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ON INTEGRALITY IN SEMIDEFINITE PROGRAMMING
FOR DISCRETE OPTIMIZATION\ast 

FRANK DE MEIJER\dagger AND RENATA SOTIROV\ddagger 

Abstract. It is well known that by adding integrality constraints to the semidefinite program-
ming (SDP) relaxation of the max-cut problem, the resulting integer semidefinite program is an exact
formulation of the problem. In this paper we show similar results for a wide variety of discrete opti-
mization problems for which SDP relaxations have been derived. Based on a comprehensive study on
discrete positive semidefinite matrices, we introduce a generic approach to derive mixed-integer SDP
(MISDP) formulations of binary quadratically constrained quadratic programs and binary quadratic
matrix programs. Applying a problem-specific approach, we derive more compact MISDP formula-
tions of several problems, such as the quadratic assignment problem, the graph partition problem,
and the integer matrix completion problem. We also show that several structured problems allow
for novel compact MISDP formulations through the notion of association schemes. Complementary
to the recent advances on algorithmic aspects related to MISDP, this work opens new perspectives
on solution approaches for the here considered problems.

Key words. mixed-integer semidefinite programming, discrete positive semidefinite matrices,
binary quadratic programming, quadratic matrix programming, association schemes

MSC codes. 90C11, 90C22, 90C27
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1. Introduction. Semidefinite programming deals with the optimization of a
linear function over the cone of positive semidefinite matrices under the presence of
affine constraints. Over the last decades, semidefinite programs (SDPs) have proven
themselves particularly useful in providing tight relaxations of discrete optimization
problems [39, 52, 55]. Following the extension from linear programming to integer
linear programming initiated in the 1960s, a recent interest in incorporating integer
variables into SDPs has arisen. When the variables in an SDP are required to be
integer, we refer to the problem as an integer SDP (ISDP). When an SDP contains
both integer and continuous variables, we refer to the program as a mixed-integer
SDP (MISDP).

The combination of positive semidefiniteness and integrality induces a lot of struc-
ture in matrices. Exploiting this fact, it has been shown that several classical discrete
optimization problems allow for a formulation as an (M)ISDP [2, 13, 19, 38, 44, 45].
Recently, programs including positive semidefinite matrix variables and integrality
constraints have also been used to model more applied problems; see [10, 17, 21, 24,
36, 42, 50, 56, 57, 58]. Despite the literature on these particular problems, a generic
approach for deriving MISDPs has not been applied.

In this paper we advocate that MISDPs are suitable as a general modeling tech-
nique for many optimization problems. We particularly focus on binary quadratic
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1072 FRANK DE MEIJER AND RENATA SOTIROV
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s.t. (x, X) ∈ XMISDP
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Fig. 1. Overview of various exact formulations of BQPs and their relaxations. A double arrow
(\Leftarrow \Rightarrow ) denotes equivalence between the formulations, while a solid arrow (\rightarrow ) denotes that the
formulation is relaxed from the former to the latter. The sets \scrX , \scrX MILP , and \scrX MISDP are defined
by nonconvex integer constraints, while \scrX MILP and \scrX MISDP are convex relaxations. Note: color
appears only in the online article.

programs (BQPs); see Figure 1. A common approach to solve a BQP is by exploiting
linearization techniques to model it as an MILP, which is solved in a branch-and-
bound framework. This research line is depicted in the top stream of Figure 1. An
alternative approach is to apply a lifting of the variables to model the problem as
an SDP with a nonconvex rank constraint. After relaxing the rank constraint, one
obtains an SDP relaxation of the problem. This approach corresponds to the bot-
tom arrow in Figure 1. It is generally disregarded that this relaxation can also be
obtained via relaxing integrality in an MISDP model that is equivalent to the BQP.
Realizing this fact provides a systematic way of approaching BQPs via MISDPs. The
MISDP formulation has the advantages to have both a linear objective and a convex
relaxation that is often stronger than linear programming relaxations.

The focus of this paper is primarily on the modeling aspect of discrete optimiza-
tion problems as (M)ISDPs. There exist several general-purpose solution approaches
for (M)ISDPs such as branch-and-bound methods [22, 43, 31] and branch-and-cut
methods [29, 34, 44]. The computational ingredients of the above-mentioned ap-
proaches combined with the theoretical framework of modeling problems as (M)ISDPs
that we derive in this paper, provide a complementary foundation of mixed-integer
semidefinite programming in discrete optimization.

Main results and outline. This paper studies the theoretical role of MISDP in
discrete optimization. We show that many problems can be modeled as an (M)ISDP,
either by a generic approach for certain large problem classes, or by a more problem-
specific approach. Our approach is accompanied with a large number of examples of
various discrete optimization problems.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1073

In section 2, we provide various theoretical results on positive semidefinite (PSD)
\{ 0,1\} -, \{ \pm 1\} -, and \{ 0,\pm 1\} -matrices. For instance we derive an integer semidefinite
characterization of PSD \{ 0,1\} -matrices of rank (at most) r. We also present a com-
binatorial, polyhedral, set-completely positive, and integer hull description of the set
of PSD \{ 0,1\} -matrices bounded by a certain rank, among other results.

These matrix theoretical results are exploited in section 3, when proving that
many BQPs allow for a formulation as a binary SDP (BSDP). We establish this
result for binary quadratically constrained quadratic programs and, in particular, for
binary quadratic matrix programs. Problems that allow for a formulation as a binary
quadratic matrix program, e.g., quadratic clustering or packing problems, can be
modeled as a compact BSDP with a PSD matrix variable of relatively low order.

In section 4, we treat several specific problem classes for which we obtain MISDP
formulations that do not follow from the above-mentioned framework or for which it
is possible to obtain a more compact formulation. Among these are the quadratic
assignment problem, several graph partition problems, and graph problems that can
be modeled based on association schemes. Also, as most formulations that we discuss
include binary variables, we present two problems that have an MISDP formulation
where the variables are nonbinary.

Notation. We denote by 0n \in \BbbR n the vector of all zeros, and by 1n \in \BbbR n the
vector of all ones. The identity matrix and the matrix of ones of order n are denoted
by In and Jn, respectively. We omit the subscripts of these matrices when there is
no confusion about the order. The ith unit vector is denoted by ei and we define
Eij := eie

\top 
j . The set of n\times n permutation matrices is denoted by \Pi n. For n \in \BbbZ +,

we define the set [n] := \{ 1, . . . , n\} . For any S \subseteq [n], we let 1S be the binary indicator
vector of S. The support of x\in \BbbR n is denoted by supp(x).

We denote the set of all n \times n real symmetric matrices by \scrS n. The cone of
symmetric PSD matrices is defined as \scrS n

+ := \{ X \in \scrS n : X \succeq 0\} , where X \succeq 0 denotes
that X is PSD. The trace of a square matrix X = (Xij) is given by tr(X) =

\sum 
iXii.

For any X,Y \in \BbbR n\times m the trace inner product is defined as \langle X,Y \rangle := tr(X\top Y ) =\sum n
i=1

\sum m
j=1XijYij .

The operator diag :\BbbR n\times n \rightarrow \BbbR n maps a square matrix to a vector consisting of its
diagonal elements. We denote by Diag : \BbbR n \rightarrow \BbbR n\times n its adjoint operator. The direct
sum of matrices X and Y is defined as X \oplus Y = (X 0

0 Y ) . The Kronecker product X\otimes Y
of matrices X \in \BbbR p\times q and Y \in \BbbR r\times s is defined as the pr\times qs matrix composed of pq
blocks of size r\times s with block ij given by xijY , i\in [p], j \in [q].

2. Theory on discrete PSD matrices. Most discrete optimization problems
that we consider in this paper are defined using binary variables, i.e., variables taking
values in \{ 0,1\} or \{ \pm 1\} , or ternary variables, i.e., variables whose values are in \{ 0,\pm 1\} .
In this section we derive several useful results on these matrix sets with respect to
positive semidefiniteness. We start by considering the PSD \{ 0,1\} -matrices, after
which we extend these results to PSD \{ \pm 1\} - and \{ 0,\pm 1\} -matrices.

2.1. Theory on PSD \{ 0,1\} -matrices. In this section we consider the set of
PSD \{ 0,1\} -matrices. We derive and recall several formulations of this matrix set,
including a combinatorial, polyhedral and a set-completely positive description. We
start this section with two known results, i.e., Theorem 1 and Proposition 1, after
which we present a series of new results.

PSD \{ 0,1\} -matrices are studied explicitly by Letchford and S{\e}rensen [40]. They
derive the following decomposition result on PSD \{ 0,1\} -matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1074 FRANK DE MEIJER AND RENATA SOTIROV

Theorem 1 (see [40]). Let X \in \{ 0,1\} n\times n be a symmetric matrix. Then X \succeq 0
if and only if X =

\sum r
j=1 xjx

\top 
j for some xj \in \{ 0,1\} n, j \in [r].

Given S \subseteq \BbbR +, a matrix X is called S-completely positive if X = PP\top for some
P \in Sn\times k. In case S =\BbbR +, we call X completely positive. It follows from Theorem 1
that any PSD \{ 0,1\} -matrix is \{ 0,1\} -completely positive.

The decomposition of PSD \{ 0,1\} -matrices gives rise to a useful combinatorial
interpretation on the complete graph Kn. Viewing each vector xj \in \{ 0,1\} n as an in-
dicator vector on the vertices of Kn, the matrix xjx

\top 
j can be seen as the characteristic

matrix of a clique in Kn. Given a decomposition X =
\sum k

j=1 xjx
\top 
j , the cliques indexed

by j \in [k] are pairwise disjoint, since the diagonal of X is at most one. Therefore, each
PSD \{ 0,1\} -matrix is the characteristic matrix of a set of pairwise disjoint cliques in
Kn. This combinatorial structure is in the literature also known as a clique packing.

As we will see in the next section, many SDP formulations arise from a lifting
PP\top , where P is an appropriate n\times r \{ 0,1\} --matrix. Consequently, the resulting PSD
\{ 0,1\} -matrix has rank at most r. From that perspective, it makes sense to consider
the set of PSD \{ 0,1\} -matrices that have an upper bound on the rank. For positive
integers r,n with r\leq n, let us define the discrete set

\scrD n
r :=

\bigl\{ 
X \in \{ 0,1\} n\times n : X \succeq 0, rank(X)\leq r

\bigr\} 
.(1)

Theorem 1 induces the following \{ 0,1\} -completely positive description of \scrD n
r :

\scrD n
r =

\bigl\{ 
PP\top : P \in \{ 0,1\} n\times r, P1r \leq 1n

\bigr\} 
.(2)

Next, we will derive another formulation of \scrD n
r , where the constraint rank(X)\leq r is

established by an appropriate linear matrix inequality. To that end, we exploit the
following result that is implicitly proved in many sources and explicitly by Dukanovic
and Rendl [18].

