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Abstract
Precise point positioning-real-time kinematic (PPP-RTK), otherwise known as integer
ambiguity resolution-enabled precise pointing positioning, has attracted much attention in
recent years and has become state-of-the-art in the global navigation satellite system (GNSS)
high-precision positioning community. This work reviews several PPP-RTK methods, outlines a
set of PPP-RTK applications, and presents possible future developments. According to the
parameterization considered, we clarify the PPP-RTK models into a distinct-clock category and
two common-clock categories (common-clock-1 and common-clock-2), in which several
ionosphere-free PPP-RTK models can be cast. Compared with the ionosphere-free PPP-RTK
model, we emphasize the advantages of the undifferenced and uncombined (UDUC)
formulation and recommend the common-clock-1 UDUC PPP-RTK model since it is optimal,
flexible, and widely applicable. Based on what kinds of parameters can be estimated by
PPP-RTK models, we outline the PPP-RTK applications in several aspects, including
position-based applications, time transfer, atmospheric retrieval, and GNSS bias estimation.
Despite the huge advances in GNSS PPP-RTK, future research should improve PPP-RTK
performances in harsh environments and apply PPP-RTK to mass markets.

Keywords: global navigation satellite system (GNSS),
integer ambiguity resolution-enabled precise point positioning, PPP-RTK,
undifferenced and uncombined (UDUC), distinct-clock model, common-clock model,
ionosphere-free PPP-RTK
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1. Introduction

With the advancement of positioning measurement systems,
knowledge of our location is nowadays taken for granted
by people worldwide. In 1923, Close [1] emphasized the
importance of positioning measurement and established a new
fundamental benchmark for ensuring a stable one-dimensional
leveling operation, while nowadays, the three-dimensional
position can be precisely determined. This is largely attrib-
uted to the advent of the global positioning system (GPS) [2]
and the expanding family of global navigation satellite sys-
tems (GNSSs) [3]. GNSS, a global infrastructure that provides
positioning, navigation, and timing services, has been applied
to a wide range of fields, such as deformation monitoring
[4, 5], precision agriculture [6, 7], intelligent driving [8, 9],
and aviation [10, 11].

Concerning GNSS precise positioning, two technologies
have taken center stage for a long time: precise point posi-
tioning (PPP) and real-time kinematic (RTK). PPP can achieve
absolute positioning accuracy at a centimeter-to-millimeter
level, as it takes advantage of precise satellite orbits, satel-
lite clocks, and other corrections estimated by globally-
distributed GNSS stations [12–14]. On the other hand, RTK
relies on a regional network to carry out relative position-
ing, thereby reducing or even eliminating space-correlated
errors, such as ionospheric and tropospheric delays [15–17].
More attractively, RTK fully exploits the high-accuracy GNSS
phase observables as it can fix the double-differenced integer
ambiguities [18, 19]. In contrast to RTK, PPP usually lacks
precise atmospheric corrections and estimates undifferenced
float ambiguities [20, 21]; this is why PPP requires tens
of minutes to converge, but RTK can provide instantaneous
centimeter-level positioning [22, 23]. However, the reliance on
a regional network implies the difficulty in providing RTK ser-
vice for thousands of users in a wide area. These features seem
to separate PPP and RTK into two unbridgeable divisions, that
is, PPP servers for global users with a long convergence time
[24, 25], while RTK provides a regional positioning solution in
real-time [26, 27]. However, one question is can PPP achieve
RTK-like positioning relying on a regional network? Or can
RTK service be extended to a large scale and even a global
level like PPP?

