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Abstract. Suspended particulate matter (SPM) concentra-
tions in estuaries have been observed to vary strongly over
the spring—neap cycle through complex interactions between
trapping and re-suspension. However, a systematic frame-
work for analysing the processes causing this spring—neap
SPM variability in general is missing. In this study we set up
such a framework, consisting of three tiers. First, by study-
ing the sediment transport capacity, how the locations of sed-
iment trapping change over the spring—neap cycle is identi-
fied. Second, how the transport capacity affects the sediment
stock and bottom pool of sediment is studied. This bottom
pool only adapts gradually to the changing transport con-
ditions, incorporating a lag or memory effect. Using a two-
timescale analysis it is shown that this slow movement of the
bottom pool is the leading source of such lag effects. Third,
the SPM concentration is explained from an almost instanta-
neously balanced exchange between the bottom pool and the
water column through re-suspension and deposition.

We demonstrate the use of this framework on two model
cases implemented in the idealised width-averaged iFlow
model: an idealised test case where the sediment dynamics
do not affect the water motion and a case representative of
the Loire estuary, with strong feedback between sediment
and the water motion through sediment-induced damping of
turbulence. The first is illustrative as it allows a full under-
standing in terms of cause and effect between water motion,
transport, and SPM concentration. In the more realistic Loire
case, the SPM dynamics cannot be explained in terms of
cause and effect but can explain the trapping locations and
timing of maximum concentrations in a systematic way in
terms of the governing physical mechanisms.

1 Introduction

In estuaries, suspended particulate matter (SPM) tends to
concentrate in specific zones, called estuarine turbidity max-
imum (ETM) zones. When assuming equilibrium conditions,
ETM zones are often associated with sediment trapping,
i.e. convergence of subtidal sediment transport capacity. This
leads to the formation of a bottom pool of sediment. From
this bottom pool, sediment is re-suspended to form the ETM
(Burchard et al., 2018). However, since estuaries are highly
dynamic environments, the sediment dynamics are often not
in equilibrium, e.g. due to variations in flow on the spring—
neap and seasonal timescales. Such flow variations affect the
amount of re-suspension as well as the location and strength
of sediment trapping. Moreover, if a sediment bottom pool
was formed, it takes time to adapt to such changing flow
conditions. Hence, the ETM may exist in regions without the
trapping of sediment due to remnants of a bottom pool that
was formed under past flow conditions (e.g. Brouwer et al.,
2018; Schoellhamer, 2011).

Focusing on the spring—neap timescale, fortnightly vari-
ability in SPM concentrations has been observed in vari-
ous estuaries including the Hudson (Traykovski et al., 2004),
Seine (Le Hir et al., 2001), Tamar and Weser (Grabemann
et al., 1997), Ems (Winterwerp et al., 2017), Scheldt (Fet-
tweis et al., 1998), and Gironde (Allen et al., 1977). Ob-
served dynamics have been attributed to various phenomena.
Firstly, the spring—neap cycle affects the SPM concentration
through re-suspension. Various authors report higher sedi-
ment concentrations during spring than neap because higher
bed shear stresses lead to more re-suspension (e.g. Allen et
al., 1980; Vale and Sundby, 1987; Grabemann et al., 1997;
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Fettweis et al., 1998). Stronger vertical stratification during
neap tides than spring in stratified estuaries reinforces this
effect (Jay and Musiak, 1994). Secondly, the spring—neap
variation affects the SPM concentrations through the trap-
ping of sediments. In stratified estuaries where sediment trap-
ping is dominated by density-driven flow, the increased trap-
ping of sediment is observed during neap tide. This is due
to reduced tidal mixing, which causes stronger stratification
and density-driven flow (e.g. Schoellhamer, 2000; Ralston
and Geyer, 2009). Conversely, there are examples of estuar-
ies with tide-dominated sediment trapping where trapping is
strongest during spring tides (e.g. Uncles et al., 2006).

The summary above indicates there is a great amount of
observational evidence of spring—neap SPM dynamics and
various processes that affect both trapping and re-suspension
in complex ways. The way these various processes together
result in the suspended sediment concentration (SSC) is
poorly understood. Underlying this knowledge gap, we ob-
served that a framework to systematically assess spring—neap
variations in the flow on trapping and re-suspension and their
combined effect on SSC is essentially missing.

The goal of this study is to gain insight into the com-
plex interactions between sediment trapping, re-suspension,
and SPM concentration under spring—neap variations in the
flow. To this end, we developed a systematic framework
to analyse and understand these interactions. Our frame-
work will first be illustrated using an example of an ide-
alised tide-dominated estuary, where trapping is dominated
by tide-induced sediment transport processes. The effect of
the spring—neap cycle on these trapping processes as well as
re-suspension will be analysed in detail. By varying the ero-
sion parameter for sediment in this test case, the effect of bot-
tom pool formation on the final SPM dynamics is specifically
emphasised. The model is then applied to a more realistic test
case representing the hyperturbid Loire estuary, demonstrat-
ing the various effects of the spring—neap cycle on both tide-
and baroclinicity-induced transport processes in a more com-
plex context. While it is not our aim to provide an extensive
overview of the various spring—neap-related processes that
can occur in different types of estuaries, the framework de-
veloped can be used to systematically study other estuaries
as well.

This method is implemented in an idealised width-
averaged model based on the iFlow framework (Dijkstra et
al., 2017; Brouwer et al., 2018). While our analysis is not
strictly limited to idealised models, the iFlow model facil-
itates gaining more understanding of the various sediment
transport processes that can later be projected to better inter-
pret more complex model results or observations. The iFlow
model allows for the study of the decomposition of sediment
transport processes as well as facilitates a formal definition
and analysis of bottom pool dynamics.

The outline of this paper is as follows: Sect. 2 introduces
the model, analysis methods, solution method, and set-up of
our case studies. The results for the idealised set-up and Loire
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case are then discussed in Sect. 3. A discussion of limitations
and implications of this work is presented in Sect. 4, followed
by the conclusions.

2 Model and methods
2.1 Model equations and forcing

We use a process-based width-averaged model that solves for
the equations for water motion, sediment mass conservation,
and dynamics of the sediment bottom pool. The model do-
main is described by Cartesian (x, z) coordinates. The estu-
ary is assumed to be a single channel running from the mouth
(x =0) to the upstream limit (x = L; see Fig. 1). The ver-
tical axis runs from an x-dependent bed level z = —H (x)
to the surface z = R(x) + ¢{(x,t). Here, R(x) is a subtidal
reference level caused by the river set-up and ¢ (x, 1) is the
(tidal) surface variation. The width of the estuary is also x-
dependent and denoted by a function B(x). The equations for
the water motion are the width-averaged continuity and mo-
mentum equations. Assuming hydrostatic pressure and the
Boussinesq approximation, these equations are read as

(Bu)y + Bw, =0, (D)
R+¢

Ur +utty +wu, = —g&x +gp sydz’ + (Ayuz);. ()
z

Here, subscripts x, z, and ¢ denote derivatives with respect
to these dimensions. The functions # and w are the velocity
components in the x and z directions, g is the acceleration of
gravity, pg is a reference density, and A, is the vertical eddy
viscosity. The function s(x, z, t) denotes salinity, and S is the
haline contraction coefficient; it is assumed that density dif-
ferences are dominated by salinity. Specific choices for mod-
elling salinity are discussed in Sect. 2.6. At the surface, a no-
stress condition and kinematic condition are prescribed. At
the bed, we prescribe the partial sip law A,u; = s fu, where
sy is a partial slip parameter, and a non-permeability con-
dition. The partial slip parameter and eddy viscosity, both
representing effects of turbulence, are assumed constant over
the semi-diurnal cycle for simplicity (but potentially varying
over the spring—neap cycle). The eddy viscosity is assumed
to be vertically uniform.
The sediment mass balance is described by the equation

