multiplied with ∆x, the equation can be divided by ∆x. The intermediate velocity is calculated by
using the momentum equation and omitting the pressure term. The velocity for the new time step can be
calculated by including the pressure term, given by the following equation:

ρm,i+ 1
2

∫
V

v
m,i+ 1

2
t+1 − v∗

i+ 1
2

∆t
dV =−

∮
A1

pd A1 +
∮

A2

pd A2 (7.21)

Where area A1 = A2 and volume (V ) is equal to the area multiplied with ∆z. The velocity and pressure are
not located at the same location because of the staggered grid. Looking at the control volume in figure 7.4
and dividing the equation by the volume of the element, an expression for the velocity for the new time step
is obtained based on the intermediate velocity and pressure.

ρm,i+ 1
2

v t+1
m,i+ 1

2
= ρm,i+ 1

2
v∗

m,i+ 1
2
+ ∆t

∆z

(
p t+1

i+1 −p t+1
i

)
(7.22)

Substitution of equation 7.22 into equation 7.20, the following equation is obtained:

∆z
∂ρm,i

∂t
= (ρm v∗

m,i+ 1
2

)+ ∆t

∆z

(
p t+1

i+1 −p t+1
i

)
−ρt

m,i n v t
i n (7.23)

Rearranging the pressure terms to the left hand side results in the Poisson equation for location i=1, shown
in the following equation. Important to notice is that the inlet velocity of the rock mixture has an effect on
the pressures in the fallpipe.

p t+1
i+1 −p t+1

i

∆z2 = 1

∆t

ρt
m −ρt−1

m

∆t
+ 1

∆z∆t

(
ρt

m,i n v t
i n −ρm v∗

m,i+ 1
2

)
(7.24)

Mid cell
The Poisson equation for location 1 < i < imax , which are all the cells of the fallpipe except the cells at the
boundaries. An example for a specific control volume is given in figure 7.6. The flow into the control volume
is given by (ρm v)i− 1

2
and the flow out of the control volume is (ρm v)i+ 1

2
.

Figure 7.6: Overview of control volume for a cell in the middle
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The density change in the control volume can be described by the following equation:

∆z
∂ρm,i

∂t
=

(
ρm vm

)t+1

i+ 1
2

−
(
ρm vm

)t+1

i− 1
2

(7.25)

Substitution of equation 7.22 into equation 7.25, the following equation for the continuity is obtained.

∆z
∂ρm,i

∂t
=

(
ρm v∗

m,i+ 1
2
+ ∆t

∆z
(p t+1

i+1 −p t+1
i )

)
−

(
ρm v∗

m,i− 1
2
+ ∆t

∆z
(p t+1

i −p t+1
i−1 )

)
(7.26)

Rearranging of the pressure terms and discretization of the density change over time term leads to the
Poisson equation for the cells in the middle. Given by the following equation:

p t+1
i+1 −2p t+1

i +p t+1
i−1

∆z2 = 1

∆t

ρt
m −ρt−1

m

∆t
+ 1

∆z∆t

(
ρm v∗

m,i− 1
2
−ρm v∗

m,i+ 1
2

)
(7.27)

Lower boundary cell
At the lower boundary cell, the boundary condition for the pressure at location imax+1 is equal to the sur-
rounding hydrostatic pressure, as shown in figure 7.7.

Figure 7.7: Overview of control volume for the last cell

The hydrostatic pressure at that location can be calculated as follows:

pimax+1 = ρ f g zimax+1 (7.28)

Where zimax+1 is the depth of location imax+1. Equation 7.28 can be written in terms of ∆z as follows:

pimax+1 = ρ f g imax+ 1
2
∆z (7.29)

Substitution of equation 7.29 into equation 7.26 and by using equation 7.19, the Poisson equation can be
obtained for the lower boundary cell. Given as follows:
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p t+1
i−1 −2p t+1

imax
+p t+1

imax+1

∆z2 = 1

∆t

ρt
m −ρt−1

m

∆t
(7.30)

The equation can be rewritten by using equation 7.29 into the following equation:

p t+1
i−1 −2p t+1

imax

∆z2 = 1

∆t

ρt
m −ρt−1

m

∆t
−
ρ f g imax+ 1

2

∆z
(7.31)

Pressure term and new velocity
For solving the pressure at each location the inverse matrix method is used. This way the pressure will be
calculated for each location simultaneously but it can also be solved by using an iteration process e.g. Gauss-
Seidel iteration [Hirsch Charles, 2007]. The pressure can be calculated in the following way:

A ·p =Q (7.32)
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(7.33)

Where p is the pressure vector with length imax , A is an imax x imax matrix and Q is a vector with length
imax which can be obtained by calculating the right hand side of equation 7.24, 7.27 and 7.31 by using the
intermediate velocity for each location. When the pressure at each location is known and the intermediate
velocity is calculated, the velocity for the new time step can be calculated by the following equation:

v t+1
m,i+1/2 =

ρt
m,i+1/2v∗

i+1/2

ρt
m,i+1/2

+ ∆t

∆zρt
m,i+1/2

(p t+1
i+1 −p t+1

i ) (7.34)

7.2.3. FALL VELOCITY
The total input of rock is divided into a number of fractions (K ) and for each fraction the total fall velocity
should be calculated. Following Goeree, Keetels and others the total fall velocity of the solids is a combination
of the mixture velocity and the relative velocity between the solids and the mixture [Goeree et al., 2016]. Given
by the following equation:

v f al l ,k = vm +wsm,k (7.35)

Where v f al l ,k is the total fall velocity of the solids fraction and wsm,k is the relative velocity between the
solids and the mixture. The relative velocity between the solids and the mixture can be calculated by using
the following equation:

wsm,k = wr,k −
ρs

ρm

K∑
k=1

(αs,k wr,k ) (7.36)

Where wr,k is the relative velocity with respect to the liquid phase. Mirza and Richardson gave a relation
to determine the relative velocity with respect to the liquid phase based on the terminal settling velocity of a
particle in quiescent fluid. The relation is given as follows:

wr,k = we,p

(
1−

K∑
k=1

αs,k

)nk−1
(7.37)
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Where we,p is the terminal settling velocity of a particle in quiescent fluid, corrected for the fallpipe influ-
ence and nk is the Richardson and Zaki index for each fraction given by equation 3.13. The terminal settling
velocity (we ) for a particle is determined following Ferguson and Church and is given by equation 3.10. To
correct the velocity for the fallpipe influence, the equation of Newton is used [Li et al., 2014]:

we,p = we

(
1−

( d

D

)2)√(
1−0.5

( d

D

)
(7.38)

Where d is the particle diameter and D is the diameter of the fallpipe. Looking at equation 7.38, it can be
concluded that, if the diameter of the rock increases, the settling velocity decreases. The fallpipe will have less
influence on smaller particle diameters. During subsea rock installation larger particle diameters are used,
meaning that the influence of the fallpipe should be taken into account.