Proposition 1 (see [18]). Let X \in \{ 0,1\} n\times n be symmetric. Then, the following
are equivalent:

(i) diag(X) = 1n, rank(X) = r, X \succeq 0.
(ii) There exists a permutation matrix Q such that QXQ\top = Jn1

\oplus \cdot \cdot \cdot \oplus Jnr
with

n= n1 + \cdot \cdot \cdot + nr.
(iii) diag(X) = 1n, rank(X) = r, and X satisfies the triangle inequalities Xij +

Xik  - Xjk \leq 1 for all (i, j, k)\in [n]\times [n]\times [n].
(iv) diag(X) = 1n and (tX  - J\succeq 0\Leftarrow \Rightarrow t\geq r).

Proposition 1 establishes the equivalence between useful characterizations of rank-
r PSD \{ 0,1\} -matrices that have ones on the diagonal. In the following corollary we
generalize this result by relaxing the condition diag(X) = 1n. The proof is similar to
the proof of Proposition 1.

Corollary 1. Let X \in \{ 0,1\} n\times n be symmetric. Then, the following statements
are equivalent:

(i) rank(X) = r, X \succeq 0.
(ii) There exists a permutation matrix Q such that QXQ\top = Jn1 \oplus \cdot \cdot \cdot \oplus Jnr \oplus 

0nz\times nz
with n= n1 + \cdot \cdot \cdot + nr + nz.

(iii) rank(X) = r and X satisfies the triangle inequalities Xij \leq Xii for all i \not = j
and Xij +Xik  - Xjk \leq Xii for all j < k, i \not = j, k.

(iv) tX  - diag(X)diag(X)\top \succeq 0 if and only if t\geq r.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1075

Proof. Throughout the proof, let N1 := \{ i\in [n] : Xii = 1\} and let N0 := [n] \setminus N1.
Moreover, let Q\prime denote a permutation matrix corresponding to a permutation of [n]
that maps the ordered set (1,2, . . . , n) to an ordered set where the elements in N1

occupy the first N1 positions.
(i) \Leftarrow \Rightarrow (ii) : Let X be PSD with rank(X) = r. Then, the rows and columns

indexed by N0 only contain zeros. As a consequence, Q\prime X(Q\prime )\top is of the form
Y \oplus 0| N0| \times | N0| with diag(Y ) = 1| N1| and Y \succeq 0. By Proposition 1 there exists a
permutation matrix \=Q such that \=QY \=Q\top = Jn1

\oplus \cdot \cdot \cdot \oplus Jnr
with | N1| = n1 + \cdot \cdot \cdot + nr.

Let Q := ( \=Q\oplus I| N0| )Q
\prime , then QXQ\top = Jn1

\oplus \cdot \cdot \cdot \oplus Jnr
\oplus 0| N0| \times | N0| .

Conversely, suppose that QXQ\top = Jn1
\oplus \cdot \cdot \cdot \oplus Jnr

\oplus 0nz\times nz
with n = n1 +

\cdot \cdot \cdot + nr + nz for some permutation matrix Q. Then, obviously, QXQ\top is PSD with
rank(QXQ\top ) = r, from which it follows that X \succeq 0 with rank(X) = r.

(i) \Leftarrow \Rightarrow (iii) : For n = 2, the inequalities Xij \leq Xii, i \not = j, are trivially necessary
and sufficient for X \succeq 0. For n \geq 3, the result follows from Letchford and S{\e}rensen
[40, Proposition 3].

(i) \Leftarrow \Rightarrow (iv) : Suppose X is PSD with rank(X) = r. Then, Q\prime X(Q\prime )\top = Y \oplus 
0| N0| \times | N0| with diag(Y ) = 1| N1| and Y \succeq 0. This leads to the following sequence of
equivalences:

tX  - diag(X)diag(X)\top \succeq 0 \Leftarrow \Rightarrow tQ\prime X(Q\prime )\top  - Q\prime diag(X)diag(X)\top (Q\prime )\top \succeq 0

\Leftarrow \Rightarrow t
\bigl( 
Y \oplus 0| N0| \times | N0| 

\bigr) 
 - 
\biggl( 
1| N1| 
0| N0| 

\biggr) \biggl( 
1| N1| 
0| N0| 

\biggr) \top 

\succeq 0

which holds if and only if t\geq r, by statement (iv) of Proposition 1.
Conversely, suppose that tX - diag(X)diag(X)\top \succeq 0 if and only if t\geq r. If r= 0,

then t= 0 induces diag(X) = 0n, while t= 1 implies X  - diag(X)diag(X)\top =X \succeq 0,
since diag(X) = 0n. Hence, X must be the zero matrix, which is PSD with rank
zero. Now, assume that r \geq 1. Then, rX  - diag(X)diag(X)\top \succeq 0 can be written
as X \succeq 1

rdiag(X)diag(X)\top \succeq 0. Let r\ast := rank(X). It follows from the previously
proven implication, (i) =\Rightarrow (iv), that r\ast = min\{ t : tX  - diag(X)diag(X)\top \succeq 0\} .
By assumption, this value equals r, so r\ast = r. We conclude that X is PSD with
rank(X) = r.

Corollary 1 can be exploited to prove the following result.

Corollary 2. Let X \in \{ 0,1\} n\times n be symmetric. If Y =
\Bigl( 

r diag(X)\top 

diag(X) X

\Bigr) 
\succeq 0,

then X \succeq 0 with rank(X)\leq r.

Proof. The assertion X \succeq 0 is trivial, so it suffices to show that Y \succeq 0 implies
rank(X) \leq r. If r = 0, then diag(X) = 0n. Since X \succeq 0, X must be the zero matrix
and, thus, rank(X) = 0.

Now, let r \geq 1. The Schur complement lemma implies that rX  - diag(X)
diag(X)\top \succeq 0. Let r\ast := min

\bigl\{ 
t : tX  - diag(X)diag(X)\top \succeq 0

\bigr\} 
\leq r. Since r\ast X  - 

diag(X)diag(X)\top \succeq 0 and X \succeq 0, it follows that tX  - diag(X)diag(X)\top \succeq 0 for all
t\geq r\ast . Therefore, tX  - diag(X)diag(X)\top \succeq 0 if and only if t\geq r\ast . Corollary 1 then
implies rank(X) = r\ast \leq r.

Corollary 2 implies the following characterization of\scrD n
r , where the rank constraint

is merged into a lifted linear matrix inequality:

\scrD n
r =

\biggl\{ 
X \in \{ 0,1\} n\times n :

\biggl( 
r diag(X)\top 

diag(X) X

\biggr) 
\succeq 0

\biggr\} 
.(3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1076 FRANK DE MEIJER AND RENATA SOTIROV

For some optimization problems, the upper bound constraint on the rank of X is not
sufficient, as we require that X is exactly of rank r. The max k-cut problem, for
instance, requires partitioning the vertex set of a graph into exactly k nonempty and
pairwise disjoint subsets. The following two results show that the description given
in (3) can be extended to also include a lower bound on the rank of X.

Theorem 2. Let X \in \{ 0,1\} n\times n be symmetric. If there exists a matrix P \in 
\{ 0,1\} n\times r with P\top 1\geq 1 such that Y =

\Bigl( 
Ir P\top 

P X

\Bigr) 
\succeq 0, then X \succeq 0 with rank(X)\geq r.

Proof. The assertion X \succeq 0 is trivial. It suffices to show that rank(X) \geq r. As

Y \succeq 0 and Y has binary entries, it follows from Theorem 1 that Y =
\sum k

j=1

\bigl( uj
xj

\bigr) \bigl( uj
xj

\bigr) \top 

for some uj \in \{ 0,1\} r and xj \in \{ 0,1\} n, j \in [k]. Since
\sum k

j=1 uju
\top 
j = Ir, we must

have k \geq r. Moreover, the set \{ uj : j \in [k]\} must contain e1, . . . ,er and k  - r
copies of 0r. Without loss of generality, let us assume that the first r vectors in
\{ uj : j \in [k]\} correspond to the elementary vectors. Then, it follows that P =\sum k

j=1 xju
\top 
j =

\sum r
j=1 xje

\top 
j = [x1 . . . xr]. Since P\top 1\geq 1, it follows that the vectors xj ,

j \in [r], cannot be the zero vector. Since these are moreover linearly independent, we
have rank(X)\geq rank(

\sum r
j=1 xjx

\top 
j ) = r.

Theorem 2 and Corollary 2 together impose the following integer semidefinite
characterization of PSD \{ 0,1\} -matrices of rank r.

Corollary 3. Let X \in \{ 0,1\} n\times n be symmetric. If there exists a matrix P \in 
\{ 0,1\} n\times r with P\top 1\geq 1, P1=diag(X), such that Y =

\Bigl( 
Ir P\top 

P X

\Bigr) 
\succeq 0, then X \succeq 0 with

rank(X) = r.

Proof. It immediately follows from Theorem 2 that X \succeq 0 with rank(X) \geq r.
Moreover, since Y \succeq 0, we also know that

\bigl( 
1\top 
r \oplus In

\bigr) 
Y
\bigl( 
1\top 
r \oplus In

\bigr) \top 
=

\biggl( 
1\top 
r Ir1r 1\top 

r P
\top In

InP1r InXIn

\biggr) 
=

\biggl( 
r diag(X)\top 

diag(X) X

\biggr) 
\succeq 0.

It then follows from Corollary 2 that rank(X)\leq r.

The integer semidefinite characterization of \scrD n
r given in (3) shows that if a \{ 0,1\} -

matrix satisfies a certain linear matrix inequality, then a rank condition is implied.
For the case of rank-one matrices, we can show that the converse implication does
also hold, i.e., if a rank-one matrix satisfies a certain linear matrix inequality, then its
entries must be in \{ 0,1\} .

Theorem 3. Let Y =
\bigl( 
1 x\top 

x X

\bigr) 
\succeq 0 with diag(X) = x. Then, rank(Y ) = 1 if and

only if X \in \{ 0,1\} n\times n.

Proof. (=\Rightarrow ) : If rank(Y ) = 1, then Y = \=x\=x\top with \=x = [1 x\top ]\top \in \BbbR n+1 and
X = xx\top . From the positive semidefiniteness of order two principal submatrices of
Y we obtain 0n \leq x \leq 1n. Since diag(xx\top ) = x, we have x2

i = xi for all i \in [n], so
x\in \{ 0,1\} n. We conclude that X = xx\top \in \{ 0,1\} n\times n.

(\Leftarrow =) : SinceX \in \{ 0,1\} n\times n and x=diag(X), it follows that Y \in \{ 0,1\} (n+1)\times (n+1).
From Theorem 1 it follows that Y =

\sum k
j=1 xjx

\top 
j for some xj \in \{ 0,1\} n+1, j \in [k], i.e.,

Y can be decomposed in terms of cliques. Since Y11 = 1 and diag(Y ) = (1, x\top )\top , all
indices i \in [n + 1] for which Yii = 1 must be in the same clique as the first index.
Hence, the decomposition consists of only one clique and rank(Y ) = 1.