¢t +uc; + (w —ws)e; = (Kyey); + (Kncx)x, 3

where c is the suspended sediment concentration, wy is the
settling velocity, and K, and K}, are the vertical and horizon-
tal eddy diffusivities. Both K, and K}, are vertically uniform
and constant over the tidal cycle. At the surface, a no-flux
condition is used. At the bottom, the re-suspension of sedi-
ment is considered according to

Kyc;=M|wlf  atz=-—H, 4)
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Figure 1. Model domain. The model is two-dimensional in along-channel (x) and vertical (z) directions and is width-averaged. The depth
and width are allowed to vary smoothly with x. Figure copied from Dijkstra et al. (2017).

where M is an erosion parameter, 1y, is the bed shear stress,
and f is the erodibility. The erodibility is a value between
0 and 1 indicating the amount of sediment available on the
bed averaged over the tidal cycle, from permanently starved
conditions at f = 0 to abundant supply at f = 1 (Brouwer et
al., 2018).

The amount of sediment at the bed is modelled using the
Exner equation, stating that the change in sediment mass on
the bed equals deposition minus re-suspension:

Sbed,r = WsClz=—g — M|tp| f, (5)

where Speq is the amount of easily erodible sediment in the
bottom pool or bottom sediment stock (in kgm™2). It is as-
sumed that the thickness of the bottom pool does not affect
the water depth. It is useful to also define the total tidally
averaged sediment stock S, which describes the amount of
easily erodible sediment in the bed and water column, i.e.

R+¢

S— <Sbed+ / cdz>, ©)

—-H

where (-) denotes averaging over a typical semi-diurnal pe-
riod (formally defined in Sect. 2.2.2). We relate the erodibil-
ity f to the stock S using the relation derived by Brouwer
et al. (2018). For small values of S, this relation states that
f increases with S (i.e. supply-limited conditions). For suffi-
ciently large values of S, the erodibility equals unity, mean-
ing that adding more sediment to the bottom pool will not
affect the amount of sediment in suspension (i.e. erosion-
limited conditions).

The hydrodynamic forcing for this model consists of an
M>, My, S»>, and Sy tide at the mouth (see also Sect. 2.2.2)
and a constant discharge at the head of the estuary. For
the sediment model a constant tidally averaged and depth-
averaged sediment concentration is prescribed at the mouth,
and we impose no inflow of sediment from the watershed.
We do not consider any initial condition here, since we will
only study the model in dynamic equilibrium, i.e. the state
reached after a long time with concentrations varying over
the semi-diurnal and spring—neap timescale but not changing
on sub-spring—neap timescales.

https://doi.org/10.5194/0s-21-19-2025

2.2 Solution methods

The solution method consists of several steps. First using
a scaling and perturbation approach, the model equations
are approximated following work by Dijkstra et al. (2017)
and Chernetsky et al. (2010). Next, a scaling of the tidal
and spring—neap dynamics will justify the use of a two-
timescale perturbation method to further approximate and
simplify the temporal dynamics. The use of this method to
analyse spring—neap dynamics is new, and it will be demon-
strated that it not only leads to numerically efficient solu-
tions, but also facilitates understanding of the dynamics. The
resulting equations are solved numerically.

2.2.1 Perturbation approach

The model equations (Eqgs. 1-5) are solved within the iFlow
modelling framework using a perturbation approach. This
means that the equations are solved by approximation un-
der the assumption that the ratio of the tidal amplitude and
the depth at the mouth equals €, with € < 1. Also, bathymet-
ric and geometric variations are assumed to be present only
on the length scale of the estuary. The perturbation approach
allows for semi-analytical solutions as well as the decom-
position of the sediment transport according to the physical
process causing it; see Chernetsky et al. (2010) or Dijkstra et
al. (2017) for details.

2.2.2 Tides — a two-timescale perturbation approach

The forcing by the lunar (M> and M4) and solar (S> and
S4) tides results in a relatively fast semi-diurnal and quarter-
diurnal tidal motion, modulated by a slowly varying am-
plitude and phase over the spring—neap cycle, as illustrated
in Fig. 2. To disentangle the dynamics happening at these
strongly different timescales we use a two-timescale pertur-
bation method (e.g. Holmes, 2013). Below we illustrate the
use of this method and focus on how this method helps us to
understand the physics.

To illustrate the method, we focus on the M, and S, water
level. We write these components of the water level ¢ as

¢0ean) =9 (G (0! + &, (e ), )
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Figure 2. Example of the tidal elevation caused by superposition
of the M, and $; tide during a spring—neap cycle (blue) and the
resulting envelope function (green).

where g:M2 and g: s, are the complex phase amplitudes corre-
sponding to the M; and S, tide, and wpy, = 1.405 x 1074571
and wgs, = 1.454 x 10~*s~! are the corresponding angular
frequencies. We define the typical timescale T = wy,t and
re-order and rewrite Eq. (7) to

~ ~ i SzimMzr .
x, 1) =N [Q“MZ(X)JrCsz(X)e oM ]6” , ®)

E(x,1)

where the expression E(x,1) is the slowly varying envelope
function (green line in Fig. 2). We observe two dimensionless

. WS — WM.
timescales: 7| =7 = wp,t and 7 = #r. The factor
2

= % ~ (0.035 is much smaller than unity, and hence
2

1o will be referred to as a slow timescale, related to the en-
velope in Fig. 2, and 71 is referred to as a fast timescale.
Correspondingly, we define two dimensional time variables
11 =11/wpm, =1t and 1, = §t. Rewriting Eq. (8) in terms of
these two time variables we see that

c0nm i) =9 [ [y @) +Es, ot |t [ 9)

E(x,tz)

and the envelope function E(x,1) only depends on the slow
time variable ;. All time derivatives occurring in the govern-
ing equations are rewritten in terms of #; and ; as

a d a
—=—4d5—. 10
ot ot + it 10

We now introduce the main assumptions of the two-
timescale perturbation approach:
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1. #; and t, are considered independent variables. This
means that #; can be varied while keeping #, constant
and vice versa.

2. Terms in the equations of order § can be neglected when
compared to terms of order 1. Hence, to leading order,
a time derivative % is approximated as Bizl

3. The small variable § is considered O(e2), where € < 1
is the parameter in the perturbation method discussed in
the previous section.

By the decoupling of the time variables #; and #», #; no longer
strictly represents the M, tide but rather a typical semi-
diurnal tide that combines the M» and S tide. We will de-
note this as a D, tide. Likewise the quarter-diurnal tide rep-
resents the combined effects of the My, S4, and M S4 tides
and is referred to as the D4 tide. Here, we approximate the
period of the D,, tidal component (n = 1, 2, ...) by the period
of the corresponding lunar component M,,. Tidal averaging,
denoted by (-) hence is defined formally as averaging over
the time variable 71, i.e. averaging over the D; tidal compo-
nent.