7.2.4. TRANSPORT OF SOLIDS
The total input of rock is divided into a number of fractions. Each fraction has its own settling velocity and so
its own total fall velocity. The transport of solids can be described by looking at the concentration change in
time due to in and outflow of concentration. For a closed fallpipe an overview is given in figure 7.8. Important
to notice is that for stability reasons an upwind discretization scheme is used. The upwind scheme assumes
that the outflow flux will be calculated at location i instead of location i + 1

2 . Note that by implementing an
upwind scheme the transport of solids can only be described in downward direction.

Figure 7.8: Concentration balance over a closed element

The concentration change in the element over time can be described in integral form as follows:

∂

∂t

∫
V
αs,k dV +

∮
A1

v f al l ,kαs,k d A1 −
∮

A2

v f al l ,kαs,k d A2 = 0 (7.39)

Where V can be written as the area of the pipe (A1 = A2) multiplied with the height of the element (∆z).
Writing equation 7.39 in discrete form and by dividing by the volume, the following equation for the solids
transport can be obtained:
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αt+1
s,k,i =αt

s,k,i +
∆t

∆z

(
αt

s,k,i v t+1
f al l ,k,i −αt

s,k,i−1v t+1
f al l ,k,i−1

)
(7.40)

This equation is only valid for a closed fallpipe where the diameter of the pipe is constant over the length.
The total concentration at each cell can be determined by the summation of the concentration of each frac-
tion in a cell. If the total concentration and the velocity in each cell is determined, the production in kilogram
per second can be calculated by the following equation:

Pi+ 1
2
= Ai+ 1

2
ρs v t+1

f al l ,i+ 1
2
αt+1

s,i+ 1
2

(7.41)

Before moving to the next time step the density of the mixture in the element should be updated depending
on the concentration for the new time step. The new mixture density is defined as follows:

ρt+1
m =αt+1

s ρs + (1−αt+1
s )ρw (7.42)

The new obtained density at each cell is used in the continuity and momentum equation to obtain the
pressure term for the new time step. This process continues till the simulation time ends.
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7.3. CLOSED FALLPIPE WITH WATER INLET SECTION
In reality the closed fallpipe has an in and outflow possibility for water as well. To model the in and outflow, a
mass source and a momentum source are implemented in respectively the continuity and momentum equa-
tion. A schematic overview is given in figure 7.9.

Figure 7.9: Overview of a fallpipe with a water inlet at the top

7.3.1. CONTINUITY AND MOMENTUM EQUATION
When looking at the element with an inlet section, shown in figure 7.10, the continuity equation can be con-
ducted. For the other elements equation 7.4 is still valid. The continuity equation for the open element is
given as follows:

∂

∂t

∫
V
ρmdV +

∮
S1

ρm vmdS1 −
∮

S2

ρm vmdS2 −2
∮

S3

ρ f v f low dS3 = 0 (7.43)

Where S1 is the top surface of the element for the mixture flow(∆x), S2 is the bottom surface of the element
for the mixture flow(∆x), S3 is the surface of the inflow area (∆zµar ea) and v f low is the flow velocity in or out
of the element. Writing the in and outflow of mass in explicit form over the element equation 7.44 is obtained.
Important to notice is that the velocity is positive upward.

∆x∆z
ρt+1

m,i −ρt
m,i

∆t
=∆x(ρm vm)t+1

i+ 1
2
−∆x(ρm vm)t+1

i− 1
2
+2ρ f v t+1

f low,iµar ea∆z (7.44)
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Where ∆x is the in and outflow area of the mixture and µar ea is a fraction of ∆z which is open for water
inflow or outflow. The equation can be rewritten to the continuity equation for the open element.

ρt+1
m,i −ρt

m,i

∆t
=

(ρm vm)t+1
i+ 1

2

− (ρm vm)t+1
i− 1

2

∆z
+

2ρ f v t+1
f low,iµar ea

∆x
(7.45)

Where the term at the right hand side is the in or outflow term, depending on the flow velocity, the density
of the fluid flowing in and the area factor(µar ea). The flow velocity depends on the difference of the pressure
inside the fallpipe and outside the fallpipe and is calculated by equation 7.51. If v f low is positive, water will
start flowing into the element and if v f low is negative, water will flow out of the element.

Figure 7.10: Overview of an open segment

For calculating the pressure in the fallpipe the fractional step method is used. Which is explained in more
detail in paragraph 7.2.1. Substitution of equation 7.22 into equation 7.45 results in the following expression
for the continuity equation for an open section:

ρt+1
m,i −ρt

m,i

∆t
=

(ρm v∗
m,i+ 1

2
)+ ∆t

∆z

(
p t+1

i+1 −p t+1
i

)
− (ρm v∗

m,i− 1
2

)+ ∆t
∆z

(
p t+1

i −p t+1
i−1

)
∆z

+
2ρ f v t+1

f low,iµar ea

∆x
(7.46)

Rearranging the pressure components results in the pressure equation for the open element. Important to
notice is that the density change is one time step behind. The assumption is made that the density change of
the previous time step is equal to the density change for the new time step.

p t+1
i+1 −2p t+1

i +p t+1
i−1

∆z2 = ρt
m −ρt−1

m

∆t 2 −

(
ρm v∗

m,i+ 1
2

)
−

(
ρm v∗

m,i− 1
2

)
∆t∆z

−
2ρ f v t+1

f lowµar ea

∆x∆t
(7.47)

Where the inlet will only be applied in the second element, the pressure equation for the other locations
are equal to equation 7.24 for the upper cell, equation 7.27 for the other cell in the middle and equation 7.31
for the last cell. Combining these equations results in the following matrix for calculating the pressure.
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1

∆z2
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p t+1
1
...
...

p t+1
i
...

p t+1
imax
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=



ρt
m−ρt−1

m
∆t 2 +

ρt
m,i n v t

i n−(ρm v∗
m, 3

2
)

∆t∆z

1
∆t 2

(
ρt

m −ρt−1
m

)
+ 1
∆z∆t

(
ρm v∗

m, 3
2
−ρm v∗

m, 5
2

)
− 2
∆x∆t (µar eaρ f v t+1

f low )

...

1
∆t 2

(
ρt

m −ρt−1
m

)
+ 1
∆z∆t

(
ρm v∗

m,i− 1
2
−ρm v∗

m,i+ 1
2

)
...

