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ADstract

Land scarcity is increasing and therefore one of the main challenges for renewable energy in the future is
‘physical space’. While renewables need a lot of space compared to conventional energy sources, and the
competition for space is already increasing (food production, housing etc.), leading to higher land costs
and opposition. Public resistance to new highly visible windfarms and onshore solar farms is hardening.
Large land-based solar farms compete with agricultural use and can have negative effects on the
ecosystem, by covering the soil from the solar light. A solution to the stated problems is by placing
renewable energy production at sea, among which offshore floating solar energy.

One of the main challenges in offshore floating solar is the continuous wave-induced motion of floaters,
and the forces that arise at the most critical points. Dynamically modelling multiple floaters in waves
becomes very computationally and time intensive when the number of floaters increases. This research
focused on creating and comparing a linear and a non-linear model that calculates motions of multiple
floaters under first order wave forces. The aim is to perform these calculations with open-source software
only.

The dynamic forces on the floaters are obtained by evaluating the radiation, diffraction and wave
excitation potential in the open-source Boundary-Element-Method-Solver NEMOH and showed good
resemblance with commercial software packages AQWA and DIFFRAC. The modelling of the motions is
performed in time (linear and non-linear RK4-integration-scheme) and frequency domain (linear). The
implementation of the dynamic forces in both cases showed to be the most critical for the behavior of the
floaters. Especially the determination of the hydrodynamic coefficients: Infinite added mass and
retardation function for the time domain simulation are key in getting the same result for the linear time
domain and frequency domain. Suppressing non-realistic values of gap resonance between multiple
floating bodies increases the efficiency of time-domain simulations. Small differences between the
motions of the floaters can cause significant differences in the forcing, therefor it is rather advisable to
perform the comparison between the linear and non-linear case in time domain.

A comparison of different wave directions and conditions showed that the results of the linear model are
of the same order of magnitude as the non-linear model. For the determination of motions and forcing
under first order wave forces this shows that both cases are similar. Nevertheless, other non-linear effects
can be added in a follow-up study.
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1, Introduction

Land scarcity is increasing and therefore one of the main challenges for renewable energy in the future
is ‘physical space’. While renewables need a lot of space compared to conventional energy sources, and
the competition for space is already increasing (food production, housing etc.), leading to higher land
costs and opposition. Public resistance to new highly visible windfarms and onshore solar farms is
hardening. Large land-based solar farms compete with agricultural use and can have negative effects on
the ecosystem, by covering the soil from the solar light. A solution to the stated problems is by placing
renewable energy production at sea.

Wind energy has shown to be very competitive in offshore locations already, and sometimes even
cheaper due to the economy of scales. A same effect can be expected for offshore floating solar energy.
Multiple floating solar projects on inland lakes have been carried out, in the past ten years, in especially
Europe and Asia, and have shown to be a beneficial solution as well (Trapani & Redon Santafe, 2014).
Nevertheless, no real offshore floating solar projects have been carried out yet, since harsh offshore
environments make it hard for “cheap” solutions that can survive the waves.

1.1 Context

Now the Netherlands, China and Singapore are starting their first pilot projects for offshore floating
solar. In the Netherlands this is a consortium led by the start-up Oceans of Energy (Oceans of Energy
B.V., 2018).

It is expected that the cooling of the seawater will lead to an increase of power production of the solar
panels of 5-15% and is one of the main targets for the first floating solar project on the Dutch North Sea
in 2019. Expected is that by the end of 2019 a start is made with a first offshore solar array: multiple
solar floating platforms connected to each other at sea, riding the waves.

1.2 Problem definition

One of the main challenges in offshore floating solar is the continuous motion of the floating platforms
(floaters), and the forces that arise at the most critical points, namely the joints in between the
platforms. Dynamically modelling multiple floaters in waves and the forces that arise in the
interconnecting joints becomes very computationally and time intensive when the number of floaters
increases. This research focusses on the possibilities of creating a linearized model that calculates
motions of interconnected floaters under first order wave forces and see what the difference is with a
non-linear model. The aim is to perform these calculations with open-source software only.

The main research questions are:

- What is an appropriate way of calculating motions of floating bodies and how can this all been
done with open source tools only?

- How to build a model that combines all the coefficients for multiple degrees of freedom?

- How can the joints be implemented?
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o Inanon-linear model
o Inalinear model
- What is the effect of linearizing the model on the overall motions and forces, compared to the
non-linear model?
- What are the effects of wave-directions on the forces expected in the joints?
- What is the effect of different types of joints on the forces in the joints?

1.3 Scope

This report was simultaneously written with the start of developing offshore floating solar in the Dutch
North Sea. Therefor this report evaluates all the required inputs that are needed for a hydrodynamic
model, from floater characteristics to environmental conditions.

This report compares linear and non-linear responses of the motions of the floaters and the forces in the
connections to first order wave forces. The models developed should give an estimation if linearization
of the joint forces on the floaters Center of Gravity (CoG) is applicable. The models developed contain all
hydrodynamic coefficients through an open source BEM-solver, the coupled equations of motion (non-
linear and linear) are automatically composed for given joint locations and the resulting motions and
forces numerically calculated.

The models created in this research can be further developed for more non-linear effects like: mooring,
non-linear joint stiffness, non-linear hydrodynamic damping and second order wave forces. But this is
not evaluated in this research.

1.4 Research approach

This research is started with a brief literature study about modelling floating bodies in water (1.6) and
the expected environmental conditions in an offshore floating solar project (1.5). Where after the
equations of motion for a linear frequency domain model (FD) and a non-linear time domain model (TD)
are given (2). For the proposed floater (designed simultaneously with this report) all geometrical
properties are calculated (2.3). Hydrodynamic coefficients are solved in a BEM-solver (boundary
element method) based on potential theory. In order to validate open source codes for this, a
comparison is made with commercial BEM software packages for the same geometry (3).

The model starts with a description of the system of floaters and the implementation of the joints (2.4).
The implementation of a numerical time-domain model (4.1) and frequency domain model (4.2) and its
challenges is described. The non-linear time domain model is verified with standard cases, the exact
solution is known and the linear time-domain model is verified with the frequency domain model in
time and frequency domain (6). Since potential theory in BEM-solvers can cause gap resonance issues
between floaters, the effect and the suppression of it is discussed (5). Finally, the models are compared
for different wave directions and joint types (7).

1.5 Site Location

This study is performed for the initial deployment site for the first Dutch offshore solar array on the
North Sea. The environmental conditions for this location are shortly discussed.
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1.5.1 Bathymetry
The North Sea is a relatively shallow sea with the Dutch sector varying between 20 and 50 meters. The
identified test location for the first dutch offshore floating solar project is at the North Sea Innovation
Lab (NSIL). This is an offshore innovation test facility accommodating a prototype seaweed farm about
15 km offshore of the port of Scheveningen. The area has a relatively constant bathymetry at 20m LAT
as is shown in Figure 1.1.

Figure 1.1 — North Sea around the NSIL showing a relatively constant water depth around the test area.

1.5.2 Wave Environment
Wave data is analyzed from 5 different sources:

— North Sea Innovation Lab

— Fugro

— Eneco Luchterduinen available data
— BMT ARGOSS

— RWS measurement buoys

For locations see Figure 1.2. With these data the extreme wave parameters are calculated for different
return periods with Weibull tail-fitting, see Figure 1.3.
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Figure 1.2 — Overview of locations of available data.

The retrieved result from the different available data led to the following design conditions:

- Ultimate limit state (ULS): Hy =7.0m, T, =12.7s
- Serviceability limit state (SLS): Hg = 2.0m,T,, = 6.7s

1.5.3 Wave Spectrum
The applied wave energy density spectrum in this research is the JONSWAP-spectrum. This is most
common used spectrum for designing at the North Sea (Holhuijsen, 2010) and can be described in the
following form in relation to the significant wave height Hy and peak period T,, (DNV, 2010):

As a continuous variance density spectrum the JONSWAP spectrum S; (w), a modification on the
Pierson-Moskowitz spectrum Sp), (w), is used.

5 5/ w 4 (Eq. 1.1)
SPM((,()) =1—6H52w;a)_5 exp <_Z<w_> )
14

W—Wp\2 (Eq. 1.2)
exp(—O.S d )
S;(w) = A, Spu(w)y ( 7@ )

Where y = non dimensional peak shape parameter, o = spectral width parameter

0 =04 forw < wy, 0=0,forw>w, A, =1—0.287In(y)

rad

For w, = ZT—” = 0.4947Tand H; = 7.0m this leads to the spectrum shown in Figure 1.4.
14
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Figure 1.4: JONSWAP spectrum for Hy = 7.0m, T, = 12.7s,y = 3.3

1.6 Model approach

This chapter describes briefly the most used methods that exist to model the motions and forces on
floating bodies in waves.

1.6.1 Bodiesin water
There are several ways of calculating motions and forces in floating bodies in water. The most common
are listed below:

- Morison (drag and inertial forces)
- Potential theory (BEM-solvers)
- Reynolds averaged Navier-Stokes simulation (CFD)

Morison equation is only valid for bodies that are slender compared to occurring wavelengths. Potential
theory and CFD are both applicable for the problem, but both have their issues.

Potential flow models take a few assumptions in consideration (Folley, et al., 2012):

- Inviscid fluids

- lIrrotational flow: a velocity potential exists ¢ (M, t), wherefrom the velocity can be calculated at
every place in the domain: V(M, t) = Vc]’)(M, t)

- Incompressible flow: With conservation of mass this leads to the Laplace equation: A¢p(M, t) =
0

Solving potential functions is a non-linear boundary value problem and therefore calculating potential
flows the problem is further linearized. Assumptions made are described by (Folley, et al., 2012):

- The ratios of wave height to wavelength (i.e. wave steepness) and wave height to water depth
must both be much smaller than 1.

- The motions of the body are small and around a fixed mean position: the ratio of the typical
amplitude of motion to the typical dimension of the body is much smaller than 1.
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Although these assumptions are violated for small floaters in intermediate depths. The linear potential
theory is known as a good estimation for calculations of floating bodies (frequently used for the
modelling of wave energy converters). Nevertheless, when the sea-states are getting harsher on small
floating objects, experiments have shown that modelling with CFD show better results. On the other
hand BEM-solver calculations are much faster than CFD-calculations.

CFD models are models that resolve specific terms of the Navier-Stokes equations, these are based on
the conservation of mass and momentum. In comparison to potential theory, viscous and turbulence
effects can be taken into account. Especially for the modelling of bodies in harsh conditions, this method
is very applicable, since it can also take into account viscous effects and a combination of air-water
effects like breaking waves or fountain spraying in floater gaps. This is also one of the main weaknesses:
CFD models are often prone to internal dissipation, particularly when resolving gravity water waves (free
surface flow).

Since the intended floaters have a low freeboard, it will be overtopped frequently by waves and water
will splash (fountaining effect), potential theory might not be as good as expected, since it only
considers the radiation, diffraction and wave loading perpendicular to the wetted surface. Also, effects
like turbulence (especially for a rectangular floater that has sharp edges) are challenging to take into
account. Despite all these limitations, using BEM-solvers this is a most common practice in
Offshore/Maritime industries to analyze floater’s motions in design stages.

CFD-calculations require high computational effort and it is not certain if the result will be trustworthy.
The boundary between air and water is already difficult to simulate and will be even harder with a lot of
splashing.
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1.7 Model domain

From this point onward it is chosen to start with potential theory simulations, to identify the motions of-
and forces in the joints between the floaters. Two main model possibilities can be distinguished, after
solving the potential theory:

- Time domain
- Frequency domain

Time domain analysis requires higher computational time and frequency domain analysis cannot handle
non-linear terms, which can be an issue with interconnecting joints for multiple floaters and moorings.
The time domain model is further evaluated in section 4.1 and the frequency domain model in section
4.2.

In Figure 1.5 an overview is given of the model approach in this research. The boxes symbolize the steps
taken in this research to model interconnected offshore floating platforms. This results in a linear
frequency domain model (FD), a linear (TDL) and a non-linear (TDNL) time domain model that will be
compared in the result section. All the steps will be discussed in the following chapters.

Inter connected

floating bodies

'

[ Determine Geometry characteristics ]

! !

Equations of mation in time domain Equations of mation in frequency domain

v v
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Figure 1.5: Overview of the model approach in this research
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2. oystem description

In this chapter the considered system is briefly described. The geometry and sign conventions used in
the system are needed for correct calculations. After that the systems equations of motion for
frequency domain and time domain calculations are presented and the forcing terms summarized.

2.1 Geometry

An overview of the system and the sign convention is given in Figure 2.1.

The considered system in this research consists of two interconnected floaters. The floaters have a very
small height compared to their length and width and on each floater approximately fit 15 solar panels.

The draft is approximately at two third of the floater’s height, while the center of gravity is below the
waterline, but higher than the geometrical center of the structure due to the electrical equipment on
top. Every floater has its own local axis system in the center of gravity. The floaters are interconnected
with joints on the outer edges, where the connecting points on the first floater are denoted with P;;
and P;,. The wave directions are according to the axis systems.

u=90°

Figure 2.1: Overview of the geometry of the structure, sign convention and wave direction.
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2.1.1

Floater motions

The motions of the floater are described as presented in Figure 2.1, with the corresponding textual
reference, given in Table 2.1.

Table 2.1: axis and motion naming

Sign Name Number (first floater) Number (second floater)
Surge 1 7
y Sway 2 8
Heave 3 9
¢ Roll 4 10
Pitch 5 11
Y Yaw 6 12

Motions are described with respect to the floaters center of gravity. Translational motions are denoted
with u; (x,y or z) and rotational motions with u, (¢, 8,1). Any of the motions in general is denoted as
u (x,y,2 ¢,0,1). All motions in vector notation as u = [x,y, z, ¢, 8,]7 for a single floater and for two

floaters u = [uq, Uy, ..., Us2] = [X1, Y1, 21, D1, 01,1, X2, V2, Z2, P2, 02,2 ].

2.1.2 Wave directions

The convention of the wave directions (i) is presented in Figure 2.1 and due to symmetry of the system
the wave directions only need to be evaluated for: 0° < u < 90°. Other textual references in the report
are given in Table 2.2.

Table 2.2: Textual reference for certain wave direction.

u Textual reference
0° Beam waves
90° Head waves

u U-waves
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2.2 Equation of motion

The equation of motion for a body can be derived from Newton’s second law (Journee & Massie, 2001):

I — - d , - (Eg. 2.1)
F= a(th) and M = E(H)

F resulting external force acting in the center of gravity (N)

m Mass of the rigid body (kg)

V Instantaneous velocity of center of gravity (m/s)

M Resulting external moment acting about the center of
gravity (Nm)

H Instantaneous angular momentum about the center of
gravity (Nms)

t Time (s)

In water, when the system is linear, the motion of a floating body in waves can be seen as the
summation of the motion in still water and the forcing by waves on the restrained body (Journee &
Massie, 2001). Applying Newton’s second law will result in the following equation for respectively
translational and rotational motions:

Translational: %(mut) = pVii, = F, + E, (Eq. 2.2)
Rotational: %(lur) = lii, = My + M,, (Eq. 2.3)
Where:

p density of water (kg/m?3)

v volume of displacement of the body (m?3)

I Mass moment of inertia (kgm?)
F,, M, hydromechanical force or moment (N or Nm)
E,, M,, exciting wave force or moment (N or Nm)

U Translational motion (m)

U, Rotational motion (rad)

2.2.1 Frequency domain equation of motion
The equation of motion in time domain can also be written in frequency domain, if the external forcing
is a superposition of harmonic vibrations, which is the case in linear wave theory. To analyze a single
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degree of freedom system under linear harmonic loading in frequency domain, can be done by the
Integral Fourier Transform. This can only be applied for zero initial conditions.

The Fourier Transform states:
F(w)} _ f {F(t)} —iwt
o) = | tuofe ™

The equation of motion for a single translational degree of freedom then becomes:
(—w*m)ti(w) = F(w) + F, (@)

Hydromechanical forces and moments
Hydromechanical forces (and moments) arise due to harmonic oscillations of the body in the
undisturbed fluid. It can be subdivided into a hydrostatic and a hydrodynamic part:

Fy = Fseatic + denamic (Eq. 2.4)

Physically the hydrostatic force is a force on the body in a displaced situation with zero velocity and is
opposite to the direction of the displacement. It is given as a hydrostatic stiffness:

Fstatic =—C- ﬁ(a)) (Eq. 2.5)
The hydrostatic stiffness will be further elaborated on in section 2.3.3.

The hydrodynamic force denamic, also known as the radiation force F, is a result of the motion of the
body in the water. Assuming harmonic excitation, the radiation force will result in two components with
the same frequency as the excitation frequency. One in phase with the velocity of the body and one in
phase with the acceleration of the body:

ﬁdynamic = w?ail — iwbii (Eq. 2.6)

Characterized as the added mass (a), and the hydrodynamic damping (b) coefficient. Physically the
hydrodynamic term relates to radially propagating waves away from the body, meaning that energy is
distracted from the system (damping). The force w?ail is caused by the accelerations of the water
particles close to the body. This can be interpreted as water mass moving along with the body, and
therefor as an added mass to the system.

Wave excitation forces
The first order wave excitation forces (and moments) consists of two forces: a diffraction force and a
Froude-Krilov force:

The Froude-Krilov force is the force of the undisturbed wave on the floating body, derived from the
integration of the pressures on the body’s surface. The diffraction force is a correction on this
assumption, since the waves will be diffracted by the floating body.

Further evaluating these forces will result in the frequency domain equation for a translational motion
(the same procedure holds for a rotational degree of freedom considering equation 2.3):
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(—w?(m+ a(w)) + iwb(w) + ¢)i(w) = F,(w) (Eq. 2.8)
Where:
i Complex Motion (m)
m Mass of the body (kg)
a Added mass coefficient for heave (Ns?/m=kg)
b Hydrodynamic damping coefficient for heave (Ns/m)
c Restoring spring coefficient for heave (N/m)
W Excitation frequency (rad/s)

E,  Complex FD Excitation force (N)

Multiple degree of freedom system
More general the equation of motion can also be written for a multiple degrees of freedom system, with
its corresponding matrices:

(—w?(M + Ay(w)) + iwBy(w) + C)ii(w) = F(w) (Eq. 2.9)
M Mass matrix
A Added mass matrix
B Hydrodynamic damping matrix
Cc Restoring Stiffness matrix

F(w) Complex excitation force (and moment) vector in frequency domain
~ ~ ~ ~T
i(w)  complex Motion vector in frequency domain = [%7,2 ¢,0,9]

2.2.2  Time domain equation of motion
In order to make calculations for general loading, time domain calculations can be performed. The
equation of motion looks slightly different, compared to the one in frequency domain. This equation of
motion is known as the Cummins’ equation, which evaluates the hydrodynamic damping force as a
convolution of the velocity (it) and a retardation function (R,,). The Cummins’ equation for a
translational motion is given:

o (Eq. 2.10)
(m + aoolu) ii(t) + _[ R, (Du(t — 1)dt + cyu(t) = E, (t)
0

Where:
m Mass of body

a,  Added mass at infinite frequency
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R Retardation function

c Restoring spring coefficient for heave
E,(t) Wave Excitation force

u Motion

In this way the terms are not frequency dependent and a complete representation of the equation of
motion under general loading is given in time domain.

Multiple degree of freedom system
Similar to equation 2.10 the system under general loading can also be expressed for MDoF systems in

Matrix notation:
o (Eq. 2.11)
M + A) () + f Rt — 1)dr + Cu(t) = F(©)
0

<

Mass of body

Added mass matrix at infinite frequency

oS
8

R Retardation function matrix
Cc Restoring spring matrix

F(t) Wave Excitation force vector
u Motion vector

The different coefficients stated in this part are further described in the next section.

2.3 Equation of motion coefficients

In this section all coefficients of the equation of motion are shortly described and the procedure to
obtain them.

