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Many coral reef-lined coasts are low-lying with elevations <4 m above mean sea level.

Climate-change-driven sea-level rise, coral reef degradation, and changes in storm wave

climate will lead to greater occurrence and impacts of wave-driven flooding. This poses

a significant threat to their coastal communities. While greatly at risk, the complex

hydrodynamics and bathymetry of reef-lined coasts make flood risk assessment and

prediction costly and difficult. Here we use a large (>30,000) dataset of measured coral

reef topobathymetric cross-shore profiles, statistics, machine learning, and numerical

modeling to develop a set of representative cluster profiles (RCPs) that can be used to

accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined

coasts around the globe. In two stages, the large dataset is reduced by clustering

cross-shore profiles based on morphology and hydrodynamic response to typical wind

and swell wave conditions. By representing a large variety of coral reef morphologies

with a reduced number of RCPs, a computationally feasible number of numerical model

simulations can be done to obtain wave runup estimates, including setup at the shoreline

and swash separated into infragravity and sea-swell components, of the entire dataset.

The predictive capability of the RCPs is tested against 5,000 profiles from the dataset. The

wave runup is predicted with a mean error of 9.7–13.1%, depending on the number of

cluster profiles used, ranging from 312 to 50. The RCPs identified here can be combined

with probabilistic tools that can provide an enhanced prediction given a multivariate wave

andwater level climate and reef ecology state. Such a tool can be used for climate change

impact assessments and studying the effectiveness of reef restoration projects, as well as

for the provision of coastal flood predictions in a simplified (global) early warning system.

Keywords: data mining, cluster analysis, K-means, coral reefs, wave runup, XBeach

1. INTRODUCTION

Flooding of coral reef-lined coasts affects thousands of vulnerable communities around the world,
and climate change induced sea level rise (SLR) and coral degradation are going to continue to
intensify the magnitude and frequency of hazardous flooding events (Ferrario et al., 2014; Quataert
et al., 2015; Storlazzi et al., 2015; Vitousek et al., 2017).

The low elevations of most coral reef-lined coasts increase the relative influence of the incoming
swell waves and therefore make them extremely susceptible to flooding, especially during tropical
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cyclones or “blue-sky” events. “Blue-sky” events refer to the idea
that large waves and potential flooding can occur even when the
weather seems calm due to the arrival of remotely generated swell
waves (Hoeke et al., 2013). Swell results in wave setup (Longuet-
Higgins and Stewart, 1964) and typically generates infragravity
waves (Pomeroy et al., 2012), amplifying wave runup at the
shoreline and potentially causing flooding.

In addition, the impact of flooding is growing due to
socioeconomic development within flood-prone zones, where
unplanned urbanization is leading to a higher likelihood of flood-
related deaths (Chilunga et al., 2017). The increase in exposure
and vulnerability requires that inhabitants have sufficient
warning in order to increase preparedness and implement flood
mitigation measures. Unfortunately, for millions of people living
in areas at risk of coastal flooding (UNFPA, 2014), the vast
majority have no early warning system (EWS) in place due to high
cost and/or the required technology. This problem has gained
worldwide attention, and as a result the United Nations-endorsed
Sendai Framework for Disaster Risk Reduction has called for
the improved access to early warning systems and disaster
risk assessments by 2030 (UNISDR, 2015). A simple, globally
applicable tool to better understand and forecast wave runup
will enhance access to early warnings of flood events and will,
in turn, increase coastal resilience for numerous communities
around the globe.

Wave-driven flooding can be forecast based on the expected
wave runup at the beach. Wave runup is the discrete water-level

FIGURE 1 | Coral reef profile dataset information including (A) a schematic of a typical fringing reef demonstrating wave runup and overtopping from incoming waves,

(B) an example of how the reference point (X = 0) was set at MSL for aligning the cross-shore profiles, (C) a map of the locations where the coral reef topobathymetric

cross-shore profiles in the dataset have been collected (ReefBase, 2019; Storlazzi et al., 2019), and (D) the selected cross-shore profiles for the study plotted and

colored based on their average slope which range from 0.005 to 2.5.

elevation maxima, measured in the foreshore, with respect to still
water level (Hunt, 1959). If the wave runup is greater than the
beach crest elevation, overtopping will occur (Figure 1A), which
if sustained poses a threat of flooding for the area behind the
beach. A common measure of wave runup used in engineering
applications is the 2% exceedence value (R2%) (Holman, 1986).
This value is widely used for scaling the impacts of, for example,
severe storms on sandy beaches (Sallenger, 2000; Stockdon et al.,
2006). Wave runup is mainly dependent on the morphology
(relative to the surge level) and offshore wave conditions.

Field measurements have quantified wave dynamics and
wave-driven water levels on fringing coral reefs (Hardy and
Young, 1996; Cheriton et al., 2016) and shown the complexity
of the hydrodynamics in these systems (Storlazzi et al., 2004).
The complex interaction between the reef morphology and
the hydrodynamics on the reef has so far hampered the
development of reliable parametric estimates of wave runup on
reef-lined coasts.

In view of this complexity, numerical models are typically used
to obtain estimates of wave runup at the shoreline. Numerical
models can account for these hydrodynamic interactions, and
can be applied to estimate extreme conditions that have never
been measured, but are likely to happen or expected in a
plausible future scenario (e.g., Anderson et al., 2019). Coral reef
hydrodynamics have been modeled extensively (Storlazzi et al.,
2011; van Dongeren et al., 2013; Buckley et al., 2014; Bosserelle
et al., 2015; Lashley et al., 2018) with good predictive skill.
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However, each simulation of a deterministic process-basedmodel
provides only the results for the specific bathymetry included in
the simulation. Coral reefs have a wide range of morphologies
(Figure 1D), and each are exposed to variable hydrodynamic
conditions. Therefore, the results from a single model simulation
are highly location-specific, and far from being universally-
applicable. Modeling each and every morphology individually,
however, would be computationally extremely impractical and
unnecessary since two reef profiles similar in shape would be
expected to have similar hydrodynamic responses under the
same hydrodynamic conditions (e.g., water level, wave, and wind
characteristics), forming a set of redundant model runs. In that
case, one of the reef profiles could be simulated in a model and
used as an estimate of wave runup for the other.