1
∆t

(
ρt

m −ρt−1
m

)
−

ρm g i
max+ 1

2
∆z


(7.48)

The introduction of the inflow does not only change the pressure distribution, it will also change te mo-
mentum. To enforce momentum conservation the inflow is incorporated by the following way:

∂

∂t

∫
V
ρm vmdV +

∮
S1

ρm v2
mdS1 −

∮
S2

ρm v2
mdS2 +

∮
S3

ρ f v2
f low dS3︸ ︷︷ ︸

Momentum source term

=−
∮

S1

pdS1 +
∮

S2

pdS2...

−
∫

V
|ρm g |dV + 1

2D
ρm v2

mλm (7.49)

Where the momentum source term is positive when water flows in and is negative when water flows out of
the element. Writing equation 7.49 in discrete form results in the following equation:

(ρm,i+ 1
2

vi+ 1
2

)∗ = v t
m,i+ 1

2
ρt

m,i+ 1
2
− ∆t

2∆z

(
ρm,i− 1

2
v2

m,i− 1
2
−ρm,i+ 3

2
v2

m,i+ 3
2

)t
...

− 2∆t

∆x

(
ρ f v2

f low,iµar ea

)t
+ ∆t

2D
λ(ρm,i+ 1

2
v2

m,i+ 1
2

)t −∆t |ρt
m,i+ 1

2
g | (7.50)

Where ∆x is equal to the pipe diameter. Equation 7.50 is only valid for a element with in or outflow possi-
bility. For all other elements equation 7.17, 7.18 or 7.19 should be used.

7.3.2. BERNOULLI’S EQUATION TO DETERMINE FLOW VELOCITIES
The pressure difference between in and outside of the fallpipe results in an in or outflow of water at the inlet
section. The flow velocity is calculated by using Bernoulli’s equation:

v f low =
√

2∆p

ρ f
(7.51)

Where ∆p is the pressure difference between in and outside of the fallpipe. First an intermediate pressure
(p∗) is obtained by using equation 7.48, while neglecting the inflow part i.e. v f low is set to be 0. Important to
say is that by using the drift-flux model a negative pressure can be calculated. This negative pressure means
that there is no water in the fallpipe. When the pressure becomes smaller than 0 Pa. The pressure is forced
to be 0 Pa. The pressure difference is the difference between the intermediate pressure and the hydrostatic
pressure, defined as follows:

∆p = p∗−ρw g zi (7.52)

To model this in a numerical model, under-relaxation and an iteration scheme should be used. Under-
relaxation decreases the possibility of divergence or oscillations in the solutions. The iteration ensures that
a convergence solution for the flow velocity is obtained. When the flow velocity is determined the pressure
for the new time step can be calculated by using equation 7.48. If the new pressure is calculated the mixture
velocity for the new time step can be calculated by equation 7.22. The concentration development can be
described in the same manner as discussed in paragraph 7.2.3 and 7.2.4.
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7.4. SEMI-CLOSED FALLPIPE MODEL

The semi-closed fallpipe system used by Van Oord is built up from open-ended buckets. This means in com-
parison with a closed fallpipe, there is a possibility of water in- and outflow at each segment. A schematic
overview of the total fallpipe is given in figure 7.11. Next to the in and outflow possibility at each segment, the
bucket system has an extra pressure loss term as well, namely the Carnot losses. The Carnot losses can be cal-
culated by using equation ?? and should be implemented into the momentum equation. Another difference
is that the diameter of the bucket is not constant in z-direction.

Figure 7.11: Overview of a semi-closed fallpipe

To model the in and outflow possibility in the element it is chosen to look at each bucket as a single element,
shown in figure 7.12. The complete control volume will be enclosed by ABCD. While BC and EF displays
respectively the control surface A1 and A2 for the mixture flow and surfaces AF and DE displays the in and
outflow surface A3 of the element. The areas A1, A2 and A3 are shown in figure 7.13. Note that area A1 is
equal to area A2.
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Figure 7.12: Mass control volume of a bucket

Figure 7.13: Topview of buckets showing different flow areas

Figure 7.14: Control volume of velocity for a bucket

7.4.1. CONTINUITY AND MOMENTUM EQUATION

The continuity equation of the control volume is given in integral form as follows:

∂

∂t

∫
V
ρmdV︸ ︷︷ ︸

Density change in time

+
∮

A1

ρm vmd A1︸ ︷︷ ︸
Mass inflow

−
∮

A2

ρm vmd A2︸ ︷︷ ︸
Mass outflow

−
∮

A3

ρ f v f low d A3︸ ︷︷ ︸
Mass in or outflow due to pressure

= 0 (7.53)
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Where the first term describes the total density change in the control volume V , the second term describes
the mass flux through boundary A1 of the control volume, the third term describes the mass flux through
boundary A2 of the control volume and the last term is a mass source depending on flow in or out of the
element. Where v f low is the velocity of the in or out flow and A3 is the flow area. Important to notice is that
A1 = A2. For the following equations A2 is replaced for A1. The continuity equation can be written in discrete
form in the following way:

ρt+1
m,i −ρt

m,i

∆t
V = A1(ρm vm)t+1

i+ 1
2
− A1(ρm vm)t+1

i− 1
2
+ A3ρ f v t+1

f low,i (7.54)

By dividing equation 7.54 by the volume of the element, the following equation can be obtained:

ρt+1
m,i −ρt

m,i

∆t
= A1

V
(ρm vm)t+1

i+ 1
2
− A1

V
(ρm vm)t+1

i− 1
2
+ A3

V
ρ f v t+1

f low,i (7.55)

The mixture velocity for the new time step can be written as an intermediate velocity and a pressure term.
When looking at the control volume of the velocity, given in figure 7.14 and by using the following equation

ρm,i+ 1
2

∫
V

v t+1
m,i+ 1

2

− v∗
i+ 1

2

∆t
dV =−

∮
Amean,1

p t+1d Amean,1 +
∮

Amean,2

p t+1d Amean,2, (7.56)

where Amean,1 and Amean,2 are respectively the upper and lower area of the control volume and are equal
to each other, an equation for the mixture velocity and pressure can be obtained. Given as follows:

ρt
m,i+ 1

2
v t+1

m,i+ 1
2
= ρt

m,i+ 1
2

v∗
i+ 1

2
+ ∆t

∆z
(p t+1

i+1 −p t+1
i ) (7.57)

Writing equation 7.57 explicit for the new mixture velocity, results in the following equation:

v t+1
m,i+ 1

2
= v∗

i+ 1
2
+ ∆t

ρt
m,i+ 1

2

∆z
(p t+1

i+1 −p t+1
i ) (7.58)

To obtain an expression for the pressure equation 7.58 should be implemented into equation 7.55. Where
the volume of the element (V ) is equal to mean area of the element (Amean) multiplied with the length of the
element (∆z).

