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Abstract

Stability of the in-plane free vibration of a rotating thin ring elastically mounted to an
immovable axis is revisited in this study. We aim to demonstrate theoretically that the ring can
be unstable in contrast to a commonly accepted belief that the instability cannot occur [1].

The inner surface of the ring is assumed to be connected to an immovable axis by means of

distributed radial and circumferential springs with stiffness (per unit length) k and k_. The
outer surface is stress-free.

xy

Figure 1. A rotating thin ring on an elastic foundation.

The ring parameters and coordinate systems are defined in Figure 1. A space-fixed coordinate
system (r,6) is employed. An auxiliary coordinate zis introduced asz=r—R. Other

parameters, which are not shown in Figure 1, are: b the width; E the Young’s modulus; p the

mass density; A the area and | the cross-sectional moment of inertia of the ring. It is assumed
that the radial and circumferential displacements w(z,6,t) and u(z,6,t) of a differential

element on the ring are defined by

W(z,6,t) =W, (6,t) + 2w, (6,t) + 2°w, (6,1),

u(z,6,t) =u,(6,t) @

where w;,(6,t)and u,(6,t) are the radial and circumferential displacements of the middle
surface, respectively; w,(6,t)and w,(6,t) are the higher order corrections of the radial

displacement. These corrections enable us to take a linear distribution of the through-thickness
variation of the radial stress into account. The radial stress at the inner surface of the ring is not
zero because of the presence of the radial springs. If the stiffness of the radial springs is large
enough, the radial stress at the inner surface cannot be neglected. Thin rings are considered,
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thus, the transverse shear deformation and rotatory inertia are not incorporated in the
formulation of the governing equations.

The boundary conditions for the inner and outer surfaces of the ring must be satisfied. The
material of the ring is considered to be linearly elastic. For the outer surface of the ring, the
radial stress should be zero, which implies that

o, Ee,

2= hi2

= E(w, +hw,)=0. @)
The inner surface is connected to the springs, thus

wl’

= Ebe,

—h/2—

= Eb(w, —hw,) =k w

—h/2° ®3)

—h/2

Combining Egs. (2) and (3), w,(6,t)and w,(6,t) can be expressed in terms of w,(6,t). To
account for the rotation-induced hoop tension, the same nonlinear strain-displacement relation
as in Ref. [2] is applied. Using the Hamilton's principle, the nonlinear equations which govern
the radial and circumferential motions of the ring are derived in a space-fixed reference system.
The linearised governing equations are obtained about the axisymmetric static equilibrium. The
latter is derived from the governing equation in the radial direction. Details of the derivations
can be found in [3].

To analyse the problem, it is convenient to introduce the following dimensionless parameters
and variables

t?= pAR*/(El), T=t/t, Q=Qt, y =EAR?/ (EI), K, =k R*/(El), K=k _/k. (4)

Since the radial expansion of the ring grows with the increasing rotational speed, there should
be an upper limit of the rotational speed above which the prestresses due to rotation may exceed
the allowable strength of the materials. There are two kinds of prestresses which should be
examined beforehand. These are: the maximum hoop stress which occurs at the outer surface of
the ring and the maximum radial prestress which appears at the inner surface of the ring. To

avoid a discussion of the physical behaviour of different materials, the maximum prestress
0’ <0.2E is chosen to define the regime in which the ring material is assumed to behave

linearly.
To illustrate that instability can occur prior to material failure, the following dimensionless

parameters are chosen: y =1200, Rr =4x10°,K =0.001. These parameters correspond to a thin
ring with small bending stiffness and stiff foundation.
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Figure 2. Dimensionless natural frequencies versus rotational speeds.

Fig. 2 illustrates the relationship between the rotational speed and the natural frequencies of the
first four modes in the space-fixed reference system. We count the modes starting form n=0,
the latter implying an angle-independent deformation. Note that in this mode the rotating ring
can and does deform elastically. The vertical dotted line in Fig.2 corresponds to the speed
which is determined by o-rfm =0.2E. For mode numbers greater than zero, both the lower and
higher natural frequencies split into two branches which result in four distinct natural
frequencies per mode. However, for the n=0 modes, the natural frequencies do not bifurcate.
The upper branch of the n =0 mode increases monotonically as the speed of rotation grows. The
lower branch first descends and then crosses the horizontal axis at a certain rotational speed. It
can be shown that above this speed, the natural frequency becomes purely imaginary which
indicates the onset of instability of the divergence type. The ring displacement increases
exponentially in time in the circumferential direction. For modes n>1 one can see that the
lower set of natural frequencies first branches into two curves at >0, then the two collide
with each other and disappear from the real plane (become complex-valued) after a certain
speed. Since the characteristic polynomial has real-valued coefficients, the complex roots
appear in conjugate pairs and one may say that flutter occurs after the collision speed. The
lowest speed at which instability occurs is for the mode n=0. Divergence instability of the Oth
mode always occurs before flutter could happen.
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