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Radio Science

Inversion of Multifrequency Data With the Cross-Correlated
Contrast Source Inversion Method

Shilong Sun1 , Bert-Jan Kooij1, and Alexander G. Yarovoy1

1Department of Microelectronics, Delft University of Technology, Delft, Netherlands

Abstract Cross-correlated contrast source inversion (CC-CSI) is a nonlinear iterative inversion method
that is proposed recently for solving the inverse scattering problems. In CC-CSI, a cross-correlated error is
constructed and introduced to the cost functional, which improves the inversion ability when compared to
the classical design of the cost functional by exploiting the mismatch between the data error and state error.
In this paper, the multifrequency inversion for electromagnetic waves is considered and a multifrequency
version of CC-CSI is proposed. Numerical and experimental inversion results of both transverse magnetic
and transverse electric polarization demonstrate that when multifrequency data are available, CC-CSI still
outperforms the multiplicative-regularized CSI method in the inversion of more complicated scatterers.

Plain Language Summary In the field of inverse scattering problems, the dielectric properties
of unknown targets can be recovered from the scattered electromagnetic/acoustic waves. Nonlinear
iterative methods are a group of such approaches in which a cost functional is minimized iteratively.
The classical cost functional is designed using two terms. One is to fit the measurement data and the other
one is to fit the wave equations. Recently, a cross-correlated term was proposed in our research, and it has
been demonstrated that the inversion performance is improved by considering the newly proposed term.
It also implies the potential improvement for other nonlinear iterative methods. In this paper, the idea has
been implemented to process the multifrequency data simultaneously. Results show that the improvement
of inversion performance (e.g., the reliability) is still obvious in comparison to the state-of-the-art nonlinear
iterative methods in the multifrequency cases.

1. Introduction

Determining the inhomogeneity in a certain region of medium by probing the scattered fields (electromag-
netic and acoustic) is a common problem arising from many different fields in science and engineering such
as remote sensing, biomedical imaging, geophysical exploration, and nondestructive testing. The information
of interest could be the morphological information or the values of the inhomogeneities. In this paper, efforts
have been made to study the inversion of the dielectric parameters, which is referred to as the inverse medium
problem for electromagnetic waves (Colton & Kress, 2013). The research output is of course applicable for
achieving the support of the objects, and it also applies to the inversion for acoustic waves.

Since the inverse scattering problem we will be discussing is in the resonance range, that is, the wavelength is
comparable to the dimension of the objects, it turns out to be inherently nonlinear. Severe ill posedness also
accompanies this inverse scattering problem, which comes from both the inherent challenges of the physical
problem itself and the incompleteness and/or inaccuracy of the measurement data domain. There are at least
two main macroclasses of fully nonlinear iterative inversion approaches: stochastic methods and determin-
istic ones. In cases where the dimension of the solution space is not huge, stochastic global optimization
methods (Caorsi et al., 2000; Rocca et al., 2009, 2011; Salucci et al., 2017) are good candidates to search for
the global optimal solution. Among the deterministic approaches, one is to use the linear sampling method
together with a knowledge of the first transmission eigenvalue (Cakoni et al., 2011) or with several
so-called “virtual experiments” (Crocco et al., 2012). A more accurate alternative is to recover the dielectric
parameters and the total fields iteratively using an optimization method (Di Benedetto et al., 2009;
Kleinman & van den Berg, 1992, 1993; van den Berg & Kleinman, 1997; Wang & Chew, 1989). The iterative
algorithms have been further improved over the recent decades by using regularization constraint
(Bauer et al., 2009; Sun et al., 2017; van den Berg et al., 1999), multiscaling technique (Caorsi et al., 2003),
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wavelet transformation (Li et al., 2013), etc. As an example, sparsity constraints can be appropriately exploited
and compressive sensing-based techniques are proved to be effective in both qualitative imaging (Gurbuz
et al., 2009; Sun, Kooij, & Yarovoy, 2018; Sun, Kooij, Yarovoy, et al., 2018) and quantitative ones (Ambrosanio &
Pascazio, 2015; Oliveri et al., 2011; Poli et al., 2013; Sun et al., 2017). However, it is worth noting that the cost
functional remains unchanged in the aforementioned research work, which consists of two error terms: the
data error and the state error. This classical construction of the cost functional has been changed recently by
the work of (Sun et al., 2017), in which a cross-correlated error was proposed as a measure of the mismatch
between the two error terms. Subsequently, the cross-correlated error was introduced into the cost function,
which leads to a novel inversion method, referred to as the cross-correlated contrast source inversion (CC-CSI)
method. It has been demonstrated that CC-CSI shows better inversion performance than the classical CSI
method (van den Berg & Kleinman, 1997) and multiplicative regularized CSI (MR-CSI) method (van den Berg
et al., 1999), especially for inverting more complicated objects of higher contrast values. However, CC-CSI was
only tested with single frequency in the work of Sun et al. (2017), and it is still open whether it shows supe-
riority when multifrequency data are available, because the reliability of MR-CSI can be improved indeed by
exploitation of multiple frequencies (Bloemenkamp et al., 2001).