ρt+1
m −ρt

m

∆t
= A1

Amean∆z

((
(ρm v∗

m)i+ 1
2
+ ∆t

∆z
(p t+1

i+1 −p t+1
i )

)
−

(
(ρm v∗

m)i− 1
2
+ ∆t

∆z
(p t+1

i −p t+1
i−1 )

))
...

+ A3

Amean∆z
(ρ f v t+1

f low ) (7.59)

Rearranging the pressure terms results in the following equation for the elements which are not located at
the upper or lower boundary.

p t+1
i+1 −2p t+1

i +p t+1
i−1

∆z2 = Amean(ρt
m −ρt−1

m )

A1∆t 2 + 1

∆t∆z

(
(ρm v∗

m)i− 1
2
− (ρm v∗

m)i+ 1
2

)
− A3

A1∆t∆z
(ρ f v t+1

f low,i ) (7.60)

The pressure equation for the upper and lower boundary cells can be calculated following the same pro-
ceeder as described in paragraph 7.2.2, implementing the in and outflow possibility, as discussed above and
taken into account the in and outflow areas of the bucket.

The momentum equation for this element can be described in integral form by including the Carnot losses
as follows:

∂

∂t

∫
V
ρm vmdV︸ ︷︷ ︸

Change of momentum

+
∮

A1

ρm v2
md A1︸ ︷︷ ︸

Momentum flux of mixture flow

−
∮

A2

ρm v2
md A2︸ ︷︷ ︸

Momentum flux of mixture flow

+
∮

A3

ρ f v2
f low d A3︸ ︷︷ ︸

Momentum flux because of water in/outlet

= ...

−
∮

A1

pd A1︸ ︷︷ ︸
Pressure term

+
∮

A2

pd A2︸ ︷︷ ︸
Pressure term

−
∫

V
|ρm g |dV︸ ︷︷ ︸

Gravity term

+ FC ar not︸ ︷︷ ︸
Carnot force

+ Fvi scous︸ ︷︷ ︸
Friction force

(7.61)
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Where the momentum flux because of water in or outlet should be negative for water inlet and positive for
water outlet. The external forces, FC ar not and Fvi scous can be calculated by using the following two equations:

FC ar not = 1

2
ρm v2

mζC ar not = 1

2
ρm v2

m

(
1− A1

Atouch

)2
(7.62)

Fvi scous = 1

2D
λρm v2

m (7.63)

For solving the momentum equation the fractional step method is used. By using the fractional step
method first an intermediate velocity will be calculated by using equation 7.61 and omitting the pressure
term. The next step is to calculate the pressure term by using the intermediate velocity. The last step is to
correct the intermediate velocity for the pressure term.

To calculate the intermediate velocity for the three different locations i = 1
2 , 1

2 < i < imax− 1
2 and i = imax+ 1

2 ,
equations 7.64, 7.65 and 7.66 are used. Important to notice is that a staggered grid is used which means the
pressure is located in the middle of the element, where the velocity is located at the boundaries of the element.

ρm, 1
2

v∗
m, 1

2
= ρt

m,i n v t
i n (7.64)

(ρm,i+ 1
2

vi+ 1
2

)∗ = v t
m,i+ 1

2
ρt

m,i+ 1
2
− A1∆t

V

(
(ρm,i− 1

2
v2

m,i− 1
2

)t − (ρm,i+ 1
2

v2
m,i+ 1

2
)t

)
− A3∆t

V
(ρ f v2

f low,i )t ...

+∆t
( λ

2D
+ζC ar not

)
ρt

m,i+ 1
2

v2
m,i+ 1

2
−∆t |ρt

m,i+ 1
2

g | (7.65)

ρm,imax+ 1
2

v∗
imax+ 1

2
= ρm,imax− 1

2
v∗

imax− 1
2

(7.66)

After the intermediate velocity is calculated the next step is to calculate the pressure at each segments in
one step. This has been done by taking the inverse of the following matrix. Important to notice is that the
source/sink term has been implemented in the vector at the right hand side.
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(7.67)

To determine the flow velocity two methods are proposed. The first one makes the assumption that p t+1
i =

ρ f g zi i.e. the pressure in the fallpipe is equal to the hydrostatic pressure at that location. The second method
determines the flow velocity based on the pressure difference between the in and outside of the fallpipe,
following Bernoulli’s equation.

7.4.2. FLOW VELOCITY BASED ON LEVELLING OUT PRESSURE DIFFERENCE

The flow velocity can be calculated by making the assumption that the pressure of the new time step is equal
to the hydrostatic pressure. This can be done by calculating an intermediate pressure (p∗). This intermediate
pressure can be obtained by using equation 7.67 but instead of using the flow velocity of the new time step,
the flow velocity is set at 0, resulting in the following equation:
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If the intermediate pressure is not equal to the hydrostatic pressure water starts flowing in or out of the
element. The pressure difference between the intermediate and hydrostatic pressure can be calculated as
follows:

∆pi = p∗
i −ρw g zi (7.69)

Where p∗
i and zi are respectively the intermediate pressure and depth at location i . When the pressure

difference is calculated and the assumption is made that the pressure in the fallpipe will restore to the hydro-
static pressure, the influence of the source or sink term can be determined by the following equation:
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Where the vector at the left-hand side is named Q f low . To calculate the in or outflow velocity per element
the following equation is used:

v f low,i =
Q f low,i A1∆z∆t

A3ρ f
(7.71)

This method can only be applied if the openings between the buckets are large enough, because the flow
velocity in or out of the fallpipe for each location is limited by the following equation:

v f low,i =
√

2∆pi

ρ f
(7.72)

In the drift-flux model, when the input boundary is fixed a negative pressure can be generated. A negative
pressure means that there is no water at that location in the fallpipe i.e. there is a water level drop in the
fallpipe. The negative pressure represents the water level drop, an example is given in Appendix A. In reality
the relative pressure is equal to 0 Pa when there is no water in the fallpipe. By using equation 7.70, this is
not taken into account. Resulting in high flow velocities when the flow area (A3) goes to zero. When the flow
velocity is calculated and the pressure is corrected for the new flow velocities, the mixture velocity for the new
time step can be calculated by using equation 7.58.

