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Simulation of human gait with body
weight support: benchmarking models and
unloading strategies
Salil Apte3,1, Michiel Plooij2 and Heike Vallery1,4*

Abstract

Background: Gait training with partial body weight support (BWS) has become an established rehabilitation
technique. Besides passive unloading mechanisms such as springs or counterweights, also active systems that allow
rendering constant or modulated vertical forces have been proposed. However, only pilot studies have been
conducted to compare different unloading or modulation strategies, as conducting experimental studies is costly and
time-consuming. Simulation models that predict the influence of unloading force on human walking may help select
the most promising candidates for further evaluation. However, the reliability of simulation results depends on the
chosen gait model. The purpose of this paper is two-fold: First, using human experimental data, we evaluate the
accuracy of some of the most prevalent gait models in replicating human walking under the influence of
Constant-Force BWS: The Simplest Walking model (SW), the Spring-Loaded Inverted Pendulum model (SLIP) and the
Muscle-Reflex (MR) gait model. Second, three realizations of BWS, based on Constant-Force (CF), Counterweight (CW)
and Tuned-Spring (TS) approaches, are compared to each other in terms of their influence on gait parameters.
Methods: We conducted simulations in Matlab/Simulink to model the behaviour of each gait model under all three
BWS conditions. Nine simulations were undertaken in total and gait parameter response was analysed in each case.
Root mean square error (mrmse) w.r.t human data was used to compare the accuracy of gait models. The metrics of
interest were spatiotemporal parameters and the vertical ground reaction force peaks. To scrutinize the BWS
strategies, loss of dynamic similarity was calculated in terms of root mean square difference in gait dynamics (�gd)
with respect to the reference gait under zero unloading. These gait dynamics were characterized by a dimensionless
number Modela-w.
Results: The SLIP model showed the lowest mrmse for 6 out of 8 gait parameters and for 1 other, the mrmse value
were comparable to the MR model; SW model had the highest mrmse. Out of the three BWS strategies, Tuned-Spring
strategies led to the lowest �gd values.
Conclusions: The results of this work demonstrate the usefulness of gait models for BWS simulation and suggest the
SLIP model to be more suitable for BWS simulations than the Simplest Walker and the Muscle-reflex models. Further,
the Tuned-Spring approach appears to cause less distortions to the gait pattern than the more established
Counterweight and Constant-Force approaches and merits experimental verification.
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Introduction
Body weight supported training (BWST) is a common
gait rehabilitation technique for individuals suffering from
neurological impairment due to stroke, spinal cord injury,
Parkinson’s disease, etc. During BWST, a certain amount
of the user’s body weight is supported by a suspension
system, typically through a harness [1]. Thereby, body
weight support (BWS) systems allow therapists to provide
gait rehabilitation training, without the need of provid-
ing complete physical assistance [2]. After undergoing
BWST, individuals with neurological impairments have
shown improvement in balance, motor function and over-
all locomotion [3–8]. In addition to these benefits, BWST
can lead to improved psychological well-being, enhanced
muscle mass and better cardiovascular health [9].
A BWS system is typically composed of an apparatus

which provides the user with an unloading force when
walking overground or on a treadmill [10, 11]. The main
purpose of providing a constant unloading force is to par-
tially reduce gravity. The notion that constant force is the
best solution for partial BWS has been dominating the
field of BWS systems [12], and led to complex mechan-
ical designs such as the Lokolift [10], the Zero-G [13],
etc. These devices use active control in order to render a
constant force. Note that this is still different from actual
simulated gravity because the load is applied only to the
upper body (distributed via the harness), and not in a dis-
tributed way on each single body segment [14]. Accurate
investigations for swing phase therefore generally require
set-ups similar to a parabolic space flight [15, 16], which
are inconvenient to reproduce.
Passive, and more low-cost BWS realizations for pro-

viding constant unloading force typically constitute the
use of an appropriately heavy counterweight or an elastic
element such as a spring with specific pretension. While
these devices provide constant unloading force in static
conditions, the vertical movement of the center of mass
(COM) of the user during locomotion leads to a verti-
cal motion of the counterweight or the end-point of the
elastic element. This results in the deviation of the unload-
ing force from the set (constant) magnitude and thus
these device are generally considered inferior to actuated,
closed-loop controlled systems [10]. However, there may
still be unexploited potential in such passive realizations.
Particularly, it could be possible that a simple elastic sup-
port may even bring gait dynamics closer to unsupported
gait than an actively rendered constant force, following the
hypothesis stated in [17].
One way to predict the efficacy of existing and new

BWS designs and modulation strategies is by simulating
their influence on the locomotion of existing gait mod-
els. This can improve the efficiency of the design process
by speeding up the iteration steps and reducing or post-
poning the need for hardware prototypes and experiments

with human subjects. Examples of such an approach are
the studies by Glauser et al., Ma et al. and Lu et al. [18–20].
These examples, however, show that there is a wide range
of gait models currently being used for such a simulation
and they range from the simplest (mass-spring-damper
system) to the most complex musculoskeletal models.
The first goal of this research is to investigate the

suitability of gait models for BWS simulation through
a comparison with experimentally-obtained gait param-
eter data. Three prominent biomechanical gait models
from the literature were simulated in the sagittal plane
with BWS, and trends for gait parameters were docu-
mented. The three gait models (Fig. 1), in increasing order
of complexity are: (1) Simplest Walking (SW) model , (2)
Spring Loaded Inverted Pendulum (SLIP) model and (3)
Muscle-reflex (MR) model [21–23].
The second goal is to compare the effect of three funda-

mental BWS strategies on human gait: (1) Constant-Force
(CF): which emulates a constant vertical unloading force
(2) Counterweight (CW): where a vertically moving coun-
terweight is used to provide the unloading force and (3)
Tuned-Spring (TS): where an elastic element (spring) with
specifically tuned stiffness generates the unloading force.
The latter two strategies are seemingly ‘imperfect’ realiza-
tions to achieve constant vertical support. By comparing
their influence on gait parameters to that of an ideal con-
stant unloading force, we aim to explore whether these
imperfections are detrimental to the goals of BWS or even
provide unexplored benefits for improving BWS design.
In the elastic BWS, the motion of the attachment point