In this paper, we consider the inversion of multifrequency electromagnetic data with CC-CSI. A multifrequency
version of CC-CSI (MF-CC-CSI) is proposed, which is able to process the multifrequency data simultaneously.
To validate the advantage of the proposed method, comparison has been made to the multifrequency ver-
sion of MR-CSI (MF-MR-CSI) proposed in Bloemenkamp et al. (2001). Numerical results show that compared
to MF-MR-CSI, a more stabilized solution can be obtained by MF-CC-CSI. The second Fresnel data sets in the
year of 2005 (Geffrin et al., 2005) have been selected as the experimental data for further validation. In the
remainder of this paper, both transverse magnetic (TM) and transverse electric (TE) polarizations are consid-
ered. Problem statement and formulation of the proposed MF-CC-CSI method are introduced in section 2, the
numerical simulation is presented in section 3, and the experimental data inversion is given in section 4. The
main body of this paper is finalized with conclusion in section 5.

2. Problem Statement and Formulation
2.1. Problem Statement
The multifrequency inversion problem discussed in this paper is assumed to be nondispersive, that is, the
contrast to be inverted is independent of frequency. Let us consider the canonical 2-D inverse scattering prob-
lem in a known background . The measurement domain  contains the sources denoted by the subscript
p ∈ {1, 2, 3… , P} and the receivers denoted by the subscript q ∈ {1, 2, 3,… ,Q}. Equal subscript means the
same position. We use a right-handed coordinate system in which the unit vector in the invariant direction
points out of the paper. The time factor of exp(i𝜔t) is considered in this paper, where i2 = −1.

Now the data equation and the state equation can be formulated based on finite difference frequency domain
(FDFD) scheme as (see Sun et al., 2017)

yp = 𝚽p𝜔
2jp, x ∈  , (1a)

jp = 𝝌einc
p + 𝝌A−1𝜔2jp, x ∈ , (1b)

respectively, with p = 1, 2,… , P, where yp represents the measurement data, 𝚽p ∶=  ,pA−1 is the mea-
surement matrix,  ,p is an operator that interpolates field values defined at the finite-difference grid points
to the appropriate receiver positions, A is the FDFD stiffness matrix, einc

p and ep are the incident and total elec-
tric fields in the form of a column vector, and 𝝌 is the complex contrast consisting of the contrast permittivity,
Δ𝜺, and the contrast conductivity, Δ𝝈, that is, 𝝌 ∶= Δ𝜺− iΔ𝝈∕𝜔; jp ∶= 𝝌ep is defined as the component-wise
multiplication of the contrast and the total fields, which is referred to as the contrast sources. In the remainder
of this paper, 𝜔2 is incorporated into 𝚽p and A for the sake of conciseness. Both of the matrices contain the
background information. The inverse problem is to reconstruct the contrast 𝝌 from the incomplete and/or
inaccurate measurement data, yp.
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2.2. Multifrequency CC-CSI
2.2.1. Modified Cost Functional, MF-CC-CSI,𝓵−1∕2

Consider the inversion of multifrequency data, the subscript i is used to represent the ith frequency. The data
error equation and the state error equation for the update of the contrast sources are defined respectively
as follows

𝝆p,i,𝓁−1∕2 = yp,i −𝚽p,ijp,i,𝓁−1, (2a)

𝜸p,i,𝓁−1∕2 = 𝝌 i,𝓁−1einc
p,i + 𝝌 i,𝓁−1A−1

i jp,i,𝓁−1 − jp,i,𝓁−1. (2b)

with p = 1, 2, 3,… , P, i = 1, 2, 3,… , I. Here (𝓁 − 1∕2) means the update of the contrast sources taking place
after the (𝓁 − 1)th iteration and before the 𝓁th update of the contrast. Equation (2a) is in the measurement
domain, and equation (2b) is in the field domain. The latter is used to monitor the behavior of the solution
in the field domain and check if it satisfies Maxwell’s equations. Since equation (2b) is always not perfectly
satisfied, the “=” is supposed to be a “≈”. Note that the solution is monitored only in the field domain; the
mismatch in the field domain should also be monitored back in the measurement domain. Otherwise, the
design of the cost functional is logically not complete. In order to fill this gap, we define a new equation in
the measurement domain as follows

𝝃p,i,𝓁−1∕2 = yp,i −𝚽p,i

(
𝝌 i,𝓁−1einc

p,i + 𝝌 i,𝓁−1A−1
i jp,i,𝓁−1

)
, (3)

with p = 1, 2, 3,… , P and i = 1, 2, 3,… , I. We refer to this equation as multifrequency cross-correlated error
equation. Consequently, the cost functional for the update of the contrast sources is defined as follows