Theorem 3 plays a central role in deriving integer SDP formulations of BQPS
defined over vectors of variables in section 3.1. However, Theorem 3 cannot be ex-
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1077

tended to matrices with a rank larger than one. That is, if Y is a PSD matrix satisfying
diag(Y ) = Y e1 and Y11 = r, then integrality of Y is not equivalent to rank(Y ) = r.
For example, the matrix Y = 1

2 (J3 + 3E11) satisfies Y \succeq 0, diag(Y ) = Y e1 and
rank(Y ) = 2, but Y is not integer.

The characterizations given in (2) and (3) rely on conditions involving discrete-
ness. Let us now move on to continuous descriptions. Of course, since \scrD n

r is itself a
discrete set, a continuous description does not aim at describing \scrD n

r , but rather its
convex hull, i.e.,

\scrP n
r := conv(\scrD n

r ).(4)

Observe that although the matrices in \scrD n
r have an upper bound on the rank, the

polytopes \scrP n
r are full dimensional, since 1

nIn \in \scrP n
r for all 1\leq r \leq n. In order to gain

more insight into the structure of \scrP n
r , we introduce the notion of a so-called packing

family.

Definition 1. Let T be a finite set of elements. A collection \scrF of nonempty
subsets of T is called a packing of T if the subsets in \scrF are pairwise disjoint. The
family of all packings of T is called the packing family of T , denoted by F(T ).

Observe that \scrF = \emptyset also belongs to F(T ). Next, we define the notion of an
r-packing of T .

Definition 2. Let T be a finite set of elements. A packing \scrF of T is called an
r-packing of T if | \scrF | \leq r. The family of all r-packings of T is called the r-packing
family of T , denoted by Fr(T ).

The r-packing family of [n] can be exploited to describe \scrP n
r . Let X \in \scrD n

r . By
Theorem 1 we know that X is the sum of at most r rank-one PSD \{ 0,1\} -matrices.
From a combinatorial point of view, this implies that X corresponds to an r-packing
of [n]. In fact, there is a bijection between the matrices in \scrD n

r and the r-packings in
Fr([n]). For any r-packing \scrF , let E\scrF :=

\sum 
S\in \scrF 1S1

\top 
S . Then, we obtain the following

polyhedral description of \scrP n
r for all positive integers r\leq n:

\scrP n
r =

\left\{ 
 
 X \in \scrS n : X =

\sum 

\scrF \in Fr([n])

\lambda \scrF E\scrF ,
\sum 

\scrF \in Fr([n])

\lambda \scrF = 1, \lambda \scrF \geq 0 for all \scrF \in Fr([n])

\right\} 
 
 .

(5)

We call the description above the packing description of \scrP n
r . Let us now consider the

cardinality of the vertices of \scrP n
r .

In the vein of Definition 2, we call \scrF \subseteq \BbbP ([n]) an r-partition of [n] if it is an
r-packing with

\bigcup 
S\in \scrF = [n]. Here, \BbbP ([n]) denotes the power set of [n]. The number

of partitions of the set [n] into k nonempty subsets is in the literature known as the
Stirling number of the second kind, denoted by \{ n

k \} . The total number of partitions
of [n] equals the Bell number Bn [5], for which we have Bn =

\sum n
k=0 \{ n

k \} . We can now
show the following result regarding the cardinality of \scrD n

r .

Theorem 4. For n\geq 1 and 0\leq r \leq n, we have | \scrD n
r | =

\sum r+1
k=1 \{ n+1

k \} . In particu-
lar, | \scrD n

1 | = 2n and | \scrD n
n| =Bn+1.

Proof. It follows from the discussion above that | \scrD n
r | equals the number of r-

packings in Fr([n]). In order to count these, we count the number of packings that
consist of exactly k subsets, while k ranges from 0 to r. Any packing of [n] into k
subsets corresponds to a partition of [n+ 1] into k + 1 subsets. To see this, observe
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1078 FRANK DE MEIJER AND RENATA SOTIROV

that to each packing \scrF of [n] into k subsets one can add a (k + 1)th set containing
the element n+1 and the elements not covered by \scrF . Conversely, given a partition of
[n+1] into k+1 subsets, dropping the set containing the element n+1 yields a packing
of [n] consisting of exactly k subsets. Hence, the number of packings of [n] consisting
of exactly k subsets equals \{ n+1

k+1 \} and | \scrD n
r | =

\sum r
k=0 \{ n+1

k+1 \} =
\sum r+1

k=1 \{ n+1
k \} . For the

special case r = 1, we obtain | \scrD n
1 | = \{ n+1

1 \} + \{ n+1
2 \} = 1+ 2n+1 - 2

2 = 2n. When r = n,

we exploit \{ n+1
0 \} = 0 to conclude that | \scrD n

n| =
\sum n+1

k=1 \{ n+1
k \} =\sum n+1

k=0

\bigl\{ 
n+1
k

\bigr\} 
=Bn+1.

The polytope \scrP n
r has several relationships with other well-known polytopes from

the literature. Letchford and S{\e}rensen [40] study the polytope \scrP n
n , albeit in a different

embedding, and refer to it as the binary PSD polytope of order n. They emphasize its
relationship with the clique partitioning polytope that was introduced by Gr\"otschel
and Wakabayashi [27] and later studied in [47]. Given the complete graph G= (V,E),
a clique partition is a subset A\subseteq E such that there is a partition of V into nonempty
disjoint sets V1, . . . , Vk such that each Vj , j \in [k], induces a clique in G and A =\bigcup 

j\in [k]\{ \{ i, \ell \} : i, \ell \in Vj , i \not = \ell \} . The incidence vectors of clique partitions are only
defined on the edge set, and therefore the clique partition polytope can be seen as a
projection of \scrP n

n .
Among one of the first graph partition problems is the one considered by Chopra

and Rao [12]. Given an undirected graph G, the vertices need to be partitioned into
at most k subsets so as to minimize the total cost of edges cut by the partition. If G
is the complete graph, the partition polytope P1 (r) considered in [12] coincides with
\scrP n
r (apart from the embedding).

The polytope \scrP n
n can also be related to the stable set polytope. Let G\BbbP = (V\BbbP ,E\BbbP )

be the power set graph, i.e., each vertex in V\BbbP corresponds to a nonempty subset of
[n] and the edge set is defined as E\BbbP := \{ \{ S,T\} \in V

(2)
\BbbP : S \cap T \not = \emptyset \} . A set of vertices

is stable in G\BbbP if and only if its corresponding collection of subsets is a packing of
[n]. Hence, the packing family Fn([n]) is the collection of all stable sets in G\BbbP . It
follows that there is a bijection between the elements in \scrP n

n and the stable set polytope
of G\BbbP .

Finally, for r = 1, the r-packings of [n] are subsets of [n], so the polytope \scrP n
1

simplifies to

\scrR n
1 :=

\left\{ 
 
 X \in \scrS n : X =

\sum 

S\subseteq [n]

\theta S1S1
\top 
S ,

\sum 

S\subseteq [n]

\theta S = 1, \theta S \geq 0 for all S \subseteq [n]

\right\} 
 
 .(6)

The polytope \scrR n
1 relates to the convex hull of the characteristic vectors of all cliques

in Kn, i.e., the clique polytope of Kn. This polytope in the literature is also known
as the complete set packing polytope; see [7]. Finally, apart from the embedding, the
polytope \scrR n

1 also coincides with the Boolean quadric polytope [48].
Another continuous formulation of the convex hull of PSD \{ 0,1\} -matrices is

given by a conic description. The cone of completely positive matrices is defined
as \scrC \scrP n := conv

\bigl( \bigl\{ 
xx\top : x\in \BbbR n

+

\bigr\} \bigr) 
. An extension of the completely positive matrices

are the so-called set-completely positive matrices (see, e.g., [41]), where the member-
ship condition x\in \BbbR n

+ is replaced by x\in \scrK for a general convex cone \scrK . Lieder, Rad,
and Jarre [41] considered the following set-completely positive matrix cone

\scrS \scrC \scrP n := conv
\bigl( \bigl\{ 

xx\top : x\in \BbbR n
+, x1 \geq xi for all i\in \{ 2, . . . , n\} 

\bigr\} \bigr) 
.(7)

Since the membership condition given in (7) is more restricted than x\in \BbbR n
+, we have

\scrS \scrC \scrP n \subsetneq \scrC \scrP n. Let us now consider the following set-completely positive matrix set
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1079

\scrC n
1 :=

\biggl\{ 
X \in \scrS n :

\biggl( 
1 x\top 

x X

\biggr) 
\in \scrS \scrC \scrP n+1, diag(X) = x

\biggr\} 
.(8)

The following result follows from Lieder, Rad, and Jarre [41].

Theorem 5 (see [41]). We have \scrP n
1 = \scrC n

1 .

A natural question is whether the descriptions \scrR n
1 and \scrC n

1 for \scrP n
1 given in (6) and

(8), respectively, can be extended to higher ranks. The extensions of these sets are as
follows:

\scrR n
r :=

\left\{ 
 
 X \in \scrS n : X=

\sum 

S\subseteq [n]

\theta S1S1
\top 
S ,
\sum 

S\subseteq [n]

\theta S = r,
\sum 

S:i\in S

\theta S\leq 1 \forall i\in [n], \theta S\geq 0 \forall S \subseteq [n]

\right\} 
 
 ,

(9)

\scrC n
r :=

\biggl\{ 
X \in \scrS n :

\biggl( 
r diag(X)\top 

diag(X) X

\biggr) 
\in \scrS \scrC \scrP n+1, diag(X)\leq 1n

\biggr\} 
.

(10)

The extension from \scrC n
1 to \scrC n

r follows from the intersection of the Minkowski sum of r
copies of \scrC n

1 with the upper bound constraint X \leq Jn. Since Xii \geq Xij for all i, j \in [n]
if X \in \scrC n

1 , it suffices to add diag(X) \leq 1n. The extension from \scrR n
1 to \scrR n

r is derived
as follows. If X \in \scrP n

r , then X =
\sum 

\scrF \in Fr([n])
\lambda \scrF E\scrF for some nonnegative weights \lambda \scrF .

By splitting each r-packing into its separate subsets, we obtain

X =
\sum 

\scrF \in Fr([n])

\lambda \scrF E\scrF =
\sum 

\scrF \in Fr([n])

\lambda \scrF 
\sum 

S\in \scrF 
1S1

\top 
S =

\sum 

S\subseteq [n]

\sum 

\scrF \in Fr([n]):
S\in \scrF 

\lambda \scrF 1S1
\top 
S =

\sum 

S\subseteq [n]

\theta S1S1
\top 
S ,

where \theta S :=
\sum 

\scrF \in Fr([n]):S\in \scrF \lambda \scrF . Moreover,
\sum 

S\subseteq [n] \theta S =
\sum 

\scrF \in Fr([n])
\lambda F | \scrF | \leq 

r
\sum 

\scrF \in Fr([n])
\lambda F = r. By increasing \theta \emptyset , we obtain

\sum 
S\subseteq [n] \theta S = r. Finally, since

Xii \leq 1 for i\in [n], we have
\sum 

S:i\in S \theta S \leq 1. We conclude that \scrP n
r \subseteq \scrR n

r .
Unfortunately, for r \geq 2, the sets \scrR n

r and \scrC n
r no longer exactly describe \scrP n

r .
Namely, consider the matrix X = 1

2PP\top , where P =E11 +E22 +E23 +E32 +E31 +
E41 + E43. For this matrix one can verify that X \in \scrR 4

2 and X \in \scrC 4
2 , while X /\in \scrP 4

2 .
For r\geq 2, the following relationship between \scrP n

r , \scrC n
r , \scrR n

r holds.