Applying these assumptions to the governing equations
and combining them with the scaling as detailed in Cher-
netsky et al. (2010) and Dijkstra et al. (2017), we find the
following. To leading order and order €, all terms involving
8% are neglected. For both the water motion and sediment
dynamics, the model result only accounts for terms of leading
order and order €, since these form the dominant balances.
Hence, the water motion is in dynamic equilibrium at each
stage of the spring—neap cycle. In other words, a changing
value of the envelope function E (0, 1p) at the mouth is trans-
ferred immediately to the water motion in the entire estuary.
Similarly, the sediment distribution over the water column is
in dynamic equilibrium at each stage of the spring—neap cy-
cle; i.e. when varying t,, the vertical sediment distribution is
assumed to adapt immediately to the changing hydrodynam-
ics.

However, the distribution of sediment in the bottom pool
Sbed and stock S do not adapt instantly when varying t» but
adapt slowly to the changing conditions. To see this, we first
derive an equation for the time evolution of S. This is done
by integrating Eq. (3) over the water column and combining
this with the Exner equation, Eq. (5). Tidal averaging then
yields (Brouwer et al., 2018)

¢
BS,=—<B/uC—KthdZ> . (11)
_H X

Applying our two-timescale assumptions, we see that the
tidally averaged stock S depends only on 7, not #1, and the

https://doi.org/10.5194/0s-21-19-2025
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equation rewrites to

¢
BéSz2=—<B / uc—thxdz> : (12)

—H X

Using a scaling analysis (see Chernetsky et al., 2010), it can
be shown that the right-hand side is at maximum of order €.
Since § is of order €2, both sides of the equations balance.
Physically, this means that the sediment stock varies gradu-
ally on the slow timescale.

This equation clearly demonstrates the conceptual un-
derstanding obtained by using the two-timescale approach.
Equation (12) shows that the change in the stock over the
slow timescale is a function of the divergence of the total
tidally averaged sediment transport. Hence, the effects of
spring—neap variations can be fully understood by the analy-
sis of the tidally averaged transports and the evolution of the
stock on the slow timescale. Additionally, without the two-
timescale approach, “tidally averaged” is ambiguous, and
one would need to choose to average over, for example, the
lunar semi-diurnal cycle. Finally, as will be argued below,
the method allows for a more efficient numerical solution
method and hence much reduced computation times.

2.3 Analytical and numerical solution procedures

The vertical velocity and sediment profiles are resolved us-
ing semi-analytical methods (i.e. analytical supplemented by
numerical quadrature rules where needed; see Dijkstra et al.,
2017). The along-channel dimensions are discretised using a
finite difference method of first order for advective terms and
second order for dispersive terms on an equidistant grid. In
the fast time variable ¢, the model is solved in terms of har-
monic components. As the forcing consists only of residual,
D,, and D4 components, the solution consists of residual,
Dy, D4, and over-tidal components. Using harmonic compo-
nents means that the model is directly solved for dynamic
equilibrium in the variable #1; i.e. no time-stepping or spin-
up is needed. In the slow 7, time variable, the model is solved
using time-stepping, starting from an initial condition for S.
In this study, we start from S = 0 and time integrate until a
dynamic equilibrium on the spring—neap cycle is reached. We
used 200 time steps per spring—neap cycle, implying a time
step of approximately 1.8 h. Note that this time step is much
coarser than what would usually be needed if time-stepping
were also used for solving for the semi-diurnal tides. Hence,
the application of the two-timescale approach results in much
smaller computation times than would be needed otherwise.

2.4 Analysis method

In order to analyse the sediment dynamics, we study three
processes: the D-tide-averaged horizontal transport, bottom
pool movement, and re-suspension in the water column, as
sketched conceptually in Fig. 3. These processes, of course,
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are coupled, yet it is useful to study them separately to better
understand the SPM concentration.

First we consider the Dj-tide-averaged horizontal trans-
port. We analyse this using the sediment transport capacity:
the transport that would occur if a small uniform layer of
sediment were added on the bed. We look specifically for
the locations where transport capacity converges, i.e. loca-
tions where the transport capacity changes from positive (i.e.
importing) to negative (i.e. exporting). This means sediment
tends to accumulate there. To further understand why the
transport capacity changes over the spring—neap cycle, we
will make a decomposition into contributions from various
physical components. Here we will use the decomposition as
implemented in iFlow, of which a selection of relevant terms
is discussed below:

— river — transport related to river flushing of tidally re-
suspended sediment and effects of tide—river interaction
on sediment re-suspension;

— external My tide — transport related to the tidal asym-
metry caused by the interaction between the D, and
D, tides propagating from the mouth in either re-
suspension or flow;

— internal My tide — transport related to the tidal asymme-
try caused by the interaction between the D, tide and
the subtidal flow and D4 tide generated inside of the
estuary, i.e. various processes generating subtidal flow
and D; tide inside of the estuary, including tidal return
flow, non-linear momentum advection, and velocity—
depth asymmetry (representing that the vertical veloc-
ity profiles are not exactly equal during ebb and flood
because the depth of the estuary is different);

— spatial settling lag — transport due to spatial settling lag,
which is the tendency for sediment to move to areas with
minimum velocity amplitude;

— baroclinic contribution — transport related to the flow
and re-suspension caused by gravitational circulation
due to the along-channel salinity gradient.

Second, the global D;-tide-averaged transport leads to
changes in the sediment stock S (i.e. sediment in suspension
and at the bottom) at each location in the estuary. Associ-
ated with each stock is an erodibility f used as a measure for
the bottom pool thickness. Changes in the stock occur on the
slow timescale, and hence it is needed to consider the history
of the system. We compare the bottom pool with the con-
vergence points. If the system responds fast, the bottom pool
will be most thick at the convergence points, while a delay
may be present in slower systems.

Third, knowing the spatial distribution of sediment on the
bottom, we may focus on each location of the estuary in iso-
lation. The SPM concentrations at each location follow from

Ocean Sci., 21, 19-36, 2025
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Figure 3. Conceptual depiction of SPM dynamics in an estuary, showing subtidal along-channel transport and the exchange in a water
column. Two cases are shown for the water column: supply-limited and erosion-limited. In the supply-limited state, the bottom pool is empty
during part of the semi-diurnal cycle, while there is always erodible sediment present in the erosion-limited state.

the local balance between re-suspension and settling dynam-
ics in the water column and interaction with the bottom pool.
This can be expressed as (adapted from Chernetsky et al.,
2010; Brouwer et al., 2018)

c(ti, ) =C(t1, 1) f(2), (13)

where ¢ is the sediment capacity. The sediment capacity is
the maximum concentration one could attain at any moment
given there is sufficient sediment available (i.e. f = 1). It de-
pends on hydrodynamic quantities (i.e. bed shear stress, tur-
bulence) and sediment parameters (settling velocity, erosion
parameter). We hence see that the SPM concentration follows
from understanding both the sediment capacity and erodibil-
ity. Under supply-limited conditions, f < 1, the bottom pool
is so thin that all sediment is suspended from it for at least
part of the semi-diurnal cycle (illustrated in the left water col-
umn in Fig. 3). Hence, both changes in the stock and changes
in sediment capacity affect the SPM concentration. Under
erosion-limited conditions, f = 1, there is always sediment
present on the bed (illustrated in the right water column in
Fig. 3). Sediment added to the stock on a tide-averaged basis
will go to the bottom pool without affecting f. During times
of erosion-limited conditions, the observed SPM concentra-
tion is therefore not affected by horizontal transport but only
by changing sediment capacity.