MF-CC-CSI,𝓁−1∕2 =
I∑

i=1

𝜂i

P∑
p=1

‖‖‖𝝆p,i,𝓁−1∕2
‖‖‖2


+

I∑
i=1

𝜂i,𝓁−1

P∑
p=1

‖‖‖𝜸p,i,𝓁−1∕2
‖‖‖2



+
I∑

i=1

𝜂i

P∑
p=1

‖‖‖𝝃p,i,𝓁−1∕2
‖‖‖2


,

(4)

where 𝜂i and 𝜂i,𝓁−1 are defined as

𝜂i =
P∑

p=1

‖‖‖yp,i
‖‖‖2


, and 𝜂i,𝓁−1 =

P∑
p=1

‖‖‖𝝌 i,𝓁−1einc
p,i
‖‖‖2


,

respectively.
2.2.2. Updating the Contrast Sources
The gradient (Fréchet derivative) of the modified cost functional with respect to the contrast source jp,i is

gp,i = − 2𝜂i 𝚽
H
p,i𝝆p,i,𝓁−1 + 2𝜂i,𝓁−1

(
𝝌 i,𝓁−1A−1

i − I
)H

𝜸p,i,𝓁−1

− 2𝜂i
(
𝚽p,i𝝌 i,𝓁−1A−1

i

)H
𝝃p,i,𝓁−1.

(5)

Now suppose jp,i,𝓁−1 and 𝝌 i,𝓁−1 are known, then we update jp,i,𝓁−1 by

jp,i,𝓁 = jp,i,𝓁−1 + 𝛼p,i,𝓁𝝂p,i,𝓁 , (6)

where 𝛼p,i,𝓁 is constant and the update direction 𝝂p,i,𝓁 is chosen as the Polak-Ribière conjugate gradient
directions, which is given by

𝝂p,i,𝓁 =
⎧⎪⎨⎪⎩

0, 𝓁 = 0,

gp,i,𝓁 +
∑

p′⟨gp′ ,i,𝓁 ,gp′ ,i,𝓁−gp′ ,i,𝓁−1⟩∑
p′
‖‖‖gp′ ,i,𝓁−1

‖‖‖2



𝝂p,i,𝓁−1, 𝓁 ≥ 1. (7)

where

gp,i,𝓁 = gp,i
|||jp,i=jp,i,𝓁−1

. (8)
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The step size 𝛼p,i,𝓁 is the minimizer of the cost functional

MF-CC-CSI,𝓁−1∕2
|||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

. (9)

See Appendix A for the derivation of 𝛼p,i,𝓁 . Following the update of the contrast sources, the total fields are
updated by

etot
p,i,𝓁 = etot

p,i,𝓁−1 + 𝛼p,i,𝓁A−1
i 𝝂p,i,𝓁 . (10)

Consequently, the state error and the cross-correlated error are supposed to be updated as well: 𝜸p,i,𝓁−1 →

𝜸p,i,𝓁 , 𝝃p,i,𝓁−1 → 𝝃p,i,𝓁 .

2.2.3. Modified Cost Functional, MF-CC-CSI,𝓵 , and Updating the Contrast
Suppose 𝝌 i,𝓁−1 is known and consider the relation

𝝌1,𝓁−1 = ℜ
{
𝝌 i,𝓁−1

}
+

𝜔1

𝜔i
ℑ
{
𝝌 i,𝓁−1

}
, i = 1, 2, 3, · · · , I, (11)

where ℜ and ℑ respectively represent the real parts and imaginary parts of complex numbers, we therefore
define 𝝌𝓁 = 𝝌1,𝓁 . Once the contrast source jp,i,𝓁 is determined, we update the contrast by

𝝌𝓁 = 𝝌𝓁−1 + 𝛽𝓁𝝂
𝜒

𝓁 , (12)

where 𝛽𝓁 is the step size and the update direction, 𝝂𝜒

𝓁 , is chosen to be the Polak-Ribière conjugate gradient
directions, which is given by

𝝂
𝜒

𝓁 =
⎧⎪⎨⎪⎩

0, n = 0,

g𝜒

𝓁 + ⟨g𝜒

𝓁
,g𝜒

𝓁
−g𝜒

𝓁−1⟩‖‖‖g𝜒

𝓁−1
‖‖‖2



𝝂
𝜒

𝓁−1, n ≥ 1, (13)

where g𝜒

𝓁 is the preconditioned gradient of the modified multifrequency cost functional for updating the
contrast

MF-CC-CSI,𝓁 =
I∑

i=1

𝜂i,𝓁−1

P∑
p=1

‖‖‖𝜸p,i,𝓁
‖‖‖2


+

I∑
i=1

𝜂i

P∑
p=1

‖‖‖𝝃p,i,𝓁
‖‖‖2


. (14)

