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Abstract: This paper argues that energy systems are becoming increasingly complex, and illustrates
how new types of hazards emerge from an ongoing transition towards renewable energy sources.
It shows that the energy sector relies heavily on risk assessment methods that are analytic, and that
systemic methods provide important additional insights. A case study of the Dutch gas sector illustrates
this by comparing the hazard and operability study (HAZOP, analytic) with the system-theoretic
process analysis (STPA, systemic). The contribution is twofold. This paper illustrates how system
hazards will remain underestimated by sustained use of only analytic methods, and it highlights
the need to study the organization of safety in energy transitions. We conclude that appropriate risk
assessment for future energy systems involves both analytic and systemic risk assessments.

Keywords: risk assessment; safety; STPA; HAZOP; energy transition; renewable energy; biogas;
hydrogen; hazard analysis

1. Introduction

The integration of renewable energy sources increases the complexity of traditional energy systems.
Renewable energy sources, such as wind and solar, are intermittent, i.e., their availability strongly
depends on climate and weather patterns. Consequently, renewable energy supply cannot be adjusted
to fluctuating demand, as is the case in traditional systems that rely on dispatchable energy sources.
Another novel phenomenon is the decreasing efficient scale of energy provision. Renewable energy
is produced by solar power panels, wind turbines, or local biomass facilities of farmers providing
biogas. Typically, the production units are much smaller than traditional fossil fuel plants. Moreover,
the number of production units in the system is significantly larger. This contributes to the complexity
of the energy system in two ways. First, it is much more challenging to balance energy supply and
demand in systems that rely on a large number of heterogeneous, dispersed, small-scale, and often
intermittent production units [1]. Second, energy flows are increasingly non-linear. Traditional energy
systems are characterized by a one-way and linear flow of energy: From large-scale production
plants, connected to transport networks, to the distribution networks supplying the final consumers.
Nowadays, renewable energy producers are also often directly connected to the distribution networks,
close to the final consumers. Under these conditions, surplus energy from local networks has to
be delivered back to the transmission networks to provide it to regions with an energy shortage.
This increased integration within (and even among) gas and electricity systems raises new concerns for
safety that are related to these changing features of the energy system [2].

Controlling and mitigating safety hazards is a key concern in the energy sector [3,4]. Hazards
related to the operation of natural gas and electricity systems may cause tremendous financial losses,
human injury, and even fatalities. Risk assessment tools assist in identifying and ultimately mitigating

Energies 2020, 13, 6523; doi:10.3390/en13246523 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13246523
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/24/6523?type=check_update&version=2


Energies 2020, 13, 6523 2 of 20

such hazards. Usually, these assessments are often carried out before new components are added to
the system, and are repeated when necessary. In the past, this process has proven effective in the energy
sector, because components could be assessed independently from each other, while their addition to
the system traditionally has had little impact on the system as a whole. However, this is set to change as
a consequence of the transition to renewable sources. Energy systems are becoming more interrelated.
Safety hazards that were previously limited to mostly isolated segments of energy systems, for example,
in distribution systems, will influence components and processes in other segments. This process is
amplified by increased digitalization of energy systems, newly linking millions of devices to electricity
and gas systems [5]. If methods that are currently used to mitigate safety hazards cannot account for
this increased complexity, severe safety hazards are bound to be overlooked.

Systemic risk assessment methods are designed to cope with these novel challenges. They identify
and ultimately help to mitigate hazards related to increased non-linearity and interaction among
subsystems, such as recently witnessed in the energy sector. Instead of a component or analytic
focus, these methods apply a systemic focus in response to increased complexity [6,7]. Systemic
methods have successfully been applied in diverse fields, including the aviation industry [8–10],
infrastructures [11–15], and the maritime sector [16]. These studies show that systemic methods are
more capable than their analytic counterparts in identifying hazards specific to increased complexity,
for example, linked to growing component interaction [9,10,12] or digital control [14,15,17]

These positions study the effectiveness of systemic risk assessments in the energy sector as a largely
untouched research gap. Even if complexity in energy systems grows rapidly, analytic methods remain
the most prevalent ones used among both practitioners and scholars. Some recent exceptions underline
the untapped potential for systemic risk assessment in the energy sector. Rejzek and Hilbes stress their
added value in the design of digital instrumentation for nuclear power plants [18]; Rosewater and
Williams analyzed safety in new battery designs using a systematic risk assessment and conclude that
it creates more causal scenarios for accidents compared to their analytic counterpart, in addition to
providing a better answer to hazards related to uncertainties that come with new technologies [19];
and Karatzas and Chassiakos find that a systemic risk assessment is instrumental in identifying gaps
in current risk assessments in the context of the increased complexity of domestic energy systems [20].
Their results suggest that systemic methods are indeed more appropriate for identifying and potentially
mitigating novel challenges associated with a transition to renewable energy sources. This research tests
that assumption by analyzing the changing features of future energy systems. It asks:what constitutes
appropriate risk assessment for the increasingly complex energy systems of the future?

We show how changing the features of energy systems introduce novel hazards that may not
be fully identified with analytic risk assessment methods. We do so by comparing a hazard and
operability study (HAZOP) and system-theoretic process analysis (STPA) as an analytic and systemic
risk assessment, respectively. Both methods are applied to the changing attributes of the gas sector
in the Netherlands. The following chapter introduces the concept of complexity, exemplifies how it
influences system behavior, and elaborates on analytic and systemic approaches to assessing safety.
Chapter 3 demonstrates how energy systems become increasingly complex. Chapter 4 confirms that
analytic approaches remain dominant in the energy sector in practice and theory. HAZOP and STPA
are compared for the case of a gas compressor in Chapter 5. Chapter 6 concludes this paper.