2.3.1 Floater specifics
The following specifics of the floater need to be determined for further calculations in the process:

- Mass:m
- Center of Gravity (CoG)
- Moments of Inertia Iy, Iy, I,
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Mass
Mass of all components in the floater added up together:

Eq. 2.12
mzzmi (Eq )
i=1

Center of Gravity
The floaters center of gravity can be determined by implementing a reference axis system on the side of
the floater, see Figure 2.2.

Figure 2.2: reference axis system for calculation of the floaters center of gravity

The floaters center of gravity is then calculated in the following manner:

_ Z(Caxis,imi) (Eq. 2.13)
Caxis = T
i

With: ¢ ;s =floater center of gravity axis-coordinate, ¢,,;5; =components center of gravity axis-
coordinate and axis = x,y or z.

Moment of inertia

For each individual component of the floater the moment of inertia I;,;5 ; and the eccentricity a ;s ;
from its own center of gravity to the floaters center of gravity needs to be determined. With Steiner’s
Rule the floaters moments of inertia can be determined.

L =% (Ix,i +m(a2; +az; ) (Eq. 2.14)
L, =% (Iy,i +my(aZ; + a2; )
I, =% (Iz,i + mi(a?c,i + a}z,,i))

The gyradii of the floater can be derived from the mass and the mass moment of inertia: 74,5 = laxis

m

A detailed calculation of the mass m and moment of inertia I of the floater needs to be carried out for
all the components (i.e. structural elements, electrical equipment).
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2.3.2 Solid mass matrix

The solid mass matrix is determined by the weight and shape of the platform. It is assumed that its mass
does not change in time.

So, water laying on top of the platform or added marine growth is neglected. It should be mentioned that
this is of importance for further study, since the platforms own mass is not high. This will also influence
the hydromechanic stiffness and damping.

The solid mass matrix for a single platform (6DOF) will become:

m T (Eq. 2.15)

To overcome confusion with coupling terms the moment of inertia is now denoted as I,., instead of I, as
presented in equation 2.14. The coupling terms between pitch and roll (1., = I,,) are neglected, they
are generally small (Journée & Massie, 2001).

2.3.3 Hydrostatic stiffness matrix

The linear restoring matrix for a single floater, with respect to the center of floatation (waterline), can
be written in the following manner (Marin, 2018):

[0 ] (Eq. 2.16)
0
C = C33
Caq
Css

L 0 |
With linearized: c33 = pgA, c4q4 = GMpgV,cs5 = GMpgV (Eq. 2.17)
GM, = KB + 2 — KG, GM, = KB+ — KG (Eq. 2.18)

c33: generally, this is valid for small values of z, but when the floater is vertically walled, it remains exact
for larger values of z.

Since all the motions are evaluated with respect to the center of gravity, the stiffness matrix needs to be
changed to the center of floatation. This is done with a generic translation matrix:
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r 1 1 (Eq. 2.19)
1
T = 1
N -Az Ay 1
Az —Ax 1
[—Ay Ax 1.
[0 ] (Eq. 2.20)
0
. Cy Ayc, —Axc,
C,=TCT" =
7 AyCZ Cxx T (Ay)ZCZ —AxAyc,
—Axc, Cyy
04
With Ax = LCF — LCG,Ay =TCF —TCG,Az=T — KG (Eq. 2.21)

The considered floater is axially symmetrical in the x-, and y-axis, meaning that in this case Ax = 0,4y =
0, and the restoring stiffness matrix is reduced to matrix C presented in equation 2.16.

2.3.4 Hydrodynamic coefficients in frequency domain
The hydrodynamic coefficients can be calculated with the principles of potential theory, assuming that
the flow is irrotational and non-viscous.

As described in section 2.2.1 the coefficients for added mass and hydrodynamic damping are related to
the dynamics of the fluid around the body. Applying potential theory prescribes that the fluid only
exerts forces perpendicular to the floating body. These forces can be solved by evaluating the radiation
potential ®@,.. An overview of the theory is given in Appendix A. Nevertheless, mostly these equations for
floating are solved in Diffraction-software using a boundary element method. Further on in Chapter 3 an
overview and a comparison is given of these solvers.

For n degrees of freedom (nDoF), the added mass and damping matrix are a [n x n x number of
frequencies] matrix in frequency domain.

a1 (@) - agp(w) bi1(w) -+ byp(w) (Eq. 2.22)
Alw) = : : ,B(w) = . S
an1 (w) - Ann (w) bn,l (w) - bn,n ()

2.3.5 Hydrodynamic coefficients in time domain
The hydrodynamic coefficients for Cummin’s equation in time domain can be derived by comparing the
time domain and frequency domain equation of motion. (Ogilvie, 1964) found the following relation:

[oe]

1r” 1
a;j(w) = a; _ZJ;) R;j(7) sin(wt) dt < a;; = a;j(w) +J;) ZRij(T)sin(wr)dT:

jjo0 = Ajj(w = )
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[ee)

byy(@) = |

R;j(7) cos(wt)dt « Ry;i(7) = Efoobl-j(a)) cos(wt) dt
0 TJo

2.3.6  Symmetry
A single floater is symmetric in its x-axis. Therefor the symmetric (x, z, ) and anti-symmetric (y, ¢, Y)
equations of motions can be uncoupled, and there is no need to perform the calculations for the added
mass and damping terms of the coupling between these symmetric and anti-symmetric motions, see
equation 2.23 as an example.

(a1 (w) 0 aq3(w) 0 a;5(w) 0 1 (Eq. 2.23)
0 azz(w) 0 az4(w) 0 az6(w)
A= az;(w) 0 azz(w) 0 azs(w) 0
0 ag2(w) 0 ag4(w) 0 Ag6(w)
as; (w) 0 as3(w) 0 ass(w) 0
0 ag2(w) 0 ags(w) 0 g6 (W)

Note: For multiple floating bodies next to each other this theory cannot be applied. Since there can be
cross coupling between the platforms.

2.3.7 Other damping effects
As stated, solving the radiation potential only considers forces of the fluid perpendicular to the body.
Nevertheless, there are non-linear viscous damping effects that act as forces on the floater, like:

- Friction damping

- Eddy-making damping
Lift damping

Bilge keel damping

Mostly the effect of these coefficients is small compared to the (potential) hydrodynamic damping but
can play a major role in roll motion for specific type of keels. Since the effects are non-linear, they can
only be considered when solving the time domain equation of motion. In this report they are not further
taken into account.

2.3.8 Wave excitation Forces
Next to the hydrodynamic coefficients the first order wave excitation force can be calculated with the
principles of potential theory. It is built up out of the potential of the undisturbed wave ®,, for the
Froude-Krilov force and the diffracted wave potential ®; for the diffraction force. See Appendix A for
further calculations.

The first order wave force is frequency dependent and often expressed with respect to the center of

gravity of the body in terms of an amplitude response g—“ (w) and a phase shift g7 (w) with respect to

the incoming wave. These coefficients for bodies can be calculated with diffraction software, see
chapter 3.

2.3.9 Other wave excitation forces
Next to the first order wave force, second order wave drift forces exist. These are non-linear effects of
the motion of the body in waves and can be subdivided into mean wave drift forces and low-frequency
wave drift forces (Journée & Massie, 2001). These are not further considered in this report.
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2.4 Equation of motion with joints

This section elaborates on the implementation of joints as springs between two floaters. The non-linear
forcing on the floaters centers of gravity is derived and for frequency domain calculations further
linearized.

2.4.1 Joints as springs
The scope of this research focusses on implementing the connections as springs between the floating
bodies. Every floater is connected with two joints to another floater, see Figure 2.1.

Every connection is treated as 6 springs, see Figure 2.3: 1 axial, 2 transversal and 3 rotational springs in
a single connectionFigure 2.3 as example:

- 1 Axial spring (kg)

- 2Transversal springs (k)

- 2 rotational springs (bending) (k,.)
- 1 rotational spring (torsion) (k;)

Figure 2.3: 1 axial, 2 transversal and 3 rotational springs in a single connection.

The determination of the joint stiffnesses is based on a circular connection and further evaluated in
Appendix L.

2.4.2 Equation of motion with joints
The equation of motion in time domain given in equation 2.11, can be extended for additional forcing,
next to the first order wave forces, described in section 0. Accordingly, the forcing by interconnecting
joints between floaters is added to the equation of motion:

o (Eq. 2.24)
(M + Ao) () + f Rt — D)t + Cult) = Fy(®) + Fropme (©)
0

M Mass of body
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A Added mass matrix at infinite frequency
R Retardation function matrix
c Restoring spring matrix
E,(t)  Wave Excitation force vector
Fioint(t)  Joint forcing (restrains)

u Motion vector

2.4.3 Euler-Lagrange equation

A straight forward and clear manner to obtain the equations of motion of a general dynamic system is
making use of the Euler-Lagrange equations:

d oL _ oL (Eq. 2.25)
dtovu; ou;
L=T-7 (Eq. 2.26)

Where T and V are respectively the total kinetic, and potential energy in a system. The forcing by the
joints on the system can be derived in a similar manner.

In a mass spring system (without gravity), the kinetic energy part in the Lagrangian, L, contributes to the
inertial forces and the Potential energy to the restoring forces of the spring(s). As an example the
Lagrangian is solved for a single mass spring system in Appendix B.

2.4.4 Joints in multiple degrees of freedom
The method of Euler-Lagrange can be applied to determine the connection stiffness forcing: Fjin.. The
potential energy of all springs needs to be evaluated:

1 (Eq. 2.27)
V= E (ka (ijoint)2 + ks(Aonint)2 + ks (Azjoint)2 + kt (Aq)joint)2 + kr(Aejoint)2

+ kr (Alpjoint) 2)
—av (Eq. 2.28)

Fioint,i = ou;
With i the degrees of freedom of the system.

Relative motions between connection points
In order to calculate the potential energy that is stored in the springs, the new coordinates of a
connection point P must be calculated after rotation around the CoG. This can be done by using
rotational matrices. The new position can be calculated with the help of rotation matrices:
T T Eqg. 2.29
[Pyz,i' lel,i' Pz’,i] = Ri[erPyr Pz] (Eq )

Withi = ¢,0 or ¢
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1 0 0
0 cos¢ -—sing
0 sing cosg

cosf@ 0 sind@
0 1 0
—sinf 0 cos@

Ry = ,Rg = sinyy cosy O

cosy —siny O (Eq. 2.30)
0 0 1

This is for an axis system where the rotations are counter clockwise. The displacement of the connection
point in its local axis system is the subtraction of the original coordinate:

[xP,i:yP,i:ZP,i]T = [PJ,c,ivP;/,i'Pz,,i]T - [P, Py, Pz]T (q. 2.31)

The summation of all possible displacements of the connection points, due to motion around the center
of gravity can then be summarized as:

Xp=X+Xpg+Xpg+Xpy =xX+Xpg+ Xpy (Eq. 2.32)
Yp=Y+¥pep tVrotVpy =Y tVpp tVry (Eq. 2.33)
Zp = Z+ Zpg + Zpg + Zpy = Z + Zp¢ + Zpg (Eq. 2.34)
bp=1¢ (Eq. 2.35)
6p=0 (Eq. 2.36)
Yp =19y (Eq. 2.37)

Connecting the floaters

A single connection is connected from a point P1 on floater 1 and to point P2 on floater 2 (P11 and P12
in Figure 2.1: Overview of the geometry of the structure, sign convention and wave direction. Figure 2.1
for example). The above procedure can be performed with the following input:

- ForPlL:
o Location of point P1 on axis system of floater 1: P1: (Plxl, P1,,, Plzl)
o Motions of floater one in CoG: [x,y,2, ¢, 0, YT = [x1, V1,2, P1, 01, Y117
o Results in local displacements of connection system: up; =

[xXp1,Yp1,Zp1, 1, Op1, lpPl]T

o Location of point P2 on axis system of floater 2: P2: (P2,,, P2,,,P2,,)
o Motions of floater two in CoG: [x,y, z, ¢, 8, Y] = [x2, V2, Z2, P2, 02,517
o Results in local displacements of connection system: up, =

[xXp1,Yp1,Zp1, 1, Op1, lpPl]T

The relative displacement of the two ends of a connection (one connected to floater 1 and one to
floater 2) that need to be evaluated in equation 2.27 can be composed:

AHjoint = Up1 — Up2 (Eq. 2.38)

. T
With: AEjoint = [ijoint' ijoint: AZjoint: A()bjoint: Agjointl Al/)joint]

The resulting reaction force from the joint is dependent, with respect to the floaters center of gravity, is
dependent on the joint stiffness and the motions of both floaters:
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- Ejoint (E(t): E)
with E = [ka: ks; ks' kt' kr: kr]T'

Damping from joints
To cover material damping from the joints, the same procedure can be applied for linear joint dampers
on the system. Simply by replacing the motion and stiffness terms in the obtained joint forcing equation

with the velocity at the floaters’ centers of gravity (g(t)) and linear damping coefficient (d). In this case

the total forcing from the joint would become:

Ejoint (E(t); E} Z(t)' i) = Ejoint,springs (E(t)’ E) + Ejoint,dampers (E(t), i)

It must be said that these are linear approximations of the reality. Joint damping is not further applied in
the result section, but is incorporated in the models, described in chapter 4.

Multiple joints

This same procedure can be repeated for multiple facing connection points on side-by-side or matrix
configured floaters. In this report there is focused on two joints connecting two floaters at the ends (see
figure Figure 2.1). Equation 2.27 is then extended to 12 terms instead of 6 terms (6 springs per
connection) that are incorporated into the calculation of the potential energy equation.

Frequency domain Spring Matrix

In frequency domain calculations it is desired to implement the joint interaction in the form of a linear
stiffness matrix. The frequency domain equation of motion presented in equation 2.9, will have the
following adjustment:

(—w?(M + Ay (w)) + iwBy (@) + € + Cipint)Ti(w) = F(w) (Eq. 2.39)
Mass matrix
Added mass matrix

Hydrodynamic damping matrix

o W o x» =

12x12 Restoring Stiffness matrix

Cioint  12x12 Joint Stiffness matrix

F(w) Complex excitation force vector in frequency domain
ii(w) Complex Motion vector in frequency domain

Since all calculations in frequency domain are linear, this stiffness matrix is related to the linearized
stiffness joint forcing vector in time domain. The linearization of this joint forcing vector is further
described in Appendix C. It can be transformed to a matrix notation with the following similarity.

Ejoint,linear (E(t)) = _Cjointﬂ(t) (Eq. 2.40)

Note: the minus is due to the difference in side (left or right of the equal sign) of the equation where the
joint forcing is implemented.
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Since the forcing vector is linear, the entries of the stiffness matrix can be composed by taking the
derivative with respect to each degree of freedom for every vector input:

[ % J0F; ] (Eq. 2.41)
€11 (12 [ 0u; ™ Ouygy|
Cioint = [ S S ] =-1 | : :
€121 - C1212 0Fi, 0F;,
lau1 6u12J

An overview of the forcing vectors and resulting linear spring matrix can be found in Appendix D.

2.5 Conclusion

In this section the equations of motion for the time and frequency domain model were derived and are
Time domain: non-linear -
(M + A4 (0) + [ R = de + Cu) = Eul©) + Frine©
0

Time domain: linear <

M+ A) ii(0) + f Rt — D)7 + Cu(t) = By (6) + Fioimt.imear (£)
0

Frequency domain (linear) (—w?(M + Ay (w)) + iwBy (@) + C + Cipine) (@) = F(w)

Where the joint forcing vector and joint stiffness matrix are derived with the potential energy part in the
Euler-Lagrange equation.

35



3. Diffraction software

Numerical modelling of floaters is much less expensive then performing scale model tests in a basin and
gives in a lot of circumstances very accurate approximations. As described before an import bases of the
numerical modelling are the hydrodynamic coefficients and wave excitation forces via potential theory.
The most common method to do the modelling is by making use of diffraction software that uses
boundary element method (BEM), also known as the panel method, applied in so called diffraction
software.

This method is based on potential flow theory and is therefore somewhat limited by linear calculations.
Nevertheless, it is still much faster than other methods like computational fluid dynamics (CFD) or
smoothed-particle hydrodynamics (SPH).

The coefficients that can be obtained with diffraction software are the hydrodynamic coefficients
described in Section 2.3.4, being the frequency dependent added mass a(w), hydrodynamic damping

b(w), wave excitation force amplitude response % (w) and phase shift €p; (w) with respect to the
a

incoming wave.

3.1 BEM-solvers

BEM is a numerical technique which uses systems of partial differential equations formulated into the
boundary integral form. BEM codes employ the method of Green’s functions to transform a flow
problem into a problem of source distribution on the body surface. BEM codes may be applied to
varying engineering problems, and when used in a hydrodynamic context, BEM is used to solve for the
scatter and radiated velocity potentials, which are solved separately, and which arise from the
interaction of a harmonic linear wave field with a body located within that field. The scattering potential
is solved for the body when it is held fixed and may be used to determine the exciting force acting on
the body due to the wave action. The radiating potential, wherein the potential is found for a moving
body in the absence of incident waves, is commonly resolved into components in phase with the body
acceleration and the body velocity and gives rise to the added-mass and radiation damping terms.
(Penalba, Kelly, & Ringwood, 2017)

Different BEM software packages for hydrodynamic calculations are available on the market, being for
example:

- WAMIT

- Aquaplus
- Agwa

- WADAM
- Diffrac

- NEMOH

Making use of commercial BEM software can be costly and several different simulations are mostly
required. The following BEM solvers are issued in this study:
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- DIFFRAC
Scale model tests for floating solar panels have been executed by Marin (December 2017), and at
the time simulations were performed with their in-house diffraction software.
- AQWA
The TU Delft has license for ANSYS, including the package AQWA
- NEMOH
This is an open source Matlab code developed by the Ecole Centrale de Nantes in 2014

Important in all these BEM solvers is that it needs to be understood how it should be used in a proper
way, to produce realistic results.

3.1.1 Assumptions in diffraction software
Some additional information is given about diffraction solvers. The solvers solve the potential functions,
and this can be interpreted as the floater being excited with infinitely small amplitudes for different
frequencies. For the forcing the results is then scaled to the amplitude response per meter wave
amplitude. In general, this means that the linearization around waterline causes the problem that it is
not good applicable for large excitations. Nevertheless, diffraction software has shown to be a
commonly used tool in the modelling of wave energy converters (also small ones). For small floaters the
effect of diffraction and wave shielding will be very low, compared to larger objects.

3.1.2 Mesh
A mesh of the floating body build of panels needs to be created to solve the potential equations in
diffraction software. It should be mimicked that flow goes around the object. This can be achieved in
two ways: implementing point sources on the grid panels or make use of distributed sources. Most
diffraction software makes use of point sources. Therefor the number of panels should be sufficient for
two reasons: to capture high wave frequencies (small wave lengths) and to simulate the right shape of
the floater (sufficient point sources close to the boundary).

The floating body does not need to be modelled above the still waterline, since diffraction software
linearizes around the waterline. Hence, the floating body is seen as an infinite high body with an
extrusion at the waterline area. Most diffraction software’s have their own meshing tool. An example of
bodies with a different number of panels, generated with NEMOH’s meshing tool are given in Figure 3.1.

Figure 3.1: Mesh for a floater with 300, 500 and 1000 panels

The mesh is created for half the floater and mirrored in the y-axis. More information about creating a
mesh can be found in Appendix E.
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3.1.3 Joints
The application of joints in diffraction software for the calculation of the first order hydrodynamic forces
is not necessary since not moving objects are considered in the calculation. Although when the size of
the joints is not very small compared to the floater size (think about very large fenders), and are
(partially) submerged, they can have an overall effect on the fluid behavior.

Note: For the calculation of second order wave drift forces the floaters motions are of importance and
therefore the joints should be implemented beforehand for the calculation of the so-called drift quadratic
transfer functions. Not further evaluated in this report.

3.2 Comparison for different BEM-solvers

In order to verify the open source software NEMOH, a comparison is made with the hydrodynamic
coefficients (Hyd-files) obtained with DIFFRAC. This is done for a single floater, as described in Table 3.1.
At the same time a comparison is made with ANSYS’ AQWA, available via the TU Delft License.