Here

𝜸p,i,𝓁 = 𝝌 i,𝓁−1einc
p,i + 𝝌 i,𝓁−1A−1

i jp,i,𝓁 − jp,i,𝓁 , (15)

𝝃p,i,𝓁 = yp,i −𝚽p,i

(
𝝌 i,𝓁−1einc

p,i + 𝝌 i,𝓁−1A−1
i jp,i,𝓁

)
. (16)

Specifically, g𝜒

𝓁 is given by

g𝜒

𝓁 =
2ℜ

{∑I
i=1 g𝜒

i,𝓁

}
∑I

i=1

∑P
p=1 etot

p,i,𝓁etot
p,i,𝓁

+ i
2ℑ

{∑I
i=1

𝜔1

𝜔i
g𝜒

i,𝓁

}
∑I

i=1

(
𝜔1

𝜔i

)2 ∑P
p=1 etot

p,i,𝓁etot
p,i,𝓁

, (17)

where

g𝜒

i,𝓁 = 𝜂i,𝓁−1

P∑
p=1

etot
p,i,𝓁𝜸p,i,𝓁 − 𝜂i

P∑
p=1

etot
p,i,𝓁𝚽

H
p,i𝝃p,i,𝓁 . (18)
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The step size 𝛽𝓁 is determined by minimizing the updated cost function in the formulation of

I∑
i=1

∑P
p=1

‖‖‖(𝝌 i,𝓁−1 + 𝛽𝝌 i,𝓁

)
etot

p,i,𝓁 − jp,i,𝓁
‖‖‖2

∑P
p=1

‖‖‖(𝝌 i,𝓁−1 + 𝛽𝝌 i,𝓁

)
einc

p,i
‖‖‖2



+
I∑

i=1

𝜂i

P∑
p=1

‖‖‖yp,i −𝚽p,i

(
𝝌 i,𝓁−1 + 𝛽𝝌 i,𝓁

)
etot

p,i,𝓁
‖‖‖2


. (19)

This is a problem of finding the minimum of a single-variable function, which can be solved efficiently by
the Brent’s method (Brent, 1973; Forsythe et al., 1976). It is worth noting that the objects are assumed to be
isotropic in this paper. Namely, we assume 𝝌 x = 𝝌 y when TE-polarized data are processed.
2.2.4. Initialization
If no a priori information about the objects is available, the contrast source is initialized using the values
obtained by backpropagation (van den Berg & Kleinman, 1997)

jp,i,0 =
‖‖‖𝚽H

p,iyp,i
‖‖‖2

‖‖‖𝚽p,i𝚽H
p,iyp,i

‖‖‖2



𝚽H
p,iyp,i, (20)

and the starting value of the total field is

etot
p,i,0 = einc

p,i + A−1
i jp,i,0. (21)

The contrast is initialized by (see Bloemenkamp et al., 2001)

𝝌1,0 =
ℜ

{∑I
i=1

∑P
p=1 jp,i,0etot

p,i,0

}
∑I

i=1

∑P
p=1 etot

p,i,0etot
p,i,0

+ i
ℑ
{∑I

i=1
𝜔1

𝜔i

∑P
p=1 jp,i,0etot

p,i,0

}
∑I

i=1

(
𝜔1

𝜔i

)2 ∑P
p=1 etot

p,i,0etot
p,i,0

. (22)

Since free space is considered in the following examples, the contrast must have nonnegative real part and
nonpositive imaginary part. Such properties are enforced in the following examples by simply setting the
negative real part and the positive imaginary part of the contrast to zero following each update of the con-
trast for both MF-CC-CSI and MF-MR-CSI. In addition, the contrast sources and the contrast are initialized by
equations (20) and (22), respectively, for fair comparison.

3. Numerical Simulation

In this section, both MF-CC-CSI and MF-MR-CSI are tested for comparison with a 2-D benchmark
problem—the “Austria” profile, which was also used in Litman et al. (1998), Sun et al. (2017), van den Berg
and Abubakar (2001), and van den Berg et al. (2003). The objects consist of two disks and one ring. Let us first
establish our coordinate system such that the z axis is parallel to the axis of the objects. The disks of radius
0.2 m are centered at (−0.3, 0.6) m and (0.3, 0.6) m. The ring is centered at (0,−0.2) m, and it has an exterior
radius of 0.6 m and an inner radius of 0.3 m. We assume that the three cylinders are made of same material.
Two sets of dielectric parameters are considered, which are 𝜀r = 3, 𝜎 = 5 mS/m and 𝜀r = 10, 𝜎 = 10 mS/m,
respectively. Since we assume a free space environment, the contrast values are Δ𝜀r = 2, Δ𝜎 = 5 mS/m
and Δ𝜀r = 9, Δ𝜎 = 10 mS/m, respectively. The forward scattering problems are solved by a MATLAB-based
“MaxwellFDFD” package (Shin, 2013) with a fine and nonuniform grid size of 𝜆∕(45

√
𝜀r).

