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After almost 20 years of intensive research on
magnetocaloric effects near room temperature,
magnetic refrigeration with first-order magnetocaloric
materials has come close to real-life applications.
Many materials have been discussed as potential
candidates to be used in multicaloric devices.
However, phase transitions in ferroic materials are
often hysteretic and a metric is needed to estimate
the detrimental effects of this hysteresis. We propose
the coefficient of refrigerant performance, which
compares the net work in a reversible cycle with
the positive work on the refrigerant, as a universal
metric for ferroic materials. Here, we concentrate on
examples from magnetocaloric materials and only
consider one barocaloric experiment. This is mainly
due to lack of data on electrocaloric materials. It
appears that adjusting the field-induced transitions
and the hysteresis effects can minimize the losses in
first-order materials.

This article is part of the themed issue “Taking the
temperature of phase transitions in cool materials’.

1. Introduction

Domestic refrigeration and air-conditioning contribute
to more than 20% of the electricity bill of a US
household [1]. In (sub)tropical areas like Singapore, this
even exceeds 50% [2]. The majority of cooling devices
nowadays utilize the vapour refrigeration cycle, which
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by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. Schematic picture of a magnetocaloric wine cooler using MnFePSi type of materials.

works as follows. First, the gas is compressed in a compressor, the heat produced in the
compression stage is released to the environment and the gas condenses to form a liquid. In a
throttling stage, the pressure of the liquid is lowered and the fluid cools down, forming a mixture
of liquid and gas. Evaporation from the cold fluid takes up the heat from the substance that needs
to be cooled and the gas is fed back to the compressor.

This refrigeration cycle can be made energy-efficient when certain gases are used. However,
these gases are extremely strong greenhouse gases. Currently, refrigerant gases are the fastest-
growing source of greenhouse gas emissions. If left unchanged, it is expected that in 2050
refrigerant gases will represent 9-19% of global greenhouse gas emissions [3].

A similar, but more energy-efficient refrigeration cycle than described above can be achieved
with magnetic materials that show a large magnetocaloric effect (MCE). These materials heat up
when a magnetic field is applied. After this heat is transferred to the environment, they cool down
on removing the magnetic field and can take up heat from the substance that needs to be cooled.
The processes as described are highly reversible, and therefore very energy-efficient, which can
lead to a lower utility bill. Additionally, these magnetic materials are solids that can be recycled
and do not contribute to the atmospheric greenhouse effect. Thus, this solid-state technology has
the potential to strongly reduce the environmental impact of the present cooling technology.

Recently, a prototype of a full-grown appliance was presented at the Las Vegas Consumer
Electronics Show CES2015 [4], as shown in figure 1. This appliance contains active magnetic
regenerator (AMR) MCE materials developed at TU Delft and produced by BASF. It is the result
of a collaboration between Haier, Astronautics Corp. and BASEF. This prototype is an important
step towards commercialization of this technology, but it also shows the complexity of such a
machine. Obviously, expertise in quite different fields of technology is required to achieve good
performance. One of the important steps is translating magnetic properties into thermodynamic
performance. In this paper, we discuss a metric, the coefficient of refrigerant performance (CRP),
to characterize MCE materials. CRP was originally introduced in 1985 by Wood & Potter [5] to
MCE, but has hardly been applied to modern MCE materials.

2. Promising magnetocaloric materials

All magnetic materials show an MCE. This effect is usually enhanced in the vicinity of a magnetic
phase transition. The relevant quantities for magnetic cooling are the field-induced temperature
change AT and entropy change AS, respectively. The former represents the driving force for heat
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transfer and the latter represents the amount of heat that can be pumped in one refrigeration cycle.
Obviously, both these quantities are a strong function of applied magnetic field and temperature.

For room-temperature applications, Gd metal with a Curie temperature of 293 K is considered
as a benchmark material, as it has a rather large magnetic moment and displays a rather large AT
in moderate fields [6]. Giant-magnetocaloric materials, such as FeRh [7], Gd5(Ge,Si)4 [8], Heusler
alloys [9-11], La(Fe,Si)13 and its hydrides [12,13], MnAs [14], MnFe(P,X) compounds with X = As,
Ge or Si [15-17] and to a lesser extent manganites [18], combine large AT and large AS values.
However, as the phase transition in these materials is of first order, hysteresis effects can lead
to a strong reduction of these values in a cyclic process. This becomes especially relevant if one
wants to use these materials in a commercial cooling device, as the magnetic field that can be
generated at reasonable costs is about 1T [19], rather than the 5-14 T that are nowadays standard
fields available in commercial magnetometers based on superconducting coils [20].