Table 3.1: Steel floater used in Scale model tests:

kg 1025
Pwater m3

d [m] 24

KG [m] -

m [kg] -

[Tx' Ty, TZ] -

3.2.1 Number of panels
Different number of panels composed width NEMOH’s built-in mesh tool can be seen in Figure 3.1. The
appropriate number of panels needed is related to the wavelengths that is desired to be taken into
account.

As a rule of thumb the minimum required number of panels (William Otto, Marin 2018) should be at
least 5 per occurring wavelength. Knowing the wetted surface area an estimation can be made of the
number of panels required per wave frequency that is calculated.

The wave length corresponds to the wave frequency via the dispersion relation and can be calculated
iteratively:

_9 ( ﬁ) (Eq. 3.1)
/'L—znT tanh 27[/1
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A33 [kNimyfs)]

60

20

The minimum number of panels on the floater that are at least required per wave length can then be
calculated accordingly:

Awetted (Eq.32)

@l

Npanels -

The result is summed up in the following table:

Table 3.2: Estimation of the number of panels minimal required in mesh of the steel floater for higher frequencies

w [rad/s] A[m] Npanets
8 0.96 955
10 0.62 2290
25 0.10 88056
50 0.024 1,528,750

Marin’s DIFFRAC hyd-files consists of 2000 panels on one floater. The same floater is built in NEMOH
and compared for different number of panels to optimize the code before scaling up to multiple
floaters. NEMOH considers symmetry of the floater in the x-axis, this means that basically the number of
panels can be halved.

3.2.2 Comparison with DIFFRAC
A comparison is made between the pre-delivered DIFFRAC Hyd-files by Marin and the created Hyd-files
with NEMOH. In order to estimate the difference between the Hyd-files, the NEMOH files (with different
amount of panels) are compared with the original DIFFRAC file (2000 panels). See for example Figure
3.2.

Comparison Nemoh and Diffrac depending on Mesh size for A33 Comparison Nemoh and Diffrac depending on Mesh size for A42

—— Diffrac —— Diffrac
Memch 100 0.0 Hemoh 100

—— Memoh 300 —— Nemoh 300

— Memgch 1000 —— Nemah 1000

—— MNemoh 3000 0.5 1 — Nemah 3000
—— Nemoh 5000 —— Nemaoh 5000

A4Z [kNAm/sH]

T
0.0

T T T ! T T T T T T !
05 10 15 2.0 2.5 EN as 4.0 oo 0.5 10 1.5 2.0 2.5 3.0 3.3
w [rad/s] w [radss]

Figure 3.2: Added mass in heave-heave and roll-sway motion for different mesh sizes.

A good way to quickly analyze the similarity between both files is looking at the correlation between
both. Where a value of 1 indicates a perfect positive correlation. Hence, this indicates if the coefficients
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have a similar curve shape. Nevertheless, this gives no indication of the amplitude of the curves.

Therefor the RMS-ratio is used: RMSr =

RMSp; . .
—2DYJTac \wWhen this value is around 1, the curves have equal
RMSNEMOH

values. When it is below 1, NEMOH gives higher values than DIFFRAC.

Since, the single floater’s equation of motion can be decomposed in symmetric and anti-symmetric
motions, only the non-zero coefficients (cross terms) are analyzed. Due to its double symmetry this
concerns only the diagonal coefficients and surge-pitch and sway-roll coefficients.

By comparing these results on the above discussed criteria, leads to the plot shown in Figure 3.3 and
Figure 3.4, respectively the correlation and RMSr for different amount of panels in NEMOH with the
DIFFRAC file. The usage of lines instead of bullets is a not very proper manner of representing, since the
correlation and RMSr are specific for a certain coefficient and has no values in between. Nevertheless, a
line representation gives an overview of where certain values are higher than others.

RMS-ratio Diffrac Steel - Others

Correlation Diffrac Steel - Others

1.000 -

0.998 4

0.996 1

0.994 4

0.992

0.990

0.988 A

Figure 3.3: Correlation and RMS-ratio for damping coefficients for different number of panels in Nemoh w.r.t. Diffrac

Correlation Diffrac Steel - Others RMS-ratio Diffrac Steel - Others

1.000 4
0.999 4
0.998 4
0.997 4
0.996 4
0.995 4
0.994 4
0.993 4

0.992 4
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Figure 3.4: Correlation and RMS-ratio for added mass coefficients for different number of panels in Nemoh w.r.t. Diffrac

It can clearly be seen that the number of panels has an influence on the similarity of NEMOH’s and
DIFFRAC's result. The correlation is for all number of panels high and the RMS-ratio gives especially
differences in the roll-motion, up to half the value of DIFFRAC.

For all cases the correlation is very close to 1, and therefore the coefficients have the same shape. But it
can also be seen that the Added Mass and Hydrodynamic Damping have a large difference in RMS for
the sway-roll direction. Up to 200% for 2000 panels.

3.2.3 Comparison with AQWA
A closer look is taken on the hydrodynamics coefficients that differ in Figure 3.3 and Figure 3.4, by
modelling the floater in AQWA as well. For these coefficients also a difference with AQWA is observed.

Comparison Nemoh, Diffrac & Ansys Aqwa for B24 Comparison Nemoh, Diffrac & Ansys Agwa for B44

—— Diffrac —— Diffrac
Memah 300 Nemoh 300
—— Memoh 2000 —— Nemoh 2000
—— Aqwa 300 81 — aqwa 300
—— Agwa 2000 —— Agwa 2000

B44 [kNm/(rads]

0.0

os 10 15 20 25 30 15 a0 00 05 10 15 20 25 30 35
w [rad/s] w [rad/s]

Figure 3.5: largest difference in hydrodynamic damping between AQWA, DIFFRAC and NEMOH for sway-roll and roll-roll motion.

A difference can also be observed between DIFFRAC and AQWA. This is reported to MARIN and the
university de Nantes (the developers of DIFFRAC and NEMOH) and will be further investigated.

3.2.4 Phase shift
NEMOH and DIFFRAC have a different representation of the phase shift of the force. See Figure 3.6 and
Figure 3.7 where a regular wavefield is applied on two floaters with a certain distance to each other. The
forces on floater 1 and floater 2 in heave direction are almost in phase in Figure 3.6, while they follow
the wave elevation in Figure 3.7.

41

10




¢m]

Z[m]

wave elevation mu=180 degrees, w=1 rad/s heave forcing mu=180, w=1
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Figure 3.6: Result for DIFFRAC. Wave elevation at CoG of floater 1 and 2 in time (left), heave forcing in time (right)

Nemoh wave elevation u=0, w=1 Nemoh - z forcing: u=0,w=1
1.0 4 200 1
0.5 A1 100 A
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Figure 3.7: Result for NEMOH. Wave elevation at CoG of floater 1 and 2 in time (left), heave forcing in time (right).

This reason for this is that the phase shift in DIFFRAC is with respect to the wave arriving at the floaters
own center of gravity. While in NEMOH the phase shift is with respect to the origin in a global axis
system. This makes NEMOH’s phase shift more applicable for direct use in frequency domain
calculations, because the phase shift between the forces on two floaters is correct. DIFFRAC's
representation of the phase shift is more applicable for time domain calculations, since the location of
the floater could change and with that the location of the floaters center of gravity in the global axis
system. The real phase shift with respect to the origin of a global axis system can then be obtained for
every time step. The relation between the both phase shifts can be calculated:

€pIFFRAC,global = €pirFrac (@) — KXcog COS(1) — kYcoq sin(u) (Eq. 3.3)

ENEMOH — —€DIFFRAC,global

Where k is the wavenumber corresponding with the wave frequency via the dispersion relation, see
equation 3.1. The reason of the amplitude-decrease noticeable in Figure 3.6 is due to wave shielding
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effects of other floaters in between the DIFFRAC model used for this phase shift comparison. On top of
that the interpretation of the phase shifts in the forcing equation is different in both BEM-solvers,
therefor a minus sign is needed to complete the transition. There is more elaborated on the phase shifts
in Appendix F.

3.3 Computational time

3.3.1 Convergence
In Figure 3.3 and Figure 3.4 it can be seen that the difference to DIFFRAC converges for a larger number
of panels in NEMOH. Therefor it is chosen to make use of 1000 panels per floater (2000 accounting for
symmetry). Same as the DIFFRAC file. This is also in accordance with the number of panels needed to
capture higher required frequencies, see Table 3.2. Next to that it limits the computational time of the
BEM-solver.

3.3.2 Interpolation
Hydrodynamic coefficients are characterized by slowly changing slopes, therefor it is possible to let the
BEM-solver calculate the hydrodynamic coefficients with a respectively large frequency step (Aw =
0.1 rad/s). Although this is quite large for further calculations in time and frequency domain, since the
occurring wave frequencies in the wave spectrum are quite narrow, see Figure 1.4. Therefore, it is
advisable to interpolate the hydrodynamic coefficients for a smaller frequency step size afterwards (in
this case Aw = 0.01rad/s). The added mass and hydrodynamic damping coefficients can be linearly
straight away, while the forcing phase shift needs some extra attention. Where the phase shift is in the
range [—m, 1), an interpolation would cause errors. Therefor first the frequency response function is
composed of the phase shift and the amplitude response.

E, . (Eq. 3.4)
Hyg = 7" els ’

a

The real and imaginary part of the frequency response function are then interpolated. The interpolated
phase shift and amplitude response are then obtained with the principles of a complex plane:
Fq

.- |Hr¢|, €r¢ = arg(Hpg)

(Eqg. 3.5)

43



3.4 Conclusion

There are multiple commercial software’s available that solve BEM-problems. Nevertheless, the only
widely used open source-tool to do this is NEMOH. NEMOH gives good global results in the calculation
of all hydrodynamic coefficients compared to commercial software’s like DIFFRAC and AQWA.

Phase shifts in BEM solvers are treated differently. In NEMOH the phase shift is given with respect to the
incident wave at a global origin, whereas in DIFFRAC these are given with respect to the incident wave at
the floaters own center of gravity.

An important factor in the generation of the coefficients is the number of panels for the mesh of the
floaters being modelled. This number of panels is based on the highest wave frequency that needs to be
considered (see also appendix ).

Interpolation of the hydrodynamic coefficients afterwards is beneficial. It decreases the computational
time of NEMOH and increases the ability to capture the whole narrow-banded wave spectrum.
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A, Numerical modeals

This section elaborates on the implementation of the presented system with the equations of motion
and the accessory coefficients presented in chapter 2. Firstly, the time domain model is discussed,
followed by the frequency domain model.

4.1 Time-domain model

Equation of motion

The MDoF time domain equation of motion was shown, known as Cummin’s equation. Where from now
on F(t) is represented as the sum of wave forcing and the forcing from the interconnecting joints
between two floaters (12 DoF): F(t) = K, (t) + Fjpint (t)-

A11,0 0 Q1120 ;17 F|Ri1(®) - Ryp2(@) |[uy(t— -[) (Eq.4.1)
M + ' : P+ : " dr
< 120,00 -+ Q12,120 ) L12- o |Ri21(t) . Ry 12(T)‘ [uu(t - 1)
€11 C1127[ W Fy1(t) Fioint (u( )
+] : . : [ N . : +
C121 - C1212]1lUs2 Fy 12(t) Fioit 12 (u( )

4.1.1 Model overview
A time integration model is created to solve the motions of 2 interconnected floating bodies, with the
open source code NEMOH in MATLAB and Python. The following inputs are required for the calculation
of the motions:

Wave Environment

Geometry of the floaters and joints
Specific time input

Initial conditions

The basic overview of the calculation procedure is given in the flow chart presented in Figure 4.1 and the
most important steps will be discussed in the following section.
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Initial Conditions

Wave Data Geometry Time input
Mesh |
Wave Force Y Viass and \
| Transfer < restorin L
Function (FD) 9 agrange

NEMOH force Joint

matrix Forcing

Vector

ecto integration time 1
vy \ Y from
Wave Force Added Mass Hydrod. rotatlion P
(TD) (FD) Damping (FD) matrices |
\ A
Added Mass |4 Retardation Retardation timg
at infinity function
J velocities+displacements
Hydrod.
Damping < Velocities 1
Force (TD)
y Y Y YV o
. Numerical time
l-«—Displacements— Integration
Solve EoM
——Accelerations—i-

Figure 4.1: Flow chart of the calculation procedure of the Time Domain model

4.1.2 Numerical time integration
Different Numerical time integration methods for initial value problems exist and the following are

further discussed in Appendix G:

- Modified Euler
- RK4
- ODE45 (Python)
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4.1.3 Wave force input

The wave force input at a certain time t is derived from a wave energy density spectrum (S((a))), a

phase shift (e( (w)) , the first order wave force transfer function, Hg;(w), by means of the

superposition principle:

N (Eq. 4.2)
Fw(t) = Z R (Fane_i(wt_e”fn_efn))
n=1
With:
Force amplitude component: F,, = /25 Aw (Eq.4.3)
Force energy density spectrum: Sk, = |HF<n|zSgn (Eq. 4.4)
Phase shift between wave and force amplitude: €z, = arg(Han) (Eq. 4.5)

The wave component phase shift, €; , is randomly chosen in the interval [—m; ) rad. This is because the
phase shifts of the individual wave components is lost. Adding a random phase shift, in combination
with the wave energy density spectrum will result in a statistically equal wave environment.

4.1.4 Retardation function
As presented in section 2.3.5 the retardation function R(7) can be obtained from the hydrodynamic
damping coefficient in frequency domain.

2 @ (Eq. 4.6)
R(t) = —j b(w) cos(wt) dw
4 0
This means that in a 12DoF system there are as many retardation functions as hydrodynamic damping
coefficients in frequency domain: namely 12x12=144. Numerically the integral can be approximated
with a summation of the part in the integral:

(Eq. 4.7)

N
R(7) = Z b(w;) cos(w;7) Aw
i=1

It automatically follows that when the hydrodynamic damping factor b(w;) has not converged towards
zero at wy, there could arise in-accuracies in the determination of the Retardation function when
truncating in numerical simulations. There will be more elaborated on this influence in Appendix H.

4.1.5 Added Mass at infinite frequency
The formula for the added mass can be reducedto A = A,, = lim a(w) (Journee & Massie, 2001).
w—00

Two ways are presented to obtain this added mass at infinity, namely:

- Higher frequencies can be evaluated by stating them manually in NEMOH and convergence of
the added mass to a single value for higher frequencies can be assumed as the added mass at
infinity.
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- Another method is presented by (Babarit & Delhommeau, Theoretical and numerical aspects of
the open source BEM solver NEMOH, 2015) of the Ecole of Nantes, in a more numerical form,
encrypted in NEMOH’s post processor, where the mean is taken from the added mass formula
presented in section 2.3.5. The exact and numerical form of this method is given in equation 4.8
and 4.9. The fact that the frequency dependent added mass, obtained with NEMOH, is finite and
the data could be not long enough the results could be inaccurate.

3 (Eq. 4.8)

1
Aijoo = Ayj,00(w) + Zf R, () sin(wt) dt
0

1 & | & (Eq. 4.9)
7 Qijeo =17 z a;j(wy) + w_z Rij k sin(wpty) At
®n=1 " k=0

With:

w Frequency vector of Hydro coefficients
Time vector of retardation function
Added mass in time domain
a(w) Frequency dependent added mass

R Retardation function

N+

On the different ways of calculating the added mass is further elaborated on in Appendix I. The method
applied in the model is based on adding higher frequencies in the NEMOH model and analyze its
convergence.

4.1.6 Convolution integral
Using the convolution integral numerically as a forcing on the floater can be done in the following
manner:

co

n
Fy(t) = f R(2)i(t — T)dt > Fp, = ZRl-xn_iAt
0 i=0

(Eq. 4.10)

Every time step the retardation function is multiplied with the velocities of previous steps. Meaning that
for every time step in the numerical integration scheme the velocities of every previous time step needs
to be evaluated.

4.1.7 Limiting convolution time
As can be seen in the retardation function is a decaying function, therefor the amount of velocities at
previous time steps back can be limited. This is further evaluated in Appendix H.

4.1.8 Convolution with ODE45
To apply the evaluation of previous time steps in a convenient and not computationally intensive way,
variable time stepping is not desired. In that case it is not needed to recompute the retardation function
at every time step, since the time step size are known beforehand.
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This means that the Python ODE45 solver, with variable time stepping, presented in section 0 is not
convenient to use for convolution with one of the output motions. (namely velocity).

There are possibilities to use a state-space model as presented by (Perez & Fossen, 2009) to substitute
the convolution integral for calculations with an ODE-solver. This is not further applied in this research.

4.1.9 Convolution with RK4
A 4% order Runge-Kutta (RK4) integration scheme, in comparison to the RK2, uses half time steps in its

predictor formulations (tn + %At). This implicates that also the retardation function should be

calculated at half the time steps. In this way a desired shift can be achieved for the calculation of the
predictors. For the predictors the following time steps of the retardation function should be evaluated:

ky and ky: R at 0, 1At, 2At, 3A¢, ....
ky and ks: R at 0,2 At, 2 At, 2 At, ...
2 2 2

4.1.10 Model specifics
The retardation function and added mass can be calculated upfront for RK4 and RK2 time integration
schemes, when the hydrodynamic coefficients of the system in frequency domain are known. Hence,
this does need to be done for every single time step in the TD-simulation.

4.1.11 Initial conditions
As a start of the time domain solver, initial conditions need to be stated. Choosing the initial conditions
wisely, improves the stability of the model. The implemented initial displacement is based on the static
displacement to the force at t = 0, based on the forcing in equation 4.11, and the initial velocity is kept
trivial:

Uinitiat = CT1E,(t = 0) (Eq. 4.11)
Vinitiar = 0

This is only working for initial conditions that experience hydrostatic forcing (i.e. heave, roll and pitch).
For other degrees of freedom initial conditions should be stated separately.

4.1.12 Verification
In order to verify the model two adjustments are made to make a comparison with the exact solution
and the python ODE-solver.

Comparison with exact solution
By implementing the retardation function as a unit impulse in the following form:

R(t) =6(t) -bdt (Eq. 4.12)

49



6 [rad]

0.3

0.2

0.1

0.0

_01 -

_02 4

Impulse 6(t)

1.0 1

0.8

0.6 1

&(t)

0.4 1

0.2 1

0.0
-5 0 5 10 15 20
t[s]

Figure 4.2: Unit Impulse at t =0

The damping part of the equation of motion is then reduced to a single mass-damper-spring system as
we know:

0 © e8] (Eq. 4.13)
f R(D)u(t — t)dt = f R, (t —Du(t)dr = f b-6(t —1)u(t)dr = bu(t)
0 0 0

(m + ay)ii(t) + bu(t) + cu(t) = F,(t) (Eq. 4.14)

A comparison for the pitch motion is shown in Figure 4.3 together with the absolute error compared to
the exact solution, for { = 0.05 - b = 2{+/c-m.

Single floater pitch motion (u=0"), dt=0.1s Error
—— RK2, dt=0.1s
—— RK4, dt=0.1s
0.020 —— RK2, dt=0.01s
3 F H —— RK4, dt=0.01s
© 0.015 n n
c
§ n
i
g 0.0101 n
=}
©
(%]
o
< 0.005 -
~— -y \
0.000 A
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t[s] t[s]

Figure 4.3: comparison of the motion in SDoF floater in pitch for RK2 and RK4 with exact (left) and the absolute error for
different time step (right).

It shows that for this case the implemented convolution in the RK2 and RK4 scheme goes well.
Decreasing the step size improves the result significantly and that RK4 is more accurate due to its
smaller truncation error as described in section 0.

Multiple degrees of freedom
The verification with the exact solution was straightforward to implement for a single degree of freedom
system. For multiple degrees of freedom, it is more convenient to verify the model with an ODE45
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73 [m]

solver. As mentioned before an ODE45 is not fit to implement a convolution of a retardation function
and the velocity vector. Therefor the same procedure with an impulse function as retardation function is
applied for every degree of freedom and the equation of motion shown in equation 4.1 reduces to:

(M + Ao, ) U(t) + Bu(t) + Cu(t) = F, (t) + Eoine (1)

(Eq. 4.15)

In Figure 4.4 Fout! Verwijzingsbron niet gevonden.the results are shown for pitch of the second floater
for a model of two floaters in heave and pitch (4DoF) under beam waves (1 = 0°), with the non-linear
joint stiffness forcing and a damping ratio of { = 0.5 for every degree of freedom.