3.1. Measurement Configuration
In order to approach the realistic situation, we selected a measurement configuration that is similar to the
experiment conducted by the Remote Sensing and Microwave Experiments Team at the Institut Fresnel,
France (Belkebir & Saillard, 2001). An emitter is fixed on the circular rail, while a receiver is rotating with the
arm around a vertical cylindrical target. The targets rotated from 0∘ to 350∘ in steps of 30∘ and the receiver
rotated from 60∘ to 300∘ in steps of 5∘. The distance from the emitter/receiver to the origin is 3 m. Simulation
is sequentially done without and with the objects at five frequencies of 0.1, 0.2, 0.3, 0.4, and 0.5 GHz. Scattered
field data is obtained by subtracting the incident field data, yinc

p , from the total field data, ytot
p .
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Figure 1. Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration number in case 1 (Δ𝜀r = 2,
Δ𝜎 = 5 mS/m) by processing the TM-polarized (left) and TE-polarized (right) data. Different frequency bands of
0.1–0.5 GHz and 0.3–0.5 GHz and different SNRs of 30 and 10 dB are considered. MF-CC-CSI = multifrequency version
of cross-correlated contrast source inversion; MF-RR-CSI = multifrequency version of multiplicative-regularized contrast
source inversion; TM = transverse magnetic; TE = transverse electric; SNRs = signal-to-noise ratios.

3.2. Inversion Results
Although the incident fields in the inversion domain can be easily obtained in numerical simulations, it is not
available in real applications. Therefore, we consider the modeling of the incident fields using the collected
incident field data. We select the approach reported in Bloemenkamp et al. (2001). Specifically, the transmit-
ting antenna is approximated by line source parallel to the cylindrical objects. The incident field by the line
source is calibrated by multiplying a complex ratio, which is calculated using only the value of the field when
the transmitting and the receiving antenna are in opposite directions. For each frequency and source position,
one complex calibration factor is determined. To simulate the inevitable measurement error in real experi-
ments, additive Gaussian random noise, np, is added directly to the scattered field data. In addition, the noise
is also added to the total field data and the incident field data by ytot

p + np∕2 and yinc
p − np∕2, respectively. In

doing so, the disturbance of the noise is reflected not only in the scattered field data but also in the modeling
of the incident fields, which better matches the real situation. To appraise the inversion accuracy, let us define
the reconstruction error as follows

err ∶= ‖𝝌̂ − 𝝌‖2∕‖𝝌‖2 , (23)

where 𝝌̂ and 𝝌 are the reconstructed contrast and the exact contrast, respectively. Since large values of fre-
quency tolerates large errors of estimated conductivity (see section 4.2 for more discussion), 𝝌̂ and 𝝌 in
equation (23) correspond to the highest frequency to ensure that the imaginary part of the contrast error is not
over amplified in the evaluation of the inversion accuracy. In the following two cases, the inversion domain is
restricted to [−1.20, 1.20] × [−1.20, 1.20] m2 and discretized into uniform grids with a size of 0.30×0.30 mm2.
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Figure 2. Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration number in case 2 (Δ𝜀r = 9,
Δ𝜎 = 10 mS/m) by processing the TM-polarized (left) and TE-polarized (right) data. Different frequency bands of
0.1–0.5 GHz and 0.1–0.2 GHz and different SNRs of 30 and 10 dB are considered. MF-CC-CSI = multifrequency version
of cross-correlated contrast source inversion; MF-RR-CSI = multifrequency version of multiplicative-regularized contrast
source inversion; TM = transverse magnetic; TE = transverse electric; SNRs = signal-to-noise ratios.

3.2.1. Case 1: 𝚫𝜺r = 2, 𝚫𝝈 = 5 mS/m
Let us first consider the lower contrast case, that is, Δ𝜀r = 2, Δ𝜎 = 5 mS/m. MF-CC-CSI and MF-MR-CSI are

used to process the TM- and TE-polarized numerical data, respectively, with 2,048 iterations. Different fre-

quency bands of 0.1–0.5 and 0.3–0.5 and different signal-to-noise ratios (SNRs) of 30 and 10 dB are tested.

Figure 1 shows the reconstruction error curves in term of the iteration number, which indicates obviously that

MF-CC-CSI obtains less reconstruction errors compared to MF-MR-CSI when same frequency band and SNR

are used. It is also easy to observe that noise indeed leads to a degradation of the inversion accuracy (see the

error curves of MF-CC-CSI shown in the right subfigures of Figure 1 when processing the 10 dB SNR data). As

the frequency goes up to 0.3–0.5 GHz, the reconstruction error of MF-MR-CSI remains close to 1, indicating

that MF-MR-CSI completely fails to invert the data in this frequency band.