A new concept of PPP-RTK proposed by Wübbena et al
[23] answered the question in the affirmative. PPP-RTK,
defined as the integer ambiguity resolution-enabled PPP,
extends the PPP by providing users, in addition to the satel-
lite orbits and clocks, the satellite phase biases, and option-
ally, the atmospheric delays [28]. Correction of satellite phase
biases paves the way for single-receiver integer ambiguity
resolution, thereby accelerating the convergence [29, 30].
When additionally correcting atmospheric delays estimated
in a regional network, the RTK-like positioning is achievable
[31–33]. PPP-RTK is more promising than RTK since PPP-
RTK broadcasts individual error correction in state space rep-
resentation (SSR) [34] instead of observable space represent-
ation (OSR) adopted by RTK [35]. Compared with OSR, SSR

separates various error sources for a precise description and
can lead to much lower bandwidth for transmission [23, 35].
In this sense, PPP-RTK combines the advantages of both
PPP and RTK, making it state-of-the-art in GNSS positioning
community [36–42].

Attracted by the superiority of PPP-RTK, researchers in
recent years have made great efforts to investigate the PPP-
RTK principle, develop various PPP-RTK methods, and apply
PPP-RTK to a wide range of fields. This work aims to
review these and point out possible future developments. The
remainder of this work proceeds as follows. In section 2, we
introduce the principle and properties of PPP-RTK. Then, we
review several PPP-RTK methods in section 3, where we also
present the recent progress in PPP-RTK algorithms. Follow-
ing that, we introduce the PPP-RTK applications in section 4.
Finally, we conclude this study and provide insights into the
PPP-RTK future in section 5.

2. Principle and properties of PPP-RTK

2.1. Principle

The concept of PPP-RTK involves a network and a user
side. The network side first collects GNSS observation data
in a global, regional, or local network. A computation cen-
ter then processes the data to generate a variety of correc-
tions, including satellite orbits, satellite clocks, satellite phase
biases, satellite code biases, and atmospheric delays. After
encoding, the network side broadcasts these corrections to
users through a satellite link or the internet. PPP-RTK users
receive the products estimated on the network side and correct
their GNSS observables. Based on these error-corrected undif-
ferenced GNSS observables, single-receiver PPP-RTK users
can achieve high-precision positioning with integer ambiguity
resolution.

Among PPP-RTK corrections, the satellite phase biases are
crucial since they play the role in recovering the integer nature
of phase ambiguities on the user side. These biases are a res-
ult of small delays because of imperfections and/or physical
limitations in satellite hardware. Moreover, these hardware-
induced biases could be stable in a certain term, differing in
GNSS systems and frequencies [43].

2.2. Properties

To better understand the principle and advantages of PPP-
RTK, we summarize the following five properties of it.

(a) Global, regional, local, or even mixed networks are feas-
ible. PPP relies on a global network to calculate satellite
orbits and clocks, whereas PPP-RTK corrections, includ-
ing orbits and clocks, can be determined in a regional
network [44–46]. This implies that one can deploy GNSS
stations in a regional area where the PPP-RTK service
is covered instead of on a global scale. Moreover, one
can even estimate some products (e.g. satellite orbits) in a
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global network and generate others (e.g. satellite clocks)
in a regional network [47–49]. This reflects the higher
flexibility of PPP-RTK over PPP.

(b) Broadcast ephemeris is possible. In contrast to PPP, which
requires precise satellite orbits, PPP-RTK can use broad-
cast ephemeris to realize high-accuracy positioning in
regional networks. This is because satellite clocks estim-
ated in regional networks can absorb the satellite orbit
errors. Due to the spatial correlation, the orbit errors in
user observables can be compensated by correcting satel-
lite clocks [23, 30].

(c) Multiple accuracy levels are achievable. One can utilize
only code-related corrections for low-accuracy applica-
tions to realize meter-level positioning. With the integ-
ration of corrected phase observables, the centimeter-
to-millimeter-level positioning is attainable within tens
of minutes by PPP. To accelerate the convergence, the
satellite phase biases are corrected to conduct integer
ambiguity resolution-enabled positioning [50–52]. By fur-
ther introducing atmospheric corrections estimated in a
regional network, rapid and accurate positioning is ulti-
mately achievable [53–55].