Time domain: additional DoF for: z; for dt=0.01s

Time domain: additional DoF for: 61 for dt=0.01s

0.2 4
2 -
0.1 4
]
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Figure 4.4: comparison of the motion in SDoF floater in pitch for RK2 and RK4 with exact for a 4DoF system (heave and pitch) for

a unit pulse retardation function.
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Visually it can be seen that the results match. The Error is kept constant, as can be seen in Figure 4.5 for
a step size of 0.01s. For multiple degrees of freedom with joint constrains 2™ order Runge-Kutta is not
sufficient anymore.

Absolute Error for: z;, for dt=0.01s Absolute Error for: 6, for dt=0.01s
0.0014 A
RKA 0.00040 - RK4
0.0012 A 0.00035 A
0.0010 - 0.00030 A
= T
= 6.0008 £ 0.00025 4
N -
5 2 0.00020 -
= 0.0006 2
g 5 0.00015 -
* 0.0004 o
0.00010 -
0.0002 1 0.00005 -
0.0000 0.00000 -
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
tls] t[s]

Figure 4.5: Error between ODE45 solver and RK4 solver for first two DoF’s in 4 DoF model (heave and pitch of two floaters) for a
unit pulse retardation function.

4.1.13 Conclusion
The equation of motion in time domain for multiple degrees of freedom can become rather extensive.
The added mass at infinite frequency has to be determined for 12x12DoF, next that the retardation
function must be evaluated for a sufficient length in time and convoluted with the velocities at previous
time steps. Different time integration methods have been evaluated, whereas a RK4 solver is most
applicable to solve the problem. RK2 is not accurate enough and an ODE45 solver is not convenient for
taking into account the convolution integral due to its controlled time stepping.

Clear comparisons can be made between the RK4-solver and exact and ODEA45 solutions, by replacing
the retardation function with a unit impulse function at t=0s. The errors in the RK4 solver with fixed time
stepping are then minimal.
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4.2 Frequency domain model

Equation of motion
The equation of motion for multiple degrees of freedom is shown in equation 4.16. By implementing the

connection matrix, stated in section 0, the equation of motion in frequency domain is:
(—w?(M + Ap(w)) + iwBy(®) + C + Cipine )i(w) = E(w) (Eq. 4.16)

4.2.1 Model overview

Wave Data Geometry Time input
Mesh Lagrange
Joint
l Mass and Forcing
restoring Vector
NEMOH force from
matrix rotation
matrices
v ! y
Added Mass Hydrod. Linearized
(FD) Damping (FD) Joint
spring
Y Y matrix
Wave
elevation - Force - Motion FRF <_|
Force FRF
Wave elevation - Motion FRF RAO anq
phase shift
- Motion Spectrum Motions

Maximum
motions

Figure 4.6: Flow chart of the calculation procedure of the Frequency Domain model

A frequency domain model based on linear equations of motions can be summarized with the basic
overview shown in Figure 4.6. The following inputs are required for the calculation of the motions:

- Wave Environment
Geometry of the floaters and joints
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4.2.2 Transfer functions
By NEMOH the wave-force amplitude frequency response (?) and the wave-force phase shift (EF() are

known and solved in this diffraction software. With these the frequency response function (FRF) from
wave motion to forcing in several directions can be composed for the 12 degrees of freedom.

F, . Eq. 4.17
Hrg (@) = 7~ (@) () (Fo. 427
a

The frequency response function for the force to the displacements can directly be obtained from the
equation of motion:

t(w _ (Eq. 4.18)
Hoo(w) = X9 _ (~w?(M + Ay (@)) + iwBy(w) + )
F(w)
Where H,r(w) is a DoF x DoF matrix with frequency response functions.
Hyr, - Hupr, (Eq. 4.19)
Hyp(w) = : ' :
Hu12F1 Hu12F12

Since the two frequency response functions are known, the direct FRF from wave elevation to motion
can be computed.

Hu( (w) = HuF(w)HF{ (w) (Eq. 4.20)
Similar as equation 4.17 the amplitude and phase shift can be obtained by decomposing the complex
frequency response function:

u Eg. 4.21
74(©) = RA0L (@) = [Hyg (@) (q 4.21)
a

€y¢(w) = arg (Hug-(w)) (Eq. 4.22)

In ship motion terms, there is often referred to the Response Amplitude Operator (RAO) for the
amplitude frequency response between motion and wave amplitudes.

4.2.3 Spectral analysis
Knowing the wave to motion function, a motion energy density spectrum can be created with the wave
energy density spectrum:

2 Eq. 4.23
Su(®) = [Hyg ()| S; (@) (q. 4.23)

The moments of area of the spectrum, gives different information about the motion. The n™ order
moment of area of the spectrum can be calculated in the following manner:

© (Eq. 4.24)
My = f ™S, (w)dw
0

b — — 9. Mg — /w
With: o, = \/mye, Ty = 21 — T, =2m —
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The mean period is: T,;, = T; and the zero upcrossing period: T, = T5.

4.2.4  Maxima analysis
If the range of frequencies in a wave field is not too large, one speaks of a narrow-banded
frequency spectrum. Luckily, waves - a sea or a swell - generally satisfy this condition quite well. If
this is the case - and the water surface elevation is a Gaussian distribution - then the wave
amplitude statistics will obey a Rayleigh distribution (Journée & Massie, 2001).

The probability density function of the Rayleigh distribution for a given amplitude u, is:

flug) = 2 ( Uq ) Xq < X2 ) (€. 4.25)
u,) =—exp|— =—exp|—
¢ 0121 P O'u\/i Moy P szu

And its cumulative distribution function:

u(Zl ) (Eq. 4.26)

Flug) =1 —exp<— =
ou

It is more interesting to have an idea what the chance is that a certain motion amplitude is exceeded.

a’ (Eq. 4.27)
P{ua>a}=1—F(a)=exp(— )

2mgy,

The maximum motion amplitude can be approximated with the above stated Rayleigh distribution. The
spectrum S,, derived from the equation of motion and a wave spectrum input, represents a 3-hour
storm condition, where with the spectral area moments the zeros-upcrossing period, T, has been
determined. The average number of cycles in these three hours is therefor:

3600 (Eq. 4.28)
T,

:3*

Since the maximum amplitude should only occur once in these three hours, the chance that this
happens is equal to 1/N. Rewriting equation 4.27 and 4.28 will give the following equation for the
maximum motion amplitude where this is the case:

(Eq. 4.29)

Umax =

4.2.5 Conclusion
The linear frequency domain equation of motion can be rewritten into a set of transfer functions
between forcing and motion. A multiplication with the wave to force transfer function gives the
immediate complex transfer function between wave elevation and motion.

From a wave spectrum, the motion spectrum can be obtained. For narrow banded spectra the maxima
are Rayleigh distributed and with spectral analysis occurring maxima can be determined rapidly.
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o, (Gap Resonance

Since the prior performed calculations assume a constant draft of the floater in the water, the part of
the floater above the water is not further specified, and therefore it is seen as infinitely high. A common
problem encountered in applying potential theory in offshore applications is gap resonance. Since no
breaking of waves is taken into account or overtopping of water over the floaters, this contributes to
unrealistic calculations of wave elevations in the gap (Dinoi, 2016).

5.1 Gap resonant frequencies

In order to estimate gap resonances of rectangular barges, (Molin, 2009) presented a paper based on
earlier studies about piston and sloshing modes in moonpools. By assuming the moonpool as a narrow
gap without ends the following approximation could be derived:

) 1+ J, tanh(1,,h) (Eq.5.1)
On =9 anh(A,h)

Where:
1
__ 2 r 142 1 > i d - 1
Jo(r) = — fuzm[ + 2u + (u — 1) cos(nmu) —Esm(nnu) u — (60 +
0
1+ cos(6y)
2rin| ————=
er n(l - 005(90)>

With 4,, = nl—”,r = ?,tan(@o) =r1

w Natural frequency
n Mode

l Length of gap

b Width of gap

h Draft

For different gap widths the resonant frequency can be studied, see Table 5.1. It is visible that for a
wider gap (0.6 instead of 0.3m) the resonant frequencies decrease and are getting more in the range of
the occurring wave frequencies.

Table 5.1: Resonant frequencies for different gap width between the floaters

Natural frequency w,, [rad/s]
Gap width [m] w1 Wy w3 Wy Ws
03m 3.82 4.17 4.41 4.62 4.81
0.6m 3.14 3.56 3.86 4.12 4.36
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This gap resonance is clearly visible in the hyd-files, see Figure 5.1.
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Figure 5.1: Wave forcing amplitude response from hyd-file for two floaters with different gap width: 0.3m (left) and 0.6m
(right). With u = 0° wave heading.

In Figure 5.1 clearly the first resonant frequency can be recognized in the wave forcing. Nevertheless, it
is not exactly the estimated value as described by Molins equation, (Molin, 2009) describes that in the
studied case of rectangular barges, the first resonant frequency is underestimated by the equation.
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Figure 5.2: Wave forcing amplitude response from hyd-file for two floaters with 0.6m gap. With u = 0° wave heading.

58




5.2 Gap resonance suppression

Different ways of gap resonance suppression have been developed (Bunnik, Pauw, & Voogt, 2009):

- Placing a rigid lid on the free surface of the gap. (Huijsmans, Pinkster, & Wilde, 2001)

- Damping of wave modes. (Newman, 2003)

- A damping lid method, where a certain damping factor is applied to the wave elevation in the
gap. (Fournier, Naciri, & Chen, 2006)

None of these methods has been included in NEMOH for the suppression of the gap resonance.

Nevertheless, (Pena & McDougall, 2016) states that it is not of a very big issue for small gaps. The
following observations were made by applying different suppression methods:

- The more damped the system, the added mass tends to decrease when positive and increase
when negative.

- Anabrupt change in sign is seen at the gap resonant frequencies for several hydrodynamic
coefficients.

- Increasing the distance seems to increasingly affect the damping coefficient assigned to the
flexible lid. The system becomes sensitive to that coefficient at big gap distances.

- The system seems to be overdamped for a damping factor of 1 and 0.3 for big gap distances.

- The added mass of the ship takes values bigger than the real mass of the vessel.

- It can be concluded that the addition of lids is necessary when the gap distance takes significant
values.

Meaning that especially the changing shape of the hydrodynamic coefficients is of great influence for
larger gaps.

In order to overcome any influences of gap resonance In this research the location of the gap resonance
in the hydro-dynamic coefficients is traced and around this point, cut out and linearly interpolated.
Sharp edges are smoothened, see Figure 5.3 as example for the linear interpolation and smoothening of
the hydro-dynamic coefficients.
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Figure 5.3: Gap resonant peak shown for forcing in pitch direction (left) and the hydrodynamic damping in heave. The
suppression method is shown in orange.

Since the gap is not very large, the change will be of minor influence on the total system. Suppressing
the resonance peaks is acceptable for the analyzed system, since the freeboard and draft are very small
and resonance of the waves in between the floaters is most likely not able to develop into modes of
resonance (standing waves). There is more elaborated on the gap resonance interpolation in Appendix
K.

On the other hand, the gap resonance peaks have a large influence on the retardation time. As
described in section 4.1.4 the retardation function is a decaying function calculated from an integral of
the damping coefficient in frequency domain. With a not suppressed gap resonance peak the
retardation function will have fluctuation with a larger amplitude and therefor it takes a longer time
before the retardation function has decayed to zero (see Figure 5.4).
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Figure 5.4: heave retardation function for unchanged, cut-off and suppressed hydrodynamic damping coefficient at resonant
frequency

To capture the right behavior of the floater the convolution of the retardation function with the velocity
needs to be evaluated for more time steps every time step. Stopping the retardation function to early
tends the error to increase and the time domain solver to become unstable. It literally resonates then,
but for another reason in this case.

5.3 Conclusion

Gap resonance in the hydrodynamic coefficients is clearly visible for floating objects next to each other.

This is a result of the assumption in BEM-solvers that the floaters are infinitely high above the water line
and the water in the gap ‘can go nowhere’. Molin described an approach to identify these gap resonant

frequencies based on moonpool calculations, without a piston mode.

The influence on the model is not very large but visible. It has an effect on the overall calculation time,
since the retardation function needs to be evaluated for a longer period in time and with that the
velocity back in time.

Several techniques exist to suppress gap resonance in BEM-solvers, nevertheless in NEMOH these are
not incorporated, therefor the hydrodynamic coefficients at the first gap resonant frequency are cut out
and linearly interpolated in that range. A smoothening of 10% is applied to take out the sharp edged of
the coefficients.
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c. Comparing lime
and rrequency
domain

Two different approaches have been presented in solving the motions of two interconnected floaters: A
time domain and a frequency domain approach. In order to determine if both are stated correctly, a
transform from one domain to the other is applied. Nevertheless, the frequency domain approach can
only be used for linear calculations and therefor only a comparison with a linear time domain model
would give a good comparison.

The linearized joint forcing from equation 2.40 is used in the time domain model, as is the linear joint
matrix from equation 2.41 in the frequency domain.

The results of both models could ether be compared in frequency domain or in time domain, with the
following procedures:

- Fourier Transform of time domain signal
- Inverse Fourier Transform of frequency domain signal
- Superposition principle of frequency domain signal

6.1 Comparison in frequency domain

In order to verify both systems, a comparison is made between the time domain and frequency domain
model in the frequency domain. A spectrum from a time trace can be composed with a Fourier
Transform.

The Forward Fourier Transform is denoted as F, and is:

o (Eq. 6.1)
U(w) =F(u®) = f u(t)e tdt

— 00

For finite time signals there exists a Discrete Fourier Transform (DFT). This breaks up a periodic digital
signal into a finite number of digital sinusoids (Brandt, 2011).

N-1 (Eq. 6.2)
0, = z U e 2N for e =01,..,N -1
k=0

62



S,, [m2s]

FD spectrum and spectrum from FFT of TD-model DoF for: z1

The single sided frequency domain signal is then the multiplication with its complex conjugate:

Usingle(k) = fjkfjl’ck (Eq. 6.3)

In Python the computation can be performed by a system that consists of several algorithms called the
Fast Fourier Transform (FFT). This calculates the result to equation 6.2 in a faster way.

There exist some differences between the DFT and the continuous Fourier Transform as shown in
equation 6.2. Important differences were described by (Brandt, 2011):

- The DFT is computed from a finite number of samples, whereas the analog Fourier transform is
an integral from minus infinity to infinity.

- The DFT is not scaled in the same units as the analog Fourier transform, since the differentiator
dt is missing. The analog Fourier transform of a signal with units of m/s2 would have units of
m/s, whereas the DFT will have units of m/s2.

- The DFT is calculated in a non-symmetrical way, from n =0 to n = N-1, and not symmetrically as
the analog Fourier transform.

The FFT results in a two-sided spectrum of the time trace in frequency domain. The motion energy
density spectrum can be obtained from this (Stewart, 2000).

1 =2 (Eq. 6.4)
Suj = 55—~ |20,|", (k=1,2,..,(N/2— 1))
Where: Aw = 21 /Tyeas-

The result for two interconnected floaters under beam waves (u = 0°) in heave and pitch motion are

shown in Figure 6.1. It can be observed that the pitch gives slightly different results for higher
frequencies.
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Figure 6.1: motion energy density spectra for 4DoF's in ULS waves, derived from the frequency- and linear time-domain model

6.2 Comparison in time domain

As can be seen in the comparison in frequency domain, they are only based on occurring amplitudes

(energy density spectra) and not on phase shifts. On top of that a direct numerical comparison is more
preferred. This is possible in time domain, in two ways. Namely by means of the inverse Fourier

Transform or the superposition principle.

6.2.1 Inverse Fourier Transform

The Inverse Fourier Transform is denoted as F 1, and is therefore:
w(®) =71 (T(w)) = o f T(w)ei“tdo
T

For a discrete finite frequency signal the Discrete Inverse Fourier Transform (DIFT) can be applied on a

spectrum (Brandt, 2011):

( )— N
umn
k=0

2

1

N-1
Z U(k)e? /N = forn=0,1,..,N—1

(Eq. 6.5)

(Eq. 6.6)

A build in algorithm in programming languages called the Inverse Fast Fourier Transform (IFFT) has a fast

way of performing the calculation in equation 6.6.

There are several things that need to be addressed to perform a successful Inverse Fourier Transform of
the frequency domain model to the time domain, being the following:

- Double sided spectrum generation

- Frequency resolution

- Hydrodynamic Coefficient Interpolation Issues
- Discretization
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6.2.2 Double-sided spectrum generation
The obtained energy density spectrum in frequency domain is a single sided spectrum. In order to fulfil
the requirements of the IFFT a complex double-sided spectrum needs to be composed first from the
phase shift spectrum and the energy density spectrum. On top of that a random phase shift was added
to the wave spectrum in the Time domain model (equation 4.2) for the force generation. In the same
manner the same random phase shift should be added to the frequency domain spectrum.

The single sided amplitude spectrum can be calculated from the motions energy density spectrum:

Ug(w) = 285, (w)Aw (Eq. 6.7)

The complex single sided spectrum can be composed of the combination of the wave-to-motion phase
spectrum €,;(w), the random wave-phase spectrum €;(w) and the amplitude spectrum u, (w).

ts(w) =u (w)e(E”f(“’”ef(“’))i (Eq. 6.8)
S a

The double-sided complex frequency domain signal can be obtained by taking the complex conjugate for
the negative frequencies.

(]_ ~ \ (Eq. 6.9)
Eus(a)) forw<O0
Up(w) = 0 forw = 0}

forw=0

1
kz tis(w) )
Note: When comparing the spectrum with a time domain signal in time domain via an Inverse Fourier
Transform, the added random wave phase shift must be equal at every frequency in both cases. Firstly,
for the superposition that is used to obtain the time-signal-forcing and secondly for the composition of
the complex frequency domain signal before applying the IFFT.

6.2.3 Frequency resolution
The frequency step size (resolution) is prescribed in Frequency Domain and is 0.01 rad/s, see section
3.3.2.

rad Aw (Eq. 6.10)
Aw =001— - Af =—
S 21
Therefore, the following will apply in the following reference case: Ty, eqs = fi = 628.3s. Since the
0
spectrum is double sided the number of samplesis N = 2 wma",ts = Tm"’“s,fs =1

Aw N Tt

This means that the length of the data record and the step size in time domain after the IFFT is
prescribed by the data-record in the frequency domain. In vibration analysis there exist several methods
to improve this, but there is no need to implement it in this analysis.

6.2.4 Hydrodynamic coefficient interpolation issues
Applying the above method to the frequency domain model output needs some extra attention. The
inputs of the model by NEMOH, i.e. forcing and hydrodynamic coefficients, were calculated with a
frequency resolution of 0.1 rad/s, [0.1, 8rad/s]. The evaluation of the coefficients at 0 rad/s is not
performed in a BEM-solver and is not possible for numerical reasons.
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As described in section 3.3.2, the hydrodynamic coefficients were interpolated for a step size of 0.01
rad/s in order to best cover the narrow banded JONSWAP wave spectrum. Meaning that the
hydrodynamic coefficients are interpolated between 0.1 and 8 rad/s with a step size of 0.01 rad/s.

In order to perform the IFFT in a proper way the values for 0 up to 0.09 rad/s need to be added manually
in the spectrum as zero at all these points. This will give the complete spectrum so that the IFFT can be
performed.

6.2.5 Discretization
The frequency signal is a continuous signal derived from the energy density spectrum and in order to
perform an IFFT, where discrete sampling is applied, the signal has to be made discrete. This means that
the signal is only able to contain information at multiples of the base frequency Aw. Hence, before
applying the DFT the signal is multiplied with the number of samples:

u(t) = if ft(UpN) (Eq. 6.11)

6.2.6 Superposition
The superposition principle, as described in section 4.1.3, for the calculation of the wave force acting on
the floaters in time domain, can also be used for switching from the frequency domain model results of
the motion to time domain.