3.2.2. Case 2: 𝚫𝜺r = 9, 𝚫𝝈 = 10 mS/m
In this case, the contrast increases to Δ𝜀r = 9, Δ𝜎 = 10 mS/m, which is supposed to be more challenging.

We have also considered the frequency band 0.1–0.5 GHz, and from Figure 2 we observe that both MF-CC-CSI

and MF-MR-CSI obtained large reconstruction errors. However, the former obtained less and smoothly

decreasing reconstruction errors than the latter. Now let us remove the high-frequency data and consider the

frequency band 0.1–0.2 GHz, one can see from the bottom two subfigures of Figure 2 that the inversion accu-

racy of MF-CC-CSI has been improved; The reconstruction error curve of MF-MR-CSI started to decrease when

processing the 0.1–0.2 GHz 30 dB synthetic data. Both of the two cases demonstrate that MF-CC-CSI is a more

reliable inversion method in comparison to MF-MR-CSI.
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Figure 3. Illustrative example: the 0.1–0.5 GHz TM example in Case 1. Behavior of the cost function,
log10

{
MF-CC-CSI

(
𝛽1, 𝛽2

)}
, in the parametric range −1.5 ≤ 𝛽1 ≤ 1.5 and −1.5 ≤ 𝛽2 ≤ 1.5. (a) SNR = 30 dB;

(b) SNR = 10 dB. MF-CC-CSI = multifrequency version of cross-correlated contrast source inversion;
MF-RR-CSI = multifrequency version of multiplicative-regularized contrast source inversion; TM = transverse
magnetic; SNR = signal-to-noise ratio.

3.3. Analysis of Global Convergence Capability
In this section, let us have more insights on the enhanced global convergence capability of MF-CC-CSI by
analyzing the behavior of the modified cost function in the solution space. Specifically, let us first define the
solution as follows

x ∶=
{
𝝌 i, etot

p,i , p = 1, 2, 3,… , P, i = 1, 2, 3,… , I
}
. (24)

The contrast sources are not considered here because, knowing the contrast and the total fields, it can be
simply obtained. With two sampling parameters, 𝛽1 and 𝛽2, the solution space is defined as follows

x
(
𝛽1, 𝛽2

)
∶= 𝛽2

[(
𝛽1 + 1

)
xopt

MF-CC-CSI − 𝛽1xact
]
−
(
𝛽2 − 1

)
𝛽1xopt

MF-MR-CSI, (25)

where xact is the actual solution, while xopt
MF-CC-CSI and xopt

MF-MR-CSI are the solutions of MF-CC-CSI and MR-MR-CSI,
respectively. Now let us consider the 0.1–0.5 GHz TM example in Case 1 and plot the cost function value versus
two solution-space sampling parameters, MF-CC-CSI

(
𝛽1, 𝛽2

)
=MF-CC-CSI

{
x
(
𝛽1, 𝛽2

)}
, with 𝛽1, 𝛽2 ∈ [−1.5, 1.5].

Figures 3a and 3b show the behavior of the cost function, log10

{
MF-CC-CSI

(
𝛽1, 𝛽2

)}
, with different SNRs,

30 and 10 dB, respectively. From Figure 3 we see that the MF-MR-CSI converges to a local minimum,
while xopt

MF-CC-CSI belongs to the attraction basin of the global optimum of the cost function, xact. In addition,
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Figure 4. Illustrative example: the 0.1–0.5 GHz TE example in Case 1. Behavior of the reconstruction error and the cost
function (log10

{
MF-CC-CSI

}
) of MF-CC-CSI. (a) SNR = 30 dB; (b) SNR = 10 dB. MF-CC-CSI = multifrequency version of

cross-correlated contrast source inversion; TE = transverse electric; SNR = signal-to-noise ratio.
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Figure 5. Relative permittivity (left column) and conductivity (right column) of the inverted contrast by processing the
multifrequency data set FoamTwinDielTM (Line 1: MF-CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data (Line 3:
MF-CC-CSI; Line 4: MF-MR-CSI) at 7, 8, 9, and 10 GHz with 2,048 iterations. MF-CC-CSI = multifrequency version of
cross-correlated contrast source inversion; MF-RR-CSI = multifrequency version of multiplicative-regularized contrast
source inversion.

Figure 3 indicates that the modified cost function still shows the multiminima property and a good initial
guess is still critical for preventing the occurrence of false solutions. By comparison of Figures 3a and 3b we
can also observe that the behavior of the cost function is affected by the noise level in the measurement data.