affects the deflection of the spring, thus causing varia-
tions in unloading force. The Tuned-Spring BWS system is
based on the hypothesis [17] that such a variation is desir-
able and more beneficial than a constant force, because it
maintains the dynamic similarity of gait despite unload-
ing. While a constant unloading force partially compen-
sates for the weight of the user, the inertia of the body still
affects the dynamics of the gait. We hypothesize that if
the unloading force can be tuned to compensate for both
the gravitational and inertial forces, gait dynamics will be
less modified. According to this hypothesis, and the asso-
ciated design method presented in [17], the stiffness of
the spring used for providing the unloading force can be
tuned to compensate for inertial forces of the unloaded
mass, thus enabling gait which ismore dynamically similar
to unsupported walking. This works for a periodic (ideally
harmonic) movement of the body, and is quite robust to
deviations.
Dynamic similarity [24, 25], based on the Froude num-

ber, has been previously used for investigating the effect
of BWS on gait [26]. However, a recent work [27] sug-
gested the Froude number alone to be inadequate and
proposed a new metric called Modela-w. We thus use
the change in Modela-w caused by the different BWS
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Fig. 1 The three gait models considered in this paper: (1) Simplest Walking (SW) model [21] whereM is the mass of the body,m of each foot andm
is assumed to be negligible as compared toM, θ is the stance leg angle w.r.t. to vertical, yc is the vertical position of the centre of mass and φ is the
swing leg angle w.r.t to the stance leg. Details of the actuation principles from [30] are not shown here. (2) Spring-loaded inverted pendulum (SLIP)
model [22] wherem is the mass of the body, l is the original leg length, α is the angle-of-attack, yc is the vertical position of the centre of mass, k is
the stiffness of the leg spring and FP is the foot point of the stance spring. (3) Muscle-reflex (MR) model [23] where point A represents the centre of
mass of the upper body, yHAT is the vertical position of this centre of mass andmHAT is the mass of the upper body. For all three models, the vertical
unloading force Fu is applied at point A.

conditions to compare the three BWS strategies and test
the aforementioned hypothesis.
Gait parameter trends produced by the simulations are

compared with each other and with the human data
trends (dataset available at [28]) obtained from an exist-
ing systematic review [12]. These trends resulted from the
meta-analysis of around fifty existing studies measuring
the influence of body weight support on gait parameters.
While this meta-analysis presents data for both patients
and healthy subjects, only the latter group is consid-
ered for comparison in the present study. Results used
for benchmarking the gait models and comparing the BWS
strategies are presented in “Comparison of gait models”
subsection (Fig. 3, 4, andTable 2) and “Comparison of BWS
strategies” subsection (Figs. 5, 4, andTable 4) respectively.

Methods
Selection of gait models
The scope of this research is limited to 2D gait models
since all the gait characteristics of interest, i.e. those stud-
ied in [12], can be investigated using 2D models. These
characteristics are the gait spatio-temporal parameters
and the vertical ground reaction forces; the secondary
ones are leg joint range of motion, joint moments, antero-
posterior ground reaction forces, and legmuscle activities.
These gait parameters are relevant because they have been
extensively investigated in previous studies on the influ-
ence of BWS and used for designing and testing BWS
systems [12]. Four gait models are particularly promi-
nent in literature: (1) Linear inverted pendulum model
(LIPM) [29], (2) Simplest walking (SW) model [21] (actu-
ated on the basis of the principles suggested in [30]),
(3) Spring-loaded inverted pendulum (SLIP) model [22],

and (4) Muscle-reflex (MR) gait model [23]. The LIPM
model, however, considers the centre of mass (COM) of
the body to move in a straight horizontal line and thus the
vertical movement of the COM needed to study the coun-
terweight and tuned-spring BWS strategies is absent. As a
result, this model was excluded from the selection of gait
models. For the SW model, the foot mass is assumed to
be negligible as compared to the body mass. The mechan-
ical configuration and definition of variables for the three
models are illustrated in Fig. 1.

BWS strategies
This section describes the three BWS strategies (Fig. 2)
used for simulations, CF, CW and TS.

Assumptions
The simulations are based on five main assumptions
(Fig. 2) – (1) the counterweight and the free end of the
spring only move in the vertical (Y) direction, (2) pulley
systems I and II, the ropes and the spring in Fig. 2 are
massless, (3) the BWS system is frictionless and there is
no net energy dissipated in the system, (4) the unload-
ing force is applied at the center of mass (COM) of the
upper body (head, arms and trunk, HAT), which in the
cases of SW and SLIP models coincides with the body’s
overall center of mass, and (5) the pulley system I follows
the attachment point A along the horizontal (X) direction
and thus it is always perfectly overhead of the attachment
point. This way, the BWS system does not apply any hor-
izontal forces on the gait model nor does it add to the
inertia of the model in horizontal direction. While the
horizontal force components of the BWS system [31] can
be important for determining the user’s gait, we chose
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Fig. 2 The three BWS strategies: (1) Constant-Force (CF) (2) Counterweight (CW) system (3) Tuned-Spring (TS) system. Pulley systems I and II are
designed such that the counterweight (of mass u · m) and the free end of the spring only move vertically. The centre of the pulley system I is
assumed to move horizontally such that force the Fu is directed vertically upwards from point A. All pulleys are massless and the system does not
dissipate net energy. The coordinate yc is the vertical position of the centre of mass of the body, u is the amount of body weight unloaded as a
proportion of the actual body weightmg, ks is the stiffness of the spring, and �l0 is its initial elongation.

to focus solely on the influence of the vertical unloading
force on the gait. Considering the % BWS supplied as β ,
the unloading coefficient u as u = β/100, total mass of
the body as m (Fig. 2) and the acceleration of gravity as
g, the equations describing the three BWS strategies are
presented below.