3. Current metrics

Another metric, the refrigerant capacity (RC), also introduced by Wood & Potter [5], is rather
popular [21], in particular for second-order MCE materials [22]. From the fact that the second
law of thermodynamics requires that the entropy change at the cold side AS. cannot exceed the
entropy change at the hot side ASy,, they derive an expression for RC:

QcAT

Wrev = Qh - Qc = Te

— ASAT =RC, 3.1)

with Wrey the reversible work, Qp and Q. the expelled and received heat at warm temperature
Ty, and cold temperature T, respectively, AT =Ty, — T. and AS = ASy, = AS.. In their paper, Ty,
and T, are rather ill defined, and it has become a general practice to take AT as the width at
half-maximum of a plot of AS as a function of the temperature [22]. Obviously, this metric is not
dimensionless and thus not a coefficient of performance (COP). In a recent review, Moya et al.
noted the lack of a COP in the field of MCE materials [23] and a year later they proposed the
coefficient n [24]:

i

=Ty (3.2)

where Q = ASTy, with Ty the temperature at which AS was derived and W either the electrical
work required to generate the field Hy in a solenoid or the mechanical work to move the sample
into the field of a permanent magnet device. This coefficient is dimensionless; however, as we
have shown in a recent study [25], in the case of first-order materials, even if one observes only
limited hysteresis, it is not sufficient just to take AS and Ty as cooling metric. It turns out that
the effect of hysteresis on the cyclic response of a material strongly depends on the shift of the
critical temperature in response to an applied field. Materials with the same AS and hysteresis
can show very different cyclic responses. Therefore, one has also to take the reversible adiabatic
temperature change into account. Therefore, we propose to use CRP:

fri t it ASAT,
CRP(Bonay) = refrigerant capacity rev

e : =3 . (3.3)
positive work on refrigerant Jom M(Tc, B)dB’

In their original proposal for CRP, Wood & Potter considered only second-order materials at
cryogenic temperatures, and for these materials, AS and AT are fully reversible. They could
therefore use mean-field theory to evaluate CRP and find values of about 2/3 in high fields
B/Ty>1 and for lower fields CRP approaches zero [5]. The numerator in equation (3.3) is the
cooling or net work of a reversible Carnot cycle, and therefore in a real machine with heat losses
and the production of entropy, we shall always find lower performance. However, especially for
first-order materials, the CRP helps in estimating how detrimental hysteresis effects are in a given

material. Note that hysteresis effects were completely neglected in the Ashby maps proposed
by Sandeman [26].
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Table 1. AS, AT and CRP of several materials as determined with equation (3.3) at 1T field change; for FeRh the pressure
change of 250 MPa was used in the barocaloric experiment. The error in CRP values for LaFeSi type materials is estimated to be
somewhat larger as we had to digitize the magnetic measurements.

materials AS(kg~TKT) ATy (K) (RP references
Mn1.25 FEQJO P0‘495i0.51 8.5 2.2 047(2) this work

4. Application to room-temperature refrigerants

As mentioned above, Gd is considered as benchmark material for room-temperature magnetic
refrigeration. Based on the data of Dan’kov et al. [6] for magnetization, AS and AT, we derive CRP
values of 0.13, 0.17, 0.20 and 0.22 for field changes of 0.5, 1, 1.5 and 2 T, respectively. For values
of the order of 2/3 as found by Wood & Potter in their calculations, one would need magnetic
fields exceeding 10 T. Finding a complete set of data including magnetization and AT is rather
important as the data should originate from the same sample or at least from the same batch.
Otherwise, as was shown by Dan’kov et al. [6], even for second-order materials, small variations
in impurity levels can have a drastic influence on Tc and the MCE. It is easiest to generate a
complete set of data in-house, so we did so on samples of MnFe(PX) with X =As, Ge and Si
[25,27,28] and (Prg ¢5Srp 35)MnO3. Additionally, we looked at La(Fe,Si)q3 [29], La(Fe,Mn,Si)13Hj 5
[30] and at the barocaloric effect observed in FeRh [31]. The data are summarized in table 1, and for
the calculation of the mechanical work in the barocaloric experiment, we used the X-ray density
of Fep 49Rhg 51 and the volume change of 1% given in [30].

From table 1 we find that first-order MCE materials produce larger values of CRP than Gd.
The only exception is the manganite, which shows a rather low AT. Here, the three oxygen
atoms per formula unit contribute significantly to the specific heat that contributes inversely
to AT. The systematically larger values of CRP for the MnFe(P,X) compounds with X = As and
Si, B compared to the La(Fe,Si)13 compounds result from the completion of the metamagnetic
transition, combined with a very low hysteresis for the former compounds. Seemingly, Mn
substitution of Fe has some detrimental effect on the La(Fe,Si)13 hydride samples.

As the CRP requires a rather complete set of data, currently it is not possible for us to compare
all caloric materials known in the literature. This paper is intended to encourage our peers to
collect these complete sets and publish these data. As commercial refrigerators will operate in
rather low fields, one should concentrate on data in magnetic fields around 1T, pressures of a few
hundred megapascals and electric fields below kilovolts.

Data accessibility. The data provided in table 1 are part of the PhD thesis of H.Y., ‘Nature of the first-order
magnetic phase transition in giant-magnetocaloric materials’, chapters 4 and 5. An electronic version of this
dissertation is available at http:/ /repository.tudelft.nl/.
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