Theorem 6. We have \scrP n
r \subseteq \scrC n

r =\scrR n
r , while for r= 1 the three sets are equal.

Proof. Since \scrP n
r = conv(\scrD n

r ), it suffices to consider membership of the elements
in \scrD n

r in \scrC n
r . Let X \in \scrD n

r , then X =
\sum r

j=1 xjx
\top 
j for some xj \in \{ 0,1\} n, j \in [r]. Let

Y j := xjx
\top 
j for all j \in [r]. We clearly have

\Bigl( 
1 diag(Y j)

diag(Y j) Y j

\Bigr) 
\in \scrS \scrC \scrP n+1 for all j \in [r],

from which it follows that
r\sum 

j=1

\biggl( 
1 diag(Y j)

diag(Y j) Y j

\biggr) 
=

\biggl( 
r diag(X)

diag(X) X

\biggr) 
\in \scrS \scrC \scrP n+1.

Moreover, X \in \{ 0,1\} n\times n, so diag(X)\leq 1n. We conclude that X \in \scrC n
r .

To prove \scrC n
r =\scrR n

r , let X \in \scrC n
r . We define the matrix Y as

Y :=
1

r

\biggl( 
r diag(X)\top 

diag(X) X

\biggr) 
=

\biggl( 
1 diag( 1rX)\top 

diag( 1rX) 1
rX

\biggr) 
.(11)

From the fact that X \in \scrC n
r , it follows that Y \in \scrS \scrC \scrP n+1. Applying Theorem 5

to the matrix Y implies that 1
rX is a convex combination of rank-one binary PSD
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1080 FRANK DE MEIJER AND RENATA SOTIROV

matrices, i.e., there exists \theta \prime S \geq 0 for all S \subseteq [n] with
\sum 

S\subseteq [n] \theta 
\prime 
S = 1, such that

1
rX =

\sum 
S\subseteq [n] \theta 

\prime 
S1S1

\top 
S or, equivalently, X =

\sum 
S\subseteq [n] r\theta 

\prime 
S1S1

\top 
S . Now, let \theta S := r\theta \prime S for

all S \subseteq [n], from which it follows that
\sum 

S\subseteq [n] \theta S = r. Since diag(X) \leq 1n, it follows
that Xii =

\sum 
S:i\in S \theta S \leq 1. We conclude that X \in \scrR n

r .
Finally, observe that the argument above can also be followed in the converse

direction. That is, given X \in \scrR n
r with corresponding weights \theta S for all S \subseteq [n], we

define \theta \prime S := 1
r \theta S , S \subseteq [n], which implies that 1

rX \in \scrP n
1 . By Theorem 5, we know that

Y (see (11)), is contained in \scrS \scrC \scrP n+1, implying X \in \scrC n
r .

2.2. Theory on PSD \{ \pm 1\} -matrices. In this section we present several re-
sults for PSD matrices that have entries in \{ \pm 1\} . Let us first state the following
well-known result; see, e.g., [2].

Proposition 2. Let X be a symmetric matrix. Then, X \succeq 0, X \in \{ \pm 1\} n\times n if
and only if X = xx\top for some x\in \{ \pm 1\} n.

A simple necessary condition for X \in \{ \pm 1\} n\times n to be PSD is that diag(X) = 1.
The next result establishes the equivalence between \{ 0,1\} - and \{ \pm 1\} -PSD matrices
by exploiting their rank.

Proposition 3. Let X \in \{ \pm 1\} n\times n be a symmetric matrix and Y := 1
2 (X + J) \in 

\{ 0,1\} n\times n. Then, X \succeq 0 if and only if diag(Y ) = 1, Y \succeq 0, and rank(Y )\leq 2.

Proof. (=\Rightarrow ): Let X \succeq 0. Since J\succeq 0, it follows that Y \succeq 0. Moreover, diag(X) =
diag(J) = 1 implies that diag(Y ) = 1. Finally, by Proposition 2 we know that X =
xx\top for some x\in \{ \pm 1\} n. Therefore, Y is the weighted sum of two rank-one matrices,
so rank(Y )\leq 2.

(\Leftarrow =): Let Y = 1
2 (X + J)\succeq 0, diag(Y ) = 1, and rank(Y )\leq 2 for some symmetric

matrix X \in \{ \pm 1\} n\times n. Since Y is binary PSD with rank at most two, it follows from
Theorem 1 that Y = x1x

\top 
1 + x2x

\top 
2 for some x1, x2 \in \{ 0,1\} n. Then, X = 2Y  - J =

(x1  - x2)(x1  - x2)
\top , which implies that X \succeq 0.

Note that the matrix Y from the previous theorem has rank one if and only if
Y =X = J. Similarly to (1), we define the discrete set of all \{ \pm 1\} -matrices as

\widehat \scrD n :=
\bigl\{ 
X \in \{ \pm 1\} n\times n : X \succeq 0

\bigr\} 
,(12)

where the subscript r is not present anymore, as all matrices in \widehat \scrD n have rank one.
Based on Proposition 2, we can easily establish that | \widehat \scrD n| = 2n - 1. Next, we summarize
known results on sets related to \{ \pm 1\} -matrices. The convex hull of all PSD \{ \pm 1\} -
matrices is known as the cut polytope:

\widehat \scrP n := conv( \widehat \scrD n);(13)

see, e.g., [38]. Also, we define the following set-completely positive matrix cone

\scrS \scrC \widehat \scrP n := conv
\bigl( \bigl\{ 

xx\top : x\in \BbbR n, x1 + xi \geq 0, x1  - xi \geq 0 for all i\in \{ 2, . . . , n\} 
\bigr\} \bigr) 

.(14)

The cone \scrS \scrC \widehat \scrP n is considered in [41], where the authors show that \scrS \scrC \widehat \scrP n and \scrS \scrC \scrP n

(see (7)), are related as follows, \scrT (\scrS \scrC \scrP n) = \scrS \scrC \widehat \scrP n and \scrT  - 1(\scrS \scrC \widehat \scrP n) = \scrS \scrC \scrP n, where \scrT 
is an appropriate linear mapping. Lieder, Rad, and Jarre [41] consider the following
set-completely positive matrix set,

\widehat \scrC n :=

\biggl\{ 
X \in \scrS n :

\biggl( 
1 x\top 

x X

\biggr) 
\in \scrS \scrC \widehat \scrP n+1, diag(X) = 1n

\biggr\} 
,(15)

which is the analogue of the set \scrC n
1 for \{ 0,1\} -matrices; see (8).
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1081

Theorem 7 (see [41]). We have \widehat \scrP n = \widehat \scrC n.

This theorem is the analogue of Theorem 5 that provides a result for \{ 0,1\} -
matrices. For the equivalence transformation between \{ \pm 1\} - and \{ 0,1\} -representations
of SDP relaxations of binary quadratic optimization problems, we refer the interested
reader to Helmberg [28].

2.3. Theory on PSD \{ 0,\pm 1\} -matrices. In the following we generalize several
results from the previous sections to PSD \{ 0,\pm 1\} -matrices. The following result
shows that a PSD \{ 0,\pm 1\} -matrix is block-diagonalizable, which is the analogue of
Proposition 1 for \{ 0,1\} -matrices.

Proposition 4. Let X \in \{ 0,\pm 1\} n\times n be symmetric. Then, the following state-
ments are equivalent:

(i) diag(X) = 1n, rank(X) = r, X \succeq 0.
(ii) There exists a permutation matrix Q such that QXQ\top = Bn1 \oplus \cdot \cdot \cdot \oplus Bnr ,

where Bni
= bib

\top 
i , bi \in \{ \pm 1\} ni for i\in [r], n= n1 + \cdot \cdot \cdot + nr.

Proof. Suppose that QXQ\top is in the block form given in (ii), then it trivially
satisfies the conditions given in (i). Conversely, let X \in \{ 0,\pm 1\} n\times n satisfy (i). Let
us consider the ith row in X. Suppose j and k are two distinct indices not equal to
i in the support of this row, i.e., Xij ,Xik \not = 0. For the sake of contradiction, suppose
that Xjk = 0. Then, the submatrix of X induced by i, j, and k is one of the following
matrices:




i j k

i 1 1 1

j 1 1 0

k 1 0 1


,




i j k

i 1 −1 −1

j −1 1 0

k −1 0 1


,




i j k

i 1 1 −1

j 1 1 0

k −1 0 1


, or




i j k

i 1 −1 1

j −1 1 0

k 1 0 1


.

One easily checks that the determinants of these matrices are all negative, contradict-
ing that X \succeq 0. Hence, Xjk \not = 0. This argument can be repeated to conclude that
the submatrix of X indexed by the support of row i has entries in \{ \pm 1\} . Since the
submatrix of X is also PSD, it follows from Proposition 2 that the submatrix is of
the form bb\top with b\in \{ \pm 1\} ni for some positive integer ni.

By the same argument, it follows that the other indices in the submatrix induced
by row i have the same support as row i. Indeed, if this would not be the case, one
of the four matrices above should be a submatrix of X. We conclude that X can be
fully constructed from nonoverlapping submatrices of the form bb\top with b\in \{ \pm 1\} ni for
some positive integer ni. Since its rank equals r, there must be r of those submatrices.
From here the claim follows.

Proposition 4 extends easily to the following result.

Corollary 4. Let X \in \{ 0,\pm 1\} n\times n be symmetric. Then, the following statements
are equivalent:

(i) rank(X) = r, X \succeq 0.
(ii) There exists a permutation matrix Q such that QXQ\top =Bn1 \oplus \cdot \cdot \cdot \oplus Bnr \oplus 

0nz\times nz , where Bni = bib
\top 
i , bi \in \{ \pm 1\} ni for i\in [r], n= n1 + \cdot \cdot \cdot + nr + nz.

Proof. The proof is similar to the proof of Corollary 1.

Let X \in \{ 0,\pm 1\} n\times n be given as in Corollary 4, then

QXQ\top =Bn1
\oplus \cdot \cdot \cdot \oplus Bnr

\oplus 0nz\times nz
= b1b

\top 
1 \oplus \cdot \cdot \cdot \oplus brb

\top 
r \oplus 0nz\times nz

=

r\sum 

i=1

\=xi\=x
\top 
i ,
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1082 FRANK DE MEIJER AND RENATA SOTIROV

where \=x\top 
1 = [b\top 1 0\top 

n - n1
], \=x\top 

2 = [0\top 
n1

b\top 2 0\top 
n - n1 - n2

], and so on. Let xi :=Q\=xi for i \in [r],
then X =

\sum r
i=1 xix

\top 
i , where xi \in \{ 0,\pm 1\} n. This construction yields the following

decomposition of PSD \{ 0,\pm 1\} -matrices.