Constant-Force system
The Constant-Force (CF) BWS strategy consists of apply-
ing constant vertical force (Eq. 1) on the body. It can be
considered as an ideal case of an unmodulated BWS [12].
Since the SW and SLIP models do not have distributed
mass, the CF BWS strategy also emulates the effects of
reduced gravity for these models [14]. However, this is not
the case for theMRmodel [23] due to the presence of limb
mass.

Fcf = umg (1)

Counterweight system
The Counterweight (CW) BWS strategy is based on the
use of a counterweight of mass um to provide β % of BWS.
In the static case, this strategy leads to a constant unload-
ing force (Fu = umg). However, the counterweight moves
vertically as it follows the vertical motion of the attach-
ment point A. Due to this motion, an additional inertial
force (umÿc) is generated, which disturbs the intended
constant unloading force. Thus, instead of a constant
unloading force, the force acting on the body is

Fcw = um(g − ÿc) (2)

where ÿc is the vertical acceleration of the attachment
point A in upward direction.

Tuned-Spring system
An elastic element (spring), which can be considered
massless as compared to a counterweight, can pro-
vide unloading force without the drawback of increasing
inertial forces caused by the movement of a counter-
weight. As mentioned above, the spring can even further
reduce inertial effects, which in effect means partially
removing both gravitational and inertial forces acting on
the human body simultaneously [17]. The spring stiffness
ks to achieve this needs to be tuned to:

ks = umω2, (3)

where ω = 2πc and c is the cadence (step-to-step
frequency) of the walking model at 0% BWS. The ini-
tial deflection �l0 of the spring is chosen such that the
unloading is equal to umg in the initial configuration of
each model:

�l0 = umg
ks

= g
ω2 (4)

The unloading force provided by the TS BWS strategy is:

Fts = ks(yc0 − yc + �l0), (5)

where yc is the vertical position of point A at time t and
yc0 is its average position during walking.
In case of the SW and SLIP models, yc0 is considered

to be the initial position of the model, since the difference
between this and the average position is marginal, leading
to a small (< 3%) difference in the intended and actual
unloading levels.
For the MR model, choosing the initial vertical position

(at t = 0) of point A as yc0 leads to higher unloading than
desired, whereas the choice of mean vertical position at
0% unloading leads to a lower unloading force. Therefore,
for this model, the value of yc0 was estimated by a heavy
first-order low-pass filter on the signal yc (Appendix A).
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Model implementation
Simulation environments
All gait models were obtained online [32–34] and were
modified according to the equations presented below, in
order to simulate the effect of all three BWS strategies. For
the SW and SLIP models, the equations of motion were
implemented in Matlab. In case of the MR model, Sim-
scape blocks were created to emulate the Constant-Force
(CF), Counterweight (CW) and Tuned-Spring (TS) BWS
strategies, since the original Muscle-reflex gait model [23]
was implemented in Simscape.
Only modified equations of motion for each model

(Figs. 1 and 2) are presented here. The equations which
are not affected by the BWS system are not presented and
can be found in the original literature.

BWS implementation for the simplest walkingmodel
The original equations of motion of the Simplest walking
(SW) model are presented in [21]. The angle θ represents
the stance leg angle w.r.t. the vertical and φ is the swing
leg angle w.r.t. the stance leg. Following the original paper,
time is scaled by

√
l
g for all three BWS strategies. A hip

spring with the dimensionless torsional stiffness kf is used
for actuation [30]. The ‘foot’ mass m is assumed to be
much smaller than the ‘body’ massM, som/M ≈ 0.
Constant-Force: A term representing the constant verti-

cal unloading force (Fu = uMg) was added to the original
equations [21], leading to:

θ̈ = (1 − u) sin θ (6)
φ̈ = θ̈ + θ̇2 sinφ + u sin θ cosφ − cos θ sinφ − kfφ. (7)

Counterweight system: The mass of the counterweight is
uM, whereM is the mass at the hip, so

θ̈ = 1 − u
1 + u

sin θ (8)

φ̈ = θ̈ + θ̇2 sinφ − cos θ sinφ (9)

+ 2u
1 + u

sin θ cosφ − kfφ. (10)

Tuned-Spring system: Considering Eqs. (3-5) in “Meth-
ods” section, yc = l cos θ to be the vertical position of
point A at time t and yc0 = l at t = 0, the EOM are:

θ̈ = (1 − u) sin θ + l
g
ω2u(1 − cos θ) sin θ (11)

φ̈ = θ̈ + θ̇2 sinφ − cos θ sinφ

−u(1 + l
g
ω2(1 − cos θ)) sin θ cosφ − kfφ. (12)

BWS implementation for the bipedal spring-loaded inverted
pendulummodel
The gait cycle in the SLIP model, as given in the origi-
nal paper [22] is divided into three phases – initial single
limb stance (SLS) of the left leg, intermittent double-limb

stance (DLS) and final single limb stance (SLS) of the right
cycle. The equations for horizontal acceleration do not
change since BWS is assumed to influence only the ver-
tical motion. The modified equations of motion for the
vertical motion of the COM depend on the chosen BWS
strategy.
Constant-Force system: A term representing the con-

stant vertical unloading force (Fu = uMg) is added to the
original equations [22], so:

Initial SLS: mÿc = Pyc − m(1 − u)g. (13)
DLS: mÿc = Pyc + Qyc − m(1 − u)g. (14)

Final SLS: mÿc = Qyc − m(1 − u)g. (15)

Counterweight system: The mass of the counterweight is
um, wherem is the mass of the body, thus leading to:

Initial SLS: mÿc = Pyc − m
(1 − u)

1 + u
g. (16)

DLS: mÿc = Pyc + Qyc − m
(1 − u)

1 + u
g. (17)

Final SLS: mÿc = Qyc − m
(1 − u)

1 + u
g. (18)

Tuned-Spring system:ConsideringEqs. (3–5) in “Methods”
section, the resulting equations for the Tuned-Spring
strategy are:

Initial SLS: mÿc = Pyc − mg + Fts. (19)
DLS: mÿc = Pyc + Qyc − mg + Fts. (20)

Final SLS: mÿc = Qyc − mg + Fts, (21)

where Fts is the unloading force provided by the TS BWS
system (equation 5), yc represents the vertical position of
the COM of the body. The terms P and Q are the same as
those defined in [22]

P = k(
l0√

x2c + y2c
− 1) & Q = k(

l0√
(d − xc)2 + y2c

− 1),

where d = FPi+1,xc − FPi,xc , FP is the foot point of the
stance spring, and xc is the horizontal position of the
COM.