(d) PPP-RTK is compatible with PPP and RTK. If we only
provide users with satellite orbits and clocks, the user pos-
itioning is then actually the PPP. RTK terminal can also
take advantage of PPP-RTK corrections as the SSR correc-
tions can be transformed into OSR data through a proper
algorithm [39, 56, 57].

(e) PPP-RTK services are user-friendly. PPP-RTK server
broadcasts SSR corrections through a uni-directional com-
munication link, which is ideally feasible to provide ser-
vices for an unlimited number of users [23]. The uni-
directional communication link protects user privacy since
users do not need to upload personal information to the
PPP-RTK server. The precise description of each error
source allows for robust integrity monitoring [58, 59],
which is promising for emerging industries such as intel-
ligent driving.

3. PPP-RTK methods

There exist several PPP-RTKmethods, differing in the choices
of parameterization. Teunissen and Khodabandeh [28] unified
these methods into one theoretical framework and classified
them into distinct-clock PPP-RTK and common-clock PPP-
RTK. This section reviews these methods and further presents
the advances in the extension of PPP-RTK models.

3.1. Distinct-clock PPP-RTK model

We must bear in mind that PPP-RTK corrections (e.g. satellite
clocks and phase biases) are not the original quantities but the
biased ones [60, 61]. This is because the original observation
equations are rank-deficient. For this, we select some paramet-
ers as the datum (or the S-basis) and estimate the linear func-
tions of the original parameters [62–64]. Due to non-unique

datum selection, several methods exist that formulate different
estimable parameters [28, 65, 66].

The distinct-clock PPP-RTKmodel, proposed by Teunissen
et al [33], parameterizes different clocks for different observ-
able types. This distinct-clock concept was initially introduced
by de Jonge [67], and Odijk [68] applied this concept to RTK.
Specifically, distinct-clock PPP-RTK parameterizes one com-
mon clock for code observables and two different clocks for
two phase observables in the dual-frequency case. Via these
phase clocks estimated on the network side, PPP-RTK users
can recover the integer nature of ambiguities, thereby acceler-
ating the convergence by resolving these integer ambiguities
with a high success rate. We note that one should be aware of
the fact that although distinct-clock PPP-RTK works without
additional phase bias products, the phase clocks absorb the
phase biases.

One potential advantage of the distinct-clock PPP-RTK
model is that it lumps the biases with the clocks, imply-
ing that it models the biases as time-variant parameters
[69]. Indeed, many studies have shown that GNSS biases,
especially receiver code biases, may exhibit remarkable
variations [70, 71]. Furthermore, researchers also revealed that
these variations are related to temperature changes [72, 73].
Hence, considering the biases as time-constant parameters
may degrade the PPP-RTK performance. Fortunately, distinct-
clock PPPP-RTK avoids this problem due to the lump of clocks
and biases.

3.2. Common-clock PPP-RTK model

In contrast to the distinct PPP-RTK model, the common clock
PPP-RTK model parameterizes only one clock for all observ-
able types and estimates additionally the code and phase
biases. Since the phase biases are also linearly correlated
with ambiguities, one can parameterize them in different ways
[38]. This results in two common-clock PPP-RTKmodels: the
common-clock-1 model and the common-clock-2 model.

Zhang et al [74] proposed the common-clock-1 PPP-RTK
model based on undifferenced and uncombined (UDUC)
GNSS observables. Concerning the linear correlation between
the phase biases and ambiguities, the common-clock-1 model
selects a subset of ambiguities as the datum. As a res-
ult, the common-clock-1 model provides the satellite phase
biases lumped with ambiguities, based on which the users can
formulate integer-estimable double-differenced ambiguities.
Moreover, ambiguities on the network side are also construc-
ted in a double-differenced form, enabling integer ambiguity
resolution to improve the precision of products.