N (Eq. 6.12)

u(t) = Z R (uane_i(“’nt_fufn‘ffn))

n=1
This method is a more intuitive way for linear systems and allows changing the time step as wanted.
6.2.7 Comparison

Plots of the first 100 seconds of the IFFT of the frequency domain result and the linear time domain
result are shown in Figure 6.2.
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Figure 6.2: first 100 seconds of the IFFT of the frequency domain model and the linear time domain model
Also here a small difference can be observed in the pitch motion. Next to that the first part shows slight
differences, since the time domain model, has initial conditions as input and the convolution integral is
not ‘fully’ evaluated for past velocities. Therefor it is more convenient to study the behaviour after some
time steps. Figure 6.3 shows the time where the largest difference between the linear time-domain
model and the frequency domain model is observed, namely in this case in 6,.
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Figure 6.3: Moment in time where the largest difference is found in the response between the time domain and frequency
domain model, namely in 6.
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These differences in pitch, are most likely due to the determination of the infinite added mass in the
time domain. For a further evaluation of the influence of the infinite added mass see Appendix I.

6.3 Comparing reaction forces and stresses

When the motions in time domain (either from the frequency domain or time domain model) are
obtained, the local acting reaction forces at the interconnections can be recomposed and compared in
the following manner:

— T . T
Elocal - @jointk + &jointg

This will result in non-linear equations for the acting reaction forces. For frequency domain or linear
time domain calculations these need to be linearized, to derive the appropriate reaction forces that
were acting in the used model.

To get an indication of what this would mean in terms of stresses in a hypothetical joint (see Appendix
M), the reaction forces can be combined into stresses. The occurring shear stress (7) due to torsion
(Ttorsion) and shear (Tiransversar), and the occurring compressive/tensile stress (o) due to bending
(Obending) and axial stress (0gxiq;) can be evaluated at the connection point, when the local reaction
forces are known. There is more elaborated on this in Appendix M.

6.4 Conclusion

The frequency model and the linear time domain model can be compared in either frequency domain or
time domain. A Fourier Transform gives the opportunity to make an energy density spectrum from the
time domain signal, but it is hard to analyze the phase shifts of the response to the incident wave, due
to the addition of the random phase shifts. The preferred method to make a comparison is to compare it
in time domain. The Inverse Fourier Transform or the superposition principle can be carried out to
analyze the result. In the case of an IFT there should be taken care of the appropriate addition of the
random wave phase shifts in the frequency domain model before making the transition to time domain.

The results of the frequency and time domain model look very similar in heave but have some small
differences in pitch. This is most likely due to the determination of the infinite added mass (see
Appendix 1).
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/. Results

In this section three different case studies are evaluated. Firstly, a comparison is made between the
frequency domain model and the linear time domain model. Secondly, the linear and non-linear time
domain model is compared. In all the cases firstly the motion and forcing presented for 4 degrees of
freedom (heave and pitch of each floater), followed by all degrees of freedom (each floater 6) and
different wave directions. At last the convergence to a maximum reaction force in the connection point
is presented for different joint stiffness. The obtained results are discussed in each section. In Appendix

N the obtained maxima of each model with these inputs is given in table form.

Table 7.1: Inputs in model. n stands for number. Some are intentionally kept blank.

Significant wave height Hg 70m
9 Peak period T, 12.7 s
® Peakedness factor y 3.3
= Wave direction 7 0-90°
Material -
Young’s Modulus E 0.01 GPa
" Outer radius 7, 294 mm
€ thickness tj 127 mm
2 Poisson’s ratio v 0.5
" Number of Floaters nofl 2
a Number of DoF’s nDoF 12
Time of run tmax 3 hr (10800 s)
qé Retardation time t, 30s
= Time step size At 0.05s
Frequency range w 0-8 rad/s
9 Frequency step size Aw 0.01 rad/s
= Added mass A(w) (12 X 12 X nw)
g Hydrodynamic damping B(w) (12 X 12 X nw)
'g Wave force amplitude response & (@) (nu X 12 X nw)
3 @
T Wave force phase shift er¢(w) (nu X 12 X nw)
Length of floater l
Width of floater b
Draft T
Center of Gravity (%¢, Ve, Z2)
g Distance to keel KG
@ Mass m
cE> Gyradii [r 7, ]
(] x 'y 'z
© Inter floater gap d
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7.1 Case 1:Linear TD vs. FD

As explained in chapter 6, the most appropriate manner to compare the frequency domain with the
time domain is by applying the superposition principle to the calculated complex frequency domain
motions and compare them in time domain. From the motions in time domain the relative motion
between the connection points (AP), reaction forces (Fj,.q;) and local joint stresses (o, T) at the
connection points can be calculated as presented in Appendix M.

7.1.1  Two floaters under beam waves in heave and pitch
In Figure 7.1, the heave and pitch motions of the floater under beam waves are shown after a certain
time (when the effect of initial conditions has vanished). It can clearly be seen that especially in pitching
motion they do not coincide exactly. The reason for this can be given to the fact that the determination
of the hydrodynamic coefficients (a;,., R;;) in time domain is causing slightly different results than the
coefficients (ai]-, bl-j) in frequency domain. The effect of a change in these coefficients can have a major
impact on the behaviour. In Appendix | the effect of change in added mass in time domain is shown.

Motion: z; Motion: 2z
- FD - FD
44 —»- TDL 4 —%- TDL
2 - 2
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t[s] t[s]
Motion: 61 Motion: 6,
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Figure 7.1 Heave and pitch motion of both floaters under beam waves with calculations in linear time domain (TDL) and
frequency domain (FD)

70



6 [rad]

Especially in pitch the motions of the interconnected floating bodies, do not match exactly. The
difference in results is not that large but can be of significance for further evaluation. Plotting the pitch
motions of both floaters together results in the figure shown in Figure 7.2 (left). Although the FD and
TDL look similar, the relative pitch motion (A8 = 8, — 8,) between both floaters looks very different
(see Figure 7.2 (right)). The relative pitch in the connection between both floaters, determines the
reaction moment (Fp) at the connection point (also in pitch direction). The relative motion in pitch is
especially high when the gradient of the motion is high (around 972 seconds in this case), i.e. from
positive to negative pitch.
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Figure 7.2: Left: Motion in pitch of both floaters for the frequency domain model (FD) and linear time domain model (TDL),
Right: Relative motion in pitch between both floaters in FD and TDL.

This minor difference in the motion causes that the reaction forces in the FD-model can become twice
as high as in the TDL-model. See Figure 7.3, where the reaction force is given at the point P11 in time
and as a boxplot of a 3-hour storm.

Joint Reaction Force in local 6 Boxplot Comparison for Reaction force in local: 6

T — FD
—— TDL

Fo [kNm]
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o

970 975 980 985 990 995 1000 —

time [s] h
Figure 7.3: Left: Reaction moment at connection point on floater for two floaters in heave and pitch in beam waves. Right:
Boxplot of the occurring reaction moments in pitch direction for two floaters in heave and pitch in beam waves.
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7.1.2 Two floaters in heave and pitch under various wave directions
As mentioned, under beam waves, a certain difference can be observed in the reaction moment in pitch
direction, due to minor differences in the calculation of the motions of the interconnected bodies. In
Figure 7.4 the heave and pitch motion of the first floater are shown for varying wave directions. The
result of the second floater look similar and are therefore not shown. The reaction force at the
connection point resulting from these motions can be found in Figure 7.5. For small wave directions the
reaction moment for 8-direction is higher for the FD-model due to the reason described in section 7.1.1.
The reaction force in z-direction decreases when going from beam to head waves. In head waves the
excitation force in heave direction on the two floaters will be in phase and have the same magnitude.
Causing no relative displacement in z-direction between the connection points. However, a relative
displacement between the connection points in z-direction can also be caused by pitching of the floaters
(see equation 2.34). It can be seen in Figure 7.4 that higher pitching motions are observed in the TDL-
model for head waves (1 = 90°).

In Figure 7.7 the motions in pitch and the relative pitch between the floaters are presented, to study this
effect. The floaters experience no wave excitation forcing in pitch under head waves, but the motion is
caused through a relation with the heave motion. Since the heave excitation force on both floaters is
equal in this case, this is a relation rather caused by wave radiation than reaction forces in the
connecting joints, i.e. caused by the cross related hydrodynamic damping and added mass terms. In the
left plot of Figure 7.7 the floaters will pitch in anti-phase due to this effect. Meaning that the relative
motion between the connection points in z-direction and therewith the vertical forcing by this will be
very close to zero, but the reaction moments will be higher due to this effect (Figure 7.7 right), although
the pitching angles at the center of gravity will be very small (Figure 7.7 left). It can clearly be seen that
the pitching angles in the TDL are larger than the ones in FD causing the reaction moments to be higher.
This effect on the reaction moment at the connection point in pitch direction to be higher in the TD-case
than the FD-case can be observed in Figure 7.5 for higher wave directions (u > 45°).
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Figure 7.4: Boxplot of motion in heave and pitch for FD and TDL for different wave directions.

72



Fz [kN]

Tshear [MPa]

Boxplot Comparison for Reaction force in local: z

1.5 1

1.0 1

0.5 1

0.0 1

—0.5 1

-1.0 A1

—1.5 1

— FD
— TDL

T

0°

15°

30°

45°

Wave direction

60°

75°

90°

Fo [kNm]

Boxplot Comparison for Reaction force in local: 6

— D
— TDL

LT §
[T 1

I IIEL IS

0° 15° 30° 45° 60° 75° 90°

Wave direction
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Combined Motion: 6 Joint Reaction Force in local 6
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Figure 7.7: Left: Motion in pitch of both floaters for FD and TDL for two floaters in heave and pitch in head waves, Right:
Reaction force at point P1 for FD and TD for two floaters in heave and pitch in head waves.

7.1.3  Two floaters in 12DoF under various wave directions
In this case the calculation for all degrees of freedom are switched on in both models. Increasing the
amount of degrees of freedom, the following should be considered:

- The calculation time of the time domain model will rapidly increase.

- Not all initial conditions can be calculated with the static displacement (see section 4.1.11),
since surge, sway and yaw experience no hydrostatic counter reaction force (no mooring was
included). Therefor trivial initial conditions are chosen for these degrees of freedom. This will
cause that the model needs some time to settle and find a stable position. Since only first order
wave forces are considered, the stable position should be reached.
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Figure 7.8: Motion of floater 1 and 2 in surge direction and finding a stable position after time

Especially in the modes that experience no hydrostatic forcing the stabilizing of the motion is clearly
visible. Even with an offset of tens of meters for surge and sway direction. This effect is caused by the
fact that the system is not moored and has no restoring force. There is no need for this either in this
model, since the influence of the connections is studied. As described in section 2.4.4 the
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implementation of the forcing by the connections is relative to the floaters CoG's. In Figure 7.8 the
floaters seem to “drift away”, but they drift away together, meaning that relatively to each other the
appropriate inter floater motions keep intact. When studying the motions, the time record is taken
sufficiently long for the floaters to find their ‘stable position’ and the first part is cut off before
subtracting the average (this should be zero under linear first order wave forces) from the result and
compare it with the frequency model.

In Figure 7.9 the boxplots are shown of the motions that are found for the first floaters for various wave
directions (the second floater gives similar results). Followed by the reaction force at the connection
point in Figure 7.10. Reaction force in z, can either be caused by difference in z-motion between both
floaters, but also by difference in ¢ and 8. It can be seen that the plot of the forcing in z-direction at the
connection point (upper right plot of Figure 7.10) is in shape a combination of these three motions in
Figure 7.9. The forces in x-direction at the connection point are large and show different results for both
models, this can be assigned to the relatively high axial stiffness of the joints. In Figure 7.11 the relative
x-displacement between both floaters is given and is very small, but with a high axial stiffness of the
joints the forces still become high. Meaning that minor differences in the calculations between both
models can have high impact on this result. The major differences between the models are the added
mass and hydrodynamic damping, which should be studied carefully in a follow up study.
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Figure 7.9: Boxplot comparison of motions in TDL and FD in a two interconnected floater model subject to various wave
directions.
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Figure 7.10: Boxplot comparison of reaction force at connection point in TDL and FD in a two interconnected floater model

subject to various wave directions.
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7.1.4 Conclusion
The frequency domain and time domain model show very strong similarity in the resulting motions of
both the floaters. Nevertheless, recalculation of the occurring reaction forces at the connection points
shows that small differences in the motion causes significant changes in these forces. Especially pitching
motions have the largest influence on this. This causes higher axial forces and moments in the yz-plane
at the connection point for beam waves in the FD-model and for head waves in the TDL-model. A re-

evaluation of all hydrodynamic coefficients resulting from the radiation potential in the time domain
model could be a solution to this.
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7.2 Case 2: Non-Linear vs. Linear TD

In this study there is focused on the effect of linearizing the applied joint reaction forces with respect to
each floater’s center of gravity. The previous section showed that a direct comparison between the
frequency domain and linear time domain is not convenient and therefore the comparison between the
non-linear and linear joint reaction forces is performed with the time domain model (named TDL and
TDNL). From the obtained motions, the relative motion between the connection points (AP), reaction
forces (Fjycq:) and local joint stresses (o, T) at the connection points can be calculated. Important to
note is that these values need to be calculated with the linear and non-linear formula’s for TDL and
TDNL respectively.

7.2.1  Two floaters under beam waves in heave and pitch (4DoF)
In Figure 7.12, the heave and pitch motions of the floater under beam waves are shown after a certain
time. The motion is over estimated by the linear model, which is because the small angle approximation
causes that higher forces are being exerted on each floaters center of gravity from the joint reaction
forces. Nevertheless, the relative motion between both floaters determines the reaction forces that
were acting at the connection points. Figure 7.13 and Figure 7.14 show these reaction forces and for the
non-linear model there is now also a reaction force in x-direction at the connection point. Due to
linearization this axial force is not considered in the linear model with heave and pitch. Since only these
two degrees of freedom for each floater are used in this case, the axial force will only give negative
values (tension in this case). In other words, when there are no translational motions in the horizontal
plane stated in the model and the floaters pitch, only tension occurs in the joint because of the
connection points moving away from each other.

The force in z-direction at the connection point also increases in the non-linear case. This effect is also
caused by exerting the axial spring in this model by the pitch motion. A transversal stiffness (in z-
direction) causes that the floaters tend to pitch in anti-phase, while an axial stiffness tends the floaters
to pitch with similar phase. This means that by exerting the axial spring in the non-linear model
influences (increases) the relative z-motion between the connection points.
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Figure 7.12 Heave and pitch motion of both floaters under beam waves with calculations in linear (TDL) and non-linear time
domain (TDL).
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Figure 7.13: Reaction force at the connection point for TDL and TDNL for two floaters in heave and pitch in beam waves.
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Figure 7.14: Boxplots of reaction forces at the connection point for TDL and TDNL for two floaters in heave and pitch in beam
waves.

7.2.2 Two floaters in heave and pitch under various wave directions
When the wave directions are varied, it can be observed that the effect of additional axial stiffness
vanishes when going towards 90°-waves. The pitching becomes less in this case, see Figure 7.15 and
with that the reaction forcing of the joints in linear and non-linear time domain, become similar again. In
Figure 7.17 the stresses in the joint at the connection point is shown. It can be observed that the
compressive stress and tensional stress are the same in the linear time domain, since they are only
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caused by stress by bending. The non-linear model gives very high tensional stresses due to the
additional axial effect on the axial spring.
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Figure 7.15: Motion in heave and pitch for TDL and TDNL for different wave directions.
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Figure 7.17: Reaction stress at interconnector point in joint.

7.2.3 Two floaters in 12DoF under various wave directions
In this case the calculation for all degrees of freedom are switched on for the linear and non-linear time
domain model. In Figure 7.18 the boxplots are shown of the motions that are found for the first floaters
for various wave directions (the second floater gives similar results). The two models show similar
results, except in yaw (¥). In low frequency motion the floater tends to make a larger rotational angle
for wave directions below 45°. Figure 6.2 shows the reaction force at the connection point P1 for
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various wave directions. Due to the additional degrees of freedom, compared to the heave-pitch case, it
can be observed that the effect of the force in the axial spring due to pitching has minimal effect on the
total force in x-direction in the non-linear case, since the boxplots show similarities. The yawing gives
very low reaction moments at the connection point, as the floaters tend to yaw in phase. The force in y-
direction is over-estimated in the linear case. Except for u = 75°. In this case the effect of the small
angle approximation in the linear time domain underestimates the forcing. Due to roll motion in the
linear model vertical forces will arise at the connection points, whereas in the non-linear case also forces
in the y-direction. For 75°-waves this effect of roll is significant for the acting reaction force in y-

direction.
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Figure 7.18: Boxplot comparison of motions in TDL and TDNL in a two interconnected floater model subject to various wave
directions.
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Figure 7.19: Boxplot comparison of reaction forces at the connection point in TDL and TDNL in a two interconnected floater
model subject to various wave directions.

7.2.1 Conclusion
The linear and non-linear time domain model show similar results for motions of the floaters and the
acting reaction forcing at the connection points when all degrees of freedom are applied. When limiting
the amount of degrees of freedom (heave and pitch) the exact effect of the linearization can be studied,
see section 7.2.1.. Important differences are the exertion of the axial spring when pitching and the
transversal spring when rolling in the non-linear model. This last effect is noticeable in the reaction
forcing for 75° wave heading, where the forces are higher in the non-linear case.
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7.3 Case 3: Different joint stiffness

The joint stiffness is varied in the frequency domain model for a wave heading of 45°, because in this
case wave excitation forces will arise in all directions. Time domain calculation is possible, but a
decrease in step-size would be required and this results in a significant increase in computational time
for stiffer connections. Hence, the model tends to become unstable, when the time step is not small
enough.

The joint dimensions are kept the same and the Young’s modulus of the joint material is varied. In Figure
7.20 the maximum local reaction forces at the connection points is given for various Young’s moduli.
Due to the stiffer connection, some forces will decrease, due to the decrease of the relative motion
between the connection points on each floater, while on the other hand forces in other directions
increase. Combining these forces and calculating the overall stresses that arise at the connection point,
shows that these stresses clearly increase for stiffer springs in the model, see Figure 7.21.
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Figure 7.20: Local reaction force for different joint stiffness (Young’s modulus) for wave direction u = 45°, calculated with the

FD-model.
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Figure 7.21: Local stress in joint at connection point on the floater for different joint stiffness (Young’s modulus) for wave
direction p = 45°.

The forces and stresses in Figure 7.20 and Figure 7.21 converge to a certain value. This is the joint
reaction force acting where the floaters start to move together as one. As an example, Figure 7.22
shows the motion in pitch for different stiffnesses under beam waves, where clearly can be seen that
the pitch of the first and second platform is the same for both.
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Figure 7.22: motion in pitch for different joint stiffness for wave direction u = 0°.
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7.4 Conclusion

The frequency domain and linear time domain model motions are quite similar but have differences in
the reaction forces at the connection points. Small differences in the motion have an impact on the
calculation of the reaction forces. The small differences in the motion are caused by the calculation of
the hydrodynamic coefficients in time domain.

The linear time domain model has been compared with the non-linear. The motions and reaction forces
give similar results, but one should be aware of the effects of linearizing. For some wave directions the
forcing can show higher results. But overall the forces in the linear model are over-estimated.
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Conclusion

In this chapter the research is summarized in the discussion and the findings discussed. After which
recommendations are drawn from these findings. Next, the limitations of the applied theory and
modelling are given, resulting in suggestions for future research. At last the main conclusions from the
research are drawn.

8.1 Discussion

This study focused on the development of linear and non-linear models for interconnected offshore
floating modules subject to first order wave forces, with open source software. Increasing the amount of
floating bodies increases the calculation time of time-domain models, and a need for fast calculations is
desired. Therefor a comparison between different models by solving the floaters’ equations of motion in
frequency domain (linear) and time domain (linear and non-linear). The interaction with the water
(hydromechanics coefficients) is in both cases based on potential flow theory.