To increase the applicability of numerical model wave runup
predictions, Pearson et al. (2017) developed the “Bayesian
Estimator for Wave Attack in Reef Environments” (BEWARE).
BEWARE makes use of parameterized fringing coral reef
profiles (beach slope, reef flat width, and fore reef slope) and
hydrodynamic conditions (water depth, wave height, and wave
period) to generate a synthetic database of wave runup. The
database includes the results of the thousands of combinations of
values for each profile parameter and offshore forcing conditions.
After training the Bayesian Network (BN) with the synthetic
database, it acts as an emulator or surrogate for the numerical
model and provides a probabilistic estimate of wave runup
for real-world coral reef profiles based on the similarity of
morphology and wave conditions to that stored in the database.
The database has been useful for other reanalysis studies (Pearson
et al., 2018; Rueda et al., 2019b), but there are limitations that
come with it. Only simplified cross-shore profiles characteristic
of a fringing reef can be used (e.g., Figure 1A), and it is not
representative of the global diversity of reef morphology.

This paper attempts to build upon the work of Pearson
et al. (2017) by providing a methodology to account for the
global variety in coral reef morphology, and their characteristic
hydrodynamic response (wave runup) to offshore forcing
conditions which can be used instead of the simplified cross-
shore profiles in improved versions of the BEWARE model.
We combine machine learning, statistics, and simulated swash
dynamics using the XBeach Non Hydrostatic (XBNH) numerical
model (Smit et al., 2010; McCall et al., 2014) to reduce the high
diversity of coral reef topo-bathymetric profiles (>30,000) into
a set of 50–312 representative cluster profiles (RCPs). We also
propose a simplified approach to characterize the hydrodynamic
response for any real-world coral reef cross-shore profile in
terms of the simulated response of the RCPs. The methodology
developed in this paper is designed to be transferable to other
coastal environments, providing numerous opportunities and
applications in large-scale wave runup simulation and EWSs.

Section 2 of this manuscript introduces the coral reef dataset.
Section 3 describes the methodology to classify the RCPs and
how to use them as a forecasting tool. Section 4 presents the
results of each methodological step and of an application test
case. Section 5 includes a discussion on the sensitivities of the
machine learning, statistical, and numerical tools used for the
development of this research, as well as the implications of

TABLE 1 | Spatial distribution of coral reef topobathymetric cross-shore profiles

included in the initial dataset, as well as the number of profiles from each location

included in the study.

Location Profiles Percent of

total profiles

(%)

Profiles

omitted in

Step 0

Profiles

used in

Steps 1–4

American Samoa 1,198 4.0 21 1,177

Saipan and Tinian 1,035 3.4 126 909

Guam 1,295 4.3 50 1,245

USVI 1,664 5.5 532 1,132

Hawaii 13,404 44.4 1,395 12,009

Puerto Rico 5,531 18.3 2,604 2,927

Florida 6,039 20.0 4,984 1,055

Total 30,166 – 9,712 20,454

the results obtained in further applications such as EWS and
climate change assessment studies. Finally, we summarize the
main conclusions of this research in section 6.

2. CORAL REEF DATASET

The data used for this study consists of 30,166measured coral reef
topobathymetric cross-shore profiles (Storlazzi et al., 2019) from
seven regions distributed through the Pacific Ocean, Atlantic
Ocean, and Caribbean Sea (Figure 1C), measured between 2001
and 2016. The geographical distribution of the reef profiles is
provided in Table 1.

The profiles are aligned by taking the 0 m elevation
contour with respect to mean sea level (MSL) as the shoreline
reference point. Measured data points were homogenized in an
uniform one-dimensional grid spaced 2 m going seaward from
the shoreline. A summary of the profile dataset focusing on
nearshore averaged slope geometry (computed between shoreline
and 30 m depth) is presented in Figure 1D. This dataset was then
filtered using procedures explained in section 3.1.

3. DEVELOPMENT OF REPRESENTATIVE
CLUSTER PROFILES (RCPS) FOR CORAL
REEFS

To create the set of representative profiles, unsupervised cluster
analysis techniques were used with the coral reef morphology
and results from XBNH as inputs. The representative profiles
were then tested to determine their predictive skill. The steps of
the methodology are detailed in this section and are illustrated
in Figure 2.

3.1. Step 0: Data Pre-processing and
Filtering
The profiles included in the analysis were carefully selected to
ensure that they resembled a reef in front of habitable land, and
were not too wide so that they could accurately be modeled with
XBNH. These criteria are explained in greater detail below.
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FIGURE 2 | The methodology used to reduce the initial dataset of coral reef topobathymetric cross-shore profiles to the representative cluster profiles (RCPs). Steps 0

and 1 highlight the first data reduction step to create the 500 initial representative cluster profiles (iRCPs), Steps 2 and 3 are used to further cluster the profiles and to

form the final RCPs, and Step 4 includes using the RCPs for wave runup prediction.

Firstly, land was classified as the most seaward part of the
profile with an elevation greater than or equal to 0.2 m above
MSL, as detailed in Figure 1B. Low-lying coral islands have mean
elevations around 2 m above present sea level (Storlazzi et al.,
2018), so a value of 0.2 m is relatively low. However, if a greater
threshold was used, multiple cross-shore profiles included an
offshore protruding segment that was deemed unrealistic. These
would have a major impact on the wave transformation over the
reef and so for the purpose of this study a lower threshold of 0.2
m was used.

Secondly, the width limitation was set to ensure that all
profiles included in the analysis could be accurately modeled
using a one-dimensional XBNHmodel. Any profiles which reach
-15 m depth at widths greater than 1.5 km (i.e., 10–20 wave
lengths from the shoreline) were deemed too wide to accurately
model, as one-dimensional XBNH models do not account for
wind input, or large-scale topographic refraction. These 9,712
profiles, mostly from Florida (Table 1), were therefore removed
from the dataset, resulting in 20,454 profiles to be used in Steps
1–4 of this study. The selected profiles for Steps 1–4 are shown in
Figure 1D, colored based on their average slope.

