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Dataset Dependency of Data-Driven ML Techniques in Pattern Prediction Under Mutual Coupling

N.B. Onat, I. Roldan, F. Fioranelli, A. Yarovoy, and Y. Aslan
Delft University of Technology, Delft, the Netherlands

Abstract

This paper examines how training data affects machine
learning-assisted antenna pattern prediction under mutual
coupling. For demonstration, a neural network-based ap-
proach is used to predict the embedded pattern of a central
patch antenna element near randomly distributed patches. It
is shown that when the full-wave simulated dataset size is
excessively reduced, the high prediction error in the valida-
tion set may become a critical issue. Maintaining sufficient
accuracy in pattern prediction with a relatively small dataset
remains an open challenge.

1 Introduction

Fast prediction of the radiation pattern of an antenna in
the vicinity of other antennas or scatterers is a major chal-
lenge in array synthesis [1, 2], calibration [3], and dynamic
beamforming [4, 5]. This is due to the complex effect of
mutual coupling (MC), which can be determined by using
full-wave simulation tools for a given topology of antennas.
Despite being accurate, such an approach suffers from large
computational complexity when a large number of topolo-
gies should be investigated (e.g. in case of irregular sparse
array design [6]). There are effective techniques for in-
corporating the MC effect into the synthesis procedure [7,
8, 9]; however, the proposed methodologies tend to be ei-
ther computationally expensive, tailored to specific element
types, or lack the flexibility needed for application on vari-
ous topologies.

In the recent years, the attention towards machine learning
(ML)-based techniques has significantly grown, driven by
their ability to effectively address intricate problems with
notable speed and accuracy. Mainly, neural networks (NNs)
are utilized on many electromagnetic (EM) problems due
to their ability to approximate highly non-linear functions
[10, 11]. In line with this, our previous work introduced
a novel NN for efficient embedded element pattern (EEP)
prediction in small planar subarrays [12].

Although the ML-based studies are promising for MC and
EEP prediction, since the performance of these method-
ologies highly depends on the training data, it is essential
to have a randomly distributed dataset with sufficient data
to achieve reliable predictions while avoiding over-fitting.

This study investigates how the size of dataset is crucial
for the EEP prediction via NNs. Additionally, the pattern
prediction performance variations in the validation set are
discussed.

The rest of the paper is organized as follows. Section 2
introduces the antenna under test (AUT). Section 3 formu-
lates the problem and presents the considered NN structure.
Section 4 discusses the simulation results. The conclusions
are given in Section 5.

2 Antenna Under Test (AUT)

In this study, a 5-element aperiodic array topology is con-
sidered. This comprises of a central element (the pattern of
which is to be estimated) located at the origin, (xm,ym) =
(0,0), and of its neighboring elements which are randomly
located with a minimum spacing of λ/2 in the region of
r2 ≤ (x2

i +y2
i )≤ (2r)2 where (xi,yi) is the location of the i-

th neighbor element in λ with i = 1, ...,4. Furthermore, r is
the radius of the defined circle that is selected as λ/2. Fig-
ure 1 illustrates the considered array topology where each
element is a pin-fed patch antenna designed for the opera-
tion frequency of 2.85 GHz. The designed patch has a co-
polarization electric (e−) field component in θ direction,
which will be referred to as the EEP.

Figure 1. An example aperiodic array topology where the
central element (yellow), is located at the center, and the
neighboring elements (black) are randomly positioned in
the defined grey region.
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Figure 2. Block diagram of the utilized NN architecture comprising two concatenated networks based on the study in [12].
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Figure 3. MSE results between the full-wave generated EEP of the full validation set and IEP (ρ0), and predicted EEPs with
the dataset sizes of 1500 (ρ1), 2500 (ρ2) and 3500 (ρ3).

3 Problem Formulation and NN Architec-
ture

Following the work in [12], this study focuses on the power
pattern prediction where each EEP is a function of θ and φ ,
both having 180 samples resulting a 180×180 matrix.

The considered architecture comprises two distinct com-
ponents: the initial part produces a low-resolution EEP at
36×36, and the subsequent segment scales it up to the de-
sired resolution of 180× 180, corresponding to a 1-degree
resolution. The upscaling process is implemented using the
efficient sub-pixel convolutional neural network (ESPCN)
[13] in the upscale block as shown in Fig. 2.

Furthermore, the successful estimation of the EEP relies on
utilizing the structural similarity index (SSIM) as a loss dur-
ing the training of the neural network. Originally designed
as a metric for evaluating image quality in the context of a
reference image, typically to gauge losses from image com-
pression, SSIM has more recently found application as a
loss function in training neural networks [14].

4 Simulation Results

The effect of the dataset size and performance variation
in validation set of the proposed network are discussed in
this section. To this extent, 3500 simulations with random
topologies were run to generate the training dataset. This
size of the primary dataset is gradually decreased to 2500
and 1500 for the analysis, whereas the validation set al-
ways remains the same, comprising 300 data. The designed

pin-fed patch antenna’s isotropic element pattern (IEP) was
simulated and compared as a benchmark. Furthermore, two
extreme cases are selected for a detailed analysis.