Alternatively, one can select the phase biases as the datum
when addressing the rank-deficiency problem, yielding the
common-clock-2 PPP-RTK model. In this way, the original
products for user ambiguity resolution are real-valued ambigu-
ities estimated on the network side. One can directly transmit
these ambiguities to users for ambiguity resolution-enabled
positioning or extract the fractional parts of the ambigu-
ities with a proper algorithm [22]. However, due to the
real-valued formulation of ambiguities on the network side,
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the common-clock-2 model cannot directly conduct network
integer ambiguity resolution without further operations [75].

Since the common-clock-2 model lumps the phase biases
with ambiguities, it has to model the phase biases as time-
invariant parameters, as the ambiguities are typically con-
sidered continuous as long as no cycle slips occur. This implies
that the performance of the common-clock-2 PPP-RTKmodel
would be degraded in a situationwhere the phase biases exhibit
remarkable variations. However, this is not a problem for the
common-clock-1 model since it separates the biases and ambi-
guities. The common-clock-1 model is even more flexible
than the distinct-clock model as it can describe the realistic
dynamic characteristics of the biases by designing a proper
dynamic model [76–78], whereas the distinct-clock model can
only model the phase biases as time-variant parameters.

We conclude that the three PPP-RTK models differ in the
datum they select to construct the full-rank models, thus res-
ulting in different estimable parameters. It is worth noting that,
as also demonstrated by Teunissen and Khodabandeh [28], the
estimable parameters of the three models can be transformed
through a proper datum transformation [62, 64]. This implies
that the three models are equivalent if one adopts an identical
stochastic model of observables and considers an identical
dynamic model to describe the characteristics of all paramet-
ers, e.g. the biases.

3.3. Ionosphere-free PPP-RTK model

Since the ionosphere-free combination has obtained huge suc-
cess in PPP, many studies also established the PPP-RTK mod-
els based on the ionosphere-free combination. There exist sev-
eral ionosphere-free PPP-RTK models, including the integer
recovery clock (IRC) model, the decoupled satellite clock
(DSC) model, and the uncalibrated phase delay/fractional
cycle bias (UPD/FCB) model.

Laurichesse et al [79] developed the IRC model, while
Collins et al [69] proposed the DSC model. Since the IRC
and DSC models are essentially the same [28], we review
them together. The IRC/DSC model adopts the same datum
of the distinct-clock model and thus can be considered as
an ionosphere-free version of distinct-clock PPP-RTK. This
implies that the IRC/DSC model also avoids the adverse
effects of time-variant GNSS biases. However, from another
perspective, the IRC/DSC PPP-RTK loses the potential oppor-
tunity to strengthen the model by properly considering the
dynamic characteristics of biases.

Ge et al [22] proposed the UPD/FCB model, which is an
ionosphere-free version of the common-clock-2 model. Since
the UPD/FCB model parameterizes the real-valued ambi-
guities, it originally provided the ambiguity-float products
until Geng et al [75] proposed an ambiguity-fixed UPD/FCB
method. To ensure the consistency of the products, the
UPD/FCB model requires a fractional operation, which
extracts only the fractional part of the ambiguities and dis-
cards the integer parts. This operation is permitted as it
still guarantees the integer nature of user ambiguities. How-
ever, one should be careful that the use of this nonlinear

fractional operator changes the stochastic properties of the
user-corrected observables, as demonstrated by Teunissen and
Khodabandeh [28].

Ionosphere-free PPP-RTK enjoys a high computational
efficiency due to the elimination of ionospheric delays. This
implies, however, that the ionosphere-free PPP-RTK cannot
provide users the ionospheric corrections, which are essential
for rapid positioning. One should also be aware of the fact
that the ionosphere-free approach (in the dual-frequency case)
starts with four observables (two code and two phase) and
ends up with two observables (one ionosphere-free code and
one ionosphere-free phase), while only one independent para-
meter, the ionospheric delay, gets eliminated in this process
[61]. This results in a loss of information compared to that
provided by the original four observables. To remedy this loss
of information, one has to add the third observable, which is
the difference between the wide-lane phase and the narrow-
lane code observables [61].