2. Theoretical Background: Systems and Safety

This paper is concerned with systems, complexity, and safety. A system is understood as “an
assembly of elements related in an organized whole” ([21], p. 7). These elements can be technological
artifacts (i.e., gas pipelines) or actors (i.e., gas producers). Relationships between these elements
exist if one element influences or controls the behavior of a second element. Both elements and their
relationships are characterized and can be described by attributes, such as “materials, information,
or energy” (ibid.). The next Section 2.1 introduces system attributes that define simple and complex
systems. Section 2.2 elaborates on how safety can be assessed in both types of systems.
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2.1. Features of Simple and Complex Systems

In general, complex systems are characterized by interdependent elements and non-linear
interactions. The presence of feedback loops is an important characteristic. Then, the output of a single
system element not only affects other elements in the system but, sometimes through a series of
relationships, also feeds back into itself. [21]. These features make it difficult to easily understand
and assess the behavior of complex systems [21]. Conversely, simple systems are constituted by
linear interactions between their elements. Under these conditions, system behavior can be assessed
analytically by focusing on the cumulative contributions of every single component. Table 1 summarizes
attributes that distinguish the two system types [6,21,22]. It should be noted that the distinction
between simple and complex systems is hardly ever binary. Systems can be partially simple or partially
complex and often display elements of both.

Table 1. Summary terms for linear and complex systems, adapted from Reference [5].

Simple Systems Complex Systems

Linear interactions Non-linear interactions
No feedback loops Feedback loops

Single-purpose elements Multiple purpose elements
Independent subsystems Interconnected subsystems
Clearly defined controls Interacting controls

Interactions in simple systems are linear. In other words, system elements are not subject to
feedback loops or other non-linear behavior. Traditional natural gas systems, for example, fall into this
category. Generally, gas is transported from high-pressure to low-pressure pipelines. This infrastructure
is constituted by dedicated single-purpose equipment such that gas is ultimately delivered to industry
and to households. Typically, the technical functioning of this equipment is determined by predefined
technical criteria, so-called controls. For instance, pressure sensors are instrumental in regulating the gas
injection from high-pressure into low-pressure pipelines. Related to a target pressure level (the control),
these single-purpose elements enable the delivery of gas into the different parts of the system. Hundreds
of grid connection points in the same infrastructure work this way-individually programmed without
feedback loops or communication with other elements of the system. They serve a single-purpose
and control a clearly defined part of the overall infrastructure: To move gas downstream from a given
connection point. As a result, the gas system comprises numerous subsystems that, even if they are
supplied by the same high-pressure pipeline, function as non-interacting segregated subsystems.

Complex systems are at least partially constituted by feedback loops and non-linear interactions
between their elements. To facilitate such dynamic system behavior, typical system elements are able to
serve multiple purposes, such as software that controls different technical processes. Figure 1 visualizes
this difference by highlighting the difference between a simple and complex gas system. Simple gas
systems (on the left) are constituted by linear gas flows. Gas moves down from either storage or
production facilities (point A) through decreasingly pressurized gas grids until it reaches the consumer
(point D). In complex systems (on the right), bi-directional gas flows occur. These new flows are a direct
consequence of the increased utilization of biogas and hydrogen [2].
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Figure 1. Visual representation of the difference between a simple and a complex gas system, figure
adapted from Reference [23].

Unlike natural gas, these renewable gasses are often produced on a small scale and injected into
lower-pressure pipelines. These injection points are typically near production facilities like farms or
waste plants. This may result in a scenario in which some subsystems have excess gas, that must be
transferred to other parts of the system where there is a shortage. For example, biogas production is
high in rural areas because of agricultural activity, but population density and industry activity there
are insufficient to consume the available supply at all times [24]. Particularly in summer, when gas
use for heating is low, excess production is likely. To move this gas to urban areas located in other
parts of the system, the gas must be transported through high-pressure pipelines. To facilitate this,
grid connection points must be able to transfer gas in both directions from low-pressure to high-pressure
grids and vice versa. In other words, elements of the gas system become multi-purpose, and previously
independent subsystems become interconnected. This interconnection between subsystems significantly
enhances the systems’ complexity.

This new attribute of gas systems creates new issues. Interactions among different subsystems
raise concerns for gas quality. Consistent gas quality must be maintained for the safe operation of gas
systems: There are criteria that must be met, such as a particular calorific value and an identifiable gas
odor [2]. Gas quality becomes increasingly heterogeneous when sourced from various production
plants, and variations in gas quality will be hard to trace back to a single producer once all subsystems
become more connected. At the same time, controlling the entire gas system (i.e., both high- and
low-pressure pipelines) becomes more difficult. New coordination mechanisms may be required to
balance the production and consumption of gas, possibly relying on advanced electronics to calculate
how gas travels throughout the system (ibid.)

2.2. Assessing Safety of Simple and Complex Systems

Systems may be exposed to different safety hazards as they grow more complex. To address this
problem, it is important to define safety and distinguish between hazards, accidents, and risk. Safety
relates to minimizing hazards and avoiding accidents. A hazard refers to a “system state or set of
conditions that, together with a particular set of worst-case environmental conditions, will lead to
an accident (loss)” ([22], p. 183). An accident is “an undesired or unplanned event that results in a loss
[...].” (ibid, p. 181). A ruptured gas pipeline is a hazard, but only constitutes an accident when gas is
released. A hazard may result in multiple accidents, for example, when a gas release also leads to fire
or poisoning. Risk, then, is “the combination of the likelihood of an event and the consequences of
that event” ([25], p. 230). This section elaborates on two approaches to assessing safety. An analytic
approach (2.2.1) that is well suited to the analysis of linear systems, and a systemic approach (2.2.2)
that is geared towards complex systems [7].
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2.2.1. Analytic Approach

Analytic thinking has long formed the foundation for assessing safety. This approach involves
an analyst decomposing the system under investigation into manageable chunks: Analyzing each
individually, before combining the individual outcomes to form an understanding of the whole.
This form of analysis is known as analytic reduction [26]. The chance of failure is estimated for
each component (sometimes called a node), along with the potential effect of the failure. Combined,
these two factors demonstrate risk. Risk assessment methods that follow an analytic approach identify
those system elements that generate high risk, with the aim of improving their reliability so that
the overall risk is reduced. Examples include the failure mode and effects analysis (FMEA), the Bowtie
Method, and the HAZOP [27].