Theorem 8. Let X \in \{ 0,\pm 1\} n\times n be symmetric. Then, X \succeq 0 if and only if
X =

\sum r
j=1 xjx

\top 
j for some xj \in \{ 0,\pm 1\} n, j \in [r].

The previous result is an extension of Theorem 1 to \{ 0,\pm 1\} matrices. We now
consider an equivalence between a PSD \{ 0,\pm 1\} matrix of rank one and an extended
linear matrix inequality, i.e., the analogue of Theorem 3.

Proposition 5. Let Y =

\biggl( 
1 x\top 

x X

\biggr) 
\in \scrS n+1 with supp(diag(X)) = supp(x). Then,

Y \in \{ 0,\pm 1\} (n+1)\times (n+1), Y \succeq 0 if and only if X = xx\top .

Proof. Let Yij \in \{ 0,\pm 1\} for all i, j \in [n+ 1] and Y \succeq 0. Then x \in \{ 0,\pm 1\} n. The
Schur complement lemma implies X  - xx\top \succeq 0. If Xii = 0 then xi = 0, and if Xii = 1
then xi = 1 or xi = - 1. Thus diag(X - xx\top ) = 0, from which it follows that X = xx\top .
The converse direction is trivial.

Clearly, the condition supp(diag(X)) = supp(x) can be replaced by diag(X)ii =
| xi| for all i\in [n], where | \cdot | denotes the absolute value.

3. Binary quadratic optimization problems. In this section we exploit the
theoretical results on discrete PSD matrices from the previous section to derive exact
reformulations of BQPs as BSDPs. In section 3.1 we consider the general class of
binary quadratically constrained quadratic programs. In section 3.2 we consider a
subclass of these programs that allow for a formulation as a binary quadratic matrix
program.

3.1. Binary quadratically constrained quadratic programs. A quadrati-
cally constrained quadratic program (QCQP) is an optimization problem with a qua-
dratic objective function under the presence of quadratic constraints. Many discrete
optimization problems can be formulated as QCQPs.

Let Q0,Qi \in \scrS n, c0, ci \in \BbbR n for all i\in [m], and ai \in \BbbR n, bi \in \BbbR for all i\in [p], where
m,p\in \BbbN . We consider binary programs of the following form:

(QCQP )

min x\top Q0x+ c\top 0 x

s.t. x\top Qix+ c\top i x\leq di \forall i\in [m],

ai
\top x= bi \forall i\in [p],

x\in \{ 0,1\} n.

The quadratic terms in (QCQP ) can be written as \langle Qi,X\rangle + c\top i x for all i, where we
substitute X for xx\top . This yields the following exact reformulation of (QCQP ):

min \langle Q0,X\rangle + c\top 0 x

s.t. \langle Qi,X\rangle + c\top i x\leq di \forall i\in [m],

ai
\top x= bi \forall i\in [p],

Y =

\biggl( 
1 x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, rank(Y ) = 1.

Here we used the conventional notion of exactness, i.e., the nonconvex constraint
rank(Y ) = 1. We also exploit here Theorem 3 in order to not explicitly require that
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1083

x is binary. However, one can utilize an alternative notion of exactness in terms of
integrality, namely, by exploiting Theorem 3. This leads to the following BSDP:

(BSDPQCQP )

min \langle Q0,X\rangle + c\top 0 x

s.t. \langle Qi,X\rangle + c\top i x\leq di \forall i\in [m],

ai
\top x= bi \forall i\in [p],

Y =

\biggl( 
1 x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, x\in \{ 0,1\} n.

Observe that it is sufficient to impose integrality on the diagonal of X. Namely, it
follows from the determinants of the 3\times 3 principal submatrices of the matrix Y that
Xij \in \{ 0,1\} whenever Xii,Xjj \in \{ 0,1\} for all i and j. Note that a binary matrix X
that satisfies the linear matrix inequality from (BSDPQCQP ) with x=diag(X), is an
element of \scrD n

1 ; see (3). The next result follows directly from the previous discussion
and Theorem 3.

Theorem 9. (BSDPQCQP ) is equivalent to (QCQP ).

To provide a more compact BSDP formulation of (QCQP ), we prove the following
result.

Lemma 1. Let S =
\sum p

i=1

\bigl(  - bi
ai

\bigr) \bigl(  - bi
ai

\bigr) \top 
and Y =

\bigl( 
1 x\top 

x X

\bigr) 
\succeq 0, where diag(X) = x

and X \in \{ 0,1\} n\times n. Then, a\top i x= bi for all i\in [p] if and only if \langle S,Y \rangle = 0.

Proof. It follows from Theorem 3 that Y = ( 1x ) (
1
x )

\top 
. If a\top i x = bi for all i \in 

[p], it is not difficult to verify that \langle S,Y \rangle = 0. Conversely, let \langle S,Y \rangle = 0. Then,

0 =
\sum p

i=1

\Bigl\langle \bigl(  - bi
ai

\bigr) \bigl(  - bi
ai

\bigr) \top 
, ( 1x ) (

1
x )

\top 
\Bigr\rangle 
=
\sum p

i=1(bi  - a\top i x)
2, from which it follows that

a\top i x= bi for all i\in [p].

Lemma 1 induces the following compact BSDP that is equivalent to (QCQP ):

min \langle Q0,X\rangle + c\top x

s.t. \langle Qi,X\rangle + c\top i x\leq di \forall i\in [m],
p\sum 

i=1

\Biggl\langle \biggl( 
 - bi
ai

\biggr) \biggl( 
 - bi
ai

\biggr) \top 

,

\biggl( 
1 x\top 

x X

\biggr) \Biggr\rangle 
= 0,

\biggl( 
1 x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, x\in \{ 0,1\} n.

There are various equivalent formulations of the BQP (QCQP ) in the literature. We
finalize this subsection by mentioning below only those that are closely related to our
approach.

Assume that Qi = 0, ci = 0, and di = 0 for all i \in [m] in (QCQP ). Burer [8]
proved that the resulting optimization problem with a quadratic objective and linear
constraints is equivalent to the following completely positive program,

min \langle Q0,X\rangle + c\top x

s.t. ai
\top x= bi \forall i\in [p], \langle aiai\top ,X\rangle = b2i \forall i\in [p],\biggl( 
1 x\top 

x X

\biggr) 
\in \scrC \scrP n+1, diag(X) = x,

provided that the inequalities 0 \leq xi \leq 1 for i \in [n] are implied by the constraints of
the original problem. Here \scrC \scrP n+1 is the cone of completely positive matrices.
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1084 FRANK DE MEIJER AND RENATA SOTIROV

On the other hand, Lieder, Rad, and Jarre [41] proved the following equivalent
formulation of the BQP with quadratic objective and linear constraints,

min \langle Q0,X\rangle + c\top x

s.t. ai
\top x= bi \forall i\in [p],\biggl( 
1 x\top 

x X

\biggr) 
\in \scrS \scrC \scrP n+1, diag(X) = x,

where the cone \scrS \scrC \scrP n+1 is defined in (7). The authors of [41] also proved that,
under mild assumptions, the BQP (QCQP ) also with quadratic constraints can be
equivalently reformulated as an optimization problem over the set-completely positive
matrix cone \scrS \scrC \scrP n+1.

We end this section by providing an example of a problem that can be modeled
as (BSDPQCQP ).

Example 1 (the stable set problem). Let G = (V,E) be a simple graph on n
vertices. A stable set in G is a subset S \subseteq V such that no two vertices in S are
adjacent in G. The stable set problem (SSP) asks for the largest size of a stable
set in G. To model this problem, let x \in \{ 0,1\} n be such that xi = 1 if and only if
i\in S. Then, x is the characteristic vector of a stable set if x\top (Eij +E\top 

ij)x= 0 for all
\{ i, j\} \in E, hence the SSP is of the form (QCQP ). Applying Theorem 9, the following
BSDP models the SSP:

(16)

\alpha (G) :=max \langle In, X\rangle 

s.t. Xij = 0 \forall \{ i, j\} \in E,

\biggl( 
1 x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, x\in \{ 0,1\} n.

The doubly nonnegative relaxation of (16) obtained after replacing x \in \{ 0,1\} n by
0 \leq x \leq 1, is well studied in the literature [26], and is equivalent to a strengthened
version of the Lov\'asz theta number [53].

3.2. Binary quadratic matrix programs. A quadratic matrix program
(QMP) [4] is a programming formulation where the objective and constraints are
given by

tr(P\top QiP ) + 2tr(B\top 
i P ) + di(17)

for some Qi \in \scrS n, Bi \in \BbbR n\times k, and ci \in \BbbR , where P is an n \times k matrix variable.
QMPs are a special case of QCQPs and are particularly useful to model optimization
problems where the matrix P has entries in \{ 0,1\} and represents a classification of n
objects over k classes, i.e., Pij = 1 if and only if object i is assigned to class j. For
example, if each object needs to be assigned in exactly (resp., at most) one class, we
call P a partition (resp., packing) matrix.

In this section we consider two different binary QMPs of increasing generality
and show how to reformulate them as BSDPs. For both QMPs, we consider some
problems that fit into the framework.

Our first QMP incorporates a specific objective and constraint structure, while
optimizing over the packing or partition matrices. Let Q0,Qi \in \scrS n, di \in \BbbR for all
i \in [m], ai \in \BbbR n, and bi \in \BbbR + for all i \in [p]. We consider the binary quadratic matrix
program

(QMP1)

min tr(P\top Q0P )

s.t. tr(P\top QiP ) + di \leq 0 \forall i\in [m], P\top ai \leq bi1k \forall i\in [p],

P1k \leq 1n, P \in \{ 0,1\} n\times k.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1085

Observe that P1k \leq 1n implies that P is a packing matrix. This constraint is
replaced by P1k = 1n in case we deal with partition matrices. The constraints
tr(P\top QiP ) + di \leq 0 and P\top ai \leq bi1k might follow from the structure of the problem
under consideration. Observe that these constraints differ from the general form (17)
in the sense that the linear part tr(B\top 

i P ) is only included in a very specific form.
A possible way to deal with the quadratic terms in (QMP1) is by lifting the

variables in a higher-dimensional space. By vectorizing the matrix P , the problem
(QMP1) can be written in the form (QCQP ), after which we can follow the approach
of section 3.1. This results in a BSDP where the matrix variable is of order nk + 1.
Since the resulting program is obtained from a lifting of the vectorization of P , we
say that we applied a vector-lifting approach. To obtain a more compact problem
formulation where the matrix variable is of lower order, we here consider a matrix-
lifting approach. In particular, the objective function can be written as tr(P\top Q0P ) =
tr(Q0PP\top ) = tr(Q0X), where X = PP\top . By doing so, we obtain the following
BSDP:

(BSDPQMP1)

min \langle Q0,X\rangle 
s.t. \langle Qi,X\rangle + di \leq 0 \forall i\in [m], Xai \leq bix \forall i\in [p],\biggl( 

k x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, X \in \{ 0,1\} n\times n.