Overall, our framework consists of analysing how trans-
ports distribute the sediment stock along the estuary, after
which we can look at the slowly varying bottom pool (via f)
at each location. The SPM concentration then follows from
an instantaneous balance between the bottom pool and the
water column depending on the sediment capacity. We argue
that this is a useful way of thinking about the SPM dynamics
but also acknowledge that transport, bottom pool, and SPM
concentration are mutually dependent and this analysis does
not imply the dynamics are linear.

Ocean Sci., 21, 19-36, 2025

2.5 Quasi-stationary and dynamic model experiments

We specifically want to highlight the importance of the slow
timescale adaptation of the sediment stock. To this end, we
compare the model results to their quasi-stationary equiva-
lent. The model as described above accounts for the time
it takes for the sediment stock in the estuary to adapt to
the changing hydrodynamic conditions and is referred to as
the dynamic computation. This is compared to a case where
the sediment stock is assumed to instantaneously adapt to
the hydrodynamic conditions, referred to as quasi-stationary.
The quasi-stationary case is a useful reference because the
sediment distribution is a direct consequence of the present
hydrodynamic conditions without any memory effects. The
mathematical procedure for computing quasi-stationary con-
ditions is discussed in Appendix A. The analysis framework
presented in the previous section will be applied to both the
dynamic and quasi-stationary model runs to help highlight
the importance of memory effects.

2.6 Design of model experiments
2.6.1 Idealised example

We use an idealised example to provide insight into the var-
ious interacting effects of the spring—neap cycle on the sed-
iment dynamics. This example does not directly represent a
particular estuary but is configured to some of the properties
of the Ems estuary to make sure we are in a realistic and prac-
tically relevant parameter space. The model domain is 64 km
long; has a depth H varying smoothly between H = 10.5m
at the mouth and 5 m at the head; and has a width B according
to B = 800e*/30 000 where x is the along-channel distance
in metres. The tidal forcing parameters are inspired by a T-
tide analysis (Pawlowicz et al., 2002) of the observed tidal
data at the tidal station of Knock in the Ems. Salinity is pre-

https://doi.org/10.5194/0s-21-19-2025
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scribed according to

s:sﬂ<1—tanh<x_x€>>, (14)
2 XL

where ssea, Xc, and xz are fixed parameters, and salinity is
assumed constant over the tide and spring—neap timescale.
The parameters are fixed to keep the analysis as simple as
possible for this case. Similarly, the roughness parameter,
eddy viscosity, and eddy diffusivity are constant in time and
space and independent of the velocity or sediment concen-
trations for simplicity. Values of the salinity and turbulence
parameters were taken from Chernetsky et al. (2010) and
are roughly representative of the Ems estuary. It should be
noted though that the Ems features very high sediment con-
centrations where sediment—turbulence feedbacks are impor-
tant. Such effects are ignored here for simplicity. As a conse-
quence, the obtained results are not representative of the ob-
served dynamics in the Ems. All parameter values are shown
in Table 1. The model is solved analytically in the vertical di-
rection and numerically in the horizontal direction. The hor-
izontal grid contains 200 cells, and the time integration uses
seven spring—neap cycles for spin-up and an eighth cycle for
analysis. This is sufficient to reach dynamic equilibrium.

2.6.2 Loire case study

To further illustrate the effects of spring—neap variations in
a more realistic setting, we will discuss an application in-
volving the Loire estuary. The Loire is a hyperturbid estu-
ary in France, featuring sediment concentrations well over
10gL~! during low-discharge conditions. The spring—neap
differences are very pronounced, with the modelled D, tidal
amplitude at the mouth varying between 1.1 and 2.4 m, as
well as large differences in observed sediment concentrations
over the spring—neap cycle (e.g. Jalén-Rojas et al., 2016). We
will use the schematisation and iFlow model of Dijkstra and
De Goede (2024) (hereafter DAG24).

In this set-up, salinity is modelled dynamically following
the model of MacCready (2004), resolving transport by grav-
itational circulation and tidal dispersion as well as comput-
ing vertical salt stratification. The salt is assumed to be in
a quasi-stationary state, i.e. adapting immediately to chang-
ing spring—neap conditions. The roughness parameter, eddy
viscosity, and eddy diffusivity are still vertically uniform
and time-independent, but their values depend dynamically
on the velocity, depth, and salt and sediment stratification.
Furthermore, the settling velocity ws is not constant but ac-
counts for the effects of hindered settling. Hence, the ef-
fects of the spring—neap cycle on salinity and turbulence,
as well as density-driven flow, are taken into account. The
model is applied for a constant representative summer dis-
charge of 250m3s~!, and tidal characteristics are derived
from a T-tide analysis of observations at the estuary mouth.
For all model settings, model calibration, and validation, we
refer to DdG24. Model settings and a summary of the tur-
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bulence closure model are also included in Appendix B.
Whereas DdG24 assumed different values for cge, for their
spring and neap cases, we will use their neap tide value of
Csea = 0.3 gL_l for the entire simulation.

3 Results
3.1 An idealised case study

Figure 4 shows results of the idealised case study, compar-
ing the quasi-stationary results with the dynamic results. Fig-
ure 4a shows the spring—neap-averaged along-channel near-
bed concentration for the quasi-stationary case (blue line)
and dynamic case (red line). The shaded areas indicate the
range of variation in the semi-diurnally averaged (i.e. D;-
averaged) near-bed concentration over the spring—neap cy-
cle. Looking at the mean concentrations, ETM zones are ob-
served near km 8 and 55 in both the quasi-stationary and
dynamic cases. Moreover, in this specific case it turns out
that mean concentrations are of a similar magnitude. This
is not generally the case, as will be illustrated in the fol-
lowing sections. A generally valid result is that the spring—
neap variation in the Djy-averaged concentration is smaller
in the dynamic case than in the quasi-stationary case. Fig-
ure 4b and c show the near-bed concentration as a function
of x and 7. In the quasi-stationary case, the highest concen-
trations are attained after spring tide near km 55 (marked by
x in the figure), and the ETM moves gradually downstream
towards neap. The ETM is absent in the time between neap
and spring tide. In the dynamic case, the ETM near km 55 re-
mains present during the entire spring—neap cycle and moves
by about 10 km during this time. Interestingly, another peak
in concentration is observed some time after neap tide near
km 45.

3.2 Analysis

To better understand the dynamics we apply the analysis
framework developed in Sect. 2.4. Hence, we first look at the
transport capacity. Since there is no feedback of the sediment
stock or concentration to the water motion and sediment ca-
pacity in this simple model, the transport capacity depends
on the instantaneous flow conditions and hence is the same
in the quasi-stationary and the dynamic case. The transport
capacity scales with the bed friction, which, in this model,
scales linearly with the D, velocity amplitude near the bed.
To facilitate the comparison of the transport capacity during
spring and neap tide, we therefore divide the transport ca-
pacity by the near-bed velocity amplitude at x = 0. Figure 5
shows this rescaled transport capacity for the default case at
neap tide (Fig. 5a) and spring tide (Fig. 5b). First looking at
the total transport capacity, we see two sediment convergence
zones (i.e. transitions from importing capacity to exporting
capacity): at km 15 and 41 during neap tide and km 5 and
56 during spring tide. During neap and spring tide, the trans-
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Table 1. Default values of the parameters in the idealised case.