3.2. Step 1: Data Reduction Using Reef
Morphology and Wave Celerity
3.2.1. Cluster Analysis
To group the similar coral reef profiles and identify dominant
RCPs, unsupervised machine learning was applied on the reef
topobathymetric cross-shore profiles resulting from Step 0. In
particular, we applied cluster analysis which is used to group a
collection of objects into smaller subsets or clusters. The goal
is to have the objects within each group more closely related
to one another than to objects assigned to different clusters
(Friedman et al., 2001). Machine learning techniques have been
successfully applied for identifying patterns in different fields
and processes including: waves (Antolínez et al., 2016), ocean
currents (Chiri et al., 2019), sediment transport (Antolínez et al.,
2018), sediment distribution (Antolínez et al., 2019), profile
morphodynamics (de Queiroz et al., 2019), and atmospheric
conditions (Rueda et al., 2019a).

In this study, we use the K-means algorithm (Hartigan,
1975; Hartigan and Wong, 1979) with an initialization using K-
means++ (Arthur and Vassilvitskii, 2006). After exploring several
different distance metrics (squared euclidean and cityblock) and
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FIGURE 3 | (A) The distribution of the mean distance between a profile and its

assigned centroid (iRCP) using K-medians for the varying number of tested

cluster groups. (B) The relative gain in morphologic similarity of grouped

profiles compared to the required XBeach Non-Hydrostatic (XBNH) model

runs. This comparison is made to a reference case of all profiles being part of

one cluster group, requiring 4 XBNH model runs. The relative gain is measured

as the reduction in the mean distance between profiles and their centroid,

divided by the additional required XBNH model runs, normalized to provide the

result as a percentage.

statistical techniques (K-medoids, Gaussian mixture modeling,
Principal Component Analysis, and Maximum Dissimilarity)
(Friedman et al., 2001) the K-means clustering algorithmwith the
cityblock distance metric resulted in the most accurate grouping
due to the profile prealignment done in Step 0. The cityblock
distance metric computes the distances between observations as
the sum of absolute differences, and results in each centroid being
formed as the component-wisemedian of the observations in that
cluster; therefore the method is referred to as “K-medians.”

A range (10–3,000) of initial RCPs (iRCPs) were formed
using this technique to determine what may be the optimal
number. This was assessed by comparing the morphological
similarity of grouped topobathymetric cross-shore profiles and
the required number of XBNH model runs needed for Step 2 in
the methodology (Figure 3). The mean difference in morphology
between a profile and its assigned centroid (iRCP) decreases
significantly moving from 10 to 500 cluster groups, however
beyond 500 cluster groups the gain in morphologic similarity
reduces (Figure 3A) as does the added value of morphological
similarity in comparison to the required number of XBNHmodel
runs (Figure 3B), referred to here as the relative gain.

The relative gain is calculated as:

Gain =

X0 − D

XBruns
(1)

Relative Gain (%) =
Gain

X0
× 100% (2)

Where X0 is the mean distance between all profiles and their
centroid for the case of all profiles being placed in one cluster
group [units (m)],D is the mean distance between all profiles and
their respective centroid [units (m)], and XBruns is the number
of required XBNH model runs [units (-)]. The Relative Gain (%)
is then a measure of how well the clustering has increased the
morphologic similarity of the grouped profiles, weighted against
the number of required XBNH model runs. Using these two
metrics, 500 iRCPs was determined to be the ideal combination
of intra-cluster similarity and high data reduction.

3.2.2. Cluster Analysis Inputs
The initial cluster analysis was performed using the water depth
and computed wave celerity as inputs (Figure 4). Whereas, water
depth has previously been used to define cross-shore profile
clusters (Cohn and Ruggiero, 2016; Costa et al., 2016; Duce et al.,
2016), wave celerity was included in this study to provide greater
specificity between profiles in shallower depths. Wave celerity is
more sensitive to changes in water depth in shallow water than
in deep water, so its inverse was used as a non-linear weighting
component in the clustering algorithm, with higher weight given
to depth similarity in shallow areas (Figure 4C).

Using a wave period of 8 s, the celerity was computed using
linear wave theory at each cross-shore position in order to obtain
an equivalent dataset to the cross-shore depths. An 8 s period
was used as a representative value for waves reaching coral reef
lined coasts, although the specific value is not crucial for this
application. This is because in shallow water the celerity for all
realistic wave periods tends to

√

gh, providing the desired effect.
A value of infinity is reached for the inverse celerity at depths

of 0 or above MSL. For these points, the inverse celerity was
set to 0. The goal is that profiles with similar characteristics are
grouped together; assigning the same value for these instances
guides profiles with similar characteristics to be grouped in the
cluster analysis. The depths and inverse celebrities were then
combined into one matrix to be used for the cluster analysis by
normalizing the values using max-min scaling. The morphology
and inverse celerity received equal weighting (Figure 4A).

3.3. Step 2: XBNH Simulations
XBNH is a process-based numerical wave and water level model.
It includes a non-hydrostatic pressure correction term that allows
wave-by-wave modeling of the surface elevation and depth-
averaged flow (McCall et al., 2014). This model has similar
accuracy to that of lower order Boussinesq models and has
commonly been used since its development for wave modeling
over coral reefs (Quataert et al., 2015; Pearson et al., 2017; Lashley
et al., 2018; Klaver et al., 2019; Rueda et al., 2019b).

We applied four wave conditions to each of the 500 iRCPs
using XBNH. The objective was to obtain hydrodynamic
responses for each profile to be used as a proxy for a further
data reduction. The wave conditions used for the simulations
are shown in Table 2. Two wave heights and wave steepnesses
were selected with constant water level, reef friction, and beach
slope to generate the four conditions. The wave height and
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FIGURE 4 | The inputs used for the K-medians algorithm, (A) highlighting the weighting assigned to the two inputs; reef morphology and inverse wave celerity. (B,C)

Examples of these two inputs for 5 topobathymetric cross-shore profiles.

