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ABSTRACT

Nonlinear hysteresis modeling is essential for estimating, controlling, and characterizing the behavior of piezoelectric material-based devices.
However, current deep-learning approaches face challenges in generalizing effectively to previously unseen voltage profiles. This Letter tackles
the limitation of generalization by introducing the notion of neural operators for modeling the nonlinear constitutive laws governing inverse
piezoelectric hysteresis, specifically focusing on the relationship between voltage inputs and displacement responses. The study utilizes two
neural operators—Fourier neural operator and the deep operator network—to predict material responses to unseen voltage profiles that are
not part of the training data. Numerical experiments, including butterfly-shaped hysteresis curves, show that in accuracy and generalization
to unseen voltage profiles, neural operators outperform traditional recurrent neural network-based models, including conventional gated net-
works. The findings highlight the potential of neural operators for modeling hysteresis in piezoelectric materials, offering advantages over
existing methods in varying voltage scenarios.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0239160

Piezoelectric materials are functional materials that correspond to
electrical and mechanical energy interactions.1 Prominently character-
ized by two types of dynamics, piezoelectric dynamics corresponds to
the action where an applied mechanical stress on the material induces
a voltage, and inverse piezoelectric dynamics, where the applied electri-
cal energy leads to a mechanical displacement. The dynamics are typi-
cally nonlinear and characterized by memory effects, depending on
past input states that lead to hysteresis.2 Hence, precise hysteresis
modeling is essential for optimal control and characterization of piezo-
electric material-based devices.3

The focus of this Letter is to model the inverse piezoelectric hys-
teresis, which is to model the voltage–displacement relationship. The
relationship between voltage and displacement is nonlinear and depen-
dent on previous system states, exhibiting history dependence.
Traditionally, phenomenological models, such as the Preisach model,4

are employed to model this relationship. However, the Preisach model
requires certain specific measurement samples, like the first-order

reversal curves, to characterize the materials.5 Due to these stringent
restrictions and cheap inference cost of trained deep learning models
compared to the Preisach model,6–8 neural networks are increasingly
being utilized to model piezoelectric hysteresis.9

The history-dependent characteristics of hysteresis lead to a con-
ceptual overlap with the recurrent neural network domain.10 Owing to
this overlap, recurrent architecture-based methods have been applied
to model hysteresis for piezoelectric materials and devices.11,12 As a
natural framework, advanced recurrent networks have been widely
used to model hysteresis, such as long short-term memory (LSTM)13

based and gated recurrent unit (GRU)14 based approaches.2,15–17

However, an important aspect of modeling a piezoelectric mate-
rial or a device is predicting the material’s response to unseen voltage
inputs that are not used to train the neural network model. In this
regard, the recurrent models face challenges in generalizing18–21 the
trained model to adapt to unseen input signals and predicting the volt-
age–displacement dynamics, as shown in this Letter. A possible reason
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for such a failure is the functional relationship learned between the
voltage and displacement profiles, which is largely data-driven and fails
to capture the inherent dynamic trend between the input and the out-
put in general.22

Learning a neural network-based model to predict output dis-
placement fields given any input voltage refers to learning a functional
map from voltage functional space to displacement functional space. If
learned, such a mapping would facilitate predicting the displacements
for unseen voltage profiles, leading to a generalized neural network-
based model for learning and predicting piezoelectric dynamics. Such
a model could be used offline for downstream tasks to predict unseen
scenarios in real-time,23 facilitating applications such as control.

Neural operators24,25 are a class of supervised deep learning mod-
els that map input and output function spaces using the observed data
as discussed in a recent review paper.23 Neural operators have been
used for physical simulations,26,27 and for modeling in different
domains, for instance, lithium-ion batteries,28 multiscale mechanics,29

and magnetic materials.22 However, it is unexplored for modeling the
hysteresis behavior of piezoelectric materials.

The contributions of the current work are as follows: this Letter
proposes an approach shift in modeling the nonlinear hysteretic rela-
tionship prevalent in piezoelectric materials through neural operators.
The neural operator strategy exhibits advantages compared to the
recurrent architectures such as LSTM and GRU through experiments
on hysteresis loops, including butterfly-shaped hysteresis. More
broadly, this Letter bridges the gap between scientific machine learning
and piezoelectric hysteresis modeling, which could be used widely due
to low inference times and high accuracy and generalization abilities.23

The rest of the letter describes the method employed to model
the hysteresis, particularly the neural operator architectures and specif-
ics of the Fourier neural operator (FNO)24 and the deep operator net-
work (DeepONet)25 and their corresponding training details.
Subsequently, the method is employed to model hysteresis, including
the butterfly-shaped hysteresis, and compared with recurrent models
like LSTM and GRU. Finally, the results are discussed, and conclusions
and future works are collated regarding the conducted study.