If a QMP is defined over the partition matrices, then P1k \leq 1n is replaced by
P1k = 1n in (QMP1), and consequently diag(X) = x is replaced by diag(X) = 1n in
(BSDPQMP1). By exploiting theory from section 2.1, we show the following equiva-
lence.

Theorem 10. (BSDPQMP1) is equivalent to (QMP1).

Proof. Let P be feasible for (QMP1) and define X = PP\top and x = P1k. Since
P represents a packing matrix, we have X \in \{ 0,1\} n\times n, where x is a \{ 0,1\} -vector
indicating whether object i is packed in one of the classes or not. Then, \langle Qi,X\rangle +
di = \langle Qi, PP\top \rangle + di = tr(P\top QiP ) + di \leq 0 for all i \in [m]. Moreover, we have
Xai = PP\top ai \leq biP1k = bix. To show that diag(X) = x, observe that Xii =\sum k

j=1P
2
ij =

\sum k
j=1Pij = e\top i P1k = xi. Finally, we can decompose the matrix

\bigl( 
k x\top 

x X

\bigr) 

into
\bigl( 
k x\top 

x X

\bigr) 
=
\Bigl( 

1\top 
k

P

\Bigr) \Bigl( 
1\top 
k

P

\Bigr) \top 
, showing that it is PSD. We conclude that X and x are

feasible for (BSDPQMP1).
To show the converse inclusion, let X and x = diag(X) be feasible for

(BSDPQMP1). It follows from Corollary 2 that X can be decomposed as the sum
of at most k rank-one symmetric \{ 0,1\} -matrices. By adding copies of the zero ma-
trix in the case rank(X) < k, we may assume that there exist x1, . . . , xk \in \{ 0,1\} n
such that X =

\sum k
j=1 xjx

\top 
j . Now, let P = [x1 . . . xk]. Then, P \in \{ 0,1\} n\times k with

P1k =
\sum k

j=1 xj =diag(X)\leq 1n. To prove that P\top ai \leq bi1k, consider column j\ast of P .

If all entries in Pej\ast (= xj\ast ) are zero, this implies that e\top j\ast P
\top ai = 0\leq bi, since bi \in \BbbR +.

Otherwise, there exists a row i\ast such that Pi\ast j\ast = 1. For the i\ast th row of X, we know

e\top i\ast X =
\sum k

j=1(xj)i\ast x
\top 
j = x\top 

j\ast . The i\ast th row of the system Xai \leq bix then reads

x\top 
j\ast ai \leq bixi\ast = bi. Hence, P\top ai \leq bi1k. Finally, the constraint tr(P\top QiP ) + di \leq 0

follows immediately from \langle Qi,X\rangle + di \leq 0 for all i \in [m]. Thus, P is feasible for
(QMP1).

As the objective functions of (QMP1) and (BSDPQMP1) clearly coincide with
respect to the given mapping between P and X, we conclude that the two programs
are equivalent.
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1086 FRANK DE MEIJER AND RENATA SOTIROV

The matrix P no longer appears explicitly in (BSDPQMP1), and therefore we will
not be able to write all quadratic problems over the packing or partition matrices in
this form. The typical problems that can be modeled as (BSDPQMP1), are the ones
that are symmetric over the classes [k], i.e., we do not add constraints for one specific
class. Below we discuss two examples from the literature that fit in the framework of
(QMP1).

Example 2 (the maximum k-colorable subgraph problem). Let G = (V,E) be a
simple graph on n vertices. Given a positive integer k, a graph is called k-colorable
if it is possible to assign to each vertex a color of [k] such that any two adjacent
vertices get assigned a different color. The maximum k-colorable subgraph (MkCS)
problem [37, 46] asks to find an induced subgraph G\prime = (V \prime ,E\prime ) of G that is k-colorable
such that | V \prime | is maximized. The MkCS problem can be modeled as (QMP1), where
P \in \{ 0,1\} n\times k is such that Pij = 1 if and only if vertex i \in [V ] is in color class
j \in [k]. In order to model that P induces a coloring in G, we include the constraints
tr(P\top (Eij +Eji)P ) = 0 for all \{ i, j\} \in E.

Now, it follows from Theorem 10 that the MkCS problem can be modeled as the
following BSDP:

(18)

max \langle In,X\rangle 

s.t. Xij = 0 \forall \{ i, j\} \in E,

\biggl( 
k x\top 

x X

\biggr) 
\succeq 0, diag(X) = x, X \in \{ 0,1\} n\times n.

After replacing X \in \{ 0,1\} n\times n by 0\leq X \leq J in (18), we obtain the formulation \theta 3k(G)
derived in [37].

The next example shows that the parameter k in (BSDPQMP1) can also be used
as a variable in order to quantify the number of classes in the solution.

Example 3 (the quadratic bin packing problem). Consider a set of n items, each
with a weight wi \in \BbbR +, and an unbounded number of bins, each with capacity W \in \BbbR +

and cost c \in \BbbR +. Let D = (dij) \in \scrS n denote a dissimilarity matrix, where dij is the
cost of packing item i and j in the same bin. The goal of the quadratic bin packing
problem (QBPP) [11] is to assign each item to exactly one bin, such that the sum of
the dissimilarity and the cost of the used bins is minimized, while not violating the
capacity constraints.

Suppose the number of available bins is k. Then, the problem is of the form
(QMP1), where P \in \{ 0,1\} n\times k is a matrix with Pij = 1 if and only if item i is
contained in bin j, where we require that P1k = 1n and P\top w \leq W1k. Theorem 10
shows that this problem can be modeled as a BSDP, where k appears as a parameter.
If we replace k by a variable z, we obtain the following formulation of the QBPP:

min

\biggl\langle \biggl( 
z 1\top 

n

1n X

\biggr) 
, c\oplus D

\biggr\rangle 

s.t. Xw\leq W1n, diag(X) = 1n,

\biggl( 
z 1\top 

n

1n X

\biggr) 
\succeq 0, X \in \{ 0,1\} n\times n, z \in \BbbR .

The variable z is not restricted to be integer, since at an optimal solution it always
equals rank(X).

The quadratic matrix program (QMP1) only includes specific types of constraints
of the form (17). We now consider a generalization of (QMP1). Let Q0,Qi \in \scrS n,
B0,Bi \in \BbbR n\times k, and d0, di \in \BbbR for all i \in [m] and consider the quadratic matrix
program
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1087

(QMP2)

min tr(P\top Q0P ) + 2tr(B\top 
0 P ) + d0

s.t. tr(P\top QiP ) + 2tr(B\top 
i P ) + di \leq 0 \forall i\in [m],

P1k \leq 1n, P \in \{ 0,1\} n\times k.

Again, the constraint P1k \leq 1n can be replaced by P1k = 1n when optimizing over
partition matrices. Now, let us consider the BSDP
(BSDPQMP2)

min

\biggl\langle \biggl( 
d0

k Ik B\top 
0

B\top 
0 Q0

\biggr) 
,

\biggl( 
Ik P\top 

P X

\biggr) \biggr\rangle 

s.t.

\biggl\langle \biggl( 
di

k Ik B\top 
i

B\top 
i Qi

\biggr) 
,

\biggl( 
Ik P\top 

P X

\biggr) \biggr\rangle 
\leq 0 \forall i\in [m],

\biggl( 
Ik P\top 

P X

\biggr) 
\succeq 0, diag(X) = P1k, X \in \{ 0,1\} n\times n, P \in \{ 0,1\} n\times k,

which is equivalent to (QMP2), as shown below.

Theorem 11. (BSDPQMP2) is equivalent to (QMP2).

Proof. Let P be feasible for (QMP2) and define Y \in \{ 0,1\} (n+k)\times (n+k) as Y =\bigl( 
Ik
P

\bigr) \bigl( 
Ik
P

\bigr) \top 
=
\Bigl( 

Ik P\top 

P X

\Bigr) 
, where X := PP\top . Clearly, we have Y \succeq 0 and Xii =

\sum k
j=1P

2
ij =

\sum k
j=1Pij = e\top i P1k for all i\in [n], showing that diag(X) = P1k. Moreover,

we have

tr(P\top QiP ) + 2tr(B\top 
i P ) + di = tr(QiX) + 2tr(B\top 

i P ) + di

=

\biggl\langle \biggl( 
di

k Ik B\top 
i

B\top 
i Qi

\biggr) 
,

\biggl( 
Ik P\top 

P X

\biggr) \biggr\rangle 

for all i \in [m] and i = 0. Hence, X and P are feasible for (BSDPQMP2) and the
objective functions coincide.

Conversely, let P \in \{ 0,1\} n\times k and X \in \{ 0,1\} n\times n be feasible for (BSDPQMP2).
Following the proof of Theorem 2, it follows that there exist x1, . . . , xk\prime \in \{ 0,1\} n with

k\prime \geq k such that P = [x1 . . . xk] and X =
\sum k\prime 

j=1 xjx
\top 
j . Since diag(X) = P1k, it follows

that for all i\in [n] we have Xii = e\top i P1k implying that
\sum k\prime 

j=1(xj)
2
i =

\sum k
j=1(xj)i. Since

(xj)i \in \{ 0,1\} , the equality above only holds if (xj)i = 0 for all j = k + 1, . . . , k\prime . As
this is true for all i \in [n], we have xj = 0n for all j = k + 1, . . . , k\prime , implying that

X =
\sum k

j=1 xjx
\top 
j = PP\top . We can now follow the derivation of the first part of the

proof in the converse order to conclude that P is feasible for (QMP2).

Typical problems that fit in the framework of (QMP2) and (BSDPQMP2) are
QMPs over the packing or partition matrices that require constraints for specific
classes; see, e.g., Example 4. Another important feature of (BSDPQMP2) is that it is
possible to impose a condition on the rank of X. Corollary 3 implies that if we add
the constraint P\top 1n \geq 1k to (BSDPQMP2), the resulting matrix X has rank exactly
k. This makes this formulation suitable for quadratic classification problems that
require an exact number of classes, e.g., the (capacitated) max-k-cut problem [23].