7.4.3. BERNOULLI’S EQUATION TO DETERMINE FLOW VELOCITIES
The same method as already introduced in paragraph 7.3 can be used as well. Hereby the flow velocity will
be calculated by looking at the pressure difference between in and outside of the fallpipe, shown in equation
7.51. This way the flow velocity depends on the pressure difference between in and outside of the fallpipe.
Still there can be a negative pressure generated by the model. This should be corrected to 0 Pa i.e. if pi < 0
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pi = 0. The pressure difference will be calculated by using the corrected pressure. Important to say is that in
this case under-relaxation, small time steps and an iteration loop should be used in the numerical model. A
comparison between the two methods is made and discussed in Appendix B.

Comparing the results, it can be said that both techniques can be used to calculate the transport of rocks
in the semi-closed fallpipe of Van Oord, because both methods obtain the same results. It can be concluded
that for the current dimensions of the buckets and openings between the buckets, the pressure in the fallpipe
will restore to the hydrostatic pressure. By making the flow area multiple times smaller, high flow velocities
occur by using the assumption that the pressure restores to the hydrostatic pressure, which makes it not a
valid method to use. Note that this pressure is a combination of the pressure in the fallpipe and the water
added to or subtracted from the fallpipe.

When the flow velocity is calculated, the pressure should be corrected for the new flow velocities to obtain
the mixture velocity for the new time step, by using equation 7.58. An overview of the calculation steps is
given for the two different methods in Appendix C.

7.4.4. TRANSPORT EQUATION FOR A SEMI-CLOSED FALLPIPE
The total velocity of the solids is a combination of the mixture velocity and the settling velocity of the solids,
as discussed in chapter 7.2.3. When the total fall velocity per fraction is determined, the transport of concen-
tration for the semi-closed fallpipe can be described.

For a semi-closed fallpipe an overview of the concentration change in an element is displayed in figure 7.15.
The concentration change of the element is given by the following equation:

∂

∂t

∫
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+
∮

A1
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−
∮

A2

αs,k v f al l ,k d A2︸ ︷︷ ︸
Concentration outflow

= 0 (7.73)

Important to notice is that area A1 = A2. The volume of the element is not equal to in or/and outflow area
multiplied with ∆z, like for a closed fallpipe. This results in the following equation in discrete form:
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)
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(
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s,k,i v t+1
f al l ,k,i

)
(7.74)

For solving the transport equation an upwind scheme is used. This means equation 7.74 can only be used
to describe the transport of concentration downwards.

The total concentration in each cell can be determined by the summation of the concentration of each
fraction in a cell. When the concentration and the velocity in each cell is determined, the production can
be calculated. The mixture density should be updated for the following time step by using the following
equation.

ρt+1
m =αt+1

s ρs + (1−αt+1
s )ρw (7.75)

The new obtained density at each cell is used in the continuity and momentum equation to obtain the
pressure term for the new time step. This process continues till the simulation time ends.

7.5. CONCLUSION
To model the fall process of rock in a fallpipe, the drift-flux model is used. The mixture velocity in the drift-
flux model is calculated by using the fractional step method. The fractional step method uses an intermediate
velocity and a pressure. To obtain the mixture velocity for the new time step, the intermediate velocity is
corrected for the pressure. The total fall velocity is a combination of the mixture velocity in the fallpipe and
the settling velocity of the rock, corrected for the hindered settlement and fallpipe influence.

To describe the development of the concentration, the obtained total fall velocity is used in the advection
transport equation. In this model the input boundary is fixed, resulting in an under pressure in the fallpipe
when the process of rock installation starts. The pressure in the fallpipe will change during the installation
process and water will flow in or out of the fallpipe depending on an under or overpressure. The flow velocity
in or out of the fallpipe can be calculated by Bernoulli’s equation based on the pressure difference in the
fallpipe and the hydrostatic pressure or by making the assumption the pressure in the fallpipe will go to the
hydrostatic pressure and solve the flow velocity in matrix form.

A big advantage of the matrix method is that the calculation time decreases significantly. Comparing the
two methods it can be said that in this case with the given dimensions of the buckets and openings, the
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obtained results are equal. The in and outflow of water should be implemented as a mass source and mo-
mentum source into respectively the continuity and momentum equation.

Figure 7.15: Concentration balance over a semi-closed element





8
Model results and Case study

In this chapter an overview of the results is given for the closed and semi-closed fallpipe model. The models
will be tested for changing input productions and will be discussed and validated based on measurements
provided by Van Oord.

8.1. MODEL PARAMETERS

The standard parameters which are valid for both fallpipe systems are given in table 8.1. Additionally, both
fallpipe systems have their own parameters, for example length of segment and pipe diameter. These addi-
tional parameters are shown in table 8.2 and 8.3 for respectively the closed fallpipe and semi-closed fallpipe.

Table 8.1: Input parameters used for Matlab model

Symbol Description Value Units

∆t Time step 0.01 s

L Length of fallpipe 285 m

g Gravitational acceleration 9.81 m/s2

cd Drag coefficient 1 −
k Number of fractions 6 −
d Diameter of particles 0.022/0.043/0.064/0.085/0.106/0.127 m

λ Friction factor 0.02 −

Table 8.2: Input parameters for the closed fallpipe system

Symbol Description Value Units

∆z Length of element 3.0 m

n Number of elements 95 −
D Diameter of fallpipe 1.1 m
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Table 8.3: Input parameters for the semi-closed fallpipe system

Symbol Description Value Units

Lbucket Length of bucket 2.2 m

θ Overlap between buckets 0.1 −
∆z Effective length of element 1.98 m

n Number of elements 144 −
Dup Upper diameter of bucket 1.1 m

Dlow Lower diameter of bucket 0.849 m

8.2. FALLPIPE MODEL FOR WATER FLOW

In this paragraph the results for a water flow in the fallpipe will be discussed. First a water flow without
openings in the fallpipe will be described, followed by a fallpipe with openings for water outflow.

8.2.1. CLOSED FALLPIPE FOR WATER FLOW

This model describes the water flow in a fallpipe. Before making the step to a mixture flow, which makes it
more difficult, it is good to see how the model is working for a flow with a constant density, i.e. the mixture
density is equal to the water density. In table 8.4 an overview is given of the input parameters.

Table 8.4: Input parameters for the water flow model

Input velocity vi n -2 m/s

Input density ρi n 1025 kg/m3

Running the model for 1 second by using the given input values results in the pressure and velocity field,
as shown in figure 8.1. What can be seen when looking at the velocity field is that after 1 second the water is
flowing in the whole fallpipe. This is because of continuity and the condition that the fluid is incompressible.
Important to notice is that in this case the only pressure loss is due to wall friction over the fallpipe.