Parameter Value ‘ Parameter Value
Ap, My amplitude at x =0 1.39m Ay, My amplitude atx =0 0.17m
As, S, amplitude at x =0 0.35m As, S4 amplitude at x =0 0.013m
¢m, Mpphaseatx =0 335° oM, Msphaseatx =0 138°
b5, S, phase at x =0 47° bs, S4 phase atx =0 356°
o River discharge 45m?s! ws Sediment settling velocity 2mms~!
Ay Eddy viscosity 0.012m2s~! csea  Depth- and tide-averaged sediment 20 mg L1
Ky Eddy diffusivity 0.012m2s~! concentration at x =0
sf Partial slip parameter 0.049 ms™~! Ssea Seaward salinity 30 psu
Ky  Horizontal eddy diffusivity 100 m2s~! Xe Salinity parameter, Eq. (14) —3.5km
M Erosion parameter 15x107%sm~! | x L Salinity parameter, Eq. (14) 11km
(a) 1 1 1 1 1 1
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= —— dynamic
o0
= 0.05 |
&
0-00 T T T T T T
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H
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Figure 4. Results for the sediment concentration in the default case, comparing quasi-stationary and dynamic results. (a) Mean near-bed
concentration (lines) and the spring—neap range of the tidally averaged near-bed concentration (shaded area). (b, ¢) Near-bed concentrations
in the quasi-static and dynamic cases as a function of x and 7. The x marks the maximum concentration. (d, e) Erodibility as a function of
x and ¢. In (d) solid black lines indicate the convergence of transport capacity. In (e) the solid black lines indicate local maxima. The dashed
black lines indicate areas where f = 1. (f, g) Sediment transport as a function of x and ¢.
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Table 2. Scaling of some transport components with the D, and
D, tidal amplitude and phase (¢). Note that these dependencies are
valid in the context of the model for the idealised case. Various fac-
tors are not taken into account in these dependencies, including the
scaling of turbulence parameters with the tidal amplitude and effects
of salt and SPM concentration on turbulence.

Transport contribution ~ Scaling with D, and Dy tides

River |Ap,|

External Dy tide |Ap,I|1Apy| f(ép, —dD,)
Internal Dy tide |Ap, K

Spatial settling lag |Ap, 13

port capacities due to the river flow are equal after scaling by
the near-bed velocity amplitude. The transport capacity due
to the external Dy tide is almost the same after scaling, while
the contributions related to the internally generated D4 tide
and spatial settling lag are much larger during spring than
neap. These dependencies of the transport components on the
stage of the spring—neap cycle can be explained through an
analysis of the model equations. Results are presented in Ta-
ble 2. The transport capacity depends on the tidal velocity,
which (due to linearity) scales with the tidal surface eleva-
tion amplitude |Ap,| and |Ap,| (i.e. Dy and Dy tidal eleva-
tion) and a function of the local D, — D4 phase difference
f(¢p, —¢p,) (see Bouwman, 2019, for an explicit expres-
sion of this function). Since the transport capacity due to river
discharge scales linearly with the D, amplitude (and hence
the D, velocity), the rescaled transport capacity due to river
discharge in Fig. 5 is constant over the spring—neap cycle.
The transport capacity by the externally generated Dy tide
is related to the asymmetry between the linearly propagating
parts of the D, and Dy tides and also scales with the D> am-
plitude; additionally the variation in the D4 amplitude and
D> — D4 phase difference is small between spring and neap
in this particular case. Hence also the rescaled transport ca-
pacity of this component is similar during both phases. The
internally generated Dy tide is caused by the quadratic inter-
action of the D; tide due to processes including advection
and Stokes drift. Hence, the transport capacity due to the in-
ternally generated Dy tide relates to the asymmetry between
this non-linearly generated D, tide and the D; tide and scales
with the tidal amplitude cubed. Similarly, spatial settling lag
follows from non-linear interactions and scales with the tidal
amplitude cubed. This explains the difference between neap
and spring transport capacities.

Secondly, we study the variation in the bottom pool. Fig-
ure 4d and e show the erodibility in the quasi-stationary
and dynamic cases. The black lines indicate the location of
the sediment convergence points in the quasi-stationary case
(leading to either a local maximum in erodibility or f = 1)
and the local maxima in erodibility in the dynamic case. The
dashed lines indicate areas where erosion-limited conditions
(f = 1) are found. In the quasi-stationary case, convergence
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points are found during part of the cycle between km 0 and 10
as well as further upstream. At spring and neap tide (dashed
yellow lines), the convergence points match the downward
zero crossings of the transport capacity in Fig. 5. Erosion-
limited conditions are found going from spring to neap tide
directly downstream from a sediment convergence point. In
the dynamic case, local maxima in erodibility are found near
km 5-8 and 45-55. An erosion-limited zone is found from
late spring to neap near km 50. Comparing the dynamic and
quasi-steady case, it is observed that erosion-limited condi-
tions are not immediately attained at spring tide in the dy-
namic case, since it takes time to build up the bottom pool.
This is confirmed by the transport (Fig. 4g), which shows
that sediment is imported towards the bottom pool around
spring. Similarly, erosion-limited conditions do not imme-
diately disappear after neap tide. The transport shows sedi-
ment is exported, but it takes time for sediment to leave the
bottom pool. Also, the bottom pool moves much less in the
dynamic case compared to the quasi-stationary case. Just be-
fore neap in the quasi-stationary case, the ETM moves down-
stream in a short time, while this downstream movement is
only weakly present in the dynamic case. After neap in the
quasi-stationary case, the ETM disappears. In the dynamic
case we do observe the exporting of sediment, but this is not
fast enough for the ETM to disappear entirely. Note that ei-
ther transports in the quasi-stationary case are positive, in-
dicating there are erosion-limited conditions with a growing
bottom pool, or transport is zero.

Finally, we will look at the SPM concentration, which is
the product of the sediment capacity and erodibility. In this
idealised model, sediment capacity ¢ changes only through
variations in the bed shear stress over the spring—neap cy-
cle. Hence, the subtidal sediment capacity is highest dur-
ing spring tide and smallest during neap tide. In the quasi-
stationary case (Fig. 4b), the highest concentrations are found
just after spring tide. There are erosion-limited conditions,
and hence concentration depends on the bed shear stress.
Whereas the bed shear stress is maximum at spring tide, the
bottom pool is slightly further downstream after spring tide,
where bed shear stresses are higher than upstream. During
the spring—neap cycle, the ETM follows the location of the
maximum erodibility. In the dynamic case (Fig. 4c), the lo-
cation of the highest concentrations follows the location of
the bottom pool. Now, the highest concentrations occur some
time after spring tide not only because of the bed shear stress,
but also because the bottom pool still needs time to build up.
Another peak in concentration is found after neap tide, as the
bottom pool is still present for some time, while the estuary
is still exporting sediment and bottom shear stresses increase
again.

3.3 Effect of bottom pool presence

The timing and location of the ETM resulting from spring—
neap variations depend strongly on whether or not a bottom
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Figure 5. Transport capacity (black) and the leading contributions to the transport capacity for neap and spring. These are the same for the

quasi-stationary and dynamic cases.

pool with erosion-limited conditions (f = 1) can form. If
such a bottom pool forms, sediment keeps accumulating and
the sediment concentration is at capacity conditions. To show
the effect of the bottom pool on the SPM concentration we
compare cases with different values of the erosion parameter
M =1x1075and M = 1 x 107 sm~". Within this model,
the sediment transport capacity simply scales linearly with
the erosion parameter, while the spatial distribution remains
the same. Hence, the underlying sediment transport tendency
remains the same as in the default case (cf. Fig. 5).