TABLE 2 | XBeach model wave loading conditions and additional reef profile parameters.

Wave loading condition

Symbol Parameter Units 1 2 3 4

H0 Wave height m 3 3 7 7
H0
L0

Wave steepness – 0.05 0.01 0.05 0.01

T Wave period s 6.2 13.9 9.5 21.2

n0 Offshore water level m + MSL 1 1 1 1

cf Coefficient of friction (Reef, Beach) – 0.05, 0.01 0.05, 0.01 0.05, 0.01 0.05, 0.01

Bbeach Beach slope – 1/10 1/10 1/10 1/10

steepness values were selected to represent typical wind wave
and swell events that any of these regions could experience
and could cause flooding. They were also chosen to vary
considerably to ensure profiles are grouped which experience
similar hydrodynamics from a wide range of conditions, not just
one event. A dimensionless coefficient of friction (cf ) of 0.05 was
used for the reef profile below MSL per Pearson et al. (2017), and

a coefficient of friction of 0.01 was used for the beach (above
MSL). To compute the wave runup potential, a semi-infinite
beach slope was required. This was implemented using a beach
slope of 1/10 from the shoreline position, reaching an elevation
of 30m above MSL.

XBNH was applied in one-dimensional mode which does not
account for some of the dynamics that occur on natural reefs.
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However, the dataset consists of one-dimensional profiles, and
extrapolating them to an unknown two-dimensional bathymetry
would involve many unwarranted assumptions, as well as a
steep increase in computational time. One-dimensional analysis
on coral reefs has been done for many applications, and the
choice for our methods builds on existing observations along
1D transects in the field (Péquignet et al., 2011; Becker et al.,
2014; Cheriton et al., 2016) and laboratory environments (Massel
and Gourlay, 2000; Nwogu and Demirbilek, 2010; Buckley et al.,
2016), as well as many 1D numerical modeling studies (Yao et al.,
2012; Quataert et al., 2015; Pearson et al., 2017; Beetham and
Kench, 2018). Furthermore, the one-dimensional modeling will
represent a conservative estimate for wave runup, as the forcing is
shore-normal (Guza and Feddersen, 2012; Quataert et al., 2015).

3.4. Step 3: Data Reduction Using
Hydrodynamic Response
In an effort to further reduce the dataset, the 500 iRCPs were
grouped based on their hydrodynamic response in the XBNH
simulations. Since the objective of the RCPs is to forecast wave
run-up, if there are two or more profiles of the 500 iRCPs which
experience very similar wave run-up characteristics for all wave
conditions, they essentially form a redundant group and can all
be represented by one of the profiles. Agglomerative hierarchical
clustering (Day and Edelsbrunner, 1984) was used to find which
of the 500 iRCPs should be grouped together.

3.4.1. Cluster Analysis Inputs
The variables used for this stage of data reduction include both
the reef morphology and hydrodynamic response; each with
50% weighting (Figure 5A). Morphology is included again to
account for the fact that only four wave conditions were tested
in XBNH. These are insufficient data to guarantee similar wave
runup results across the full range of potential hydrodynamic
conditions. Including morphology reduces this uncertainty. The
hydrodynamics include the R2%, setup at the shoreline, and
swash separated into infragravity and sea-swell components.
The R2% was calculated by isolating all wave runup events and
distinguishing the 2% exceedance value. The setup was calculated
as the mean water level at the shoreline over the duration of
the XBNH model run. Lastly, the swash was calculated by first
generating the spectrum of the water level timeseries at the
shoreline. The spectrum was then split into infragravity and sea-
swell components at a frequency of 0.05 Hz (period = 20 s)
(Herbers et al., 1995) and the two swash values were calculated
from the spectral energy using trapezoidal numerical integration
(Stockdon et al., 2006). The 50% weighting is divided equally
among the three hydrodynamic components.

3.4.2. Agglomerative Hierarchical Clustering
Agglomerative hierarchical clustering builds a hierarchy
from the individual observations (in this case, iRCPs) by
progressively merging clusters which have the smallest inter-
group dissimilarity (Madhulatha, 2012). A dendrogram is
typically used to visualize hierarchical clustering (Figure 5B).
The lowest level of the hierarchy includes all of the iRCPs
treated as individual clusters, and at the highest level all iRCPs

are grouped together into one cluster. This method stops
grouping when a threshold of dissimilarity is reached. Therefore,
varying thresholds and measures of dissimilarity will result in
different final numbers of RCPs. For this study, the inconsistency
coefficient was used as the measure of dissimilarity (Zahn, 1971;
Jain and Dubes, 1988) which compares the height of each link
with the average height of other links at the same level. Using
values of 0.68, 0.72, 1.1, 1.14, and 1.54, final groups of 312,
201, 149, 109, and 50 RCPs of varying sizes were generated and
compared for this study.

One of the iRCPs from each group formed during
the hierarchical clustering process was selected to be the
representative cluster profile (RCP). This profile was the closest
to the mean in terms of R2%. If there are two iRCPs in the final
group, they would both be equal distance from the mean; in that
case the iRCP which represents the greater number of profiles
from the first round of cluster analysis was selected as the RCP.

3.5. Step 4: Application of Representative
Cluster Profiles
The prediction of the RCPs can be evaluated by comparing the
wave runup estimate generated from the RCPs to the modeled
wave runup from a set of test topobathymetric cross-shore
profiles. To do so, 5000 test profiles were randomly taken from
the post-Step 0 dataset after sorting them by average slope to
ensure that the shapes of the test profiles were sufficiently varied.
Each of these profiles were simulated in XBNH under the same
four wave loading conditions that were used for the iRCPs
in Step 2.

3.5.1. Matching Test Profiles to Representative

Cluster Profiles
Two methods were used to match the test profiles to their
corresponding RCPs: a direct match to the RCPs, and a
probabilistic matching technique. For both cases, test profiles are
first matched to the 500 iRCPs of Step 1, and the relationship
is followed between iRCP to RCP (Step 3) to determine the
appropriate RCP match. This is done because the match is based
on the profile morphology and inverse celerity, and therefore the
match must be made to the iRCPs that were formed based on
those same parameters.