Example 4 (the quadratic multiple knapsack problem). Consider a set of n items,
each with a weight wi \in \BbbR + and a profit pi \in \BbbR +, and a set of k knapsacks, each with a
capacity cj \in \BbbR +. Let R= (ri\ell ) denote a revenue matrix, where ri\ell denotes the revenue
of including items i and \ell in the same knapsack. The quadratic multiple knapsack
problem (QMKP) aims at allocating each item to at most one knapsack such that we
maximize the profits of the included items and their interaction revenues; see [30].
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1088 FRANK DE MEIJER AND RENATA SOTIROV

Let P \in \{ 0,1\} n\times k be a packing matrix, where Pij = 1 if and only if item i is
allocated to knapsack j, which should satisfy P\top w \leq c, where w \in \BbbR n

+ and c \in \BbbR k
+

denote the vector of weights and capacities, respectively. The total profit equals
\langle R,PP\top \rangle + p\top P1k, where p \in \BbbR n denotes the vector of item profits. Theorem 11
implies that we can model the QMKP as the following binary SDP:

max

\biggl\langle \biggl( 
0 1

21kp
\top 

1
2p1

\top 
k R

\biggr) 
,

\biggl( 
Ik P\top 

P X

\biggr) \biggr\rangle 

s.t. P\top w\leq c, diag(X) = P1k,

\biggl( 
Ik P\top 

P X

\biggr) 
\succeq 0, X \in \{ 0,1\} n\times n, P \in \{ 0,1\} n\times k.

4. Problem-specific formulations. In this section we consider MISDP formu-
lations of problems that do not belong to the BQPs or for which the reformulation
technique differs from the ones in section 3.

4.1. The QAP as an MISDP. We present a MISDP formulation of the qua-
dratic assignment problem (QAP) that is derived by a matrix-lifting approach. To
the best of our knowledge, our QAP formulation provides the most compact con-
vex mixed-integer formulation of the problem in the literature. The formulation is
motivated by the matrix-lifting SDP relaxations of the QAP derived in [16].

The QAP is an optimization problem of the following form,

min
X\in \Pi n

tr(AXBX\top ) + tr(CX\top ),(19)

where A,B \in \scrS n, C \in \BbbR n\times n, and \Pi n is the set of n\times n permutation matrices. The
QAP is among the most difficult \scrN \scrP -hard combinatorial optimization problems to
solve in practice. The QAP was introduced in 1957 by Koopmans and Beckmann [35]
as a model for location problems. Nowadays, the QAP is known as a generic model
for various (real-life) problems.

By exploiting properties of the Kronecker product and Theorem 3, one can lift the
QAP into the space of (n2 +1)\times (n2 +1) \{ 0,1\} -matrix variables and obtain a BSDP
formulation of the QAP; see section 3.1. Since this vector-lifting approach results in
a problem formulation with a large matrix variable, we consider here a matrix-lifting
approach for the QAP. Ding and Wolkowicz [16] introduce several matrix-lifting SDP
relaxations of the QAP with matrix variables of order 3n. By imposing integrality on
the matrix variable X in one of these SDP relaxations, i.e., the relaxation MSDR0 in
[16], we obtain the following MISDP:

(20)

min \langle A,Y \rangle + \langle C,X\rangle 

s.t.

\left( 
 
In X\top R\top 

X In Y
R Y Z

\right) 
 \succeq 0, R=XB,

X \in \Pi n, R \in \BbbR n\times n, Y,Z \in \scrS n.

Note that if B is an integer matrix, then R is also an integer matrix. However, we do
not have to impose integrality on R explicitly.

The Schur complement lemma implies that the linear matrix inequality in (20) is
equivalent to

\biggl( 
In Y
Y Z

\biggr) 
 - 
\biggl( 
XX\top XR\top 

RX\top RR\top 

\biggr) 
\succeq 0.(21)

Now, we are ready to prove the following result.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1089

Proposition 6. The MISDP (20) is equivalent to (19).

Proof. Let (X,Y,Z,R) be feasible for (20). ThenXX\top =In and
\Bigl( 

In - XX\top Y - XR\top 

Y - RX\top Z - RR\top 

\Bigr) 

\succeq 0 imply that Y = XR\top . Thus, Y = XB\top X\top = XBX\top , meaning that the two
objectives coincide.

Conversely, let X be feasible for (19). Define R := XB, Y := XR\top , and Z :=
RR\top . It trivially follows that the constraints in (20) are satisfied and that the two
objective functions coincide.

Many combinatorial optimization problems can be formulated as the QAP; see,
e.g., [9]. We provide an example below.

Example 5 (the traveling salesman problem). Given is a complete undirected
graph Kn = (V,E) on n vertices and a matrix D = (dij) \in \scrS n, where dij is the cost
of edge \{ i, j\} \in E. The goal of the traveling salesman problem (TSP) is to find a
Hamiltonian cycle of minimum cost in Kn.

Let B be the adjacency matrix of the tour on n vertices, i.e., B is a symmetric
Toeplitz matrix whose first row is [0 1 0\top 

n - 3 1]. It is well known (see, e.g., [33]), that
(19) with this matrix B and A=D is a formulation of the TSP. Thus, a MISDP for-
mulation of the TSP is the optimization problem (20) where the objective is replaced
by 1

2 \langle D,Y \rangle . Another MISDP formulation of the TSP is given in subsection 4.3.

4.2. MISDP formulations of the graph partition problem. We present
here various MISDP formulations of the graph partition problem (GPP). Several of
the here derived formulations cannot be obtained by using results from subsections
3.1 and 3.2.

The GPP is the problem of partitioning the vertex set of a graph into a fixed
number of sets, say k, of given sizes such that the sum of weights of edges joining
different sets is optimized. If all sets are of equal size, then the corresponding problem
is known as the k-equipartition problem (k-EP). The case of the GPP with k = 2 is
known as the graph bisection problem (GBP). To formalize, let G = (V,E) be an
undirected graph on n := | V | vertices and let W := (wij)\in \scrS n denote a weight matrix
with wij = 0 if \{ i, j\} /\in E. The graph partition problem aims to partition the vertices
of G into k (2\leq k\leq n - 1) disjoint sets S1,. . .,Sk of specified sizes m1 \geq \cdot \cdot \cdot \geq mk \geq 1,\sum k

j=1mj = n such that the total weight of edges joining different sets Sj is minimized.

For a given partition of V into k subsets, let P = (Pij)\in \{ 0,1\} n\times k be the partition
matrix, where Pij = 1 if and only if i \in Sj for i \in [n] and j \in [k]. The total weight of
the partition equals

1

2
tr
\bigl( 
W (Jn  - PP\top )

\bigr) 
=

1

2
tr(LPP\top ),(22)

where L := Diag(W1n) - W is the weighted Laplacian matrix of G. The GPP can be
formulated as the following QMP,

(23) min
1

2
\langle L,PP\top \rangle s.t. P1k = 1n, P

\top 1n =m, P \in \{ 0,1\} n\times k,

where m = [m1 . . . mk]
\top . The formulation (23) is a special case of the quadratic

matrix program (QMP2). Therefore, applying Theorem 11, the GPP can be modeled
as follows:
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1090 FRANK DE MEIJER AND RENATA SOTIROV

(24)

min
1

2
\langle L,X\rangle 

s.t. P1k = 1n, P
\top 1n =m, diag(X) = 1n,\biggl( 

Ik P\top 

P X

\biggr) 
\succeq 0, X \in \{ 0,1\} n\times n, P \in \{ 0,1\} n\times k.

The doubly nonnegative relaxation of (24) is similar to the relaxation for the k-
partition problem from [20]. For the k-EP and the GBP, we can derive simpler
formulations by removing P from the model.

In the case of the k-EP, the QMP (23) is a special case of (QMP1), and therefore
the k-EP can be modeled as follows:

(25)

min
1

2
\langle L,X\rangle 

s.t. diag(X) = 1n, X1n =
n

k
1n,

kX  - Jn \succeq 0, X \in \scrS n, X \in \{ 0,1\} n\times n.

This result follows from Theorem 10. An alternative proof is provided below.

Proposition 7. Let m = n
k1k. Then, the QMP (23) for the k-EP is equivalent

to the BSDP (25).

Proof. Let P be feasible for (23), where m= n
k1k. We define X := PP\top . The first

and second constraint in (25), as well as X \in \{ 0,1\} n\times n follow by direct verification.
Let pi be the ith column of P for i\in [k], then

kX - Jn = kPP\top  - 1n1
\top 
n = k

k\sum 

i=1

pip
\top 
i  - 
\Biggl( 

k\sum 

i=1

pi

\Biggr) \Biggl( 
k\sum 

i=1

pi

\Biggr) \top 

=
\sum 

i<j

(pi - pj)(pi - pj)
\top \succeq 0.

Conversely, letX be feasible for (25). Then, it follows from Theorem 1 and Proposition
1 that there exist xi \in \{ 0,1\} n, i \in [r], k \geq r such that X =

\sum r
i=1 xix

\top 
i , where\sum r

i=1 xi = 1n. Since the constraint X1n = n
k1n is invariant under permutation of

rows and columns of X, we have that the sum of the elements in each row and
column of the block matrix Jn1 \oplus \cdot \cdot \cdot \oplus Jnr equals n/k. From this it follows that r= k
and 1\top 

n xi = n/k for i \in [k]. It is easy to verify that P := [x1 . . . xk] \in \{ 0,1\} n\times k is
feasible for (23). Since the two objectives coincide, the result follows.

The next result shows that the MISDP (24) also simplifies for the GBP. It has to
be noted, however, that the GBP is not a special case of (QMP1).

Proposition 8. Let m= [m1 n - m1]
\top , 1\leq m1 \leq n/2. Then, the QMP (23) for

the GBP is equivalent to the following BSDP:

(26)

min
1

2
\langle L,X\rangle 

s.t. diag(X) = 1n, \langle Jn,X\rangle =m2
1 + (n - m1)

2,

2X  - Jn \succeq 0, X \in \scrS n, X \in \{ 0,1\} n\times n.

Proof. Let P be feasible for (23). We define X := PP\top . The first and second
constraints in (26) follow by direct verification. Let pi be the ith column of P for
i\in [2], then

2X - Jn = 2PP\top  - 1n1
\top 
n = 2

2\sum 

i=1

pip
\top 
i  - 

\Biggl( 
2\sum 

i=1

pi

\Biggr) \Biggl( 
2\sum 

i=1

pi

\Biggr) \top 

= (p1 - p2)(p1 - p2)
\top \succeq 0.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1091

Conversely, let X be feasible for (26). Then, it follows from Theorem 1 and
Corollary 2 that there exist x1, x2 \in \{ 0,1\} n such that X = x1x

\top 
1 + x2x2

\top , where
x1 + x2 = 1n. Note that X cannot have rank one or zero for 1 \leq m1 < n. From
\langle Jn,X\rangle =m2

1+(n - m1)
2, it follows that 1\top 

n x1 =m1 or 1\top 
n x1 = n - m1. Without loss

of generality, we assume that 1\top x1 = m1. Clearly, P := [x1 x2] is feasible for (23).
Moreover, the two objective functions coincide.