BWS implementation for themuscle-reflexmodel
The unloading force term for each BWS strategy
were implemented as Simscape blocks according to the
equations 1, 2 and 5, which present the unloading force
for the CF, CW and TS BWS strategies respectively.

Simulation protocol
Each modified model was simulated with BWS ranging
from 0% to 100%, in 5% increments. The unloading force
was applied at the center of mass of the body (COMbody)
for all gait models and the COM of the upper body for
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the MR model (Appendix B). Initial pose for the SLIP and
MRmodels is standing, at the instant before toe-off, while
it is in the double stance after impact in case of the SW
model. To test the model sensitivity to initial conditions,
fifteen different starting gait speeds were used for sim-
ulation, ranging from 0.6185 m/s to 1.6185 m/s for the
SLIP model (originally 1.1185 m/s [22]) and 0.8 m/s to
1.8 m/s for the MR model (originally 1.3 m/s [23]). Since
the starting gait speed is not selectable for the SW model,
starting step length was varied from 0.2167 to 1.2167 m
(originally 0.7167 m [21]). The remaining initial condi-
tions and model parameters used in simulation are the
same as those proposed in the original papers [21–23].
The highest percentage of BWS for which the model was
able to achieve a walking gait for at least 20 steps was
noted as the ‘Maximum feasible BWS’ (βmax) for each
strategy. This βmax and the resultant average gait speed
were used to understand the sensitivity of gait models to
initial conditions.
Results for CF BWS strategy were selected for the com-

parison with experimental data since this data [28] was
available only for Constant-Force BWS systems [12].

Data analysis
Selection and analysis of gait parameters
Relevant gait data was extracted for the starting gait speed
or step length which was closest to the values proposed
in the original papers and which led to the highest maxi-
mum feasible BWS. For each condition, the gait data was
averaged over at least five strides in order to reduce the
variability. The average step duration was considered as
the inverse of cadence.
The proportion of each gait phase was computed with

respect to the entire stride duration. The hip range of
motion was calculated from the peak flexion angle follow-
ing initial contact to the peak extension angle at terminal
stance [35]. The knee range of motion was considered
from the peak extension angle at terminal stance to the
peak flexion angle at mid-swing. Peak joint torque val-
ues for flexion and extension were extracted from the
torque patterns over a complete gait cycle, and indicated
by negative and positive signs, respectively. The two peak
values for the vertical ground reaction forces (GRF) and
the extrema of the anteroposterior GRF over a single gait
cycle were also computed. For muscle activity, the mean
value over a complete gait cycle was considered. Some
model-specific data analysis procedures were adopted, as
listed below:

• The SWmodel was analyzed only for the gait
spatio-temporal parameters like stride length,
cadence, walking speed and the total stance phase.
The model has an instantaneous double support
phase, so only the total stance phase is considered.

Ground reaction forces (GRF) were not considered
either, since they do not follow the characteristic
pattern of anthropomorphic bipedal gait [36].

• The SLIP gait model was investigated for all gait
spatio-temporal parameters and the vertical GRF.

• Since the MR gait model typically utilizes muscle
groups, while the meta-analysis of experimental gait
data [12] provides muscle activity data for individual
muscles, the correspondence in Table 1 was used for
comparing the results.

Comparison of gait parameter response
Suppose P =[P0,P5,P10, ....,Pβmax ] represents the vector
of values for a specific gait parameter at each unload-
ing level up to the ‘Maximum feasible BWS’ (βmax), in
increments of 5%. This data was normalized by taking
a ratio with the parameter value at 0% BWS, resulting
in PN = P/P0 =[ 1,P5/P0,P10/P0, ....,Pβmax/P0] The aim
was to reduce variability in results and allow comparison
of trends across gait models. By removing the dimen-
sions attached to each parameter through normalizing,
comparison across different gait parameters was possible.
The data from the meta-analysis [12] was used as refer-
ence human data, PH =[ 1,PH5,PH10, ....,Pk]. Because this
reference data is already normalized, the normalization
procedure for the gait model parameters was necessary for
comparison with human data.
To compare the gait models, for each gait parameter,

the root mean square error with respect to the experi-
mental data was calculated for overground and treadmill
walking environments. Since it is used to compare the
gait models, this root mean square error is referred to as
mrmse. The mrmse (Eq. 22) was computed as a percent-
age of the gait parameter value at 0% BWS. The 0% BWS
condition was not considered during mrmse calculation
since the gait parameter data was normalized, such that
the error at 0% BWS was always 0. A lower value of the
mrmse, so a better fit with the experimental data, means
that the model is better suited to investigate the influence
of BWS on that specific gait parameter. The comparison
of gait models is based only on the mrmse values for the
overground condition with a Constant-Force BWS system.
The data considered for analysis ranged from 0% to 40%
BWS, because at least twomodels could not achieve stable

Table 1 Muscle groups in MR gait model and corresponding
muscles in experimental data