The direct match is simply done by calculating the pairwise
distance between the test profile and 500 iRCPs. The distance is a
sum of the distance between the normalized depths and celerity;
the same variables used in the first cluster analysis. The match
is made to the iRCP with the smallest distance and then to the
corresponding RCP.

The probabilistic matching method revolves around the
softmax function which is a method used in neural networks
to predict the probabilities associated with a multinoulli
distribution (Goodfellow et al., 2016). It maps a vector of inputs
to a posterior probability distribution (Goodfellow et al., 2016).
Once the distances have been calculated between a test profile
and all iRCPs, if the distances are input into the softmax function,
each distance is attributed a probability ranging between 0 and 1.
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FIGURE 5 | The inputs used for the hierarchical clustering algorithm, (A) highlighting the weighting assigned to the inputs; morphology and hydrodynamics separated

into R2%, setup and swash. (B) The dendrogram used to visualize the hierarchical clustering results of the 500 initial representative cluster profiles (iRCPs). The

coloring represents an example of the grouping of the 500 iRCPs if a height cutoff value of 1 is used, forming four clusters.

The softmax function is defined as:

S(x)i =
exp(−B ∗ xi)

∑n
j=1 exp(−B ∗ xj)

(3)

where S(x) is the probability of matching to iRCP i, xi is the
distance between the test profile and iRCP i, xj is the distance
between the test profile and iRCP j, B is the stiffness parameter,
and n is the number of iRCPs.

The B value essentially acts as an inverse variance, such that
larger values of B will cause the distribution to be narrower so
that probabilities associated to large distances between profiles
will become small. Multiple B values were tested to compare the
effect on the accuracy of the R2% estimate.

The steps of the probabilistic matching technique are
listed below:

1. Calculate the distance between the test profile and the
500 iRCPs.

2. Use the softmax function to transform the distances into
probabilities. A lesser distance will lead to a greater
match probability.

3. Determine the match probability to the RCPs by summing the
probabilities of the grouped iRCPs.

4. Use the probabilities as weights and generate the estimate of
the wave runup as an ensemble average.

3.5.2. Performance Metrics
The accuracy of the RCP prediction of R2% was assessed using
common performance metrics including the root mean square
error (RMSE), coefficient of determination (R2), bias, skill and
scatter index (SI). RMSE is a measure of how concentrated the
data is around the line of best fit. If all data points lie on the line
of best fit, the RMSE is 0. R2 is a measure of the variance in the
dependent variable (modeled value) that is predictable from the
independent variable (RCP estimation). Bias is the tendency of
the RCP estimate to either over or underestimate the modeled
value. The skill score (Murphy, 1988) is a measure of accuracy
of prediction, where a value of 1 indicates a perfect prediction.
The scatter index is the RMSE normalized by the mean observed
value, which provides insights on the variance of the errors.

These metrics are defined as:

RMSE =

√

1

n
6

n
i=1(R2%TPi − R2%RCPi )

2 (4)
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FIGURE 6 | Example of 10 cluster groups used to form the initial representative cluster profiles (iRCPs). The x-axis represents the cross-shore width and the y-axis the

elevation. The green area defines the standard deviation within the cluster and the blue dashed lines the 5th and 95th percentiles. The number of reef topobathymetric

cross-shore profiles within the cluster is shown in the title of each subplot.

Bias = R2%RCP − R2%TP (5)

R2 =
1

n

n
∑

i=1

(R2%RCPi − R2%TPi )
2 (6)

Skill = 1−
RMSE2

σ
2
R2%TP

(7)

SI =
RMSE

R2%TP

(8)

where R2%RCP is the forecasted R2% from the RCPs, R2%TP is the
modeled R2% of the test profile, σR2%TP is the standard deviation
of the modeled R2% of the test profiles and n is the number of
test profiles.

4. RESULTS

4.1. Step 1: Cluster Round 1
The first cluster analysis organized the 20,454 profiles resulting
from Step 0 into 500 groups. The median of each group is used

as the representative profile and is known as the iRCP. The 500
iRCPs are shown in Figure S1. An example of ten cluster groups
is shown in Figure 6, illustrating the range in morphologies
within the groups using the 95th and 5th percentile as bounds,
and the standard deviation. The cluster analysis groups profiles
with similar shape and with lesser variance in shallower depths.

4.2. Step 2: XBNH Simulations
The XBNH simulations with the 500 iRCPs were mainly used to
generate input for the data reduction in Step 3, however it is also
interesting to analyze the range of hydrodynamic results across
such a variety of coral reef morphologies.

In general, there is a greater variance in the hydrodynamics
for the 500 iRCPs under the more severe loading conditions
(Figure 7). Loading condition 4, which includes a 7 m significant
wave height and 21 s period, has the greatest range of R2% and
setup, whereas loading condition 1 with a 3 m significant wave
height and 6 s period has the narrowest range of results for these
parameters (Figures 7A,B). Both the infragravity and sea-swell
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FIGURE 7 | Distributions of the results of the XBeach Non-Hydrostatic (XBNH) runs for the 500 initial representative cluster profiles (iRCPs), including the R2% (A),

setup at the shoreline (B), infragravity (C), and sea-swell swash (D). The loading condition numbers along the x-axis correspond to the numbering in Table 2.

swash are typically greater for the wave conditions with the
higher period (lesser steepness) (Figures 7C,D).

4.3. Step 3: Cluster Round 2
The second round of data reduction grouped the 500 iRCPs by
morphology and hydrodynamics. Five different thresholds were
used to limit the dissimilarity of joined observations, as explained
in section 3.4.2, resulting in different numbers of final RCPs. The
five thresholds resulted in 312, 201, 149, 109, and 50 RCPs.