From the results it can be seen that continuity is conserved. The flow velocity in the fallpipe is equal for all
locations, because the density is equal for all locations as well. So, in other words the amount of mass which
flows into the fallpipe leaves the fallpipe as well. This is an easy check to see if the model is working as it
supposed to do. Furthermore, the overpressure at the top of the fallpipe should be equal to the pressure loss
over the fallpipe due to wall friction. The total pressure loss can be calculated in the following manner:

∆p f r i ct i on = 1

2D
ρm v2

mλmL (8.1)

Substituting the parameters shown in table 8.1 and 8.4, the pressure loss will be 9540 Pa. This number
corresponds with the calculated value in the numerical model.
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Figure 8.1: Results of water flow in a closed fallpipe

8.2.2. FALLPIPE MODEL FOR WATER FLOW WITH OPENINGS

In this paragraph the results of a water flow in a fallpipe with outlet section will be displayed. The amount of
water flowing out depends on the outflow velocity and the outflow area. The overpressure in the fallpipe is
a result of the wall friction. A simulation is made with the same input parameters as given in table 8.4. The
openings are a fraction of the height of the segment and are chosen as follows: 0, 0.015, 0.025 and 0.05. The
location of the outlets are set at: 40, 60, 80, 100 and 120 meter. The results are shown in figure 8.2, 8.3, 8.4 and
8.5. The outflow velocity will be calculated by using the following formula:

v f low =
√

2∆pi

ρ f
(8.2)

It can be clearly seen that by increasing the inflow gap, the pressure inside the fallpipe will go faster to the
hydrostatic pressure and the velocity in the fallpipe decreases faster. This is because more water can flow out
of the fallpipe due to the larger flow area, resulting in a larger pressure release. When the inflow fraction is
equal to zero, the results are equal to the closed fallpipe situation. This is in line with the expectations.
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Figure 8.2: Results of water flow with outlet fraction 0.0

Figure 8.3: Results of water flow with outlet fraction 0.015
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Figure 8.4: Results of water flow with outlet fraction 0.025

Figure 8.5: Results of water flow with outlet fraction 0.05
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8.3. CLOSED FALLPIPE MODEL FOR ROCK INSTALLATION
In this paragraph the results for two different situations are shown. First the results of a closed fallpipe with
no water inflow will be discussed, followed by the results of a fallpipe with water in or outflow.

8.3.1. CLOSED FALLPIPE WITH NO INLET SECTION

When using a closed fallpipe with no inflow of water, the water level in the fallpipe will drop during the
process. This is because of the change of density in the fallpipe resulting in a higher pressure at the end
of the fallpipe. To level this pressure difference out, water will flow out at the end of the fallpipe. After some
time (depending on water depth and concentration) an equilibrium will be reached.

For the simulation, the production and velocity input is set at 1000 tonnes per hour and 3 m/s respec-
tively. When the input production increases, the input concentration increases as well. In this case the input
concentration is calculated at 0.011.

The rocks do not all have the same diameter but may vary in a certain range. In this case it is chosen to
divide the rocks in 6 fractions with a particle diameter ranging between 20-125mm, which is commonly used
during subsea rock installation. The following results are obtained, shown in figure 8.6.

From the results it can be seen that the model is doing what it is expected to do. The under pressure equals
the water level drop and continuity is conserved. The total velocity of the rocks is a combination of the input
velocity and the settling of the rock per fraction. The next step is to implement the water flow in or out of the
fallpipe if there is an under or over pressure.

Figure 8.6: Results of a simulation for a closed fallpipe with no openings for different time steps

8.3.2. CLOSED FALLPIPE WITH INLET SECTION

If the water level in the fallpipe drops too far, the pressure difference between the in- and outside of the pipe
can be that high that the pipe will implode. To prevent the fallpipe from imploding, there are special inlet
segments in a closed fallpipe for allowing water to flow in. To model this it is chosen to implement an inflow
area as a fraction of the length of the element at the second element, a couple meters under the water level.
If the pressure in the fallpipe is higher than the hydrostatic pressure at the same depth, water will flow out of
the element and if the pressure inside the fallpipe is lower, water flows into the element.

A simulation is made by using the same input parameters as in the previous section and an inflow fraction,
µar ea of 0.25. The inflow fraction is a fraction of the total length of the element (3m). The results are shown
in figure 8.7.
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Figure 8.7: Results of simulation of a closed fallpipe with (µar ea = 0.25)

Looking at the results it can be clearly seen that the total velocity of the solids in a fallpipe with water inflow
is higher than for a closed fallpipe with no water inflow. A higher velocity results in a lower concentration of
solids in the fallpipe. Comparing these results with the previous section it can be said that the mixture velocity
generated in the fallpipe because of water inflow is a significant contributor to the fall velocity of the solids.
The amount of water depends on the inflow velocity and the area of the inflow gap. If the inflow fraction will
be set at 0.005 of the length of the element, the following results are obtained. Shown in figure 8.8.

Figure 8.8: Results of simulation of a closed fallpipe with (µar ea = 0.005)

Comparing the results of figure 8.7 and 8.8, it can be concluded that the inflow velocity is higher for a
smaller inflow fraction. This is in line with the expectations because the amount of water flowing in depends
on the inflow velocity and the inflow area. In the second situation it can be seen that the pressure difference
between in and outside the fallpipe is not equal to 0 Pa at the location of the inflow. This means that the water
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flowing in is not enough to level out the pressure difference. To do this the inflow velocity should be higher
than used in this case but this is not possible because the inflow velocity is limited.

The highest inflow velocity which can be obtained is when ∆p equals the hydrostatic pressure at that lo-
cation. If that happens it means there is no water in the fallpipe i.e. relative pressure is 0 Pa. The relative
pressure in the fallpipe can not be lower than 0 Pa, resulting in a limited inflow velocity. The maximum inflow
velocity at 4.5 m water depth is 9.39 m/s.

It is highly important to check whether continuity is conserved over the element. To check this the second
element was looked at. An overview of this segment is given in figure 8.9. The results are shown in table 8.5

Figure 8.9: Overview of in and outflow for an open element

Table 8.5: Overview of inflow and outflow of element

Description Density [kg/m3] Absolute velocity [m/s] Surface [m]

Water inflow 1025 1.68 3

Mixture inflow 1124.5 0.26 1.1

Mixture outflow 1065.7 4.68 1.1

By multiplying the density, velocity and inflow/outflow surface, the mass flow can be calculated. Compar-
ing the mass in and outflow over the element by using the results, shown in table 8.5, it can be seen that the
inflow is equal to the outflow and so the continuity is conserved. The total inflow mass is 5493.9 kg/ms and
the outflow of mass is 5493.9 kg/ms. So, it can be said that the continuity is conserved.
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8.4. SEMI-CLOSED FALLPIPE MODEL FOR ROCK DUMPING
For a semi-closed fallpipe, the Carnot losses should be taken into account, as explained in paragraph 7.4. The
Carnot losses are among others depending on the Carnot factor. By using equation ?? and the parameters
given in table 8.1, the Carnot factor is calculated at 0.0763. When using three different input productions
namely 500, 1000 and 1500 tonnes per hour the following results are obtained see respectively figure 8.10,
8.11 and 8.12. The results are plotted for different time moments.