The most important findings can be subdivided into the following subsections: Solving potentials,
Modelling in time and frequency domain, Implementation of joints and Results.

Solving potentials

Floating rigid bodies can be modelled with potential theory. Meaning that based on the radiation,
diffraction and wave excitation potential the dynamic forces on the floater can be evaluated. This results
in cross related frequency dependent added mass, hydrodynamic damping, wave excitation force
amplitude and wave force phase shift coefficients for all degrees of freedom. These can be obtained
with the open-source BEM-solver, NEMOH, and implemented in either the frequency domain or time
domain (Cummin’s equation) equation of motion.

Important factors to bear in mind in the generation of these coefficients is the number of panels for the
mesh of the floaters being modelled. This number of panels is based on the highest wave frequency that
needs to be taken into account for the time domain calculations. This is highest of the following two: the
maximum occurring wave frequency or the frequency where all of the hydrodynamic damping
coefficients has become zero. In this research it is always governed by the damping coefficients
(modelling till 8 rad/s).

Interpolation of the hydrodynamic coefficients afterwards is convenient because it decreases the
computational time of NEMOH and increases the ability to capture the whole narrow-banded wave
spectrum.

As a result of modelling multiple floaters, BEM-solvers predict gap-resonances that are physically not
there. Tracing the location of these resonant frequencies, cutting them out, replace them with an
interpolated part and smooth the coefficients gives stable and more accurate results.
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Modeling in time and frequency domain

A time domain model can be set up with several time integration schemes. For the interconnected
floaters described in this report a 4" order Runge-Kutta scheme is sufficient with a step size of dt=0.05
seconds. With increasing joint stiffness, the time step needs to be further decreased to capture higher
frequency motions. Firstly, the cross-related retardation function and infinite added mass matrices need
to be obtained from the frequency dependent coefficients. In order to perform the convolution of the
retardation function and velocity in Cummin’s equation, variable time stepping is not practical and
therefor a standard ODE45 solver with step size control is not convenient for solving these kinds of
differential equations. Calculations in frequency domain can easily be performed with a series of matrix
multiplications representing the transfer functions between motions and forces. Spectral analysis shows
insight in maximum motions.

Implementation of Joints

A joint between two floaters can be implemented as six springs in each local degree of freedom. The
relative displacement of each spring determines the potential energy in the system, which can be
translated to forces at the floaters center of gravity with Euler-Lagrange equations. The implementation
of this is performed with symbolic programming in Python, which gives the opportunity to change the
characteristics of the joint (location, stiffness etc.) at all time. A linear model of the joint reaction forces
can be derived assuming small angles. The implementation of the joints with Euler-Lagrange equations
have shown to be a straightforward method that can be standardized for multiple floating bodies, and
even can be adjusted for stopping chains for example during the calculation process.

Results

The motions in frequency domain are comparable to the ones in linear time domain. Small differences in
the determination of the hydrodynamic coefficients in the time domain, can cause significant
differences in the forcing at the connection points of the joints. The effect on the pitch motion (rotation
around the y-axis) is most significant.

Motions are overestimated, resulting in higher amplitudes when comparing the linear and non-linear
time domain model. By analyzing the degrees of freedom separate (switching them on or off in the
model) the effect of the linearization can be observed, causing higher or lower forces and motions in
different cases. Nevertheless, for all degrees of freedom (12DoF for two interconnected floaters), these
effects are minor and the overall resulting motions and forces are of the same order for both models
subject to various wave directions.

For first order wave forces the expected reaction forces and stresses are the highest in beam waves

(u = 0°) and slowly decrease towards head waves. In this case the bending stresses that arise due to
pitching are leading. Stresses in the joints naturally increase when the joint stiffness increases, they
converge to an equilibrium for higher stiffness. This is where the floaters start to move together as one
and all the forces go ‘through’ the connection. Especially the bending moment increases significantly in
the joints, since the floaters motions are more restrained, the independent pitching of the floaters is
suppressed the most.
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8.2 Recommendations

This study showed that a linear model for two interconnected floating solar platforms with springs gives
a good estimation of the occurring motions and interconnector reaction forces compared to a non-linear
model. Both being based on potential flow theory and subject to first order wave forces. Frequency
domain calculations give a good impression of the occurring motions and can be used for pre-analysis of
floating solar arrays. For including significant other non-linear effects there should be switched to a time
domain model.

8.3 Limitations

Several limitations of the current models are described here and subdivided into hydromechanics, joints,
additional non-linear effects.

Hydromechanics

Joints

The models in this study are based on potential theory, where normally is assumed that wave
heights are small compared to the structures draft. Forces and motions are therefore more of an
indication and scale model testing should be needed for validation. Next to that non-linear
effects like water overflowing the structure, breaking of waves, spraying of water, partially
submersion/lifting of the platform in/from the water are harder to be modelled in this way.

The study showed that for these relatively small floaters the hydrodynamic coefficients in time
domain are quite prone to inaccuracies and can lead to different behavior of the floaters and
resulting forces. Meaning that standard calculation procedures for these coefficients need to be
treated carefully.

Change of the restoring force due to change of direction of gravity relative to the floaters axis
systems is not considered and could play a major role on the behavior.

For large arrays of floating solar units, wave attenuation throughout the array can play a role,
which is not incorporated in the model.

The joints are modelled as 6 springs, for the 6 degrees of freedom at the interconnections.
Which can induce higher forcing on the floaters. Modelling with 4 springs (axial, transversal,
bending and torsion) could give more realistic results, when the relative displacements between
the connection points are evaluated and concentrated to bending or shear in one combined
direction. This direction of the bending/shear can be found with vector projection of the two
transversal/bending motions at the connection points.

The reaction forces at the connection points are caused by a linear spring. Higher forces can
arise in the joints due to inertial effects in the joint itself. Implementation of the joint as a finite
element or -difference scheme, can give insight in this effect.

The location of the floaters with respect to each other should carefully be analyzed when the
joint stiffness is decreased. This could change the initial hydrodynamic coefficients, due to the
increase in gap distance.
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* The joints have been implemented as linear springs. In time domain calculations, these can also
be modified to non-linear springs with stop-chains for example. That has not been applied in this
research.

* No mooring is applied to the system. Mooring causes pre-tension in the system and with that
increases the mean joint force or can influence the overall joint behavior.

Additional effects
Other non-linear effects not considered in the model but can be added in a follow up study, are
presented below:

* Change of wave load due to change of orientation of floater
* Change in phase of load due to motions in horizontal plane
*  Mooring connected to the system

* Secundary wave loads

* Viscous damping effects

8.4 Suggestions for further research

Further research should continue on the implementation of additional non-linear effects in the time
domain model and study their influence on the complete system. The limitations not based on the
application of potential theory can be added to the developed models.

Frequency domain calculations for larger arrays of interconnected solar panels should give insight in
which interconnections the forces will become the highest. The implementation of wave attenuation
throughout a large array can be studied carefully.
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8.5 Conclusion

A frequency domain (linear) and time domain (linear and non-linear) model has been developed of two
interconnected floating bodies, with open source tools NEMOH and Python. NEMOH gives good global
results in the calculation of all hydrodynamic coefficients compared to commercial software’s, whereas
the understanding of the result of the software is key, to optimally use it. Especially the number of
panels, phase shifts of the wave excitation force and gap resonance effects have impact on further
calculations.

For the equation of motion in time domain hydrodynamic coefficients need to be calculated from the
frequency domain coefficients. The added mass at infinite frequency and the retardation function must
be evaluated for sufficient length in time and convoluted with the velocities at previous time steps. An
RK4 integration scheme with fixed time stepping is most convenient for this application.

While the linear frequency domain equation of motion can be rewritten into a set of transfer functions
between forcing and motion. A multiplication with the wave to force transfer function gives the
immediate complex transfer function between wave elevation and motion.

The interconnections are modelled as springs between the floaters and the influence on the motions in
the floaters center of gravity is found by evaluating the potential energy stored in the springs. A linear
model of the joint reaction forces can be derived assuming small angles. The implementation of the joint
reaction forces with Euler-Lagrange equations have shown to be a straightforward method that can be
standardized for multiple floating bodies, and even can be adjusted for stopping chains.

The effect of gap resonance, due to assumptions in BEM-solvers, is clearly visible in the hydrodynamic
coefficients. It has mainly an effect on the overall calculation time in time domain, since the convolution
of the retardation function needs to be evaluated for a longer period in time. A suppression of the gap
resonant peaks with linear interpolation and smoothening showed significant improvement in the
calculation time.

The frequency domain and linear time domain model motions are quite similar but have differences in
the reaction forces at the connection points. Small differences in the motion have an impact on the
calculation of the reaction forces. The small differences in the motion are caused by the calculation of
the hydrodynamic coefficients in time domain.

The linear time domain model has been compared with the non-linear. The motions and reaction forces
give similar results, but one should be aware of the effects of linearizing. For some wave directions the
forcing can show higher results. But overall the forces in the linear model are over-estimated.
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A 3D Potential flow
theory

For a free-floating body, with its own axis system in its center of gravity as shown in Figure 2.1, the
potentials are with respect to a fixed earth-bound axes system. The following appendix is based on
findings in (Journée & Massie, 2001).

The total potential is a superposition of the radiation, wave excitation and diffraction potential:

6
(Dzzcbr,j-l_(bw-l_q)d
j=1

Main assumptions in potential theory are:

- The fluid is incompressible

- Inviscid

- lIrrotational

- And no effects of surface tension

The potentials have to satisfy the following boundary conditions (Journée & Massie, 2001):

1. Laplace equation:

0%2d N 02D N 0%d _ 0
ax2 = dy?  0z2
2. Sea bed boundary condition:

0P 0at h
0z °
3. Free surface boundary condition:
0D N R 0 at
— —_— a =
9%z " a2 Z=n
4. Kinematic boundary condition on the oscillating body surface:
a® - -
—=0.Z
g 0z
5. Radiation condition:
Igimcb =0

6. Symmetric and anti-symmetric condition
Cbz(—x,y) = —‘bz(x,)’)
¢3(—x,y) = ‘Dg(x')’)
q’4(_x:3’) = _CDAI-(ny)
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A.1 Radiation potential

With the radiation potential the radiation force F,. can be calculated. The radiation potential is given as:
O, =d,, cos(wt +€p 0t Eu'() = m[dl'r,ae_i%r'ue_ie@ue_i“’t] = ‘R[@re_ieﬁwe_i“’t]

The radiation potential is the summation of the radiation potential in all directions: @, = Z?ﬂ D, ;i
The radiation potential can be written in terms of the space dependent ¢,. ;, instead of space and time

dependent @,.. This is basically a transfer function from velocity to potential.

q) (xY;Zt)—

2 —W] qur,(x y,2)v;(0)

Where: v; = ‘R[—iwﬁje_i“’t] and ¢, ; = Sﬁ[ Prj ]

—iwﬁ]’
In this way the velocity perpendicular to the surface can be written as:

00, aqb,

on; anl
j=

Where n is the outward normal vector on the surface considered. The pressure from the potential with
the linearized Bernoulli equation is:
0P, ;

at

p=—p

In this way the force and moment from the radiation can be described:

F, .U as ﬂa r.J das -Uavj(;b ds
ij=— || pr,jmdS=0p ndS =p || ==¢,n;
r,i,j Sr} i s ot i Sat rj'ti

Tl] ffprl](rxn) ds

It is proceeded with the force only for this case. This force could also be represented in terms of a
transfer function and split into a part relative to the velocity and a part relative to the acceleration:

-~

—i . F.;; ,
Fii=%R [Fr,i,j,ae le”i'"e‘l“’t] = ER[ :,1” ﬁje‘”"t] —a;;R[(—iw)* Qe "] — b R[(—iw)hje~t]
j

So that the following holds:
P ff —vjiwq,')r,jnidS = — aijﬂ%[(—iw)zﬁje_i“’t] — biji}i[(—iw)ﬁje_i“’t]
s
Eliminating ﬁje“"‘” from this equation and taking away the real part notation the following is found:

jf —p(j)m-a)znidS = aija)z + bl]l(l)
S
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This results in the following statements of the added mass and hydrodynamic damping:

a;j = %[fL—p(brjnidS]

—pdrjondS ]
S

A.2 Wave excitation force potential
The first order wave excitation forces consists of the undisturbed wave force and the DIFFRACtion force:

F,=F, +F,4

The undisturbed wave potential can be described as:
g kz (ag kz i(kx cos(u)+ky sin(w)) ,—iwt
D,(x,y2t)= ” sin(kx cos(u) + ky sin(u) — wt) = =R [—e"*“e e

With the corresponding dispersion relation for water depth d: w? = kg tanh(kd)

Similar to the radiation potential it is desired to write the potential as space dependent, rather than
space and time dependent. This can be done by writing the function as a transferfunction, with respect
to the surface elevation velocity at the origin (ZO).

CI)W(X, y,2, t) - _R [i _g . ekzei(kxcos(u)+kysin(u)) _ iw(o'ae—iwt]

= [T etreilrcostrkysintg | = Ry (x, y, 2)¢ (1]
W
The same procedure can be followed for the DIFFRACtion potential:

q)d(x' Y Z, t) = 9:{[(11)7(36' Y, Z)(.o(t)]

The wave excitation force becomes then:

A, 0Dy, p
Fukj + Farj = ff < St at’)nkd5=—pw2<oe ot f (cbo + p7)niddS
S

A.3 BEM solvers

BEM solvers using a panel method have an approach of solving the potentials. The potentials

®r,j» Po, 7 are obtained with source strengths on the wetted surface and are transferred to the
potentials with Green’s functions that satisfy the boundary conditions. More information about these
routines can be found in (verwijzing) Journee en massie from section 7.4.2 onwards.
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S, culer-Lagrange
ceguation

The Euler-Lagrange equation to compose the equation of motion for multiple degrees of freedom
system is given as:

dtou; ou;
With the Lagrangian Function: L =7 — V.
Where:
T Kinetic energy
1% Potential energy
u Motion in degree of freedom i
F External forcing in degree of freedom i

For clarification purposes the equation of motion is derived for a single mass spring system, with no
external forcing.

m

f——x
The kinetic and potential energy and the corresponding Lagrangian are as follows.

1 1 (Eg. 0.1)
T2 Y = _ a2 — o2 _ 12
T 2mx ,V ka -> L 2mx 2kx

Following the Euler-Lagrange procedure:

doc d o )
= (me)=mx

dtox  dtox
612_6( lk 2)_ k
dx  0x 2 )= X
mi+kx=0
y ., —dV
mi = —kx o m¥ =——
ox
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This shows that the potential energy determines the spring term forcing on the mass. By only taking the
potential energy into account the forcing of the springs of two interconnected floaters becomes in a
more general form:

-0V
Fioint,i = N
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O Linearization

For calculations in the frequency domain only linearized terms are allowed. The following section will
elaborate on linearizing the obtained non-linear joint forcing Fjy ;-

Linearization can be accomplished by assuming the small angle approximation derived from first order
Taylor expansion:

cos(¢) = 1,sin(¢) = ¢ (Eq.0.1)

This is an assumption that is not valid with the expected rotations of the platform. Nevertheless, the
influence is investigated in order to determine if a linear approximation for these kinds of applications is
useful.

Applying the small angle approximation does not give linear terms immediately and therefore the
procedure is analyzed more carefully for pitch (rotation around the y-axis). The forcing in this degree of
freedom shows non-linear terms that will not vanish by applying the small angle approximation.

This is caused by the square term in the potential energy calculation, see Appendix B. Since the motions
at a point P on the side of the floater consists of a combination of rotations and translations relative to
the floaters CogG, still square terms arise in the joint forcing after applying the small angle
approximation. These terms are set to zero and just skipped to fulfill the linearization.

C.1 Symbolic programming solution

To come to a convenient way to solve this matter with symbolic programming, it is desirable to know
which factors can cause this effect.

Therefor it is suggested to map out the possible combinations in the potential energy equation for the
12 DoF model of two interconnected floaters. In the Euler-Lagrange equation the derivative is taken of
this potential energy and it can be seen if the small angle approximation, gives complete linearization,
see Table 0.1.

Table 0.1: Overview of differentiation and linearization with small angle approximation, with a and b being different degrees of
freedom.

Possible term in potential Derivative of term: 9f(a.b) Small angle approximation of
energy: f (a,b) 9a derivative
cos(a) cos(a) —sin(a) cos(a) —a
cos(a) cos(b) —sin(a) cos(b) —a
sin(a) sin(a) cos(a) sin(a) a
sin(a) sin(b) cos(a) sin(b) b
acos(b) cos(b) 1
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cos(a) b —sin(a) b —ab
asin(b) sin(b) b
sin(a) b cos(a) b b

Other cross terms in the potential energy will vanish automatically due to symmetry in the system, with
two joints placed on the corners of the floater, being the following possibilities:

sin(a) cos(b)

cos(a) cos(b)

1

cos(a) sin(b)

—sin(a) sin(b)

—ab

Therefor for these does not need to be corrected. Note that the variables within the sinusoidal functions
are always rotational degrees of freedom, and when a multiplication of a sinusoidal with another
variable takes place, the variable multiplicated with the sinusoidal is a translational variable.

Knowing this, the procedure can easily be implemented in a script after taking the derivative of the
potential energy. The complete non-linear forcing vector by the joints for all the degrees of freedom is
then obtained. A code that searches for the derivative with the shape (sin(a) b) (with a and b being any
degree of freedom in the system) and replaces it with zero.

Afterwards the small angle approximation is applied to the forcing vector, which carries out the
following replacement procedure cos(a) = 1,sin(a) = a, with a=any rotational degree of freedom.

This results in a linear joint forcing vector that represents the interaction between the two floaters in
the joints: Fioint linear-
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D, Joint stiffness forcing

D.1 Linearized Joint stiffness matrix

The non-linear joint forces with respect to the floaters’ centers of gravity obtained with the potential
energy part of the Euler-Lagrange equation looks the following:

T
Fjoint = [F}'oint,xlr Tty P}'oint,y[)l: F}'oint,xz: Tty P}'Oint,ll)Z]

Applying the differentiation procedure leads to the following forcing on the first floater in its degrees of
freedom. The forces on the second floater look similar.

k
Fiointx1 = —7‘1 (=2asin(yq) + 2a sin(yp,) + 2b cos(Y4) + 2b cos(Y,) + 2b cos(6,) + 2b cos(6,) — 8b

k
+ 2x; — 2x,) — 7“ (2a sin(y;) — 2a sin(y,) + 2b cos(YP,) + 2b cos(YP,) + 2b cos(6;)
+ 2b cos(0,) —8b + 2x; — 2x,)

Fiointy1 = —%(—Za cos(¢1) + 2a cos(¢p,) — 2a cos(P1) + 2a cos(P,) + 2b sin(P;) + 2b sin(y,) + 2y,

—2y,) — %(Za cos(¢,) — 2a cos(¢,) + 2a cos(;) — 2a cos(,) + 2bsin(y;)
+ 2bsin(¥y) + 2y, — 2y,)

Fioint,z1 = —%(—Za sin(¢,) + 2a sin(¢,) — 2bsin(6,) — 2bsin(0,) + 2z, — 2z,) — % (2a sin(¢,)
— 2a sin(¢,) — 2bsin(6,) — 2bsin(6,) + 2z, — 2z,)
Fiome g1 = aks(—a sin(¢q) + a sin(¢p;) — bsin(6,) — bsin(6;) + z, — z;)cos(¢p,) — aks(a sin(¢;)
—a sin(¢,) — bsin(68,) — bsin(8,) + z; — z,)cos(¢p,) — aks(—a cos(¢,) + a cos(¢,)

—acos(q) + acos(P,) + bsin(Py) + bsin(P,) + y; — y,)sin($y) + akg(a cos(¢p,)
—acos(¢;) + acos(}py) —acos(Yy) + bsin(Py) + bsin(P,) + y, — yz)sin(¢p,) — k(24

—2¢2)

Fiointo1 = bk,(—a sin(y,) + a sin(y,) + b cos(y1) + b cos(ip,) + b cos(6,) + b cos(0,) —4b + x,
— X,)sin(60,) + bk, (a sin(y,) —a sin(y,) + b cos(P;) + b cos(Y,) + b cos(8,) + b cos(6;)
—4b + x; — x3)sin(6,) + bky(—a sin(¢,) + a sin(¢,) — bsin(8,) — bsin(6,) + z;
— Z)cos(6;1) + bks(a sin(¢,) — a sin(¢,) — bsin(08,) — bsin(0,) + z; — z;)cos(6;)
— k. (26, — 26,)

Fiointp1 = — % (=2a cos(y1) — 2bsin(yp1))(—a sin(yp,) + a sin(y,) + b cos(;) + b cos(Y,) + b cos(6;)

+ bcos(0,) —4b + x; —x3) — %(Za cos(1) — 2bsin(y1))(a sin(y;) — a sin(y,)
+ b cos(i;) + b cos(y,) + b cos(6,) + b cos(0;,) —4b + x; — x,) — k(21 — 2¢,)

— % (—2a sin(y;) + 2b cos(Y,))(a cos(¢,) — a cos(¢p,) + a cos(YP;) — a cos(YP,)

+ bsin(yy) + bsin(Yz) + y1 — ¥z ) — % (2a sin(1) + 2b cos(¥1))(—a cos(¢p1) + a cos(¢p,)
—acos(Yq) + acos(P,) + bsin(Py) + bsin(yy) +y1 — ¥7)
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D.2 Linearized Joint stiffness matrix

Linearizing all terms in the non-linear joint forcing vector and put them in matrix notation, with the

following procedure:

Ejoint,linear (E(t)) = _Cjointﬂ(t)

(Eq. 0.1)

Note: the minus is due to the difference in side (left or right of the equal sign) of the equation where the

joint forcing is implemented.