MR gait model Experimental data

1. ‘Vastus’ muscle (VAS) / Quadriceps Rectus femoris

2. Hamstring (HAM) Biceps femoris

3. Gastrocnemius (GAS) Lateral gastrocnemius &

Medial gastrocnemius

4. Tibialis anterior Tibialis anterior



Apte et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:81 Page 7 of 16

gait above 40%. A missing data point indicates inability of
the gait model and BWS strategy to produce a gait at that
BWS level, which was penalized during the calculation of
mrmse to reflect higher error values. PN was considered
to be zero for this BWU level, since this can be considered
as the highest deviation from the gait at 0% and thus it
leads to the largest possible error for that unloading level.
Human data indicates only a small influence of unload-
ing force on gait parameters up to 30% BWS [12], which
implies that the mrmse w.r.t. to the 0% BWS should also
be small for the gait models, up to 30% unloading:

mrmse =
√∑8

k=1(PH(k) − PN (k))2

8
× 100%, (22)

where k is the index of the BWS levels, which are k · 5%,
thus ranging from 5 to 40%.
In the context of BWS, the level of dynamic similar-

ity between the unloaded walking task and the eventual
task to be trained, namely walking without support, is
crucial. In order to quantify this dynamic similarity, we
first represented the gait dynamics for each condition by a
dimensionless number, modela-w [27]:

modela-w = (
2gl
v2

+ (
fl
v
)2)−1, (23)

where g is the gravity, f the frequency oscillation of the
COM, l the COM height which is leg length for SW and
SLIP models, and v is the forward speed. In the next step,
we quantified the loss in dynamic similarity by calculating
the combined root mean square difference of the modela-
w magnitude from 5% to 35% unloading with respect to
the magnitude at 0% BWS for the SLIP and MR models
For the SW model, it was calculated only from 5% to 10%
unloading for CF and TS strategies and only at 5% for the
CW strategy. To compare BWS strategies, we assumed
that the strategies which lead to lower root mean square
difference values are likely to distort gait dynamics less.
This root mean square error is referred to as �gd (Eq. 24)
because it forms the basis for comparison of change in gait
dynamics or the loss of dynamic similarity:

�gd =
√∑7

k=1(modela-w(n) − modela-w(0))2
7

× 100%,

(24)

where k represents the BWS levels in the form of k · 5%,
ranging from 5% to 35%.

Results
Comparison of gait models
The gait parameter values at different levels of Constant-
Force BWS for each gait model are plotted in Fig. 3,
along with the experimental data obtained from the meta-
analysis [12] for healthy individuals walking in overground
and treadmill environments. Gait parameters which were
present only in one model, i.e the MR model, are included

in Appendix C (Fig. 6). Themrmse for each model and the
relevant gait parameters are presented in Table 2. Values
for the treadmill condition are presented only for compar-
ison with the overground condition for the same model
and not between two models. Results for the sensitivity
analysis are shown in Fig. 4.

Simplest walkingmodel
The SW model had the highest mrmse values for all
relevant gait parameters: stride length, cadence, walking
speed, and total stance phase (Fig. 3 & Table 2). The mag-
nitude ofmrmse was similar for overground and treadmill
walking. Average gait speed showed low sensitivity (Fig. 4)
to the magnitude of BWS but was relatively high for
the initial step length; the sensitivity hardly changed for
different BWS strategies.

Spring-loaded inverted pendulum gait model
The SLIPmodel had the lowestmrmse values for six out of
eight paramaters, including stride length, cadence, walk-
ing speed, double limb stance, and vertical GRF (Fig. 3).
For single limb stance phases, it showed a moderate
mrmse value, comparable to the MR gait model, while for
total stance phase, it was almost twice that of the MR
model. Apart from the cadence, double limb stance, and
vertical GRF peak I, the four remaining gait parameters
had a higher mrmse value for overground walking. Aver-
age gait speed for SLIP model was highly sensitive (Fig. 4)
to the initial speed for the CW BWS strategy while being
relatively low for the other two strategies; it was low with
respect to the level of BWS for all three BWS strategies.

Muscle-reflex gait model
The Muscle-reflex (MR) gait model was the only one
which could be tested for almost all gait parameters men-
tioned in the meta-analysis [12]. Of the 23 gait parameters
analyzed, this model had amrmse of less than 10% for only
eight characteristics (Table 2 and 5): total stance phase,
double limb stance, vertical GRF peak I, hip joint ROM,
knee flexion moment, ankle plantarflexion moment, gas-
trocnemius, and tibialis muscle activity. Except for single
limb stance, and total stance phases, the MR model had
higher mrmse values for other gait parameters than the
SLIP model but lower than the SWmodel (Table 2).
However, the MR model had a high mrmse for knee

and hip extension moments, anteroposterior GRF, ankle
joint ROM and quadriceps muscle activity (Appendix C -
Fig. 6). Furthermore, for 8 gait parameters, the MR model
showed lowermrmse values for the treadmill walking con-
dition than for the overground condition. These param-
eters included total stance, single limb stance, vertical
GRF peak II, hip moments, ankle plantarflexion moment,
anteroposterior GRF peak I and tibialis anterior muscle
activity (Fig. 3, Table 2, 5, and Appendix C - Fig. 6).
Sensitivity of the average gait speed (Fig. 4) was low
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Fig. 3 Normalized gait spatio-temporal parameters and vertical ground reaction forces (GRF) with the Constant-Force BWS, where DLS: Double limb
support, SLS: Single limb support. Dashed lines represent the mean values and the shaded region represents the standard deviation for human data
from [28]

towards the initial speed and high for the level of BWS, for
all three BWS strategies.

Comparison of BWS strategies
The highest feasible BWS (βmax) values for the three mod-
els and the BWS strategies are presented in Table 3. The
trends for modela-w values are plotted in Fig. 5 and the
range of feasible BWS levels across different initial gait
speeds and step lengths (SW model) are plotted in Fig. 4.
The range here refers to the difference between the min-
imum (not necessarily 0%) and maximum feasible BWS
levels. The change in gait dynamics (�gd) or the loss of
dynamic similarity for each model in each BWS strategy is
presented in Table 4.

Counterweight BWS
The Counterweight (CW) BWS strategy typically led to
the lowest βmax values (Table 3) for the SW and MR
models, and lowest feasible BWS ranges (Fig. 4) across
all three gait models. This is reflected in the high �gd
values (Table 4) for all models and a stronger change in
modela-w values (Fig. 5) for the SW and SLIP models.
Sensitivity of the βmax to initial conditions was highest in
case of CW BWS strategy (Fig. 4), especially for the SLIP
model.