To assess the success of Step 3, the intra-cluster similarity of
the XBNH results was compared. This was done by measuring
the relative difference of the relevant hydrodynamic parameters
between grouped iRCPs. XBNH results are only available for
the 500 iRCPs and so the analysis was done with these results,
however the 500 iRCPs represent the original 20,454 profiles
included in the study, and therefore this step provides a measure
of how similar the hydrodynamics are for all the profiles grouped
through the two cluster analyses. The R2%, setup at the shoreline,
and swash separated into infragravity and sea-swell components
were compared. As expected, the relative difference increases
when there are fewer cluster groups because more profiles
with varying hydrodynamic results are being grouped together
(Figure 8A). This leads to the conclusion that the accuracy of the

hydrodynamic prediction using the RCPs will be greater when
more RCPs are included.

The general relationship, which matches previous research
(Storlazzi et al., 2011; Quataert et al., 2015; Pearson et al., 2017),
is that reefs with wide flats, shallow average depths and mild
fore-reef slopes result in the lowest wave runup, whereas reefs
with very narrow reef flats, greater average depths, and steeper
foreshores result in the highest wave runup (Figure 8B). This
supports the inverse celerity weighting to decipher between the
different profiles.

4.4. Step 4: Application of the
Representative Cluster Profiles
The forecast of the RCPs was tested with 5000 profiles from the
dataset. As mentioned in section 3.5.1, two methods to match the
test profiles to the cluster profiles were assessed.

4.4.1. Probabilistic Match
Using the probabilistic matching method, the most accurate
estimate of R2% was obtained with the highest B value
(Figure 9A). When comparing the estimated R2% from the
RCPs to the model results, a B of 1,200 resulted in a mean
relative difference between 9.7 and 13.1% depending on the
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FIGURE 8 | (A) The similarity of the R2% (top left), setup at the shoreline (top right), infragravity (bottom left), and sea-swell swash (bottom right) of the grouped initial

representative cluster profiles (iRCPs) from the hierarchical cluster analysis (Step 3). The x-axis contains the number of representative cluster profiles (RCPs), and the

(Continued)
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FIGURE 8 | y-axis is the relative difference in the XBeach Non-Hydrostatic (XBNH) model results between all grouped profiles and their representative profiles. The

grouped profiles are the iRCPs from Step 1, and the representative profiles are the RCPs formed in Step 3. (B) The RCPs for the case of 149 cluster groups, colored

based on their relative wave runup rank, and sorted based on their average slope from 0 to 15 m depth. The x-axis is the profile width set at a constant range of 0 to

3,068 m, and the y-axis is the profile depth from MSL set at a constant range of −30 to 0m.

number of RCPs, ranging from 312 to 50. In contrast, a B
value of 100 results in the mean relative difference always
being greater than 20%. Referring to the example test profile in
Figure 9B, when B = 100, no RCP is given a match probability
greater than 10% and many are given a probability above 0.1%,
whereas when B = 1,200, two RCPs are assigned the majority
of the probability at about 40% each and few others carry any
probability at all. The general trend is that as B increases the
association to the closest RCP increases and the estimate becomes
more accurate (Figures 9A,B), although this is not the case for
all profiles.

The B value was capped at 1,200 since this was deemed to
be the upper limit for the softmax function to operate properly
with the current inputs. There is not an optimized value of B
for the softmax function applied in this study since the range
of applicable B values is dependent on the input xi and xj from
Equation (3). For the values used in this study, it was found that
B values >1,200 resulted in function errors.

4.4.2. Probabilistic vs. Direct Match
While using the probabilistic method, the estimation is most
accurate when the association to one RCP is greatest. However,
a direct match to the single most similar RCP generally does not
result in a greater accuracy. The comparison of the probabilistic
matchingmethod using the high B value of 1,200 compared to the
direct matching method is shown in Figure 10A. For the 5,000
test profiles, the direct matching technique results in slightly
greater error in the R2% estimates.

The results from the two matching techniques differ the
most at the lowest number of RCPs (50). Here, the probabilistic
method offers the greatest benefit. If a profile is not very similar
to any RCPs, which is more common when there are fewer
RCPs to match to, the probabilistic method is able to draw an
estimate as an average of the most similar RCPs, most likely
combining over and under estimated values. Conversely, for
the direct match method the best estimate is one of the over
or under estimated values. An example of this is shown in
Figure 10Bwhere the test profile does not match well to any RCP
and the direct matching method therefore provides inaccurate
R2% estimates. The estimates increase in accuracy under the
probabilistic matching method where the R2% value is derived
from multiple RCPs instead.

An added benefit of the probabilistic method is that
confidence bands can be added to the R2% estimate (Figure 10B).
To cover the full range of potential outcomes, all RCPs with a
match above 1% can be used to create a confidence band to aid
the prediction, which when matching to a single RCP cannot
be provided.

4.4.3. Cluster Profiles Predictive Skill
The predictive skill of the RCPs while using the probabilistic
matchingmethod for the 5,000 test profiles is shown in Figure 11.
There is a strong linear relationship for the case of 312 RCPs,
meaning that themajority of the data points have<10% deviation
between predicted and modeled values, which gradually reduces
moving toward 50 RCPs. For all RCP values, the majority
of instances when the error is >10% occur at lower R2%
values, meaning that the estimate is typically more accurate
for predicting flood scenarios (high R2%) compared to more
mild conditions.

All performance metrics, explained in section 3.5.2, lead to
similar findings. The RMSE continuously decreases for greater
numbers of RCPs, meaning that the data is most concentrated
around the line of best fit with more RCPs. The increasing
R2 and skill, as well as the decreasing SI all suggest that the
predictability is enhanced asmore RCPs are used. Finally, the bias
switches between positive and negative suggesting either over or
underestimating, however in all cases it is relatively low.

These results suggest that the RCPs are highly effective in
predicting the R2% for the 5,000 test profiles considered for this
study. When using 312 RCPs the accuracy is greatest, forecasting
the R2% with a mean relative difference of 9.7%. Fewer RCPs can
be used, however, increased data reduction comes at the expense
of higher predictive error. Using 50 RCPs (fewest tested) results
in a mean relative difference of 13.1%. These error values are
within the same range as the empirical equation developed by
Stockdon et al. (2006) to calculate R2% for natural beaches, used
by engineers around the world.