Figure 6a, c, e, and g show the sediment concentration,
erodibility, and transport for small M. All results correspond
to the dynamic case, with the only comparison with the
quasi-stationary case in panel a. Due to the small erodibility,
maximum concentrations are quite small, but since the trans-
port capacity is the same, ETM zones are still found in the
same locations (near km 5 and 50). The mean concentration
in the dynamic case is bigger than that in the quasi-stationary
case (panel a), while the variation is smaller. The mean con-
centration is higher because the sediment concentration is at
capacity conditions (f = 1, panel e) in areas at the entrance
and near km 50 during the entire spring—neap cycle. Sedi-
ment is still imported and exported to and from the bottom
pool (panel g), but erosion-limited conditions persist. Hence,
the ETM does not vanish after neap as in the quasi-steady
case (cf. Fig. 4c). Consistent with the capacity conditions, the
highest concentrations in both ETM zones are found during
spring tide, when bed shear stresses are at their maximum.

Figure 6b, d, f, and h show the results for the larger
value of M, again corresponding to the dynamic case. The
ETM near km 5 is still present but only very weakly, while
there is still a clear ETM near km 50. Mean concentrations
in the dynamic case are significantly smaller than in the
quasi-stationary case, while variations over the cycle remain
smaller in the dynamic case (panel b). The estuary never
reaches capacity conditions (f < 1), and maximum erodibil-
ity in both ETM zones is reached close to neap tide (Fig. 6f).
Maximum concentrations are now found between spring and
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neap tide, when erodibility is approaching its maximum,
while the bed shear stress is not yet at its minimum. After
neap tide, the ETM does not disappear as in the quasi-steady
case, but concentrations do decrease after neap tide. This is
because the bottom pool is not big enough to remain present
for long after neap tide, preventing increasing concentrations
even though the bed shear stress increases.

Comparing the situations with high and low M, it is ob-
served that there is a significant dynamic effect of the spring
neap cycle in both cases, compared to the quasi-stationary
state. In both cases, it takes significant time for the estuary to
move the sediment stock around and adapt to the changing
conditions. Under erosion-limited conditions, an important
dynamic effect is the build-up and break-down of the bottom
pool. During times of export, this means that erosion-limited
conditions can be sustained for a significant amount of time
or even the entire spring—neap cycle as it takes time before
the bottom pool is drained. This is reflected in a different tim-
ing of maxima and minima in the sediment concentrations.
Indeed, comparing Fig. 6¢ and d, maximum concentrations
for small M occur at the time when minimum concentrations
are attained for large M and vice versa. Since the underlying
transport capacity is identical in both cases, this is due to the
bottom pool thickness relative to the possible re-suspension
by the tide.

3.4 Adjustment time

In previous studies of the effects of spring—neap tides on
salt distributions in estuaries, the dynamic effects of the
spring—neap cycle are often quantified by measuring the de-
lay between the salinity distribution and the tidal amplitude
(e.g. Hetland and Geyer, 2004). For sediment, even in our
highly simplified model, such a relationship is not possible.
Figure 5 already shows the complicated relationship between
the tidal amplitude and transport capacity. As the various
physical contributions scale differently with the tidal ampli-
tudes and D, — D4 phase difference, the spring—neap varia-
tion in total sediment transport capacity is not a monotone
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Figure 6. Results for model runs with low and high values of the erosion parameter M. (a, b) Mean near-bed concentrations (lines) and
the range of tidally averaged near-bed concentration (shaded). (¢, d) Near-bed concentrations. The x marks the maximum concentration.
(e, f) Erodibility. Dashed black lines indicate erosion-limited areas. Solid black lines indicate local maxima (with f < 1). (g, h) Sediment

transport.

function of the tidal amplitude. This total transport capacity
determines the tendency for the estuary to redistribute sed-
iment over time which then results in an erodibility f and
finally the sediment concentration. As there is no monotone
relation between the spring—neap forcing and the transport
capacity, there is no monotone response of the sediment con-
centration to the tidal amplitude, and hence an analysis in
terms of delay is not possible.

We may, however, still estimate a timescale for the adjust-
ment of the estuary to changing forcing conditions. If the ad-
justment time is much shorter than the spring—neap period,
the dynamic SPM concentration will be similar to the quasi-
steady result. If the adjustment time is similar to or bigger
than the spring—neap period, results may deviate significantly
from the quasi-stationary results, as shown in the previous
sections. A simple expression to estimate the order of mag-
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nitude of the adjustment time of the estuary T,g; could be

max;, (fOLBde) — min, (fOLBde)
(IT])x=0

i.e. the difference between the maximum and minimum to-
tal amount of sediment in the estuary divided by the mean
({-)) absolute sediment transport at the mouth. Note that this
timescale is diagnostic —i.e. it requires knowledge of the sed-
iment balance to compute it. By this definition, T,g; in the
default case is approximately 23 d. This is longer than the
spring—neap cycle duration, consistent with the results show-
ing significant dynamic effects.

Tagj = ; (15)
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3.5 Application to the hyperturbid Loire

Next, we discuss the application of the model to the Loire
configuration (Dijkstra and De Goede, 2024), in which the
model includes various additional physical processes (see
Sect. 2.6.2). The additional processes mean that the sediment
concentration now influences the flow (through its effect on
turbulence), sediment capacity, and transport capacity. The
dynamic effects of the spring—neap cycle are therefore vis-
ible not only in the erodibility and sediment concentration,
but also in the sediment capacity and transport capacity.

Figure 7a shows near-bed average concentration (lines)
and variability over the spring—neap cycle (shaded areas) in
the quasi-stationary and dynamic cases. The ETM zones are
located around km 8 and 30 with mean concentrations of
around 30 gL~!. Figure 7b and ¢ show the time dependence
of the near-bed concentration. The ETM zones only move a
few kilometres over the spring—neap cycle for both the quasi-
stationary and dynamic cases. In the quasi-stationary case
there is a small time interval after neap tide when the ETM
disappears from the estuary. In the dynamic case, however,
the ETM mostly remains present during the spring—neap cy-
cle. An exception is a small time interval near km 8 when
stratification briefly collapses leading to somewhat lower
concentrations. The along-channel maximum near-bed con-
centrations vary between 26 and 52 gL~! over the spring—
neap cycle, with higher near-bed concentrations at neap. Sur-
face concentrations (Fig. 7d and e) have along-channel max-
ima which vary between 1 and 3 gL™!, with the maximum
occurring after spring tide.

To better understand these results, we will again apply our
analysis framework. Figure 8 shows the transport capacity
scaled by the local near-bed velocity amplitude in the dy-
namic case at neap and spring tide. First concentrating on the
total transport capacity, the downward zero crossings, indi-
cating the locations of maximum erodibility, are located at
approximately the same locations. This helps to explain the
quite minor qualitative differences between spring and neap
in the erodibility and sediment concentration noted earlier.
The transport capacity at spring is larger than at neap tide,
even relative to the near-bed velocity. During spring tide, the
eddy viscosity is bigger mainly due to bigger shear stresses,
and the effective settling velocity is smaller due to hindered
settling. Hence, sediments are mixed up higher in the water
column, and the water column can accommodate and trans-
port more sediment. This effect of mixing causes all con-
tributions to the transport capacity to increase at spring. In
the km 8 ETM, the baroclinic contribution is most important,
closely followed by the effect of the externally generated Dy
tide. In the km 40 ETM, the external tidal asymmetry is dom-
inant at neap, while spatial settling lag is dominant at spring.