Moreover, since the ionosphere-free model combines
observables at different frequencies (at least two), it fails
in formulating double-differenced ambiguities at each fre-
quency, to which the integer ambiguity resolution can be
directly applied. Alternatively, ionosphere-free PPP-RTK usu-
ally fixes the wide-lane ambiguities and then fixes the narrow-
lane ambiguities. On the other hand, ionosphere-free PPP-
RTK does not generate products at each frequency but the
combination of frequencies, e.g. wide-lane and narrow-lane
products. This results in a cumbersome process when extend-
ing the ionosphere-free PPP-RTK to multi-GNSS and multi-
frequency cases [80–82].

3.4. UDUC PPP-RTK model

Facing the multi-GNSS and multi-frequency trend, the UDUC
formulation becomes an attractive choice. This concept of
UDUC formulation has been proposed for a long time [83, 84].
Its advantages have already been recognized in PPP [85–88].
Teunissen et al [33] developed a distinct-clock UDUC PPP-
RTK model, while Zhang et al [74] proposed a common-
clock-1 UDUCmodel. In recent years, some studies also trans-
formed the ionosphere-free PPP-RTK models reviewed above
to a UDUC formulation [89, 90]. We here summarize several
advantages when formulating the PPP-RTK model based on
UDUC observables.

(a) It enables a unified functional model and a simplest
stochastic model. One can formulate a unified functional
model with an arbitrary number of systems and frequen-
cies. The stochastic model is simplest since it avoids math-
ematical correlations, which may exist in combined and/or
differenced observables.

(b) It allows for strengthening the model to the best extent.
Since it preserves all original parameters, a strongest
model is possible by imposing a proper constraint on each
parameter.

(c) It generates the products with the best consistency. It
calculates all of the products, including satellite clocks,
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satellite biases, and atmospheric delays, by one estimator,
making the estimates consistent.

(d) It provides directly observable-specific-bias corrections. It
estimates biases at each frequency instead of a combina-
tion of them, thus promising for multi-frequency applica-
tions.

(e) It ensures a straightforward integer ambiguity resolution
process. Since it formulates double-differenced integer
ambiguities at each frequency, one can directly conduct
integer ambiguity resolution.

We remark that one may argue that UDUC PPP-RTK
requires much more computational resources than the differ-
enced or combined methods. However, studies have clarified
that this is not a fact since we can eliminate the parameters of
no interests (e.g. receiver-related parameters) by reducing the
normal matrix instead of performing an a-priori elimination at
the observation level [38]. This implies that UDUC PPP-RTK
can be as efficient as the differenced or combined methods.

3.5. Extended PPP-RTK models

Since the first proposal of PPP-RTK, great efforts have been
taken to modify and extend the PPP-RTK models. We here
review several advances in the extension of the GNSS PPP-
RTK models.

3.5.1. Ionosphere-fixed, ionosphere-weighted, and
ionosphere-float PPP-RTK. As we pointed out, PPP-RTK
is not limited to global networks but also regional and local
networks. It is feasible to apply one model to all types of
networks, whereas a better choice is to consider distinct fea-
tures of ionospheric delays in different networks. In a local
network where the inter-station distances are only several
kilometers, one can consider that the ionospheric delays at
all stations are identical, yielding the ionosphere-fixed PPP-
RTK model [33]. Concerning a regional network where the
inter-station distances range from tens to hundreds of kilo-
meters, one can impose a zero-mean weighted constraint on
the between-receiver single-differenced ionospheric delays.
This yields the ionosphere-weighted PPP-RTK model [91]
that describes the uncertainty of the zero-mean constraint by
a proper stochastic model [92, 93]. When the inter-station
distance further increases, one parameterizes the ionospheric
delays without any constraints, formulating the ionosphere-
float PPP-RTK model [74].