Since the forcing vector is linear, the entries of the stiffness matrix can be composed by taking the
derivative with respect to each degree of freedom for every vector input:

(95,

C11 C1,12 | o0uy
Cjoint:[ S S ]:_1' :

€121 C12,12 0Fi,

ou,

J0F; ]
67{12|

OF,
0uq,

(Eq. 0.2)

This leads to the following full diagonal joint stiffness (12x12) matrix with respect to the centers of

gravity of floater 1 and 2 for the interconnected floaters.

Cjoint =

rk, 0 0 0 0 0 —k, 0 0
0 ki 0 0 0 bk, 0 -k, 0

0 0 Kk 0 —bk, 0 0 0 —k,

0 0 0 aketk 0 0 0o 0 o0

0 0 —bk, 0 b2k, + k, 0 0 0 bk,
o0 bk 0 0 0 @k, + bk +k, 0 —bk, O
~k, 0 0 0 0 0 k, 0 0
0 -k, 0 0 0 —bk, 0 ki 0

0 0 —k 0 bk, 0 0 0k

0 0 0 —ath,—k 0 0 0 0 0

0 0 —bk 0 b2k, — k, 0 0 0 bk,
Lo bk, 0 0 0 —a’ky +b%k,—k, O —bk, O
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= User Guide NEMOH

NEMOH consists of a collection of Matlab codes, that can be divided into three programs as shown in
Figure 0.1.

preProcessor . solver . pOStPI’OCQSSOI’
Read and prepare For each body Postprocess the
the mesh and condition, solve the results. May be used
calculation cases linear BVP for the to cakulate RAOs
(sets of body potential and and plot the free
conditions ) calculate pressure surface wave

field. hydrodynamic elevation

coefficients, far field
coefficients and
wave eevalion

Figure 0.1: Three programmes of which NEMOH is composed.

First the pre-processor is used to create a Mesh. By pre-defining the surfaces of the structure, the mesh
code will divide it into a surface consisting of multiple panels. The coordinates of the pre-defined surface
should be stated left rotating, when looking from the fluid domain into the body (Babarit &
Delhommeau, 2015).

Node 4

Node 3

Node 1

Node 2

Figure 0.2: orientation convention of a described panel

In the mesh file a symmetry in the xOz-plane is assumed and therefor only half of the body needs to be
defined. Automatically the part above the seawater (z=0) is erased and only the under water part is
modelled. A mesh of a rectangular box with a certain width (Bf), length (Lf) and draft (T) can be
described in the following way:

L=Lf/2; %0Only half of the box is modelled

B=Bf/2;

nBodies=1; $number of bodies

n(l)=5; $number of pre-defined panels

%description of panels, with four corner coordinates:
%$height above water line taken as one, but does not matter.
X(,1,:,:)=[-L B 1.;-L -B -T ;L -B -T ;L -B 1.];
X(1,2,:,:)=[-L 0. 1.;-L -B 1.;L -B 1.;L 0. 1.];
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1,3,:,:)=[-L 0. -T;L 0. -T;L -B -T;-L -B -T];

1,4, :)=[L 0. 1.;L -B 1.;L -B -T;L 0. -T];

1,5,:,:)=[-L 0. 1.;-L. 0. -T;-L -B -T;-L -B 1.];

ranslatlon of body in space

tX(1)=0.;

%Center of Gravity for global axis system on water level height
CG(1l,:)=[0. 0. KG-T];

$sdesired number of objects (panels)

nfobj (1)=1000;

[Mass, Inertia,KH, XB,YB, ZB]=Mesh (nBodies, n, X, tX,CG,nfobj)

The second step is to let NEMOH calculate the added mass (A), hydrodynamic damping (B) and
frequency dependent wave forces (Fe). This is done for a given frequency vector (w) and a wave
direction (mu):

[A,B,Fe]=NEMOH (w, mu, depth);

The mesh generating code automatically generates an ID file with the name of the folder where the
mesh is stored. Running NEMOH afterwards this is automatically adapted, and specification of the mesh
source is not necessary.

The result of the complex force relates to the incident wave in the following manner (Babarit A.,
General Notations and Conventions, 2014):

For (t) = R(AF,x ()e™0t) = R(A|Fyp (w) [e i@t~ ¢Fex(@))

E.1 Additional changes in NEMOH code

Multiple wave directions
Changes in NEMOH.m

line 61:

textline (n)={sprintf('%g %f %f ! Number of wave directions, Min and Max
(degrees) ',length(dir),dir(l),dir(end)) };

line 108:116:

for i=1l:length(dir)
ligne=fgetl (fid);
for k=l:nw
ligne=fscanf (fid, "$f',1+12*nBodies) ;
for j=1:6*nBodies
Famp (i,3,k)=1ligne (2*j);
Fphi (i, 3, k)=1ligne (2*j+1);
end;
ligne=fgetl (fid);
end;
end;

Multiple translations
Change in calling mesh file: [Mass, Inertia,KH, XB, YB, zZB]=Mesh (nBodies, n, X, tX, t¥, CG, nfobJ

Change line 96 in Mesh.m: fprintf(fid, 'l \n %f %f \n ',tX(c),t¥(c));
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— Pnhase snifts In
NEMOH & DIFFRAC

Two DIFFRAC files are evaluated, to see how the phase shift is taken into account. In Table 0.1 the two

considered systems are shown with the CoG of the two first floaters with respect to the center of each
system.

Table 0.1: the reference system of the two considered DIFFRAC files

HydFile 1: 2 bodies HydFile 2: 12 bodies

CoG floater 1 [m] (0;1.455) CoG floater 1 [m] (12.598 ; 4.529)
CoG floater 2 [m] (0;-1.455) CoG floater 2 [m] (12.598 ; 1.510)
Depth [m] 1000 24
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For the convenience the wave direction is kept at 270 degrees (1.5 rad). And from this direction a
regular wave is generated, and the phase difference can be computed between the wave arriving at the
CoG of body 1 and body 2:

€2120cog = —KX1,2 €0s(1.51) — ky, 5 sin(1.5m)

€0,80 = €88coc ~ €1co6

To verify this the same is done for the forcing phase shifts obtained for DIFFRAC in the heave motion in

the same direction. It is expected that a similar phase difference will arise between these two floating
bodies in low frequencies, since the floaters will then “exactly follow the waves”.

€FpFp = €Fpl — €FuQ
Table 0.2: comparison for HydFile1: 2 bodies
w [rad/s] A[m] €¢,¢, [rad] €r,,F,, [rad]
0.3 685 -0.027 -0.0011
0.5 247 -0.074 -0.0063
1 61.6 -0.30 -0.065
1.5 27.4 -0.67 -0.023
Table 0.3: comparison for HydFile2: 12 bodies: difference between body 1 and 2
w [rad/s] A [m] €5, €FyyFp
0.3 310 -0.061 -0.004
0.5 173 -0.11 -0.010
1 60.8 -0.31 0.076
1.5 27.4 -0.69 0.41

By giving a wave height to the regular wave (H=2.4m in this case), the results can also be plotted. This is

done for Steel 12F 1.24 Springs and a frequency of 1 rad/s in Figure 0.1.

1.0 1

0.5 4

0.0 A

¢m]

—0.5 -

~1.01

(4}
£

/

Figure 0.1: wave elevation and heave forcing in floater 1 and 2 for a regular wave in time

4

6 8 10
t[s]

Fz [kN]

300 1

200 1

100 1

-100

=200

=300

It is clearly visible that the phase shifts between the two lines are not similar in both figures. It can be
said that DIFFRAC takes not into account the phase shift in the hyd-file and therefor this needs to be
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added afterwards for the appropriate location of every body its CoG. It can be seen in Table 0.3 that for
higher frequencies (phase shift positive) body 2 even starts to experience forcing earlier than body 1,
which is rather a contradiction.

NEMOH seems to take these phase shifts into account properly, with respect to its global coordinate
system.

To compare for a larger distance NEMOH and DIFFRAC are compared.

Name Steel 12F 1.24 Springs test_CoGdiff tandem_25.2

o

270 I %0 50 270
1)1
1|2

’ , 0 | 180
CoG1 Floater 1 (12.598 ; 4.529) Floater 1 (0; 0)
CoG 2 Floater 9 (-12.598 ; 4.529) Floater 2 (25.2;0)
Distance 25.196 25.2
Depth 24 24
U 180 0
wave elevation mu=180 degrees, w=1 rad/s heave forcing mu=180, w=1
e [ P Fa
1.0 200 <o Fae
0.5 100 A
g 0.0 g 0
-0.5 -100 A
1.0 —200 A
0 2 4 6 8 10 0 2 4 6 8 10
t[s] tls]
Figure 0.2: Result for DIFFRAC
Nemoh wave elevation u=0, w=1 Nemoh - z forcing: y=0,w=1
10 200 -
0.5 100 A
E 0.0 R e S S ?:
-0.5 —100 A
-1.0 —200 -
0 2 4 6 8 10 0 2 4 6 8 10

t[s] tls]

Figure 0.3: Result for NEMOH
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The results in Figure 3.6 and Figure 3.7 show clearly that the wave phase difference between the two
waves is €¢ ¢, = 2.605 rad, when { = {, cos(a)t - eg)

In NEMOH the Phase shift F,,,; = arg(Fcomplex) should be used in the following manner:
F = iR(Fae_i(wt_Feps(w))

This will give the correct time shift in time domain. Applying the same to the DIFFRAC file a small phase

shift is visible but not realistic for the applied wave (w =1 %,/1 = 60.8 m) leading to the following
results:
DIFFRAC NEMOH
€F,,¢ 0.32 -0.07
€r,y¢ 0.50 2.48
€F,,F,, 0.18 2.56

The two following can be retrieved from a closer study:

- The phase shift in NEMOH has a different sign than the one in DIFFRAC.

- Ontop of that the DIFFRAC phase shift is with respect to the incident wave at the floaters center
of gravity and the one of NEMOH is with respect to the incident wave at the origin of the global
coordinate system.

Meaning that:

€DIFFRAC,global = €DIFFRAC () = kxcog cos(u) — kycog sin(u)

€ENEMOH = —€DIFFRAC,global
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5 Numerical tme
Ntegration scnemes

G.1 Modified Euler (RK2)

Also known as 2" order Runge-Kutta, Heun’s Method or Predictor-Corrector.
Wpe1 = Wy + hf (t,, wy) (Eq. 0.1)
Wiet = Wi + 5 [F (b W) + f (tnes, Wnet)]

Where:

n step
wy, Solution at time step ¢,
Wn4q1  Predictor of the solution at time ¢, 1
Wn4+1  Numerical solution at time t,, ¢
h Step size At
f(t,w) Approximation function for time derivative

Modified Euler has a local truncation error of 0(h?).

G.2 4" order Runge-Kutta (RK4)

This method combines 4 predictors and has quite attractive stability characteristics. This method has a
local truncation error of O(h*) and can therefor lead to higher accuracies of the time integration and
increases the stability region. Nevertheless, the expected increase in time step size compared to
Modified Euler is very small and is not of practical use (Vuik, van Beek, Vermolen, & van Kan, 2006).

Wni1 = Wy + % [k + 2ky + 2k5 + k4] (Eq. 0.2)
ki = hf (tn, wn)

k, = hf (tn + 2wy, +§k1)

ks = hf (to+2h,wy + 2k,

k4 = hf(tn + h, Wn + k3)
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G.3 ODE45-solver

Different programming languages have numerical time integration packages. A widely used numerical
integration scheme in these packages is the ODE45-solver. A mix of an explicit RK4 and RK5 method with
variable time stepping to increase the stability of the integration scheme. In Python the package is due
to Dormand & Prince (The SciPy community, 2019) and a more detailed description can be found in
(Hairer, Norsett, & Wanner, 1993).

G.4 Solving EoM

As an input for the time integration scheme the EoM needs to be solved at the particular time step
indicated in the function f(t,,, w,) (see for example equation 8.2), where w,, contains all the
displacements and velocities at this time step. A short intermezzo is given for solving this for a SDoF- and
a MDoF-system.

SDoF — system

As an example the predictor function presented in equation 0.1 is solved. For convenience the EoM is
described with a damping factor b (which is not the correct representation of the Cummins’ equation,
but will do as an example).

mix, +bx, +cx, = E, (Eq.0.3)

. Xn
For a single degree of freedom: w,, = [x ]
n

X
Solving the equation of motion will return f(t,,, wy,) = [xn]
n

The function f(t,,, wy,) can therefore be written as:

Xn (Eq. 0.4)
th, W, %
ARG [ ] F—bxn—cxn)
It can now be seen that the function 8.2 can be rewritten in the following form:
w +hf (tnwa) =[] + 1 [ 1 o e
w. = W. , W. =1. X
n+1 n n n xn _(Fn_bxn_cxn)
m
MDoF — system
The same procedure can be performed for a MDoF:
Mii, + Bi, + Cu, = F, (Eq. 0.6)

u
The w will become a (2xnDoF) vector containing all the velocities and accelerations: w,, = [un]. Since
n

the system is written in matrix notation, the solution to the predictor formula becomes:

_ Uu u (Eq. 0.7)
Wiy = W hf (b W) =[] + [M—l(ﬁ ~ Bity, — Cuy)
n n n
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. Retardation
—UNction

The retardation function:

2 oo
R;j(7r) = —f b;j(w) cos(wt) dw
T
0
In numerical form approximated by:

N
R;i(7) = b; i (wy) cos(wyT) Aw
Jj kZl j k k

Next to the hydrodynamic damping in frequency domain, two important factors are of influence on the
outcome of the retardation function:

- The frequency range
- The Retardation time

H.1 Frequency range

In order to capture all the ‘damping’ in the retardation, the hydrodynamic damping coefficient in
frequency domain should decay towards zero at high frequencies. Otherwise this is a sign that not all
the damping is captured in the impulse response (retardation function).

The difference in retardation function is shown for different frequency ranges.

Hydrodynamic damping b; - >

1500 -
1250 -
1000 4

4 750 1
500

250 1

Rz-3
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5000
4000 4
30004
20004

1000 4

—1000 A

—2000 A

—3000 A

—— 0-8rad/s
0-7 rad/s
—— 0-6rad/s




Hydrodynamic damping bs -3 Rs_ 3 for different frequency ranges

—— 0-8rad/s
40000 80000 0-7 rad/s
—— 0-6rad/s
60000 1
30000
40000 1
v T
& 20000 - o 20000 4
Q 4
10000
—20000 A
0- —40000 -
0 1 2 3 4 5 6 7 8 0 2 4 6 8 10
w [rad/s] t[s]

Figure 0.1: Hydrodynamic damping in frequency domain for sway and heave (left), the resulting Retardation function for
different frequency ranges considered (right).

Figure 0.1 shows that the frequency range can be of major importance on the retardation function.
Especially for damping coefficients that have not decayed to zero at the end of the considered frequency
range (this is the case for surge at 6 and 7 rad/s). The heave retardation function shows not these large
differences, since the hydrodynamic damping approaches zero faster for higher frequencies.

H.2 Retardation time

Another factor of influence is for how many seconds the retardation function is evaluated in the model.
Since the Retardation function is a decaying function, there is no need to evaluate it for the total desired
time output. It can therefor be shortened for a certain number of seconds that is used in the
convolution with the same amount of time steps of the velocity.

Studying every Retardation function (12x12 for two floaters) shows that all retardation functions have
decayed to approximately zero after 10-20 seconds.

In order to do the convolution of the whole retardation function and the velocity, the model needs
some ‘startup time’, which means that the convolution cannot be evaluated completely until the time is
past the retardation time given up.

By plotting the result of the two interconnected floater model after sufficient time shows the following
for different retardation time, see Figure 0.2. Only some difference can be observed for very small
retardation time.
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Time domain simulation with different Retardation time: 6>

0, [rad]

—_—t=1s

t,=5s
—0.2 - — t,=10s
— t,=25s

175 180 185 190 195 200
t[s]

Figure 0.2: Result of two interconnected floaters for different retardation time

H.3 Conclusion

It can be concluded that for a proper implementation of the Retardation function the frequency range

should be wide enough for the hydrodynamic damping to become zero at higher frequencies. This is at
approximately 8 rad/s for the floaters considered in this study. The retardation time can be shortened

due to the fast decay to zero of the retardation function. This is taken as 25 seconds in this research.
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. Added Mass at
Nnfinite frequency

In this appendix the determination of added mass at infinite frequency is evaluated. Two methods are
compared:

- the determination of the added mass at infinite frequency with the frequency dependent added
mass by averaging the formula presented in section 2.3.5, (Babarit & Delhommeau, Theoretical
and numerical aspects of the open source BEM solver NEMOH, 2015).

1 co
0 Gijo = Ay e0(®) + Zfo R, (1) sm(wt) dT
1 <N, 1 N .
_Zn=1 (aij (wn) + w_nzkio Rij,k Sln(wntk) At)

- aij,oo = Ng
- Let NEMOH Calculate the added mass at higher frequencies and analyze its convergence.

- Developed formulas for added mass calculation

|.1 Averaging

The first method stated can be obtained with the frequency dependent added mass and hydrodynamic
damping. The retardation function follows from the hydrodynamic damping, see section 2.3.5.

For two floaters in heave and pitch this results in the following added mass matrix (including gap
resonance suppression, see Appendix K):

29.2 —-0.81 7.63 1.85
—-0.84 448 -1.87 -0.54
7.63 —185 29.2 0.81
1.87 —-0.54 084 448

Ap = 103 -

A similar method is presented in the aNySIM theory documentation (MARIN, 2018) as being:

3

1 (Bw .
Aj oo = a;j(w) + zfo R;;(7) sin(wt) dt

For a frequency step size of Aw = 0.01 rad/s (see section 3.3.2), the Retardation function should at
least be evaluated until 315 seconds to full fill the calculation of the integral. The result for the
calculation of the heave added mass is shown in Figure 0.1 at the different frequencies.

116



As_ ;3 atinfinite frequency calculated per frequencystep

40000
FAY —— Averaged 400s
37500 /\ Result 400s
[\ - Result 50s
35000

32500

A
< 30000 A

275001 |

25000 |

22500 4

w [rad/fs]
Figure 0.1: Result for calculation of infinite added mass at different frequencies and different Retardation time

The result shows that it is in this case not of influence if the retardation time is calculated for 50 seconds
or more then the stated 315 seconds. This due to the fast decay of the retardation function, see
Appendix H.

|.2 Higher frequencies

In order to estimate the added mass at higher frequencies properly, also the mesh needs to be adjusted
to be able to capture high frequency waves/short wave lengths. There should be sufficient panels per
wave length.