These methods work well for linear systems that are relatively segregated and have limited
interdependence. Consider, for example, the simple gas system illustrated in Figure 1. The system
can be decomposed into the four different nodes A through D. In the analytic approach, the risk of all
nodes is studied separately. A possible outcome of an analytic risk assessment could be that point C,
a specific segment of the 4 bar gas grid, has the most significant safety risks—it might leak easily when
grid pressure exceeds a certain threshold. A possible remedy for improving the reliability of the 4 bar
gas grid would be to substitute the pipeline, or direct the gas flow in such a way that gas pressure
is lowered for section C, which results in leakage becoming less likely. The effective decrease of risk
associated with point C, would then also decrease total system risk. Increasing system complexity,
however, introduces risks that may not be reducible to a single system element.

2.2.2. Systems Approach

Systems approaches posit that safety is an emergent property. Safety, or the lack thereof, is not
an attribute of a single system element; rather, it is an attribute of the relationship between two or
more elements. Accordingly, the focus shifts away from components. Instead, the system is framed
as a hierarchy where higher levels exercise control by imposing constraints on the functioning of
lower levels. Accidents, then, result from unexpected interactions that are not (sufficiently) controlled.
Risk assessment methods that follow a systems approach identify conditions under which this control
may be insufficient. Insufficient control can cause hazardous system behavior and, by consequence,
accidents. Systemic risk assessment methods include STPA [22], functional resonance analysis method
(FRAM) [28] and AcciMap [29].

Systemic risk assessments have proven effective for complex systems [30]. They can be effective
in identifying hazards where safety is irreducible to a single component. Consider, for example,
the biogas production facility. It may have a simple technology installed that shuts down grid injection
if the grid pressure is too high. A simple pressure sensor is connected to a shut-off valve. Neither
system element (i.e., the sensor and the valve) is complex by themselves. The relationship among them
is also linear and simple. The relationship becomes more complex, however, if the valve is connected
to a grid operator control room. The grid operator may want to control the gas supply remotely to
balance different interconnected segments of the gas grid. In this scenario, the complexity that is
not visible in the individual system elements becomes apparent in their relationship. For example,
when a grid operator must control gas supply from several biogas production plants simultaneously.
Insufficient control of different gas flows could pose a significant risk, but it cannot be traced back to
a single element.

3. Changing Features of Energy Systems

Conventional energy systems are mostly linear, comprising independent subsystems, and are
typically reliant on fossil energy sources, such as coal, oil, and gas. Future energy systems, by contrast,
are more non-linear with increasingly interdependent subsystems and rely on a growing share of
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renewable energy sources, such as biomass, sun, and wind. This section illustrates how system
interactions for both electricity and gas are becoming increasingly complex.

3.1. Conventional Energy Systems

Conventional energy systems are characterized by centralized and large-scale production plants,
such as offshore gas platforms or gas-fired power plants. From a limited number of central production
points, energy is transported over large distances to consumers. Energy is first transported through
high capacity networks: High-voltage for electricity and high-pressure for gas. Then, at different
points in the network, it is further distributed through medium- and low-capacity networks that are
connected to consumers. Elements in both gas and electricity networks are mostly designed to facilitate
a one-way energy flow and serve this single-purpose. This allows for functioning with relatively few
interactions between independent subsystems and, likewise, few associated feedback loops.

Energy production is demand-driven and easily scalable. The coordination of supply and
demand is typically accomplished using different timescales. Based on estimated demand patterns,
the majority of the produced energy is allocated and projected well in advance, while any remaining
inconsistencies between production and demand are balanced the day before consumption or even
during the day. For electricity, which is difficult and expensive to store, this is true year-round. Gas is
produced throughout the year, but also stored in the summertime to meet increased demand in winter.
These system characteristics allow for clearly defined controls. Relevant actors can operate subsystems
that work mostly independently from each other. Figure 2 shows a simplified scheme of conventional
energy systems [31,32].
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3.2. Future Energy Systems

Future energy systems are increasingly non-linear. As visualized in Figure 3, the provision and
consumption of energy are becoming bi-directional. Former consumers are increasingly involved
in the production of energy and become prosumers, meaning they are consumers and producers.
They harvest energy from renewable sources. Dairy farmers who upgrade cow manure to produce
biogas, for example, break the traditional linear sequence as they also feed energy into the network.
They might also provide biogas to consumers in their direct proximity, substituting biogas for natural
gas. However, if these local systems reach their capacity to absorb the biogas produced, the gas might
be transported via higher-pressure pipelines to serve customers elsewhere. The need for bidirectional
distribution of energy from lower to higher capacity networks and vice versa requires new functionalities.
It fundamentally changes the attributes of energy systems from linear to non-linear,—comprising
single-purpose elements to comprising multi-purpose elements, and is independent to interdependent
subsystems [2].
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Future energy systems will be driven by a particular combination of energy supplied by intermittent
wind, solar and tidal production units, and by must-run technologies like geothermal. Whereas,
conventional fossil energy supply can be easily adjusted to predicted and actual demand conditions,
future energy demand will have to follow the availability of energy. Therefore, the components of
future energy systems are interdependent to a much larger extent, to balance supply and demand [33].
For example, formerly separate electricity and gas grids may become connected by Power-to-Gas (P2G)
technologies. These convert surplus electric power, for instance, from wind turbines or large-scale solar
systems, into gasses, such as hydrogen or synthetic gas. These gasses will be fed into the bi-directional
gas pipeline system and transported to storage facilities, customers, or other conversion units.