To visualize the distribution of the datasets, polar coordi-
nate system is used. The distance di for i = 1,2,3,4 in-
dicates the distance (in λ ) between the main the corre-
sponding neighbor element. The angle αdiff is the angle
between element pairs having the maximum angle separa-
tion as shown in Fig. 4a. The distance d̂ shows the mean
distance of the neighbor elements to the main element for
each topology. Figure 4b illustrates the distribution of the
datasets for the sizes of 1500 and 3500, where the density
of the distribution increases as the data size increases. It is
important to note that the angle αdiff remains higher then
100◦ due to the defined minimum element spacing of λ/2.

To quantify the prediction performance, the minimum
squared error (MSE) cost function is utilized [12]:
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Figure 4. Analysis of distribution of the training datasets.
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Table 1. MSE results for the IEP, indicated with the sub-
script 0, and three different dataset sizes: 1500, 2500 and
3500, indicated with the subscripts 1,2 and 3, respectively.

Topology ρ0 [dB] ρ1 [dB] ρ2 [dB] ρ3 [dB]

Average 0.3 -6.06 -8.65 -10.67

Data 104 3.5 -2.05 -12.9 -15.67

Data 160 -2.23 -9.7 -13.57 -20.21

ρt = 10lg

(
1

N2
s

Ns

∑
j,k=1

(|ECST(θ j,φk)|− |Et(θ j,φk)|)2

)
(1)

where Ns is the total number of samples for θ and φ , ECST
is the full-wave simulated EEP of the central element gen-
erated by the commercial software CST, Et is the predicted
EEP of the same element where t = 0,1,2,3 indicates IEP
and the sizes of the dataset 1500, 2500 and 3500, respec-
tively.

The MSE is evaluated over the validation set and shown in
Fig. 3. The error between ECST and EIEP (ρ0) remains at
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Figure 5. EEPs (e-field [dB]) for Data 104 with (xi,yi) =
{(−0.25,−0.45),(0.2,−0.75),(0.5,0.2),(0.5,−0.3)}λ .
(a) Full-wave simulated EEP; (b) Predicted with 1500 data;
(c) Predicted with 2500 data; (d) Predicted with 3500 data.

the level of 0 dB, reaching up to 5 dB and having an aver-
age error of 0.3 dB whereas the error between ECST and the
prediction E1 which is trained with the smallest dataset has
an average error of -6 dB as shown in Table 1. However, the
variation in the error remains high; in other words, the pre-
diction is highly dependent on the provided dataset, where
the reliability of the methodology can become questionable.

When the data size is increased to 2500, the average error
is reduced by almost 3 dB, going down to nearly -9 dB.
The entire dataset is used in the training, so the error scales
down to almost -11 dB. Although the variations can still
be observed, these variations can become negligible as the
error goes down beyond -10 dB. Data 104 and 160 are ana-
lyzed as extreme cases to validate this.

Figure 5 illustrates the CST generated EEP and pre-
dicted EEPs for Data 104 which has one of the highest
error rates as shown in Table 1. In this topology,
the location of the elements is given as (xi,yi) =
{(−0.25,−0.45),(0.2,−0.75),(0.5,0.2),(0.5,−0.3)}
where the neighbor elements are clustered at the top right
corner, creating a special case. When the data size is low,
the NN overestimates the peak region with the section
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Figure 6. EEPs (e-field [dB]) for Data 160 with (xi,yi) =
{(−0.6,−0.2),(0.55,0.4),(−0.25,0.65),(−0.05,−0.7)}λ .
(a) Full-wave simulated EEP; (b) Predicted with 1500 data;
(c) Predicted with 2500 data; (d) Predicted with 3500 data.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 16,2024 at 10:19:54 UTC from IEEE Xplore.  Restrictions apply. 



where θ < 50◦ and φ > 0◦, increasing the error rate to
−2.05 dB as can be seen in Fig. 5(b). The performance
of the prediction drastically increases as the data size
increases, reducing the error to −15.67 dB.

On the other hand, the trained model achieves
one of the best predictions in Data 160
where the elements are located at (xi,yi) =
{(−0.6,−0.2),(0.55,0.4),(−0.25,0.65),(−0.05,−0.7)}
in λ , having an error of nearly −10 dB with the low-size
and −14 dB with the 2500 data as shown in Table 1.
When the entire dataset is used, the difference between the
full-wave generated EEP in Fig. 6(a) and predicted EEP
in Fig. 6(b) becomes almost invisible while the error rate
decreases below −20 dB.

5 Conclusion

The impact of training data on ML-assisted antenna pattern
prediction under mutual coupling is studied. An NN-based
methodology has been used to predict the EEP of a central
patch antenna element in the close vicinity of randomly-
distributed patches. Two-stage networks, namely, fully con-
nected and ESPCN, were used to achieve high-resolution.
It has been shown that the performance of the network is
highly dependent on the training data, where the variation
of the prediction error in the validation set becomes criti-
cal with the excessive reduction in the size of the dataset.
Furthermore, with the increase in the number of elements,
the disturbance on the EEP by the MC effect can become
a more complicated problem, reducing the reliability of the
prediction with a low-size dataset. This highlights the need
for developing innovative techniques to keep sufficient pat-
tern prediction accuracy with a relatively low-size dataset.
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