Figure 8.10: Results of the semi-closed fallpipe with input production of 500 ton/h

Comparing the results of the three different input productions, it can be clearly seen that the input produc-
tion has a large influence on the mixture velocity. When the input production increases the velocity increases
as well. This is because a higher production means a higher mixture density in the fallpipe, resulting in a
higher pressure difference at the end of the fallpipe and a larger water level drop. A larger water level drop re-
sults in more water flowing in, when the inflow area stays constants the flow velocity will increase. This results
in a higher velocity in the fallpipe by increasing the production. When looking at the in and outflow velocities
between the gaps of the buckets it can be seen that by increasing the production the outflow velocity will
increase as well.

The bulk velocity will go to zero when the concentration goes to zero because the pressure at the front will
decrease linear with the concentration. When the pressure is hydrostatic and there is no concentration in the
element, the mixture velocity will be zero. This is displayed in figure 8.10, 8.11 and 8.12.
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Figure 8.11: Results of the semi-closed fallpipe with input production of 1000 ton/h

Figure 8.12: Results of the semi-closed fallpipe with input production of 1500 ton/h
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8.5. CONCLUSION
In this chapter the results are shown for a fallpipe with water flow, a fallpipe with water flow and openings, a
fallpipe with rocks and an inlet section and a semi-closed fallpipe with openings at each element. The influ-
ence of the water in and outflow can be clearly seen. The mixture velocity in the fallpipe increases significantly
with the possibility of water inflow. When comparing the semi-closed fallpipe model with the measurements
provided by Van Oord, it can be said that the model provides a good prediction of when the front of the
rocks are leaving the fallpipe. The falling time is exactly the time between input production at the top of the
fallpipe and output production at the end of the fallpipe. The concentration changes can be quite accurately
predicted, meaning that the falling time is accurate as well. The absolute value of the concentration is more
difficult to validate because the measurements are not giving an answer to that due to the fluctuations of the
measurements.





9
Final conclusions and recommendations

During this thesis, research has been carried out into the fall process of rock in a fallpipe. The main objective
was to provide a better understanding of the production, concentration and velocity profile in the fallpipe
during subsea rock installation. In this chapter the general conclusions and recommendations for further
research will be discussed.

9.1. CONCLUSIONS
• The fall process of rock during subsea rock installation can be modelled in one dimension by using

the drift-flux model. The drift-flux model uses a general mixture velocity and a slip velocity. The mix-
ture velocity can be calculated by the fractional step method and the slip velocity can be calculated by
the hindered settling theory. Combining these two velocities results in the total fall velocity of a rock
particle. To describe the concentration in the fallpipe, the total fall velocity of the rock is used in the
transport equation.

• An important difference between rock falling in a closed fallpipe and a semi-closed fallpipe is that for
a semi-closed fallpipe an extra pressure loss should be implemented in the momentum equation: The
Carnot loss.

• By using a closed fallpipe during subsea rock installation, the inflow area can be adjusted, while for a
semi-closed fallpipe the inflow area is fixed. This means the amount of water flowing into the fallpipe
can be controlled for a closed fallpipe, while this is not the case for a semi-closed fallpipe. When the
amount of water can be adjusted, the flow velocity and so the total fall velocity of the rocks can be
controlled.

• When rocks are starting to fall into the fallpipe the density in the fallpipe increases. When the density
increases, the pressure in the fallpipe increases as well. To level this out, the water level in the fallpipe
will drop. If the water level drops too far, water from outside the fallpipe will start flowing in. This
process continues till the production stops and the density in the fallpipe restores to the density of
water.

• The inflow of water from outside the fallpipe into the fallpipe can be modelled as a mass source in the
continuity equation and as a momentum source into the momentum equation.

• The assumption that the in and outflow of water results in a pressure in the fallpipe, which is equal
to the hydrostatic pressure, has been checked by calculating the in and outflow based on the pressure
difference between in an outside the fallpipe. The results of both calculations are the same, which
means by the given parameters of the buckets and inflow gap the pressure will restore to the hydrostatic
pressure in the fallpipe.

• The model can be used to give a good prediction of the total falling time with varying input production.
The results of the model are checked by performing a case study with input production and concen-
tration measurements and the concentration changes can be clearly seen and match with the model
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results. The measurements of the case study cannot be used to determine the absolute value of the
concentration in the fallpipe because the measurements are not consistent. Important to say is that
the inflow area is large enough to ensure the inflow velocity will not exceed the maximum inflow veloc-
ity.

• For a semi-closed fallpipe the outflow velocities between the buckets are in the range of 1-2 m/s for
productions between 500-1500 tonnes per hour. Comparing these velocities with the settling velocity
of small diameter rocks, a tentative conclusion can be made that in some circumstances small rocks
can flow out of the fallpipe through the opening between the buckets.

9.2. RECOMMENDATIONS
• The concentration changes can be clearly seen in the measurements but the absolute value of the con-

centration is varying too much to use as a correct result and to validate the model. To give more value
to the model, velocity measurements should be carried out to determine the output velocity of the rock
at the end of the fallpipe. By combining the velocity and concentration measurements, the model can
be tested more precisely.

• When using a semi-closed fallpipe, a question that arises is: "Can rocks flow out of the fallpipe through
the openings between the buckets?" A tentative conclusion can be given while looking at the settling
velocity of small diameter rocks and the outflow velocities between the buckets. Based on this observa-
tion it can be said that there is a chance that rocks flow out of the fallpipe through the openings between
the buckets. To give a more precise answer on which diameter rocks will flow out, a test set up could
be made, to simulate the fall process and determine at which outflow velocities rocks will start flowing
out.

• The model is only tested for water depths up to 300 meters because no measurements are carried out for
larger depths. This range is a quite regular working depth for subsea rock installation. To validate and
determine the accuracy of the model in deeper waters, measurements in larger water depths should be
carried out.
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A
Calculations of water level drop

During the fall process of rock in the fallpipe, an under pressure is generated by the drift flux model. In
this Appendix, it is shown that the under pressure generated by the model equals the water level drop in the
fallpipe. To do this a comparison is made between the under pressure in the fallpipe and the hydrostatic
pressure of the column. In this simulation the fallpipe is only open at the top end and the lower end of the
fallpipe. Important to notice is that there will be no water added or subtracted when there is an under or
overpressure.