The various contributions to the transport capacity no
longer scale with the tidal amplitude exactly as in Table 2 due
to the added physical processes. Table 3 presents the relative
differences between spring and neap magnitude of the vari-
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ous transport contributions (not scaled by the near-bed veloc-
ity) in the areas 0—10 km (first column) and 20-40km (sec-
ond column). The relative spring—neap differences are much
larger than the scaling of Table 2 (third column) suggests,
especially in the first 10 km. Relatively, however, we still no-
tice that the spatial settling lag and internal asymmetry are
much more strongly amplified at spring due to their greater
sensitivity to the tidal amplitude.

Next looking at the bottom pool dynamics, it is observed
that the erodibility (Fig. 7f and g) is largest around the lo-
cations of the ETM zones, consistent with the convergence
of transport capacity. The erodibility is highest around neap,
with erosion-limited conditions in km 0-8. The amount of
sediment in the bottom pool remains of the same order of
magnitude during spring and neap (not shown). Erodibility
is nevertheless highest during neap because the sediment ca-
pacity is low due to small bed shear stress and strong strati-
fication. The quasi-stationary and dynamic cases show quite
similar results, except for some time after neap tide, when the
quasi-stationary case shows flushing of the bottom pool. In
the dynamic case, the erodibility remains significantly larger
than zero. Sediment is transported (Fig. 71) to the bottom pool
between km 0-10 around neap tide (~ 0.5 <¢/T < 1) and to
the bottom pool at km 40 around spring tide (~0 <¢/T <
0.5). Hence, even though trapping occurs at approximately
the same locations during the entire spring—neap cycle, sed-
iment is transported between the two bottom pools between
spring and neap.

Finally considering the SPM concentration in the dynamic
case, the location of high near-bed concentrations (Fig. 7¢)
does not move much due to the stable locations of the bot-
tom pools. The highest near-bed concentrations occur at neap
because the erodibility is high and strong stratification keeps
sediment confined close to the bed. Surface concentrations
(Fig. 7e) correspondingly are lowest during neap. Maximum
surface concentrations occur some time after spring tide due
to larger mixing.

Summarising, we find that the transport capacity indicates
similar trapping locations over the entire spring—neap cycle,
with sediment transported between the two trapping areas. A
combination between high erodibility and low bottom shear
stress at neap and lower erodibility but higher bed shear stress
at spring means quite high concentrations can be attained
during the entire cycle. Observed peaks in bottom and sur-
face concentrations are mainly related to the stratification,
determining whether sediment can be mixed or is confined
to the bed. The differences between the dynamic and quasi-
stationary cases are quite small, except for a window of a
few days after neap, indicating a rapid adjustment of the es-
tuary. This is supported by the (diagnostic) adjustment scale
(Sect. 3.4), which in this case is approximately 4 d.
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Figure 7. Results for the sediment concentration in the Loire case, comparing quasi-stationary and dynamic results. (a) Mean near-bed
concentration (lines) and the spring—neap range of the tidally averaged near-bed concentration (shaded area). (b, ¢) Near-bed concentrations
in the quasi-static and dynamic cases as a function of x and ¢. (d, e) Identical but for surface concentrations. (f, g) Erodibility. Dashed black
lines indicate erosion-limited areas. Solid black lines indicate local maxima (with f < 1). (h, i) Sediment transport.

4 Discussion

4.1 Wider applicability and limitations of the
methodology and results

Our framework of analysis of the dynamics of SPM extends

beyond the scope of this study. Firstly, such an analysis may
be extended to any variation of the forcing parameters that
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is much slower than the D, tidal timescale, such as sea-
sonal discharge variations (see, for example, Brouwer et al.,
2018). The analysis framework can partly be used to inter-
pret results from numerical simulation models. The inclusion
of spatially varying viscosity and diffusivity through more
complex turbulence closures does not affect the interpreta-
tion framework. Non-linear interactions between water mo-
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Figure 8. Transport capacity (black) and the leading contributions to the transport capacity for neap (a) and spring (b) for the Loire case.

Table 3. Relative difference between the transport capacity contributions at spring and neap tide in two areas of the model domain.

Contribution Tspring/ Tneap 0-10km  Typring/Tneap 20-40km  Scaling with [{5pring|/|¢neap| from Table 2
River 25-50 5 |Sspringl/|¢neapl = 2.17

Spatial settling lag 100-500 10-20  (Ispringl/ |Zneapl)® = 10.3

Internal asymmetry 100-400 4-10 (|§spring|/|§neap|)3 =103

External asymmetry 20-30 4T |&springl/|neapl = 2.17

Baroclinic 25-50 2 |Sspringl/I¢neapl = 2.17

Diffusion 10-20 2 |&¢springl/|¢neapl = 2.17

tion, salinity, SPM, and mixing within such turbulence clo-
sures do complicate a cause-and-effect analysis in the same
way as we found in the Loire case but otherwise still allow
the use of the analysis framework. Furthermore, it is possible
to compute the bottom pool thickness, erodibility, and total
sediment transport capacity from such models (see Dijkstra,
2019, Chap. 7 for an example in the Delft3D model). De-
compositions of the transport capacity, such as the ones used
in this study, can usually not be computed from simulation
models.

The aim of this study was to provide insights into vari-
ous effects of the spring—neap cycle on SPM dynamics, but
it ignored various potentially important aspects. Some as-
pects that were not considered in the idealised case, such as
the influence of velocity, salinity, and sediment concentra-
tion on turbulence parameters, were added in the Loire case
study. Still, D, tidal variations in the salinity and turbulence
parameters were not considered, thus excluding effects of
tidal straining and eddy viscosity-shear covariance (ESCO).
These processes would affect the trapping and re-suspension
dynamics in a complex way. Some other aspects that were
ignored are worth mentioning specifically for further study.
Firstly, the width averaging means the lateral dynamics are
ignored. In estuaries it is quite possible that sediment accu-
mulates on shallow flanks under erosion-limited conditions,
while supply-limited conditions dominate in the deeper chan-
nel. The effects of spring—neap variations in such contexts
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still need further investigation. Also, it is assumed that all
sediment in the bottom pool remains easily erodible without
a critical threshold for the bed shear stress. The consolida-
tion of sediments on the spring—neap timescale is not taken
into account and may additionally significantly affect the dy-
namics. Thirdly, the present model only considers changes in
the bottom pool over the spring—neap cycle as a consequence
of the tidally averaged transport. This ignores the intratidal
variations in the bottom pool thickness.