Here we finally remark that a good termination condition is required for MF-CC-CSI. Otherwise, the inversion
accuracy may deteriorate after a mount of iterations when the disturbance of noise to the measurement data
is not negligible (see the top right figures in Figure 1 and Figure 2). Now let us consider the 0.1–0.5 GHz TE
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Figure 6. Relative permittivity (left column) and conductivity (right column) of the inverted contrast by processing the
multifrequency data set FoamTwinDielTE (Line 1: MF-CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data (Line 3:
MF-CC-CSI; Line 4: MF-MR-CSI) at 7, 8, 9, and 10 GHz with 2,048 iterations. MF-CC-CSI = multifrequency version of
cross-correlated contrast source inversion; MF-RR-CSI = multifrequency version of multiplicative-regularized contrast
source inversion.

example in Case 1, Figures 4a and 4b show the behavior of the reconstruction error and the cost function

(log10

{
MF-CC-CSI

}
) of MF-CC-CSI with SNR = 30 and 10 dB, respectively. One can observe that a threshold

can hardly be determined to terminate the inversion algorithm without considering the noise level. In addi-

tion, the value of the contrast and the measurement configuration also affect the cost function curve and the

convergence rate of the iterative inversion algorithms.
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Figure 7. Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of
iteration number in processing the multifrequency perfect synthetic data
of the Fresnel data set, FoamTwinDielTM and FoamTwinDielTE, at 7, 8, 9,
and 10 GHz. MF-CC-CSI = multifrequency version of cross-correlated
contrast source inversion; MF-RR-CSI = multifrequency version of
multiplicative-regularized contrast source inversion.

One reasonable strategy in practice is to first estimate the noise level.

Moreover, according to some a priori information, it is possible to estimate

the range of the contrast value. Based upon these information, one can do

simulation using a typical benchmark inverse problem for a specific appli-

cation, then obtain approximately how many iterations are required to get

a reasonable inverted result for a specific application. Take the following

experimental data inversion as an example. Considering the fact that the

measurement configuration, the noise level and the range of the contrast

value are similar to the numerical simulation, let us run 2,048 iterations in

the following experimental data inversion.

4. Experimental Data
4.1. Configuration
In this section, we consider the experiment carried out by Institut Fresnel

in the year of 2005 (Geffrin et al., 2005). In this experiment, the receiver

stays in the azimuthal plane (xoy) and rotates along two-thirds of a circle

from 60∘ to 300∘ with the angular step being 1∘ . The source antenna stays

at the fixed location (𝜃 = 0∘). The targets are rotated to obtain different

illumination incidences. The distance from the transmitter and receiver to

the center of the target domain is 1.67 m.

To avoid the redundancy of our discussion, let us select the most complicated configuration that corresponds

to the data sets FoamTwinDielTM and FoamTwinDielTE. The targets consist of one larger circular dielectric cylin-

der with a smaller one embedded inside and a smaller adjacent one outside (see Figure 5c in Geffrin et al.,

2005). Two smaller circular dielectric cylinders have relative permittivity values of 𝜀r = 3±0.3, while the larger

one has a relative permittivity value of 𝜀r = 1.45±0.15. In this configuration, the targets are rotated from 0∘ to

340∘ with angular step of 20∘. The 241×18 measurements are obtained at each frequency (in TE polarization,

only the component orthogonal to both the invariance axis of the cylinder and the direction of illumination is

measured). The measurement configuration is given by Figure 1 of Geffrin et al. (2005). To increase the inver-

sion difficulty, let us assume that the data in the low-frequency band are not available anymore, and we only

have the measurement data at 7, 8, 9, and 10 GHz.

4.2. Inversion Results
First, let us model the incident fields with the same approach as we did in the numerical simulation. To

reduce the computational burden, we restrict the inversion domain to [−82.5, 82.5] × [−97.5, 67.5] mm2. The

inversion domain is discretized with 1.5 × 1.5 mm2 grids. The multifrequency datasets FoamTwinDielTM and

FoamTwinDielTE at 7, 8, 9, and 10 GHz were processed by MF-CC-CSI and MF-MR-CSI, respectively. Both of

them were terminated after 2,048 iterations. In addition, we also did a simulation to generate the perfect data

of the same targets in the same configuration. The only thing different is that the distance between antennas

and the center of the inversion domain was shortened from 1.67 to 0.20 m. Otherwise, the scattering domain

with the frequency up to 10 GHz is too huge for a standard desktop.

Figures 5 (FoamTwinDielTM) and 6 (FoamTwinDielTE) show the inverted results by processing the multifre-

quency data set (Line 1: MF-CC-CSI; Line 2: MF-MR-CSI) and the noise-free synthetic data (Line 3: MF-CC-CSI;

Line 4: MF-MR-CSI) at 7, 8, 9, and 10 GHz with 2,048 iterations. One can see that MF-CC-CSI successfully recon-

structed the three cylinders in good estimation accuracy with both the experimental data and the noise-free

synthetic data, while MF-MR-CSI only obtained good inversion results with the noise-free TE-polarized syn-

thetic data. The artifacts of the inverted contrast conductivity (see the right figure in Line 3 of Figure 5) is

inevitable and so far can only be explained as a reconstruction error to the best of our knowledge. The higher

the frequency is, the larger such artifacts would be. This is easy to understand by noting that𝝌 i = Δ𝜀r−iΔ𝜎∕𝜔i,

that is, a large value of the angular frequency, 𝜔i , tolerates a large error of the contrast conductivity, Δ𝜎.