The motivation to employ neural operators corresponds to the
necessity of generalizable models predicting displacements for different
and unseen voltage profiles. A vanilla function approximator, such as a
deep neural network, maps the measured ordered data pairs for vol-
tages (v) and displacement (d), that is (vi, di), for 1 � i � N; i 2 Z for
N observations. A deep neural networkN ðhÞ, parameterized by learn-
able parameters h, aims to approximate the relationship between vi
and di through a function f, such that di � f ðviÞ. However, such learn-
ing does not generalize to unseen sequences of the voltage profiles,
posing challenges for a neural network model to take an arbitrary v
sequence from a functional space as input and map it to the corre-
sponding d sequence.22 Learning such a map would facilitate predict-
ing displacement for any unseen voltage profile from the functional
space.

The required dataset to train the neural operators consists of first
sampling nfunc number of input v functions from an appropriate func-
tional space. The choice of the functional space depends on the partic-
ular application and assumptions of the material for which the
modeling is performed and the assumptions regarding the voltage pro-
files expected to be applied to the material. For our experiments, the
voltage profiles are generated from the sinusoidal spaces. After

generating from the sinusoidal spaces, the voltage profiles are applied
to the material or a surrogate material model to generate the data pairs.
The surrogate models in this Letter are solely used to explore the nec-
essary functional spaces to generate the data. To characterize the mate-
rial in practice, voltage profiles should be applied to the material in a
physical experiment. Subsequently, the dataset (vi, di) is stored for all
nfunc functions along with the time locations array t on which the func-
tions are sampled.

The first neural operator employed in this work is the Fourier
neural operator (FNO), which thrives on convolutional neural network
architecture, as shown in Fig. 1. The inputs for FNO are the normal-
ized30 voltage fields vi concatenated with the time array by repeating it
sufficiently to form the input tensor X :¼ ½vi; t� of channel size two.
The input X is further projected through a tensor, P, increasing the
number of channels to Nf , i.e., z0 ¼ PX. The tensor z0 is subsequently
processed through a series of Fourier layers, which are parameterized
by learnable tensors W and R. The operations within these Fourier
layers can be represented as follows:

zlþ1 ¼ rðWlzl þF�1ðRlFðzlÞÞÞ; (1)

where zl represents the latent tensor at the lth layer. The method
first applies a fast Fourier transform (FFT), denoted by F . The first
nm modes are then subjected to a linear transformation using

R 2 CF out�F out , followed by an inverse FFT, F�1. Here, F out indi-
cates the dimensionality of FðzlÞ. The resulting tensor is combined
with a linearly transformed latent tensor Wlzl . A nonlinear activation
function, r, is subsequently applied to yield zlþ1. This sequence of
operations is repeated across L Fourier blocks. The output from the
final Fourier block, zL, is downscaled via two projection tensors, Q andbQ, to produce the predicted displacements bdi as follows:

bdi ¼ bQrðQzLÞ: (2)

The mean square loss function for FNO is

LðhÞ ¼ 1
N

XN
i¼1

ðbdiðhÞ � di Þ2: (3)

The network parameters h are obtained using a gradient-based
optimization technique. Alternative loss functions that minimize the
residual using different norms can also be considered.

The second neural operator utilized in this study is the deep oper-
ator network—DeepONet. The standard DeepONet architecture25 is
based on fully connected feedforward neural networks, illustrated in

FIG. 1. Neural architecture for Fourier neural operator (FNO). The input X :¼ ½v; t�
is passed through projection tensor (P) and Fourier layers and finally downscaled
(Q) to approximate the displacement.
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Fig. 2. The architecture consists of two distinct feedforward neural net-
works: the branch net and the trunk net. In this work, the branch net
processes functions from the input voltage functional space, specifi-
cally the training fields vi from the V space. The trunk net takes an
array, t, where the output fields are evaluated. The branch and trunk
networks are structured with hidden layers and output neurons, simi-
lar to conventional feedforward networks.