The two-timescale formalism as applied here ignores some
dynamics that are assumed to be unimportant. For exam-
ple, it was assessed that the interaction between the tidal and
spring—neap cycle in the sediment balance is negligible, but
this assumption still needs a posteriori verification. Also, it
was assumed that the water motion adapts quickly to spring—
neap conditions. Allen et al. (1980, p. 75) argue that the over-
all storage of water in the estuary can potentially be larger
during spring tide than neap tide due to a different subtidal
water set-up. Hence there is a subtidal flow of water in and
out of the estuary over the spring—neap cycle. Our scaling
arguments indicate this effect to be negligible, but to the au-
thors’ knowledge, this has not been systematically verified.

https://doi.org/10.5194/0s-21-19-2025



Y. M. Dijkstra et al.: Disentangling spring—neap SPM dynamics in estuaries 33

4.2 Use of quasi-stationary model simulations

Quasi-stationary model results are frequently used to gain
understanding of estuarine sediment dynamics (e.g. Bur-
chard and Baumert, 1998; Chernetsky et al., 2010; Mc-
Sweeney et al., 2016; Dijkstra et al., 2019). Since quasi-
stationary results do not depend on the forcing history but
are consistent with the actual (tidal) forcing, this greatly re-
duces complexity. In cases where the dynamics of, for exam-
ple, the spring—neap cycle are important, some caution needs
to be taken in the interpretation of such results. First con-
sidering the case where quasi-stationary results are used to
study spring—neap-averaged results, it is clear from our re-
sults that spring—neap mean sediment concentrations in the
dynamic and quasi-stationary cases are not the same. By
calibration using, for example, the erosion parameter, sim-
ilar concentrations between the dynamic mean and quasi-
stationary case may be nevertheless obtained, and hence one
should be careful that the value of such a calibration param-
eter is highly context-dependent. As the contributions to the
sediment transport capacity scale non-linearly with the tidal
amplitude and D, — D4 phase difference, using an average
spring—neap amplitude and phase difference results in an er-
ror in the relative importance of processes, which may result
in a shift in the sediment trapping location. As long as similar
processes are important during spring and neap tide, the dom-
inant processes are still identified by taking a spring—neap
average. Therefore, the quasi-stationary simulations should
be more regarded as qualitatively than quantitatively correct
when dynamics are important.

Secondly, we consider the use of quasi-stationary rea-
soning to understand the dynamics during spring or neap
tidal phases. From our results it is concluded this should be
done with caution, since the dynamic sediment concentra-
tions may be quite different from the quasi-stationary ones,
as there are significant memory effects. Hence, one would
use these results best to indicate a range of the dynamics
occurring over the spring-neap cycle, acknowledging that
the dynamic spring—neap variability in SPM concentration
is smaller.

5 Conclusions

In this study we set up and applied a framework for under-
standing spring—neap dynamics of fine sediments in estuar-
ies. The framework consists of analysing sediment trapping
using sediment transport capacity, consequently considering
the slow movement of the bottom pool and finally studying
the local interaction between the bottom pool and water col-
umn to understand the SPM concentrations. Our framework
is motivated using a two-timescale approach, which sepa-
rates the solution over the tidal timescale and the spring—neap
timescale. It shows that it is mainly the slow movement of the
bottom pool that explains lag or memory effects, while the
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water motion and vertical distributions of SPM adapt much
faster. The use of our framework was demonstrated using an
idealised test case where the sediment dynamics do not affect
the water motion, as well as a case representing the Loire es-
tuary, with significant feedback between the SPM concentra-
tion and water motion.

In the idealised test case it was shown that dynamic effects
of the spring—neap cycle are quite important. While transport
capacity could indicate flushing of the ETM at some stage
of the spring—neap cycle, slow adaptation of the bottom pool
can cause the ETM to persist over the entire spring—neap cy-
cle. Depending on the interplay between this dynamically
influenced bottom pool, the bed shear stress, and stratifica-
tion, the timing of the maximum concentrations during the
spring—neap cycle can be quite different. This was illustrated
by comparing the same test case with different values of the
erosion parameter, showing maximum SPM concentrations
at opposite stages of the spring—neap cycle. The framework
also proved useful in interpreting the results of the Loire case.
Due to the feedback, cause and effect between water motion,
transport, and SPM concentration could not be considered,
but we could still explain the trapping locations and timing
of maximum concentrations in a systematic way.

Appendix A: Mathematical computation of
quasi-stationary conditions

The quasi-stationary results used in this study are computed
by solving the model equations presented in Sect. 2.1 with
some minor modification. In quasi-stationary conditions, one
can identify two different cases. In the first, the sediment
stock S is in balance with the instantaneous hydrodynamic
conditions, which means that the slow time derivative of the
stock vanishes (S;, =0 in Eq. 12). In the second case, the
sediment concentration is in balance with the instantaneous
hydrodynamic conditions, but the bottom pool keeps grow-
ing. The growing bottom pool can, however, not be fully re-
suspended and does not alter sediment concentration. It is
assumed that the bottom pool remains small enough not to
affect the water depth. In both cases, the slow-time derivative
of the erodibility vanishes. To use this latter observation, we
rewrite Eq. (12). Note that erodibility f is a function of the
stock S. Multiplying Eq. (12) by % and using %Stz = fr,
we obtain

¢
B8 fi, = —%<B / uc — Kpey dz> . (A1)
“H

Assuming quasi-stationary conditions we set f;, =0 and
solve the above equation together with the equations in
Sect. 2.1.

On a technical note, % may be equal to zero. Hence, mul-

tiplying Eq. (12) by % eliminates that equation if % =0.
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This is not a problem, however, since % = 0 only happens
when f = 1, so we also eliminate one of the unknowns of the
model. The model hence remains solvable.

Appendix B: Additional information for the Loire case

Table B1 lists the parameter values used in the Loire case.
Please see Dijkstra and De Goede (2024) for a further de-
scription of the model.

The subtidal eddy viscosity and eddy diffusivity in this
case depends on the velocity and stratification through the
equations

Ay =(cv,1E)IUIH + £ FRD)), (B1)
K, =<C”’;(Z°)|U|(H+c)G<E>>. (B2)
0

Here, ¢,,1(z3) is a coefficient that depends on a calibrated di-
mensionless roughness height z§; o), is a constant Prandtl—
Schmidt number of 1; |U]| is the depth-averaged velocity
magnitude; and F (Ri) and G (Ri) are adaptations of the Munk
and Anderson (1948) functions for the stratification-induced
damping of turbulence: F (Ri) = (1+10Ri)~Y 2 and G(Ri) =
(143.33Ri)~3/2. They depend on the average depth (*) of an
approximation of the Richardson number:

_ Bec: + Bs;

2 2
MZ + Mz‘min

Ri= (B3)

This is best thought of as a bulk Richardson number. Here
Uz min = 0.03 s~! parameterises the unresolved shear, e.g. by
lateral flows and . = 6.2 x 10~*m3kg~!.

Table B1. Default values of the parameters in the Loire case.
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The resulting eddy viscosity, Richardson number, and
the depth-averaged M; velocity magnitude are plotted in
Fig. B1.

Parameter Value Parameter Value
Ap,  Mpamplitude at x =0 1.75m Ap, My amplitude at x =0 0.20m
As, S, amplitude at x =0 0.65m Asg, S4 amplitude at x =0 0.007 m
oM, M; phase at x =0 0° ¢pm, Myphaseatx=0 —148°
os, S, phase at x =0 103° bs, S4 phase atx =0 110°
(0] River discharge 250m?s~! | w 5,0  Clear water sediment settling velocity 2mms~!
ZS, est  Dimensionless roughness estuary 0.01 Csea  Depth- and tide-averaged sediment con- 0.3 gLf1
(x < 45km) centration at x =0
ZS, 4y Dimensionless roughness river 0.05 Kn Horizontal eddy diffusivity 100 m2s~!
(x > 60km) Cgel Gelling concentration 100g L}
M Erosion parameter 0.03sm™!
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Figure B1. (a, ¢) Eddy viscosity in time relative to the spring—neap period (7') and space (x) in the Loire case. (b) The depth-averaged (bulk)

Richardson number. (d) The depth-averaged M2 velocity magnitude.
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iFlow Modelling Framework, 2025).

Data availability. The idealised case used Ems tidal data of the
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