The synthetic data enables us to obtain the reconstruction error curves of both methods, which is shown

in Figure 7. The error curves show us the inversion performance of both methods during the whole process
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of inversion, demonstrating again the advantage of MF-CC-CSI in more complicated scenarios. One can also
see that the multiplicative regularization can improve the inversion accuracy indeed when the contrast can
be reconstructed to a reasonable accuracy. The reason has been fully discussed in Sun et al. (2017).

5. Conclusion

In this paper, a multifrequency version of the CC-CSI method is proposed. By processing the numerical data
and experimental data in both TM and TE polarizations, we have demonstrated the advantage of the proposed
MF-CC-CSI method over the MF-MR-CSI method. In addition, the introduction of the cross-correlated error
changed the classical design of the cost functional, which is of great significance for improving the inversion
performance of other algorithms that are based on the classical cost functional design.

Appendix A: Derivation of the Parameter, 𝜶p,i,𝓵

First, let us rewrite the cost function MF-CC-CSI,𝓁−1∕2
|||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

as follows

MF-CC-CSI,𝓁−1∕2
|||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

=
I∑

i=1

𝜂i

P∑
p=1

‖‖‖𝝆p,i,𝓁−1∕2 − 𝛼p,i𝚽i𝝂p,i,𝓁
‖‖‖2

+
I∑

i=1

𝜂i,𝓁−1

P∑
p=1

‖‖‖𝜸p,i,𝓁−1∕2 + 𝛼p,i

(
𝝌𝓁−1A−1

i − I
)
𝝂p,i,𝓁

‖‖‖2

+
I∑

i=1

𝜂i

P∑
p=1

‖‖‖𝝃p,i,𝓁−1∕2 − 𝛼p,i𝚽i𝝌𝓁−1A−1
i 𝝂p,i,𝓁

‖‖‖2
||||||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

.

(A1)

Obviously, it can be further simplified in the form of

MF-CC-CSI,𝓁−1∕2
|||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

=
2∑

j=0

I∑
i=1

(
ap,i,j + bp,i,j + cp,i,j

)
𝛼

j
p,i. (A2)

Therefore, we have

𝛼p,i,𝓁 = arg max
𝛼p,i

{
MF-CC-CSI,𝓁−1∕2

|||jp,i=jp,i,𝓁−1+𝛼p,i𝝂p,i,𝓁

}

= −1
2

ap,i,1 + bp,i,1 + cp,i,1

ap,i,2 + bp,i,2 + cp,i,2
.

(A3)

Note that

ap,i,2 = 𝜂i
‖‖‖𝚽i𝝂p,i,𝓁

‖‖‖2


, (A4)

ap,i,1 = −2𝜂i ℜ
{
𝝂H

p,i,𝓁𝚽
H
i 𝝆p,i,𝓁−1∕2

}||||jp,i=jp,i,𝓁−1

, (A5)

bp,i,2 = 𝜂i,𝓁−1‖𝝂p,i,𝓁 − 𝝌A−1
i 𝝂p,i,𝓁‖2


, (A6)

bp,i,1 = 2𝜂i,𝓁−1ℜ
{
𝝂H

p,i,𝓁

(
𝝌A−1

i − I
)H

𝜸p,i,𝓁−1∕2

}||||jp,i=jp,i,𝓁−1

, (A7)

cp,i,2 = 𝜂i
‖‖‖𝚽i𝝌A−1

i 𝝂p,i,𝓁
‖‖‖2


, (A8)

cp,i,1 = −2𝜂i ℜ
{
𝝂H

p,i,𝓁

(
𝚽i𝝌A−1

i

)H
𝝃p,i,𝓁−1∕2

}||||jp,i=jp,i,𝓁−1

, (A9)
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and

gp,i,𝓁 = −2𝜂i 𝚽
H
i 𝝆p,i,𝓁−1∕2 + 2𝜂i,𝓁−1

(
𝝌𝓁−1A−1

i − I
)H

𝜸p,i,𝓁−1∕2

− 2𝜂i
(
𝚽i𝝌𝓁−1A−1

i

)H
𝝃p,i,𝓁−1∕2

|||jp,i=jp,i,𝓁−1
,

(A10)

it is easy to obtain

𝛼p,i,𝓁 = −
ℜ

{⟨
gp,i,𝓁 , 𝝂p,i,𝓁

⟩


}
2
(

ap,i,2 + bp,i,2 + cp,i,2

) , (A11)

where ap,i,2, bp,i,2, and cp,i,2 are given by equations (A4), (A6), and (A8), respectively.
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