Constant-force BWS
With regards to the SW andMR gait models, the constant-
force (CF) BWS strategy typically produced a higher βmax
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Table 2 Summary of the gait parameters results for the three
gait models

Root mean square error (mrmse) values

Experimental
data

Overground (OG) Treadmill (TM)

Gait model SW SLIP MR SW SLIP MR

Gait parameter % % % % % %

01. Stride length 86.61 7.60 10.10 86.61 6.22 12.46

02. Cadence 86.61 8.27 16.30 86.60 10.45 16.30

03. Walking
speed

86.63 7.93 27.45 —

04. Gait phases -
Stance

86.61 11.40 5.74 86.60 6.94 1.92

05. Gait phases -
Double limb
stance

– 3.60 4.94 – 6.64 11.07

06. Gait phases -
Single limb
stance

– 13.31 10.07 – 6.20 8.09

07. Vertical GRF
peak - I

– 3.49 7.25 – 6.67 13.41

08. Vertical GRF
peak - II

– 5.74 11.26 – 4.39 2.64

Root mean square error (mrmse) values for 5–40% Constant-Force BWS levels w.r.t
the experimental data for overground (OG) and treadmill (TM) environments are
presented here. Lowestmrmse values for each gait parameter are indicated in italics
and green

value than CW BWS and a lower value than tuned-
spring (TS) BWS (Table 3), and vice-versa for �gd values
(Table 4) for all three models. It showed a similar trend for
the range of feasible BWS levels (Fig. 4) and the modela-
w values(Fig. 5). Finally, the sensitivity of βmax to initial
conditions was lower than the CW strategy and higher
than TS.

Tuned-Spring BWS
The Tuned-Spring (TS) produced the highest βmax values
among all three BWS strategies for SW and MR models,
while leading to high but not the highest values for the
SLIP model. It also led to lowest change in gait dynamics
(Table 4 and Fig. 5) across all models. Further, the βmax
values were least sensitive to the initial condition (Fig. 4)
for the TS BWS strategy in case of the SLIP and MR
models.

Discussion
Comparison of gait models
The SW model showed the highest mrmse values
for all four gait parameters (Table 2), namely stride
length, cadence, walking speed, and stance phase
duration. While Fig. 3 does not reflect such high
mrmse values (≈ 50%), these values are expected due
to the penalization process explained in the earlier

“Comparison of gait parameter response” section.
Onwards from 15% BWS, the SLIP model presented a
sudden increase in the proportion of single limb stance
phase and consequently for total stance phase, relative
to human data and the MR gait model, which led to a
high m-rmse. This phenomenon can be attributed to
the stabilization effect of the unloading force during the
single limb stance. This effect was more pronounced
in the SLIP model than in the MR model, as the MR
model is comparatively more robust to disturbances [23].
However, for other parameters, the SLIP model showed
the best performance out of the three models, despite
its relative simplicity. Typically, the aim of active BWS is
to enable the magnitude of spatio-temporal parameters
to be similar to the values during unsupported walking
or to retain the M-shape of the vertical GRF [37, 38].
These gait parameters are present in the SLIP model,
and they change in similar ways as in the experimental
data. This indicates that the SLIP model can likely be
used effectively to simulate the effects of modulated BWS
on gait spatio-temporal parameters and ground-contact
interactions.
While the SW andMRmodels add energy to the system

to maintain stable walking, the SLIP model does not. This
feature of the SLIP model might be one of the reasons for
its good performance and is worthy of further investiga-
tion. The SLIPmodel was only tested up to 40% BWS since
the MR model could not achieve a walking gait beyond
that level and thus no data was available for comparison of
models. Thus, the accuracy of the SLIP model for higher
BWS levels could not be investigated.
In case of the MR model, the unloading force produced

an additional torque about the hip joint which needed
to be counter-balanced by muscle forces. This led to an
increase in the hip flexion moment and a decrease in
the hip extension moment and subsequently affected the
knee extension moment as well (Fig. 6). While analyz-
ing the data, it was noted that the peak knee extension
torque shifted temporally from just after initial contact
to just before toe-off at 10% BWS. This temporal change
in torque peak led to a sharp drop in knee extension
moment magnitude, as seen in Fig. 6E. This could explain
the sizable deviations from the human data for the hip and
knee joint moments and thus the high mrmse (Table 5).
While the ankle plantarflexion moment in the MR model
was less affected by BWS than in humans, ankle angle
ROM dropped almost 20% lower than the human data.
This reduction in ankle ROM, in combination with lack
of change in ankle plantarflexion moment, led to a higher
reduction in the forward push-off force (anteroposterior
GRF peak II - Fig. 6I) and a lower reduction in the ver-
tical push-off force (vertical GRF peak II – Fig. 3H) as
compared to human data. In case of the muscle activities,
muscle groups in the MR gait model were compared to
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Fig. 4 Sensitivity of the average walking speed for each model at different initial walking speeds and BWS levels. The colour bar represents the
magnitude of average walking speed over one simulation and the coloured tiles represent the conditions in which the models could walk. The
X-axis shows different initial conditions for each simulation; initial step length was varied for Simplest walking model (Column 1), initial gait speed
for SLIP and MR models (Columns 2 and 3)

individual muscles in the experimental data (Table 1).
While the muscle activities of the individual muscles
are correlated to the muscle groups [39], the MR model
showed high mrmse values (> 10%) for all muscles
(Table 5) except the Lateral Gastrocnemius (LG) muscle.
The muscle reflexes and initial conditions for the

MR model were not optimized for BWS, which
might partially explain its lower performance. While
an optimization would likely have led to a higher
value of βmax, the non-optimized model still yields
comparatively high βmax values (Table 3). However,
hand-tuning the model to suit every modulated
BWS level would require extensive human data from

Table 3 Maximum value of BWS (βmax) at which the model still
achieved a walking gait