We remark that the ionosphere-weighted model can be con-
sidered a general model that unifies the ionosphere-fixed and
ionosphere-float models. In the case of setting the weight of
zero-mean ionospheric constraint as infinite, the ionosphere-
weighted model is converted to the ionosphere-fixed model.
Considering another extreme case where we set the weight
of the constraint as zero, the ionosphere-weighted model is
reduced to the ionosphere-float model. We also note that
the ionosphere-float model is equivalent to the ionosphere-
free model in the sense that eliminating the ionospheric
delays in the parameter domain is identical to estimating

them without any constraints. Of particular note, here, the
ionosphere-free model is referred to as the one that includes
the third observable described in section 3.3, which ensures
the same information as that contained by the ionosphere-float
model.

3.5.2. Single-, dual-, and multi-frequency PPP-RTK. No
matter what methods are adopted, PPP-RTK primarily served
dual-frequency users. Facing the mass-market demands and
the increasing number ofGNSS frequencies, single- andmulti-
frequency PPP-RTK were proposed.

With the aid of ionospheric corrections, single-frequency
integer ambiguity resolution is achievable with a single
receiver. Experiments using single-frequency observables col-
lected by a geodetic receiver showed a positioning accuracy
at the centimeter level [94, 95], while the low-cost single-
frequency PPP-RTK can also achieve a positioning accuracy
of better than one decimeter [96]. To improve the perform-
ance of single-frequency PPP-RTK, contributions have been
made to integrate PPP-RTK with other systems, e.g. the iner-
tial navigation system [97]. Recently, researchers even real-
ized single-frequency PPP-RTK with smartphones [98].

Although dual-frequency ionosphere-free PPP-RTK can be
extended to multi-frequency cases, a more attractive way is
to adopt the UDUC PPP-RTK model. In the multi-frequency
case, the UDUC PPP-RTK provides the observable-specific
satellite phase biases on each frequency [99]. Additionally,
it has to provide the satellite code biases for the observables
on the third frequency and above. Experiments have shown
that multi-frequency PPP-RTK can accelerate convergence
and improve positioning accuracy [48, 54, 100].

3.5.3. Frequency division multiple access (FDMA) PPP-RTK.
The essential idea of PPP-RTK is integer ambiguity resolution,
which is straightforward for code division multiple access sys-
tems (e.g. GPS), where all satellites share the same frequen-
cies. However, the FDMA system, namely, the GLONASS,
faces significant challenges in integer ambiguity resolution
as it adopts different frequencies to identify satellites, result-
ing in inter-frequency biases (IFBs) and failing in formulating
double-differenced ambiguities.

To conduct FDMA PPP-RTK, many studies contributed to
calibrating the IFBs in advance [101, 102], thereby preventing
IFBs from undermining the integer property of ambiguities.
Considering that an all-inclusive IFB look-up table requires a
heavy workload, studies found that one can avoid the adverse
effects of IFBs through careful re-parameterization, provided
that the receivers deployed in the network are homogeneous
[103]. In a network consisting of heterogeneous receivers,
some studies introduced external ionospheric corrections to
ensure the integer nature of ambiguities [104, 105], while an
alternative way is to estimate the IFBs [106, 107].

Most of the preliminary studies on FDMA PPP-RTK
focused on dealing with the IFBs, whereas investigations
on integer ambiguity resolution models were limited for the
FDMA system. Teunissen [108] addressed this problem and
proposed a new integer-estimable FDMA model that ensures
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the integer nature of FDMA ambiguities and guarantees a
high success rate with partial integer ambiguity resolution.
Many studies then applied this integer-estimable FDMA
model to RTK and achieved great positioning performances
[109–112]. Based on the integer-estimable FDMA model,
Zhang et al [113] proposed an FDMA PPP-RTK solution
and achieved fast FDMA integer ambiguity resolution in both
homogeneous and heterogeneous networks. Recently, Teunis-
sen and Khodabandeh [114] further generalized the integer-
estimable theory for frequency-varying systems, including the
FDMA GNSS system and the terrestrial interferometric sens-
ory systems.