In the remainder of this section, we derive yet another alternative MISDP formu-
lation of the GPP, different from (24). For that purpose we notice that the GPP can
also be formulated as a QMP of the following form:

(QMP3)

min tr(P\top Q0P ) + tr(PC0P
\top ) + 2tr(B\top 

0 P ) + d0

s.t. tr(P\top QiP ) + tr(PCiP
\top ) + 2tr(B\top 

i P ) + di \leq 0 \forall i\in [m],

P \in \BbbR n\times k,

where Qi \in \scrS n, Ci \in \scrS k, Bi \in \BbbR n\times k, di \in \BbbR for i = 0,1, . . . ,m. Note that (QMP2) is
a special case of (QMP3). Examples of problems that are of this form are quadratic
problems with orthogonality constraints; see, e.g., [3]. The GPP can be formulated
as follows (see e.g., [15]):

(27)

min
1

2
\langle L,PP\top \rangle 

s.t. P\top 1n =m, P\top P =Diag(m),

diag(PP\top ) = 1n, P \geq 0, P \in \BbbR n\times k.

To reformulate (27) as an MISDP we introduce matrices X1 \in \scrS n and X2 \in \scrS k such
that X1 = PP\top and X2 = P\top P and relax these matrix equalities to the linear matrix
inequalities (LMIs) X1  - PP\top \succeq 0 and X2  - P\top P \succeq 0, respectively. These can be
rewritten as

\biggl( 
Ik P\top 

P X1

\biggr) 
\succeq 0 and

\biggl( 
In P
P\top X2

\biggr) 
\succeq 0.

After introducing the constraints diag(X1) = 1n and X2 = Diag(m), we obtain the
following MISDP:

(28)

min
1

2
\langle L,X1\rangle 

s.t. P1k = 1n, diag(X1) = 1n, X2 =Diag(m),\biggl( 
Ik P\top 

P X1

\biggr) 
\succeq 0,

\biggl( 
In P
P\top X2

\biggr) 
\succeq 0, X1 \in \scrS n, X2 \in \scrS k, P \in \{ 0,1\} n\times k.

We prove below that (28) is an exact formulation of the GPP.

Proposition 9. The MISDP (28) is an exact formulation of the GPP.

Proof. We prove the result by showing the equivalence between (27) and (28).
Let P \in \BbbR n\times k be feasible for (27). Then, it follows from diag(PP\top ) = 1n that

(PP\top )ii =
\sum k

j=1P
2
ij = 1 for i \in [n]. From this and P \geq 0, we obtain 0 \leq Pij \leq 1

for all i \in [n], j \in [k]. From P\top 1n = m it follows that
\sum 

i,j Pij = n and from

P\top P = Diag(m) that tr(P\top P ) = n, and thus
\sum 

i,j P
2
ij = n. Therefore, Pij \in \{ 0,1\} 

for all i \in [n], j \in [k]. The equality diag(PP\top ) = 1n then implies that P1k = 1n. It
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1092 FRANK DE MEIJER AND RENATA SOTIROV

follows from the discussion prior to the proposition that X1 := PP\top and X2 := P\top P
are feasible for (28).

Conversely, let X1, X2, and P be feasible for (28). From P \in \{ 0,1\} n\times k and
P1k = 1n it follows that diag(PP\top ) = 1n. From X2  - P\top P \succeq 0 and 1\top 

k (X2  - 
P\top P )1k = 0 it follows that (X2  - P\top P )1k = 0 and thus P\top 1n = m. Moreover, we
have (P\top P )ii =

\sum n
j=1P

2
ji =

\sum n
j=1Pji =mi for i\in [k], implying that diag(P\top P ) =m.

Finally, we have X2  - P\top P =Diag(m) - P\top P \succeq 0, where it follows from above that
the latter matrix has a diagonal of zeros. Thus, we must have P\top P =Diag(m), which
concludes the proof.

The MISDP (28) has two LMIs and requires integrality constraints only on a
matrix of size n\times k, while (24) has only one LMI and asks for integrality on matrices
of size n\times n and n\times k.

4.3. MISDP formulations via association schemes. Association schemes
provide a unifying framework for the treatment of problems in several branches of
mathematics, including algebraic graph theory, coding theory, and optimization; see,
e.g., [14, 54]. For the background on association schemes, we refer to [6, 25]. De
Klerk, Filho, and Pasechnik [32] introduce a framework for deriving SDP relaxations
of optimization problems on graphs by using association schemes. By exploiting a sim-
ilar approach, one can obtain exact formulations of discrete problems via association
schemes. We provide two examples below.

Example 6 (the TSP). Let us reconsider the TSP; see Example 5. The following
MISDP is an exact model of the TSP,

(29)

min
1

2
\langle D,X1\rangle 

s.t. In +

r\sum 

i=1

Xi = Jn, In +

r\sum 

i=1

cos

\biggl( 
2ij\pi 

n

\biggr) 
Xi \succeq 0 \forall j \in [r],

X1 =X\top 
1 \in \{ 0,1\} n\times n, Xi \geq 0, Xi \in \scrS n \forall i= 2, . . . , r,

where r = \lfloor n/2\rfloor and n is odd. A similar model can be derived for n even. One can
show that (29) is an exact formulation of the TSP by exploiting the ISDP formulation
of the TSP by Cvetkovi\'c, \v Cangalovi\'c, and Kova\v cevi\'c-Vuj\v ci\'c and [33, Theorem 4.1].

Example 7 (the k-equipartition problem). Let n,k,m \in \BbbZ +, and D be a non-
negative symmetric matrix of order n, where n = mk. The k-EP can be formulated
as finding a complete regular k-partite subgraph on n vertices in Kmk of minimum
weight; see also subsection 4.2. It is not difficult to show that the following MISDP
is an exact model of the k-EP:

(30)

min \langle D,X1\rangle 
s.t. (m - 1)In  - X2 \succeq 0, (k - 1)In  - X1 + (k - 1)X2 \succeq 0,

In +X1 +X2 = Jn, X1,X2 \in \scrS n, X1 \geq 0, X2 \in \{ 0,1\} n\times n.

Note that the MISDP (30) has two LMIs and the BSDP (25) only one. Moreover,
observe that one may replace in (30) the constraint (m - 1)In  - X2 \succeq 0 by X21n =
(m - 1)1n and obtain an MISDP for the k-EP with only one PSD constraint.

The examples show that one can impose integrality conditions to only one of the
matrices in the models and obtain an exact problem formulation.
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ON INTEGRALITY IN SDP FOR DISCRETE OPTIMIZATION 1093

4.4. MISDP formulations beyond binarity. Almost all problem formula-
tions discussed before involve variables restricted to \{ 0,1\} . We now consider several
problems possessing a MISDP formulation where the integer variables are not neces-
sarily binary.

Example 8 (the integer matrix completion problem). A well-known problem in
data analysis is the problem of low-rank matrix completion. Suppose a partially
observed data matrix is given, i.e., let \Omega \subseteq [n]\times [m] denote the set of observed entries
and let D \in \BbbR n\times m denote a given data matrix that has its support on \Omega . The goal of
the low-rank matrix completion problem is to find a minimum rank matrix X \in \BbbR n\times m

such that X coincides with D on the set \Omega ; e.g., see [1].
Since minimizing rank(X) leads to a nonconvex problem, a related but tractable

alternative is given by

min
X\in \BbbR n\times m

| | X| | \ast s.t. Xij =Dij for all (i, j)\in \Omega ,

where | | X| | \ast denotes the nuclear norm of X, i.e., the sum of its singular values. Recht,
Fazel, and Parrilo [51] have shown that this problem can be modeled as an SDP. A
possible generalization would be to require the entries in X to be integer; see, e.g.,
[1]. Given a discrete set S \subseteq \BbbZ , this leads to the following ISDP:

min \langle In,Z1\rangle + \langle Im,Z2\rangle 

s.t.

\biggl( 
Z1 X
X\top Z2

\biggr) 
\succeq 0, Xij =Dij for all (i, j)\in \Omega , Xij \in S for all (i, j) /\in \Omega ,

which models the integer matrix completion problem [1].

Example 9 (the sparse integer least squares problem). In the integer least squares
problem we are given a matrix M \in \BbbR n\times k and a column b\in \BbbR n and we seek the closest
point to b in the lattice spanned by the columns of M . Pia and Zhou [49] consider
the related sparse integer least squares (SILS) problem:

min
1

n
| | Mx - b| | 22 s.t. x\in \{ 0,\pm 1\} k, | | x| | 0 \leq K.(31)

The SILS problem has applications in, among others, multiuser detection and sensor
networks; see [49] and the references therein. Now, consider the following ternary
SDP:

(32)

min
1

n

\biggl\langle \biggl( 
1 x\top 

x X

\biggr) 
,

\biggl( 
b\top b  - b\top M

 - M\top b M\top M

\biggr) \biggr\rangle 

s.t. tr(X)\leq K, diag(X) = y1 + y2, x= y1  - y2,\biggl( 
1 x\top 

x X

\biggr) 
\succeq 0,

\biggl( 
1 x\top 

x X

\biggr) 
\in \{ 0,\pm 1\} (k+1)\times (k+1), y1, y2 \in \BbbR n

+.

It is not difficult to verify that if x is a solution to (31), then x, X = xx\top , y1 =
max(x,0), and y2 = max( - x,0) is feasible for (32) with the same objective value.
Conversely, if (x,X,y1, y2) is feasible for (32), it follows from Proposition 5 that x=
y1  - y2 is a solution to (31) with the same objective value.

5. Conclusions. In this paper we showed that the class of MISDPs embodies a
rich structure, allowing for compact formulations of many well-known discrete opti-
mization problems. Due to the recent progress in computational methods for solving
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MISDPs [22, 29, 31, 34, 43, 44], these formulations can be exploited to obtain alter-
native methods for solving the problems to optimality.

As most problems are naturally encoded using binary or ternary variables, we
started our research with a study on the general theory related to PSD \{ 0,1\} -, \{ \pm 1\} -,
and \{ 0,\pm 1\} -matrices. Section 2 provides a comprehensive overview on this matter,
including known and new results. In particular, we presented a combinatorial, poly-
hedral, set-completely positive and integer hull description of the set of PSD \{ 0,1\} -
matrices bounded by a certain rank; see section 2.1. Several of these results are
extended to matrices having entries in \{ \pm 1\} and \{ 0,\pm 1\} .

Based on these matrix results, in particular, Theorems 1--3 and Corollary 3, we
derived a generic approach to model BQPs as BSDPs. We derived a BSDP for the
class of binary QCQPs (see (BSDPQCQP )), and for two types of binary QMPs, see
(BSDPQMP1) and (BSDPQMP2). These results are widely applicable to a large
number of discrete optimization problems; see also the examples in section 3.

We moreover considered problem-specific MISDP formulations that are derived
in a different way than through this generic approach. We provided compact MISDP
formulations of the QAP (see (20)), and various variants of the GPP; see (24), (25),
and (26). We derived several MISDP formulations of discrete optimization problems
that can be modeled using association schemes; see section 4.3. We also considered
problems that have discrete but nonbinary variables; see Examples 8 and 9.

Given the wide range of discrete optimization problems for which we derived
new formulations based on MISDP, we expect more problems to allow for such rep-
resentations. It is also interesting to study the behavior of MISDP solvers on the
presented formulations to see whether this leads to competitive solution approaches
for the considered problems.

Acknowledgment. We thank two anonymous reviewers for providing us with
insightful feedback on an earlier version of this manuscript.
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