While the number of hidden layers in the branch and trunk net-
works can vary, the number of output neurons must be identical in
both nets. This requirement is essential for their outputs to be com-
bined through a dot product operation to approximate the displace-

ments di as bdi in the displacement functional space D. Mathematically,

this approximation is expressed as di � bdi ¼
Pp

k¼1 ck/k, where ck are
the outputs of the branch net, and /k are the outputs of the trunk net.
From the perspective of traditional function approximation, /k can be
interpreted as basis functions, with ck serving as their coefficients, com-
bined over p terms to approximate the field di. The same loss function
as in the FNO case, given by (3), is applied to approximate di.

The presented numerical experiments aim to model the hysteresis
loop between the voltage and the displacement. The data for the exper-
iment are generated by simulating the Bouc–Wen models31 using the
odeint module of the scipy package. For the first experiment, the
considered Bouc–Wen ordinary differential equation (ODE) is

_dðtÞ ¼ 0:4j _vðtÞjvðtÞ � 0:85j _vðtÞjdðtÞ þ 0:25 _vðtÞ; (4)

with the initial condition dð0Þ ¼ 0. Here, d(t) and v(t) denote the dis-
placement and voltage at time t, respectively, and _x refers to the deriva-
tive of the quantity x. For N¼ 100 equidistant times in the domain
t 2 ½0; 1�, a total of nfunc ¼ 2000 voltage profiles are sampled by vary-
ing the amplitudes randomly. A sine function with a fixed frequency is
computed for each amplitude over 100 equally spaced time arrays. Out
of the 2000 samples, 1000 are taken to train the model, and randomly,
the model is tested for another 1000 functions. The error in approxi-
mating the displacement sequences d as bd by the neural networks is
averaged over all 1000 test samples and computed through three error
metrics: relative error in L2 norm ðRÞ, mean absolute error (MAE),

and root mean square error (RMSE). The metrics are defined as
follows:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000

j¼1
ðbdj � djÞ2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000

j¼1
d2j

r ; (5)

MAE ¼ 1
1000

X1000

j¼1
jbdj � djj; (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000

j¼1
ðbdj � djÞ2

r
: (7)

First, FNO is employed to model the voltage–displacement hys-
teresis relationship given by (4). The network consists of a fully con-
nected layer to lift the dimension from 2 channels to 8 channels, i.e.,
Nf ¼ 8. This lifting is followed by four spectral convolutional layers
(L¼ 4), each consisting of eight input and output channels. The first
four modes (nm¼ 4) are retained for each block after the Fourier trans-
formation. The network projects back to the physical space using two
fully connected layers, transforming dimensions from 8 channels to
128 and finally to a single output channel. The complete architecture
employs the ReLU activation function. A batch size of 100 samples
over 500 epochs is employed consistently, utilizing the ADAM opti-
mizer32 with a learning rate of 1� 10�3.

Further, DeepONet is employed to predict the hysteresis loops.
DeepONet takes as input for the branch net 1000 random voltage
fields and the t array of size 100 for the trunk net. The branch and
trunk nets are based on fully connected feedforward neural networks,
with five hidden layers with 40 neurons in each layer and a tanh activa-
tion function. The output dimension of p¼ 100 is kept for the branch
and trunk nets. Xavier initialization33 is used to initialize the model
parameters, and the network is trained using the ADAM optimizer
over 20000 epochs with a learning rate of 5� 10�5.

The results depicting the performance of FNO and DeepONet
are presented in Fig. 3. The input voltage profiles for training and test-
ing are shown in Fig. 3(a) with blue and red curves, respectively. The
results demonstrate that FNO and DeepONet exhibit generalizable
performance in approximating the hysteresis loops and capturing the
relationship between voltage and displacement for the piezoelectric
material. FNO, as illustrated in Fig. 3(b), shows an accuracy close to
the eye-ball norm in capturing the nonlinear characteristics of the hys-
teresis loops. The predicted curves (solid black) align closely with the
ground truth (dashed red), suggesting that FNO effectively learns and
generalizes the system’s underlying physical dynamics.

Similarly, DeepONet, shown in Fig. 3(c), demonstrates strong
performance, albeit with slightly less precision than FNO. The align-
ment between the predicted curves and the ground truth remains
close, although there are minor deviations in the amplitude and phase
of the predicted loops. The overall trend suggests that DeepONet can
model the voltage–displacement relationship, showcasing its ability to
learn continuous operators.