Constant-Force Counterweight Tuned-Spring

SWmodel 10 5 10

SLIP model 45 45 35

MRmodel 40 35 50

experiments with modulated BWS, and obtaining
this data is difficult. While optimization algorithms
can be used to tune the model parameters [40], designing
an appropriate cost function is difficult. Yet, this model
could still be useful in certain scenarios, wherein the
muscle reflexes could be tuned to emulate the patholog-
ical muscle function in individuals with neuromuscular
disorders. Further, the MR model can also be used to
optimize the BWST for biomechanical outcomes such as
joint loading, investigating the impact of different BWS
attachment points on the upper body, etc. Finally, the
βmax values for the MR model are less sensitive to the
initial gait speed than the SLIP model. Thus, the MR
model offers a more robust alternative to the SLIP model
for simulating a wider variety of initial conditions, albeit
with a lower accuracy.
The starting conditions in the simulation for eachmodel

were selected based on their ability to produce the max-
imum feasible body weight support level. While this led
to the comparison of models under differing simulation
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Fig. 5Modela-w values with respect to increasing BWS levels for all three models and BWS strategies. A stronger change in Modela-w values
represents a stronger change in gait dynamics and thus a higher loss in dynamic similarity

conditions, the evaluation concerned only the ability of
the models to reproduce the gait parameter trends in
response to different levels of BWS, but not the ability
of the models to reproduce gait without BWS. Therefore,
there remains a absolute bias error for all models. These
absolute errors have been evaluated in [21–23]. Further,
the maximum feasible BWS support for the SLIP and MR
models is sensitive to the initial gait speed for the CF
BWS condition, which makes it pertinent to select the
appropriate initial speed.

Performance of the BWS strategies
The three BWS strategies evoked substantially different
responses, especially in the SLIP and MR models. The
βmax values were typically highest for the TS BWS strategy
and lowest for the CW BWS strategy (Table 3). This high-
lights the importance of considering inertia in the design
of BWS systems. Fig. 5 shows that TS BWS had a lower
influence on gait dynamics than the other two strategies.
It also led to a more consistent range (Fig. 4) of feasible
BWS across all initial conditions. In case of SLIP and MR
models, the TS BWS produced the lowest �gd values for
all gait models (Table 4).
High βmax and low �gd values for the TS BWS strat-

egy support the hypothesis that a spring-based BWS can
enable gait which is more similar to unsupported walking
[17]. Ideally, dynamic similarity in this case means that

Table 4 Change in the dimensionless constantModela-w for all
models and under each BWS strategy

Constant-Force Counterweight Tuned-Spring

SWmodel 2.30 2.62 0.74

SLIP model 4.77 20.57 1.50

MRmodel 37.16 38.52 32.50

Root mean square of the difference between the magnitude of Modela-w from 5%
to 35% BWS levels with respect to the magnitude at 0% BWS is shown here. This
metric (�gd) is calculated as percentage and the least change in Modela-w i.e. the
highest dynamic similarity condition is indicated in green and italics

also the neural control strategy does not need to be
changed when walking under the influence of body weight
support. This makes a case for experimental evaluation,
and questions the predominant paradigm of perfectly con-
trolled constant unloading forces as being preferable to
simple elastic support. Unloading force rendered by the
TS BWS depends on the initial zero-deflection set-point
of the spring and thus, it is important to consider an
appropriate value for the initial set-point during the exper-
imental evaluation of this strategy. Active BWS systems
like the ZeroG [13], the FLOAT [41], the RYSEN [42], etc.
could measure and slowly adjust to the average position
during walking in real time. For simpler or passive BWS
systems, using the standing position to adjust unloading
force is the most practical option, although it may lead to
a bias in the average unloading force.

Viability of using simple gait models
The model-predicted outcomes such as gait spatio-
temporal parameters and ground reaction forces followed
similar qualitative trends (increasing/decreasing) as the
human data, despite high mrmse values for some param-
eters like the joint moments and muscle activities. This
indicates that the response of gait models to BWS is akin
to that of humans, albeit slightly exaggerated. The three
gait models showed a stronger influence of BWS on most
gait parameters than the experimental human data for
both treadmill and overground walking conditions (Fig. 3
& Appendix C - Fig. 6). While the human data presented
a higher influence of BWS on the kinetic gait characteris-
tics than on the gait spatio-temporal parameters and joint
angles, the gait models also presented a larger effect for
knee and ankle joint angle ROM, cadence, walking speed
and double limb support phases. This was reflected in
the higher mrmse for the cadence, walking speed and the
joint angle ROM, as compared to the mrmse values for
other spatio-temporal parameters, especially for the MR
model.
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In case of the CF BWS strategy, the range of βmax values
lied between 40% to 45% for the SLIP and MR gait mod-
els (Table 3). Above this range, the unloading force led to
such a strong influence on the gait parameters that the gait
models were unable to attain a walking gait. This range of
βmax values aligns approximately with the 30% BWS level,
up to which the influence of BWS on gait spatio-temporal
and kinematic parameters has been shown to be limited
[2, 12, 43–47].
For simulating higher BWS levels, it could be useful to

refer to studies by Glauser et al. [18] and Ma et al. [20]
which employ simulation techniques to predict the influ-
ence of BWS on human gait. The first study [18] employs
a mass-spring-damper (MSD) system with two lumped
masses representing the upper and the lower body, while
the second study uses human motion capture data in con-
junction with LifeMODTM simulation package. However,
it is necessary to note that the MSD model has not been
validated against human data, while the second method
is cumbersome and can be biased by the subject-specific
nature of the motion capture data.

Limitations of this study and potential directions for
further research
A major limitation of this study is that it only consid-
ers movement in the sagittal plane. It has been shown
that BWS also impacts gait, particularly balance, in other
planes [48, 49].
A possible extension of this study would be to con-

sider other models suggested for gait, for example based
on optimization [50, 51], neural control and central pat-
tern generators [52–54], the Virtual Pivot Point (VPP)
[55], or the capture point [56]. Nonetheless, the selected
gait models already cover most of the main features of
human gait like mechanical stability, compliant nature of
legs, segmented legs, muscle-reflex architecture, and the
m-shape of vertical GRF [57].
Cost of transport (COT) or metabolic cost for walking

could be another measure to analyze when comparing gait
models. It is known that COT decreases with the increase
in BWS and that COT is an important governing factor
for gait transitions [12]. Mechanical work could be calcu-
lated from the joint power consumption. However, while
this work is correlated to the COT, it cannot be used to
accurately determine the COT [58].
The point of application of the unloading force on the