To conclude, the increasing utilization of renewable energy sources is bound to drastically change
the relationship between different grid segments and to increase the reliance on automated control.
Controlling safety in these systems becomes increasingly challenging as interactions become more
complex. Responsibilities for monitoring and controlling the interactions between system elements
must be re-defined and allocated. Controls that were straightforward and clearly defined in linear
conventional energy systems will become blurred as subsystems grow interdependent.

4. Risk Assessments in the Energy Sector

The predominant mode of risk assessment used in the energy sector today is illustrated by
consulting three independent sources of information. Firstly, a systematic literature review of scientific
articles shows the popularity of different risk assessment methods associated with the safety of future
energy systems. These results are then corroborated by reports from the industry and several interviews
with energy system safety experts.

The literature review distinguishes between analytic and systemic risk assessment methods,
as introduced in Chapter 2. Besides FMEA, HAZOP, and Bowtie, search queries for analytic methods
also included Failure Mode, Effects, and Criticality Analysis (FMECA) and Hazard Identification
(HAZID). Systemic methods were limited to STPA, FRAM, and AcciMap. The analysis was conducted
through the academic database ScienceDirect, and identified the use of both categories of risk assessment
methods in combination with (1) “Biogas” OR “Hydrogen”; (2) “Solar PV” OR “Solar Panel” OR “Wind
Turbine”; (3) “Battery” OR “Fuel Cells”. Initial results were manually screened for relevance: They had
to apply the probed risk assessment method to a renewable energy topic. Detailed information is
provided in Appendix A; Table 2 shows the results. A total of 50 cases of analytic risk assessment
methods were identified as opposed to a single case of a systemic risk assessment method.

Table 2. Systematic literature review results.

Queries Total Identified
(Analytic)

After Screening
(Analytic)

Total Identified
(Systemic)

After Screening
(Systemic)

Biogas and Hydrogen 27 21 0 0
Solar Photovoltaic (PV)

and Wind Turbine 9 9 0 0

Battery and Fuel Cell 20 20 2 1
Total 56 50 2 1

The choice of risk assessment methods in the energy sector is guided by standards issued by
the relevant authorities. For example, the European Commission recommends five methods identified
in IEC/ISO 31010 for conducting risk assessments in gas networks, including brainstorming, HAZOP,
and FMEA [34]. Grid operators in Europe follow these guidelines, as illustrated by references to
FMEA [35]; FMECA and Event Tree Analysis (essentially half a Bowtie analysis) [36]; and HAZOP [37].
Likewise, a reference guide on risk assessments for photovoltaic facilities issued by the US department
of energy exclusively lists analytic methods, including those mentioned above [38]. None of those
guidelines mentions systemic methods.
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Zooming in on renewable gas applications confirms this picture. Analytic risk assessment methods
are dominant. Examples include FMEA for smart gas meters [39]; Bowtie for the transport of biogas [40]
and hydrogen [41]; and HAZID/HAZOP for hydrogen injection [42]. The exclusive use of analytic risk
assessment methods is confirmed by safety experts and others familiar with risk assessment methods
in the sector.

5. Comparing Different Risk Assessment Approaches

Evidently, the energy sector still relies very much on analytical risk assessment approaches,
although energy systems are becoming increasingly complex. This raises the question: What kind of
risks might be recognized if a systemic approach were to be applied? We elaborate on this question
using a specific case related to the natural gas system in the Netherlands. We analyze a recent pilot
project involving the integration of a gas compressor into the pipeline system. This technology enables
a two-way flow of gas and links previously unconnected nodes into the gas network. It is a precondition
for the envisioned uptake of small-scale biogas production. Additionally, the operating conditions of
the compressor can be remotely adjusted. Hence, it is a clear example of how the system becomes
more complex. In line with previous studies [18–20], we are particularly interested in how the two
approaches differ in dealing with digital instrumentation, the number and nature of identified hazard
scenarios, and ways in which uncertainty is accounted for.

5.1. Changing Features of the Dutch Gas Sector

The case involves a gas compressor that is to operate in a rural part of the province of Flevoland
in the Netherlands. Figure 4 shows the compressor operating in between a 4-bar (green) and 8-bar
(orange) grid. A biogas producer is connected to the low-pressure grid (4-bar) and produces 250 m3 of
gas per hour at a continuous rate. As a consequence of the continuous biological process, there is little
room for flexibility in adjusting the supply to changing demand. At times when the production is
higher than the demand on the 4-bar grid, the gas compressor technically enables the transfer of gas to
the 8-bar grid. This is not possible with the commonly installed pressure reduction technology for
connection, which only supports one-way transport from the high- to the low-pressure grid.
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5.2. Analytic Risk Assessment: HAZOP

The HAZOP method identifies deviations from the design intent. It assumes that a system is
designed to be safe, and that deviations from this design intent may lead to accidents. The method
identifies component failures as causes of accidents that can consequently be used to assign risk.
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This can be done by estimating the likelihood of component failure, and the effects thereof. The HAZOP
analysis starts with a visualization of the system using a Piping and Instrumentation Diagram
(P&ID). This detailed diagram, often used in the process industry, shows all relevant components
of the technological system, as well as the instruments and equipment that control its processes.
The analyst establishes the boundaries of the system during this step, as well as the nodes that will
be analyzed individually. Then, in the second step, the design intent of each of the components is
identified, describing their expected functioning by identifying key parameters. Deviation of these
parameters from the design intent is indicated by guidewords that suggest the causes of malfunctioning.
Third, possible causes and consequences of variations of design intent are established in a brainstorming
session [27,44].