5. DISCUSSION

The presented methods and techniques have not been widely
used for applications in coastal engineering. This section provides
the main sensitivities and potential future applications of
this work.

5.1. Cluster Analysis
Two cluster analyses were performed to develop the RCPs of
the dataset. The techniques to generate these RCPs can vary
significantly, and although the presented methods were selected
in order to create the optimal RCPs, modifications could be
made which would alter the outcome. The key sensitivities of the
cluster analysis include the cluster method, the variables, and the
weighting of the variables.

Many cluster analysis techniques are applicable for this type
of study, and each has pros and cons (Friedman et al., 2001; Rai
and Singh, 2010). Other methods have also been applied and
compared in other coastal engineering applications (Camus et al.,
2011). For this dataset, K-medians was determined to result in the
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FIGURE 9 | Results of the influence of the B value in the probabilistic matching method. (A) For increasing values of B and representative cluster profiles (RCPs), the

accuracy of the R2% estimation increases. (B) An example of matching the RCPs with one real-world test profile for varying values of B. As B increases, the match to

the most similar RCP increases and fewer RCPs are given any match probability. RCPs are only plotted if they have a match probability above 0.1%. The scatter plots

provide the modeled value and estimate of R2% for the four loading conditions (Table 2).
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FIGURE 10 | Results of the direct and probabilistic matching method. (A) The probabilistic technique has a slightly greater accuracy in R2% estimation. For both

cases, the accuracy decreases as the number of representative cluster profiles (RCPs) decrease. (B) An example of the two matching techniques when using 50

RCPs with one of the unique test profiles. The scatter plots provide the modeled value and estimate of R2% for the four loading conditions (Table 2). The test profile

does not match well to any of the RCPs, and therefore the R2% estimation from the direct matching technique suffers. The estimation from the probabilistic technique

is influenced from multiple RCPs and is more accurate for all four loading conditions. The green values in the scatter plot represent the confidence bands that can be

determined while using the probabilistic technique.

least intra-cluster variance of morphology compared to K-means,
K-medoids, Maximum Dissimilarity, and Principal Component
Analysis. However, other benefits may come from using one of

the other methods which has not been explored. Hierarchical
clustering was selected for the second cluster analysis because
it works well with varying attribute types or large datasets, and
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FIGURE 11 | Modeled vs. estimated R2% for the five different numbers of representative cluster profiles (RCPs), ranging from 312 (top left) to 50 (bottom left). The

table in the bottom right provides data comparison statistics, explained in section 3.5.2.
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a threshold can be set to limit the intra-cluster dissimilarity
(Madhulatha, 2012).

Apart from the clustering technique itself, the input into the
algorithm is equally important. In the first cluster analysis, the
normalized bathymetric profile depths and inverse wave celerity
were used (Figure 4) to group similarly shaped profiles with an
emphasis on the shallower part of the profile. This selection is
appropriate for the goal of this study, however other parameters
could be used as well. The celerity does not account for the
impact of the slope of the fore reef, which is known to impact the
infragravity components of the incoming waves (Storlazzi et al.,
2011; Quataert et al., 2015; Pearson et al., 2017). Using celerity
therefore excludes a potentially key aspect of successful grouping.
In the second cluster analysis, the topobathymetric cross-shore
profile was combined with the hydrodynamic response at the
shoreline determined from the XBNH simulations for the input
into the clustering algorithm. These were selected to group
profiles with the most similar flooding characteristics, but again,
other parameters may be used. For example, the infragravity and
sea-swell components of the wave height at a certain distance
offshore may be beneficial to add as an input, however by
using the R2%, setup, and swash separated into infragravity and
sea-swell components, most of the important information is
already included.

Lastly, the weighting of the inputs can be modified to vary the
relative importance of certain inputs. In the first cluster analysis,
the inverse wave celerity was included as a weighting function.
This is because the wide variety of coral reef morphologies makes
it difficult to apply a simple weighting function that can be
used across all topobathymetric cross-shore profiles. Since the
required weighting is proportionate to the depths (values), not
the cross-shore position (variables), the weight for the same
variable (cross-shore position) would not be consistent across
all profiles. Therefore, the inverse wave celerity was selected
which includes the influence of the shallow depths of the profile.
For both the first and second cluster analysis, 50% weighting
was applied to the morphology and 50% to the celerity or
hydrodynamics. An equal balance was selected because the
relative contribution of the inputs to the successful clustering
based on wave runup is not certain. It would be interesting
to compare the RCPs with different weighting assigned to the
morphology and hydrodynamics, for example if 100% weighting
was assigned to the hydrodynamics. Most likely the results
would not be influenced heavily because the morphology also
characterizes the hydrodynamic response.

5.2. Wave Conditions
The results from the XBNH simulations are a driving factor
for the final grouping of the iRCPs. In this study, four wave
conditions were used (Table 2) that ranged in period from 6
to 21 s, and in height from 3 to 7 m. Although they were
chosen strategically to cover a wide range of potential flooding
conditions and different types of ocean waves, if two profiles
have similar wave runup over these four conditions, it does not
necessarily mean that they always will for higher or lower energy
conditions. The cluster analysis and accuracy of RCP’s prediction
are therefore limited by the variety of tested wave conditions.

5.3. Estimating Wave Runup
Twomethods for using the RCPs to estimate the wave runupwere
developed. The probabilistic approach has proven to typically
have a greater accuracy in the R2% prediction compared to the
direct matching method and comes with the added benefit of a
confidence band associated with the estimate (Figure 10). Other
matching techniques could be developed and tested, however
the idea of using probabilities associated with the prediction
is beneficial if considering implementing the RCPs with a
Bayesian Network (BN) or other probabilistic tool. BNs are
probabilistic models that have been successfully used to make
predictions of hydrodynamics and morphology in numerous
coastal applications (Gutierrez et al., 2011, 2015; Plant and
Holland, 2011; Poelhekke et al., 2016). After being trained
with sufficient data, they rely on Bayesian probability to make
predictions of desired output. In this case, the input would be
the profile and offshore wave conditions, and the output would
be the wave runup and other hydrodynamic results. The results
of the probabilistic matching could also be fed into the network
to aid the prediction.