The neural operators are compared with LSTM and GRU, owing
to their potential in modeling the time-dependent relationships. LSTM
and GRU predictions depicted in Figs. 3(d) and 3(e) fail to capture the
hysteresis behavior accurately. The predictions generated by LSTM
and GRU exhibit significant discrepancies compared to the ground
truth. Specifically, the LSTM predictions, as shown in Fig. 3(d), display

FIG. 2. Deep Operator Network (DeepONet) architecture comprising two indepen-
dent feedforward neural networks—the branch net and the trunk net—whose out-
puts are combined through a dot product to approximate the displacement.

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 125, 262902 (2024); doi: 10.1063/5.0239160 125, 262902-3

VC Author(s) 2025

 07 January 2025 11:48:17

pubs.aip.org/aip/apl


considerable distortion, particularly in the mid-region of the loops,
indicating a failure to maintain the consistency and continuity of the
hysteresis pattern. The results suggest that LSTM struggles with the
complexity of the input–output relationship, indicating its limitations
in generalization to unseen input voltage profiles.

Similarly, the GRU predictions, presented in Fig. 3(e), are charac-
terized by even greater deviations from the ground truth, with noticeable
irregularities in the shape and alignment of the loops. The results collec-
tively suggest that while recurrent neural networks like LSTM and GRU
are a natural framework for capturing temporal dependencies, they are
not well-suited for modeling the relationship in the case of unseen volt-
age profiles, indicating their limitations in generalization.

Furthermore, to demonstrate the robustness of the proposed
method on real-world problems, the displacement profile is corrupted
with additive Gaussian noise with a standard deviation that is 10% of
the standard deviation of the noise-free output, as shown in Fig. 3(f).
Subsequently, these noisy data are used as the output for training and
testing the neural network models. The results presented in the bottom
row of Figs. 3(g)–3(j) show that neural operator methods retain their
qualitative prediction accuracy even for noisy output data, demonstrat-
ing the robustness of the proposed approach.

The tabulated error metrics in Table I underscore the superior
performance of FNO and DeepONet in approximating the hysteresis
loops. FNO achieves the lowest errors across all metrics in noise-free
and noisy data conditions, indicating its accuracy. DeepONet follows

closely with slightly higher errors, still demonstrating robust perfor-
mance. In contrast, LSTM and GRU models exhibit significantly
higher errors in all metrics, reflecting their inability to capture the
complex dynamics of the hysteresis loops accurately.

For the second experiment, the considered ODE modeling the
butterfly-shaped hysteresis is2

_dðtÞ ¼ 0:8j _vðtÞjvðtÞyðtÞ � 1:7j _vðtÞjdðtÞyðtÞ þ 0:5 _vðtÞyðtÞ; (8)

where y(t) is the output obtained from (4) and the rest of the symbols
have their usual meaning. The input voltage fields are generated simi-
larly to those in the first experiment. The hyperparameters for all four
methods are the same as in the first experiment.

Figure 4 illustrates the performance of different methods in pre-
dicting the butterfly-shaped hysteresis loops. FNO, shown in Fig. 4(a),
demonstrates the most accurate predictions, closely aligning with the
ground truth across the entire voltage range. The predictions suggest
that FNO effectively captures the nonlinear dynamics characteristic of
butterfly-shaped hysteresis. In contrast, while DeepONet, shown in
Fig. 4(b), performs well overall, it exhibits noticeable deviations in cer-
tain regions, indicating some limitations in its ability to generalize
across the entire input space. The DeepONet predictions can be fur-
ther improved through an inductive bias by constraining its outputs to
be positive (Constrained DeepONet). This constraint is performed by
taking the square of the prediction of DeepONet and using it in the

FIG. 3. Performance of neural network models in predicting hysteresis loops described by (4) for sinusoidal voltage fields. Top: Input voltage fields used for training and testing
followed by performance of various methods in the case of noise-free data. Bottom: Noisy output displacement profiles used for training and testing followed by performance of
various methods in the case of 10% Gaussian noise. The solid black curve denotes the predictions, and the dashed red line depicts the ground truth.

TABLE I. Errors obtained for various methods in approximating hysteresis loops described by (4) with sinusoidal inputs for noise-free and noisy data. The boldface denotes the
least obtained error among the considered methods.

Noise-free 10% Gaussian noise

Method R MAE RMSE R MAE RMSE

FNO 5.62 3 1023 4.313 1024 5.723 1024 9.983 1022 6.41 3 1023 1.033 1022

DeepONet 5.93 � 10�2 4.13 � 10�3 6.09 � 10�3 1.16 � 10�1 7.68 � 10�3 1.20 � 10�2

LSTM 7.89 � 10�1 6.15 � 10�2 8.11 � 10�2 7.92 � 10�1 6.16 � 10�2 8.18 � 10�2

GRU 7.99 � 10�1 6.36 � 10�2 8.21 � 10�2 8.16 � 10�1 6.50 � 10�2 8.44 � 10�2
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loss function along with the observational labeled data. The result of
constrained DeepONet is presented in Fig. 4(c), showing predictions
are more aligned to the displacement profiles than vanilla DeepONet.