The HAZOP study for the booster was executed by an expert team of seven persons from
Dutch network companies and gas technology manufacturers [45]. First, the P&ID was specified,
indicating components like filters, flow meter, pressure regulator, detectors, compressor, etc. Second,
the parameters were identified that are relevant for analyzing system performance. The expected
performance of these parameters is indicated by the design intent (Table 3). The parameter ‘incoming
pressure’ (i.e., into the compressor), for example, must stay between 3 and 4.2 bar. A deviation from
the design intent occurs if the pressure becomes ‘higher’ or ‘lower’ (the guidewords), as a consequence
of which an accident may happen. In addition to hazards that strictly resulted from the HAZOP
methodology (those that can be described by a combination of parameter, design intent, and guideword),
the experts also identified hazards that did not readily fit these descriptors. For the latter example,
consider cyber threats. While one could argue for ‘digital safety’ as a relevant parameter, there is no
relevant design intent or guideword (other than inconsequential descriptors, such as ‘functioning’ and
‘yes, no’). This difference is visible in Table 3, where system hazards, such as envisioned by the HAZOP
method, are displayed on the left and other (external) hazards on the right.

Table 3. Considered parameters in the hazard and operability study (HAZOP), along with design
intent and guidewords.

Parameters Design Intent Guidewords Parameters Design Intent Guidewords

System hazards Other hazards

Incoming
pressure

Max. 4.2 bar
pressure Higher, lower Explosion

danger
Min. 3 bar
pressure Higher, lower

Outgoing
pressure

Max. 8.4 bar
pressure Higher, lower Corrosion Too much

Temperature Max. 30 ◦C Higher, lower Malpractice

Flow Max 240 m3

per hour
Higher, lower,
reverse, wrong

Noise
disturbance Too much

Pressure on
pipes Higher, lower Digital safety

Third, hazard causes and consequences were identified by the HAZOP team. All parameters
identified in Table 3 were systematically analyzed in combination with their relevant guidewords
(Table 4). This table specifies how a higher incoming pressure into the gas compressor may, under certain
conditions, lead to an unwanted release of gas—which in turn might result in associated accidents,
such as poisoning, fire, or explosion. The full HAZOP analysis includes 42 lines, such as those
shown below, divided over the parameters identified in Table 3. It also includes recommendations
for mitigating identified hazards, and a means of prioritization based on failure estimates. The most
relevant systemic hazards will be discussed in the next chapter.
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Table 4. Detailed excerpt from HAZOP.

Parameter Possible Cause What Can Go Wrong→ Possible
Consequences

Incoming pressure
(guideword: higher)

4-bar grid pressure too high

Filter fails→ Unfiltered gas in
8-bar network; release of gas
Flow meter fails→ No flow
measurement; release of gas
Pressure regulator fails→
Incoming pressure too high

4-bar grid pressure too high
and/or pressure regulator
defective/ out-of-spec

Motion detector fails→ Incoming
pressure too high
Compressor fails→ Pressure out
of spec; internal leakage
Piping leaks or otherwise fails→
Release of gas
Control line fails→ Release of gas

Incoming pressure
(guideword: lower)

Pressure regulator
defective/out-of-spec

Incoming pressure compressor too
low→ <not a realistic scenario>

4-bar grid pressure too low System does not boot up→ <not
a realistic scenario>

Temperature
(guideword: higher)

Compressor failure

Compressed gas too warm→
uncontrolled biogas emission
Compressed gas too warm→
Physical harm to persons in
the vicinity of hot pipelines

Heat exchanger not (fully)
functioning

Compressed gas too warm→
Deterioration of medium pressure
gas lines

5.3. Systemic Risk Assessment: STPA

STPA identifies scenarios under which control over the system fails. This method assumes that
safety is an emergent property, and mitigates hazards by defining relevant control actions. If all possible
interactions in the system are sufficiently controlled, a safe system state is achieved [22]. The analysis
is done as follows. First, the purpose of the analysis is defined. Losses are defined, as well as hazards
that may lead to these losses. Second, a control structure is developed. This visualization identifies
functional relationships among different system components and shows their possible interactions.
The control structure illustrates these interactions as control actions issued by a controller to a controlled
process, as well as feedback that goes the other way. It also sets the boundaries for the analysis. Third,
the researcher identifies how inadequate control can generate a hazardous system state—resulting in
a list of unsafe control actions. Fourth, and last, the researcher determines how unsafe control actions
can occur [22].

The STPA was performed by the corresponding author in collaboration with several experts
involved in designing and installing the gas compressor. The analysis was completed through
an iterative process. First, losses and high-level safety hazards were identified that were relevant to
the functioning of the gas compressor in the system. These are illustrated in Table 5 and include,
other than losses traditionally associated with hazard analysis, such as Fire/Explosion (L-1) and
Poisoning (L-2), also loss of operator performance (L-3), or Loss of Producer Revenue (L-4). High-level
safety hazards are linked to the identified losses, and are system states that should be avoided. Second,
a control structure was developed that illustrates the position of the gas compressor in relation to other
relevant parts of the system. The control structure is attached in Appendix B. Third, unsafe control
actions were identified. To start off with, relevant control actions must be determined. The analysis
focuses on the relationship between the gas compressor and its controller, where the latter can issue
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four possible control actions: (1) Initiate, (2) abort, (3) increase or (4) decrease the ‘compress’ command.
Next, unsafe control actions can be identified by systematically analyzing the four conditions under
which control actions can cause hazardous system states:

1. A control action required for safety is not provided or not followed.
2. An unsafe control action is provided.
3. A potentially safe control action is provided too early or too late, that is, at the wrong time or in

the wrong sequence.
4. A control action required for safety is stopped too soon or applied too long) ([22], p. 213).

Table 5. High-level Safety Hazards to be considered.