3.5.4. Phase-only PPP-RTK. To circumvent the unmodeled
code-related errors, for instance, code IFBs and code mul-
tipath, one can exclude the code observables and use only the
phase observables. This phase-only concept was first applied
to relative positioning, in which a long convergence time is
required due to the exclusion of code observables [115]. As
integer ambiguity resolution is an effective way to accelerate
convergence, many studies investigated the phase-only integer
ambiguity resolution and applied it to RTK positioning [116,
117]. The results showed that phase-only RTK can achieve
ambiguity-fixed positioning in two epochs [118, 119].

Hou et al [120] formulated a multi-frequency phase-only
PPP-RTK model based on UDUC GNSS observables. This
phase-only PPP-RTK model provides satellite phase biases
only for the user observables on the third frequency and
above, as the satellite phase biases on the first two frequen-
cies are lumped with the satellite clocks. Results showed that
phase-only PPP-RTK achieved successful integer ambiguity
resolution in two epochs by using a regional network where
the inter-station distances are approximately 100 kilometers.
More attractively, the phase-only PPP-RTK model outper-
forms the classical code-plus-phase model in remarkable code
multipath cases, which have been identified in the second-
generation BeiDou navigation satellite system [121].

4. PPP-RTK applications

PPP-RTK can be applied to a wide range of fields. It is almost
impossible to list all kinds of PPP-RTK applications in a short-
review article.We here provide one perspective that introduces
different PPP-RTK applications corresponding to each kind of
parameter the PPP-RTK models estimate. In addition to the
position parameters, PPP-RTK also estimates the clocks, the
atmospheric delays, and the biases, which can be applied to
various fields.

4.1. Position-based applications

The initial goal of PPP-RTK is to rapidly provide users
with a high-accuracy position, which constitutes the basic
information in many industrial and scientific fields. Regard-
ing industrial fields, PPP-RTK has been applied to surveying
and mapping [122], intelligent transportation systems [123],
precision agriculture [124], orbit determination of low-orbit

satellites [59], and so on. In emerging industries, such as
intelligent driving and unmanned aircraft systems, PPP-RTK
can contribute to one essential part of the integrated system
[125]. Concerning the scientific fields, the precise position
provided by PPP-RTK can be used for geodesy and geody-
namics analysis, such as the seismic deformation [126], the
earth plate movement [127], and the sea-level changes [128].

4.2. Time transfer

PPP-RTK provides both satellite clock and receiver clock
estimates. The satellite clock is one of the essential products
for high-precision positioning, while the receiver clock can
be used for time transfer. Generally, integer ambiguities
were not fixed in GNSS time transfer, typically, the PPP-
based time transfer method [129–131]. Some studies achieved
integer ambiguity resolution-enabled time transfer using
single-differenced observables [132]. The advent of PPP-
RTKmakes integer ambiguity resolution possible with single-
receiver UDUC observables. This motivated the researchers to
apply the PPP-RTK to time transfer and investigate the impact
of integer ambiguity resolution on time transfer [133–135].

4.3. Atmospheric retrieval

GNSS has proven to be an effective sensor for monitoring
space atmosphere, including two essential components: iono-
sphere and troposphere. There are several ways to extract iono-
spheric delays based on GNSS, for instance, the carrier-to-
code leveling method and the PPP method [71]. However,
thesemethods discard the integer nature of ambiguities, imply-
ing a limited accuracy of the estimates. For this, some stud-
ies applied the ionosphere-free PPP-RTK to estimate satellite
phase biases, based on which the ambiguities can be fixed at a
stand-alone receiver. Then, one can extract ionospheric delays
from ambiguity-resolved UDUC phase observables [136]. In
contrast to this two-step method, the UDUC PPP-RTK dir-
ectly estimates ionospheric delays at all stations by construct-
ing a network model with the integer nature of ambiguities
being remained [91]. Regarding the tropospheric delay, both
ionosphere-free PPP-RTK and UDUC PPP-RTK can extract
it directly [45, 137]. However, the UDUC PPP-RTK can sim-
ultaneously extract both ionospheric and tropospheric delays,
leading to more consistent estimates.