upper body may also play an important role. For the MR
model, the βmax values for the TS and CF BWS strate-
gies were highest if the unloading force was applied close
to the COM of the upper body (Appendix B). This sug-
gests that anymoment of the unloading force on the upper
body, even if the force is applied at a small distance from
the upper-body COM, has a destabilizing effect. An in-
depth investigation of the behavior of gait characteristics

for different locations of the BWS application point could
be useful for the design of harness systems and for choos-
ing between pelvic or body harness-based attachments. In
case of the CW BWS strategy, the effective COM location
changes due to the counterweight, thus making it difficult
to predict the βmax behaviour.
In contrast to the predominant goal of constant, or

unmodulated unloading force in active BWS, also modu-
lated active BWS has been suggested, where the unloading
force is controlled according to specific gait parameters.
Recently, some interesting modulated BWS systems have
been suggested [12], such as one that controls the unload-
ing force based on gait cycle phases [37], another where
the centre of pressure trajectory governs the unloading
force [59], and a system that aims to dynamically compen-
sate the inertial forces of the user’s body [38]. It appears
that the modulation of unloading force can facilitate
appropriate ground contact and limb motion while allow-
ing gait spatio-temporal parameters like walking speed,
cadence and stride length to remain comparable to the
values during unsupported walking [12]. Evidence still
remains limited to pilot studies though.
Several BWS designs also allow for modulation of the

force vector in other directions than the vertical [13, 41,
42]. Appropriate interplay of vertical and forward forces
may be another mechanism when striving for similar gait
dynamics [31]. Simulation of gait models with modulated
vertical and/or forward forces can provide the first step
towards the detailed experimental studies for validating
modulated BWS designs.

Conclusion
The primary goal of this research was to benchmark
widely used gait models based on their suitability to the
simulation of humanwalking with BWS. Gait models were
simulated under the influence of Constant-Force, Coun-
terweight, and Tuned-Spring BWS strategies. The results
of this work strengthen the idea that reasonably simple
gait models can be effectively used to simulate the effects
of BWS on human locomotion. This study demonstrates
the usefulness of gait models for BWS simulation, with the
SLIP model having matched the human data more closely
than the Simplest Walker and the Muscle-reflex models.
However, the viability of gait models varies strongly with
the type of BWS strategy and the initial gait speed. The
results also point to limitations of the widely-used models
in responding in a realistic way to external forces, indi-
cating that they should be used only with caution outside
of the situations they were developed, tuned, and evalu-
ated for. Furthermore, the simulation results for the Tuned
spring BWS strategy show promise and merit experimen-
tal investigation to compare its influence on human gait
with that of a closed-loop control-based constant unload-
ing strategy.
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Appendix A: Implementation of TS BWS strategy
The Tuned-Spring (TS) BWS strategy is implemented
using a first-order low-pass filter which is used to obtain
the value of reference position of the spring, indicated by
yc0 in Eq. 3. The rise time of this filter, from 0 to the value
of the mean vertical position of the COM, is roughly 15
seconds. During initialization, the filter output is com-
pared to the average vertical COM position at 0% BWS
(1.3037 m) using an IF block, and the higher value among
these two is used as the reference position yc0.

Appendix B: Force application point for theMR
model
For the MR model, the selection of the location where
the unloading force acts is an important decision. Since

the limbs in this model are assumed to have mass, the
center of mass of the body (COMbody) is different from
the center of the mass of the upper body which includes
the head, arms and trunk (COMHAT) and excludes the
legs. The distance of the COMbody from the hip joint (d),
along the length of the upper body, was calculated using
the COMbody position at three initial symmetric standing
configurations: (1) legs at 90o to horizontal (2) legs at 45o
to horizontal and (3) legs at 0o to horizontal, a fictitious
boundary case. The parameter d was highest in the third
case (0.2341m) and so the βmax was computed at d ranging
from 0.23m to 0.7m, 0.7m being two times the distance of
COMbody from hip joint. Themagnitude of βmax is highest
typically around the position of the COMHAT for CF and
TS strategies, while it did not show a consistent behaviour

Fig. 6 Gait parameter data for the Muscle-reflex gait model under Constant-Force BWS, where ROM: Range of motion, PF: plantarflexion, GRF:
ground reaction forces and AP: anteroposterior. Dashed lines represent the mean values and the shaded region represents the standard deviation
for human experimental data
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for the CW strategy. Thus, the COMHAT was chosen as
the point of application of the unloading force since it is a
well-defined point and leads to high βmax values.

Appendix C: Additional results for gait parameters
Additional parameter trends are presented in Fig. 6. These
only concern the MR model and hence do not allow com-
parison between the gait models. Joint dynamics, antero-
posterior GRF and muscle activity plots are included here.

Table 5 Summaryof the resultsofgait parameters for the MRmodel

Root mean square error (m-rmse) values

Experimental
data

Overground (OG) Treadmill (TM)

Gait model SW SLIP MR SW SLIP MR

Gait parameter % % % % % %

01. Hip joint -
ROM

– – 2.84 – – 2.83

02. Knee joint -
ROM

– – 10.36 – – 12.51

03. Ankle joint -
ROM

– – 18.27 – – 18.61

04. Hip extension
moment

– – 18.85 – – 13.46

05. Hip flexion
moment

– – 10.60 – – 5.88

06. Knee
extension
moment

– – 21.49 – – 25.47

07. Knee flexion
moment

– – 1.32 – – 2.93

08. Ankle
plantarflexion
moment

– – 9.00 – – 1.35

09.
Anteroposterior
GRF peak - I

– – 14.60 – – 12.14

10.
Anteroposterior
GRF peak - II

– – 16.67 – – 27.06

11. Muscle
activity -
Quadriceps

– – 22.60 – – 26.73

12. Muscle
activity -
Hamstrings

– – 13.53 – – 24.99

13. Muscle
activity - Medial
Gastrocnemius

– – – – – 2.79

14. Muscle
activity - Lateral
Gastrocnemius

– – 2.47 – – 2.52

15. Muscle
activity - Tibialis
anterior

– – 7.84 – – 2.84

Root mean square error (m-rmse) values with respect to the experimental data for
overground (OG) and treadmill (TM) environments are presented here
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