As a rule of thumb the minimum required number of panels (William Otto, Marin 2018) should be at
least 5 per occurring wavelength. Knowing the wetted surface area an estimation can be made of the
number of panels required per wave frequency that is calculated.

The wave length corresponds to the wave frequency via the dispersion relation and can be calculated
iteratively:

_9 2 ( E)
/1—27TT tanh 271/1

The minimum number of panels on the floater that are at least required per wave length can then be
calculated accordingly:

N _ Awetted
panels — 2

A
5)
The result is summed up in the following table:

Table 0.1: Estimation of the amount of panels minimal required in mesh for higher frequencies

w [Tad/s] A [m] Npanels
8 0.96 903
10 0.62 2204
25 0.10 86108
50 0.024 1,377,739

117



This means that the calculation of higher frequencies would be very time intensive and is proceeded
here.

|.3 Developed formulas

Different methods have been presented to approximate the added mass at infinite frequency and for
heave motion they were summarized by (Koo & Kim, 2015).

For a rectangular barge the following table can be applied:

Table 0.2: Heave added mass for various B/T at high (infinite) frequency in deep water (h/T=30) (Koo & Kim, 2015).

Rectangle
B/T ays | pd
2 1.120081
3 1.032703
4 0.969387
5 0.919991
6 0.880204
7 0.847645
8 0.820776
9 0.798465
10 0.779873

Applying the dimensions of the structure would implicate an added mass for heave of a;; =
21.8 kN/(m/s?), which is slightly lower than the ones stated above.

|.4 Influence of Added Mass

Two different cases of the added mass are considered to verify its influence on the total. The averaged
value and a decreased value of the averaged added mass of 75%: Ay, 75 = 0.75 - Ay, to study the
change in behavior due to this added mass. Again, this has large influence on the rotational motions of
two interconnected floaters, see Figure 0.2.

Time domain simulation with reduced Added Mass: 6;

Time domain simulation with reduced Added Mass: 6,

0.3 1
—— TD: 100% Added Mass —— TD: 100% Added Mass
—— TD: 75% Added Mass —— TD: 75% Added Mass
5 ‘f\ 0.2
0.1 fl \ 0.1 {
5 \ ‘ 5
o © V
= 00 f = 0.0 M |
L) L)
‘ WL
f |
') i
-0.1 J \ -0.1 W f
-0.2 -0.2 4
0 10 20 30 40 50 0 10 20 30 40 50
t(s] t[s]

Figure 0.2: Influence of a reduction of Added Mass on the pitch behaviour of two interconnected floaters
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It can clearly be seen that not only on the amplitudes, but also on the phase of the motions it has
influence, and an inaccuracy in the infinite added mass has influence on the overall behavior.

1.5 Conclusion

The formula given by (Koo & Kim, 2015) gives a lower value than the added mass with the averaging
function (29.2 vs.21.8 kN /(m/s?)). Nevertheless, for multiple bodies, it is more convenient to stick to
the method presented by (Babarit & Delhommeau, Theoretical and numerical aspects of the open
source BEM solver NEMOH, 2015) to calculate the added mass.

It is shown that inaccuracies in the infinite added mass, can have significant influence on the response of
the floater.
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J

xact solution In 1D

This appendix describes the exact solution for a single mass-spring dashpot system.

The exact solution to the following system, where F is an arbitrary force:

(M+ae)ii+bi+cu=F o ii+2{wylt + wéu=F/(m+ as) (Eq.0.1)

And can be divided in a homogeneous and particular part:

u(t) = Upom (t) + Upart ® (Eq.0.2)

The general solution to a sub-critically damped system is:

The arbitrary force F(t) can be expressed as a convolution integral (different than the one mentioned
before): F(t) = fooo E,(£)6(t — t)dt. The particular solution to this is the Duhamel’s integral for damped
systems:

Unom (£) = exp(—(wot) (C1cos(w,t) + Cysin(wyt)) (Eq. 0.3)

t (Eq. 0.4)

1 ) ) o
tpare() = s Of Fu(B) exp(—Cwo(t — D)) sin(wy (¢ — B)) di

Solving for the initial conditions (g, V), gives the following expression for the 1DoF motion:

u(t) = exp(—{wyt) <uocos(a)1t) + a)i (vo + uoiwo)sin(wlt)>
1

(Eq. 0.5)

t

1 ¥ z ~ ~
+ (m‘*‘—wa E, (D) exp(—{wo(t -D) sin(a)l(t -D)dt
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<. Gap Resonance
nterpolation

Two floaters are modelled up to 8 rad/s in NEMOH (2 floaters with gap of 0.3m) to obtain the
hydrodynamic coefficients (Added mass, hydrodynamic damping and first order wave forces). A
comparison is made with the diagonal hydrodynamic coefficients of a single floater in Figure 0.1. The
result shows that the locations of the gap resonance are clearly visible.

In Figure 0.1 can be seen that the gap resonance causes significant influence. Even negative diagonal
terms are found in the matrices, which is not desirable. This is observed for the added mass in every
direction, except sway (4,,).
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Figure 0.1: Diagonal Added Mass terms of single floater and first floater of a two-floater model
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Figure 0.2: Diagonal Hydrodynamic Damping terms of single floater and first floater of a two-floater model
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Figure 0.3: Force amplitude response under head waves (1 = 0°) of a single floater and first floater of a two-floater model

Implementing a linear interpolation around the gap resonant frequency part, that is cut out, is applied.
As stated in chapter 5, the first calculated gap resonant frequency based on Molin’s formula is: wgqp =
3.82 rad/s. Visually it can be seen that it is indeed around 4 rad/s. Since there are multiple
coefficients that need to be adjusted for (namely for two floaters: 12x12 Added Mass, 12x12
Hydrodynamic damping, 12x(number of wave directions) wave forcing), the range that is cut out needs
to be chosen correctly. Three different ranges have been applied to the coefficients; Cut out and
interpolate between: 3.9-4.2 rad/s, 3.5-4.5 rad/s and 3.0-5.0 rad/s. On every coefficient the optimal
range can differ as can be seen in figure Figure 0.4 for the proposed interpolations of B, , and

Fy (p = 0°).
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Figure 0.4: Linear interpolation for different ranges for Hydrodynamic Damping in sway-sway (left) and Wave force amplitude

response in surge under head waves (right).

While the cut-out range of 3.0-5.0 rad/s would give the most smooth result for the forcing in this case
(Figure 0.4right), it is obviously that this is not the case for the hydrodynamic damping in sway-sway
motion. A good range to suppress the first gap-resonant peak is at 3.5-4.5 rad/s, for all coefficients in

this case and applied accordingly.

K.1 Smoothening

In order to overcome sharp discontinuities at higher resonant frequencies and at the cut-out boundaries
a smoothening can be applied. This averages the values of a certain fraction of the result. See Figure 0.5

for different smoothening fractions S.

Added Mass A3 3 (Linear Interpolation (3.5-4.5): without, with 5% or 10% smoothening)

60000

40000

20000

As 3 [N[(m?/s)]

-20000
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without
5%
10%
15%

w [rad/s]

Figure 0.5: Linear interpolation of Added Mass in Heave-Heave of the first floater (in a two-floater-configuration) for different

smoothening fractions.

In all cases 10% smoothening gives convenient results, to get out the peaks at resonant frequencies,
without changing the overall shape of the hydrodynamic coefficients.
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K.2 Force interpolation

Keeping in mind that the first order wave force is composed of a force amplitude response (%) and a

a

phase shift €z ;. Interpolating this properly is by interpolating the real and imaginary part of the
combined complex wave force response function:

R (% (w)eifpi((w)) and (% (w)eiez:iz(w))

The interpolation on the phase shift goes properly as can be seen in Figure 0.6.
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Figure 0.6: Unprocessed (old) and Interpolated/smoothened (new) force amplitude response (left) and force phase shift (right)

under head waves (u = 0°) of the first floater of a two-floater model.
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K.3 Sensitivity

It can be checked what the sensitivity is of the model to these changes in suppressing the gap
resonance. This is performed for two floaters with heave and pitch motion under head waves. As a
reference also the motion is plotted for cutting of all the frequencies above 3 rad/s (in this case there is
no influence of gap resonance at all, but there will be information lost as well at higher frequencies).

Going back to the equation of motion stated in in section 2.2.2, a change in these hydrodynamic
coefficients has the biggest influence on the wave forcing and the retardation function in the time
domain model.

The amplitude of the retardation function increases significantly when the hydrodynamic damping is not
suppressed at its resonant frequencies (Figure 0.7), and even can change sign (Figure 0.8), due to a large
negative peak at the gap resonance. An additional gain of the suppression is that the retardation time
can be shorter in the time domain model, due to its faster convergence to zero, see Figure 0.7.
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Figure 0.7: Unprocessed (old) and Interpolated/smoothened (new) Hydrod. damping of the first floater of a two-floater model
in heave-heave (left). The result of the calculation of the retardation function in heave-heave (right).
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Figure 0.8: Unprocessed (old) and Interpolated/smoothened (new) Hydrod. damping of the first floater of a two-floater model
in heave-pitch (left). The result of the calculation of the retardation function in heave-pitch (right).

The calculated wave forcing in the system for the three cases, is evaluated by means of superposition
and shown in Figure 0.9. As described before, it can clearly be seen that the force in pitch, is most
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sensitive to the changes at these higher frequencies, where the unsuppressed gives the highest
fluctuations for high frequencies, due to the resonant peak.
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Figure 0.9: Forcing in the four degrees of freedom for two floaters under head waves for heave and pitch. Wave-state: ULS.

The results of the time domain model are shown in Figure 0.10. It can be observed that especially the
pitch is very sensitive to these changes. This is mainly because is overall more sensitive for higher wave
frequencies. Short waves on the platform are more likely to cause pitching motions on the relatively
small floaters. Longer waves on the other hand are more of influence on the heaving motion.
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Non-Linear RK4: motion in z; for dt=0.01s Non-Linear RK4: motion in 8, for dt=0.01s
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Figure 0.10: Motion in the four degrees of freedom for two floaters under head waves for heave and pitch. Wave-state: ULS.

Keeping the retardation time low in a system that is not suppressed, so the retardation function has not
decayed yet completely. The system tends to become unstable when the resonant frequencies are not
suppressed. See Figure 0.11.
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Figure 0.11: Time domain becoming unstable, when retardation time is not sufficient, unsuppressed situation shown.
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K.4 Conclusion

A straightforward way of suppressing the gap resonance is cutting out the part around the gap
resonance (3.5-4.5 rad/s) and linearly interpolate this. The range that is cut-out needs to be chosen
carefully, so that this method is valid for all hydrodynamic coefficients. A 10% smoothening of the
results flattens the discontinuities at higher resonant frequencies and at the cut-out boundaries.

The procedure has beneficial effects on the retardation time that needs to be considered in the time
domain model, since the retardation function of the suppressed hydrodynamic damping decays faster to
zero.
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| Joint stifftness
determination

The joint is described as springs (see: 2.4.1 Joints as springs) and for optimal result of the model it is
more desired to give realistic values to the spring. As a reference a “fictive’ but realistic rubber ring-

shaped fender is used. Not considering if this could bear the forces and the yield stressed.

Spring stiffnesses

In order to get an approximation of the stiffness of the joints, it is assumed that it will have a round
shape, like a fender. In the middle space is required for cabling between the various platforms. The

second moment of area therefor will become:

s
IleyZZ(TZA}_T{L)

YA
Iy=L+1L=20-1)
A=n(r}—rf)

My

Where:

A = crossectional area

I, = second moment of area
I, = the polar moment of inertia

Figure 0.1: Crossection of a circular joint and its characteristics

The spring stiffnesses can be determined accordingly:

- Axial stiffness: k, = ?
- Shear stiffness: kg = 1?5’
. . EI
- Bending stiffness: k, = -
GI
- Torsional stiffness: k,=-L, G= 2(1‘:/)

Where:
E Young’s modulus [N/m?]
G Shear modulus [N/m?]

v Poisson ratio
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(Eq. 0.2)

(Eq. 0.3)

(Eq. 0.4)



l Length of joint [m]

Summarizing the above calculations gives the initial implemented joint for the calculations:

Table 0.1: Initial characteristics for and resultant joint stiffness

material Rubber

1 -

&1 -
Iy -

I, -

A -

E -

v -

G -

l -

k, 2221 kN/m
kg 1629 kN/m
k, 12 kNm/rad
k; 8 kNm/rad
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VI Reaction force and
Sress

M.1 Reaction forcing in joint

When the model calculates the motions of the interconnected floaters, also the reaction forces at the
connection points can be calculated afterwards with the relative displacements of the connection
points. The relative displacement of each connection point can be calculated with the floater’s motions
and the rotation matrices as presented in section 0 and 0.

Fiocal = A_ujointKT + @jointiT (Eq.0.1)

T
Where: Aujpine = [ijoint' AYjoint: DZjoing, Ad’joint' Agjoint; Alpjoint] k= [ka ks, kg, ke, ks kr]T: d=
[do, ds, ds, dy, dr, dr]"

Focar = local force/moment in joint in all directions. All as a function of time.

AUjoint = Upy — Up2
[ X + xplgl. + xPﬂ/)i_

YitYpe, tVpy,
up = z; + Zp ¢, + Zpg,

! bi
0;
. Y,
This will result in non-linear equations for the acting reaction forces. For frequency domain or linear

time domain calculations these need to be linearized, to derive the appropriate reaction forces that
were acting in the used model.

IM.2 Stress calculation

The reacting shear stress in the joint at the connection point can be calculated by combining the local
transversal forces (in local y and z direction) and torsional moment (in local ¢). The reacting
compressive and tensional stress can be calculated by the local axial force (in local x) and bending
moments (in local 8 and ).

The combined forces in the connection:

Faxiat = Fiocaix (Eq. 0.2)

) 5 (Eq. 0.3)
Ftransversal = Flocal,y + Flocal,z
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(Eq. 0.4)
— 2 2
Mbending - \/Flocal,e + Flocal,v,b

Miorsion = Flocal,¢ (Eg. 0.5)

The maximum material stresses will be on the outer surface of the cross-section and can be composed
out of the following:

. . F gxi MpendingT2
Axial and bending stress: Ogxiar = %, Opending = — 7
xy
. F Mtorsion”
Transversal and torsional stress: Tyranspersar = ——eret T cion = — 22

A Iy

This leads to the following maximum tensional, compressive and shear stresses in the cross-section at
the connection point.

- _ [9axial ~ 9pending for oaxiat — Ovendaing < 0 (Eq. 0.6)
Otension = 0 else
_ (Faxial T Obending fOT Ouxiai — Obending > 0 (Eq.0.7)
Ocompression = 0 else

Tshear = Ttransversal + Ttorsional (Eq. 0.8)

Note: these are the maximum reaction stresses at the connection point. In reality the stress and force in
the joints can become higher due to inertia in the joints. This is not considered here, and they are only
modelled as springs/dampers.
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N Maximum Results

Table 0.1: Maximum occurring motions of floater 1 for the different models subjected to various wave directions.

u x[m] | y[m] | z[m] | ¢[rad] |6 [rad] |9 [rad]
0° FD 8.13 0 6.06 0 0.45 0
TDL 7.93 0 6.01 0 0.43 0
TDNL 8.04 0 6.02 0 0.45 0
15° FD 7.83 2.09 6.04 0.1 0.41 0.09
TDL 7.64 2.07 5.99 0.1 0.4 0.07
TDNL 7.75 2.05 5.99 0.1 0.42 0.16
30° FD 6.99 4.02 5.99 0.19 0.37 0.15
TDL 6.81 3.99 5.93 0.19 0.37 0.12
TDNL 6.94 3.95 5.93 0.19 0.38 0.19
45° FD 5.67 5.64 5.92 0.27 0.32 0.17
TDL 5.52 5.59 5.86 0.27 0.31 0.14
TDNL 5.62 5.58 5.86 0.27 0.31 0.15
60° FD 3.98 6.85 5.86 0.34 0.23 0.15
TDL 3.88 6.79 5.81 0.33 0.22 0.12
TDNL 3.92 6.79 5.81 0.33 0.22 0.08
75° FD 2.05 7.6 5.82 0.38 0.12 0.08
TDL 2 7.53 5.77 0.37 0.12 0.07
TDNL 1.98 7.55 5.77 0.37 0.12 0.05
90° FD 0 7.86 5.81 0.39 0.01 0
TDL 0 7.79 5.76 0.39 0.03 0
TDNL 0 7.79 5.76 0.39 0.03 0
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Table 0.2: Maximum occurring joint reaction forces at connection point P1 for the different models subjected to various wave
directions.

u F, [kN] | F, [kN] F,[kN] | Fy[kNm] | Fy [kNm] | F,, [kNm]
0° FD 7.47 0 2.27 0 3.67 0
TDL 3.34 0 2.25 0 2.5 0
TDNL 4.3 0 2.22 0 2.62 0
15° FD 6.02 1.3 4.6 0 2.39 0
TDL 2.29 1.3 4.63 0 1.18 0
TDNL 3.02 1.31 4.88 0 1.25 0
30° FD 3.69 1.59 6.29 0.01 1.21 0
TDL 1.7 1.59 6.33 0.01 0.62 0
TDNL 2.72 1.3 6.44 0.01 0.59 0
45° FD 2.02 1.58 6.47 0.01 0.69 0
TDL 2.38 1.57 6.47 0.01 0.53 0
TDNL 3.17 1.33 6.64 0.01 0.52 0
60° FD 1.07 1.11 5.16 0 0.36 0
TDL 2.98 1.11 5.16 0 0.7 0
TDNL 3.17 1.3 5.29 0 0.69 0
75° FD 0.66 0.67 2.84 0 0.2 0
TDL 3.19 0.67 2.86 0 0.77 0
TDNL 3.13 1.12 2.94 0 0.75 0
90° FD 0.47 0 0 0 0.2 0
TDL 3.13 0 0 0 0.8 0
TDNL 3.14 0 0 0 0.77 0
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Table 0.3: Maximum occurring reaction stress at joint P1 for the different models subjected to various wave directions. Axial,
bending, total compressive, total tensile, transversal, torsional and total shear stress.

(" dq [MPa] | o, [MPa] | o, [MPa] | 0, [MPa] | Teyans [MPa] | Teor [MPa] | T5 [MPa]
0° | FD 0.11 1.47 1.48 1.57 0.03 0 0.03
TDL 0.05 1 1.03 1.02 0.03 0 0.03
TDNL 0.06 1.05 1.09 1.02 0.03 0 0.03
15° | FD 0.09 0.96 0.96 1.04 0.07 0 0.07
TDL 0.03 0.47 0.48 0.49 0.07 0 0.07
TDNL 0.05 0.5 0.51 0.5 0.07 0 0.08
30° | FD 0.06 0.48 0.51 0.53 0.1 0 0.1
TDL 0.03 0.25 0.25 0.27 0.1 0 0.1
TDNL 0.04 0.24 0.23 0.25 0.1 0 0.1
45° | FD 0.03 0.27 0.26 0.3 0.1 0 0.1
TDL 0.04 0.21 0.21 0.25 0.1 0 0.1
TDNL 0.05 0.21 0.23 0.25 0.1 0 0.1
60° | FD 0.02 0.14 0.15 0.13 0.08 0 0.08
TDL 0.04 0.28 0.26 0.32 0.08 0 0.08
TDNL 0.05 0.28 0.28 0.32 0.08 0 0.08
75° | FD 0.01 0.08 0.08 0.09 0.04 0 0.04
TDL 0.05 0.31 0.29 0.36 0.04 0 0.04
TDNL 0.05 0.3 0.3 0.35 0.05 0 0.05
90° | FD 0.01 0.08 0.08 0.08 0 0 0
TDL 0.05 0.32 0.33 0.36 0 0 0
TDNL 0.05 0.31 0.34 0.35 0 0 0
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