Under pressure in fallpipe
In this case the duration of the simulation is set at 800 seconds, to ensure an equilibrium situation is reached.
The input production is set at 700 tonnes per hour which results in an input mixture density of 98.13 kg/m3.
The total length of the fallpipe is 301 m. While running this model the following results are obtained, see
figure A.1.

Figure A.1: Results for water level drop calculations
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The under pressure at location 1, as shown in figure A.2 can be calculated and is 4.98·105 Pa. This pressure
should be equal to the pressure generated by the mixture density in the fallpipe multiplied with the gravita-
tional constant multiplied with the height of the water level drop.

Figure A.2: Location of the under pressure used for calculation

To calculate the water level drop based on the under pressure the following equation can be used.

zdr op = p1

ρm g
(A.1)

Where p1 is the pressure at location 1. and the mixture density in the fallpipe in this case is equal to 1188.9
kg/m3. Filling in the given parameters results in a zdr op of 41.54 m.

Static pressure water
When the fallpipe is completely filled with water. The static pressure at the end of the fallpipe can be calcu-
lated by using the following equation.

p = ρ f g L (A.2)

Where L is the length of the fallpipe. Filling in the parameters results in a hydrostatic pressure of the water
column at location 2 (see figure A.2) of 3.03 ·106 Pa.

Static pressure mixture density
The static pressure at location 2 by using the mixture density should be equal to the static pressure by using
the density of water. While looking at equation A.2 and saying the mixture density is higher than the water
density, the height of the mixture column (z) should be smaller than the height of water column i.e. equation
A.3 should be valid.

ρ f g L = ρm g z (A.3)

To calculate the height of the column for the mixture case, equation A.3 can be rewritten to the following
equation.

z = ρ f g L

ρm g
(A.4)

Filling in the given parameters results in a column height (z) of 253.48 m. The water level drop is therefore
301-259.86 = 41.57 m.
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Conclusion
The water level drop based on the theory of Bernoulli is 41.54 m. While the model calculates a water level
drop of 41.57 m. This difference can be written to the location of the pressure. In the model the pressure is
located in the middle of the element. While the calculation is using the pressure at the boundary. For the
model the pressure at the boundary is estimated.





B
Comparing the two calculation methods
for flow velocities

In this Appendix, a comparison is made between the two calculation methods for the outflow velocity. The
first method is based on the assumption that the pressure in the fallpipe goes to the hydrostatic pressure and
the second method is using Bernoulli’s equation to calculate the flow velocity between the buckets.

By implementing the flow velocity based on Bernoulli’s equation, under-relaxation and an iteration scheme
should be used. A big advantage of the first method is that the calculation time is significant lower than for
the second method but it assumes that the pressure in the fallpipe is always equal to the hydrostatic pressure.
Which can only be true if the flow area (opening between the buckets) is large enough so the flow velocity will
not exceed the maximum flow velocity.

Firstly, a comparison is made between the two models after a simulatin of10 seconds. The results are plot-
ted in one figure and shown in figure B.1. The length of the fallpipe is set at 100m and the input production is
1000 tonnes per hour.

Figure B.1: Results of simulation comparing the two methods for flow velocity at t=10s

When looking at the results, it can be seen that both methods calculates exactly the same results, because
both lines are on top of each other. Meaning that the pressure in the fallpipe for the given dimensions of the
buckets and openings will restore to the hydrostatic pressure. It is of interest to see what happens with the
flow velocity and the mixture velocity if the flow area increases or decreases.
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Increase of flow area
First the flow area is made two times larger. The flow velocity should therefore be two times smaller, as can
be seen in figure B.2. Still it can be seen that the pressure in the fallpipe restores to hydrostatic pressure.

Figure B.2: Results of simulation comparing the two methods for flow velocity at t=20s with flow area 2 times larger than original

Decrease of flow area
Looking at the first method, when decreasing the flow area to zero, the flow velocity should go to infinity.
Following Bernoulli, the flow velocity is limited by the pressure difference between in and outside the fallpipe
this can not be the case in reality. The method based on Bernoulli’s equation for calculating the flow velocities
takes into account that the flow velocity will not exceed the maximum flow velocity based on the pressure
difference in and outside of the fallpipe. A comparison is made in figure B.3 by using a flow area which is 10
times smaller than the original area. The simulation time is in this case 20 seconds.

Figure B.3: Results of simulation comparing the two methods for flow velocity at t=20s with flow area 10 times smaller than original

In figure B.3, it can already be seen that the two methods obtain different results. First, the mixture velocity
needs more time to develop by taking into account the limited flow velocity. Second, because of the difference
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in mixture velocity, the concentration profile looks different as well and finally the inflow velocities at the top
of the fallpipe are different. By making the flow area 100 times smaller than original, the results displayed
in figure B.4 are obtained. It can be clearly seen that the flow area has a significant influence on the mixture
velocity.

Figure B.4: Results of simulation comparing the two methods for flow velocity at t=20s with flow area 100 times smaller than original

While running both methods till an equilibrium is reached (the fallpipe is filled with concentration) the re-
sults, shown in figure B.5 are obtained. Again, it can be clearly seen that the area has a significant influence on
the development of the mixture velocity. When the mixture velocity changes the transport of concentration
changes as well.

Figure B.5: Results of simulation comparing the two methods for flow velocity till an equilibrium is reached with a flow area 100x
smaller than original
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Finally, it can be said that by using the current dimensions of the semi-closed fallpipe system of Van Oord
both methods will provide the same outcome. By increasing the flow area still both methods provide the same
results. An increase in the flow area results in a decrease of the flow velocity. When the openings between the
buckets decreases, the two methods will not give the same results any more. The first method does not take
into account the limited flow velocity, while the second method does take it into account. This will result in
different outcomes by decreasing of the flow area.



C
Schematic overview of calculations steps

In this Appendix an overview is given of the calculation steps of the two methods used for calculating the
in and outflow velocities. In figure C.1, the matrix method is displayed and in figure C.2 an overview of the
iteration method is shown.

Figure C.1: Schematic overview of calculation steps for closed and semi-closed fallpipe

75



76 C. SCHEMATIC OVERVIEW OF CALCULATIONS STEPS

Figure C.2: Schematic overview of calculation steps with iteration for a semi-closed fallpipe
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