LSTM and GRU, depicted in Figs. 4(d) and 4(e), respectively, fail
to capture the hysteresis behavior accurately, with misaligned predic-
tions. These results underscore the superior efficacy of FNO in modeling
complex hysteresis loops while highlighting the comparative weaknesses
of LSTM and GRU in such tasks. Table II presents the error metrics for
the performed experiment, aligning with the results obtained in the first
experiment, with FNO providing the most accurate results and LSTM
and GRU failing to capture the dynamic nonlinearity.

For the third experiment, complicated voltage fields are used as
inputs in (4) instead of sinusoidal fields to evaluate the potential of the
proposed methods further. Specifically, diverse, complex, non-periodic
input voltage functions are sampled from a Gaussian process using a
radial basis function (RBF) kernel as shown in Fig. 5(a). The RBF kernel
has a variance of 1 and a length scale of 0.2 to ensure the generated
functions are complex and non-periodic, avoiding simplistic or repeti-
tive patterns. All other hyperparameters are kept the same for all four
methods except for the number of epochs, which is ten times that of the
previous experiments, to ensure convergence of the training process.

The performance of neural network models in predicting hystere-
sis loops derived from Gaussian random fields is presented in Fig. 5.
The input voltage fields used for training and testing [Fig. 5(a)] are
represented with the blue and red curves, respectively. The compari-
sons of the predictions made by the neural network models against the
ground truth are shown in Figs. 5(b)–5(e). The solid black lines in
each plot represent model predictions, while the dashed red lines indi-
cate the ground truth. The FNO and DeepONet models in Figs. 5(b)
and 5(c) show superior performance, closely aligning with the ground
truth. In contrast, LSTM and GRU in Figs. 5(d) and 5(e) showcase
their insufficiency in capturing the complex hysteresis behavior.
Moreover, Table III presents the error metrics for the performed
experiment, aligning with the results obtained in the previous experi-
ments, with neural operator methods providing accurate results and
recurrent neural architectures failing to capture the dynamic
nonlinearity.

This Letter presented a deep learning approach for modeling hys-
teresis in piezoelectric materials, namely, neural operators. The study
demonstrated that neural operators yield generalizable models, which
are crucial in scenarios where prior training on diverse voltage profiles
is not feasible. By leveraging prominent operator networks, specifically
the Fourier neural operator (FNO) and the deep operator network
(DeepONet), the operators robustly predicted hysteresis loops, includ-
ing the butterfly-shaped hysteresis loops, outperforming conventional
recurrent architectures and leading to the development of generalizable
neural hysteresis models.

Employing neural operators contributes to neural hysteresis
modeling by developing accurate and generalizable models predicting
real-time piezoelectric responses. Future research would include
exploring and developing further advanced operator training method-
ologies, including quantifying their performance on real material data.
Approaches such as transfer learning,34 pre-trained network parame-
ters, and meta-learning35 strategies could be employed to expedite
model convergence. In addition, future work will also include

FIG. 4. Performance of neural network models in predicting hysteresis loops described by (8) for sinusoidal voltage fields. The solid black curve denotes the predictions, and
the dashed red line depicts the ground truth.

TABLE II. Errors obtained for various methods in approximating butterfly hysteresis
loops described by (8). The boldface denotes the least obtained error among the con-
sidered methods.

Method R MAE RMSE

FNO 7.733 1023 1.15 3 1024 1.513 1024

DeepONet 9.61 � 10�2 1.20 � 10�3 1.88 � 10�3

Constrained DeepONet 7.64 � 10�2 8.94 � 10�4 1.49 � 10�3

LSTM 1.03 � 10�0 1.31 � 10�2 2.03 � 10�2

GRU 1.07 � 10�0 1.52 � 10�2 2.09 � 10�2

FIG. 5. Performance of neural network models in predicting hysteresis loops described by (4) for Gaussian random fields. Input voltage fields used for training and testing (a)
followed by performance of various methods (b)–(e). The solid black curve denotes the predictions, and the dashed red line depicts the ground truth.
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comprehensive comparisons with the traditional phenomenological
models like the Preisach model.
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