Losses [L]

[L-1] Fire/Explosion
[L-2] Poisoning
[L-3] Loss of operator performance
[L-4] Loss of producer revenue

High-level Safety Hazards [HLSH]

[HLSH-1] Gas pressure in the source grid exceeds acceptable
boundary levels [L-1, L-2, L-3]

[HLSH-2] Gas pressure in the destination grid exceeds
acceptable boundary levels [L-1, L-2, L-3]

[HLSH-3] Feeding in of out-of-spec gas into the source grid [L-1, L-2, L-3]
[HLSH-4] Feeding in of out-of-spec gas into the destination grid [L-1, L-2, L-3]
[HLSH-5] Interruption of gas supply (producer to 4 bar) [L-1, L-2, L-3, L-4]
[HLSH-6] Interruption of gas supply (4 bar to 8 bar) [L-1, L-2, L-3]
[HLSH-7] Interruption of gas supply (4 bar to consumer) [L-2, L-3]

This yielded a total of 41 Unsafe Control Actions, a couple of which are explored in Table 6.

Table 6. Detailed analysis of 2 unsafe control actions (from a total of 41).

UCA-1: DSO Does Not Send
Initiate Compress Command
(cmd.) When Source Grid
Pressure Exceeds 3.8 bar

UCA-33: DSO Sends Initiate
Compress cmd. When Gas Is
Off-Spec

Process model link Cause Cause

A. Inadequate Control
Algorithm

Software is installed so that
abort/decrease cmd. Overrides
initiate cmd. (possible conflicting
parameters: Destination grid
pressure >8.2 bar; gas is off-spec;
parameters are [unwittingly]
changed by producer or DSO)

Software is installed so that initiate
cmd. Overrides abort/decrease cmd.
(possible conflicting parameters:
Source grid pressure >3.8 bar;
parameters are [unwittingly]
changed by producer or DSO)

B. Process Model
Inconsistent

Process model regarding source
grid pressure is wrong; Process
model regarding destination grid
pressure is wrong; Process model
regarding gas quality is wrong

Process model regarding gas
quality is wrong
(critical parameters are not tested)

C. Provided Control Action
inappropriate

Control algorithm sends
inappropriate CA based on
inconsistent process model or
faulty design; Hostile takeover
(computer hack) leads to
inappropriate CA

Control algorithm sends
inappropriate CA based on
inconsistent process model or
faulty design; Hostile takeover
(computer hack) leads to
inappropriate CA
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Table 6. Cont.

UCA-1: DSO Does Not Send
Initiate Compress Command
(cmd.) When Source Grid
Pressure Exceeds 3.8 bar

UCA-33: DSO Sends Initiate
Compress cmd. When Gas Is
Off-Spec

Process model link Cause Cause

D. Inadequate Actuator
Operation

Initiate cmd. Not received
(or received too late) by remote
control; Remote control delays
sending initiate cmd.

Abort/decrease cmd. Not received
(or received too late) by remote
control; Remote control delays
sending Abort or Decrease cmd.

E. Received Control Action
delayed

Compressor fails to follow up on
initiate cmd.

Compressor fails to follow up on
Abort/decrease cmd.

F. Incorrect or no
information provided by
biogas production

Off-spec gas is detected at
compressor (i.e., continuous gas
quality sensor is defective;
power outage, but gas keeps
flowing; shut-off valve is defective)
Gas that is sent to the grid
becomes off-spec before it reaches
the compressor

Off-spec gas is sent to the grid
(i.e., continuous gas quality sensor
is defective; power outage, but gas
keeps flowing; half-yearly
parameters not frequent enough,
due to changing gas biomass
source; shut-off valve is defective);
Gas that is sent to the grid
becomes off-spec before it reaches
the compressor

G. N/A
H. Component
Failures/Changes over
Time

Compressor failure
Power outage (but biogas
production continues)

Compressor failure

I. N/A

J. Provided feedback
incorrect

Changing supply and demand
increase gas pressure in segments
of the grid not registered by
the sensor

K. Inadequate Sensor
Operation

Sensor fails to measure grid
capacity correctly; Sensor fails,
due to power outage

Sensor for quality control fails,
due to power outage (but biogas
production continues)

L. Inadequate or missing
feedback to controller,
feedback delays

Sensor sends faulty or no
information regarding grid
pressure

M. Missing/wrong
communication with other
component

Mechanical stop is shut in
the compressor
Multiple boosters (or large biogas
producers) are connected to one
destination grid and have priority

Last, all identified unsafe control actions are mapped against a generic control loop that helps
identify possible scenarios in which they might occur. The generic control loop is provided by Leveson
(2011), and can be adapted based on information gathered in Step 2 (an unsafe control action is provided).
The control structure developed there (Appendix B) shows how the grid operator controls the booster,
but is itself dependent on input from others. Incorporating input from multiple system elements allows
a systemic view of hazard causation, and results in the detailed control loop (Appendix C). Possible
generic hazard causes are labeled A through M, and each unsafe control action can be mapped against
those causes to check if and how they might occur. Table 6 illustrates this mapping process for two of
the identified Unsafe Control Actions. The grid operator (Distribution System Operator, DSO) might,
for example, send a compress command when gas does not meet quality specifications (UCA-33) in
several scenarios. Its control algorithm may be inadequate if too-high gas pressure is programmed to
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overrule the abort command that would usually follow out-of-spec gas (cause A); or there is a power
outage which causes quality detection to be defective, while not hampering booster performance
(cause K). The full analysis comprises the complete scenario-mapping of all 41 unsafe control actions.
A safe system, then, is the result of effectively designed safety requirements that cover all identified
hazard causes.

5.4. Discussion

How do the outcomes of the two risk analysis methods compare? To answer this question,
we consider both conceptual and empirical differences with a focus on hazards associated with
the increased complexity of the system.