To further validate the results, the RCPs should be used to
estimate the wave runup of coral reef profiles that were not
included in the initial dataset. Since the 5,000 test profiles were
included in the generation of the RCPs, at least one of the RCPs
should be similar in shape and wave runup to each of the test
profiles. For other cross-shore profiles with morphology within
the range of the profiles included in this study, the accuracy of
the wave runup estimation should not vary significantly.

To include a new batch of coral reef profiles, the methodology
would have to be repeated. This would require going back to Step
0 to filter and align the profiles before performing the first cluster
analysis. An update would only be beneficial if the new profiles
are significantly different to any of the 500 iRCPs presented in this
study; only then would a new cluster group be created. Otherwise,
the new profiles would join one of the existing cluster groups and
the outcome would not have a significant change.

5.4. Application of the Methodology
The presented methodology has been demonstrated with many
coral reef properties set as constant. It is well-established that
changes in the roughness and friction (Lowe et al., 2005; Pomeroy
et al., 2012; Monismith et al., 2015; Buckley et al., 2016; Rogers
et al., 2017, 2018; Osorio-Cano et al., 2019; Reguero et al.,
2019), porosity (Lowe et al., 2008; Asher et al., 2016; Asher
and Shavit, 2019; Zhu et al., 2019), and storm surge (Hoeke
et al., 2013; Smithers and Hoeke, 2014; Tajima et al., 2016)
will affect the hydrodynamics over a coral reef, and in turn the
resulting wave runup at the shoreline. Therefore, the RCPs as
they are currently do provide a means to estimate wave runup
based on reef morphology, although the estimate is limited to
coral reefs with similar properties used in this study. The effects
of the reef properties were excluded from the scope of this
study because the information for this dataset is not available.
Although the properties are not included, we were able to
distinguish the representative profile shapes which can be used
to form the foundation for an effective tool that does encompass
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FIGURE 12 | The required number of XBeach Non-Hydrostatic (XBNH) runs (C) for different numbers of representative cluster profiles (RCPs) (top and right axis) or a

schematized profile (bottom and left axis) such as that of BEWARE, assuming 540 XBNH runs are needed per profile (Pearson et al., 2017). (A) An example of a

schematized profile with four parameters and (B) how three more parameters are required to be added to the schematized profile in order to represent a second reef

flat, corresponding to the x-axis in (C).

the full range of effects that physical reef properties have on
the hydrodynamics.

As mentioned in section 1, this study was conducted to
continue the work of Pearson et al. (2017), and the intended use
of the RCPs is to replace the simplified profiles used in developing
a predictive model such as BEWARE. Combining the RCPs with
such a model would be a step toward the development of a
global flood EWS for coral-reef lined coasts. To do so, similar
steps done by Pearson et al. (2017) would have to be followed,
including training the model with XBNH results that incorporate
the variation in reef properties, such as performing multiple
simulations for the same reef profile but with varying values of
friction. Each of these combinations is then also required to be
simulated under a range of wave conditions. This way, the model
includes the combination of the full range of reef morphologies,
physical properties, and offshore forcing conditions, which also
allows the user to estimate wave runup based on these specifics.

One of the benefits of using the RCPs compared to a simplified
reef profile (e.g., Pearson et al., 2017) is that when a greater
variety of reef morphologies are included (more cluster profiles),
the number of required XBNH runs increases linearly. For a
simplified reef profile defined by parameters (e.g., fore reef slope,
reef flat width, reef crest height), additional parameters must
be included to expand the variety in morphology that they
can represent (e.g., Figures 12A,B where an irregularity along
the reef flat is added). Each additional parameter exponentially
increases the number of combinations of profile shapes, and in
turn exponentially increases the number of required XBNH runs,
as shown in Figure 12. Therefore, the RCPs heavily reduce the
computational time required to create a probabilistic model.

Apart from wave runup estimation, another use for the RCPs
within a probabilistic model is estimating future impacts based
on climate change scenarios. Since the model is a quick and
accurate tool, many different loading conditions with varying
offshore water levels and wave parameters could be analyzed to
estimate the associated flooding impacts that they would cause.
Since the RCPs encapsulate such a wide variety of real-world
topobathymetric profiles, large-scale climate change estimates
could be made to assess the effects of different rates of SLR
on multiple different coral reef profiles, providing valuable
information about the types of coastlines and their associated
communities and infrastructure that are most at risk.

A comparison between the estimated wave runup from the
RCPs and BEWARE with measured wave runup has not been
done. It is difficult to source valid field measurements of wave
runup, and they are typically recorded at time intervals much
greater than what is modeled, as well as at varying vertical
levels which make the comparison challenging. The assumption
is that the RCPs would enhance the predictive accuracy, especially
for the obscure reef profiles, most dissimilar to the schematic
fringing reef used in BEWARE.

6. CONCLUSIONS

Data mining techniques were used to reduce an extensive dataset
of coral reef topobathymetric cross-shore profiles to a subset
of RCPs. We carried out two stages of cluster analysis that
grouped the profiles based on morphology, inverse wave celerity,
and hydrodynamic response to typical storm wave conditions.
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Techniques developed here can be used to effectively match
real-world coral reef cross-shore profiles to the RCPs in order to
generate an estimate of wave runup.

The RCPs have demonstrated a high predictive skill for the
R2%, used to indicate extreme wave runup and potential flooding.
The accuracy of projections is in the same range as the empirical
equation of R2% for natural beaches (Stockdon et al., 2006) that is
used by engineers around the world. A useful next step would
be to incorporate the RCPs into a BN or other probabilistic
model, developed to also accommodate the ranges in physical
reef properties such as friction which have been omitted from
this study. Such a model would be able to provide accurate
estimates of wave runup for an extensive array of coral reefs and
offshore wave conditions, and could form the basis of an EWS
and scenario assessment tool for reef-lined coasts.
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