4.4. GNSS bias estimation

GNSS biases, originating from both satellite and receiver
ends and identified in both code and phase observables, are
one of the most intricate error sources in GNSS, especially
in the current multi-frequency and multi-GNSS stage. For a
better use of GNSS biases estimated by PPP-RTK, we first
discuss the representation of these biases. Previous studies
usually represent the GNSS biases in a differenced or com-
bined form, for instance, the widely-used differential code
biases [138] and the wide-lane and narrow-lane phase biases
estimated in ionosphere-free PPP-RTK [22]. However, the
community recently recognized that a more convenient and
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Table 1. Different PPP-RTK models and their properties.

Model Parameterization Ionosphere Biases References

Distinct-clock IRC/DSC Ionosphere-free Time-variant [69, 79]
UDUC Estimated Time-variant [33]

Common-clock-1 UDUC Estimated Realistic [74]
Common-clock-2 UPD/FCB Ionosphere-free Time-invariant [22, 75]

attractive way is to provide the biases for each observable
type, thereby simplifying the fusion of multi-frequency and
multi-GNSS observables [139]. Ionosphere-free PPP-RTK
adopted this observable-specific-bias representation by impos-
ing additional constraints to the differential biases [140],
while theUDUCPPP-RTKdirectly formulates the observable-
specific-bias parameters in the model [30]. These biases
estimated by PPP-RTK are essential for PPP-RTK itself to
achieve high-precision positioning. In addition, timing and
ionospheric applications can utilize these biases products for
a-priori calibration since the estimable receiver clocks and
ionospheric delays contain the biases [71, 130].

5. Conclusions and outlook

This work introduced the principle of GNSS PPP-RTK,
reviewed several PPP-RTK methods, and outlined various
PPP-RTK applications in different fields. Table 1 concludes
these methods and identifies their differences and similarities.
Among these methods, we recommend the common-clock-
1 UDUC PPP-RTK method since it is optimal, flexible, and
widely applicable. It is optimal since the common-clock-1
parameterization separates the clocks and biases and thus
allows a most robust model by considering the realistic
dynamic characteristics of the biases. In contrast, the distinct-
clock model moves to one extreme where the biases are con-
sidered as time-variant parameters, while the common-clock-2
model goes to another extreme where the biases are modeled
as time-invariant parameters. The common-clock-1 UDUC
PPP-RTK is also flexible since it directly provides observable-
specific-bias corrections and allows for a straightforward
fusion of multi-frequency and multi-GNSS observables. The
common-clock-1 UDUC PPP-RTK is widely applicable since
it simultaneously estimates all parameters, including iono-
spheric delays, which can be applied to a large number of
fields.

Despite the huge advances in GNSS PPP-RTK methods
and the blooming applications, some limitations still exist
that restrict the use of PPP-RTK. These limitations include
the low availability of PPP-RTK service in harsh environ-
ments and the difficulty in applying PPP-RTK to mass mar-
kets. Since PPP-RTK relies only on GNSS signals, its services
are vulnerable and even inaccessible in harsh environments,
e.g. urban cities and canyons [141, 142]. Although some ini-
tial studies have integrated PPP-RTK with other systems to
improve the positioning [96, 123], optimal integration of PPP-
RTK with other systems should be further investigated. Future
research should also focus on PPP-RTK using mass-market
devices (e.g. smartphones), which is challenging since some

specific biases originated from mass-market devices destroy
the integer nature of ambiguities [143, 144].
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