The two methods differ fundamentally as to their objective. HAZOP identifies deviations from
design intent, and consequently ensures that safeguards are in place to prevent previously identified
accidents. STPA identifies unsafe control actions and illustrates how accidents may propagate. We will
consider hazards related to gas quality as an example. The HAZOP suggests stopping the operation of
the gas compressor when the gas temperature exceeds 40 degrees Celsius, because otherwise it might
degrade pipelines and appliances. The identification of this hazard is a direct result of the parameters
included in the analysis, namely, the temperature (cf. Table 3). These parameters, in turn, are determined
by the compressor’s constituting components as identified in the Piping and Instrumentation Diagram
(P&ID). Temperature is a relevant process parameter, a thermometer measures it, and automated
devices shut down operations when it exceeds the design intent. However, other parameters exist
that are relevant for gas quality, such as methane, carbon dioxide, or nitrogen content. Similarly,
the odorization of gas is crucial as it enables the detection of leakages. These parameters are measured
in other parts of the system (cf. Appendix C) and, as such, are not part of the P&ID and, by consequence,
not included in the HAZOP results.

Conversely, STPA identifies unsafe control actions related to out-of-spec gas (i.e., UCA-33 in
Table 6). UCA-33 can lead to HLSH-4 (Feeding of out-of-spec gas into the destination grid, cf. Table 5)
and includes safety-critical parameters other than temperature, such as odorization or nitrogen content.
STPA’s broader scope, combined with its systemic view, recognizes the dangers that out-of-spec gas
might pose for the system at large. While the compressor might not be designed to detect varying gas
quality, and out-of-spec gas may not even deter it’s functioning, it does have the capacity to expose
a much larger part of the network to out-of-spec gas that remains undetected. Table 6 lists a range of
scenarios in which UCA-33 might occur.

The different units of analysis render very different hazard causes. Results from the HAZOP
analysis and the STPA, respectively, illustrate component and design failures. HAZOP’s physical
failures follow from its focus on nodes, whereas STPA’s design failures can be explained by its focus on
unsafe control actions. Hazards related to gas temperature are a good example. The HAZOP identified
numerous ways in which the parameter Gas Temperature (cf. Table 3) might be lower or higher than
the design intent. These included the cooling part of the compressor or the heat exchanger failing—all
five identified hazard causes are component failures. However, the gas temperature might deviate
from the acceptable boundary in other ways, too. Parameters determining the functioning of the gas
compressor can be modified remotely—creating hazard causes related to digital instrumentation [cf.
18] Modifying the lower threshold for acceptable gas temperature from 20 ◦C to 0 ◦C, for example,
would effectively stop the functioning of the compressor even if gas technically meets all quality
requirements. Modifying the gas temperature threshold through a computer hack, by consequence,
does not intuitively follow from the HAZOP analysis because no component failure is involved. STPA,
by contrast, identifies unsafe control actions that result in hazardous system states. As illustrated in
Table 6, for example, it guides the analyst to ask what might have spurred an unsafe control action (i.e.,
Process Model Link C) that erroneously stops the compress command. A computer hack that modifies
the parameters is such a hazard.
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The respective strength of both approaches is visible when linking their outcomes to attributes of
the system under analysis. HAZOP effectively identifies hazards related to components that serve
a single-purpose (i.e., heat exchanger failure that might cause a high gas pressure); linear interactions
between independent subsystems (i.e., too high-pressure in the low-pressure gas grid might cause
hazards in the compressor and connected medium-pressure gas grid); or clearly defined controls
(i.e., the compressor must be turned off if the gas temperature exceeds 40◦C [41]). STPA provides a more
comprehensive analysis when these attributes change. To illustrate, it identifies hazards related to
components that serve multiple purposes (i.e., software hack may modify a range of parameters—Table 6,
process model link C); non-linear interactions between interconnected subsystems (i.e., a compress
command may be aborted if other low-pressure gas systems connected to the same medium-pressure
gas grid have filled the latter to capacity—Table 6, M); or interacting controls (i.e., when multiple
controllers are responsible for controlling different aspects of gas quality—Table 6, A, F).

These results confirm findings from comparable studies. The omission of parameters, such as
nitrogen content of gas or its odorization, as illustrated above, is in line with several critiques that
observe the difficulty of providing a full inventory of hazards with analytic approaches, such as HAZOP
and FMEA (i.e., References [4,18–20]). For HAZOP, this is partly due to its inherent structure that
determines hazards by focusing on the P&ID and relies on the team brainstorming to generate a design
intent and possible deviations from it [42]. Our analysis confirms this by illustrating how hazards
related to digital instrumentation (i.e., cyber threats) and non-odorized gas are not fully captured by any
combination of parameter and design intent. Additionally, our results confirm previous observations
that an incomplete hazard inventory may be especially pressing in the case of new technologies [9,19,46].
We observe comprehensive identification of hazards associated with features of conventional gas
systems, whereas those associated with future energy systems fall short. This might be explained
by a HAZOP expert team basing their analysis on existing knowledge and not being sufficiently
guided in exploring novel scenarios [9]. This adds further credence to previous studies claiming
systemic risk assessments are valuable in situations in which uncertainty concerning new technologies
remains [19]. The way in which our STPA contributes to a fuller picture of hazards is equally supported
by comparable studies. Systemic hazards become apparent when focusing on interactions among
different system components [20], and the STPA provides a more structured framework to identify
novel hazards [9]. Like Rosewater et al. [19], we find that the study of the safety of renewable energy
systems must incorporate a systemic view to integrating all possible new interactions.

6. Conclusions

Appropriate risk assessment for future energy systems involves both analytic and systemic
risk assessments. This paper provided an example for each, showing marked differences in both
their approach and the outcomes. The analytic HAZOP approach provides a rigorous assessment
of possible component failures in linear interactions and yields actionable safety recommendations
for professionals. The generated risk profiles are instrumental in planning for maintenance and
replacement, and direct attention to vulnerable components. The systemic STPA method is better
equipped to identify safety concerns related to two-directional energy flow or increased component
interaction. Additionally, it identifies hazards related to increased automation of systems—specifically
identifying situations in which non-failed components might cause hazardous system states.

The results highlight how increasing complexity in energy systems creates new types of hazard
causes. While component failures remain relevant, and deserve continued attention, new hazard
causes related to subsystem and component interaction are increasingly pressing. This paper illustrated
how hazards may increasingly propagate through energy systems as these systems grow more
interconnected, and how responsibilities for maintaining safety must change accordingly. For the case
of local biogas production, this concerns the safeguarding of gas quality at the production site,
and potentially where it is injected into higher-pressure grids. Additionally, grid operators face new
tasks that include monitoring gas quality and facilitating two-directional flow in the gas grid. This paper
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has shown that, compared to HAZOP, STPA provides a more comprehensive inventory of hazards
related to novel ways of monitoring gas quality and other key parameters as these system functions
are executed increasingly remote and digitally. The Dutch case of the gas compressor, while exhibiting
clear attributes of complexity, is still rather straightforward. Once more biogas producers are added
to different low-pressure grids, and more interconnection points emerge among low-pressure grids,
as well as medium-pressure grids, existing systemic hazard causes will become more important,
and new ones might emerge. While the STPA was successful in identifying ways in which new systemic
hazards can emerge, successfully mitigating them requires further steps.

This analysis has two significant implications for global energy transitions. First, it illustrates how
sustained use of only analytic methods will mean that system hazards will remain underestimated.
These methods are predominantly used in the energy sector today and include, besides HAZOP,
also FMEA, Bowtie, and many others. These findings confirm previous studies related to the energy
sector, but further research must be directed to the ability of analytic methods other than HAZOP to
identify systemic hazards. Likewise, attention should be directed to other systemic methods, such as
FRAM and AcciMap, to identify their possible contribution to a more comprehensive understanding of
safety hazards in complex energy systems. The results shown in this paper would also be strengthened
if both compared risk analyses were executed by the same group of experts, ensuring the same
degree of relevant knowledge and resources. Even so, the results as discussed above are relevant as
additional insights were provided by the STPA, which was executed by the party with both knowledge
and resource disadvantages. Second, the analysis highlights the need to study the organization of
safety in energy transitions. Even if more hazard causes can be identified by effectively employing
appropriate risk assessment methods, their ultimate mitigation relies on properly facilitating and
incentivizing relevant actors. This is true for both the gas and electricity sector, but these results
might also hold significance for other infrastructures, including water, railways, or the internet.
The integration of renewable energy sources requires the coordination of both public and private actors
across different system levels. Allocating responsibility among these actors for new and changing
interactions in complex systems is not straightforward, and also merits further research. This paper
serves as an encouragement for both academics and practitioners in the energy sector to look beyond
the predominant methodologies, and to explore what constitutes appropriate risk assessment for them.
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Appendix A

Table A1. Systematic literature review queries.

Queries Query as Conducted on ScienceDirect at 7 August 2020

Query 1
Biogas and Hydrogen with
analytic methods

qs = (BIOGAS OR HYDROGEN) AND (“FMEA” OR “FMECA”
OR “HAZOP” OR “HAZID” OR “BOWTIE”)&date =
2010–2020&
tak = (BIOGAS OR HYDROGEN) AND (“FMEA” OR “FMECA”
OR “HAZOP” OR “HAZID” OR “BOWTIE”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100

Query 2
Solar PV and Wind Turbine
with analytic methods

qs = (“SOLAR PV” OR “SOLAR PANEL” OR “WIND
TURBINE”) AND (“FMEA” OR “FMECA” OR “HAZOP” OR
“HAZID” OR “BOWTIE”)&date = 2010–2020&tak = (“SOLAR
PV” OR “SOLAR PANEL” OR “WIND TURBINE”) AND
(“FMEA” OR “FMECA” OR “HAZOP” OR “HAZID” OR
“BOWTIE”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100

Query 3
Battery or Fuel Cell with
analytic methods

qs = (“BATTERY” OR “FUEL CELL”) AND (“FMEA” OR
“FMECA” OR “HAZOP” OR “HAZID” OR “BOWTIE”)&date =
2010–2020&tak = (“BATTERY” OR “FUEL CELL”) AND
(“FMEA” OR “FMECA” OR “HAZOP” OR “HAZID” OR
“BOWTIE”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100

Query 4
Biogas and Hydrogen with
systemic methods

qs = (BIOGAS OR HYDROGEN) AND (“STPA” OR “FRAM” OR
“ACCIMAP”)&date = 2010–2020&tak = (BIOGAS OR
HYDROGEN) AND (“STPA” OR “FRAM” OR
“ACCIMAP”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100

Query 5
Solar PV and Wind Turbine
with systemic methods

qs = (“SOLAR PV” OR “SOLAR PANEL” OR “WIND
TURBINE”) AND (“STPA” OR “FRAM” OR “ACCIMAP”)&date
= 2010–2020&tak = (“SOLAR PV” OR “SOLAR PANEL” OR
“WIND TURBINE” OR “BATTERY”) AND (“STPA” OR “FRAM”
OR “ACCIMAP”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100

Query 6
Battery or Fuel Cell with
systemic methods

qs = (“BATTERY” OR “FUEL CELL”) AND (“STPA” OR
“FRAM” OR “ACCIMAP”)&date = 2010–2020&tak =
(“BATTERY” OR “FUEL CELL”) AND (“STPA” OR “FRAM” OR
“ACCIMAP”)&articleTypes =
REV%2CFLA%2CCH%2CABS&show = 100
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